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Abstract
In this Ph.D. dissertation, we discuss several graph-based algorithms for transform coding

in image and video compression applications. Graphs are generic data structures that are
useful in representing signals in various applications. Di�erent from the classic transforms
such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), graphs
can represent signals on irregular and high dimensional domains, e.g. social networks, sensor
networks. For regular signals such as images and videos, graphs can adapt to local charac-
teristics such as edges and therefore provide more flexibility than conventional transforms. A
frequency interpretation for signal on graphs can be derived using the Graph Fourier Trans-
form (GFT). By properly adjusting the graph structure, e.g. connectivity and weights, based
on signal characteristics, the GFT can provide compact representations even for signals with
discontinuities. However, the GFT has high implementation complexity, making it less ap-
plicable in signals of large size, e.g. video sequences. In our work, we develop a transform
coding scheme based on a low complexity lifting transform on graph. More specifically,
we focus on two important problems in the design of a lifting transform, namely, the design
of bipartition and the bipartite graph approximation. The two parts are optimized in terms
of energy compaction for Gaussian Markov Random Field (GMRF), which has been widely
utilized in modeling the statistics of image data.

As application, we consider two types of multimedia signals, including both regular and
irregularly distributed signals. Among the first type of signal, we consider the compression of
intra-predicted video residuals, which is regular with pixels residing on the 2D grid. However,
these signals contain significant edge structures, which cannot be e�ciently represented with
existing transform coding standards. With the proposed graph lifting transform based on
local edges, we demonstrate significant gains as compared to the state of the art DCT based
coding, with comparable performance to that achieved by the high complexity GFT. We
also discuss di�erent types of edge models for video residuals and propose a new model for
ramp edges, which shows promising results in GFT, as compared to the conventional step
edge model. As a second type of signal, we propose a coding scheme for non-demosaicked
light field images. Similar to the traditional digital camera, a light field camera captures
color information using a photo sensor embedded with a color filter array (CFA). On the
captured image, each pixel contains one single color component (out of R,G, and B) which
are distributed based on Bayer pattern. However, through the conversion to an array of
sub-aperture images, which is a representation commonly used for light field processing and
display, the distribution of Bayer pattern no longer holds and pixels of each color component
are distributed irregularly in space. In order to compress such data, a conventional scheme
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using DCT requires demosaicking during conversion, which highly increases the amount of
data for coding. With a graph based approach, the original signal can be e�ciently encoded
without any pre-processing step, avoiding the redundancies introduced by demosaicking.
We also discuss an intra-prediction algorithm and optimal graph construction for irregularly
spaced pixels. The results using the proposed scheme with graph based lifting transform show
huge gains in compression as compared to DCT based coding in high bit rates, which are
critical for archival scenario and instant camera storage.
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Chapter 1

Introduction

A graph is a data structure that consists of a set of nodes (or vertices) connected by links
(or edges). Graphs provide natural representations for data in many modern fields such a
sensor network and social network, where data samples are distributed irregularly in high
dimensional space, and also for traditional regular signals such as audio and images. In an
image, each data point or data patch, e.g., pixel and pixel patch, can be denoted as a node,
and a graph signal is a function associated to each node, e.g., pixel intensity. A link can be
weighted with a value defined according to the similarity between the two nodes connected.
The definition of similarity depends on the application. For example, in social networks, two
nodes (users) can be considered similar, and thus have large link weight between them, if the
users reside in the same city or have mutual friends. In images, two nodes (pixels) can be
considered similar if the geometric distance between them is small and/or if the pixels have
similar intensity values. In the last decade, there has been a growing interest in generalizing
the commonly used theories and algorithms that were first developed for traditional signal
processing to signals on graphs. Some of these techniques include de-noising, filtering,
clustering and compression. In this thesis, we will discuss the problem of compression for
data defined on graphs. Specifically, we will be focusing on applications for image and video
compression.

Transform coding techniques including those based on the Discrete Cosine Transform
(DCT) and Discrete Wavelet Transform (DWT) are widely used nowadays for multimedia
compression. These methods exploit the redundancies within smooth signals, projecting
signals onto a frequency domain in which they have compact representation. However, these
transforms are limited to signals on regular 1D and 2D grids. Moreover, the transforms
are designed based on a stationary assumption of signal statistics. In order to represent
data with locally variable characteristics and on defined irregular domains, researchers have
proposed the Graph Fourier Transform (GFT). Similar to DCT, frequency interpretation for
signals on graphs can be derived with GFT. By properly designing link weights based on
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signal characteristics, structures such as image edges, which are represented by relatively high
frequencies in conventional transforms, can be coded with fairly low bit rate.

