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Abstract

Robust face recognition plays a central role in biometric and surveillance applications.

Although the subject has been studied for about four decades, there still exist quite a

few technical challenges and system design issues in deploying it in a real-world video

surveillance environment. Nowadays, the raw face images and their associated meta data

are stored in a remote cloud storage system in a distributed face recognition platform.

One key challenge in the overall system design is to ensure the security of stored data. In

this research, we first conduct a survey on this technology and then, study the problems

of cross-distance/environment face recognition and facial attribute classification with

machine learning techniques.

The problem of long distance face recognition and attribute classification arising

from surveillance applications impose major challenges. The captured face from the

surveillance system can be low resolution and quality, which is further degraded by an

uncontrolled outdoor environment such as long distance during daytime or nighttime.

In addition, human age/gender inferred by face images are fundamental attributes in our

social interactions. This research has many applications such as demographics analysis,

commercial user management, visual surveillance, and even aging progression. Despite

the rapid development in automatic face recognition, there is far less work on automatic

age/gender classification in an unconstrained environment.

xi



Research in this dissertation provides effective solutions to three topics: 1) cross-

distance/environment face recognition, 2) cross-distance/spectral face recognition and

3) age/gender classification. For Topic 1, a two-stage alignment/enhancement filtering

(TAEF) method is proposed to achieve the state-of-the-art performance. For Topic 2, a

locally linear embedding (LLE) method is developed to restore low quality near-infrared

(NIR) images so as to enhance the face recognition performance. For Topic 3, a new

framework based on the convolutional neural network (CNN) is presented to achieve

efficient age and gender classification using the information from full face and facial

components.

xii



Chapter 1

Introduction

1.1 Significance of the Research

With a rapid growth of security demand, authorities in many countries adopt video

surveillance systems to enforce traffic management and monitor possible threats and

criminal scenes. For instance, London has installed about half-million cameras to

observe the public space, and major cities in the United States such as New York and

Los Angeles are extending their surveillance networks largely in response to the 9/11

attack. As the result, the fast increasing volume of large video data has become more

and more difficult to manage. Incidents like Boston Marathon bombing require heavy

manual labor to examine low-quality face images within the camera’s footage. The

method to improve efficiency and accuracy of automatic face recognition in the context

of video surveillance imposes a major challenge in computer vision research.

Although there have been progressive developments in the automatic face recog-

nition, most state-of-the-art methods focus on faces with variant poses yet at a close

distance and with sufficient quality. This situation leaves a noticeable gap between the

clear image within datasets and the real footage obtained from surveillance systems.

For example, face alignment plays an essential role if feature descriptors are applied for

matching, thus the mainstream up-to-date researches on face alignment is dedicated on

faces under unconstrained environment as known as Labeled Faces In-the-Wild (LFW)

[66]. On the other hand, little research has been conducted to recognize low quality face

images at a long distance. This issue has been defined as face recognition at a distance
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(FRAD). As shown in various datasets, most surveillance footages taken from long dis-

tance can be easily distorted by illumination and polarization, which severely affect the

system’s performance.

Even if the FRAD problem is solved under visible light (VIS) environments, the

ideal surveillance system should be able to operate round-the-clock service despite the

environment. Currently cameras equipped with flash lights are served as the expedi-

ency for nighttime scenarios, but it is not appropriate to apply for long distance or

convert surveillance. Therefore, we need to consider other options for nighttime face

recognition. Methods like near infrared (NIR), shortwave infrared (SWIR), and ther-

mal have been studied and applied in previous literatures. However, NIR has become

more and more popular in recent years because of following reasons. First, NIR is not

visible to human eyes, so it is natural to capture face expressions without interrupting

subjects during collection. Second, environment factor gives less impact to NIR com-

paring to others. Third, NIR illuminator can penetrate glasses easily, which provides

additional information if test subjects wear glasses. Fourth, NIR related equipments

cost less than other image capturing devices, meaning they are more accessible to gen-

eral public. Fifth, NIR images can be integrated into many established dataset such as

mugshot or driver license dataset. Law enforcement departments can directly enforce

cross-spectral matching, which makes NIR as a more feasible way to put into practice.

Furthermore, the age/gender attributes play an important role in human identity

recognition. Automatic estimation of human age/gender can find many practical appli-

cations. Extensive research on this topic has been conducted for more than three

decades. However, there was a big gap between traditional age/gender datasets and

actual scenarios encountered in a real world environment. Many variations exist in

human faces due to varying image quality, face poses, occlusion, and expression in

practical applications.
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Clearly, both the FRAD problem over daytime/nighttime and the age/gender classi-

fication problem in an unconstrained environment are challenging. They impose a high

barrier on human face and attributes recognition systems. The following three solutions

are proposed in this thesis research to address them.

• a long-distance daytime face recognition system using the two-stage align-

ment/enhancement filtering;

• an NIR image restoration using the locally linear embedding model;

• a convolutional neural network (CNN) based age/gender classification system.

We give a brief overview on each of them below.

1.1.1 Two-Stage Alignment/Enhancement Filtering

For the first topic, we provide a systematic solution called the Two-Stage Align-

ment/Enhancement Filtering (TAEF) system to address the FRAD problem during day-

time. The TAEF incorporates multiple functions, from preprocessing like alignment and

enhancement, to matching gallery set with long distance probe face images. Instead of

only focusing on traditional feature extraction and comparison, the TAEF contains not

only alignment structure and enhancement strategy in coarse-scale stage, but also face

matching with refined candidate pool in fine-scale stage. In the coarse-scale stage, the

alignment structure incorporates iterations of training using feature descriptors, where

regressors learn estimations from the feedback provided by the Euclidean distance

between prediction and ground truth, then regressors can provide parameters according

to different levels. Moreover, the fine-scale stage of the TAEF is designed to optimize

the recognition process in each level. The scheme utilizes voting mechanism with fea-

ture descriptors extracted from different face regions, and it carries top candidates with
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higher votes to the next level. Through this repetitive operation, the system can remove

less possible candidates from calculated-weighted votes.

1.1.2 Image Restoration via Locally Linear Embedding

Although the TAEF system can manage the cross-distance issue with face images cap-

tured from VIS camera, it is difficult to apply the same rule to NIR images because of

the spectrum difference. In other words, it does not work well for the FRAD problem

during nighttime. For the second topic, we propose a restoration system that signifi-

cantly improves the quality of NIR face images at a distance to bridge the gap between

VIS and NIR. The restoration system is developed based on Locally Linear Embed-

ding (LLE) that reconstructs image patches learned from two manifolds, and we also

preserve image’s local characteristic by constraining the reconstruction process within

certain region, so that the recovered information will not be affected by other areas. For

instance, if we aim to restore the areas around eyes, we will only refer to other eyes

within the gallery set. The experiment is also conducted on LDHF dataset with NIR

images taken at cross-distance during nighttime.

1.1.3 Age/Gender Attributes Classification

For the third topic, we present a CNN solution based on the Adience dataset [43], which

was built recently for the age/gender classification in an unconstrained environment.

The proposed Whole-Component cascaded CNN (WC-CNN) system consists of four

building modules: 1) the face and facial components localization module, 2) the whole

face network, 3) the facial component networks, and 4) the final classification mod-

ule assisted by the confidence analysis. Each module is designed to serve a different

purpose. The localization module takes care of all preprocessing tasks, such as face

4



detection and facial landmark localization. It is used to localize the face and its com-

ponent regions. The whole face network and the facial component networks are trained

separately with extracted patches for age/gender classification. We use the whole face

network as the primary classifier to yield the initial classification result. Finally, we

use the confidence analysis to evaluate the confidence level of the initial decision. If the

confidence level is high, we accept its decision. If the confidence level is low, the system

will make a final decision by considering the outputs from the whole face network and

the component networks jointly.

The above three-mentioned methods will be elaborated in Chapter 3, Chapter 4 and

Chapter 5, respectively.

1.2 Review of Related Work

In this section, we provide a brief review on datasets and previous work that are closely

related to our research.

1.2.1 Cross Distance/Spectral Face Datasets

There are few FRAD datasets accessible to the public. The UTK-LRHM dataset [176],

which was built in 2008, contains 55 subjects in an indoor environment with distances

ranging from 10 to 16 meters and 48 subjects in an outdoor environment with distances

from 50 to 300 meters. Another dataset, built by Rara et al. [129] for stereo reconstruc-

tion in 2009, has 30 subjects with three distances (i.e., 3, 15, and 33 meters). Tome et

al. [153] evaluated distance degradation using standard approaches and matchers on the

”Face still dataset” of the NIST Multiple Evaluation Grand Challenge (MBGC) [124].

Three cross-distance/spectral datasets have been released since 2011. The first one is

called the Near-Infrared Face Recognition at a Distance (NFRAD) proposed by Maeng
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et al. [102]. The NFRAD dataset has 50 subjects taken VIS and NIR photos under

controlled environment, and the captured distance includes 1 meter and 60 meter. This

dataset provides some degree of pose change (frontal view, slight left and right face view

angle), but the NIR illuminator causes halo like light pattern around the 60 meter sub-

ject, which sets the limitation for this dataset. The second dataset, proposed by Bourlai

et al. [15], has 103 subjects in both indoor and outdoor environment. The NIR image’s

quality is slightly better than previous dataset, but the resolution is way lower than other

two sets. At last, the LDHF dataset [103] gives 100 subjects with well-improved VIS

and NIR capturing quality, and it is the only open-access dataset that is available to

the public among those three datasets. Because of its high-resolution and completed

distance set, we select the LDHF dataset to evaluate our system.

1.2.2 Cross Distance/Spectral Face Recognition

There are two recent works conducted on the LDHF dataset, Maeng et al. [102] and

Kang et al. [78]. Maeng et al. proposed to apply Gaussian smoothing and histogram

equalization as the preprocessing step, and then the Dense Scale Invariant Feature Trans-

form (Dense-SIFT) [99] was extracted from 32 ˆ 32 overlapping patches. Afterward,

each patch is divided into 4 ˆ 4 grids, where an 8-bin gradient orientation histogram was

calculated to form a 128 dimension feature vector. The matching distance between the

two feature vectors for VIS-to-VIS was the Euclidean distance, and Linear Discriminant

Analysis (LDA) was added for the NIR-to-VIS matching. In addition, LDA projection

matrices were learned from another dataset: CASIA HFB [93], so that feature vectors

from LDHF’s NIR images can be projected through the learned matrices. Kang et al.

proposed a general framework to achieve cross-distance and cross-spectral matching.

LLE was adopted in their work to map the long distance face image into short distance

one. The learning was accomplished by collecting random sample patches from the
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whole face region, and then directly built the dictionary via high-quality and low-quality

patches extracted from the same location. By referring to the dictionary, the input low-

quality patch can be reconstructed through nearby high-quality neighbor patches. The

result of Multiscale Local Binary Pattern (MLBP) [95] and SIFT extracted from prepro-

cessing filters were applied for the score-level fusion in the final face matching step.

1.2.3 CNN-based Age/Gender Classification

Early age estimation work was conducted by extracting effective facial features accord-

ing to their geometric distance [86], which was followed by difference models to esti-

mate and classify target images into different age groups [128]. These methods depend

on landmark localization to obtain results. However, these algorithms fail to provide

accurate prediction because of unconstrained face images. Recently, there has been

work applying the CNN to age estimation. Yi et al. [177] introduced the CNN to this

problem using a subset of MORPH II to train a shallow network with only one convo-

lutional layer. Wang et al. [168] treated the CNN as a feature extraction tool without

fully utilizing its strength. Niu et al. [112] proposed multiple output CNNs with ordinal

regression to achieve end-to-end learning for age estimation. However, all the reported

results do not surpass Liu’s result in [98] on the MORPH II dataset. There has been

some progress in the development of new age and gender datasets in recent years. The

Adience dataset [43] was proposed in 2014 aiming to narrow the gap between the dataset

and the practical applications. It was built with raw smart-phone uploaded photos with-

out further manual manipulation so that images inside the Adience dataset cover a wide

range of postures, expressions, occlusions, and even quality variations.
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1.3 Contributions of the Research

There are three main contributing chapters in this dissertation.

The contributions of Chapter 3 are given below.

• An automatic face alignment method is developed to handle alignment errors

caused by the long distance effect, which is not covered by traditional face align-

ment papers with both probe and gallery images are both captured in a short dis-

tance under visible light.

• We propose the use of the MSRCR for face enhancement against harsh environ-

ments such as foggy and back-lighted conditions in the outdoor environment and

demonstrate its effectiveness in comparison with several other enhancement meth-

ods. To the best of our knowledge, this is the first time for MSRCR to be intro-

duced to the context of face alignment/recognition system.

• TAEF adopts a two-stage filtering mechanism: I) initial screening and II) iterative

refinement. At the initial screening stage, face alignment is executed against the

whole gallery image set to eliminate unlikely candidates at once for efficiency

and only a few candidates are kept in the candidate pool. Then, at the iterative

refinement stage, the alignment is conducted for every individual probe/gallery

image pair for higher accuracy. The size of the candidate set is reduced one by

one iteratively until only one candidate is left. With the two-stage filtering, TAEF

strikes a balance between efficiency and accuracy.

The contributions of Chapter 4 are detailed as follows.

• We adopt the LLE system that improves the low-quality face images through map-

ping by structure and locality of extracted patches. The restored image possesses
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high-quality feature descriptors that show the applicability of the restoration sys-

tem over cross-spectral and cross-distance environments.

• A grid-structured sampling strategy is adopted in the restoration system and, thus,

the regional information can be preserved in the LLE mapping process. Further-

more, with overlapping face patches, each extracted grid covers the corresponding

area with an inch-by-inch search, which helps restore face patches with all pos-

sible details from other subjects. The result of the proposed method outperforms

some deep learning methods.

The contributions of Chapter 5 include the following.

• A novel age/gender classification system is proposed to handle faces in an

unconstrained environment, which simulates real-world applications. The sys-

tem locates facial components from the face region first, then a number of small

networks are trained using the extracted patches. After that, a filtering mechanism

based on the confidence analysis is adopted to conduct coarse-to-fine matching.

• We adopt a deep learning framework that applies both the whole face and the facial

components networks to the same input image so as to maximize the integrated

strength.

• Each CNN network requires only three or fewer convolutional layers, which is

efficient to train and suitable for systems with limited resources.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, background and related

literature of the secure data on cloud are reviewed and compared. In Chapter 3, we
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propose the TAEF system and evaluate its performance on LDHF dataset’s VIS face

images. The restoration system is presented and discussed in Chapter 4 in order to

assist solving the FRAD problem during nighttime. Furthermore, the age and gender

classification using component-based neural network is brought up in Chapter 5. Finally,

concluding remarks and future works are given in Chapter 6.
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Chapter 2

Survey on Secure Cloud Data Storage

Nowadays, the raw face images and their associated meta data are stored in a remote

cloud storage system in a distributed face recognition platform. One key challenge in

the overall system design is to ensure the security of stored data. We conduct a survey

on this technology in this chapter.

Fast advances in broadband communication and high speed packet switching net-

works have made large file sharing much more effective during the last two decades.

Consequently, the demand for rich media applications, such as multimedia mails,

orchestrated presentations, high-quality audio and video sharing, collaborative docu-

ments, has grown tremendously. The amount of data and computing resources being

used by those applications have also grown exponentially. As a result, the costs of IT

service and support, such as investment in new hardware and software, staffing for instal-

lation and maintenance are rising consistently for both enterprises and individual users.

Therefore, cloud computing has become an appealing new model of IT service provi-

sioning and support driven by economic and productivity advantages. Instead of invest-

ing in new hardware and software, as well as maintaining those resources, users can use

applications, infrastructures, servers, storage, network, and other computing resources

that are available in the ’cloud’, which is a shared pool of computing resources that can

be easily accessed through broadband network connections. This new IT service provi-

sioning model offers users seemingly unlimited computing resources without up-front
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acquisition and/or sustaining maintenance costs. Moreover, it offers on-demand elastic-

ity and flexibility in using computing resources. The utility pricing model allows users

to pay for their actual usage only.

Storage, as one of the most influential and demanding computing resources in cur-

rent digital era, is among the first being moved into the cloud. This type of cloud com-

puting services, known as cloud storage, represents a business model in which the ser-

vice provider rent spaces in their large scale storage infrastructure to organizations and

individuals. It has always been one of the most prevalent services in cloud computing

industry. As an extension of traditional data center or file hosting service into cloud,

cloud storage has distinct characteristics including on-demand self-service, broadband

network access, resource multiplexing, rapid elasticity and measured usage for utility

billing. Besides the key advantages of cost saving, cloud storage can facilitate infor-

mation sharing and task collaborating, promote portability and universal accessibility

of data, as well as provide easy and convenient solutions to some other problems. For

example, for disaster recovery purpose, organizations should maintain secondary off-

premise data backups. Storage of sensitive data, such as financial, personal, or medi-

cal data are subject to more and more regulations and legal constraints. Cloud storage

offered by a regulation-complied service provider can relieve data owners from the com-

plicated process.

However, the promising new paradigm of cloud computing brings up unique chal-

lenges in terms of performance, availability, security, and scalability (known as PASS).

