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Abstract

This research focuses on two advanced techniques for high-bit-rate video coding: 1) subpel

motion estimation and 2) residual processing.

First, we study sup-pixel motion estimation for video coding. We analyze the char-

acteristics of the sub-pel motion estimation error surface and propose an optimal subpel

motion vector resolution estimation scheme that allows each block with different charac-

teristics to maximize its RD gain through a flexible motion vector resolution. Further-

more, a direct subpel MV prediction scheme is proposed to estimate the optimal subpel

position. The rate-distortion performance of the proposed motion prediction scheme is

close to that of full search while it demands only about of 10% of the computational

complexity of the full search.

Secondly, we investigate high-bit-rate video coding techniques for high definition video

contents. We observed that under the requirements of high-bit-rate coding, there still left

a large portion of uncompensated information in the prediction residual that represents

similar signal characteristics of film grain noise. Due to small quantization step size used

by high-bit-rate coding, these untreated small features render all existing coding schemes

ineffective. To address this issue, a novel granular noise prediction and coding scheme

ix



is proposed to provide a separate treatment for these residuals. A frequency domain-

based prediction and coding scheme is proposed to enhance the coding performance. The

proposed granular noise prediction and coding scheme outperforms H.264/AVC by an

average of 10% bit rate saving.

Thirdly, we further investigate on the impact of high-bit-rate coding from the more

fundamental signal characteristics point of view. A probability distribution analysis on

DCT coefficients from the H.264/AVC codec under different bit rates is conducted to

reveal that the prediction residual in the form of DCT coefficients have a near uniform

distribution for all scanning positions. To further understand this phenomenon, a cor-

relation based analysis was conducted to show that the different types of correlations

existed in the video frame and the distribution of these correlations highly impact the

coding efficiency. A significant amount of short and medium-range correlations due to

the use of a fine quantization parameter cannot be easily removed by existing compensa-

tion techniques. Consequently, the video coding performance degrades rapidly as quality

increases. A novel Multi-Order-Residual (MOR) coding scheme was proposed. The con-

cept is based on the numerical analysis to extract different correlation through different

phases. A different DCT-based compensation and coding scheme combined with an im-

proved rate-distortion optimization process was proposed to target the higher-order signal

characteristics. An additional pre-search coefficient optimization phase was proposed to

further enhance compression performance. Experimental results show that the proposed

MOR scheme outperforms H.264/AVC by an average of 16% bit rate savings.

x



Chapter 1

Introduction

1.1 Significance of the Research

Video coding has been extensively studied in the last three decades. It has been widely

used in video storage and communication. Earlier video compression research has put

a lot of emphasis on low bit rate coding due to the limited availability in storage and

bandwidth. However, with the increased popularity of high definition (HD) video content

and increased transmission bandwidth in recent years, more research focus has shifted

from low-bit-rate video coding to high-bit-rate (or high fidelity) video coding.

We show the video quality as a function of the compression ratio in Fig. 1.1 for today’s

state-of-the-art video coding algorithms. For applications such as video conferencing and

DVD, the current H.264/AVC video coding algorithm can achieve a compression ratio

of 100 or higher. However, when the quality requirement is above 35dB (e.g. for high-

fidelity video), the compression ratio drops rapidly. This observation motivates us to

investigate ways to further improve coding efficiency of high-fidelity video. Studies in

Chapter 4 reveal that some of the uncompensated fine structural information present
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in HD video contents prevents the current compression algorithms from achieving good

coding efficiency in the high-bit-rate range. Additional analysis in Chapter 5 shows that

the different types of correlation existing in the video highly impacts the coding efficiency

under high-bit-rate coding environments. With the market demand shifting more towards

high-fidelity and high-definition video, a more effective video coding algorithm for such

an application is highly desirable.

Figure 1.1: The video quality as a function of the compression ratio for the state-of-the-
art video coding algorithms, where the compression ratio is in (a) the regular scale and
(b) the logrithmic scale.

Subpel motion estimation (ME) provides another mechanism to achieve high fidelity

video coding. However, the computational complexity of subpel ME is high. The com-

plexity of a coding algorithm is typically measured in terms of the number of arithmetic

operations (millions of instructions per second or MIPS), memory requirement, power

consumption, chip area and the hardware cost. As compared to previous standards,

H.264/AVC delivers the best coding performance at the cost of highest complexity. As

shown in Fig. 1.2 which was reported in [40], integer and sub-pel motion estimation (ME)

and interpolation are the two most time-consuming coding modules in the H.264/AVC

2



encoder while the luma interpolation is the most demanding module in the H.264/AVC

decoder.

(a) (b)

Figure 1.2: The complexity profiling of H.264/AVC (a) encoder and (b) decoder [40].

In addition to computation complexity, HD video coding also imposes a lot of stress

on frame memory allocation and access. For example, to encode a HD frame of size

1920×1080 with 5 reference frames, the interpolation module alone would require 1920×

1080×5×16 = 158MB of the frame memory just to store the pixel values on each integer

position. Another 158 × 4 = 632MB of frame memory for 1/2 pel values and another

632×4 = 2528MB of frame memory for 1/4 pel values. That is, a total of more than 3GB

memory is needed to save the interpolated values at the subpel position. Hence, there has

been a large amount of efforts on the speed-up of subpel ME and interpolation, including

instruction level optimization, fast search and fast interpolation algorithms. However,

in spite of previous work as reviewed in Sec. 1.2, we see good opportunities for further

performance improvement.

1.2 Review of Previous Work

Some previous work that is closely related to our research is reviewed in this section.

3



1.2.1 Lossless Coding

JPEG 2000 and M-JPEG2000 have been chosen by the Digital Cinema Initiative (DCI)

[3] as the lossless video coding standard. In H.264/AVC, the 4x4 integer DCT and quan-

tization processes contain shift operations, thus causing rounding errors. To meet the

lossless coding requirement for intra coding in H.264, a Differential Pulse Code Modu-

lation (DPCM)-based prediction scheme is first applied and prediction errors are then

fed into the entropy coder in [48], where the transform and quantization processes are

skipped. Although this new lossless coding scheme is more efficient than the M-JPEG2000

lossless standard, its coding efficiency is still slightly worse than that of the JPEG-LS

standard [45].

1.2.2 Fast ME in Transform Domain

One ME approach is to estimate the cross-correlation of two macroblocks in the frequency

domain [37]. The frequency spectrum of the input are normalized to give a phase corre-

lation. However, the correlation performed by DFT-based methods is in circular (rather

than linear) fashion. Hence, the correlation function could be inaccurate due to the edge

effect. To reduce the problem of edge artifacts, Kuglin and Hines [9] proposed the zero

padding method at the expense of higher computation complexity. Another ME approach

as studied in [41] is to use a transform whose size is much larger than the maximum dis-

placement under consideration. This approach is able to limit the amount of introduced

errors, yet it is more suitable for global motion estimation rather than block-based local

motion estimation. The third approach is to use the complex lapped transform (CLT)

in the cross correlation calculation [49]. This technique is based on lapped orthogonal

4



transform (LOT), where its basis functions are overlapped and windowed by a smooth

function with a shape like a half cosine. It introduces less block edge artifacts as compared

to LOT in the spatial domain. The latest effort of the frequency domain prediction was

proposed for intra prediction in VC-1 [3], where DC and AC components are separated

and predicted from their left and top neighbor frequency components.

1.2.3 Fast Subpel ME

There has been extensive research on complexity reduction for subpel ME. In general,

fast sub-pel ME schemes fall into two categories: 1) search complexity reduction and 2)

interpolation complexity reduction. Fast search schemes lower subpel search complexity

by reducing the number of sub-pixel search points under the assumption that the subpel

error surface is monotonic (or parabolic) [36]. Lee et al. [26] proposed a subpel ME

scheme that tests the four most promising half-pixel locations out of the eight. Thus, the

complexity is halved. The surrounding eight integer positions are used to decide which

half-pixel locations are selected. Yin et al. [36] proposed a similar method that used

fewer integer positions which are determined by a thresholding method. The resultant

fast search can reduce the complexity by 85% with the PSNR degradation of around 0.1

dB. A center-biased fractional pel search (CBFPS) algorithm for fractional-pel ME in

H.264/AVC was proposed in [50] based on the characteristics of multi-prediction modes,

multi-reference frames. However, CBFPS is only applied to smaller blocks while full

fractional ME search is still adopted for larger blocks such as 16×16, 16×8, and 8×16. As

a result, the speedup of CBFPS is somehow limited. To overcome this issue, an improved

sub-pel search method was proposed in [47], which includes a simple and efficient sub-pel

5



skipping method based on statistical analysis and an immediate-stop technique based

on the minimum cost. However, the total computation, as compared to the full subpel

search method, is decreased only by 30%, because all candidate blocks still need to be

interpolated to obtain the fractional-pixel resolution. Thus, the interpolation module is

still the major bottleneck in terms of computation and memory access latency.

Fast interpolation schemes reduces the computational complexity by reducing the

interpolation complexity instead of the search complexity. By establishing a subpel error

surface based on a mathematical model, subpel ME errors on each sub-pixel position can

be calculated from the model, thus eliminating the need of interpolation computation [25,

35]. Usually, model parameters can be found from errors at the nine integer MV locations

and the optimal sub-pel MV location can be solved directly or iteratively. However, there

is one major drawback with this approach; namely, the accuracy of subpel prediction

can be heavily impacted if the model cannot characterize the error surface accurately.

There may exist some discrepency between the actual and the modeling error surfaces as

a result of the local image texture pattern.

1.3 Contribution of the Research

In this research, we propose a fast subpel MV prediction scheme in Chapter 3, and residual

prediction and coding schemes in Chapters 4, and 5 respectively. Major contributions are

summarized as below.

• Contributions in fast subpel ME (Chapter 3)
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– We conduct an in-depth analysis on the problem of previous optimal subpel

MV resolution estimation algorithms. Basically, they are based on input block

texture characteristics. As the input block subject to motion compensation,

quantization and noise factors, they are not accurate for some cases. Then, we

propose an optimal MV resolution estimation scheme that can provide a more

accurate estimation.

– The proposed optimal MV resolution estimation allows blocks with different

characteristics to maximize its RD gain through a flexible MV resolution while

significantly reduce complexity. Based on how well the error surface is condi-

tioned, two different optimal MV prediction schemes are proposed respectively.

The rate-distortion performance of the proposed optimal MV prediction excels

that of full search with an average of 90% complexity reduction.

• Contributions in granular noise prediction and coding (Chapter 4)

– We conduct an mode distribution analysis on the residual image from current

H.264 codec under the requirements of high-bit rate coding. The study shows

that there are still a large amount of uncompensated fine features in form of

granular noise left in the residual that causes the coding efficiency to degrade

significantly. The design of proposed GNPC system allows the system to be

easily integrated with any traditional video codec. No modification is required

to the existing codec. Decoder could discard the transmitted noise frame if

the decoding time frame is not sufficient. This would not affect the decoding

of the consecutive incoming content frames, as they are coded independently.
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– We propose an granular noise prediction and coding scheme that resembles

the film grain extraction process to extract these fine features in the residual.

A frequency-domain based prediction and compensation scheme was further

proposed for granular noise data. By correlating the same frequency bands be-

tween different blocks, we could maximize the possibility between target GN

block and candidate blocks that might contain similar low frequency compo-

nents but different high frequency components to be considered as candidate

reference blocks and vice versa. The prediction between the same frequency

bands avoids the complication of sparse matrix multiplication for reconstruc-

tion as required in earlier ME in frequency domain.

– By quantizing the input DCT block before the prediction module, there will

be no additional computation requirement to perform the quantization and

inverse quantization during the rate-distortion optimization phase. Hence,

complexity can be significantly reduced. Furthermore, the proposed coding

scheme is more friendly for the rate control purpose. As quantization is done

prior to the GNPC, the distortion/PSNR of each block/frame can be known

ahead of time without going through the entire RDO process.

– Experimental results demonstrate the effectiveness of proposed frequency-domain

based GNPC scheme with an average bit rate reduction of 10%.

• Contributions in multi-order residual coding (Chapter 5)

– To understand the impact of high bit rate coding, we study the DCT coefficient

distribution and show that, as the video quality requirement increases, the
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distribution of DCT coefficients is close to an uniform one. This explains the

poor performance of traditional image/video codecs in the high bit rate region.

– We conduct a correlation analysis on input image frames, which reveals that

there exist different types of correlations in the image, which has a significant

impact on coding efficiency. To address this problem, we adopt different coding

schemes to remove different types of correlations in image frames, which is

called the multi-order residual (MOR) prediction and coding system.

– We study the characteristics of the extracted medium and long correlations in

the higher-order residuals. Since these MOR data have a small dynamic range

with a flat distribution at every scanning position in the block, the traditional

MCP with RDO in the pixel domain may not be effective. This observation

motivates us to adopt a frequency-domain based prediction for MOR data.

– By quantizing the input DCT block before the prediction module, the RDO

phase can have a direct evaluation of prediction results without going through

the DCT, quantization, inverse DCT and inverse quantization for each search

position. Hence, the complexity can be reduced significantly.

– The effectiveness of the proposed MOR coding scheme is demonstrated by

experiments, which outperforms the state-of-the-art H.264/AVC codec by 30-

50% in the bit rate saving.
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1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. Related research background on

lossless compression, intra coding, film grain noise sythesis, and subpel motion prediction

is reviewed in Chapter 2. A direct subpel motion vector prediction is proposed in Chapter

3. The granular noise prediction and coding scheme (GNPC) is presented in Chapter 4.

The multi-order residual (MOR) prediction and coding scheme is investigated in Chapter

5. Finally, concluding remarks and future work are given in Chapter 6.
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Chapter 2

Research Background

Earlier video coding algorithms have focused on low bit rate coding due to the limited

storage space and transmission bandwidth. However, due to increased popularity of high

definition video and availability of the broadband networking infrastructure, the research

focus has gradually shifted from low-bit-rate coding to high-bit-rate (or high fidelity)

coding. The latter includes lossless and near lossless video coding.

High definition (HD) video programs have several unique characteristics worth special

attention. First, as compared with standard definition TV (SDTV), more detail textures

are recorded at a much higher fidelity range to create a more involving experience to the

audience. Second, HD video has a higher spatial resolution. The well-known resolution

is 1920x1080 progressive (or 1080p). The latest released HD-DVD and Blu-ray disc both

support 1080p. Even higher resolutions have been considered. For example, Digital

Cinema Initiatives (DCI) [1] recommends the 4K by 2K camera.

As compared to previous video coding standards, the latest H.264/AVC standard [46]

can provide about 50% bit rate saving for the same video quality. However, H.264/AVC

was initially developed for the low bit rate applications, and most of its experiments were
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conducted on low resolution QCIF and CIF sequences. As the spatial resolution increases,

H.264/AVC reaches a performance bottleneck. Thus, one of the long term objectives set

by the Joint Video Team (JVT) is to develop a new generation video coding standard

that would keep abreast with this significantly increased demand on high definition and

high fidelity video coding.