However, the GFT is a global transform and requires high complexity in implementation.
Hence it is di�cult to apply it for large data or in applications such as video coding, where
complexity is of significant concern. In this dissertation, we develop a low complexity
graph based transform using the lifting scheme. The lifting scheme is a technique to obtain
multi-resolution signal representation and is composed of three building blocks, namely,
bipartition, prediction, and update. In bipartition, nodes of the input graph signal are split
into an update set and a prediction set. Then, signal in the prediction set is predicted from
the update set, resulting in prediction residuals stored as high frequency coe�cients. Next,
the signal in update set is updated using the filtered prediction residuals, giving rise to the
smooth approximation stored as low frequency coe�cients. In predicting (updating) the
prediction (update) set, only the signal in the opposite set will be utilized, i.e. only the
weights (similarities) on links connecting nodes in di�erent sets are exploited. Therefore,
the prediction and update processes for a graph signal can be seen as processes applied on
an approximated bipartite graph with only links connecting a node in prediction (update)
set to a node in update (prediction) set. Transforms implemented with the lifting scheme
are guaranteed to be invertible regardless of the the design of the three building blocks, and
therefore provide lots of flexibility in design. In order to address the complexity concern in
the GFT, in this thesis, we design the prediction and update filters to be localized, and focus
on two problems:

1. How to design proper bipartition in lifting;
2. How to construct a bipartite approximation for a graph given the vertex bipartition

in order to improve coding e�ciency, given the use of localized prediction and update filters.
As an application, we will discuss the application of the proposed graph based lifting

transform in both regular and irregular multimedia signals. As an example of regular signals,
we consider the compression of intra-predicted video residuals, where graphs are designed
based on edge structure within data. We also describe a hybrid coding scheme that provides
optimized transform selection according to coding e�ciency. As for irregular signals, we
discuss the compression of non-demosaicked light field (LF) images. We develop a coding
scheme for raw LF data without going through pre-processing steps such as demosaicking,
which significantly increase redundancy within data. Without demosaicking, the LF data, after
being converted to an array of sub-aperture images, contains pixels with sparse distribution.
In our scheme, the pixels will be considered vertices of a graph, and encoded using a graph-
based lifting transform. We also describe the intra-prediction algorithm and optimal graph
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construction applied for pixels with irregular distribution. In the last part of the dissertation,
we consider the problem of edge modeling for di�erent types of predicted video residuals,
namely the intra and inter-predicted residuals, and the corresponding optimization of graph
structure in GFT to achieve improved coding e�ciency. In the next section, we will review
some related work in image and video compression, followed by a detailed description of the
research problems in this dissertation and our contributions.

1.1 Related Work

Transforms such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT)
have been widely used in conventional multimedia signal compression. For example, in image
and video coding standards including JPEG, MPEG, H.264, and the most recent HEVC, DCT
is used to obtain sparse representation of signals in a frequency domain. However, for signals
containing high frequency structures, e.g., edges in images, these standard transforms are
likely to produce large coe�cients in high frequency basis in the transformed domain, which
require high bitrate to represent them. Besides, the standard transforms can only deal with
conventional signals that are defined in regular domain such as the 1 dimensional space
and 2D grids. In order to deal with signals having high frequency edges, researchers have
proposed designing directional transforms, which can incorporate the edge directions in the
basis functions. Some examples include the directional DCT [83], bandelet [42], and curvelets
[38]. Filtering in these works is performed along the edge directions, where neighbouring
pixels tend to have high correlation, thus avoiding filtering across edges. However, many
of these directional transforms require a high complexity pre-classification, which divides
signals into multiple regions of uniform geometric flow. Also, most of these transforms are
restricted to a given number of edge directions, which limits the adaptation to signals with
more complicated characteristics, e.g., corners.
Edge-Adaptive Graph based Transform
In [28], an edge adaptive transform based on graphs is proposed for depth image coding. The
use of graphs allows the incorporation of signal characteristics into the link weight, which
removes limitations on the specific edge directions that can be represented. Furthermore,
graphs provide natural representations for signals in irregular and high dimentional spaces, and
therefore can be applied in applications such as social and sensor networks. For signal defined
on graphs, a frequency response can be derived using the eigenvectors and eigenvalues of the
graph Laplacian, which models the variation on graphs taking into account their connection.
The transform is called the Graph Fourier Transform (GFT). A signal is considered smooth
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on a graph if the variation is small between two nodes connected with large weight link. Such
signals have energy mostly compacted on the basis associated to small eigenvalues. Therefore,
one can obtain sparse representations for signals with edges if the associated graph is designed
in a way that the links connecting nodes separated by image edges have small weights. The
GFTs of graphs designed based on edge structures are also called Edge-Adaptive Graph based
Transforms (EA-GBTs), and have been successfully applied in applications such as depth
map compression [28, 76], image compression [27], and video compression [32]. In [84],
a theoretical analysis of the optimality of GFT in compression is provided in a probabilistic
point of view. The authors show that given a graph, there is a unique underlying Gaussian
Markov Random Field (GMRF) that satisfies a conditional independent assumption defined
by graph connection. The GFT associated to the graph is shown to be equivalent to the KLT
of such GMRF model, and therefore is optimal in terms of decorrelation.