Among these challenges, security issues have been reported as the biggest concern pre-

venting enterprises and organizations from adopting cloud services according to recent

researches [22]. Therefore, it is imperative to provide security strategies, tools, and

mechanisms that meet user’s requirements in the cloud. Security in cloud computing is
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a complex issue spanning across many aspects including physical security, infrastruc-

ture (distributed computers, servers and other hardware) security, data security, network

security, software security. Moreover, it involves shared responsibilities and obligations

among the constituents of the cloud service. Security enforcement would not be suc-

cessful without agreement, trust, regulations and coordination among service providers

and cloud users.

Since storage is one of the necessary core infrastructure in clouds, security of data

in storage is one of the key concerns of any cloud computing systems, particularly in

cloud storage services. The consequences of security breaches in cloud storage could

be seriously damaging to both service providers and users. Without trust from users, the

service provider could lose their customers. On the other hand, users whose valuable

data lost, or sensitive information hacked could experience irrecoverable loss or dam-

age. There have been many cases reported as threats of cloud storage security. Many

leading service providers, including Amazon, Window and Google, encountered dis-

connections of their web-based cloud services due to different reasons such as power

failure, hardware and software failures. For instance, Amazon Web Service’s server was

hit by lightning, causing destruction on power generator. Although Amazon successfully

transferred data to a backup server, the service still stopped after their Uninterruptible

Power Supply (UPS) went out. There was bulk email deletions in Gmail happened in

2006; numerous users found that they lost their emails and contact information without

further notification from Google. Google was unable to restore the accounts after users

responded the problem. Another incident happened recently in July, 2012. Because of a

security loophole on the access control, Dropbox, a popular cloud storage service, was

attacked by hackers. Some users reported that they received tons of spam emails, and

some users’ passwords were even leaked.
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Although the security requirements for cloud storage vary with different applica-

tions and users, they share the same three basic objectives as any computer information

systems [57]: integrity, confidentiality and availability. Many different tools have been

developed to achieve these objectives, such as authentication, access control, encryp-

tion, certification, audition, digital signature. This chapter aims at providing a thorough

study on recent data security mechanisms developed for the cloud storage. Based on

the results of the study, we give our insights and suggestions on the future research

directions in achieving each security objectives.

The rest of this chapter is organized as follows. The models of cloud storage systems

and related security implications are firstly introduced in Section 2.1. A general concep-

tual system architecture model of the cloud storage is also proposed to address security

issues in different layers. In Section 2.2, recent researches on data integrity protection

such as proofs of retrievability and third party audition are reviewed and compared. In

Section 2.3, data confidentiality and its related research work are discussed. A promis-

ing new encryption technique, fully homomorphic encryption, which allows algebraic

operations performed on encrypted data, is examined in detail first, followed by discus-

sion on access control and searchable encryption. In Section 2.4, we probe methods for

ensuring data availability in distributed cloud storage systems, such as data synchroniza-

tion, data recovery and information dispersal algorithms. At last, concluding remarks

are given in Section 2.5.

2.1 Overview of Security in Cloud Storage

The scope and requirements for cloud security vary significantly with different cloud

deployment model. National Institution of Standards and Technology (NIST) has
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defined [106] four deployment models of cloud computing. Private cloud is provi-

sioned for exclusive use by a single organization comprising multiple users. Community

cloud is provisioned for exclusive use by a specific community of users from multiple

organizations that have shared concerns. Public cloud is provisioned for open use by

the general public. Hybrid cloud is a combination of at least two of the above three.

Apparently, the price of deployment decreases from private cloud to public cloud at the

cost of increasing security concerns.

Cloud storage can be deployed in any of the four deployment models. Internet-

based public cloud storage services are rapidly growing because they are able to provide

users with biggest cost saving and most elasticity. Numerous storage service providers,

including Amazon, IBM, Google, Microsoft, EMC, HP, Symantec, Rackspace, to name

just a few, are competing in this enormous market. However, these public cloud storage

services also face highest potential risks of security breaches because the shared infras-

tructure is open to the public. As a matter of fact, cloud storage systems deployed in

other forms of multi-tenancy clouds, including hybrid clouds and community clouds,

are also exposed to higher risks than private cloud. Even in the private cloud, it is highly

likely that cloud storage is managed and operated by a service provider off premises, in

order to take the most advantage of the cloud computing. In fact, some cloud storage

usage, such as disaster recovery backup, requires off-premises storage. When data are

no longer stored and managed by the data owner on its own premises, the data owner

has less control over their data. Therefore, cloud storage security is challenging if the

service providers are not trusted, regardless of the deployment model.

NIST has also defined three primary cloud service models. Software as a Service

(SaaS) implies consumers utilize service provider’s application running on cloud infras-

tructure, such as SalesForce CRM, YouTube, Google Apps (Gmail, Google Document).
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Platform as a Service (PaaS), means the service provider builds an environment for con-

sumers to establish acquired applications with programming languages, libraries and

tools that are already supported in the platform. Famous PaaS includes Google App

Engine, Microsoft Azure and Cloud Foundry from VMware. Infrastructure as a Service

(IaaS), represents consumers can deploy and manage application, operating system with

provided network and storage devices. Amazon’s Elastic Compute Cloud (EC2) is a

leading example, with other offerings like Rackspaces Mosso and GoGrid’s ServePath

[106]. From SaaS to PaaS, and to IaaS, users have progressively deeper control over the

stack of cloud architecture, thus share more responsibility on security enforcement.

Basic cloud storage services are categorized as IaaS service model, although many

cloud storage providers are offering value-added PaaS and SaaS services built upon their

baseline IaaS services. As an IaaS, cloud storage allows users to strengthen the secu-

rity measure using their own security protection mechanisms. For example, users can

encrypt their data before moving them into the cloud storage using a private key man-

aged by themselves. In this case, even if the data was accessed by unauthorized parties,

the sensitive information would not be revealed without obtaining the key. However,

users of SaaS services can only rely on the service provider’s security measures.

The basic architecture of a cloud storage system is composed of a storage resource

pool, including the distributed file system, the Service Level Agreements (SLA), and

service interfaces [71, 182]. In order to conceptually understand the cloud storage sys-

tems, and how security protection mechanisms could be integrated and implemented in

the system, we decompose the system architecture into a three layer reference model

based on the logical function boundaries as shown in Fig. 2.1.

In physical storage infrastructure layer, there are distributed wired and wireless net-

works connecting a distributed storage device network. The second layer is storage
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management layer, which processes necessary operations, such as data placement, repli-

cation, and reduction, on the stored data in the first layer. By means of virtualization

technology, this layer becomes the intelligent abstraction layer which hides the complex-

ity of the underlying layer. The service interface layer provides the interface for users

to access their data stored in the cloud storage. Basic cloud storage systems mostly

provides either a client-side software or a web browser interface, or sometimes both.

Client-side software has to be installed on the user’s devices used to access the data,

while a web browser interface allows access of data from any place without local instal-

lations. Some advanced cloud storage systems also provide an Application Program-

ming Interface (API), which can be used to directly integrate access of stored data into

other applications. Most of those applications belong to PaaS or SaaS based on the cloud

storage infrastructure.

Figure 2.1: Cloud storage architecture

Since different layer has different functionalities, the security concerns in each layer

have different emphasis. The physical storage infrastructure layer deals with physical

and hardware security. The storage management layer should efficiently control the

resource allocation and reliably perform data management. In the service interface layer,

how to avoid the encroachment on rights of both clients and service providers using
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secure interfaces and APIs has been extensively discussed. In every layer, there could

be risks, intrusions, and attacks against data integrity, confidentiality and/or availability.

Therefore, storage security protection mechanisms should be integrated into every layer,

and the security objectives can not be achieved without the collaborated efforts across

all three layers. For example, to ensure data availability under any circumstances such

as hardware failure or disasters, the physical storage infrastructure layer usually have

duplicated data stored at different locations. In case data stored in one location was

lost, the storage management layer should be able to locate the available data in another

location and route it to the users upon their request. The service interface layer should be

able to effectively receive incoming requests from anywhere and provide reliable access

method to legitimate users.

Given the architecture overview of cloud storage and its security implications, we

will discuss recent research efforts in achieving the three main security objectives,

namely, data integrity, data confidentiality, and data availability, in the following three

sections, respectively.

2.2 Data Integrity

Data integrity refers to the property that data has not been altered or destroyed in an

unauthorized manner [172]. In cloud storage, since users no longer possess the physical

storage of their data, how to efficiently verify the correctness of outsourced data stored

in cloud server has become a challenging as well as a promising research topic for data

storage security.

In traditional data communication networks, data integrity is usually threatened by

malicious attackers only. Both the sender and the receiver of data are trusted and collab-

orated in detecting and protecting data integrity. However, in cloud storage, the cloud
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storage servers are not always trusted. The cloud storage service provider has motiva-

tions to elude the service users on stored data status. For instance, A service provider

may remove the rarely accessed data in order to economize the storage usage, or hide

the data loss incidents for maintaining its reputation. Moreover, a malicious server may

change or replace the stored data. In order to prevent the above instances, it is more

valuable to have data integrity verification process in place and regularly query the cor-

rectness of data in storage servers. An effective verification mechanism can also allow

the user to detect the threats of data integrity in cloud storage sooner, and take necessary

actions to minimize the damage or recover the lost caused.

There are three basic requirements for data integrity verification process, namely,

efficiency, unbounded use, and self-protect mechanism. Efficiency implies minimal

network bandwidth and client storage capacity are needed for the verification process.

The client does not need to access the entire data for verification purpose. Unbounded

use represents verification process should support unlimited number of queries. Self-

protect mechanism means the process itself should be secure against malicious server

that passes the integrity test without accessing the data.

A number of different techniques and mechanisms have been proposed and designed

for cloud data integrity verification process. The mainstream of research in this field

belongs to Proofs of Retrievability (POR) and Provable Data Possession (PDP), both

were designed to the above three requirements. The two methods originally emerged

with a similar concept but different approaches. Since then, each one had gone through

further development along different directions such as dynamic data support, public ver-

ifiability, and privacy against verifiers. Dynamic data support allows a client to dynam-

ically update their data partially after uploading the data. Public verifiability enables

everyone, not just data owner or verifier, to perform verification process. Privacy against

verifiers ensures that the verification process does not contain any private information
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of data owner. POR and PDP schemes with their developments will be discussed and

compared in more detail later in this section.

Besides those two approaches, there are several methods studied to address the stor-

age data integrity issue resulted from data insertion, modification and deletion at the

block level. In 2010, Proof of Erasability (POE) scheme was proposed by Paul and Sax-

ena [120]. POE addresses clients’ need to ensure a comprehensive destruction of the

stored data in the storage when they withdraw the data and disassociate with the storage

provider. This model plays a role as probing engineering or destructor, which can ensure

the stored data are shredded partially or fully based on the rules of data store. Never-

theless, this scheme only allows the data owner knowing the data are being destroyed.

Another parallel scheme called Proofs of Secure Erasure (PoSE-s) also has a similar

function on remote attestation [122]. Even though this scheme was proposed to replace

hardware-based attestation, it is suitable for updating secure code and secure storage

erasure for cloud.

In the following subsections, we will first introduce POR and PDP, followed by their

developments to improve efficiency, dynamic data support and public verifiability.

2.2.1 Proofs of Retrievability and Provable Data Possession

As s widely studied mechanism to ensure data integrity, POR was firstly proposed by

Juels and Kaliski in 2007 [73]. Fig. 2.2 depicts the general schematic of the proposed

POR system, which ensures the server (prover) to a client (verifier) that the stored data

are intact during the storing and retrieving process of the client. The client first encode a

raw file F through an encoding algorithm into an encoded file F’ and then stores it in the

prover. A key generation algorithm produces a key K stored in the verifier, and it is used

to encode. For checking process, the verifier can perform challenge-response process

with prover in order to check if F can be retrieved.
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Figure 2.2: Schematic of a POR system

The first POR scheme introduced by Juels and Kaliski employed a sentinel scheme.

POR protocol encrypts F and inserts randomly several sentinels into the other file data

blocks after encryption. These sentinels play an crucial role for verification. The verifier

can challenge the prover by pointing out the positions of a collection of sentinels, and

the prover should return the values of the sentinels. If the values are different from the

verifier’s data, then it shows that prover has deleted or modified F. POR also includes

error-correcting code to recover a small portion F if corrupted. However, this scheme

requires pre-processing and encoding of F prior to store into the data storage, and it is

bounded use - number of sentinels can be used up for limited queries. Therefore, Juels

and Kaliski proposed another technique from Lillibridge et al. [96], Naor and Rothblum

[110]. It stores the redundantly encoded data blocks with Message Authentication Code

(MAC) to replace sentinels, and the MACs are stored together with data blocks. In this

case, verification algorithm can examine the data integrity and ensures retrievability by

requesting random number of block positions with their MACs. This approach resolves

bounded use problem of the previous scheme, but at the cost of higher communication

complexity of the audit.
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Figure 2.3: Schematic of a PDP system

On the other hand, PDP came out concurrently with Juels-Kaliski’s scheme. It was

proposed by Ateniese et al. [5] and constructed based on symmetric key cryptography.

PDP firstly chose RSA-based homomorphic verifiable tags [70] to combine multiple

file blocks into a single value. A similar approach was also adopted later by Shacham

and Waters [140]’s POR scheme in 2008. PDP scheme also provides data format inde-

pendence, and it puts no restriction on the format of data. In other words, PDP allows

any verifier (not only client) to query the server. POR and PDP both employed erasure

code, which is a Forward Error Correction (FEC) for the binary erasure channel, help-

ing recovery of the original message from slightly damaged data. The major difference

between initial POR and PDP is that POR ensures not only data integrity at the server

end but also retrievability, whereas PDP guarantees only data integrity at cloud data stor-

age. Nevertheless, PDP is more efficient compared to Juels-Kaliski’s POR, since it does

not require any bulk encryption, and PDP requires smaller storage space on the client

side and fewer bandwidths for challenges and responses. However, both schemes work

on static data only, even though Ateniese et al. [6] proposed a dynamic version later in

2008, but it is restricted by number of queries and basic block operations.
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2.2.2 Improvement on Public Verifiability

Since the Juels-Kaliski’s original POR scheme was proposed without implementation

of public verifiability, and its complexity was still high for communication and client

storage, it became a popular topic for researchers to improve public verifiability and

efficiency (discussed in the next subsection). In 2008, Shacham and Waters [140] pro-

posed two new PORs system structures based on Juels-Kaliski’s POR concept. Both

solutions allow only one authentication value for the purpose of verification. The first

one is privately verifiable using pseudorandom functions (PRFs); the second one is pub-

licly verifiable, and it was built based on signature scheme of Boneh, Lynn and Shacham

in a bilinear group [13]. Since the BLS signature was adopted, the public retrievability

was achieved, and the proofs are reduced to a single authentication value, thus reduced

communication complexity from Optq to Op1q, where t is the number of block positions.

However, this scheme still works on static data only, without support of dynamic data

update. Besides, the security parameter relies on Random Oracles, which means the

client’s challenge size grows up to Opt2q.

Figure 2.4: Third Party Auditor (TPA) structure

A new system model, as depicted in Fig. 2.4, which aimed at establishing a trustable

mechanism between client and Cloud Storage Server (CSS) by introducing a Third Party
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Auditor (TPA), was proposed in 2009 [164]. By using a privacy-preserving third-party

auditing protocol, the TPA is trusted to monitor the stored data in cloud and transactions

between the client and CSS, as well as assess and expose risks of the cloud services. This

new scheme has been further developed based upon existing PORs and newly developed

cryptographic primitives [161, 162, 163, 165, 166].

TPA typically adopts a public-key-based homomorphic authenticator with random

masking to perform traffic auditing without a local copy of the data for integrity check.

This public audit system can be constructed from the setup stage, which allows a user

to initialize the secret parameters of the system, send the verification metadata to TPA,

and audit the corresponding result. In this process, TPA will issue an audit message to

the server for checking the user’s data.

Homomorphic authenticators are used to verify metadata generated from individual

data blocks while the aggregated authenticators can justify a linear combination of data

blocks. As a paradigm, one can use a homomorphic token with distributed verification

to check the integrity of erasure-coded data. The erasure-correcting codes play a vital

role in preparing files for distribution so that the distributed files have redundancy parity

vectors and the data dependability property. However, the linear combination of data

blocks may potentially reveal users’ privacy. With random masking, TPA cannot derive

user’s data content by building a correct group of linear equations.

The above model was further improved in [167] by integrating dynamic data support

in 2011. Zhu et al. [193] also proposed a construction of dynamic audit services for

untrusted and outsourced storage. It can detect abnormal behavior by using fragment

structure, random sampling, and index-hash table.

Even though TPA-based schemes allows public verification of data integrity check-

ing, They have a potential obstacle that requires an additional constituency, which is a

third party auditor, added to the entire existing data storage scheme. The implementation
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of such schemes might be a burden for service providers because of additional costs. To

address this concern, Han and Xin [60] proposed a new scheme offering the traditional

TPA functions provided by CSP in a trustful manner. This scheme utilizes RSA and

Bilinear Diffie-Hellman techniques, creates message header and mechanisms to achieve

authentication process, while reducing complexity of cloud computing. Another work

that provides public verifiability without help from the third party auditor was examined

in [61] based on the work of Sebe et al. [139], and it has been proved to be secure from

an untrusted server.