In this chapter, we briefly review some background in the areas of motion compensated

prediction, frequency-domain motion estimation (ME), noise synthesis/coding and fast

subpel ME.

2.1 Motion Compensated Prediction

The main module in a compression system is prediction, which exploits the spatial and

temporal redundancy between pixels to achieve bit rate saving. A classic prediction

schemes can be divided into two distinct phases: 1) modeling and 2) coding. In the

modeling phase, the encoder gathers the statistics about the input data and builds up

a probabilistic model. A prediction model is formed to make inference on the coming

sample by assigning a conditional probability distribution to it. The prediction error is

then sent to the coding phase with some level of quantization, where either arithmetic

coding or Huffman coding is used as the lossless entropy coder. Since the entropy coder

is well developed, the most critical design choice is hence the algorithm in the modeling

phase.

The structure of a typical prediction scheme can be stated as follows.
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1. A prediction phase is carried out to determine the prediction, x̂i+1, of the input

data sample, xi+1, based on a finite set of previously coded data x1, x2, ..., xi.

2. The prediction error, εi+1 = xi+1 − x̂i+1, is computed.

3. A context decision rule is developed to determine a context ci+1 in which xi+1

occurs. This context is usually another function of elements in the previously coded

data set.

4. A probabilistic model is derived for the prediction error εi+1 based on context ci+1.

The prediction error is then entropy coded based on the incoming symbol probability

distribution. Since the decoder follows the same set of rules while decoding, the same

prediction, context and probability distribution can be repeated at the decoder and,

hence, the original input data sample can be reconstructed completely without any error.

Thus, the key to an efficient coding scheme lies in the capability of the prediction

scheme to minimize the prediction error. In the following, we will present several predic-

tion schemes.

2.1.1 Block-based Motion Compensated Prediction

Block-based motion compensated prediction was mainly used to explore temporal simi-

larities and hence were widely adopted for inter-frame coding [21]. It is initially designed

based on the concept of block matching as shown in Fig. 2.1. It assumes that there is

a very small displacements (dx, dy) between the consecutive frames. Thus, the frame to

frame difference FD(x, y) can be approximated mathematically as:
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Figure 2.1: Block matching process

FD(x, y) ≈ −∂S(x, y)
∂x

dx −
∂S(x, y)
∂y

dy, (2.1)

For practical implementation, the block matching process is proposed as follows. It

first subdivide an input image into squared block and find a displacement vector for each

block. Within the given search range, a best “match” is found based on minimizing a

given error measure criteria [28].

Some of the popular error measurement matrix include sum of squared error (SSD) in

Eq. (2.2), sum of absolute difference (SAD) in Eq. (2.4) and sum of absolute transformed

difference (SATD) in Eq. (5.2).
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SSE(dx, dy) =
∑[

Sk(x, y)− Sk−1(x+ dx, y + dy)
]2
, (2.2)

SAD(dx, dy) =
∑∣∣Sk(x, y)− Sk−1(x+ dx, y + dy)

∣∣. (2.3)

SATD(dx, dy) =
∑∣∣∣T [Sk(x, y)− Sk−1(x+ dx, y + dy)

]∣∣∣. (2.4)

The T used in Eq.(5.2) is usually Hadmard transform for simplicity. The general under-

standing is that SATD usually offers the best performance as it is more close to the true

prediction error that is being encoded by the entropy coder. While SSE and SAD offers

very similar performance, with SAD has the lowest computation requirements.

As motion compensated prediction is the most computationally complex module in the

encoder, there have been extensive research done to speed up the search while maintain

a good search quality [31, 11, 33, 14].

2.2 Frequncy-domain MCP

Another type of MCP is to conduct the MCP in frequency domain rather than in the pixel

domain. Earlier MCP scheme is to estimate the cross-correlation function in the frequency

domain [37]. The frequency spectrum of the input can be normalized to give a phase

correlation. However, the correlation performed by a DFT-based method corresponds

to a circular convolution rather than a linear one, and the correlation function could be
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affected by the edge effect. To reduce the edge artifact, Kuglin and Hines [9] proposed to

use zero padding to the input data sequence at the cost of higher complexity. Another

technique is to use a transform size which is much larger than the maximum displacement

considered [41]. This approach can limit the error size, but it is more suited for global ME

rather than block-based ME. A third technique is to use the complex lapped transform

(CLT) to perform the cross correlation in the frequency domain [49]. Since the basis

functions are overlapped and windowed by a smooth function that shapes like a half

cosine, it introduces less block edge artifacts as compared to the LOT in the spatial

domain.

A frequency-domain ME technique was proposed by Chang and Messerschmitt in

[12]. As shown in Fig. 2.2, motion search of 8x8 DCT blocks with respect to the pre-

vious frame is conducted in the DCT domain. The prediction error is quantized and

entropy coded. This allows to skip the inverse DCT (IDCT) since ME is performed in

the frequency domain. Since the coding loop of the spatial domain ME is modified, the

memory requirement reduces as well [27]. However, these schemes are not widely used for

some reasons. First, most previous video coding algorithms focus on low bit rate coding.

With coarse quantization used in low bit rate coding, most DCT coefficients in a block

are quantized to zero and there is little space for rate distortion improvement. Second,

the proposed frequency-domain ME treats all frequency components equally, where all

frequency components are compensated simultaneously with the same spatial offset. It

is similar to that of motion compensation in the spatial domain except that frequency

components are compensated directly rather than pixel values. Then, if the spatial do-

main cannot provide enough correlation, it is unlikely to get a better prediction in the
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(a) (b)

Figure 2.2: The block diagram of (a) the encoder and (b) the decoder with motion
estimation and compensation in the DCT domain.

frequency domain. The latest effort of prediction in the frequency domain was proposed

for intra prediction in VC-1. The DC and the AC components are predicted from their

left and top neighboring frequency components.

2.2.1 H.264/AVC Intra Prediction

As intra frame coding does not have the luxury to explore temporal correlation, intra

prediction is mainly designed to explore only spatial correlation. H.264 employes a unique

line-based intra prediction scheme. The prediction is carried out on a marcoblock basis,

but can be subdivided into smaller partitions such as 8x8 and 4x4 subblock sizes.

For intra 16x16 predictions, one of the four prediction modes can be chosen: horizon-

tal, vertical, DC and plane modes. For intra 8x8 or 4x4 predictions, nine directions can
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(a)

(b)

(c)

Figure 2.3: Neighboring pixel samples used in (a) Intra 16x16 (b) Intra 8x8 and (c) Intra
4x4 modes.
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be applied. See Fig. 2.3. We may use the horizontal prediction mode as an example,

where the prediction can be expressed as

r0 = p0 − q0, (2.5)

r1 = p1 − q0, (2.6)

r2 = p2 − q0, (2.7)

r3 = p3 − q0, (2.8)

The residual difference of r0, · · · , r3 predicted from block boundary samples are sent

to the decoder together with the mode information for correct reconstruction of the

block. The only difference between lossless and lossy intra predictions is that the residual

difference will go through DCT and quantization in lossy coding but these steps are

skipped in lossless coding. An improved lossless intra prediction was proposed by Lee

et al. [48] that changes the block-based prediction to a sample-based prediction. For

example, for the horizontal prediction (mode 1), the residual difference of r0, · · · , r3 are

predicted using a sample-by-sample DPCM method. Mathematically, it can written as

r0 = p0 − q0, (2.9)

r1 = p1 − p0, (2.10)

r2 = p2 − p1, (2.11)

r3 = p3 − p2. (2.12)

The vertical mode (mode 0), mode 3 and mode 4 can be conducted in a similar fashion.
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2.3 Film Grain Noise Compression

Film grain noise is related to the physical characteristics of the film and can be perceived

as a random pattern following a general distribution statistics [8]. Film grain noise is

not prominent in the low-resolution video format such as CIF and SD. However, the fine

structure becomes more visible once the video resolution goes to HD. Film grain noise is

one of key elements used by artists to relay emotion or cues so as to enhance the visual

perception of the audience. Sometimes, the film grain size varies from frame to frame to

provide different clues in time reference, etc. Here, we consider film grain noise as one

type of granular noise. For lossless video coding, it is desirable to preserve the quality

of granular noise without modifying the original intent of filmmakers. In addition, it is

the requirement in the movie industry to preserve granular noise throughout the entire

image and delivery chain.

Due to the random nature of granular noise, it is difficult to have an efficient energy

compaction solution. Since film grain noise has a relatively larger energy level in the high

frequency band, the block-based encoder in the current video coding standards is not

efficient even in the DCT domain. Besides, it also degrades the performance of motion

estimation. Thus, researches have been focusing on granular noise removal and synthesis.

That is, granular noise is first removed in a pre-processing stage at the encoder using and

then re-synthesized using a model and added back to the filtered frame at the decoder.

Because only the noise model parameters are sent to the decoder instead of actual noise,

the overall bit rate can be reduced significantly. Film grain coding has been considered

in H.264/AVC [32].
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Several algorithms on texture synthesis have been proposed and can be used for gran-

ular noise synthesis [16, 42]. Research on granular noise synthesis can be classified into

three areas: 1) sample noise extraction, 2) granular noise database, and 3) model-based

noise synthesis. Gomila and Kobilansky [10] proposed a sample-based approach that

extracts a noise sample from a source signal and applies a transformation to it. Only

one noise block is sent to the decoder in the SEI message. However, it could suffer from

visible discontinuity and repetition. The granular noise database method employs a com-

prehensive granular noise database [22] that contains a pool of pre-defined granular noise

values for the film type, exposure, aperture, etc. The film grain selection process follows

a random fashion corresponding to the average luminance of the block, and a deblocking

filter is used to blend in granular noise. This method allows the generation of realistic

granular noise but requires both the encoder and the decoder to have access to the same

granular noise database. The model-based noise synthesis approach extracts granular

noise in a pre-processing stage, the extracted noise is analyze and a parametric model

containing a small set of parameters is estimated and sent to the decoder. It provides an

efficient coding method. However, the noise removal operation could potentially remove

actual contents (e.g., the explosion dust) as well.

2.4 Sub-pel Motion Estimation

A well performed motion vector (MV) search is critical to the efficiency of video coding

because of its capability to reduce temporal redundancy between a sequence of frames [21,
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33]. The motion estimation algorithm using the full search block matching algorithm (FS-

BMA) is often used as performance benchmarking. The best integer MV is obtained under

the assumption that all pixels within the same blocks have the same horizontal and vertical

displacements in an integer unit. However, the best frame-to-frame block displacement

of video contents may not coincide with the sampling grid. As a result, the integer MV

cannot represent the desired displacement well, and a sub-pixel motion compensation

scheme is more suitable. The importance of sub-pel accuracy in ME has been widely

recognized. An increased subpel MV resolution will provide significant improvement on

rate-distortion performance for some blocks as analyzed by Girod in [7].

Figure 2.4: Illustration of different inter prediction block sizes in H.264/AVC.

To implement sub-pel motion search, either the reference frame has to be completely

interpolated and stored in the memory or some blocks need to be repeatedly interpo-

lated as subpel refinement is performed. The former requires a large storage space while

the latter will significantly increase computational complexity. This problem becomes

even more severe if a higher sub-pel resolution (such as the 1/8-pel) is used. Therefore,

22



although 1/8 pel motion estimation was proposed, only up to quarter-pel ME is standard-

ized in H.264/AVC. In addition, subpel ME is performed together with the mode decision

algorithm in H.264/AVC. When inter prediction is used in H.264/AVC, one 16x16 MB

can be partitioned into one 16x16 block, two 16x8 or 8x16 blocks or four 8x8 blocks while

each 8x8 block can be further partitioned into two 8x4 or 4x8 blocks or four 4x4 blocks

as shown in Fig. 4.1. As a result, there are totally 19 modes to encode one 16x16 MB.

Figure 2.5: Interpolation filter for sub-pel accuracy motion compensation.

Moreover, each block whose size is larger than 8x8 can be predicted using different

reference frames. For each mode, the MV can be of integer-, half- or quarter-pel resolu-

tion. The half-pel value is obtained by applying a one-dimension 6-tap FIR interpolation

filter horizontally (the x-direction) or vertically (the y-direction). The quarter-pel value
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is obtained by the average of two nearest half-pel values. For example, the half-pel value

of the fractional sample b in Fig. 2.5 is obtained by applying 6-tap FIR interpolation

filter to those pixels E, F, G, H, I and J as

b =
E − 5F + 20G+ 20H − 5I + J

32
(2.13)

Then, the quarter-pel value of the fractional sample a in Fig. 2.5 is given by

a =
b+G

2
. (2.14)

2.5 Conclusion

In this chapter, we provided a review on the background that is relevant to the research

presented in the following chapters The challenges and requirements with high fidelity

video coding were presented. In Chapter 3, we would like to design an accurate subpel

MV estimation scheme that has the ability to predict the optimal subpel MV position

without exorting to the overly complex subpel interpolation. In Chapters 4 and 5, our

goal is to design a high fidelity video coding system that has the ability to encode high

definition video in the high bit rate range more efficiently.
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Chapter 3

Direct Subpel Motion Estimation Techniques

3.1 Introduction

A well performed motion vector (MV) search is critical to the efficiency of video coding

because of its capability to reduce temporal redundancy between frames of a sequence.

The importance of subpel accuracy in motion estimation (ME) has been widely recognized

[21]. An increased subpel MV resolution will provide significant improvement on the rate-

distortion (R-D) performance for some blocks as analyzed by Girod [7]. Traditionally, to

implement subpel MV search, either the reference frame is completely interpolated and

stored in the memory or some blocks are repeatedly interpolated as the subpel refinement

process is performed. The former requires a large storage space while the latter will

have higher computational complexity. This problem becomes more severe if a higher

subpel resolution is adopted. For example, with 1/8-pel MV resolution, the computational

complexity and memory requirements involved in the motion estimation and interpolation

are very high [46, 40]. For this reason, although 1/8 pel motion estimation was proposed

for H.264/AVC, only up to quarter-pel ME is standardized in H.264/AVC.
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There have been extensive research on reducing the complexity of subpel motion

estimation (ME). In general, fast subpel ME schemes fall into two categories: 1) reducing

the search complexity and 2) reducing the interpolation complexity. Fast search schemes

lower the subpel search complexity by reducing the number of search points on each

subpel position based on the assumption that the subpel error surface is often concave

[36, 50, 47, 26]. However, as they are search-based, each subpel position still needs

to be interpolated ahead of time, which could be a major bottleneck in performance

speedup. Fast interpolation schemes address this issue by reducing the interpolation

complexity. By establishing a subpel error surface with a mathematical model, the subpel

ME error at each subpel position can be extrapolated from the model, thus eliminating

the need of heavy interpolation computation [25, 24, 13, 35]. However, the performance

of these schemes is highly dependent on model accuracy. In addition, fast interpolation

is conducted for one resolution at a time. That is, one has to perform search for the

optimal subpel position among extrapolated subpel ME errors at all subpels of a given

resolution before moving to the next subpel resolution.