1.2 Motivation

1.2.1 Low Complexity Graph Transform for Image/Video coding

Despite the advantages described in the previous section, a major challenge in using the
GFT is its high complexity in computation. There are two sources of complexity. First,
the transform basis vectors are generated using eigen-decomposition, with complexity up to
O(N3). Second, the application of transform to a signal has complexity O(N2), because in
general the corresponding matrix multiplication does not have a fast algorithm. Although the
first source of complexity is more significant, this computation can be performed o�ine if
graph connectivity does not change. Therefore, in a real application, the complexity can be
reduced using some pre-computing techniques. Examples include the work in [76] and [32].
In [76] one pre-selects the k most utilized graph structures in advance, pre-computing the
eigen-decomposition o�-line. In [32], on the other hand, graph templates are generated based
on statistical observation. Nevertheless, the second source of complexity, i.e. computing the
transform coe�cients for each block, is unavoidable, and therefore limits the usage of GFT
based algorithms for large N or in applications with major concern in complexity.

To address the complexity issue in GFT, we aim to design a low complexity transform in
signal projection, and at the same time still keep the advantages of GFT in signal adaptation.
We design such transform using the lifting approach. The lifting transform for graph signals
has been applied successfully in signal compression for di�erent applications, including data
gathering in Wireless Sensor Network (WSN) [67], and video coding [53, 54]. In these works,
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the transforms are designed to be localized in the sense that the filtering of one node only takes
information from the nodes that are directly connected to it. As a result, for locally connected
graphs, the computation of transformed coe�cients requires only O(N log N ) in complexity,
while for GFT, the computation costs up to O(N2) in complexity. Moreover, the prediction
and update function are functions of the link weights, modeling the pair-wise similarities
between nodes. Therefore, the transform avoids filtering across dissimilar nodes, e.g., pixels
across image edges, and thus few high frequency coe�cients will be produced. Although the
lifting transform has provided good performance in compression for many applications, only
a limited amount of work has addressed its optimality in compression. In this dissertation,
we will discuss the optimization of lifting transform. Specifically, we focus on optimizing
the bipartition step in the lifting transform design in order to ensure energy compaction in the
transformed frequency domain.

1.2.2 Application for Light Field Image Compression

Light Field (LF) imaging separately captures light rays arriving from di�erent directions at
each pixel in an image. With the additional information of ray directions within the light field
image, some useful applications including multi-view rendering [7, 75], depth estimation [6,
29] and re-focusing [5, 11] become possible. In a lenselet-based plenoptic light field camera
[63], which is the most commonly used light field camera nowadays, an array of microlenses
is placed in front of the image sensor, in order to separately capture di�erent directional rays
arriving at an image pixel. Due to the structure of microlenses, each point on the focal plane
will be mapped onto a patch of pixels, in which each pixel corresponds to a specific ray
direction, instead of one pixel position as for traditional digital camera. The captured raw
image is commonly called a lenselet image, and will typically be converted into a series of
2D sub-aperture images before compression and display. Each sub-aperture image collects
pixels of the same ray direction.

Similar to the traditional digital camera, a light field camera uses Bayer patterned color
filters on its sensor to capture color information, and on the resulting lenselet image, each
pixel position will contain only one color component out of R, G, and B, as shown in Fig.
1.1. In order to generate full color RGB light field image, a lenselet image typically goes
through demosaicking before being converted to sub-aperture images. Each sub-aperture
image can be seen as one traditional 2D picture of a specific ray angle. Therefore, in the
existing compression schemes [3, 15, 21, 30, 48], the existing video compression standards
have been adopted to encode the series of sub-aperture images. For example, in [3], sub-
aperture images are arranged, in Raster and Spiral orders, into pseudo-sequences that can
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F����� 1.1: RGB color components arranged by Bayer pattern GRBG