2.2.3 Improvement on Efficiency

Efficiency of POR and PDP has been improved from different aspects of the verification

process. For instance, Curtmola et al. [35] showed how to integrate error-correcting

codes with PDP and an adversarial error-correcting code construction similar to PORs.

It also enabled PDP scheme to secure multiple replicas over distributed system without

encoding each separate replica.

Besides, Dodis et al. [40] provided different solutions of optimized POR schemes

under different constraints, such as bounded-use or unbounded-use, knowledge-

soundness or information-soundness. They analyzed the tradeoffs in parameters and

security between bounded and unbounded use schemes, and they also compared PORs

under different circumstances in detail. It also improved the Shacham-Waters POR

scheme by avoiding the usage of Random Oracles, which reduced the challenge size

down to be linear in the security parameter, from Opt2q to Optq.

In addition, a theoretical framework of PORs improvement was concurrently pro-

posed by Bowers et al. [16]. The model offers an improvement over the protocols of

Juels-Kaliski [73] and Shacham-Waters [141] by proposing a new variant to achieve

lower storage overhead and tolerate higher error rates. The proposed POR scheme also
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decreased the challenge size to be linear of the security parameter. Another POR scheme

was proposed by Kumar and Saxena in 2011 [147]. It targeted on simplification of Juels-

Kaliski’s sentinel scheme, making it suitable for limited computational power or small

storage at verifier end. For PDP, Ateniese and Burns et al. concluded previous research

developments and implementations of PDP in 2011 [4], and proposed two improved

provably-secure PDP schemes with higher efficiency than previous ones.

2.2.4 Improvement on Dynamic Data Support

Supporting dynamic data update in data integrity verification schemes are especially

challenging. Ateniese et al. [6] proposed the first partially dynamic PDP scheme in

2008. This scheme was more efficient in setup and verification phase compared to its

previous version in [5], since it was only relied on symmetric-key cryptography. On the

other hand, it only allowed a limited number of queries and basic block operations with

limited functionality. For example, block insertion was not supported. Moreover, public

verifiability was not supported either.

In 2009, Erway et al. proposed an improvement on PDP, referred as Dynamic Prov-

able Data Possession (DPDP) [44]. In order to support provable updates on the stored

data, this new model utilized authenticated directories based on rank information, and it

defined the update as block insertion, modification or deletion to achieve dynamic PDP

scheme. Nevertheless, this scheme maintains skip list [118] for tags and stores root

metadata in clients side to prevent replay attack, so its computational and communica-

tion complexity can be up to Oplogtq.

The dynamic data updates on POR were first considered in 2009. Wang et al. [164,

166] proposed the first scheme that achieved efficient data dynamics of the POR model

by utilizing the homomorphic token with distributed verification of erasure-coded data,

and manipulation of the Merkle Hash Tree (MHT) [107] respectively. The first scheme
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supported block update, delete and append operations only, while the second scheme

provided both public verifiability and data dynamics for remote data integrity check,

but the verification complexity increased to O(log n) from O(1) as a trade-off, and it

achieved partially dynamic instead of fully dynamic. Both schemes also showed a new

system model involving Third Party Auditor (TPA).

In addition, Zheng and Xu presented a new POR scheme with a fresh property,

namely, fairness, to deal with dynamic data [189]. This property prevents unscrupu-

lous clients from accusing a legitimate server about modifying their stored data. This

issue arises because of the feature of dynamic data. POR for static data storage can

solve this problem simply by asking the verifier to approve and sign digitally when the

data has not been stored into the storage. The proposed Fair and Dynamic Proof Of

Retrievability (FDPOR) was mainly composed of two parts, a new authenticated data

structure: range-based 2-3 Tree (rb23Tree) and a new incremental signature scheme

called hash-compress-and-sign. However, FDPOR did not support public verifiability,

and complexity for both the verifier and the prover were higher than that of previous

PORs.

2.2.5 Summary of Data Integrity

PORs and PDPs are the major remote data integrity checking protocols proposed in

cloud storage systems. The original POR and PDP protocols differs in many aspects.

PORs are considered to be more secure compared to PDPs, because it requires encryp-

tion of the original data and error correction coding to recover damaged data, while

PDPs are known for higher efficiency and applicability to large scale public databases,

such as digital libraries. With further improvement of each, the two schemes have been

converging towards the same objectives. For example, although public verifiability and

homomorphic verifiable tags were first known for PDPs, these characteristics are also
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Data Dynamic Public Verifiability Retrievability Server Comp. Verifier Comp. Communication Comp. TPA
2007 JK [73] Static No Yes Op1q Op1q Optq No

2008 SW [141] Static Yes Yes Op1q Op1q Op1q No
2009 Wang [164, 166] Partially dynamic Yes Yes Oplogtq Oplogtq Oplogtq Yes

2009 Dodis [40] Static Yes Yes Op1q Op1q Op1q No
2009 Bowers [16] Static Yes Yes Op1q Op1q Op1q No
2010 Wang [159] Static Yes Yes Op1q Op1q Op1q Yes

2011 Saxena [147] Static No Yes Op1q Op1q Op1q No
2011 Zheng [189] Partially dynamic No Yes Oplogtq Oplogtq Oplogtq No
2007 Ateniese [5] Static Yes No Op1q Op1q Op1q No
2008 Ateniese [6] Partially dynamic No No Op1q Op1q Op1q No

2008 Curtmola [35] Static Yes No Op1q Op1q Op1q No
2009 Erway [44] Fully dynamic Yes No Oplogtq Oplogtq Oplogtq No
2011 Ateniese [4] Partially dynamic Yes No Op1q Op1q Op1q No

2011 Hao [61] Fully dynamic Yes No Oplogtq Oplogtq Oplogtq No

Table 2.1: Performance comparison for data integrity verification schemes.

applicable to PORs. On the other hand, some PDP variants may also adopt encryption

and/or error correction coding tools to strengthen their security measurement. There-

fore, it is all about making tradeoffs among security functionalities and efficiency.

In Table 2.1, we summarize the above reviewed POR and PDP schemes by a thor-

ough comparison of their performances. It is noteworthy that schemes with dynamic

data support suffers higher complexities compared to their counterparts. Future research

directions include further improvements on efficiency and fully dynamic data support.

To improve efficiency of those schemes, reducing communication cost and storage over-

head are rightful considerations. However, fully dynamic data support is a challenging

objective, because it increases complexity but reduces update information on server-end.

2.3 Data Confidentiality

Data confidentiality in cloud storage security refers to the property that information

stored in the cloud storage is not made available or disclosed to unauthorized individuals,

entities, or processes. Access control and data encryption have been widely deployed

to protect data confidentiality in the traditional data communication networks. It is

natural to extend their deployment in cloud storage systems. For instance, Secure Socket

Layer (SSL) and AES-256 bit encryption are adopted in Dropbox to ensure data security.
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However, data confidentiality in cloud storage systems faces new risks and challenges,

thus calls for new techniques or improved mechanisms. In this section, we discuss

new challenges faced by access control and data encryption mechanisms, as well as

recent developments to meet those challenges of data confidentiality protection in cloud

computing.

Although traditional encryption techniques can hide the information of data from

the cloud server, it would not provide a satisfactory solution if users demand to compute

on their stored data. Since the computing can not be functionally performed on the

ciphertext, users would have to decrypt the data before performing any computation and

re-encrypt after the computation. During this process, sensitive information could have

been leaked to the curious server. Otherwise, user would be forced to compromise with

the service provider by uploading plaintext and signing SLA, which exposes their data

to higher risks. To solve this problem, there have been research attentions drawn to a

newly proposed encryption primitive, namely, Fully Homomorphic Encryption, which

allows ciphertext to be computed without affecting decipher process.

In the following of this section, we first examine new access control mechanisms

with higher efficiency and fine-grain user control suitable for cloud storage. Then intro-

duce some new concept of data encryption schemes, such as searchable encryption and

FHE, and discuss their potential applications in protecting data confidentiality in cloud

computing. Then, Other data confidentiality approaches are also briefly discussed. We

provide our insights of the current research efforts and future directions in data confi-

dentiality to summarize this topic.

2.3.1 Access Control

As mentioned above, access control has been one of the key mechanisms to protect data

confidentiality in traditional data networks. It is designed to block unauthorized users
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and malicious hackers from accessing data. Although the objective of access control

in cloud storage does not differ from that in traditional data network, the requirement

does change. Traditional access control enforced by the service provider could not stop

a curious cloud service provider accessing users’ sensitive data, which was stored in the

service provider’s infrastructure and managed by the service provider. A curious cloud

storage server trying to derive sensitive information from its stored data, or from data

operations performed by data owner and authorized users, is a new threat model against

data confidentiality in cloud storage service. Moreover, a malicious service provider

could intentionally leak the data to unauthorized parties for profit, or a malicious attacker

could compromise the service provider and get unauthorized access to the data.

To address this challenge, cryptographic access control schemes that shifted the

access control agency from the service provider to the users have been proposed. Instead

of relying on untrusted service provider to grant access control, users can enforce their

own access control by selectively granting different decryption access to a certain part

of encrypted data. By means of encryption, the owners of data, i.e., cloud storage users

who lost their physical control over their own data could regain their control at the

semantic level.

Plutus [74] and SiRiUS [67] are examples of using encryption to secure file shar-

ing on remote untrusted storage. These schemes encrypted different files with different

keys, thus changing the problem of access to files to the problem of key management.

However, this approach is not scalable when applying to cloud storage, because the

complexity of key management increases with the number of files and/or the number of

users, which both could be enormous in a cloud storage system. As a large number of

users are sharing the same infrastructure in a public cloud storage built upon a compli-

cated network scale, it is crucial to have efficient, scalable and reliable access control

mechanism in place.
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In the following, we examine recent research on more efficient access control using

encryption techniques developed for cloud storage systems.

Access Control using Attribute-Based Encryption

In attribute-based access control model, access is granted based on attributes of the

user. When applied to cloud storage, access control is enforced on data encrypted using

attribute-based encryption (ABE) schemes. In an ABE system, a user’s keys and cipher-

texts are labeled with sets of descriptive attributes. A particular key can decrypt a par-

ticular ciphertext only if there is a match between the attributes of the ciphertext and the

user’s key.

The concept of ABE was introduced by Sahai and Waters [135]. Their access control

allowed for decryption when the number of overlapped attributes between a ciphertext

and a private key exceeds a specified threshold k. The fuzzy nature of this scheme

was originally designed for error-tolerant identity-based encryption scheme that could

use biometric identities. However, with a threshold-based flat access structure, it could

not be generalized to other applications. Two prominent ABE schemes with more gen-

eral tree-access structures, namely, Key-Policy Attribute-Based Encryption (KP-ABE)

[54] and Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [9], were proposed in

2006 and 2007, respectively. Both algorithms associated a set of expressively descrip-

tive attributes with a tree-access structures to enforce access control on the encrypted

data, but they work in a reverse manner. In KP-ABE, each ciphertext was labeled with

a set of attributes during encryption, while the users’ private keys were associated with

an access tree specifying which ciphertexts the key can decrypt. On the contrary, in

CP-ABE, Users’ private keys were based on a set of their attributes while ciphertexts

are associated with an access tree over the attributes during encryption. As a result, in

KP-ABE scheme, it is the key distributor (usually the service provider), who decides
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the access policy, while in CP-ABE scheme, it is the encryptor (usually the data owner)

who controls the access over the encrypted data.

In the above mentioned ABE schemes, the access policy can only contain logical for-

mula “and” and “or”, and threshold gates. A KP-ABE scheme was introduced in [114]

which allows “negative” constraints to be represented in access policies. Additionally,

many CP-ABE schemes were proposed such as [26, 90, 169] which either achieve cho-

sen ciphertext attack (CCA) secure or are built on different security assumptions. Even

though the KP-ABE and CP-ABE work in reverse manner, Goyal et al. [53] provided

a generic approach to transform a KP-ABE scheme into a CP-ABE one. Malek and

Miri combined the two ABE schemes into one system, and proposed a balanced access

control that allows both service provider setting up system wide access policies and

data owner setting up access structure to their own data [105]. Further research on

ABE is also discussed in [180, 187]. In a dynamic system, access policies may dif-

fer from time to time, and user qualifications may also change. Therefore, the ability

to revoke attributes from a user is desired in ABE systems. Several revocable ABE

schemes [134, 184] were proposed where an ABE system is able to revoke users from

accessing encrypted data to which they used to have access in the system.

When using the ABE in a system where there is a large number of attributes, assess-

ing the qualification of users and generating decryption keys by a central authority

becomes impractical. Multi-Authority Attribute-Based Encryption (MA-ABE) was first

proposed to address this issue in 2007 [23]. In a MA-ABE scheme, attributes are divided

into different sets, and each set can be managed by an independent attribute authority.

Corresponding attribute keys for decryption are issued by multiple attribute authorities,

and encryptors can specify an access policy that requires a user to obtain decryption

keys for appropriate attributes from different authorities in order to decrypt a message.

Subsequently, several other MA-ABE constructions were proposed in [24, 91].
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Role-Based Access Control

Another access control model called Role-Based Access Control (RBAC) [2, 137], has

also been commonly adopted in traditional storage system in order to simplify manage-

ment of permissions. Its access policy is determined based on different roles assigned

to users by the system, while the data owner can specify a set of permissions of their

data to different roles. By separation the tasks of role assignment and permission assign-

ment, RBAC is much more efficient and scalable compared to other access control based

on individual users, because the number of roles are usually significantly less than the

number of users. Furthermore, it makes dynamic access control easier. For example, in

applications where permissions for roles change slowly, while users may enter, leave or

change roles rapidly, the role manager can simply assign a new role to the user or revoke

a role from the user. On the other hand, the data owner can also add permissions to a

role or revoke permissions from a role. The authors of [111] suggested including RBAC

in a new access control model for the health care system that can provide flexible access

rights, because it can be modified dynamically while the task changed. However, one of

the major criticisms of RBAC schemes is the complicated process when setting up the

role structure. To make RBAC more efficient, roles can be structured hierarchically so

that some roles inherit permissions from others.

To enforce role-based access control policies, one approach is to transform the access

control problem into a key management problem. In the literature, there exist many

hierarchical access control schemes [3, 39, 136] which have been constructed based on

hierarchical key management (HKM) schemes. Because of the similarity in structures

between hierarchical access control and RBAC, a hierarchical access control scheme

can be easily used to enforce RBAC access policies in cloud environment. In 2010, a

role-based encryption (RBE) scheme [191] was built directly on RBAC policies. The

security of the hierarchical access control scheme relies on the correct execution of the
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key assignment process, while the security of the RBE is based on the security of the

cryptographic algorithm. More specifically, when a user is assigned to a role in RBE, a

decryption key is calculated through a cryptographic algorithm by taking as input of the

secret value and the identity of user and role. In the hierarchical access control scheme,

the key for the user is generated based on the access control policies of the whole system.

In 2011, Zhu et al. [192] proposed a revocable RBE scheme which allows users to be

granted or revoked role memberships dynamically.

In the above schemes for enforcing RBAC policies, user membership of each role

and role hierarchy are managed by a central authority. However in large-scale RBAC

systems which have hundred or even thousands of roles and hundreds of thousands of

users and permissions, it is impractical to centralise the task of managing these users and

permissions, and their relationships with the roles in a small team of security administra-

tors. Zhou et al. [190] proposed a new RBE scheme using an identity-based broadcast

encryption (IBBE) algorithm [37], which allows user memberships to be managed by

individual roles. In the new RBE scheme, plaintext can be encrypted to a specified

role, and only users in that role and its predecessor roles can decrypt the data with their

role secrets and decryption keys. The employment of a broadcast encryption algorithm

allows dynamically adding new users into a role without re-encryption, as well as revok-

ing an existing user from a role without affecting any other existing users. In addition,

this scheme has other features such as constant size keys and ciphertexts.

There have also been combined Attribute-Based Access control (ABAC) and RBAC

schemes proposed in order to take advantage of both to provide effective access control

for distributed and rapidly changing applications [83]. Hong et al. [64] implemented

RBAC system for cloud storage via CP-ABE. In their work, permission assignments

were handled by data owner while role assignments were handled by other users through

propagation.
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2.3.2 Searchable Encryption

With more and more data moving to the cloud storage, it becomes imperative to enable

search over the huge amount of data for many user applications. To preserve data con-

fidentiality and integrity, it is necessary to store encrypted data in the cloud storage

servers. To perform searching over data, the user has to either store an index locally,

or download all the encrypted data, decrypt it and search locally. Neither approach is

efficient when the data size grows in the cloud. When users seek to search and download

relevant files from a cloud storage system, it is often desirable for the Storage Service

Provider (SSP) to host search service, because it can minimize the network traffic and

reduce management complexity for the users.Therefore, how to perform searching on

encrypted databases without the need of decryption has become an increasingly fasci-

nating topic in cloud storage systems. Recently, there have been new cryptographic

primitives, called searchable encryption schemes [12? ], proposed to address this prob-

lem.

The basic idea of searchable encryption schemes is to encrypt a search index gener-

ated over a collection of data in such a way that its contents are hidden without appropri-

ate tokens, which can only be generated with a secrete key. Given a token for a keyword,

one can retrieve pointers to the encrypted data files that contain the keyword. During

the retrieval process, there is no contents of either the data files or the keyword revealed,

other than the fact that all the retrieved data files contain one keyword in common.