Although it is common to find the optimal MV position by fitting a local error surface

using integer-pel MVs, the characteristics of the error surface have not been thoroughly

studied in the past. In this work, we use the condition number of the Hessian matrix of

the error surface to characterize its shape in a local region. Specifically, we characterize

an error surface by its condition number, which is defined as the ratio of the largest and

the smallest eigenvalues of the 2×2 Hessian matrix (or the ratio of the long and the short

axes of its 2D elliptic contour). To reduce the complexity, we propose an approximate
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condition number in the implementation. After the error shape analysis, we study direct

techniques for the optimal resolution estimation and position prediction of subpel MVs.

It is known in the literature [7], [39] that the optimal MV resolution should be adaptive

to the characteristics of the underlying video. However, there is no practical algorithm

that estimates the optimal subpel MV resolution on a block-to-block basis. Ribas-Corbera

and Neuhoff [39] proposed a texture-based estimation scheme to determine the optimal

MV resolution for different blocks. Their method only considers the characteristics of

the input block without leveraging integer search results. By exploiting the result of

the error surface analysis, we propose a block-based subpel MV resolution estimation

scheme that allows blocks of different characteristics to maximize their rate-distortion

(R-D) gain by choosing the optimal subpel MV resolution adaptively. Fast subpel MV

prediction has been studied by researchers before, e.g., Suh and Jeong [25, 24], Cho et al.

[13] and Hill et al. [35]. However, there has been no rigorous study on the accuracy of

predicted subpel MVs. We propose two MV prediction schemes for well-conditioned and

ill-conditioned blocks, respectively. All proposed techniques are called direct methods,

since no iteration is involved in optimal subpel MV resolution estimation and position

prediction. Experimental results are given to show the excellent R-D performance of the

proposed sub-pel MV prediction schemes.

In this work, we first conduct an analysis on the existing subpel MV estimation

model to reveal its weakness in Sec. 3.2. Then, we propose a block-based optimal subpel

MV resolution estimation scheme in Sec. 3.3. Based on how well the error surface is

conditioned, two optimal MV prediction schemes are presented in Sec. 3.4. A subpel MV

prediction scheme is proposed for ill-conditioned blocks to estimate the optimal subpel
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position in one step (namely, without refining the resolution by half at a time as done

in [25, 24, 13, 35]) in Sec. 3.4.1. This direct prediction scheme is further extended to

provide accurate prediction for well-conditioned blocks in Sec. 3.4.2 [51]. Experimental

results are provided to demonstrate the effectiveness of the proposed schemes in Sec. 3.5.

Finally, concluding remarks and future research directions are given in Sec. 3.6.

Figure 3.1: Illustration of a square window of dimension −1 < ∆x,∆y < 1 centered
around the optimal integer-pel MV position indicated by the central empty circle.

3.2 Characterization of Local Error Surface

Subpel ME is usually conducted after the optimal integer MV is obtained through integer

motion estimation. It is typically assumed that the optimal subpel MV should reside

within a square window of dimension −1 ≤ x, y ≤ 1 centered around the optimal integer

position as shown in Fig. 3.1. Then, we can define a subpel motion estimation error

surface over this window using a common error measure known as the sum of squared

differences (SSD)

E(∆x,∆y) =
∑[

s(x, y)− c(x0 + ∆x, y0 + ∆y)
]2

, (3.1)
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where (x0, y0) is the location of the optimal integer pel, s(x, y) is the target block and

c(x0 + ∆x, y0 + ∆y) is a reference block with −1 < ∆x,∆y < 1.

3.2.1 Problem with Traditional Surface Modeling

Several surface models have been used as to approximate the SSD error surface. Ex-

amples include the 9-term, 6-term and 5-term error models, denoted by E9, E6 and E5,

respectively. Mathematically, they can be written as [25], [34]:

E9(∆x,∆y) = a∆x2∆y2 + b∆x2∆y + c∆x∆y2

+d∆x∆y + e∆x2 + f∆x+ g∆y2

+h∆y + i, (3.2)

E6(∆x,∆y) = a∆x2 + b∆x∆y + c∆y2 + d∆x

+e∆y + f, (3.3)

E5(∆x,∆y) = a∆x2 + b∆y2 + c∆x+ d∆y + e. (3.4)

Coefficients a, b, · · · in above are model parameters and they are calculated based on

the measured prediction error at the specified nine integer positions [25], [34]. Note that

a contour of surface model E6 corresponds to a rotated 2D ellipse while that of surface

model E5 corresponds to a simple ellipse whose axes aligned well with the x- and the y-

axes. Simply speaking, the ratio of the long and the short axes of these ellipses defines the

condition number of an error surface. The ratio is small (or large) for a well-conditioned

(or ill-conditioned) surface.
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Usually, one estimates model parameters (i.e., cofficients in these models) based on

errors in the nine integer MV locations given in Fig. 3.1 and solve for the optimal subpel

MV location directly (for models E5 and E6) or iteratively (for model E9). However,

depending on the local image texture pattern, there may exist great discrepency between

the actual error surface and the approximated ones provided by models E9 and E6 some-

times. We show the 3D plot and the 2D contour plot of the actual error surface and

the 2D contour plots of models E9 and E6 for well-conditioned and ill-conditioned error

surfaces in Figs. 3.2 and 3.3, respectively. One problem with previous model-based fast

interpolation schemes [25, 35]) is that the minimum of the subpel error surface predicated

by models may fall outside the defined square window as shown in Fig. 3.3 (c). More

recently, methods were proposed to reduce the 2-D model into 1-D models in [24, 13],

where the minimum search along the X and the Y axes is done independently.

To overcome the problem that the minimum of the subpel error surface will fall

outside the defined square window, Cho et al. [13] added a step of selective interpolation

with a hope that the error surface could be well behaved in a smaller window of size

−0.5 ≤ x, y ≤ 0.5. Their scheme demands additional MV error computation at eight

new half-pel locations. Although they can get the optimal half-pel MV among these

evaluated locations, the resulting subpel MV may deviate from the true one significantly

as shown in Fig. 3.3 (c). Besides, there is no easy way to determine the behavior of the

error surface at a finer resolution. Hill et al. [35] derived a surface model from E6 for

the quarter-pel MV resolution and adopted a fallback scheme by performing the actual

interpolation if the quality of MV estimation is poor. However, no statistical analysis
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(a) (b)

(c) (d)

Figure 3.2: Illustration of error surfaces for a well-conditioned block: (a) the 3D plot of
the actual error surface; and the 2D contour plots of (b) the actual error surface, (c) error
surface model E9, and (d) error surface model E6.
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(a) (b)

(c) (d)

Figure 3.3: Illustration of error surfaces for an ill-conditioned block: (a) the 3D plot of
the actual error surface; and the 2D contour plots of (b) the actual error surface, (c) error
surface model E9, and (d) error surface model E6.
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on the relationship between the model quality and the accuracy of subpel MV resolution

prediction has been conducted before.

By following previous work, we assume that the local error surface is a convex function

(i.e. a uni-modal error surface). We claim that prediction accuracy actually depends on

whether it has a narrow valley with a certain orientation at the bottom of the error

surface. This is visually apparent by comparing Figs. 3.2(b) and 3.3(b). Mathematically,

the local error surface can be characterized by the second-order derivatives of the center

pixel, known as the Hessian matrix [6] of that point. The eigenvalues of the Hessian

matrix are called principal curvatures. The condition number is the ratio of its largest

and smallest eigenvalues of the Hessian matrix (or, geometrically, the ratio of the long and

the short axes of its 2D elliptic contour). For a well-conditioned block, its error surface

is circularly symmetric. As the condition number increases, it becomes ill-conditioned

gradually. To solve the coefficients of error surface models E5, E6 and E9, we need to

solve a linear system of equations via matrix inversion. If the matrix is ill-conditioned, one

cannot get the model coefficients robustly. This explains why the model-based approach

fails to predict the optimal subpel motion location accurately.

3.2.2 Condition Number Estimation

In this subsection, we focus on the problem of estimating the condition number of the

error surface in a local window consisting of 3×3 pixels based on the nine sampled points.

Here, we consider four slices of the error function; namely, the intersection of the error

surface and four planes:

• the horizontal (or the 0-dgree) slice with ∆y = 0 as the intersecting plane;
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• the vertical (or the 90-degree) slice with ∆x = 0 as the intersecting plane;

• the 45-degree slice with ∆x = ∆y as the intersecting plane;

• the 135-degree slice with ∆x = −∆y as the intersecting plane.

The four intersection curves are shown in Figs. 3.4 (a) and (b). Fig. 3.4 (a) correspond

to a well-conditioned block case where the four curves have similar curvatures. Fig. 3.4

(b) correspond to an ill-conditioned block case, where the curvatures spread over a wider

range.

Based on the above observation, we can derive a simple test to check how well a block

is conditioned. That is, we can define the following four paramters:

α0 = |e(−1, 0) + e(1, 0)− 2e(0, 0)|, (3.5)

α45 = |e(1, 1) + e(−1,−1)− 2e(0, 0)|, (3.6)

α90 = |e(0,−1) + e(0, 1)− 2e(0, 0)|, (3.7)

α135 = |e(−1, 1) + e(1,−1)− 2e(0, 0)|, (3.8)

where e(∆x,∆y) is the measured integer-pel error at (∆x,∆y). They correspond to

the 1D discrete Laplacian along the 0-, 45-, 90- and 135-degree directions, respectively.

Generally speaking, a larger (or smaller) value of α implies a more rapidly-changing (or

slowly-changing) error surface along the corresponding direction. The maximum and the
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(a)

(b)

Figure 3.4: The error curves passing through the origin along the 0-, 45-, 90- and 135-
degree directions for (a) a well-conditioned block, and (b) an ill-conditioned block.
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minimum of these four parameters are denoted by αmax and αmin, respectively. Then, we

can compute an approximated condition number of the Hessian matrix in this region via

C =
αmax

αmin
. (3.9)

Foreman CIF Vintage Car HD Harbor HD

(a)

(b)

Figure 3.5: (a) Block examples that are likely to have well-conditioned error surfaces;
(b) block examples that are likely to have ill-conditioned error surfaces. Blocks are taken
from sample sequences of Foreman CIF, Vintage Car HD and Harbor HD.

In Fig. 3.5, we show some representative regions from three test sequences that yield

well-conditioned or ill-conditioned error surfaces after the sub-pixel motion estimation

process. As shown in the Foreman, Vintage Car, the Harbor examples in Fig. 3.5, we

see that it is likely to get well-conditioned cases for regions with certain symmetry and

ill-conditioned cases for regions with angled textures. However, the characteristics of the

local error surface is ultimately determined by the temporal relationship of two adjacent

frames. In other words, we are not able to make robust decision based on the texture

pattern of a single frame. This also explains why previous work [39], which determines
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the subpel MV accuracy based on the input block texture only, does not yield satisfactory

results.

3.2.3 Deviation from Flatness

The optimal subpel MV resolution is related to the curvature of the error surface. For

a flat error surface, the cost of the increased MV resolution tend to impact the overall

R-D performance negatively. On the other hand, for a steep error surface, a finer subpel

resolution is advantageous as it would result in an additional R-D gain. To capture the

curvature information of the error surface, we may consider the following two simple

measures:

Df =
√
α2

max + α2
min. (3.10)

For simpler computation, we can approximate this parameter as:

Df ≈
∣∣∣αmax

∣∣∣+
∣∣∣αmin

∣∣∣. (3.11)

In this work, we adopt the measure defined in Eq. (3.11) and call it the deviation from

flatness for its greater simplicity. The optimal subpel MV position prediction is related

to the bottom shape of the error function. We will elaborate this in the following section.
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3.3 Optimal Subpel MV Resolution Estimation

Girod [7] pointed out that optimal subpel MV resolution has critical impact on coding

efficiency and not all blocks need the same MV resolution to obtain the best coding

performance. Some blocks can benefit from higher MV resolution while others cannot.

Thus, it is desirable to have adaptive MV resolution for optimal coding efficiency rather

than fixed MV resolution. To study the problem of optimal subpel MV resolution, Girod

[7] provided an analytical framework that estimates the difference-frame energy with

an optimal subpel MV resolution, which is expressed as a function of the probability

distribution of MV accuracy, the Fourier transform of the frame and the power spectral

density of inter-frame noise. This framework is however not easy to implement in practice.

Ribas-Corbera and Neuhoff [39] extended Girod’s framework and developed a scheme to

estimate the optimal MV resolution for a block using its texture. However, their method

is still too complex for actual implementation and not accurate enough for prediction

on a block-to-block basis. In this section, we propose an optimal subpel MV resolution

estimation scheme. It is related to the characterization of the subpel error surface features

with parameter Df as given in Eq. (3.11). This method is not only easy to compute on

a block-to-block basis but also effective in enhancing the R-D performance.

In Figs. 3.6 (a), we show the histogram of Df for a collection of video sequences

while Figs. 3.6 (b)-(e) depict the probability for the optimal subpel MV resolution to be

of integer, half-, quarter-, eighth-pel accuracy as a function of Df with quantization pa-

rameter QP = 20. In computing these probabilities, the optimal MV resolution selection
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(a)

(b)

(c)

(d)

(e)

Figure 3.6: (a) The histogram of Df at QP=20 and (b)-(e) the probability distributions
for the optimal MV resolution at integer-pel, 1/2-pel, 1/4-pel and 1/8-pel for a set of test
video sequences.
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process is similar to the H.264/AVC Rate-Distortion Optimization (RDO) procedure [44]

using the following Lagrangian cost function:

J(s, c|λmotion) = SSD(s, c) + λmotion ·R(s, c), (3.12)

where R(s, c) is the number of bits associated with the coding of the prediction error

and MV, s is the source block texture, c is the reference block texture, and λmotion is

the Lagrangian multipler which is set to
√

0.85 · 2QP/3. Under this RDO framework, the

distortion model does not consider the quantization effect on the prediction error since

the optimal MV resolution selection is performed with a given QP value.

For a very flat error surface whose Df value is extremely small, additional subpel MV

accuracy does not bring a sufficient performance gain to justify the rate overhead. Thus,

the probability of selecting the integer pel as its optimal MV resolution is nearly 100%.

However, as Df increases, the probability of selecting 1/2 pel resolution as its optimal

MV becomes dominant. The quarter-pel MV resolution is important when Df exceeds

25,000. The switch between quarter- and eighth-pel resolution is more gradual as shown

in Fig. 3.6 3.6(d) and (e). Actually, the probability of selecting quarter-pel or eight-pel

is similar for a range of Df values. When the error surface is very steep (corresponding

to a large Df value), the chance of selecting eight-pel MV becomes very high. Since there

are few blocks that has a Df value over 150,000 as shown in Fig. 3.6 (a), there is no

advantage to go to finer MV resolution such as the 1/16 pel. Although QP is chosen in

Fig. 3.6, the same observation holds for different QP values. In other words, only the Df
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value is critical to the subpel MV resolution estimation. This conclusion is much simpler

than that given in [7] and [39].