F����� 1.2: Transformation of Bayer patterned RGB color components into formats
suitable for image/video codecs
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be input into video codecs. In [15], a new mode, called Self Similarity (SS) has been
proposed and included as an intra-prediction mode in HEVC standard, in order to exploit
the similarity between pixels from adjacent ray directions. However, the number of pixels
is highly increased by demosaicking, in which missing color components at each pixel are
interpolated by the neighbouring pixels. Although in theory the same compression rate can be
achieved before and after interpolation, existing image and video coding techniques including
JPEG and HEVC usually do not exploit this knowledge in the encoding algorithm. Therefore,
in this thesis, we propose a novel coding scheme that directly encodes the raw lenselet image
before demosaicking, avoiding the redundancies introduced by the demosaicking process. A
similar idea has been applied for conventional image [43, 44] and video compression [13].
In these works, the algorithms directly encode the non-demosaicked (Bayer patterned) raw
image/video, and apply the demosaicking on the decoder side for the decoded image and video
with Bayer pattern. For encoding, the RGB components arranged based on Bayer pattern will
first be transformed into formats (rectangular) suitable for image and video codecs, as shown
in Fig. 1.2, through simple down-sampling and rotation, before being compressed with the
corresponding standards such as JPEG and HEVC. However, unlike image and video, pixels in
light field data, after the conversion to sub-aperture images, will no longer be distributed based
on Bayer pattern. Instead, the distribution will be highly irregular within each sub-aperture
image, making it di�cult to be encoded using conventional coding scheme. In our work,
we develop a novel coding scheme for non-demosaicked light field image, where sparsely
and irregularly distributed pixels within each sub-aperture image are connected as a graph
and coded with a graph based transform. We also extend intra-prediction to pixels that are
distributed sparsely to exploit the correlation among close-by pixels within each sub-aperture
image.

1.2.3 Edge Models in the Graph based Transform

The Edge Adaptive Graph based Transform (EA-GBT) has shown promising results in com-
pressing images with edges. The edge model in most graph designs is based on the assumption
that all edges can be represented with ideal step functions [28, 76]. However, edges with sharp
step transitions rarely exist in natural images. Instead, most of the edges in images are ramps,
as pointed out in [61]. In this thesis, we present an alternative graph construction based on
ramp edge model. As an application, we consider the compression of videos with di�erent
types of prediction. In addition, the signaling of graph geometries for ramp edges is also
discussed.
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1.3 Contributions

1.3.1 Graph based Lifting Transform with Optimized Bipartition

In our work, we introduce an optimization problem for bipartition in lifting scheme, based on
a generative GMRF model. The optimal bipartition maximizes the energy compaction in the
update set. We also provide a greedy solution for finding the right bipartition for di�erent
size of prediction and update sets. The resulting bipartition has a nice physical interpretation
in that the regions with more variation in graph structure, which are more di�cult to predict,
will have more nodes selected as predictors and included into the update set. An extension
of the bipartition algorithm to multi-level decompositions is also presented. In addition, we
propose a novel bipartite graph formulation using Kron reduction based reconnection for
each node in the prediction set. The method gives promising results reducing the prediction
residue, which requires high cost for encoding. A probability interpretation is also provided
for the proposed reconnection technique. The experiments on intra-predicted video coding
show that the proposed lifting scheme outperforms the standard DCT based encoding, and
provides comparable performance to the high complexity GFT.

1.3.2 Graph based Compression for Pre-demosaic Light Field Image

We develop a coding system for non-demosaicked light field data with sparsely and irregularly
distributed pixels. Without demosaicking, we map raw sensed color data captured by plenoptic
camera directly to sub-aperture image 2D grids, within which the color pixels are sparsely
distributed. A novel intra-prediction scheme is performed on the irregularly distributed pixels,
exploiting the correlation of each block with its decoded neighbouring reference blocks. A
gradient estimation is calculated within each block based on the structure tensor, which is
utilized later for edge direction estimation and directional prediction using adaptive kernel.
For transform coding, sparsely distributed pixels within each block in a sub-aperture image are
connected as a graph and encoded with the localized graph based lifting transform proposed.
The optimal graph constructions are derived based on Maximum Likelihood (ML) criteria
applied to a GMRF model.

1.3.3 Ramp Model in the Graph based Transform

We propose an 1D autoregressive model (AR) based on ramp edges, and estimate the optimal
parameters in the model using the training sets of residual video sequences. The new model is
utilized in the graph construction and has shown outperforming results in the intra-predicted
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video sequences than the one based on step edges. To signal the overhead information, a new
edge coding technique, called Arithmetic Ramp Edge Coding (AREC) is presented, which is
an extension of the AEC approach [18] utilized for step edge coding.