Searchable encryption schemes, including Symmetric Search Encryption (SSE)

[146], Asymmetric Search Encryption (ASE) [12] and other improvements on both

schemes are reviewed in [75]. SSE employs symmetric cryptographic algorithms, such

as block cipher or hash function, therefore is suitable when the party that performs

search over the data are also the one who generates it, whereas ASE employs asymmet-

ric cryptographic algorithms such as elliptic curve, thus is also suitable when the party
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that performs search over the data are different than the one who generates it. Therefore,

ASE has wider applications than SSE in cloud storage than SSE. Meanwhile, compared

to SSE schemes, ASE can achieve more complex search queries, such as conjunctions

of terms, but at the cost of higher complexity and weaker security guarantees. Efficient

ASE, or ESE scheme was introduced in [8] to improve the efficiency when the keywords

are hard to guess. However, it is more vulnerable to dictionary attacks.

Since SSE achieves higher efficiency and stronger security, it has been further devel-

oped recently. For example, dynamic SSE [76, 77] extended the inverted index approach

[34] to allow update of the encrypted index and data files, and to achieve adaptive

security against chosen-keyword attacks. Furthermore, Parallel and dynamic SSE [76]

enables more efficient and scalable construction based on a keyword red-black tree-

based multi-map data structure. On the other hand, SSE schemes with improved func-

tionalities but compromised security have been proposed. Kuzu et al. [85] utilized

locality sensitive hashing (LSH), which is widely used for fast similarity search in high

dimensional spaces for plain data, and proposed a search scheme to enable fast similarity

search in the context of encrypted data. Another approach, which was proposed by Wang

and Cao et al. [160] to secure ranked keyword search in encrypted cloud data. This

method utilized the Order-Preserving Symmetric Encryption (OPSE) [10, 11], which

achieves both security and privacy-preserving by protecting sensitive weighted infor-

mation.

For cloud storage that are accessible with multiple users, how to enforce privileges

and access control while searching through cloud storage has attracted researchers’

attentions. One approach was proposed by Singh and Srivatsa et al. [144] in 2009 which

performs indexing in the trusted enterprise domain, and utilizes the resulting indices sys-

tematically with the Access Control Barrel (ACB) [143] primitives and concepts of user

access hierarchy. This solution improves indexing efficiency and allows transferring the
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indices to the SSP for hosting, and it can be developed based on the integrity of search

results returned by the SSP in the future.

Other than search algorithms on encrypted database, more general computation on

encrypted database is a related topic. Secure Computation ON an Encrypted Database

(SCONEDB) [171] was proposed to solve the k-Nearest Neighbor (kNN) computa-

tion in an encrypted database utilizing asymmetric scalar-product preserving encryption

(ASPE). Besides, SCONEDB can incorporate other existing techniques, such as OPSE

for the range query and homomorphic encryption for aggregate queries. CryptDB [126]

implemented an integrated system that supports more general SQL query operations

over encrypted database, by adapting a number of existing and new SQL-aware encryp-

tion primitives with different security properties and functionalities. CryptDB dynam-

ically adjusts the encryption strategies using layered onion structures, where each data

was dressed in increasingly stronger encryption, such that the outmost layer provides

maximum security, whereas inner layers provide more functionality. A trusted proxy

determines whether layers of encryption need to be removed when receiving a query

from the user application.

2.3.3 Fully Homomorphic Encryption

Homomorphic encryption allows specific algebraic operations to be manipulated on a

ciphertext, so it can produce the same encrypted result as the ciphertext of the result

of the same (or different but known) operations performed on the plaintext. In other

words, the operations to be performed on original data can now be performed on the

encrypted ciphertext without knowing the original data. Homomorphic encryption can

be categorized into two types: Partially Homomorphic Encryption (PHE) and Fully

Homomorphic Encryption (FHE). PHE allows only one homomorphic operation, either
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addition (e.g. Paillier [116]) or multiplication (e.g., unpadded RSA), while FHE sup-

ports both addition and multiplication operations. Since the original unpadded RSA

algorithm published in 1977, there have been many PHE algorithms developed. How-

ever, the partially homomorphic property of an encryption algorithm has rarely been

considered advantageous, but rather vulnerable to adaptive chosen-ciphertext attacks.

Therefore, PHE algorithms have been found useful only in limited security applications

such as electronic voting systems. On the other hand, since the first FHE algorithm was

announced in 2009 [50], it has been recognized as a huge breakthrough in the comput-

ing security field. Practical application of FHE cryptosystems will potentially enable

development of computing programs, which runs on encrypted input data to generate

encrypted output. These programs can thus be run by untrusted entities without reveal-

ing any sensitive information during the computing process.

A homomorphic cryptosystem " consists of four algorithms, KeyGen", Encrypt",

Decrypt", and an Evaluate" algorithm. The first three algorithms are defined the same

as those in any public-key cryptosystems. The KeyGen"p�q produces key-pair (pk, sk)

given a security parameter �. The Encrypt" algorithm takes pk and a plaintext ⇡ as

input, and it outputs a ciphertext �. The Decrypt" takes sk and � as input, and outputs

the plaintext ⇡. In addition, the Evaluate" algorithm takes as input pk, a circuit C

from a permitted set C", and a set of ciphertexts ' “ p�1, ...�tq, consequently outputs

a ciphertext �. The homomorphic cryptosystem " is correct for C" if for any key-pair

(pk, sk) generated by KeyGen"p�q, any circuit C P C", any plaintexts ⇡1, ..., ⇡t, and

any ciphertexts ' “ p�1, ...�tq with �i Ñ Encrypt"ppk, ⇡iq, it is the case that

If� – Evaluate"ppk, C,'q, (2.1)
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then

Decrypt"psk,�q Ñ Cp⇡1, ..., ⇡tq (2.2)

The computation complexity of all the above algorithms has to be polynomial in the

size of C and security level parameter �, which is defined as all known attacks against

the scheme take time at least 2�. " is fully homomorphic if it is homomorphic for all

circuits[50].

A family of schemes "pdq : d P Z` is leveled fully homomorphic if they all use the

same decryption circuit, "pdq is homomorphic for all circuits of depth at most d (that use

some specified set of gates �), and the computational complexity of "pdq’s algorithms is

polynomial in �, d, and (in the case of Evaluate"pdq) the size of C.

The first FHE scheme proposed by Craig Gentry in 2009 [50] applies lattice-based

cryptography to construct the scheme, where lattice L was a set of points in the n-

dimensional Euclidean space Rn with a strong periodicity property. The proposed

scheme started from a somewhat homomorphic encryption scheme using ideal lattices,

which is limited to ”low-degree” polynomials evaluation on encrypted data due to the

augment of noise in the ciphertext during evaluation. After this ”initial construction”

stage, a ”squash the decryption circuit” technique was used to modify the scheme to

make it ”bootstrappable”. The modified encryption scheme can evaluate its own decryp-

tion circuit, and effectively refresh the ciphertext to reduce the augmented noises, which

eliminates the limitation on the depth of circuit evaluated over the ciphertext. In short,

Craig Gentry slightly modified somewhat homomorphic encryption by recursive self-

embedding. The resulting scheme can reduce the accumulated noise caused by multiple

algebraic operations, thus make it possible to realize FHE in arbitrary depth.

However, this first FHE scheme is impractical since the computation complexity

and ciphertext size are high-order polynomials in the security level parameter �, which

means they increase sharply in order to achieve a practically high enough security level.
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This prohibit the practical application of the FHE, especially in the cloud computing

context where high security level is crucial. Another major concern of this scheme is

that its security was based on two relatively new assumptions, namely, the hardness of

the worst-case Bounded Distance Decoding problem (BDD) on ideal lattice, and the

hardness of the average-case Sparse Subset Sum Problem (SSSP) of the squashing step.

Both are relatively untested cryptographic assumptions.

More recently, there have been growing research efforts made in searching practi-

cal FHE algorithms, which are more efficient and/or based on more reliable security

assumptions. A second version of FHE scheme, known as DGHV, was proposed by

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan in 2010 [155].

DGHV uses Gentry’s techniques with only elementary modular arithmetic over integers

to convert a simple somewhat homomorphic encryption scheme to a bootstappable FHE

scheme. This scheme achieved conceptual simplicity because all computations were

performed over integers instead of ideal lattice. It also reduced the security assumption

to the hardness of the Greatest Common Divisor (GCD) problem. However, the price of

this tradeoff is the immense size of public key, which can be impractical for the current

systems.

Stehle and Steinfeld [148] presented a faster homomorphic encryption in order to

improve Gentry’s scheme by a more aggressive analysis of the SSSP assumption, and

introducing a probabilistic decryption algorithm implemented by an algebraic circuit of

low multiplicative degree. With these two enhancements, this scheme obtains Op�3.5q
bit complexity for refreshing a cipher text, whereas previous scheme claimed Op�6q
for the same task, where � is the security parameter. However, there is a non-zero

probability of decryption error associated with this scheme.

Besides, Zvika Brakerski and Vinod Vaikuntanathan gave another improvement on

Gentry’s scheme [18] by changing the two security assumptions made in [50]. First,
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the somewhat homomorphic encryption was based on ring learning with errors (RLWE)

assumption from Lyubashevsky, Peikert and Regev [101] instead of the ideal lattices

BDD problem. Second, to make the somewhat homomorphic encryption scheme boot-

strappalbe, it used a dimension-modulus reduction technique instead of Gentry’s squash-

ing technique, thus eliminating the assumption of SSSP. This new bootstrapping tech-

nique also shortened the ciphertext and reduced the complexity.

Based on the above improvement, Brakerski, Gentry, and Vaikuntanathan worked

together to propose a new leveled FHE scheme without Gentry’s bootstrapping proce-

dure in 2011 [17]. By applying RLWE, this FHE scheme has Op� ¨ L3q per-gate com-

putation for L-level arithmetic circuits. As an optional approach, they also proposed a

leveled FHE scheme using bootstrapping as optimization to further reduce the per-gate

computation down to Op�2q, independent of L.

Following up in 2011, Coron et al. proposed an improvement of FHE over the inte-

gers described by van Dijk et al.. The proposed new scheme shortened the public key

size from Op�10q to Op�7q [32]. This procedure is done by using quadratic form instead

of linear one in the public key elements, so that the full-length public key is compressed

to a smaller subset of the original key. Instead of proposing any further improvement on

FHE, Ron Rothblum manifests how to transform any additively homomorphic private-

key encryption scheme into a public-key encryption scheme [132]. To construct this

process, this scheme develops a theorem that any compact additively homomorphic with

respect to addition modulo two can be transformed into a semantically scheme. In con-

sequence, the public-key encryption scheme save one hop homomorphic with regard to

the same set operations with private-key encryption, which are prior FHE schemes.

With all the theoretical development of different FHE algorithms, it is necessary

to investigate their practical implementation. There were several implementations of

Gentry’s FHE in 2010, and the first attempt was made by Smart and Vercauteren [145].
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Solution on Ideal Lattices BDD Solution on SSSP Per-gate Comp. Public Key Size Asymptotic Comp.
2009 Gentry [50] SVP Availability of SVP Oracle Op�6q
2010 Stehle [148] Refined Analysis Op�3q

2011 Brakerski [18] RLWE Op�3q
2010 Dijk [155] Replace Ideal Lattice Choosing Large Enough ✓ Op�3q Op�10q
2011 Coron [32] Refined Analysis Op�3q Op�7q

2010 Vercauteren [145] Op�3q Opn2.5q
2011 Halevi [51] Op�3q Opn1.5q

Table 2.2: Performance comparison for FHE schemes.

They were able to implement the somewhat homomorphic scheme using ”principle-

ideal lattices” of prime determinant, which can be implied by two integers only. How-

ever, they were not able to implement the bootstrapping functionality to obtain a fully

homomorphic scheme. Bottleneck of this implementation was the failure to support a

large amount of parameters.

Based on this work, in 2011, Gentry and Halevi developed a series of simplifications

and optimizations that made bootstrapping implementation possible. As the result, the

asymptotic complexity is reduced from Smart and Vercauteren’s Opn2.5q to Opn1.5q.

The optimizations from this paper were also used in [32] in order to implement the

fully homomorphic DGHV scheme under new variant. With the result of having similar

performance, Coron et al. successfully showed that FHE can be implemented with a

simple arithmetic scheme.

In Table 2.2, we provide a comparison of performance for different FHE schemes.

BDD and SSSP are the problems that stated in the first FHE scheme.

2.3.4 Other Data Confidentiality Approaches

There are several other data confidentiality methods beside above. For instance, The

application of cryptographic algorithms to data blocks in the cloud storage is a pop-

ular method used to ensure the confidentiality of stored data. A data confidentiality

scheme in coreFS, which is a user-level network file system, was proposed in 2009

[181]. This scheme is constructed based on a new universal-hash stateful MAC. It has
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smaller computational overhead of cryptographic operations comparing to the MHT.

Besides, it allows better communication capability. However, the choice of caching

strategy, MAC tree update schedule, and the method to store the tree can affect the

performance of this scheme.

Another data confidentiality scheme exploited the newly proposed Secure Prove-

nance (SP) model based on the bilinear pairing techniques in 2010 [100]. This scheme

records the ownership and the process history of data objects in the cloud storage in order

to increase the trust from public users. The SP model consists of the following mod-

ules: system setup, key generation, anonymous authentication, authorized access, and

provenance tracking. The provable security technique has been tested on this scheme

under the standard SP model. It demands some practical considerations in real-world

applications and further improvement under the current framework.

Different from above schemes, an compelling statement was proposed by Dijk and

Juel in 2010 [156], which claimed that no cryptographic protocol, even including power

primitives such as FHE, can enforce privacy requested by common cloud services alone.

This paper also demonstrated that above demand can be achieved by other enforce-

ments instead, such as tamperproof hardware, distributed computing, and complex trust

ecosystems.

2.3.5 Summary of Data Confidentiality

Data confidentiality is one of the most critical issues for applications with sensitive data,

such as personal information, customer’s account information, financial and healthcare

information. The new challenge of storing those data in clouds is how to prevent acci-

dental or intentional data leakage to the cloud storage service provider, such that even if

the service provider is compromised, the information can still be kept confidential. The

fundamental solution to this problem is still data encryption. The user has to encrypt
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the data before they are moved to the cloud server, and keep it encrypted for the entire

period during which the data are in the cloud. When the data needs to be accessed

or processed by either the data owner or other legitimate users who have the key for

decryption, it is not efficient to retrieve the encrypted data, decrypt it, process and re-

encrypt it before sending back to the server. Therefore, new encryption mechanisms

that allow for processing of the ciphertext directly without revealing the original infor-

mation in the plaintext will have a significant potential in cloud storage of sensitive data.

WIth encryption, data owners or users regain their control over their data that are not

physically stored by themselves.

FHE is an ideal example of these encryption algorithms. However, the promising

applications of current FHE algorithms are hindered by its computation complexity and

other implementation difficulties. Improvements must be made before it can be put in

practical applications. In addition, more implementations of various improvements are

awaited to be evaluated on current platforms.

Unlike FHE, which has an ambitious aim at arbitrary computing on the ciphertext,

other cloud encryption schemes aimed at specific type of control over encrypted data.

For example, ABE allows access control being enforced on the encrypted data by incor-

porating attribute-based access structure into either the ciphertext or the decryption key.

Searchable encryption schemes provide a way to search the ciphertext for a keyword

token without revealing the real content of either data or the keyword.

2.4 Availability

As a different security measure, availability in cloud storage refers to that the data are

accessible and usable when authorized users request them from any machine at any time.

In an earlier stage of cloud computing, availability was of more security concern due to
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the lack of mature and reliable infrastructure. Many incidents of service unavailability

occurred due to hardware failure and resulted in severe consequences. WIth better and

more reliable infrastructures in place, the challenge facing the availability of cloud stor-

age service is how to preserve the user’s data in case of emergency, such as a natural

disaster.

The most straightforward solution is to keep backup copies of data in multiple physi-

cal locations. Amazon EC2 and S3 provide a perfect example based on availability zone,

which locates within divided geographic regions, for example, US-West and US-East.

Each region contains several instances with same data. When accident occurs, Amazon

EC2 and S3 can easily recover damaged or lose data from other availability zones within

the same region to save power and time. However, this approach is not efficient in terms

of storage resource utilization.

There have been backup storage management schemes, such as incremental backup

and data deduplication, developed to improve the storage utilization. Incremental

backup has been used widely in file backup services. It exploits the correlation between

current files with previous backup version and only stores the differences. When incre-

mental backup being deployed in a data block level or even data byte level, it becomes

more efficient in storage utilization, but with higher processing overhead. Delta encod-

ing is a famous incremental backup example applied by Dropbox. Data deduplication is

a specialized data compression technique that identifies common data chunks within and

across different files, and stores them only once to improve storage utilization. Unfor-

tunately, data deduplication potentially undermining the data security in terms of both

data integrity and data confidentiality. First, by definition, data deduplication alters the

original data from the user and stores them in a different form in the cloud storage, thus

results in concerns of data integrity. Second, data deduplication attempts to identify

and exploit identical data chunks, while encryption algorithms usually try to randomize
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them to conceal the real contents. The encrypted ciphertext for the same plaintext will

likely to be extremely different. To address these issues, efficient and secure data dedu-

plication which allows data deduplication performed on encrypted ciphertext have been

developed [149]. This technique utilized convergent encryption, in which the encryption

key is generated using a hash function of the plaintext of the data chunk. Therefore, the

same plaintext data chunk will be encrypted using the same key, no matter when and

by whom it is encrypted. This results in the same ciphertext data chunk for the same

plaintext. The scheme stores unique chunks of data or bytes during data analysis, and

then compares other chunks to the stored data. If the compared result is matched, then

the redundant part is replaced by a small pointer pointing to the location of the matched

stored data.