Based on the above discussion, we can have a simple estimation scheme for the optimal

subpel MV resolution of local block b, denoted by φb(MV ), as

φi,j(MV ) =



1 if Df (i, j) ≤ τ1,

1
2 if τ1 < Df (i, j) ≤ τ1/2,

1
4 if τ1/2 < Df (i, j) ≤ τ1/4,

1
8 if τ1/4 < Df (i, j) ≤ τ1/8,

(3.13)

where Df (i, j) is the deviation from flatness measure at pixel (i, j) that has the smallest

integer MV value (i.e. the central pixel in Fig. 3.1 and τi, i = 1, 1/2, 1/4 are proper

threshold values). We do not observe an advantage to go to a subpel of less than 1/8 so

that we choose 1/8 as the finest resolution as shown in above.

If Df ≤ τ1, only the best integer position is coded. No further subpel MV prediction

is needed since the error surface in this block is too flat for subpel MV to improve the

coding gain. Generally speaking, thresholds τ1, τ1/2 and τ1/4 can be selected via statistical

analysis. Sometimes, we may set them to higher (or lower) values to trade the quality

for lower (or higher) computational complexity.
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3.4 Direct Subpel MV Position Prediction

In this section, we propose two direct methods for subpel MV position prediction depend-

ing on the condition number of a local block. The ill-conditioned and well-conditioned

blocks are considered in Secs. 3.4.1 and 3.4.2, respectively.

First, we show the distribution of the condition number of all blocks from a set of

test video sequences in Fig. 3.7 (a). They include four CIF sequences (i.e., Container,

Football, Coastguard and Tempete), one HD sequence at 1280× 720 resolution (i.e.,

Sheriff) and one HD sequence at 1920×1080 resolution (i.e., Station2). We did not

use the same sequences in Sec. 3.5 to show the robustness of the training process in

determining the well- and ill-conditioned cases.

The performance of the E9 model by Suh and Jeong [25], called the SJ E9 model

in short, is evaluated in Fig. 3.7 (b), where the average Euclidean distance between the

predicted and the actual subpel positions is plotted as a function of the condition number.

This prediction error distance can be written mathematically as

εs =
√

(∆xa −∆xs)2 + (∆ya −∆ys)2, (3.14)

where (∆xs,∆ys) and (∆xa,∆ya) are the predicted and the actual subpel MV positions,

respectively.

We see that, for a well-conditioned block with C ≤ 4, the prediction error distance,

εs, generated by the SJ E9 model is small enough for accurate quarter-pel MV resolution.

However, as the condition number increases, the average prediction error becomes larger.

The average prediction error goes beyond the quarter-pel resolution for blocks with C > 4,
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(a)

(b)

Figure 3.7: (a) The histogram of condition numbers and (b) the prediction error distance
εs as a function of the condition number using the SJ E9 model .
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and exceeds the half-pel resolution for blocks with C > 10. As the condition number

continues to increase, the prediction error increases to the maximum allowed by any subpel

search method (i.e., the integer-pel resolution), and the SJ method fails completely.

For a typical video stream, a large percentage of blocks falls in the well-conditioned

block group as shown in Fig. 3.7 (a). Generally speaking, about 60% of blocks are in the

well-conditioned group. For the remaining blocks, if only the half-pel resolution is needed,

the SJ E9 model can cover additional 20% of blocks. For a higher subpel resolution such

as the 1/8 pel, the SJ E9 model only applies to a very small percentage of blocks, i.e.

only blocks with C = 1.

3.4.1 Ill-Conditioned Blocks

In this subsection, we focus on blocks whose error surface is ill-conditioned and propose

a direct subpel MV position prediction scheme. The basic idea is to decompose a 2D

optimization problem into two 1D optimization problems. Without loss of generality, we

assume α90 > α0 in the following discussion. Under this condition, we know that the

error surface changes more rapidly along the axis of ∆y than that of ∆x.

Our algorithm consists of the following two steps as illustrated in Figs. 3.8 (a) and

(b), respectively.
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• Step 1: For a fixed value of ∆x(= −1, 0, 1), we use three values e(∆x, 1), e(∆x, 0)

and e(∆x,−1) to fit a quadratic function. Mathematically, they are in form of

e(−1,∆y) = A−1∆y2 +B−1∆y + C−1, (3.15)

e(0,∆y) = A0∆y2 +B0∆y + C0, (3.16)

e(1,∆y) = A1∆y2 +B1∆y + C1. (3.17)

The global minima of Eqs. (3.15)-(3.17), denoted by (−1,∆y∗−1), (0,∆y∗0) and

(1,∆y∗1), can be determined analytically as

∆y∗−1 =
1
2

e(−1, 1)− e(−1,−1)
e(−1, 1) + e(−1,−1)− 2e(−1, 0)

, (3.18)

∆y∗0 =
1
2

e(0, 1)− e(0,−1)
e(0, 1) + e(0,−1)− 2e(0, 0)

, (3.19)

∆y∗1 =
1
2

e(1, 1)− e(1,−1)
e(1, 1) + e(1,−1)− 2e(1, 0)

. (3.20)

Based on Eqs. (3.18)-(3.20) and (3.15)-(3.17), we can compute the minimal error

value. This process is shown in Fig. 3.8(a).

• Step 2: When the approximate condition number αmax/αmin is larger, it is observed

that the three minima, (−1,∆y∗−1), (0,∆y∗0) and (1,∆y∗1), tend to have a co-linear

relationship as illustrated in Fig. 3.8(b). Then, we can examine the plane that

passes through these three points and fit another quadratic function

ef (t) = Af t
2 +Bf t+ Cf , (3.21)
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which goes through their corresponding error values. Coefficients Af , Bf and Cf

can be solved and the minimum of Eq. (3.21) gives the optimal MV position at

(∆xopt,∆yopt).

Although the predicted optimal MV position can take any real value in ∆xopt and

∆yopt, their values should be quantized to the optimal MV resolution, which is estimated

using the technique presented in Sec. 3.3. There exist four possible candidates around

(∆xopt,∆yopt) at a supported subpel resolution. A simple quantization scheme is to select

its nearest neighbor among these four.

3.4.2 Well-Conditioned Blocks

We extend the direct subpel MV position prediction to blocks with a well-conditioned

error surface in this section. One distinct error surface characteristics associated with

ill-conditioned blocks is that the surface has a narrow valley with a certain orientation.

Hence, for direct subpel MV prediction, there exists only one axis that can produce two or

three minima to form ef (t) as shown in Fig. 3.8. On the other hand, for well-conditioned

blocks, Step 1 should be repeated for both x- and y-axis. Thus, we can modify the process

as follows.

• Step 1-x: It is the same as Step 1 in Sec. 3.4.1.
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(a)

(b)

Figure 3.8: Illustration of the optimal subpel MV position prediction for ill-conditioned
blocks: (a) Step 1: finding the minma in three vertical planes using quadratic curve fitting
and (b) Step 2: connecting the three minima found in Step 1 and finding the optimal
subpel MV position with another quadratic curve fitting.
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(a) (b)

(c) (d)

(e)

Figure 3.9: Illustration of the optimal subpel MV position prediction for a well condi-
tioned block.
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• Step 1-y: For given ∆y = (−1, 0, 1) we use e(1,∆y), e(0,∆y) and e(−1,∆y) to fit

a quadratic function. Mathematically, they are in form of

e(∆x,−1) = D−1∆y2 + E−1∆y + F−1, (3.22)

e(∆x, 0) = D0∆y2 + E0∆y + F0, (3.23)

e(∆x, 1) = D1∆y2 + E1∆y + F1. (3.24)

The global minima of Eqs. (3.22)-(3.24), denoted by (∆x∗−1,−1), (∆x∗0, 0) and

(∆x∗1, 1), can be determined analytically as

∆x∗−1 =
1
2

e(1, 1)− e(1,−1)
e(−1,−1) + e(1,−1)− 2e(0,−1)

, (3.25)

∆x∗0 =
1
2

e(1, 0)− e(−1, 0)
e(−1, 0) + e(1, 0)− 2e(0, 0)

, (3.26)

∆x∗1 =
1
2

e(1, 1)− e(−1, 1)
e(−1, 1) + e(1, 1)− 2e(0, 1)

. (3.27)

• Step 2-x: It follows the same process as Step 2 in Sec. 3.4.1, which will produce a

vertical-oriented optimal MV position at (∆xv,∆yv). Based on Eqs. (3.25)-(3.27),

we can compute the minimal error value using Eqs. (3.22)-(3.24).

• Step 2-y: We examine the plane that passes through these three points obtained in

Step 1-y and fit them with another quadratic function

eh(t) = Dht
2 + Eht+ Fh, (3.28)
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which goes through their corresponding error values. Coefficients Dh, Eh and Fh

can be solved and the minimum of Eq. (3.28) gives the horizontal-oriented optimal

MV position at (∆xh,∆yh). We then divide the (−1, 1)×(−1, 1) window into north-

east (NE), north-west (NW), south-east (SE), and south-west (SW) four sectors.

Then, (∆xv,∆yv) obtained in Step 2-x would identify the east or the west sector of

the actual optimal MV horizontally, and (∆xh,∆yh) would identify the south and

the north sector of the actual optimal MV vertically. This process is shown in Fig.

3.9 (c) and (d).

• Step 3: Based on the coordinates of (∆xv,∆yv), two closest integer positions along

the vertical direction can be selected to form one line. The same process can be

done in the horizontal direction based on the coordinates of (∆xh,∆yh) to form

another line. These two lines are denoted by

v = m∆x+ n, (3.29)

h = p∆y + q. (3.30)

Finally, The optimal subpel MV position is the intersection point of these two lines

as illustrated in Fig. 3.9 (e).

3.4.3 Performance Evaluation

The performance of the proposed subpel MV position prediction method is shown in Fig.

3.10 (b). As compared to SJ’s E9 method in Fig. 3.7 (b), we see that more than 90% of

the blocks can achieve an average prediction error smaller than 1/4 pel resolution using
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(a)

(b)

Figure 3.10: (a) The histogram of the condition number, and (b) the prediction error
distance εs as a function of the condition number using the proposed prediction method
as described in Secs. 3.4.1 and 3.4.2.

the proposed method. In addition, we see from the error histogram that as the condition

number exceeds a certain value, the prediction error would be larger than the required
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subpel MV resolution. Thus, we modify the optimal subpel MV estimation scheme given

in Eq. (3.13) as follows:

φ(MV ) =



1 if Df ≤ τ1,

1
2 if τ1 < Df ≤ τ1/2,

1
4 if τ1/2 < Df ≤ τ1/4,

1
8 if τ1/4 < Df

Disable prediction if C > τC ,

(3.31)

where the threshold value, τC , can be obtained statistically.

3.5 Experimental Results

As the existing H.264/AVC reference codec does not support subpel MV resolution higher

than quarter-pel MV, we modified reference codec JM12.1 [2] slightly to accommodate

the 1/8-pel MV resolution for optimal subpel MV search in this section. A total of eight

video sequences were tested: four of the CIF resolution (i.e., Foreman, Mobile, Stefan, and

Flower garden @352x288) and four of the HD resolution (i.e., City corridor @1280x720

HD, Night @1280x720 HD, Blue sky @1920x1080 HD and Vintage car @1920x1080 HD).

We adopted a window of size 32 × 32 for full integer MV search with one reference

frame. The rate-distortion (R-D) optimization was employed in the MV search process.

Each GOP consisted of 15 frames. The CAVLC was chosen as the entropy coder. The

thresholds in Eq. (3.13) for the optimal MV resolution selection were set experimentally.
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The experiments were run on a Macbook with Intel core 2 duo at 2.2GHz. We have

implemented a state-of-the-art fast subpel MV estimation algorithm proposed in [24],

which is an extension of the E9 model in [25], for performance benchmarking. It is called

the SCJ method, and we use SCJ 1/4pel and SCJ 1/8pel to denote the results for its

application to the quarter-pel and the eighth-pel cases. We conducted experiments with

the following two test settings.

• Test Setting 1

We compare the R-D performance between H.264 full quarter-pel MV search (de-

noted by H.264 1/4pel), the proposed subpel MV position prediction scheme using

the same quarter-pel MV resolution without optimal MV resolution (denoted by

ZDK-I), and the SCJ 1/4pel method.

• Test Setting 2

We compare the performance between H.264 full subpel MV search with the eighth-

pel MV resolution (denoted by H.264 1/8pel), the proposed MV prediction scheme

with the optimal MV resolution estimation method enabled (denoted by ZDK-II),

and the SCJ 1/8pel method.

First, we examine the complexity saving of the direct subpel MV position prediction.

Here, the complexity saving factor is defined as

S =
{

1−
Cproposed

Cfull

}
× 100(%), (3.32)
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Table 3.1: The complexity saving S(%) of the proposed ZDK-I, ZDK-II and the SCJ
method with respect to H.264 full search.

Proposed Methods SCJ Method
Resolution Sequences ZDK-I ZDK-II SCJ 1/4pel SCJ 1/8pel

352x288

Foreman 82.28 99.35 83.34 84.54
Mobile 87.85 99.78 84.82 81.46
Stefan 86.54 99.61 82.48 85.76
Flower garden 87.91 99.50 86.35 87.25

Average 86.15 99.56 84.25 84.75

1280x720
City corridor 84.26 99.46 82.11 84.38
Night 83.24 99.58 83.49 85.59

1920x1080
Blue sky 85.16 99.81 80.32 82.96
Vintage car 89.24 99.67 82.77 82.05

Average 85.48 99.63 82.17 83.75

where Cproposed and Cfull denote the computational time required for the proposed subpel

MV prediction and the full subpel search processes, respectively. For the latter, it includes

the time required to interpolate the reference frame.

(a) (b)

Figure 3.11: The complexity saving as a function of the coding bit rate with (a) ZDK-I
and (b) ZDK-II for four sample sequences.

The complexity saving factors for ZDK-I, ZDK-II and the SCJ method are shown in

Table 3.1. We see that ZDK-I, ZDK-II and the SCJ method all offer a significant amount
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of complexity saving. With the help of the optimal subpel MV resolution, ZDK-II can

provide additional 13-15% complexity saving. Furthermore, the complexity saving for

ZDK-I and ZDK-II are shown as a function of the bit rate in Fig. 3.11. We depict the

results of Foreman and Mobile CIF sequences at a lower bit rate range and those of Blue

sky and Vintage car at a higher bit rate range. Generally speaking, the complexity saving

is stable for a range of bit rates.