1.4 Outline of the thesis

In this chapter, we described the motivation and our contributions in this dissertation. In
Chapter 2, we will review the concepts of the Graph Fourier Transform, the lifting scheme,
and its extension to signal on graphs. In Chapter 3, the problem of finding the optimal
bipartition in lifting scheme in terms of energy compaction is defined, and a solution based
on greedy approximation is proposed. Besides, we also describe the proposed method for
bipartite graph formulation based on Kron reduction. The optimality of prediction filter
based on the bipartite formulation is discussed. In Chapter 4, the proposed lifting transform
is applied to the problem of video compression and we also discuss the graph construction
and coding scheme designed. In Chapter 5, we address the problem of light field image
coding and the improvement of coding e�ciency using the graph based transform. A novel
intra-prediction and graph construction algorithms are described in detail. In Chapter 6,
we describe the design of Edge Adaptive Graph based Transform (EA-GBT) based on step
and ramp edge models, and study the edge characteristics in di�erent types of residual video
sequences. We conclude the dissertation in Chapter 7 with possible directions for future work.
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Chapter 2

Graph based Transforms

In this chapter, we provide an introduction to the Graph Fourier Transform and the lifting
scheme, which are necessary backgrounds for this dissertation. We will start from some
notation definitions for graphs and the lifting scheme in Section 2.1. In Section 2.2, we will
introduce the concept of the Graph Fourier Transform (GFT), which defines the frequency
interpretation for signals on graphs. This will give us an idea of how to construct a suit-
able graph in order to get compact representation of the associate signal in the frequency
domain. We will also discuss the optimality of GFT computation in compression in terms
of a probabilistic model. The same model will be adopted later in our design of optimal
lifting transform. In Section 2.3, we describe the concept of lifting transform, including its
invertibility, and the commonly used approaches for prediction and update filters. In Section
2.4, we will discuss the extension of lifting scheme on graphs and related research problem.

2.1 Notations

A graph G = (V, E) is a collection of nodes indexed by vi 2 V = {v1, v2, v3, · · · , vN }, and
links ei, j , connecting nodes vi and v j . The number of nodes N defines the size of the graph.
For a weighted graph, there is a non-negative weight wi, j associated to each link ei, j , modeling
the similarity between the connected node pair. The connection of graph G can be represented
by an N⇥N adjacency matrixA, which has zero diagonal elements and the element Ai, j = wi, j

for o�-diagonal terms. For undirected graphs, the adjacency matrix is symmetric, and the
degree deg(i) of node vi is defined as deg(i) =

P
j wi, j . A degree matrix D is a N ⇥N diagonal

matrix with Di,i = deg(i). A combinatorial Laplacian matrix is defined as L = D�A, which
is the most commonly used Laplacian matrix in literature. In Chapter 6, we also consider the
generalized graph Laplacian LG where there are non-negative self loop weights associated to
each node. A graph signal f 2 RN can be represented as a vector, where each element fi is
the signal value associated to node vi.
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We focus only on linear transforms T : RN
! RM , where the operation on node vi is

defined as a linear combination of the signal value on node vi and its nearby nodes v j 2 Ni.
i.e.

yi =< Ti,:, f >= Ti,i fi +
X

j2Ni

Ti, j f j, (2.1)

whereTi,: represents the ith row of the transform matrixT, and yi is the output of the operation
at node vi. In the lifting transform, the nodes in V are divided into two disjoint sets P and
U , where P stands for the prediction set, andU is the update set. The corresponding signals
are denoted as fP 2 Rn and fU 2 Rm, where n and m are the number of nodes in P and U
respectively. The prediction filter is defined as a linear transform P : Rm

! Rn that predicts
signal fP from fU . The update filter is defined as a linear transform U : Rn

! Rm that
updates fU using the prediction residual coe�cients stored in P. The bipartition, prediction,
and update processes can be repeated for the smooth coe�cients stored in the update set for
multi-level lifting transform. We use the superscript to represent signals and operations in
each level, e.g. f

`, G` and P
` indicate the signal, the associated graph, and the prediction

transform in level `, respectively

2.2 Graph Fourier Transform (GFT)

2.2.1 Signal Variation on Graphs

In order to obtain the frequency interpretation for signals represented by graphs, similar to the
DCT transform for one dimensional array, it is necessary to extend the concept of variation
from conventional signals to graph signals, considering both the connection and pair-wise
similarity between nodes. The most commonly used variation operator for graphs is the
combinatorial Laplacian matrix L. The variation of signal f on the graph given the associated
Laplacian matrix L is written as

var(L, f ) = f
T
Lf

=
1

2

X

i, j

wi, j ( fi � f j )2.
(2.2)