Another proactive approach is to predict future availability failure occurrences so

that actions could be taken earlier to avoid interruption of service. Guan et al. pro-

posed two learning approaches to predict failure dynamics in cloud computing systems

by using Bayesian methods and decision trees [55]. An initial stage is required for mon-

itoring data, and then an ensemble Bayesian methods labels data that have anomalous

behaviors. After all the anomalies are identified, the model can predict future failure

occurrences based on decision tree classifiers.

Once the failure has occurred, data recovery schemes are necessary to reduce or

eliminate the loss. Zhang [185] presented a data recovery method that examines the

damage in a fine-grained cloud database and allows the cloud database owner to know

and locate the damage precisely for the recovery purpose. Information dispersal algo-

rithm [127] is used to enable greater availability of data when encountering physical

failures and network outages.

Besides the above techniques, data recovery can also be achieved by new service

framework. Chi-won Song et al. proposed Parity Cloud Service (PCS) in 2011 [170].
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It generates virtual disk in user system for private backup and makes parity group of

multiple users. The same data among those users in the parity group are stored at the

server-end. Therefore, when users find out that original file requires recovery, they can

request data from the server-end without violating privacy since private backup is stored

at each user’s virtual disk. This approach is simple and secure, but each user has to build

up virtual disk, which costs additional overhead for users.

In summary, ensuring availability of users’ data whenever users demands it is the

basic and primary requirement in cloud storage. The main challenge arises when taking

other performance and security concerns into consideration. Trade-offs between effi-

ciency and reliability have to be made to balance the interests of service provider and

the user. Furthermore, data integrity and data confidentiality should not be compromised

by improved availability.

2.5 Summary

With the trend of rapid deployment of cloud storage and computing nowadays, it is

essential for the cloud storage systems to be equipped with security solutions proven

to be reliable and trustworthy. In this work, we conducted a survey on most recently

developed or proposed primitives to ensure three of the most critical security measure-

ments, namely, data integrity, data confidentiality, and availability, for the cloud storage

systems. For each aspect, we identified the unique challenges that are different from

those in traditional data network or file storage systems, summarized the existing devel-

opment progress up to date, and provided insight into the future directions of research.

Overall, we feel that the cloud storage security is still in its infancy and expect to see

more salient breakthrough in the near future. For example, although the cloud storage

security solutions have been developed rapidly in recent years, we have not yet seen a
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widely accepted model for the implementation. Besides the system design, the cloud

storage security system should be flexible enough so that it can be improved by new

cryptographic algorithms.

To sum up, this chapter provides a broad survey on data security for the cloud storage

system, and since we often store the surveillance data in the cloud nowadays, biometric

security is also as important as the data security. If there is no efficient and effective way

to identify possible suspects through the stored surveillance data in the cloud, then extra

efforts have to be done with the growing data to achieve the goal. Therefore, having

the automatic face recognition system is as crucial as maintaining the data security on

cloud.
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Chapter 3

TAEF: A Cross-Distance/Environment

Face Recognition Method

Although there have been progressive developments in automatic face recognition, most

efforts focus on the situation where probe faces are located at a close distance with

varying poses. Much less work has been conducted for Face Recognition at A Dis-

tance (FRAD), which is common in the video surveillance application. For conve-

nience, long distance face images and short distance face images for matching are

called probe and gallery images, respectively. The FRAD problem is challenging since

the quality of probe images, which are often captured in an outdoor environment, is

degraded by both distance and environmental effects while gallery images are typi-

cally captured in a controlled indoor environment. To address this cross-distance and

cross-environment face matching challenge, we propose a solution called the Two-Stage

Alignment/Enhancement Filtering (TAEF) method. The TAEF method consists of three

main components: cross-distance face alignment, a cross-environment face enhance-

ment and two-stage filtering.

Two-Stage Filtering. A coarse-to-fine two-stage filtering mechanism consisting of

initial screening (or coarse-scale processing) and iterative refinement (or fine-scale pro-

cessing) is proposed in this work. Given a probe image, the procedure of face alignment,

enhancement and matching is executed against all gallery images to eliminate unlikely

candidates at once at the first stage for efficiency. Then, the procedure is conducted for

every individual probe/gallery image pair for higher accuracy and the least probable one
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Figure 3.1: Two exemplary images in the LDHF database taken at a distance of 100 and
150 meters.

in the candidate pool is removed one by one until the last one at the second stage. With

the two-stage filtering, TAEF strikes a balance between computational efficiency and

matching accuracy.

The rest of this chapter is organized as follows. The background and related work are

discussed in Section 3.1. The TAEF method is presented in Section 3.2. Experimental

results are shown and evaluated in Section 3.3. Finally, concluding remarks are given in

Section 3.4.

3.1 Background and Related Work

3.1.1 Face Alignment

Face alignment involves two steps: finding an initial rough face shape reference,

and approaching the ground truth via iterative optimization. A well known tech-

nique is facial landmark localization that finds the coordinates of essential components

iteratively. It can be further categorized into the model-based and regression-based

approaches.

The model-based approach includes the Active Shape Model (ASM) [31] and the

Active Appearance Model (AAM) [29]. They were derived based on the principal
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component analysis (PCA) of shape and appearance of landmarks. As an extension,

a descriptor is used to capture the appearance for each landmark while these descrip-

tors are constrained by a shape model in the AAM with a constrained local model

(AAM/CLM) [33]. Saragih et al. [138] incorporated a mean-shift filter into AAM/CLM

to achieve better matching capability. Cootes et al. [30] adopted a random forest method

to compute accumulated votes to improve the alignment performance.

The regression-based approach utilizes local descriptors and regressors to reduce the

matching error. The cascaded regression was introduced by Dollar et al. [41] for pose

estimation in image sequences. Later, it was applied to face alignment. Cao et al. [20]

proposed a regression method with two-stage training, where the cascaded regression

was extended to the context of an affine transform. Xiong et al. [173] applied cascaded

regression with the SIFT feature, examined the derived solution from a gradient descent

view, and called it the Supervised Descent Method (SDM). Yan et al. [174] adopted

a similar framework with the “learn-to-rank” and “learn-to-combine” modules placed

in the front and the back of the main alignment module, respectively. Moreover, deep

learning was introduced in [150, 152], which offers competitive performance.

Automatic face alignment techniques and systems have been extensively tested. For

instance, Wagner et al. [158] used the spare representation in their alignment algo-

rithm for the Multi-PIE database. Geng and Jiang [48] developed an automatic align-

ment system based on both holistic and local features and conducted experiments on

the AR, GT and ORL databases. Deng et al. [38] proposed a Transform-Invariant

PCA (TIPCA) method to achieve automatic alignment and tested its performance on the

FERET dataset.

In this work, a face alignment method using cascaded regression is adopted. To

address alignment distortion caused by the distance effect, we design a filter to mimic

the long distance effect and generate facial landmarks accordingly.
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3.1.2 Face Enhancement

Face image enhancement for FRAD received little attention before. However, it is much

needed for FRAD as evidenced by the exemplary images shown in Figure 3.1. A system

that incorporates wavelet decomposition, deblurring, denoising and linear stretching was

proposed in [176] to recover quality loss due to the long distance. The reported recogni-

tion performance ranges from 50% to 70% due to low image resolution and quality. One

face enhancement technique rooted in retinex theory was proposed by Land and McCann

[88]. It examined relative lightness (instead of absolute lightness) in a local region to

mimic the human visual experience. Later, Land [87] presented another approach to

lightness computation. Based on this foundation, Jobson et al. [69] proposed a Single-

Scale Retinex (SSR) method for the trade-off between rendition and dynamic range

compression, and extended it to the Multi-Scale Retinex (MSR) method in [68]. More

recently, Petro et al. [123] proposed a new method called MSR with Color Restoration

(MSRCR).

In this work, the Multiscale Retinex with Color Restoration (MSRCR) method is

adopted [123] for face enhancement to handle foggy and back-lighted conditions in the

outdoor environment. To the best of our knowledge, this is the first time for MSRCR to

be used in a face alignment/recognition system. We show that MSRCR can restore face

quality in the LDHF database, where local contrast enhancement is used to overcome

the back-lighted or foggy challenge while maintaining image color balance.

3.1.3 Long Distance Heterogeneous Face Database

As mentioned in Section 1.2, we select LDHF to evaluate our system. The LDHF

database [78, 103] was released in 2012. It contains 1-meter indoor, 60-, 100- and

150-meter outdoor VIS and NIR images of 100 subjects.
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In this work, we focus on visible-light images taken during daytime only. Two exem-

plary LDHF visible-light images are shown in Figure 3.1, which were taken at 100 and

150 meters, respectively. They have the same image size (i.e., 5184 ˆ 3456 pixels)

but different face sizes (i.e., 220 ˆ 220 pixels for the 100-meter image and 120 ˆ 120

pixels for the 150-meter image on average). The illumination in the LDHF database

can be roughly categorized into three types, such as normal, foggy, and back-lighted.

The two images in Figure 3.1 show how image quality can be affected by the foggy and

the back-lighted environments. Apparently, both face alignment and enhancement tech-

niques are needed before face matching. Furthermore, for cross-distance/environment

facial matching, features contained in the interior face region could be too weak and

additional information such as face contour and partial hair is helpful.

3.2 Proposed TAEF Method

The diagram of the TAEF system is shown in Figure 3.2. At the first stage, approxi-

mate facial landmarks are obtained using cascaded regression in the alignment step and

MSRCR in the enhancement step. The objectives of this stage are two folds: filtering

out unlikely candidates to reduce the size of the candidate pool and providing a better

initialization for further processing. At the second stage, fine-scale alignment, enhance-

ment and matching operations are performed iteratively to reduce the least probable

candidate one by one until the last one is reached.

3.2.1 Coarse-scale Processing

Coarse-scale Alignment (C-Alignment)

Typically, the initial location of the face region is provided by face detection algorithms.

It can be affected by the appearance variation such as poses, expressions and occlusion.

53



Figure 3.2: The system diagram of TAEF.

Figure 3.3: Two exemplary enhanced facial images (from left to right): original images
and images enhanced by MSRCR, histogram equalization, dark channel prior, Laplacian
sharpening and wavelet decomposition.

In this work, we focus on frontal faces with limited facial expression as provided by the

LDHF database as the start point. With this simplified condition, we adopt the Viola-

Jones [157] algorithm as the face detector and obtain an acceptable prediction outcome

for the detected face region.

Most automatic alignment algorithms developed today do not work well in a long

distance environment due to blurring and illumination distortions. Although the test
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image contains a long distance face, the ground truth is a short-distance face of higher

resolution and better quality. Apparently, there is a mismatch between the training and

testing data. To address the mismatch problem, we design a distortion filter that mimics

the long distance effect so as to generate the facial landmarks of synthetic long distance

images. The cascaded regression scheme has to be retrained using the distance-adjusted

data. Besides, we need an initial location for each landmark in the cascaded regression.

To achieve this goal, we conduct Procrustes analysis on all landmarks of images in the

distance-adjusted training set to yield a face model formed by the averaged locations

of landmarks. After the face region bounding box on the test image is generated and

a face model is constructed based on the distance-adjusted training set, we map these

landmarks to their corresponding locations in the test face region to generate initial

landmark locations. Then, given an input face image, we apply the cascaded regression

to reduce the distance between the estimated landmark position and that of the training

data. This process can be written mathematically as follows.

To conduct the cascaded regression, we need initial facial shape and training set of

multiple subjects. The initial facial shape is represented by the coordinates of N initial

facial landmarks in form of S0 “ rx1, y1, ¨ ¨ ¨ , xN , yN s. The training set is denoted by

tpIk, SkquK
k“1, where Ik is the kth subject, Sk is the corresponding landmark-based facial

representation, and K is the total number of training subjects. With these two inputs,

cascaded regression generates a sequence of approximations S1, ¨ ¨ ¨ , St, ¨ ¨ ¨ , ST , where

ST is the converged output. The t-th facial shape is updated based on

St “ St´1 ` RtpI, St´1q, (3.1)

where

Rt “ argmin
R

Kÿ

k“1

||Sk ´ rSt´1
k

` RpIk, St´1
k

qs|| (3.2)
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is learned. R represents a regressor and St´1
k

is the estimated shape produced in the

previous stage. In this work, R is chosen to be a linear regressor since it can handle the

desired task efficiently. To explain the above concept in words, we design a sequence of

regressors, where each regressor is trained based on the difference between the estimated

result from the previous stage, St´1
k

, k “ 1, ¨ ¨ ¨ , K, and the ground truth, Sk. This

iteration process stops when the training error converges. In our work, we adopt multi-

scale HOG features [36] as the input descriptor for regressor’s training. To be more

specific, the large-scale HOG feature is extracted in the beginning stage while only a

small-scale area around each estimated landmark is considered in the later stage.

Furthermore, we regulate the solution at the end of each iteration with two con-

straints. First, we adopt the sketch token feature from [97] as a reference for the face

contour since it offers a reliable edge map using the mid-level feature. It is observed

that the trained sketch token model offers an exceptional result on long distance faces

in the designated region. Second, the estimated landmarks are constrained based on the

face shape with the closest distance, so that no landmarks will deviate from the ground

truth too much because of image quality degradation.

To sum up, the predicted facial landmarks for the kth subject at the end of the t-

th iteration are obtained as the fusion of results from: 1) the predicted result from the

t-th regressor, 2) the output obtained by imposing the sketch-token-based face contour

constraint, and 3) the closest landmark model selected from the training set.

Coarse-scale Enhancement (C-Enhancement)

After getting landmarks from the C-alignment procedure, we attempt to restore the dis-

torted facial color so as to allow robust cross-environment facial matching. We test sev-

eral enhancement algorithms, including histogram equalization, dark channel prior [62],

Laplacian sharpening, wavelet decomposition and MSRCR, and conclude that MSRCR
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Figure 3.4: Comparison of the 150-to-1 meter face matching result with different
enhancement methods: ROC (left) and CMC (right).

provides a superior performance on foggy and back-lighted images. Two examples are

given in Figure 3.3 for subjective visual comparison. The top and bottom original

images in Figure 3.3 are distorted by the foggy and back-lighted conditions, respec-

tively. The goal of enhancement is to remove these environmental factors to allow

cross-environment matching. We see that MSRCR does provide better results against

the original ones.

For objective performance evaluation, we compare the Receiver Operating Char-

acteristic (ROC) curve and the Cumulative Match Characteristic (CMC) curve of the

matching result under different enhancement algorithms in Figure 3.4, where the match-

ing result in this figure is generated using only the coarse-scale alignment/enhancement

and will be detailed in the next subsection. We see from this figure that only MSRCR

can improve the matching performance. It is worthwhile to point out that most image

enhancement algorithms have been developed for white noise removal. The white noise

model is however not suitable in characterizing outdoor distortions. The matching per-

formance is actually worsen by these enhancement algorithms designed for other pur-

poses. In contrast, MSRCR compensates the environment effect with a more suitable

design and, as a result, it can offer better performance over the original one.
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Facial Matching (C-Matching and F-Matching)

The facial matching component appears in both the coarse-scale and the fine-scale pro-

cessing modules, where the same matching method is adopted and described below.

After proper alignment and enhancement, the first step is to extract feature descrip-

tors (e.g. HOG and SIFT) and geometric features (i.e. facial landmarks) in polar coor-

dinates. Polar coordinates are adopted because it can represent relative locations of

aligned landmarks conveniently. Feature descriptors are extracted from two cropped

face regions called the interior face region and the bounded face region, respectively.

Two examples are illustrated in Figure 3.5. The interior face region includes major

facial components up to eyebrows and down to part of chin without ears and hair. The

bounded face region has the whole face including the face contour and partial hair such

as bangs. Since the bounded face region is sensitive to background and hairstyle change,

it is not used in traditional face recognition systems. However, for the cross-distance

and cross-environment face recognition problem, the information contained in the inte-

rior face region could be too little. The additional information contained in the bounded

face region can be helpful, and it is not proper to discard any relevant information due

Figure 3.5: Illustration of interior and bounded face regions.
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Figure 3.6: Performance of the 150-to-1 meter face matching result with different itera-
tions: ROC (left) and CMC (right).

to aggressive cropping. Experiments show that the performance of using information

from both interior and bounded face regions is better than that from only one of them.

Thus, in our implementation, both HOG and SIFT features from the two regions are

used separately as individual classifiers for further processing.

Moreover, both regions share the same Interpupillary Distance (IPD) as 40 pixels.

The number 40 is chosen because it is the average IPD for 150 meter images, and the

cutoff range is decided based on the total average face boundary. The reason to fix

the IPD in both regions is to maintain the resolution alignment since we may generate

distortions during resizing by allowing images of different scales.