The R-D performance of various subpel MV search schemes is compared in Figs. 3.12-

3.15. We use two subpel MV search schemes for performance benchmarking. They are:

1) the integer-pel MV and 2) the subpel MV with a fixed resolution (of quarter-pel or

eighth-pel).

The results of eight test sequences with ZDK-I are shown in Figs. 3.12 and 3.13.

For performance evaluation, we provide the rate reduction comparison in Table 3.2 and

Table 3.3 based on the method described in [18]. We see that the proposed ZDK-I has

very small rate increase (around 5%) as compared with the full H.264 1/4pel search. In

contrast, the SCJ 1/4pel method has a larger rate increase (around 15 to 20%).

The results of eight test sequences with ZDK-II are shown in Figs. 3.14 and 3.15.

We see that, with the optimal MV resolution estimation enabled, the proposed ZDK-II

scheme can achieve almost the same R-D performance as the H.264 1/8pel scheme with

a complexity saving factor of 99.6%.
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Table 3.2: Coding efficiency comparison of the proposed ZDK-I scheme and the SCJ
method with respect to H.264 with quarter pel resolution.

ZDK-I vs. SCJ 1/4pel vs.
H.264 1/4pel H.264 1/4pel

Sequence Resolution ∆Bit Rate (%) ∆Bit Rate (%)
Foreman 352x288 4.59 14.93
Mobile 352x288 5.89 16.37
Stefan 352x288 4.73 16.17
Flowergarden 352x288 2.37 15.84

Average 4.40 15.83
City Corridor 1280x720 4.40 16.54
Night 1280x720 5.01 14.39
Vintage Car 1920x1080 5.78 16.70
Blue Sky 1920x1080 5.60 15.02

Average 5.20 15.66

Table 3.3: Coding efficiency comparison of the proposed ZDK-I scheme and the SCJ
method with respect to H.264 with eighth pel resolution.

ZDK-II vs. SCJ 1/8pel vs.
H.264 1/8pel H.264 1/8 pel

Sequence Resolution ∆Bit Rate (%) ∆Bit Rate (%)
Foreman 352x288 3.14 17.22
Mobile 352x288 4.28 20.43
Stefan 352x288 3.21 19.06
Flowergarden 352x288 3.56 18.69

Average 3.54 18.85
City Corridor 1280x720 3.46 17.79
Night 1280x720 4.31 19.05
Vintage Car 1920x1080 4.09 19.46
Blue Sky 1920x1080 4.40 20.83

Average 4.07 19.28
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(a) (b)

(c) (d)

Figure 3.12: The R-D performance of ZDK-I and two benchmark methods for four CIF
sequences: (a) Foreman, (b) Mobile, (c) Stefan, and (d) Flower garden.
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(a) (b)

(c) (d)

Figure 3.13: The R-D performance of ZDK-I and two benchmark methods for four HD
sequences: (a) City Corridor, (b) Night, (c) Blue sky, and (d) Vintage car.
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(a) (b)

Figure 3.14: The R-D performance of ZDK-II and two benchmark methods for four CIF
sequences: (a) Foreman, (b) Mobile, (c) Stefan, and (d) Flower garden.
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(a) (b)

Figure 3.15: The R-D performance of ZDK-II and two benchmark methods for four HD
sequences: (a) City Corridor, (b) Night, (c) Blue sky, and (d) Vintage car.

3.6 Conclusion

The behavior of the subpel MV error surface was studied and two parameters were pro-

posed to chacterize the error surface; namely, the condition number and the deviation

from flatness. These two parameters can be easily computed based on the prediction

residuals at nine integer MV values centered at the minimum integer MV location. Then,

an optimal MV resolution estimation scheme was derived, which allows each block to
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select an optimal MV resolution adaptively based on the deviation from flatness param-

eter. Furthermore, two direct subpel MV position prediction schemes were described for

ill- and well-conditioned blocks, respectively. It was shown by experimental results that

the R-D performance of the proposed ZDK-II scheme is comparable with that of the full

subpel MV search at a much lower computational complexity.

Several extensions of our current work can be explored in the future. For example, we

adopt fixed thresholds on the condition number and the deviation from flatness param-

eters for all test sequences based on an off-line training process in this work. It may be

worthwhile to investigate adaptive thresholding based on the properties of the underlying

video sequences to achieve better R-D performance. Furthermore, we may consider the

framework of rate-distortion-complexity (RDC) optimization and adjust threshold values

accordingly to find a good balance between complexity and the R-D performance.
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Chapter 4

Granular Noise Prediction and Coding Techniques

4.1 Introduction

Video compression has been extensively studied for the last two decades. Earlier research

has primarily focused on low-bit-rate coding due to the limited storage space and band-

width. Recently, research focus has shifted to high-bit-rate video due to increased popu-

larity of high definition (HD) video and availability of broadband network infra-structure

in recent years. HD video offers higher spatial resolution as well as enhanced quality

(which means a higher PSNR range). To meet these requirements, the H.264/AVC stan-

dard has included the Fidelity Range Extension (FR-Ext) in its high profile to support

4k/2k contents [43].

High definition (HD) video sequences have several unique characteristics as compared

to video sequences of lower resolution. First, its content has higher fidelity with more

detail texture recorded to create an more involving experience to the audience. Promoted

by the advancement in storage and transmission technologies, the market is gearing to-

wards a high bit rate, high quality content coding. To satisfy these unique requirements,
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H.264/AVC incorporated the Fidelity Range Extension (FR-Ext) in its high profile to

support 4K/2K contents [43].

Second, HD video sequences are typically of very high resolution. The current well-

known resolution is about 1920x1080 progressive. Even higher resolutions are being intro-

duced into the market. For example, Digital Cinema Initiatives (DCI) specified the use of

2k/4k cameras [1], the latest released HD-DVD and Blu-ray disc both supports resolution

of 1080p. Because of the above-mentioned unique characteristics, the main challenges as-

sociated with HD content are storage and bandwidth requirements for compression and

streaming over IP networks. Compared to earlier standards, the latest compression stan-

dard H.264/AVC is able to provide a nearly 50 percent rate saving with the same PSNR

requirements [46]. However, H.264/AVC initially was proposed to target at low bit rate

coding environment and most of the experiments are conducted on low resolution QCIF

and CIF sequences as well. Hence, as the spatial resolution increases, H.264/AVC reaches

a performance bottleneck. Therefore, in JVT meetings, one of the long term objectives

is to develop a new generation video coding standard that would keep abreast with this

significantly increased demand for storage and transmission bandwidth.

In summary, the coding efficiency from the existing coding schemes are limited once

high fidelity is required. This phenomenon indicates that there exists some unique features

causing inefficiency in high-bit-rate coding environments. In this paper, we first provide

a systematic analysis on the unique characteristics of this feature that we identify as

granular noise and its impact on high bit rate, high fidelity video coding in Section 4.2.

The analysis emphasizes the importance to treat granular noise different and separately.
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The rest of this chapter is organized as follows. In Sec. 4.3, a new granular noise

prediction and coding scheme is proposed. This is an extension from our earlier proposed

residual image prediction and coding (RIPC) for lossless coding [52]. This GNPC is fur-

ther extended to incorporate a frequency-domain based prediction scheme to enhance the

coding performance Sec.4.4. Experimental results are given to demonstrate the effective-

ness of the proposed GNPC scheme in Sec. 4.5. Finally, concluding remarks are given in

Sec. 4.6.

4.2 Impact of Graunular Noise on High Fidelity Coding

Due to the increased resolution in HD video, the texture complexity of a block is often

simpler than that of SD video. Generally speaking, if an image has a higher correlation

among pixels, its entropy will be lower and it is possible to achieve a higher compression

ratio. However, we do not observe such a coding gain in existing video coding standards.

One of the main reasons is the existence of granular noise in HD video. We will elaborate

on this topic in this section.

4.2.1 Observations

H.264/AVC was initially proposed for low bit rate coding. It has several unique fea-

tures such as the use of sophisticated multiple frame reference motion search, quarter-pel

motion compensation, multiple mode selection, rate-distortion optimization (RDO) tech-

niques. Its coding performance outperforms previous MPEG standards by a significant

margin.
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(a) (b)

Figure 4.1: The marcoblock partition modes and (b) B-frame prediction.

For P frame prediction, a marcoblock can be divided into smaller partitions as shown

in Fig. 4.1. H.264/AVC supports luma block partitions of 16x16, 16x8, 8x18 or 8x8. One

additional syntax element can be assigned to each 8x8 partition to indicate if it will be

further divided into smaller sub-partitions of 8x4, 4x8 or 4x4. The motion prediction for

each block is performed by searching a displacement in the reference frame. H.264/AVC

also supports multi-frame motion compensated prediction, where more than one of pre-

viously coded frames can be used as the reference frame for inter prediction. For B frame

prediction, more reference frames are incorporated so that a marcoblock in a B frame

can use a weighted average of two distinct motion compensated prediction values to con-

struct the prediction. In the B frame prediction, four different types of inter prediction

can be used: list 0 (first list of reference pictures), list 1 (second list of reference pictures),

bi-predictive and direct prediction. Being similar to the P frame prediction, the same

marcoblock partitions as indicated in Fig. 4.1 are used.

Besides inter prediction modes, a SKIP mode is also introduced for extremely efficient

coding. In this SKIP mode, all residual DCT coefficients of the block are quantized to

zero so that neither quantized residuals nor the motion vector (or the reference index) is

encoded. Only one bit is used to signal this SKIP mode. For a large area with no change
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or motion, a large number of blocks can be coded efficiently by this SKIP mode using a

small number of bits. The statistics given in Table 4.1 [23] show that the SKIP mode in

H.264/AVC is very effective for a large QP value, where a large majority of blocks are

quantized to zero and encoded as the SKIP mode.

Table 4.1: Mode distribution of blocks at QP=28 for several test CIF sequences.

Sequence SKIP mode Other inter modes Intra mode
Container 98.133% 1.847% 0.020%
Foreman 53.949% 45.648% 0.403%
Mobile 54.534% 45.447% 0.019%
News 86.139% 13.861% 0.000%

Tempete 62.877% 36.541% 0.609%
Average 71.126% 28.669% 0.205%

Equipped with powerful inter-prediction tools, H.264/AVC can provide efficient coding

performance for video sequences of lower resolution (e.g. QCIF, CIF and SD video) with

a medium to coarse quantization stepsize. In contrast, the mode distribution for the

coding of HD video sequences is very different as shown in Table 4.2. Due to the small

quantization stepsize, the SKIP mode is rarely selected. Furthermore, intra modes are

preferred over inter modes for most macroblocks. This is especially true for Riverbed and

Rush Hour sequences.

Table 4.2: Mode distribution of macroblocks for HD sequences with QP=8.

Sequence SKIP mode Other inter modes Intra mode
Riverbed 0% 0.086% 99.914%
Blue sky 0.064% 35.794% 64.142%

Rush hour 0% 6.642% 93.358%
Station2 0% 31.366% 68.634%

Pedestrian 8.012% 11.517% 80.472%
Average 1.615% 17.081% 81.304%
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However, this scenario changes dramatically in high bit rate video coding. The per-

centages of modes used in the coding of HD sequences of resolution 1920x1080 are shown

in Table 4.2. The SKIP mode is rarely used due to the small quantization stepsize. Fur-

thermore, most macroblocks choose intra modes over inter modes as its optimal prediction

mode. The percentages may go higher than 90% for Riverbed and Rush hour sequences.

Then, the inter frames are coded nearly in the same fashion as an I frame.

Figure 4.2: The mode distribution of H.264/AVC for Rush Hour HD sequence at various
QP values.

4.2.2 Analysis

To understand the shift from the inter modes to the intra modes, we perform a detailed

analysis on mode distributions with respect to a wide range of QP values for the Rush

Hour sequence. We show the mode distribution for QP equal to 8, 14, 20, 26, 32 and

38 in Fig. 4.2. For the high-bit-rate coding with QP=8 or 14, intra modes are clearly
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the dominant choice with its occurrence frequency higher more than 80%. However,

for low and medium QP values, the occurrence of intra modes dropped significantly to

20% or lower. As the quantization stepsize becomes larger, more macroblocks can take

advantages of the SKIP mode, which becomes dominant when QP becomes 32 and 38.

To conclude, for the coding of HD video, the efficiency of MCP is not obvious until the

QP value is close to 20 or higher, which corresponds to a medium-bit-rate coding setting.

Otherwise, intra modes are the dominant choice for a smaller QP.

As the QP value becomes smaller, more details and fine textures appear in a mac-

roblock, and the number of quantized zero DCT coefficients decreases. Generally speak-

ing, smaller partitions have a higher probability to find a match yet they demand more

header bits as the overhead. The reduced residual bits can be offset by the increased

overhead bits. To obtain the best trade-off mathematically, the Lagrangian cost func-

tion is commonly used, which is also known as the Rate-Distortion Optimization (RDO)

process [44] in the H.264/AVC mode evaluation.

The Lagrangian function is expressed as

min{J(blki|QP,m)},

J(blki|QP,m) = D(blki|QP,m) + λm ·R(blki|QP,m), (4.1)

where D(blki|QP,m), R(blki|QP,m) and λm are the distortion, the bit rate and the

Lagrangian multiplier of block blki for a given coding mode m and quantization parameter
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(QP), respectively. In H.264/AVC, λm can be expressed as a function of the quantization

parameter QP:

λm = αm · 2QP/3. (4.2)

Thus, for a given QP, the total number of bits associated with a marcoblock coded with

intra mode mI or inter mode mP can be calculated as

Rtotal(mI |QP ) = Rhdr(mI |QP ) +Rcoef (mI |QP ), (4.3)

and

Rtotal(mP |QP ) = Rhdr(mP |QP ) +Rcoef (mP |QP ), (4.4)

respectively. Hence, the cost difference between intra and inter modes can be expressed

as

J(mP )− J(mI) = [D(mP )−D(mI)]

+ λP · [Rhdr(mP |QP ) +Rcoef (mP |QP )]

− λI · [Rhdr(mI |QP ) +Rcoef (mI |QP )]. (4.5)

Since the inter prediction can find a better match than the intra prediction for the

CIF video, the distortion for inter modes D(mI) is usually less than that of intra mode

D(mP ). Therefore, in spite of the advantage of lower header bits associated with intra

modes, the Lagrangian optimization process is still in favor of inter modes. For the HD
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video, quantization is restricted to a small value for the high fidelity requirement. Based

on high bit rate coding theory in [19], the distortion can be expressed as

D(mI |QP ) u D(mP |QP ) =
∆2

12
. (4.6)

where ∆ is a small quantization stepsize. By substituting (4.6) into (4.5), we get the cost

difference as

J(mP )− J(mI) = λP ·Rhdr(mP |QP )− λI ·Rhdr(mI |QP )

+ λP ·Rcoef (mP |QP )− λI ·Rcoef (mP |QP ), (4.7)

which mainly depends on the total number of bits required to encode this marcoblock.