The graph connectivity is taken into account since the di�erence between two nodes that
are strongly connected, i.e. with large link weight, will be emphasized in computing the
variation. An N ⇥ N Laplacian matrix is diagonalizable with non-negative eigenvalues
�1 = 0, �2, · · · , �N , where �i  � j for i  j. The corresponding eigenvectors are denoted
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as U = {u1, u2, · · · , uN }. Note that for two eigenvectors ui and u j with i  j, the variation
of the vectors on the graph follows the order of eigenvalues, i.e., var(L, ui)  var(L, uj ).
Therefore, these eigenvectors provide a Fourier-like basis with frequency quantified by the
corresponding eigenvalues, thus U is called the Graph Fourier Transform (GFT). The GFT
coe�cients f̃ of signal f are obtained as f̃ = U

�1
f . Note that for undirected graph, the

combinatorial Laplacian matrix is symmetric and thus U�1 = U
T . There are other types of

Laplacian matrices that have been used in literature, including the random walk Laplacian
Lrw = D

�1
L and the symmetric normalized Laplacian matrix Lsym = D

�1/2
LD
�1/2, which is

commonly used in graph cut related works [70]. Both matrices have non-negative eigenvalues
�i 2 [0, 2]. Note that the combinatorial Laplacian L and the normalized Laplacian Lsym are
both symmetric, with orthogonal GFT basis, while the GFT for the random walk Laplacian
Lrw is non-orthogonal.

2.2.2 Optimality of GFT in Signal Compression

In order to achieve good performance in compression, it is important to have a transform that
can represent signals sparsely. In traditional signal processing applications, the DCT is useful
in compressing smooth signals such that signal variations are small between neighbouring data
points, since on average most of the signal energy is concentrated on the low frequency bases.
For GFT, the signal variation is defined in (2.2) as a function of signal and graph structure. In
order to have compact representation with most energy in the low frequency basis for a given
signal f , we aim to choose a graph that leads to small variation on the resulting Laplacian
matrix L

⇤, i.e. the value of var(L⇤, f ) is small. This can be easily achieved by assigning
large weights to links connecting nodes with similar signal values, and small weights to links
connecting nodes with large di�erences. The flexibility in graph construction provides many
advantages to GFT for compression in applications such as image and video compression [27,
28, 32, 76, 77]. Natural images usually contain edges, where multiple neighboring pairs of
pixels have large intensity di�erence. Edges are not e�ciently represented by conventional
transforms such as the DCT. We can express an image as a graph where one pixel is denoted
as a node, and an sparse representation in GFT can be achieved by assigning small weights to
links across edges.

In [84, 85], optimality of GFT in signal compression is analyzed. For a random signal
with known correlation, described by its covariance matrix, the Karhunen–Loève Transform
(KLT) is optimal in terms of de-correlation. The KLT is an optimal orthogonal transform
in energy compaction in terms of mean squared error, i.e. the mean squared error of the
reconstructed signal using k transformed coe�cients is minimized among all orthogonal
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transforms. However, correlation models need to be estimated from training data for real
signals. In order to obtain a fixed transform without high complexity in computation, the
DCT is often used. The DCT is equivalent to KLT for signals that can be modeled as a
stationary Markov sequence with correlation equal to 1 [1, 14]. The optimality of the GFT
can be shown in a similar way. Given a graph G, the associated GFT is shown to be equivalent
to the KLT for an underlying Gaussian Markov Random Field (GMRF) defined based on the
graph connectivity, i.e. the inverse covariance matrix (precision matrix) of this GMRF is
equivalent to the graph Laplacian L. In fact, GFT can outperform KLT in practice, since
fewer parameters are required to estimate, leading to more robust signal modeling [34].

2.3 Lifting Transforms

In this section, we will introduce the lifting scheme, including the invertibility property, the
design of localized transforms and the extension to multi-level decomposition.

2.3.1 Preliminaries

A lifting scheme consists of three stages:

1. Bipartition: Data points are divided into two disjoint sets, called prediction set (P) and
update set (U )

2. Prediction: This step is used to remove redundancy in the signal. The signal fP in P
is predicted using signal fU in U with prediction transform denoted as P. Then, the
prediction error, i.e. d = fP � PfU , is stored in set P. If the signals in the two sets are
highly correlated with each other, the prediction error is expected to be small.