After collecting all features from both interior and bounded regions of aligned and

enhanced face images, we can measure the Euclidean distance of feature vectors and

generate rank-order lists from all classifiers. Then, a weighted voting will be used to

pile all classification results into one single rank-ordered list. By gradually eliminating

less probable candidates in various stages, the TAEF system will provide the final ranked

result.
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3.2.2 Fine-scale Processing

An iterative alignment/enhancement filtering process is adopted in this stage. It means

that, after eliminating the least possible candidate from the selection pool through align-

ment, enhancement and matching, features are extracted from re-normalized images

based on remaining images in the pool at the next iteration. This process is described in

detail below.

Sets of probe and gallery images are denoted by P “ tP1, ¨ ¨ ¨ , Pk, ¨ ¨ ¨ , PNp
u

and G “ tG1, ¨ ¨ ¨ , Gk, ¨ ¨ ¨ , GNg
u, where Np and Ng are their sizes. Further-

more, O1, ¨ ¨ ¨ , Ok, ¨ ¨ ¨ , ONp
are candidate pools for probe images P1, ¨ ¨ ¨ , Pk, ¨ ¨ ¨ , PNp

,

respectively. The iterative filtering process consists of two steps at each iteration. First,

probe image Pi is geometrically and photometrically normalized with subjects left in its

candidate pool Oi so that the normalized probe image can be written as

P 1
i

“ �pGj,⇤pGj, Piqq, Gj P Oi, (3.3)

where ⇤ and � are the fine-scale alignment (F-alignment) and enhancement (F-

enhancement) operations, respectively. Afterwards, the new candidate pool is expressed

as

O1
i

“ tOi | Vj • Nvu, (3.4)

where

Vj “
Ncÿ

l“1

wl ¨ Clp lpP 1
i
q, jq (3.5)

is the vote collected from classifiers Cl, l “ 1, ¨ ¨ ¨Nc using feature transform  l and

weighting factor wl, and Nv is a threshold of vote count for the pool.

The same cascaded regression in C-alignment is applied to the probe image in the

F-alignment but with one major difference. That is, it is aligned with each individual
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gallery image Gj in the candidate pool Oi one by one, where the Procrustes analysis is

conducted to derive the transform array. Translation, orthogonal rotation, reflection, and

scale component are all calculated in this process. Furthermore, only reliable landmarks

are selected to reduce the influence from inaccurate landmarks. For example, tips of

eyes and the mouth often have higher steadiness and the nose rim location is difficult to

determine in long distance. With these improvements, the F-alignment, denoted by ⇤ in

Eq. (3.3) can reduce the estimation error based on the improvement in the last iteration.

The F-enhancement process, denoted by � in Eq. (3.3), is needed for photometric

normalization, and it is achieved by region-based histogram matching. In contrast with

the traditional histogram matching method that calculates the histogram of the whole

face, we match histograms of the probe image and each individual gallery image in

face sub-regions segmented by localized landmarks in the F-alignment step so as to

differentiate images in a small candidate pool.

3.3 Experimental Results

3.3.1 Implementation Details

Since the LDHF database has a limited number of daytime gallery images to be used

as training samples, we also include the MUCT database [108], which consists of 3755

images with 76 landmarks and is collected from 276 subjects. However, we only use

25 landmarks out of 76 in the C-alignment training process by focusing on visible land-

marks such as center and edge tips of eyes and mouth in the long distance. The training

set in C-alignment also contains gallery images from LDHF. Each face is manually

labeled with 25 landmarks since the ground truth is not provided with the database. We

simulate three long distance scenarios (contrast change due to long distance, fog and

61



back-lighted) for each gallery image so that the size of the training images is tripled.

This allows the regressor to learn in a cross-environment setting.

In the C-enhancement step, we apply MSRCR to the whole probe image, where

its parameters are decided by the histogram distribution of each probe image. If the

distribution contains a concentrated peak in the dark area, it should be under the back-

lighted condition. If the distribution spans over a broad area, it should be under the

foggy condition. Otherwise, it is under the normal condition. In our experiment, we set

parameters ↵ “ 0.7 and c “ 0.5 in the Laplacian sharpening method and parameters

threshold “ 50 and C “ 2 in the wavelet decomposition method. The enhancement

performance is shown in Figure 3.4, where the verification rate under FAR “ 0.1% is:

12% for dark channel prior, 18% for histogram equalization, 22% for wavelet decom-

position, 32% for Laplacian sharpening, 44% for original and 58% for MSRCR.

In the fine-scale stage, TAEF collects votes from all classifiers to build up a candi-

date pool. We observe that HOG and SIFT features have the ability to select candidates

of high similarity but with low first-rank accuracy. They can be used as the main features

for both interior and bounded face regions, yet they need to be assisted with geometric

features offered by landmarks. As a result, we have six classifiers based on the follow-

ing feature sets: HOG and SIFT from interior and bounded face regions, landmark’s

angle and radius distributions (represented in polar coordinates). The voting mechanism

collects votes from all six classifiers, and the top N candidates that receives most votes

are placed in the initial candidate pool (N “ 5 in the experiment). Then, one candidate

is removed at each iteration until the final one is reached.

3.3.2 Performance Evaluation

We compare curves of ROC and CMC in Figure 3.6 to demonstrate the performance of

the TAEF system. Note that we need a distance table among all candidates to draw ROC
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Table 3.1: Comparison of ROC verification rates for 150-to-1 cross-distance face recog-
nition.

Methods 0.1% FAR 1% FAR 10% FAR

Maeng [102] 93% 99% 100%

Kang [78] 75% 87% 99%

TAEF 97% 99% 100%

and CMC, where the distance table is built based on the received number of votes. A

higher vote number means a closer distance and vice versa, and the distance is weighed

by the iteration number.

We can see the performance improvement in ROC curve as the iteration number

increases. For example, when FAR “ 0.001, TAEF gives a verification rate of 12%,

20%, 45%, 48% and 97% at the 1st, 2nd, 3rd, 4th and 5th. The superior performance

of the TAEF method is also demonstrated by the CMC plot. At the first iteration, the

first rank recognition rate is 51% and it rapidly climbs up to 99% in rank 5. It follows

the same aggregation pattern for later iterations. Its first rank recognition rates are 68%,

81%, 81% and 97% for iteration numbers 2, 3, 4 and 5, respectively.

For performance benchmarking, we selected the work of Maeng et al. [102] and

that of Kang et al. [78]. Note that the former did not provide sufficient details on their

alignment process while the latter relied on a commercial software called FaceVACS,

and manually provided eye locations when the software failed to detect. For these rea-

sons, we can only take the reported data from their papers for the comparison purpose.

We list the ROC verification rates of three methods (TAEF and theirs) for 150-meter

visible-light images in LDHF in Table 3.1. TAEF has the best performance among the

three. Moreover, we test the TAEF method using 60 meter and 100 meter visible-light

images in LDHF, and it gives 100% first rank recognition rate. Thus, TAEF offers the

state-of-the-art performance for the FRAD problem at an outdoor setting.
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We also compare the first rank recognition rate using features from only the inte-

rior or bounded face region or both under the same settings. The results for the 150-

meter visible-light images at first rank are shown in Table 3.2. It is interesting to see

that the performance of the bounded face region alone is better than that of the interior

face region. Since the interior face region is blurred due to the long distance effect, its

extracted features have limited discriminant power. The additional information from the

bounded face region such as the face contour and hairstyle can play an important role

although it is less robust. The TAEF system takes both into account and achieves the

best performance.

Table 3.2: First rank recognition rates for different face regions.

Face region Interior Bounded Both

1st iteration 35% 46% 51%

2nd iteration 49% 54% 68%

3rd iteration 60% 69% 81%

4th iteration 60% 72% 81%

5th iteration 66% 86% 97%

3.3.3 Error Analysis

Among the 100 probe images located at the 150-meter distance, there are three failure

cases for TAEF as shown in Figure 3.7. we show two intermediate processing results of

probe images in the first two columns: the output after C-alignment in the first column

and the final normalized result in the second column. Furthermore, their ground truth

of the 1-meter gallery image is shown in the fourth column while their predicted match

by TAEF is shown in the third column. The ground truth images of these three subjects

from top to bottom rank as No. 2, No. 2, and No. 4, respectively.
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Figure 3.7: Error cases for 150 meter visible-light probe images.

One obvious reason for the error is attributed to the difference of the hair style

between gallery and probe images. For example, for the case in the bottom row, the

hairstyle of the 1-meter gallery ground truth is completely changed in her correspond-

ing 150-meter probe image. Generally speaking, the hairstyle and the chin shape visible

in the bounded face region do contribute positively to the recognition performance. This

case happens to work against this policy.

Another reason is due to other environmental factors such as blurring, which is not

yet considered in the TAEF system. For the first two rows, the interior face regions of

the final output images from the TAEF system are still blurred. The loss of details in

pupils and eye’s shape can mislead HOG and SIFT descriptor classifiers. With these two

blurred probe images, the TAEF system fails to choose the correct one in the last round.
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3.4 Summary

In this chapter, we presented an interesting and practical face recognition problem where

the probe images are located at a distance in an outdoor environment. We discussed

several challenging issues existing in this problem and proposed a solution called the

TAEF method to address them. The TAEF method offers a state-of-the-art solution to

this cross-distance and cross-environment face matching problem during daytime, and

we also offers a solution for a the cross-distance and cross-spectral matching during

nighttime in the next chapter.
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Chapter 4

Cross-Distance Near-Infrared Face

Recognition

In this chapter, we continue to extend our work to a different environment setting, which

is near-infrared (NIR) faces at long distance. An ideal surveillance system should oper-

ate around the clock, including both day and night time. Currently, cameras equipped

with flash lights are used for night time to offer acceptable performance. However, they

are not appropriate for long distance or convert surveillance. As a result, we need to con-

sider other options for night time face recognition. Methods like near infrared (NIR),

shortwave infrared (SWIR), and thermal infrared have been studied in the literatures.

NIR has become popular in recent years for several reasons [194]. First, NIR is not

visible to human eyes, and it is desired to capture face expressions without interrupting

subjects in acquisition. Second, the environmental factor has less impact to NIR when

compared with others. Third, the NIR illuminator can penetrate glasses easily, which

provides additional information if the test subject wears glasses. Generally speaking,

NIR offers a good choice for night time long distance face recognition.

On the other hand, if we desire to directly compare NIR images with photos cap-

tured in visual light (VIS), the comparison could be difficult due to highly distorted

spectrum perception. Furthermore, the long distance environmental effects even cor-

rupt the degraded image. In order to achieve NIR-to-VIS matching, where 1 meter VIS

image is taken as the gallery set and cross-distance NIR images as the probe set, we need

to develop an alternative approach instead of TAEF only, because it is almost infeasible
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to directly apply the same system when NIR sensing has different mechanism compared

to VIS under different distances. As we can see from Figure 4.1, the image quality has

different degradation via long distance under NIR or VIS spectrum.

Figure 4.1: Comparison of VIS and NIR under 1 meter indoor and 150 meter outdoor
environments.

Therefore, it is an urgent step to repair the low quality images before applying the

matching process, because feature descriptors like HOG and SIFT give better perfor-

mance while the testing input has closer image structure similarity to the gallery set.

For example, Maeng et al. [103] proved there is obvious performance degradation

of the matching score if we directly compare NIR with VIS face images without fur-

ther enhancement. Under this observation, we propose a restoration scheme that adopts

Locally Linear Embedding (LLE) [133], which reconstructs low-quality patches from

the mapping between low-quality and high-quality patches. Moreover, we further seg-

ment image into overlapping grids, so that LLE can learn the local region characteristics

within the grid-based structure. In consequence, the restored result helps the recog-

nition system to extract better feature descriptors in the matching process, and it also

demonstrates the strength of LLE’s application on grid-based localized approach.

This chapter is organized as follows. The corresponding work and databases are

introduced in Section 4.1, and experimental result and performance evaluation are pre-

sented in Section 4.3. Finally, we conclude this chapter in Section 4.4.
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4.1 Near-Infrared Face Recognition

Previous works on NIR face recognition can be categorized into two major fields: NIR to

NIR matching (known as intra-spectral matching), NIR to VIS matching (cross-spectral

matching). NIR to NIR matching is commonly taken when NIR images are enrolled

within the gallery dataset, and then the matching process is more focused on the feature

degradation of long distance under the influence of NIR spectrum. However, the obvious

drawback is the situation of having only VIS gallery images whereas the probe images

are all NIR images. Pan et al. [117] applied spectral measurement on multiple facial

tissue types, where subjects were taken at a close distance but with different pose and

expression; Zhao et al. [188] utilized DCT and SVM for the cross-spectral matching,

and other approaches like LBP, ELBP, DBC, Gabor, and Adaboost were adopted and

obtained competitive results in this field [65, 92, 142, 183]. Bourlai [15] also evaluated

cross-distance NIR to NIR matching with CSU face matcher.

For the second category, there are two major directions to handle NIR to VIS match-

ing: correlation learning and face synthesis/reconstruction on pixel level. The cor-

relation learning focuses on establishing the relation between NIR and VIS through

learning strategy, like Yi et al. [179] proposed a canonical correlation analysis (CCA)

based method with PCA; Liao et al. [94] provided another solution with Local Struc-

ture of Normalized Appearance (LSNA) and MB-LBP; Klare et al. [79, 80] presented

a framework by solving nonlinear similarities between NIR and VIS images; Maeng

[102] used DoG-SIFT to build up the relation; Yi et al. [178] also improved their work

with Gabor filter and Restricted Boltzmann Machines (RBM). On the other hand, face

synthesis/reconstruction on pixel level intends to restore low quality images via cross-

spectral learning from two domains. For instance, Chen et al. [25] applied LLE with

LBP for NIR to VIS restoration; Wang et al. [164] proposed the face analogy method

incorporating LoG and checking facial texture patterns from the same region; Zhang et
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Figure 4.2: Illustration of different cropped facial regions (from left to right): interior
VIS face region cropping, bounded VIS face region cropping, 150-meter and 1-meter
NIR face region cropping regions.

al. [186] also presented the model using LBP and sparse representation; Kang et al. [78]

utilized LLE with K-means and augmented heterogeneous face recognition (AHFR) to

solve restoration for NIR face images at long distance. Furthermore, Xu et al. [72]

proposed a cross-spectral joint l0 minimization based dictionary learning with the same

purpose from NIR to VIS.

4.2 Face Restoration From Near-Infrared Environment

4.2.1 Preprocessing

Due to the low signal-to-noise ratio (SNR) of NIR images, we adopt a tighter cropped

facial region for NIR images as shown in Figure 4.2, where the IPD is set to 92 pixels.

This choice not only rules out most background noise but also preserves needed facial

texture. In this pre-processing step, all NIR face images are cropped into the same size

(192 ˆ 240 pixels), where eye locations are automatically detected and aligned using

the technique described in previous chapter.
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Because of very poor NIR image quality at 100 and 150 meters, the Viola-Jones

detector is not as effective as being applied to VIS images. It gives 35 false positive and

5 false negative cases among one hundred 150-meter NIR images. We explore pupil’s

reflection from the NIR illuminator as an auxiliary tool to mark the eye location. With

this extra procedure, we are able to detect all faces on NIR 150 meter images without

any error. For image enhancement, we would like to maintain fidelity without removing

too many details. The 3 ˆ 3 median filter is applied to suppress high frequency noise,

and a simple image contrast adjustment is adopted to enhance the image. The contrast

adjustment is decided based on whole image’s gray-scale histogram distribution. That

is, since the NIR image does not receive sufficient light, we adjust the intensity values

to meet the condition that 1% of data of the whole image is saturated at low and high

intensities.

To partially recover the lost information caused by the long distance and the spectral

difference partially, we need to bridge the gap between 1 meter and 150 meter NIR

images by building their correspondence. Being inspired by the work in [21], we adopt

the LLE method to achieve this goal, which is explained in detail in the next subsection.

4.2.2 Restoration System

The proposed restoration scheme is based on the framework in [78] but with additional

features to boost up the performance. It consists of two stages: 1) the correspondence

building stage and 2) the correspondence finding stage. In the first stage, we build the

correspondence between high quality and low quality patches. In the second stage, we

use the correspondence to reconstruct patches to restore the quality of the probe image.

The operation in the first stage is illustrated in Figure 4.3. We first partition 150-

meter (low quality) and 1-meter (high quality) NIR images in the gallery set into multi-

ple subregions, and extract a large number of patches from each subregion. The pixels of
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low quality and high quality patches are cascaded into a single vector. Then, we use the

tree-structured vector quantization (TSVQ) to cluster vectors separately based on their

source subregion. TSVQ clusters vectors into two groups at each level, and repeat the

same procedure at each group recursively until the desired cluster number is reached.

The centroid of each cluster is called a codeword, and the set of all codewords generated

by the TSVQ is called a codebook (or a dictionary). Thus, we can associate a codebook

with each subregion.

Figure 4.3: The construction of two corresponding codebooks using 150-meter and 1-
meter NIR patches, where low quality (150-meter NIR) and high quality (1-meter NIR)
patches are extracted from the same subregion of the same subject and cascaded into a
vector. TSVQ is used to generate a codebook for each subregion

Mathematically, we use tpGH

k
, GL

k
quK

k“1 to denote the 1 meter and 150 meter NIR

images from the same subject in the gallery set G, where K is the total number of

subjects and superscripts L and H indicate low and high quality images, respectively.