Generally speaking, the same α is used for both intra and inter modes, which results

in λI = λP . Thus, if MC cannot find a good match due to external noise, texture, motion

blur, etc, the inter prediction can be worse than the intra prediction. As a result, the

overall cost will be decided based on the difference of header bits used in intra and inter

modes. This gives an advantage to the intra prediction since it demands no bits for the

reference frame and the motion vector. The above discussion studied why a majority of

blocks choose intra modes over inter modes at a fine QP value for HD video.

To summarize that, there exists some fine information in a frame due to an increased

resolution, which cannot be well compensated, due to the existence of film grain noise [32]

and tiny surface variation in HD video. However, they do not show up in lower resolution
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video since they are averaged out in a lowpass filtering process. In the following, we will

propose a novel coding scheme for HD video with granular noise in Sec. 4.3.

4.3 Overview of GNPC Coding Framework

Film grain noise is a type of random optical texture from processed film. It is linked to

the physical characteristics of the film and is perceived as a random pattern and normally

follows a gGNPCeneral distribution statistics [8]. Film grain noise is not prominent in

standard definition television format and is even less perceivable in smaller formats such

as CIF or QCIF. However, these fine surface variations become much more visible once

the resolution is increased to HD. In addition, film grain noise is usually one of the

key elements used by artists to relay emotion or provide cue that enhance the visual

perception of the scene to the audience. Sometimes, film grain size varies from frames

to frames to provide different clues as to time reference and etc. Therefore, for lossless

or high fidelity video coding, it is desirable to preserve the quality of the film grain

noise without modifying the original intent of filmmakers. In addition, it has become the

requirement in the motion picture industry to preserve film grain throughout the entire

image and delivery chain.

Due to the random nature of film grain noise, it is very difficult to have efficient energy

compaction solution. Therefore, conventional researches have been focusing on film grain

synthesis. Film grain noise is first removed during a pre-processing stage at the encoder

using a filter, then re-synthesized at the decoder end and added back to the filtered frame.

As film grain is known to follow a near Gaussian distribution and therefore, instead of
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coding the noise block by block, a good approximation model is composed based on the

extracted film grain noise features and sent to the decoder. With the received model

parameter, the decoder is able to re-synthesized noise, then added back to the decoded

frames in the post-processing stage. Because only the noise model parameters are sent

to the decoder instead of the real noise, the overall bit rate can be reduced significantly.

Many successful algorithms on texture synthesis have been proposed and can be used on

film grain noise synthesis [16, 42].

To reduce the computational complexity, Gomila and Kobilansky [10] proposed a

sample based approach using a noise sample extracted from source signal and apply

different transformation on it. Only one noise block is sent to the decoder in the SEI

message. However, these approaches general involve duplication part of the original grain

source and could suffer from visible discontinuity and repetition. Another type of film

grain noise synthesis method employees the use of a comprehensive film grain database

[22]. This film grain database contains a pool of pre-defined film grain values. The film

grain selection process follows a random fashion corresponding to the average luminance

of the block and a deblocking filter is applied to blend in the film grain. This method

allows generation of realistic film grain but requires both ends to have access to the same

film grain database.

In this work, we consider this type of film grain noise and other surface variations as

granular noise. We attempt to exploit the spatial and temporal correlation of granular

noise by another level of prediction so as to lower redundancy furthermore. In this section,

we propose a new lossless granular noise prediction and coding (GNPC) scheme targeting
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Figure 4.3: The block diagram of the proposed granular noise extraction process.

HD video/image contents. The overview of the coding system architecture is shown in

the block-diagram in Fig. 4.3.

The input frame is decomposed into two parts via a de-noising technique. Then, these

two parts can be coded independently. They are integrated again in the decoder end.

Thus, there are two key questions in this design; namely, 1) the development of a good

decomposition scheme; and 2) the design of an effective residual image prediction and

coding scheme. They will be addressed below.Two different prediction schemes are per-

formed for contents and granular noise, and their residuals are entropy coded differently

in our proposed coding system.

There are many ways to extract granular noise. As shown in Fig.4.3. Here, we use a

H.264/AVC based video coding process as the noise filtering process. There are several

advantages associated with this proposed scheme. First, it can be easily integrated with

any traditional video codec. No modification is required to the existing codec. Decoder

could discard the transmitted noise frame if the decoding time frame is not sufficient.

This would not affect the decoding of the consecutive incoming content frames, as they
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are coded independently. Second, current lossless and lossy systems are designed with

completely different prediction schemes, which are inherently mutually exclusive. There-

fore, to have a system that can produce both lossless and lossy results, the hardware

designers need to have two independent modules to achieve that. In contrast, with the

proposed scheme, one system can achieve both lossless and lossy goals by only turn off

the residual image prediction module. Third, the proposed system can achieve scalability

with minimal modification (e.g. to quantize prediction errors of the residual image before

entropy coding). Fourth, encoder no longer needs to encode different versions of bit-

streams if the decoders ranges from mobile device to HDTV sets. Encoder only needs to

encode once and it depends on the decoder to decide which granular noise layers are not

needed. This could potentially save the storage and streaming bandwidth significantly.

For example, consider to encode a video program with lossy H.264/AVC. Then, for an

input frame F , we first encode it with the H.264 encoder with a medium coarse QP. Then,

the difference between reconstructed frame F ′ and original frame F is the extracted noise

frame denoted by N . There is a tradeoff between bits assigned to the coding of F ′ and

the coding of N , depending on the selection of QP.

4.4 Granular Noise Prediction and Coding in Frequency

Domain

We exploit the frequency correlation of granular noise by another prediction so as to

remove redundancy furthermore. In this section, we first review the frequency domain
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prediction techniques and then discuss the proposed GNPC in frequency domain coding

method.

4.4.1 Review of Frequency Domain Prediction Techniques

Most prevalent motion estimation (ME) and motion compensation (MC) algorithms used

in image and video compression areas are based on block matching techniques in the

spatial domain. An alternative ME scheme is to estimate the cross-correlation function

in the frequency domain [37]. The frequency spectrum of the input can be normalized

to give a phase correlation. However, the correlation performed by a DFT-based method

corresponds to a circular convolution rather than a linear one, and the correlation function

could be affected by the edge effect. To reduce the edge artifact, Kuglin and Hines [9]

proposed to use zero padding to the input data sequence at the cost of higher complexity.

Another technique is to use a transform size which is much larger than the maximum

displacement considered [41]. This approach can limit the error size, but it is more suited

for global ME rather than block-based ME. A third technique is to use the complex

lapped transform (CLT) to perform the cross correlation in the frequency domain [49].

Since the basis functions are overlapped and windowed by a smooth function that shapes

like a half cosine, it introduces less block edge artifacts as compared to the LOT in the

spatial domain. The latest effort of prediction in the frequency domain was proposed for

intra prediction in VC-1. The DC and the AC components are predicted from their left

and top neighboring frequency components.

However, the above-mentioned schemes are not widely used for several reasons. First,

most previous video compression algorithms focus on low bit rate coding. With efficient
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spatial motion estimation and coarse quantization, most block DCT coefficients are quan-

tized to zero. Hence, there is little room left for the rate-distortion improvement with the

frequency domain prediction. Second, all frequency components are compensated simul-

taneously with the same spatial offsets, which is similar to the motion compensation in

the spatial domain except that frequency components are compensated rather than pixel

values. Then, if there is little correlation in the spatial domain, it is difficult to get a

better prediction in the frequency domain.

4.4.2 Granular Noise Prediction in Frequency Domain

As studied in previous section, granular noise consists of high frequency components.

Hence, if the quantization step size is too fine to reduce them to zero, the coding perfor-

mance suffers since the entropy coder is optimized with respect to long runs of zeros. In

the new scheme, a target block first goes through the DCT and quantization and, then,

the quantized DCT block is subject to the following two prediction modes.

• The full mode

The target DCT block is predicted by its candidate DCT blocks with their AC and

DC components completely aligned.

• The par mode

The target DCT block is further partitioned into four frequency partitions of size

mxm, where M = 2m. From low to high frequencies, each partition is named as

np0, np1, np2 and np3, respectively, as shown Fig. 4.4(a).
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An additional mode, call the zero mode, is proposed to further improve coding effi-

ciency. If the residual of the prediction in the full mode results in all zero coefficients

within a DCT block, this block is coded as the zero mode, where no prediction residual

will be coded.

(a) (b)

(c)

Figure 4.4: Granular noise block in frequency domain partition (a) full mode, (b) par
mode and (c) prediction alignment for par mode.

Each partition np will be independently predicted from its own corresponding parti-

tion of candidate blocks. Hence, the predicted DCT block could be composed by partitions

from different reference blocks. As prediction errors are the differences in the frequency

domain, they do not demand any additional DCT or quantization operations and can be

77



(a)

(b)

Figure 4.5: The DCT-domain based granular noise prediction for (a) intra noise frame
and (b) inter noise frame with search range S.

78



sent directly to the entropy encoder. The granular noise prediction for intra noise frame

and inter noise frame are illustrated as in Fig. 4.5. When the par mode is chosen for

a transformed and quantized granular noise block, there are four displacement vectors

pointing to four predicted partitions of candidate blocks in the reference frame so that

the number of overhead bits could be higher. On the other hand, since frequency bands

should be well aligned between the target and the reference blocks, the unit of search

stride should be the same of the block width (or height).

4.4.3 Rate-Distortion Optimization

To select the best mode for the coding of a GN block, we can employ the Lagrangian

Rate-Distortion Optimization (RDO) technique as

min{J(blki|m)},

J(blki|m) = Rhdr(blki|m) +Rcoef (blki|m). (4.8)

As the prediction is performed on the already DCT transformed block, the residual

is in fact in the form of quantized and transformed DCT coefficients. As a result, the

distortion can be taken out from the Lagrangian optimization formula and the entire

process can be simplified to a rate optimization process. Based on the rate estimation

given in [29], the total number of bits needed to code prediction error Rcoef is modeled

as

Rcoef = γ · SATD(QP )
Qp

, (4.9)
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where γ is a model parameter and p is a frame type dependent value. In our case, we use

p = 1.0. usually represents the transformed coefficients of the prediction error within a

block. The total number of bits needed to encode the GN block is a sum of the prediction

error Rcoef and header bits Rhdr. A simple block code of bits log2S are assigned to the

pair of displacement vectors. We will explain more details in the next subsection. This

simplified RDO process helps to reduce the computational complexity in rate control for

the video streaming application. The block diagram of the high fidelity GNPC scheme is

shown in Fig. 4.6.

(a) Encoder

(b) Decoder

Figure 4.6: The block diagram of (a) the encoder and (b) the decoder of the proposed
GNPC scheme for high fidelity video coding.

There are a few advantages with the proposed GNPC in frequency domain scheme.

First, by correlating a sub-band of the target DCT block with those of different DCT

blocks, we can enhance the matching probability and reduce the energy of prediction
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errors. Second, by quantizing the input DCT block before the prediction process, there

will be no additional computation needed in the rate-distortion optimization phase and

complexity can be significantly reduced. Third, the rate of the proposed scheme can be

adjusted more easily in video streaming applications. As quantization is done prior to

prediction, the distortion/PSNR of each block/frame can be known ahead of time without

going through the entire RDO process[29].

4.4.4 Translational Index Mapping

In the proposed frequency domain-based GNPC scheme, when the par mode is chosen

for a transformed and quantized GN block, there are four displacement vectors pointing

to four predicted partitions of candidate blocks in the reference frame so that the number

of overhead bits could be higher.

The proposed frequency-domain GNPC scheme has to encode translational vector

pairs (δx, δy)T within the DCT domain to indicate the best match location. For the

full mode, one prediction error block εT plus one set of (δx, δy)T are needed. For the

par mode, one prediction error εT together with four sets of (δx, δy)T are needed since

each partition has its own unique (δx, δy)T in the par mode. Thus, the translational

vector cost will be higher if the par mode is chosen as the best mode. In addition, due

to the random nature in the frequency domain-based prediction, classic DPCM-based

translational vector prediction does not bring efficiency into the coding of the translational

vectors. See Fig.4.7.

Hence, to limit the overhead cost from the use of four pairs of translational vectors,

one translational index ∆T is used to replace each pair of translational vectors. Each unit
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(a)

(b)

Figure 4.7: The translational vector maps for (a) the content layer and (b) the granular
noise layer for Rush Hour frame at a resolution of 352x288.
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of ∆T is equivalent to a certain distance in both horizontal and vertical directions. The

translational indexing method is developed by modifying the circular zonal techniques

[4]. Each zone is color differentiated as shown in Fig. 4.8.

(a)

(b)

Figure 4.8: Illustration of the translational indexing scheme for (a) the intra GNPC frame
and (b) the inter frame in frequency domain based GNPC.

As for the intra GN prediction, the zone is not completely circular because of the

uncoded blocks in the zone and the indexing scheme represents a half zone and the

indexing always starts from the left side of the target block with its equivalent δx = 0 to
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maximize the spatial correlation between the target block and the candidate blocks [15].

Table 4.3: Experimental setup for H.264/AVC and the GNPC scheme.

Parameter H.264/AVC GNPC in frequency domain
Content Intra Inter

Profile High baseline n/a n/a
QP 4,8,10,12,14,16,18 25(fixed) 4,8,10,12,14,16,18
GOP 15 15 n/a 15
# of reference frame 5 1 na 1
RDO Full complexity Low complexity Fast Fast
Subpel ME 1/4 pel na na na
Search range 64 32 32 32
Deblocking filter Enabled Disabled N/A N/A
Entropy CAVLC CAVLC CAVLC CAVLC

4.5 Experimental Results

In the experiment, we conducted experiments to compare the performance of H.264/AVC

[2] and the proposed GNPC scheme for high fidelity video coding. Only the luminance

channel is compared in this experiment. Four HD YUV sequences were used in the exper-

iments, namely Rush hour(@1920x1080), Blue sky(@1920x1080), Sunflower(@1920x1080)

and Vintage car(@1920x1080).

The results were averaged over 10 frames for each sequence. For H.264/AVC, we chose

the high complexity RDO process, multiple reference frames, the quarter pel motion

estimation, and the deblocking filter option. In contrast, for the high fidelity GNPC

scheme, we set the encoder to the lowest complexity such as low complexity RDO, 1
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reference frame, no B frame, no subpel search and no deblocking filter. More details of

the experimental setup are given in Table 4.3.

(a) (b)

(c) (d)

Figure 4.9: Rate-Distortion curves for HD video sequences (a) Rush Hour, (b) Blue Sky,
(c) Sunflower and (d) Vintage Car.