3. Update: The signal fU in U is updated using the prediction residue d and the update
transform U. The process generates a smooth approximation s to the original signal f ,
and the result is stored inU as transformed coe�cients.

A one level lifting scheme is summarized in Fig. 2.1. The transformed coe�cients c =

[sT, dT ]T , contain the prediction error d = fP �PfU and the smooth coe�cients s = fU +Ud.
In matrix form, the whole process can be written as

c =

266664
s

d

377775 =
266664
I U

0 I

377775
266664
I 0

�P I

377775
266664
fU

fP

377775 . (2.3)
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F����� 2.1: 1 level lifting scheme: forward and inverse transforms

F����� 2.2: The lifting scheme with multi-level decomposition

The inverse transforms for both prediction and update processes can be immediately derived
by inverting the operations (addition replaced by subtraction and subtraction by addition) and
orders in the forward process, as shown in Fig. 2.1. In matrix form this is written as

266664
I 0

�P I

377775
�1

=

266664
I 0

P I

377775 ,266664
I U

0 I

377775
�1

=

266664
I �U

0 I

377775 .
(2.4)

Note that the invertibility is guaranteed regardless of the selection of the prediction transform
P and update transform U, thus providing a lot of flexibility in transform design.

If the predictor is properly designed such that the prediction error d has low energy
on average, fewer bits will be needed for representing P, thus reducing the overall cost in
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F����� 2.3: Example of localized lifting transform on 1 dimensional signal

compression. A multi-resolution representation for signals can be derived by repeatedly
applying the lifting scheme on the smooth coe�cients c, as shown in Fig. 2.2. The smooth
coe�cients c` serve as the input signal f `+1 for the (` + 1)th level lifting. Moreover, a more
compact representation can be obtained from the multi-level decomposition if the predictor
P
` in each level ` is selected properly. The invertibility property will still hold for multi-level

decomposition.

2.3.2 Localized Transform Design

The lifting scheme can be used to implement any invertible transform. One of the commonly
used transform is the 5/3 biorthogonal filterbank of Cohen-Daubechies-Feauveau (CDF) [2],
which has been adopted in JPEG2000 standard for lossless compression [9, 73]. Given a
one dimensional signal at first level f1 = [ f 11 , f 12 , · · · f 1N ]

T , the lifting scheme for CDF5/3 can
be represented as shown in Fig. 2.3 for N = 8. For the bipartition, the data points at odd
locations are assigned to update set (U1), and the even points are put into the prediction set
(P1). Each data point in P1 is predicted using its adjacent points, resulting in a prediction
error d1 = [d1

1, d
1
2, d

1
3, d

1
4]

T . The prediction error will then be used to filter the adjacent data
points in U1, generating the smooth approximation s

1 = [s11, s
1
2, s

1
3, s

1
4]

T . For multi-level
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decomposition, the lifting scheme for the 2nd level will be applied on the smooth coe�cients
s
1. In detail, the prediction for signal value fPi is computed with the two adjacent points
fUi and fU (i+1) as ˆfPi =

1

2
( fUi + fU (i+1) ). For the update stage, fUi is updated with the

prediction error from the two neighbours. The smooth coe�cients for interior points are
computed as ci = fUi +

1

4
(di + d(i+1) ). Compared to other types of wavelet filterbanks such

as Haar transform and CDF9/7, the CDF5/3 filterbanks have several advantages:

1. Locality: The transform is highly localized and therefore has low complexity in com-
putation

2. Rational-valued: The transform coe�cients are rational-valued, and therefore it is easier
to create lossless transform in real implementation. Also, for coe�cients equal to 1

2n ,
the transform can be implemented with simple shifts.

3. Symmetry: The filter response is symmetric, which enables a simple generalization
onto undirected graphs, where each node might have di�erent number of connected
neighbours.

Due to these nice properties, for the prediction and update transforms design throughout this
dissertation we will apply the generalization of CDF5/3 filterbanks to graphs, which will be
described in detail in the next section. The main contribution for our work will be focusing on
the bipartition algorithm and the graph construction, given the use of CDF5/3 like transforms
for prediction and update.

2.4 Lifting Transform on Graphs [56]

The generalization of lifting scheme to signals on graphs is in general not trivial. Before we
go into the detail, here we first describe the problems that will be encountered during the
generalization, and the criterion for the design of graph-based lifting.