We divide each image into smaller subregions denoted by tDt, t “ 1, 2, ..., T u, and

extract pairs of corresponding patches from the same location,

P k

Dt
“ tp⇡H

i
, ⇡L

i
q, i “ 1, 2, ..., nu,
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where T is the total number of subregions in a facial image and n is the total number of

patches in each subregion.

Figure 4.4: The process of restoring low quality patches using the LLE-based method.
Patches are extracted from the designated subregion. Then, the system inqures the cor-
responding codebook, locates its neighbor patches, and reconstructs the target via LLE.
Finally, the restored face image is resembled by all reconstructed patches.

From manifold learning, the correspondence between two manifolds can be learned

when they possess similar local geometries. Here, we use LLE to learn the relationship

between high quality (1 meter) and low quality (150 meter) patches in each cluster.

Based on the learned relationship, we can reconstruct the 150 meter probe patches in

each subregion and, then, restore the whole image accordingly.

Figure 4.4 demonstrates the restoration procedure. Once a probe image’s patch is

extracted, we can use it to locate the closest cluster, tCL

o
, o “ 1, 2, ..., Ou, in each

subregion through the minimum Euclidean distance, where O indicates the total number

of clusters in each subregion. For a low quality patch denoted by ⇡L

j
, we select its S

nearest neighbor patches of the same cluster and use them to calculate weights tws, s “
1, 2, ..., Su that minimize the following error

"j “ ||⇡L

j
´

ÿ

⇡L
s PNL

j

ws⇡
L

s
||, (4.1)
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where NL

j
denotes the nearest neighbor low quality patches from CL

o
, and ||.|| is the

Euclidean norm.

With weights ws obtained from the above equation, we can use them to reconstruct

the corresponding high quality patch

⇡H

j
“

ÿ

⇡H
s PNH

j

ws⇡
H

s
, (4.2)

where NH

j
is the corresponding nearest neighbor high quality patches from cluster CH

o
.

We should emphasize that CH

o
contains high quality patches in the same geometric loca-

tion of CL

o
, except that they are extracted from 1 meter NIR image of the same sub-

ject. Furthermore, we take the regional background into consideration by averaging the

restored image with the cluster mean image CH

o
in the subregion (e.g., one half from the

restored image and the other half from the cluster mean image). Therefore, the restored

result will be less sensitive if the nearest neighbor patches fail to represent the input

probe patch. Finally, we reassemble patches back to the subregion to restore the whole

facial image. We use overlapping subregions to reduce the blocking effect.

The major difference between VIS and NIR images is image quality. Furthermore,

since there is no large-scale NIR face dataset with labeled landmark annotation, the

performance of NIR facial landmark localization is limited. Here, we replace the C-

alignment and the C-enhancement steps with “integration from face detection and eye

location marking” and “LLE-based image restoration”, respectively. The TAEF sys-

tem will output the final decision for NIR images right after C-matching. There is no

processing needed in the fine-scale stage.
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4.3 Experimental Result

4.3.1 Implementation Details

For the restoration mechanism, we select 48 ˆ 64 as the subregion size and 8 ˆ 8 as

the patch size. They are determined by considering the trade off between restoration

performance and system efficiency. A larger subregion offers higher efficiency but poor

restoration capability, and vice versa. To generate more samples, we allow overlapping

subregions and patches with a quarter of their boundary size. This also allows smoother

transition across the boundaries of subregions and patches. As a result, there are 153

subregions per image and 609 patches per subregion. Since we adopt 10-fold cross-

validation in the dictionary building stage, there are 54,810 patches per grid. We apply

the 8-level TSVQ with 256 clusters per subregion. There are 214 patches per cluster on

the average. In the patch reconstruction phase, we identify the associated cluster for a

long-distance probe patch, choose its five nearest neighbors from the same cluster, and

calculate their weights to approximate the probe one. Then, we use these weights and

their corresponding 1 meter patches to reconstruct the 1 meter patch.

4.3.2 Performance Evaluation

Five pairs of pre-processed (or intermediate) and restored (or final) face images are

shown in Figure 4.5, where intermediate results after the pre-processing step in Sec.

4.2.1 are shown in the first row and the final output images using the LLE-based restora-

tion method are presented in the second row. Clearly, the restored ones give better

visual quality than the pre-processed ones. They have less noise and bear higher sim-

ilarity with the corresponding 1 meter NIR images. Moreover, we compare the visual

appearances of the subregion and global-region restoration schemes in Figure 4.6. Note

that there is no subregion decomposition in the global-region restoration scheme. All
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Figure 4.5: The restoration result of 150 meter NIR images. First and third rows show
the original input images, and their corresponding outputs are listed in second and forth
rows.

collected patches are restored by LLE in one single system. Its result is vulnerable to

local variants. In contrast, the subregion restoration scheme gives significantly better

results because of its ability to preserve local characteristics within each subregion.

Our restoration results are compared with those obtained by Kang et al. [78] in

Figure 4.7. We see from the figure that the local facial textures are better preserved by

our method. For instance, the top subject in Figure 4.7 has sharper and richer eyebrow

shape as compared to the benchmark one. The bottom subject possesses distinct mouth

characteristics such as the lip contour and corner.

With restoration, we are able to boost up the first rank accuracy rate on the 150

meter NIR images from 8% to 52% with the HOG feature, and 62% to 76% with the
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Figure 4.6: Comparison between the 1 meter NIR reference, the 150 meter NIR input,
the input with preprocessing, the output of the global-region restoration, and the output
using subregion restoration.

Figure 4.7: Comparison of restoration results obtained by our method (the last column)
and by the method proposed by Kang et al. [78] (the 3rd column), where the first column
shows the input 150 meter images and the second column shows the 1 meter reference
images.

SIFT feature as illustrated in Figure 4.8. This performance gain demonstrates the ability

of recovering some lost information by restoration. We further apply the C-matching

step of TAEF to obtain weighted votes from HOG and SIFT extracted from the cropped

NIR face region and the interior face region. The proposed TAEF with restoration can
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Figure 4.8: The CMC curves of the restored 150 meter NIR images. The left sub-
figure gives the comparison between subregion restoration, global-region restoration,
pre-processed and original images (as illustrated in Figure 4.6) using the HOG feature
while the right one uses the SIFT feature.

achieve 45% verification rate at 0.1% FAR for 150 meter NIR images, which outper-

forms Kang’s system by 8% under the same distance. We show the comparison in Table

4.1 with other state-of-the-art methods.

4.3.3 Deep Learning

Deep learning is a popular tool in computer vision applications nowadays. However, due

to the limited size of the LDHF dataset, it is difficult to train an effective deep network

in our current context. We should emphasize that there is only one image for each

subject under the same distance in this dataset, and the correspondence between images

of each subject at various distances is fixed. The same data augmentation technique (e.g.,

rotation, mirroring or random sampling) has to be applied to both the input and output

image pairs simultaneously. As a result, the technique does not offer more discriminant

power among subjects.

On the other hand, several image processing (denoising, inpainting, and super-

resolution) problems have been solved by the deep learning technology. In this sub-

section, we examine the application of deep learning to NIR image restoration.
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Table 4.1: Comparison of ROC verification rates for 150-to-1 meter NIR-to-VIS face
recognition.

Methods 0.1% FAR 1% FAR 10% FAR
Maeng [102] 6% 20% 56%

DWT-SVD [113] 29% 29% 64%
DWT-PCA [113] 36% 39% 68%

Kang [78] 37% 62% 92%
Local Restored 45% 72% 95%

SRCNN [42] 49% 65% 93%
Local Restored + SRCNN 49% 75% 97%

The super-resolution convolutional neural network (SRCNN) was proposed in [42]

to learn the mapping between low- and high-resolution images. Here, we use it as

another benchmark for image restoration. We adopt the same network architecture in

[42] except changing the first layer’s filter size from 9 ˆ 9 to 7 ˆ 7 to fit the input

image size of our problem better. The restoration relation between low- and high-quality

images is learned from training samples. Besides local restored LLE and SRCNN, we

conduct experiments by cascading LLE and SRCNN (namely, applying SRCNN to the

restored LLE’s output). We compare the retored images obtained by the three methods in

the left side of Figure 4.9. We see that images restored by the SRCNN are smoother and

sometimes blurred with sufficient details. We also compare the CMC curves of the three

methods in Figure 4.9. As shown in the figure, the CMC performance of the SRCNN is

worst among the three. The local restored LLE method and the cascaded method have

comparable performance. The cascaded method provides slightly better performance

because the SRCNN method can improve the image quality based on restored images.

Finally, we compare the ROC verification rates of several methods in Table 4.1.

Although the SRCNN method outperforms the local restored LLE method by 4% at the

0.1% FAR, it does not perform well on 1% FAR and 10% FAR. Overall, the cascaded

method provides the best performance among all benchmarking methods in Figure 4.9

and Table 4.1.
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Figure 4.9: Left: Exemplary restored images obtained by the local restored LLE method,
the SRCNN method, and the local restored LLE followed by the SRCNN. Right: The
CMC curves of the three methods.

4.3.4 Error Analysis

We examine the error cases for NIR images in this subsection. We show several of

them in Figure 4.10. The pre-processed image, the restored output, the predicted match

and the ground truth are displayed in order along each row. The hair style difference

between the gallery and the probe images plays an important factor. For instance, the

subject in the first row has a smaller fringe in the probe image which is similar to the

gallery one. Furthermore, blurred NIR images may lead to different gradients/contours

that may confuse the classifier. As compared with the VIS case, NIR image quality

degradation is much more significant and serious.

4.4 Summary

we presented a restoration system for cross-spectral face matching problem. The pro-

posed restoration system can restore the NIR cross-distance probe image via learning

the modality gap between VIS and NIR face images. In addition, given 1 meter and 150
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Figure 4.10: Error cases of 150 meter NIR probe images (from left to right): the original
input after preprocessing, the restored output, the final matching result, and the ground
truth.

meter corresponding NIR images, each subregion has its own LLE model to recover

high-quality patches, which later become parts of the restored image. The effectiveness

of the solution is demonstrated by higher accuracy rates.

The main issue in the FRAD problem is the lacking of a large long distance face

dataset. It is critical to build such a dataset for further research advancement along

this direction. Also, the convolutional neural network (CNN) has been tested in short-

distance facial recognition problems and reported to have an impressive performance
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gain. It will be interesting to try the CNN solution if a large labeled long distance facial

image dataset is available.
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Chapter 5

Age/Gender Classification with Neural

Networks

5.1 Introduction

The Convolutional Neural Network (CNN) is a powerful machine learning tool in com-

puter vision. There have been numerous research activities on the application of the

CNN to object detection, recognition and semantic segmentation, etc. Yet, recognizing

human age/gender attributes using the CNN remains to be an interesting problem for fur-

ther exploration. The automatic human age/gender classification technology finds many

real world applications such as target advertisement, demographics analysis, visual

surveillance, etc. Here, we explore the use of the CNN for age/gender classification

based on human facial data.

Traditional facial image datasets with age/gender attributes were built in a controlled

indoor environment. There exists a gap between the collected datasets and the uncon-

trolled environment in real world applications. In a practical scenario, facial variations

exist due to image quality degradation, face poses, and occlusions. Thus, the attribute

classification models trained by traditional datasets do not perform well in real world

applications. There are new datasets built recently to narrow down the gap such as the

Adience dataset [43]. The Adience dataset was built in 2014 for face-based age/gender

classification in an unconstrained environment. It is one of the most challenging dataset

in this field. We select the training/testing data from the Adience dataset in this work.
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To achieve human age/gender classification from their facial image data, we present

a novel CNN solution that contains two types of neural networks – the whole face net-

work and the facial component networks, which provide the whole and component facial

information, respectively. For this reason, we call the network solution as the Whole-

Component CNN (WC-CNN) system. The proposed WC-CNN system consists of four

building modules: 1) the face and facial components localization module, 2) the whole

face network (or the global network), 3) the facial component networks (or the local net-

works), and 4) the final classification module using confidence analysis. Each module

is designated with different functionalities.

The localization module takes care of all preprocessing tasks, such as face detec-

tion and facial landmark localization. The goal is to localize faces and their compo-

nent regions. The whole face network and the facial component networks are trained

separately with extracted patches for age/gender classification. We use the whole face

network as the primary classifier to yield the initial classification result. Afterwards,

confidence analysis is used to evaluate the confidence score of the initial decision. We

accept its decision if the confidence score is high. Otherwise, the system will make

a final decision by considering the outputs from both the global and local networks

jointly. The proposed WC-CNN solution achieves the state-of-the-art performance for

age/gender classification against the challenging Adience dataset.

The rest of this chapter is organized as follows. The related previous work is

reviewed in Section 5.2. The proposed WC-CNN system is presented in Section 5.3.

The experimental results of the WC-CNN system applied to the Adience dataset are

shown in Section 5.4. Finally, concluding remarks are given in Section 5.5.
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5.2 Review of Previous Work

Gender recognition is clearly a classification problem. On the other hand, age recogni-

tion can be formulated as either an estimation or a classification problem. That is, some

researchers attempt to find the exact age via regression while others divide the entire age

range into multiple intervals and treat it as a classification problem. Given human facial

images, quite a few classic methods were proposed for age/gender recognition with-

out the neural network technology. They were extensively discussed in several survey

papers, e.g., [46, 59, 104, 130]. We will have a brief review on this subject.

5.2.1 Age/Gender Datasets

There are a few popular age/gender datasets built under controlled indoor environment.

Examples include the FERET [125], FG-NET [1], MORPH I, and MORPH II [131]

datasets. The experiments in most recently published papers were conducted on these

datasets. However, these datasets have limited variations in terms of facial poses, expres-

sions and occlusions. They do not meet the need of practical real world applications.

The Adience dataset [43] was constructed to narrow the gap between experimen-

tal and practical applications. It was built from raw photos uploaded by smart phones

without further processing, and the collected images cover a wide range of scenarios. A

benchmark algorithm was proposed by Eidinger et al. in [43]. It is the dropout support

vector machines (dropout-SVM), where the SVM classifier is trained using a dropout

strategy to avoid overfitting. Levi and Hassner [89] demonstrated the effectiveness of

the CNN solution with respect to the Adience dataset. Here, we propose a new CNN-

based solution that outperforms the two previous methods described in [43] and [89]

agaist the Adience dataset. Niu et al. [112] released a new dataset that focuses on Asian

faces in 2016. It contains more than 160 thousand images. However, the collected faces

85



are all near frontal. Thus, it does not fit our interest under the criterion of being captured

in an uncontrolled environment.

5.2.2 Features-based Methods

Early age determination methods were built upon facial features extracted from various

geometric distances [86]. Then, models were constructed using extracted features to

estimate and classify subjects into different age groups [128]. These methods highly

depend on landmark localization. However, since there was no mature alignment tech-

nique to provide accurate distance measure, the recognition performance was low at

that time. The aging process was treated as a subspace or manifold in [49, 56] with an

objective to learn the correspondence between different age stages of the same subject.

Then, one may model a high dimensional image space with a low dimensional feature

space. Nevertheless, this approach has a drawback; namely, the manifold structure of

aging facial appearances may not be consistent among different subjects.

For gender classification, the neural-network-based solution was applied to a small

set of frontal face images in [52]. The 3D head structure with image intensity values

were also examined in [115]. Other gender classification methods directly applied the

SVM [109] and AdaBoost [7] classifiers to image intensity values.

Generally speaking, for age/gender classification, one common strategy in tradi-

tional methods is to extract local features to represent the face image and then apply

a machine learning technique for the classification task. Several popular features and

classifiers have been combined to develop a total solution. Examples include the Gabor

image features with the Fuzzy-LDA classifier in [47], the biologically insepired features

(BIF) with manifold-learning in [175], the local binary patterns (LBP) with the support

vector regression (SVR) in [27], etc. Some features are particularly powerful for gen-

der classificion, e.g., the Webers local texture features [154] and the shape and texture
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features [121]. More recently, Liu et al. [98] proposed a multistage learning system,

called the Grouping Estimation Fusion (GEF), by fusing multiple decisions obtained

from several age grouping methods and several global and local features such as BIF,

HOG and LBP. This work obtained impressive age estimation results on the FG-NET

and MORPH II datasets.

5.2.3 Components-based Methods

A comparison study between the whole-face-based and the component-based face

recognition approaches was conducted in [63], and the whole-face-based approach was

shown to give better performance. On the other hand, recent studies in [14, 45, 58]

demonstrated that the component-based approach can provide an auxiliary tool to aid

the whole-face-based approach in face detection, alignment, and recognition.

For age/gender classification, Han et al. [59] proposed a hierarchical age estima-

tion method by applying the BIF features and the SVM classifier to facial components.

However, the performance was limited by inaccurate facial localizations and weak fea-

ture discrimination. The component-based idea was also exploited by the CNN-based

solution. For example, the DeepID [151] extracted features from different face regions

to form complementary facial representations.

5.2.4 CNN-based Methods

Researchers applied the CNN to the age estimation problem in recent years. Yi et al.