The rate and distortion curves are shown in Figs. 4.9. The ∆rate and ∆distortion

difference are presented in Table 5.1. They are calculated based on the formula given in

[18]. It was observed in [10] that a coarser quantization (with QP > 18) could reduce

granular noise to the minimal. Here, we used a quantization stepsize range from 4 to
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18 in the context of near-lossless coding. Results in Figs. 4.9 to ?? confirm a similar

trend; namely, granular noise is gradually suppressed by the quantization effect. The

performance of the proposed GNPC scheme and H.264/AVC converges for video sequences

of simplex content at lower bit rates. The proposed GNPC provides a higher coding gain

for highly complex sequences such as Vintage Car.

Table 4.4: Coding efficiency comparison between H.264 and GNPC in the frequency
domain.

Resolution Sequence ∆Bit Rate (%)

1920x1080

Rush Hour -11.85
Blue Sky -7.20
Sunflower -11.54
Vintage Car -9.73

Average -10.08

(a) (b)

Figure 4.10: The mode distribution chart for the Rush Hour sequence with (a)full mode
vs par mode and (b)zero mode distribution with and without GNPC in the frequency
domain.

The mode distribution charts in subfigure (a) of Figs. 4.10-4.13 show that there are

more blocks adopting the par mode in the GNPC scheme if the quantization stepsize
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(a) (b)

Figure 4.11: The mode distribution chart for the Blue Sky sequence with (a)full mode
vs par mode and (b)zero mode distribution with and without GNPC in the frequency
domain.

(a) (b)

Figure 4.12: The mode distribution graph for the Sunflower sequence with (a)full mode
vs par mode and (b)zero mode distribution with and without GNPC in the frequency
domain.
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(a) (b)

Figure 4.13: The mode distribution chart for the Vintage Car sequence with (a)full mode
vs par mode and (b)zero mode distribution with and without GNPC in the frequency
domain.

becomes smaller. By the zero mode distribution charts in subfigure (b) of Figs. 4.10-

4.13, we count the number of blocks that meet the criterion of the zero mode. Note that

this zero mode has no counterpart in H.264/AVC. Thus, we only signify it as no GNPC.

These charts show a larger percentage of blocks exploits the efficiency from the zero mode

enabled by the near-lossless GNPC. The above experimental results clearly demonstrate

the effectiveness of the proposed GNPC scheme with an average bit rate gain of 10%.
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4.6 Conclusion

In this chapter, we first conducted an analysis on existing video codecs to show that they

are effective for high-bit-rate coding. We pointed out that the existence of granular noise

could be the main reason for the coding inefficiency of existing coding techniques, and

proposed a granular noise prediction and coding scheme. Furthermore, we proposed a

novel prediction scheme for the GN coding based on the frequency domain prediction. The

resultant scheme allows efficient prediction and coding at a low computational complexity.

The proposed GNPC scheme can outperform H.264/AVC by an average of 10% bit rate

reduction in the high-fidelity coding case.
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Chapter 5

Multi-Order Residual (MOR) Coding

5.1 Introduction

Due to the constraint of communication and computational resources, traditional video

compression algorithms have focused on the low bit rate video coding. The state-of-the-

art video coding standard, H.264/AVC, was initially developed to target at the low-to-

medium bit rate applications. However, with the popularity of high definition video such

as high definition TV (HDTV) and the blue-ray disk (BD) in recent years, an effective high

bit rate coding scheme becomes more and more important. The need to store/transmit

high resolution video with high fidelity imposes a great challenge on the video coding

technology.

To address this requirement, H.264/AVC has the Fidelity Range Extension (FR-Ext)

in its high profile to support the coding of 2k/4k contents [43]. However, as explained in

the last chapter, due to the existence of uncompensated fine structured features in the

prediction residual, most prediction/compensation techniques used in H.264/AVC were

ineffective in the high bit rate region. This results in coding efficiency degradation as
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the quality requirement increases. It was claimed in previous work [10, 32] that these

fine features exhibit a behavior similar to film grain noise. Some coding schemes were

developed based on the idea of film grain noise synthesis [16, 10, 42, 8, 32]. Although

these methods can improve the compression ratio, they are not widely adopted by the

industry or the coding community due to the significant loss in the objective quality

measure.

To address this problem, we introduced a coding scheme called the granular noise

prediction and coding (GNPC) was proposed in Chapter 4.

As the analysis conducted in previous chapter was mainly based on the existing codec

behavior, in this Chapter, we would like to provide a more thorough investigation on the

target signal characteristics. We hence further investigate the impact of the high-bit-

rate requirement on coding efficiency from two angles. First, we study the distribution of

prediction residuals in form of DCT coefficients. Second, we conduct a correlation analysis

on different video scenes to understand the long-, medium- and short-range correlations

in the input video frame. Based on the analysis, we propose a new coding approach

called the multi-order-residual (MOR) coding in Sec. 5.3 [54]. This MOR is a generalized

and improved scheme based on our earlier proposed SOR scheme [53]. As compared

with the previously proposed GNPC method, the MOR approach extract different types

of correlation from the first-order prediction residuals in multiple stages based on the

concept from numerical analysis. It is worthwhile to point out that the MOR approach

is different from quality-scalable video coding since it allows different coding methods

used in different stages (including different prediction, transform and entropy coding

techniques) to achieve better overall coding efficiency. Experimental results are provided
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in Sec. 5.4 to demonstrate the effectiveness of the proposed MOR coding approach.

Concluding remarks and future directions are given in Sec. 5.5.

5.2 Signal Analysis for High-bit-rate Video Coding

In this section, we will examine how the original signal characteristics impacts on the

codec design for high-bit-rate coding requirements.

5.2.1 Distribution of DCT Coefficients

Generally speaking, a coding scheme can be classified into two distinct phases: modeling

and coding. In the modeling phase, the spatial and temporal redundancy of the input

video data is removed via transform and/or prediction and the statistics about the pre-

diction residual is then gathered to form a probabilistic model [38]. It is one of the most

fundamental pieces in data compression. In earlier research, the Gaussian distribution

is often used to describe the distribution of AC coefficients [38]. However, it was soon

found that the Laplacian distribution is more suitable to describe the signal statistics

when the Kologorov-Smirnov goodness-of-fit test is used [17, 19]. Recent studies on the

coding of standard definition video with H.264/AVC also reveals that the AC coefficients

distribution is Laplacian-like and their probability distribution is skewed with a large zero

peak after a large or medium quantization step-size is used [30]. This property is utilized

to design the zigzag scanning order and entropy coding modules.

In this section, we take another look at the DCT coefficients distribution under a

higher fidelity requirement since this requirement is accomplished through the use of

finer quantization step sizes in today’s video codec. We first analyze the effect of the
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(a)

(b)

(c)

Figure 5.1: The probability distribution of non-zero DCT coefficients at each scanning
position for (a)Jet (b)City Corridor and (c)Preakness frames.
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quantization parameters (QPs) for a block of size 4 by 4 on DCT coefficients distribu-

tions in H.264/AVC. In Fig. 5.1 we show the probability distribution of nonzero DCT

coefficients of prediction residuals after the motion compensated prediction (MCP) pro-

cess as a function of the scanning position with different QPs for three different types

of video frames. position 1 is the DC coefficient, and position 2 through 16 are zigzag-

scanned AC coefficients. We see that when a coarser quantization stepsize is used (e.g.,

QP=32), higher frequencies (e.g., with the position higher than 10) are all quantized to

zero with most nonzero coefficients concentrated in the lower frequency region (scanning

position smaller than 5) for all three sequences. This distribution is consistent with the

Laplacian distribution assumption with a large zero peak, which indicates that the MCP

process is effective with respect to coarse QPs.

The prediction residual has been properly processed to allow the following coding

modules to encode the remaining nonzero coefficients. To be specific, the zigzag scan-

ning process can be used to compact most zeros with a “end-of-block” symbol and the

entropy coding module is effective in the coding of non-zero coefficients. However, we

further observe that as the QP becomes finer to meet the higher fidelity requirement, the

previously skewed distribution becomes increasingly uniform for each scanning position.

In the case of QP=12, all three sequences have a close to uniform distribution of nonzero

coefficients. In this case, we see that the Laplacian distribution with a large-zero peak

is no longer a suitable model under high-bit rate coding. Most coefficients are non-zero

and their probabilities become similar. This is a clear indication that the existing MCP

process can no longer offer effective prediction for high-bit-rate video coding.
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(a)

(b)

(c)

Figure 5.2: (a) A sample frame from the Jet sequence, and its prediction residual dif-
ference (b) a sample frame from the City Corridor sequence, and its prediction residual
difference and (c) a sample frame from the Preakness sequence, and its prediction residual
difference at 1280x720 resolution with QP1 = 10 and QP2 = 30.
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5.2.2 Correlation Analysis

To further analyze this change in nonzero coefficients distribution, we examine the pre-

diction residuals generated by H.264/AVC MCP. We take one sample frame from each of

the three sequences we used in Fig. 5.1 and encode them with two different quantization

parameters as shown in Fig. 5.2. We see that not only the residual difference images

contain some untreated features very small sizes but also the amount of these untreated

small structural features are directly related to the complexity of the input video frame.

(a) (b)

Figure 5.3: (a) The correlation analysis for scenes with different complexities and (b) the
relationship between the bit rate and quantization.

We perform a correlation analysis on the input video signal in the context of high-bit

rate coding based on the idea in [5]. Again, we use the Jet, City Corridor and Preakness

sequences as examples. Note that the Jet sequence contains a scene of an airfield which

is mainly still background with little detail. As shown in Fig. 5.3(a), the correlation

analysis for such a low complexity scene reveals that the correlation remains very strong

(> 0.9) even when the pixel distance offset has been increased steadily to 40 pixels. In

other words, its frame mainly consists of long-range correlation. For a typical frame of
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the City Corridor, which has medium complexity, we see that the correlation drops below

0.4 when the offset distance is greater than 8 pixels. This shows that the City Corridor

frame contains a larger percentage of medium to short range correlations. For a Preakness

frame, which is a highly complex scene, we observe that the overall correlation diminishes

very quickly, which indicates that the preakness frame is dominated by the short range

correlation. Recall the residual differences observed in Fig. 5.2. We see that different

correlations inside a frame impacts the amount of fine structural features that cannot be

well compensated by the current codec.

We further plot the rate-QP curves in Fig. 5.3(b) for three exemplary sequences to

understand the impact of the correlation analysis on the video codec. When the QP is

coarse (say, QP > 35), all three frames can be coded effectively. For a medium value

of QP (say, 20 < QP < 35), the Jet sequence can still be effectively encoded while the

coding bit rate of the Preakness increases very quickly. In the high-bit-rate range with

QP < 20, we see a huge rate increase in all three sequences. This observation can be

explained as follows. The traditional MCP process is designed to remove the long-range

correlation via block-based prediction with a search window. The neglected medium- and

short-range correlations do not play an important role due to the use of a coarser QP.

Thus, the overall coding efficiency is high in the low-bit-rate coding application. As the

coding bit rate increases and the QP becomes finer, the quantization can no longer remove

the medium and short-range correlations effectively. Thus, the overall coding gain drops

significantly even for the Jet sequence of low complexity. The above analysis indicates a

need for a new codec design that can efficiently remove the long-range correlation as well
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as the medium- and the short-range correlations since the latter has a great impact on

the high-bit-rate video coding.

5.3 Multi-Order-Residual (MOR) Prediction and Coding

Based on the analysis in Sec. 5.2, we propose a coding system that removes different

correlations in the input sequence with multiple residual layers. Hence, it is called the

multi-order residual (MOR) prediction and coding scheme.

Figure 5.4: Overview of the Multi-Order-Residual (MOR) coding scheme.

5.3.1 Overview of MOR Coding System

The MOR coding system is motivated by the multi-order differencing operation in nu-

merical analysis. In our current context, the long-range correlation of an input image

sequence is treated in the first stage and the prediction residuals are called the first-

order residuals (FOR). The medium-range correlation and the short-range correlation

remain in the FOR image, which can be removed in the second and the third stages using

different coding schemes. The prediction residuals in the second stage are considered

uncompensated medium-range correlation and are termed as the second-order residuals
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(SOR). Similarly, the prediction residuals in the third stage are considered short-range

correlations and are called the third-order residuals (TOR). An overview of the MOR

coding system is shown in Fig. 5.4.

Figure 5.5: The block diagram of the proposed MOR coding scheme.

In the following subsections, we will discuss specific design choices in the three coding

stages as shown in Fig. 5.5.

• For the FOR coding, since H.264/AVC is highly effective in removing the long-range

correlation, it is employed to encode the FOR image with a coarser quantization

value denoted by Q1.

• Second- and third-order residuals mainly consist of the medium-range correlation,

and the traditional H.264/AVC MCP process no longer provides an efficient so-

lution. Thus, the higher residual images are transformed and quantized with a

finer quantization value denoted by Q2 and Q3 at the second and the third stages,
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respectively. In other words, higher-order residuals can be coded using this new

framework. A new MCP process in the frequency domain is proposed in Sec. 5.3.3

to remove the medium- and the short-range correlations in the higher-order resid-

uals.

5.3.2 Goals of MOR Prediction

In Chapter 4 we proposed a frequency domain-based prediction and compensation for

granular noise data. It is based on the concept that as the GN data have the similar

characteristics of film grain noise. Therefore, it will be mainly manifested on the high

frequency bands of a transformed DCT block. To directly compensated these high fre-

quency residuals, we propose to perform a prediction and compensation phase in the

frequency domain.

Figure 5.6: A typical histogram of prediction residuals in the DCT domain.

Here, we propose a different frequency domain-based prediction technique to predict

signals with MC and SC. The idea is not to replace pixel domain motion compensation,
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but to introduce a more effective prediction scheme that can achieve a good prediction

results without incurring a high increase in computation complexity. In order to illustrate

the MOR predictor design purpose, we first show a histogram for residual signals in the

form of DCT coefficients after applying traditional prediction in Fig. 5.6.

After the MCP of H.264/AVC, the dynamic range of the prediction residual in form

of DCT coefficients is much smaller (i.e. from -60 to 60) compared to the original pixel

value range (from 0 to 255). The evaluation process used in H.264/AVC is to minimize

the following cost function:

J(s, c|λm) = D(s, c) + λm ·R(s, c), (5.1)

where s and c are the original and reconstructed blocks, D(s, c) is the distortion and

R(s, c) is the number of bits required to encode the residual and the overhead. The

distortion, D(s, c), is obtained by calculating the sum of absolute transformed difference

(SATD) in form of

SATD(s, c) =
∑∣∣∣∣T{s[x, y]− c[x, y]

}∣∣∣∣, (5.2)

where T is a certain orthonormal transform. In H.264/ AVC, T is chosen as the separable

Hardmard transform due to its simplicity. This RDO optimization allows the encoder to
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select the best prediction without the exact knowledge of prediction residuals in the form

of DCT coefficients.

(a)

(b)

Figure 5.7: Histograms of (a) MOR data in form of pixel differences and (b) MOR data
in form of DCT coefficeints.

However, if we apply the RDO procedure to the MOR signal, the prediction results

will be poor. The reasons will be explained below. Fig. 5.7(a) shows a histogram of the

SOR signal in the form of pixel values before the SOR prediction takes place. We can see

that the MOR signal in pixel domain already has a much reduced dynamic range. Fig.
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5.7(b) show the histogram of the same SOR signal AFTER being DCT transformed. We

see that even without further prediction and compensation, the SOR data in the form of

transformed DCT coefficients already has an extremely small dynamic range of (-8, 8).

Recall in Fig.5.1, the SOR data for fine quantization stepsize (QP=12) also has a much

uniformed distribution for all scanning positions.

Therefore, we conclude that the MC and SC signal in the MOR layer, exhibit some

unique features such as very limited dynamic range and uniform distribution of the

nonzero coefficients. Hence, the best prediction copy obtained through H.264/AVC’s

RDO optimization process in the motion search in pixel domain might not be able to

translate into the true best match after the residual is transformed and compensated.

Therefore, we need to develop a different prediction scheme that can target this type of

signal characteristics and provide an accurate prediction.

One way to achieve this goal is to introduce additional DCT and quantization process

during the motion search phase to evaluate every prediction candidate. This allows the

encoder to have an exact knowledge of the prediction results. However, this will require

the addition of extremely large amount of computation to be spent on the extra DCT and

quantization processes into the already most complex motion search module. Therefore,

to maintain an effective motion compensated prediction process for the MOR data while

keeping the evaluation process as simple as possible, we introduce the MOR prediction

in frequency domain in Sec. 5.3.3.
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5.3.3 MOR Prediction in Frequency Domain

The block flow diagram of the system is illustrated in Fig. 5.5. The higher order residual

input block will go through the standard DCT module first to achieve frequency separa-

tion and quantization. The quantized DCT coefficients will be used in the SOR or TOR

prediction in the frequency domain. This predictor design allows the RDO process to be

able to evaluate the prediction results directly in the form of DCT coefficients on the fly;

thus, making sure the final prediction copy can improve the coding performance. We will

further illustrate the RDO design in Sec. 5.3.4.

Figure 5.8: Re-grouping of the same frequency coefficients to obtain planes of DCT
coefficents, denoted by Pi, where i = 0, 1, · · · ,M2 − 1.

To perform the prediction in frequency domain, the target block first goes through

an MxM DCT and quantization outside of the coding loop. Then, each coefficient of
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{k0(j), k1(j), ...kM2−1(j)} in this M×M DCT block of block B(j) is extracted into an in-

dividual corresponding coefficient plane of {P0, P1, ...PM2−1}. This coefficient extraction

process can be mathematically expressed as

Pi =
N⋃

j=0

ki(j), (5.3)

This coefficient extraction process as shown in Fig.5.8 is a graphical representation of

aggregating the same frequency components from different blocks into a closer plane.

Figure 5.9: MCP in frequency domain for each frequency plane.

The coefficients on each coefficient plane of Pi are further grouped into a s×s partitions

of npl. This re-arranged s×s partition will then go through a compensated prediction

phase which is similar to the MCP in spatial domain except that the compensation is

done on each individual coefficient planes as follows. See Fig.5.9. Given a SOR/TOR

frame of Ft, the frequency extraction process will generate a series of coefficient planes of

{P0, P1, ...PM×M−1} corresponding to each frequency component. For a DCT transformed

and quantized SOR/TOR block Q[nT
x ] of size M×M at location (i, j) on Pi, the prediction
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error of a SOR block in frequency domain is made up of l = M×M
s×s number of npl obtained

as

n̂x
T =

∑
l

npl(i+ δi,l, j + δj,l), (5.4)

where each translational vectors (δi,l, δj,l) to point to one predicted partitions within the

reference planes.

5.3.4 Rate-Distortion Optimization

The RDO process for MOR prediction is based on the same principle of minimizing

the Lagrangian function in Eq. (5.1). However, note that in our MOR scheme, MCP

with RDO process is performed after the DCT and quantization on the transformed and

quantized DCT coefficients. Hence, the distortion is fixed and will not be changed for each

search candidate. Therefore, the Lagrangian cost function can be reduced to minimize

rate only as

J(s, c) = Rres(s, c) +Rmv, (5.5)

where Rres is the bits required to encode prediction residual and Rmv is the bits to encode

motion vectors. As we are working in the frequency domain already, we can estimate the

rate of the prediction residual based on the ρ-domain’s approach [20] as

Rres = θ · (1− ρ), (5.6)
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To estimate the bit used to encode motion vectors, we see that the as the search is operated

in a much reduced search range. The MV data has a similar distribution compared to the

residual coefficients. Hence, we can consider each MV to use the same bits as a nonzero

coefficients. Thus, we can further simplify Eq. (5.5) as

J(s, c) = NnzTC +NnzMV , (5.7)

where NnzTC is the number of nonzero transformed coefficients and the NnzMV is the

number of nonzero motion vectors. The effectiveness of the proposed RDO method can

be observed by comparing the histograms of DCT coefficients before prediction and after

prediction in Fig. 5.10(a) and (b).

(a) (b)

Figure 5.10: The DCT coefficients histograms of MOR data after MOR prediction in
frequency domain.
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5.3.5 Pre-search Coefficient Optimization for TOR

To further improve the coding efficiency and to facilitate a fast search, we propose to

add a pre-search coefficient optimization phase for third-order residuals. This process is

based on the observation that after the coefficients are extracted to individual frequency

planes, the last few high frequency planes Pi, (i = 13, 14, 15) are more sparsely populated

with nonzero coefficients. This is mainly due to the fact that short-range correlations in

the TOR has a very random distribution. This sparse distribution of nonzero coefficients

could potentially have a very detrimental effect on the entropy coder, as the CABAC

is designed to perform most efficiently when there is a long consecutive run of zeros.

Hence, to facilitate the entropy coder, we introduce this pre-search coefficients optimiza-

tion process for TOR. This optimization happens before the coefficient extraction, and

the detailed flow diagram is shown in Fig. 5.11.

Figure 5.11: The block diagram of the pre-search DCT coefficients optimization process
for TOR.
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In this pre-search optimization phase, we first examine the DCT coefficient block K.

If the DCT block has only less than Cz number of nonzero coefficients in the last three

high frequency scanning positions (SP = 13, 14, 15). We zero out these positions and

perform an IDCT. This partially zero out block is compared to the original incoming

block I. Note that this I is the pixel residual from FOR. If the optimization error is

lower than the predefined empirical threshold φ, we will use this optimized block K ′ and

proceed further to the frequency extraction phase. Otherwise, we will take the original

block K instead. This presearch optimization phase helps to boost the consecutive run

of zeros in the higher frequency plans and thus allows the later entropy coder to have a

better compression results. The complete system diagram is shown in Fig. 5.12.

Figure 5.12: The block diagram of the proposed MOR coding scheme with pre-search
DCT coefficients optimization for TOR.
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Table 5.1: Coding efficiency comparison of the proposed MOR scheme v.s. H.264/AVC
for high-bit-rate coding.

Sequence Resolution ∆Bit Rate (%)
Pedestrian 1920x1080 -18.41
Rush Hour 1920x1080 -18.46
Riverbed 1920x1080 -11.40
Vintage Car 1920x1080 -16.71

Average -16.42

5.4 Experimental Results

In this section, experimental results for the proposed MOR-based coding scheme is pre-

sented and compared with H.264/AVC [2] to demonstrate the superior performance of the

proposed coding framework. Only the Luminance channel is compared. Four test YUV

sequences of High Definition (HD) format at 1920x1080 resolution were used. They were:

Pedestrian, Rush Hour, Riverbed and Vintage Car. The results were averaged over 5 P

frames for each test sequence. The benchmark H.264/AVC codec used the high profile,

with full (high complexity mode) RDO enabled, 1/4pel MCP, and CAVLC as its entropy

coder.

For the proposed MOR, QP1 = 30;QP2 = 22, and QP3 = 16. If MOR’s desired

quantization step size is larger than 16, for example QP=18, TOR will not be performed

and QP2 will be changed to the target quantization stepsize, i.e, QP=18. DCT size is

set to 4× 4 and the partition sizes for SOR and TOR data with MCP in DCT domain is

set to sSOR = 4× 4 and 2× 2 and sTOR = 2× 2. A zero-order binary arithmetic coding

engine is used for entropy coder. The coding efficiency comparison is listed in Table. 5.1

based on [18].
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Figure 5.13: Rate-Distortion curves for Pedestrian sequence.

Figure 5.14: Rate-Distortion curves for Rush Hour sequence.

111



Figure 5.15: Rate-Distortion curves for Riverbed sequence.

Figure 5.16: Rate-Distortion curves for Vintage Car sequence.
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Secondly, we compare the rate distortion performance for the high-bit-rate coding

scenario in Fig.5.13 to Fig.5.16. We see that the proposed MOR reduces the coding bit

rate of H.264/AVC by up to 23% depending on the quality requirements.

(a) (b)

Figure 5.17: Decoded Rush Hour frames with (a) MOR and (b) H.264 at 60Mbps.

(a) (b)

Figure 5.18: Decoded Vintage Car frames with (a) MOR and (b) H.264 at 80Mbps.

Thirdly, we examine visually of the decoded frames using both MOR and H.264/AVC.

In Fig.5.17, we show a side-by-side comparison of Rush Hour frames decoded using the

two schemes at the same bit rate. In Fig.5.18, we show a side-by-side comparison of

Vintage Car frames decoded using the two schemes at the same bit rate of 80Mbps. We
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can observe that the MOR scheme consistently provides a sharper decoded frame with

much less coding artifacts.

5.5 Conclusion and Future Work

In this paper, we first examine the impact of high-bit-rate coding to the existing state-of-

art codec such as H.264/AVC. We then performed the correlation analysis on the video

signals to show that there exist the medium- and short-range correlations in video which

result in performance degradation when the coding bit rate becomes higher. Then, we

proposed a novel MOR coding scheme that handles the long-, medium- and short-range

differently in high-bit-rate coding. The proposed MOR coding scheme employed the

H.264/AVC in the coding of the FOR, a frequency domain MCP in the coding of SOR

and TOR. It was shown by experimental results that the proposed MOR coding scheme

has an average rate reduction of 16% compared to H.264/AVC under different quality

requirements. We will continue to improve the coding performance of the MOR scheme

in the near future.
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Chapter 6

Conclusion and Future Work

6.1 Summary of the Research

In this research, we have studied two major issues in high fidelity video coding: 1)

residual processing and 2) subpel motion estimation. The research was motivated by the

significant decrease in coding inefficiency of prediction residuals in today’s coding schemes

under the requirements of high bit rate coding and the high computational complexity

associated with the subpel motion estimation.

In Chapter 3, we proposed a direct subpel MV prediction scheme with optimal subpel

MV resolution estimation. Existing optimal subpel MV resolution estimation is developed

using the texture characteristics of an input block. However, due to motion compensation,

quantization and noise, they are not accurate in some cases. The proposed optimal MV

prediction scheme can handle blocks of different characteristics by maximizing its rate-

distortion (RD) gain through a flexible MV resolution while reducing the computational

complexity. Two different optimal MV prediction schemes were developed based on the

different shape of the error surface. The rate-distortion performance of the proposed
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optimal MV prediction is about the same as that of full search with an average of 90%

complexity reduction.

In Chapter 4, we conducted an analysis on the prediction residual and showed that

it contains fine structured features when the coding bit rate becomes higher. These fine

features were considered as film grain noise in earlier. To treat these granular noise, we

introduce an extra granular noise prediction and coding scheme based on the film grain

noise extraction process to extract these fine features in the residual.

A frequency-domain based prediction and compensation scheme was further proposed

for granular noise data. By correlating the same frequency bands between different blocks,

we could maximize the possibility between target GN block and candidate blocks that

might contain similar low frequency components but different high frequency components

to be considered as candidate reference blocks and vice versa. The prediction between the

same frequency bands avoids the complication of sparse matrix multiplication for recon-

struction as required in earlier ME in frequency domain. It was shown by experimental

results that, as compared to H.264/AVC, the proposed GNPC scheme can achieve an

average of more than 10% bit rate reduction in high-bit-rate coding.

In Chapter 5, we further investigate the impact of high bit rate coding from the fun-

damental signal characteristics. We first study the DCT coefficient distribution and show

that, as the video quality requirement increases, the distribution of DCT coefficients is

close to an uniform one. This explains the poor performance of traditional image/video

codecs in the high bit rate region. We then performed a signal correlation analysis and

showed different types of correltions in video frames. Due to the use of a fine quan-

tization step, the quantization process can no longer be used to remove the short and
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medium range correaltion effectively. Since the block-based motion-compensated predic-

tive (MCP) coding technique is only effective in removing the long range correlation,

the coding performance of the traditional video codecs degrades rapidly as the quality

requirement becomes higher. Based on the study, we propose a multi-order residual

(MOR) coding scheme. A coefficient optimization technique was proposed to enhance

the compression performance furthermore. It was shown by experimental results that the

proposed MOR scheme outperforms the state-of-the-art H.264/AVC codec by an average

of 16% in bit rate saving.

6.2 Future Research Directions

To make the current research more complete, we would like to extend the current work

along several directions as detailed below.

• Advanced sub-pel interpolation scheme

H.264/AVC employs the quarter-pel ME, and there are two different sub-pel in-

terpolation schemes. A 6-tap filter approach is used for half-pel interpolation, and

a bilinear filter is used for quarter-pel interpolation. Although there exist other

more sophisticated interpolation schemes that offers better performance than the

6-tap and bilinear filters, the existing codec does not adopt them due to the con-

sideration of computational complexity. Since the proposed optimal subpel MV

prediction scheme reduces the complexity of subpel interpolation by an average of

90%, it opens a new opportunity for more advanced interpolation schemes to further

improve the overall RD performance.
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• Improved QP and layer number selection in the MOR scheme

In the proposed MOR scheme, QPs for the FOR and the SOR images were chosen

empirically at fixed values. As different video streams have different rate-distortion

characteristics, an adaptive QP selection scheme should improve the coding perfor-

mance. Furthermore, the number of layers in the MOR scheme may be adjusted

according to video characteristics. For example, a highly complex video stream

which contains long-, medium-, and short-range correlations may benefit from more

layers while a simple video stream may only demand the FOR and the SOR two

layers. For the latter case, the use of fewer layers will reduce the layer overhead.

Thus, the ability of dynamically adjusting QP and the layer number should improve

the coding performance.

• Advanced prediction techniques and preprocessing of DCT coefficients

In the proposed MOR scheme, we used a frequency-domain compensation technique.

However, we may use more sophosicated prediction techniques in the SOR image.

In addition, we employed a simple preprocessing technique for DCT coefficients in

the MOR scheme. It is interesting to develop a more sophisticated DCT coefficient

preprocessing technique to enhance the coding performance furthermore.
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