[177] used a subset of the MORPH II dataset to train a shallow CNN that consists of only

one convolutional layer. Wang et al. [168] adopted the CNN as a feature extraction tool,

yet did not utilize its strength fully. Furthermore, Niu et al. [112] proposed a multiple

output CNN with ordinal regression to achieve end-to-end learning. The results reported
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Figure 5.1: The diagram of the proposed WC-CNN system. Frist, the facial component
localization module extract the whole face and local component regions from an input
image. Then, we train the whole face network and the facial component networks with
extracted whole face and local component regions, respectively. In the testing stage, we
feed the corresponding regions into these two networks. Finally, if the decision from the
whole-face network has a high confidence score, we accept this decision. Otherwise,
the system will make a decision by combining results from both the whole face and the
component networks.

in all these papers do not surpass the mean absolute errors (MAE) result reported in [98]

on the MORPH II dataset.

5.3 Whole-Component CNN (WC-CNN) Method

The proposed whole-component CNN (WC-CNN) method is composed by four major

modules: 1) the face and facial components localization module, 2) the whole face

network, 3) the facial component networks, and 4) the final classification module. Those

four modules are depicted in Fig. 5.1 below.

The WC-CNN method applies the face detection and facial landmark localization

techniques to input images to extract the whole face and the facial component regions in

the first module as discussed in Sec. 5.3.1. For the second and third modules, we train
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the whole face network and facial component networks using the extracted regions,

respectively, in the training stage. We feed the extracted whole face and facial compo-

nent regions into their respective networks in the testing stage. These two modules are

detailed in Sec. 5.3.2. For the fourth module, we conduct confidence analysis on the

initial decision obtained by the whole face network. This is achieved by analyzing the

angle between a particular sample and the anchor vector of the network, which will be

elaborated in Sec. 5.3.3. If the confidence score is high, we simply accept the decision.

If the confidence score is low, the system will generate a final decision based on results

from both the whole face and facial component networks.

5.3.1 Face and Facial Component Localization

.

This module serves two main purposes: 1) to locate face region and 2) to detect

facial landmarks and identify facial component regions. Its outputs will be the whole

face region and the facial component regions. In the implementation, we adopt the

AlexNet [82] fine-tuned by the AFLW dataset [81] as the face detector for better face

detection performance. The original AlexNet was trained for the classification problem.

We change the fully-connected layers into the convolutional layers by reshaping layer

parameters so that the network output is a heat map that marks potential face locations.

We use the heat map followed by non-maximal suppression to detect faces. The detec-

tion accuracy of this method applied to the Adience dataset reaches 97.5%. For the

undetected faces, we follow the default setting of the Adience dataset by claiming that

the face is located at the image center.

Afterwards, the facial landmark localization algorithm is applied to the detected face

region. To obtain accurate localization, we re-train the VGG Face in [119] with facial

landmarks from the AFLW dataset. Generating accurate facial landmarks demands more
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detailed information on the face. This justifies the use of the VGG Face, which is a deep

network and able to provide richer features. When faces are successfully detected, we

can use facial landmarks to generate four facial component regions: left and right eyes,

nose and mouth. The sizes of facial components can vary because of different postures

or expressions. Thus, it is critical to apply a normalization procedure to these detected

regions before feeding them to CNNs in the testing stage. We resize component regions

according to their corresponding averaged sizes in each category. For instance, the left

eye region will be normalized to the averaged size of all left eye regions in the training

set.

5.3.2 Whole Face and Facial Component Networks

We present the architectures of the whole face network and the facial component net-

works and discuss their training in this subsection.

As shown in Fig. 5.2, the whole face network is composed by three convolutional

and two fully-connected layers. Each convolutional layer is followed by the Rectified

Linear Unit (ReLU), the max pooling operation, and the local response normalization

(LRN) operation with an exception in the last convolutional layer which does not need

the LRN. Its parameter setting is similar to that of the AlexNet. The number of layers

and the number of filters per layer are determined by the classification numbers in the

Adience dataset – eight age groups two gender categories with a total of 16 classes.

Because of the low output dimensions, the small CNN fits our need while it is easier to

train. Each fully-connected layer is followed by a ReLU and a dropout layer. Finally, a

softmax operation is conducted and the training loss is calculated.

We consider four facial components: the left eye, the right eye, the nose and the

mouth. They serve as the inputs to the facial component networks as shown in Fig.

5.3. The major difference between the whole face and the facial component networks
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Figure 5.2: The architecture of the whole face network.

is the number of layers. The former requires three convolutional layers and two fully-

connected layers while the latter only requires two convolutional layers and one fully-

connected layer. Since the component region is smaller, it requires a simpler network.

It will be shown in the section of experiments that the facial component network with

two convolutional layers has almost the same verification accuracy as that with three

convolutional layers.

Figure 5.3: The architecture of the facial component network.

As to network initialization, we adopt the K-means clustering method to initialize

the filter weights [28] to speed up the training time. If there is a cluster that contains few

training samples, we can either reinitialize it with a random sample or just drop it. Both

are proven to be effective.
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5.3.3 Confidence Analysis

We first combine the whole-face and the facial component networks into one connected

network as shown in Fig. 5.4, where all facial components networks and the whole face

network is depicted from left to right. Each network has its own input data and layers.

Their outputs are concatenated to form a softmax loss vector. Then, we can conduct the

end-to-end training for the full system. However, the overall classification accuracy of

this integrated system is better than the whole face network only by 1-2%. This small

gain is probably due to the redundancy of the whole-face and the facial component

networks. They share overlapping input regions while conflicting decisions cannot be

properly resolved by the limited number of training samples.

Figure 5.4: The integration of the whole-face and the facial component networks. Each
network has its own input while the outputs of all networks are concatenated to form a
softmax loss vector.

As an alternative, we use the whole face network as the primary classifier to yield

an initial classification result. Confidence analysis is then conducted to evaluate the

confidence score of the initial decision. We accept its decision if the confidence score is
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high. Otherwise, the system will make a final decision by considering the outputs from

both the global and local networks jointly.

Our confidence analysis is built upon the “REctified-COrrelations on a Sphere”

(RECOS) model proposed in [84]. The anchor vector refers to a set of filter weights

associated with the same output node since it serves as a reference signal (or a visual

pattern) in the testing stage. The convolution operation can be viewed as the signal

correlation or projection onto a set of anchor vectors, and we can check the similarity

between vectors by examining their correlation. A RECOS model is given in Fig. 5.5 to

illustrate the confidence analysis. The RECOS model is a origin-centered unit sphere,

and the dots on sphere’s surface at the last layer of a CNN are projected samples’ output

vectors (anchors). If there are K decision classes, they form K clusters and each anchor

points to the centroid location of each cluster. For a given decision, we calculate the dis-

tance between the decision vector and the anchor. If the distance is smaller (or larger),

the decision is more (or less) confident.

In addition, in order to determine the confidence threshold within each decision

class without handcrafting, we apply K-means clustering in each decision cluster. The

cluster with the shortest geodesic distance between its centroid and the decision vector

is labeled as the group with high confidence score. Other clusters’ decisions are then

classified as the low confidence score group.

For low confidence decisions, we adopt random forest classifiers [19] to train fea-

tures from the fully-connected layer in facial component networks, thus we can obtain

more subtle information from component patches.

In the testing stage, we identify the confidence score from a test image. If the deci-

sion by the whole-face network is of low confidence, we will evaluate the test image by

the facial component networks and then apply the trained random forest models to form

weighted votes as the final result.
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Figure 5.5: Illustration of confidence analysis using the anchor vector, where scattered
dots on the sphere represent projected decision vectors from network’s outputs.

5.4 Experimental Results

In this section, we first describe implementation details and then compare the perfor-

mance the proposed WC-CNN with that of other age/gender classification methods.

5.4.1 Implementation Details

The experiment is conducted on the Adience dataset [43], which is designed for

age/gender classification in an unconstrained environment. The Adience dataset con-

tains 19,487 images of 2,284 subjects with 8 age groups: 0-2, 4-6, 8-13, 15-20, 25-32,

38-43, 48-53 and 60-. Most age groups have around one to two thousand images except

for two senior groups (only around eight hundred images each), and the 25-32 group

(about five thousand images).

For the network parameter, we adopt the same setting as the Alex-Net in the kernel

size, the filter number and the stride number. For the whole face network, the input data

dimension is 250ˆ250 with three channels. The input data size for the facial component

networks are listed are: eyes - 150ˆ50ˆ3, nose - 65ˆ125ˆ3, and mouth - 150ˆ75ˆ3.
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Figure 5.6: The verification accuracy versus training iterations for the facial component
network, which shows that network with two convolutional layers can achieve a similar
accuracy rate with the network with three convolutional layers on all facial components.

Fig. 5.6 shows that we only need two convolutional layers to reach similar per-

formance with that with three. This figure is measured and compared based on the

verification set from one test fold of the Adience dataset.

For the training, the batch size is set to 50, the momentum and weight decay are set

to 0.9 and 0.0005, respectively. The learning rate starts at 0.001 and, then, it is decreased

by a factor of 10 every 40 epochs. In total, it decreases three times before the learning

stops after 200 epochs. It takes approximately two hours on GPU Titan X for the whole

face network and one hour or less for the facial component networks.

5.4.2 Performance Evaluation

We follow the predefined five-fold subject-exclusive cross-validation protocol of the

Adience dataset [43] to evaluate the performance of age/gender classification. Table 5.1
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lists the accuracy rates of all five testing folds for age classification categorized by the

confidence score. The rows of the table represent five folds from the testing set. The

first and third columns show the percentage of testing samples are classified as high

confidence and low confidence, respectively. Since the whole face network is confident

about its result in the high confidence decisions, it is reasonable to have higher accuracy

rate. Fourth and fifth columns are used to demonstrate the performance gap of having

weighted votes from the facial component networks. We observe that there are different

degree of performance improvement in test folds depending on their difficult cases.

Since both confidence groups have different testing samples in different folds, which

affects the final decision’s accuracy rate after we combine them together as the final

result. We compare the proposed WC-CNN system with other methods against the Adi-

ence dataset in Table 5.2. The first column represents the age classification result with

the first rank accuracy rate, and the second column shows the accuracy rate covering

the adjacent age groups with one group distance, namely “1-off” prediction. The third

column demonstrates that our proposed system also works well on gender classifica-

tion problem, obtaining similar performance gain with age classification. As shown in

this table, the WC-CNN offers the state-of-the-art performance in both age and gender

classification.

Table 5.1: The age classification results on the five-fold cross validation testing set.
Testing set samples are divided into two groups according to their confidence score.
Each group has its sample number percentage and the corresponding accuracy rate.

High Confidence Score Group Low Confidence Score Group
Percentage of Testing Set Accuracy Rate Percentage of Testing Set Accuracy Rate without Component Accuracy Rate with Component

Test Fold 0 48.87% 72.60% 51.13% 48.31% 56.37%
Test Fold 1 40.22% 50.03% 59.78% 38.38% 39.84%
Test Fold 2 49.56% 69.67% 50.44% 43.55% 46.97%
Test Fold 3 40.72% 57.21% 59.28% 37.65% 38.23%
Test Fold 4 43.17% 64.15% 56.83% 41.06% 47.64%

We compare the proposed WC-CNN system with other methods against the Adi-

ence dataset in Table 5.2. The first column represents the age classification result with
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the first rank accuracy rate, and the second column shows the accuracy rate covering

the adjacent age groups with one group distance, namely “1-off” prediction. The third

column demonstrates that our proposed system also works well on gender classifica-

tion problem, obtaining similar performance gain with age classification. As shown in

this table, the WC-CNN offers the state-of-the-art performance in both age and gender

classification.

Table 5.2: Age/gender classification result on Adience dataset. We compare our work
with other works under three categories: age classification with exact match to the
ground truth, age group matching up to one adjancent age group (could be one group
younger or older), and the exact match of gender classification.

Methods Age (Exact) Age (1-off) Gender
Eidlinger [43] 45.1 ˘ 2.6 79.5 ˘ 1.4 77.8 ˘ 1.3
Levi [89] 50.7 ˘ 5.1 84.7 ˘ 2.2 86.8 ˘ 1.4
Ours 54.3 ˘ 3.5 87.6 ˘ 1.9 89.6 ˘ 1.3

5.4.3 Error Analysis

In order to find out the performance bottleneck of our solution, we dig into the mis-

classification cases for error analysis. There are two major reasons: 1) misalignment in

facial component localization, and 2) data constraints in the Adience dataset such as low

image resolution, occlusion or heavy makeup. In addition, the data characteristics has a

great impact on the age/gender classification. For instance, the performance of gender

classification is poor on baby images, since it is even a challenging task for humans to

distinguish the gender of a baby. For age classification, groups of higher variations are

more difficult for WC-CNN to classify. Age groups such as teenagers or people in their

40s have lower accuracy rates as compared with other age groups.
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5.5 Conclusion and Future Work

The WC-CNN method, which incorporates the whole face and the facial component

networks, was proposed for age/gender classification. The proposed scheme contains

relatively simple CNN architectures which is easy to train and test. It is suitable for the

implementation in embedded systems with limited resources. Even with the proposed

solution, age/gender classification in an unconstrained environment remains to be an

open and challenging problem. There is still room for further improvement as the future

work. For example, it is desired to take care those difficult cases as mentioned at the end

of Sec. 5.4.3.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Three major tasks were accomplished in this thesis research.

First, we examined and verified the performance of the TAEF system on LDHF

dataset with cross-distance and cross-spectral conditions. The TAEF is composed by

two stages: coarse-scale processing and fine-scale processing. In the coarse-scale stage,

a quick scan-through procedure of face alignment, enhancement and matching is exe-

cuted on all gallery images, so a new candidate pool is established for eliminating most

unlikely candidates. Therefore, the overall efficiency is improved by checking the con-

fined list within the pool only. In the fine-scale stage, the procedure is further conducted

into more detailed alignment and enhancement by pair-wise reference. For example,

each individual pair in the candidate pool has its own alignment/enhancement process,

thus the comparison between different candidates at the matching step will have the

maximum inter-distance. The results demonstrated TAEF’s superior verification rate

and its ability to adapt cross-distance VIS environment.

Next, since the TAEF system cannot provide competitive results with the NIR image

as the input, we presented a restoration system for the cross-spectral matching problem.

The proposed restoration system can restore the NIR cross-distance probe image via

learning the modality gap between VIS and NIR face images. In addition, given 1 meter
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and 150 meter corresponding NIR images, each grid has its own LLE to recover high-

quality patches, which later become parts of the restored image. We show the effective-

ness of the system by proving the improvement of the accuracy rate over images after

preprocessing. The proposed TAEF with the restoration system was evaluated under

cross-distance and cross-spectral face matching, and our experimental results demon-

strated the proposed method achieves competitive performance compared to other base-

lines.

Finally, we proposed a CNN-based system to solve the human age/gender classifi-

cation problem. The system consists of four building modules: 1) the face and facial

components localization module, 2) the whole face network, 3) the facial component

networks, and 4) the final classification module assisted by the confidence analysis. The

localization module is used to localize the face and its component regions. The whole

face network is used as the primary classifier to yield the initial classification result. An

confidence analysis is conducted to evaluate the confidence level of the initial decision.

If the confidence level is high, we accept its decision. If the confidence level is low,

the system will make a final decision by considering the outputs from the whole face

network and the component networks jointly.

6.2 Future Work

There are several possible extensions of the research presented in this dissertation.

6.2.1 Building Larger Face Datasets

As compared with other face recognition datasets, the size and the variety of the exist-

ing long distance face recognition dataset are still very limited. For instance, the

LDHF dataset contains only one hundred subjects with cross-spectral and cross-distance
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images, which is relatively small comparing to other state-of-the-art face datasets like

well-known Labeled Faces in the Wild (LFW) or newly built Labeled Wikipedia Faces

(LWF) datasets. LFW contains 13233 images with 5749 subjects, and LWF has 8500

images from 1500 identities. Comparing to those large volume datasets, it is impor-

tant to build a larger dataset in the research community to facilitate future research and

development work along this line. Furthermore, it is worthwhile to build a novel dataset

contained with cross-distance videos instead of images. In this way, the recorded sub-

jects are no longer bounded to certain distances, which increases the flexibility and

applicability of the experiment. The number of subjects in this dataset should be larger

than LDHF, providing a competitive choice among other collections. Furthermore, to

reduce the distance between our experiment and practical usage, it is necessary to con-

sider some degree of expression, pose, and occlusion into further improvement. Similar

to LFW, the established dataset should be inclusive of all unconstrained environment

scenarios. In this way, it can significantly bridge the gap between experiments and

practical situations and fill the hole of current major researches in unconstrained face

recognition, which have not taken cross-distance and cross-spectral into consideration.

6.2.2 Novel Face Recognition Techniques Based on Features and

Raw Data

There are two main face recognition approaches nowadays; namely, the traditional

feature-based approach and the modern CNN-based approach. The former can be used

if the number of training samples is small. The latter can be used if the number of train-

ing samples is large. For the traditional feature-based approach, one can develop face

feature descriptors such as SIFT or HOG from a small set of training samples for the

matching purpose. However, these descriptors perform poorly when the image quality

is degraded due to cross-distance and cross-spectral effects. For the modern CNN-based
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approach, we need a large number of labeled training samples, which may impose some

challenges when the size of the training dataset is small. It will be interesting to take

the strengths of both approaches and consider a joint approach. A recognition system

can first learn from a small training dataset using features. Then, when the size of the

training data grows, we can gradually switch to the data-driven learning method such as

the CNN-based methodology.
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