1. Graph construction: In Section 2.2, we have discussed the criterion for designing a good
graph on which to define the GFT, where low weights are assigned to links connecting
nodes with large signal di�erence. The criterion also hold for graphs in the lifting
transform. Since we consider only linear transforms in the design of prediction and
update filters, in order to obtain good prediction, the filtering for each node in P should
select higher weights for the neighbours in U that are similar. Besides, since the
main goal in our work is to design low complexity and localized transforms, the graph
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connectivity is required to be localized. The details of graph construction in application
of video compression will be addressed in Chapter 4.

2. Design of prediction and update transforms (P and U): As mentioned above, a useful
feature of CDF5/3 is its locality, i.e., the transform of data at each position x 2 P
requires only the signal at x and values at the adjacent data points x � 1 and x + 1 inU .
This property is preserved in the generalization to signal on graphs: the transform for
node vi 2 P takes information only from fi and f j, v j 2 N (i)\U , whereN (i) consists
of nodes that are directly connected to vi. The same property holds for vi 2 U such
that only neighbors from P are considered during the transform. Note that for general
graphs, N (i) for di�erent vi may contain di�erent number of nodes. Also, the weight
on the link connecting vi and v j 2 N (i) varies based on pair-wise similarities. In order
to have better prediction, the predictor for node vi should obtain more information from
those connected neighbors that are likely to be most similar to vi. Besides exploiting
the correlation between data samples, it is also important to have transforms that are
orthogonal or nearly orthogonal, in order to reduce the distortion in reconstruction
caused by quantization. In [68], the authors propose a method to design update filters
that promote orthogonality. Later in this section, we will describe the generalization of
CDF5/3 predictor and the orthogonalized update filter in more detail.

3. Bipartition: In the lifting scheme, the transform (Prediction or Update) for node vi in P
(respectivelyU ) is a function of only the signal values at vi and nodes inU (respectively
P) in order to ensure the invertibility. In using the CDF5/3 filterbank, the transform
at each node acquires neighbouring information only from the connected nodes in the
opposite bipartite set. For graphs that are not bipartite, this means that the links that
connect nodes in the same set will not be utilized during the filtering. In other words,
applying generalized CDF5/3 in graphs is equivalent to applying the transform on an
approximated bipartite graph, containing only links connecting nodes inU to nodes in
P. The bipartition algorithm directly a�ects the bipartite approximation and the perfor-
mance of prediction and update filtering. In order to have better prediction, each node
vi in P should have enough high correlated neighbouring nodes inU after the bipartite
approximation. In Chapter 3, we will review related work for bipartite approximation
in signal compression, and describe our approach in designing an optimized bipartition
in terms of energy compaction in the transformed domain.

4. Graph representation for signals in level ` > 1: After the update stage, the signal will
be downsampled, keeping only the smooth signal inU for processing in the next level.
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Those nodes in U might not be directly connected in the original graph. Therefore, a
graph needs to be constructed for the downsampled data in order to capture pair-wise
correlation. In Section 2.4.3, we will discuss some commonly used graph reduction
after downsampling.

2.4.1 Prediction Filter Design

Given the bipartite sets P andU and the approximated bipartite graph Gbpt (with adjacency
matrix Abpt), which contains only links connecting nodes in P to nodes in U , the predictor
used in our work for node vi 2 P is defined as

f̂ i =
1

deg(i)

X

vj2Nbpt(i)

wi, j f j, (2.5)

wherewi, j = Abpt(i, j) andNbpt(i) is the set of neighboring node of vi in Gbpt. The transformed
coe�cient at vi is computed as di = fi � f̂ i. Note that for a one dimensional signal, which can
be represented with a line graph with all link weights equal to 1, the predictor is simplified
into the predictor used in the traditional CDF5/3 filterbank described in 2.3. Therefore, we
will call this transform the generalized CDF5/3 predictor, which has been applied for graph
based lifting by several authors [53, 54, 56, 67]. Later in Section 5.5.3, we will also discuss
the generalized CDF5/3 filterbank developed for generalized graphs with non-zero self loop
weights on nodes.

2.4.2 Update Filter Design

For the design of update filter, we can also generalize the update filters used in CDF5/3
filterbanks. The transformed coe�cient at vr 2 U , written as sr , stores the smooth signal
computed as

sr = fr +
1

2deg(r)

X

vj2N (r)

wr, j dr, (2.6)

which has been applied in literature [54, 56, 67]. However, in [68], the authors show that for
the CDF5/3 design applied to graphs, the transform’s orthogonality will be reduced if each
node has more than 2 connected neighbours, Therefore, in the paper, the authors proposed an
orthogonalized update transform. Assume the signal in `th lifting level is f = [fT

U
, fT
P
]T , then
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F����� 2.4: Example of graph downsampling by connecting 2-hops neighbors in the
previous level

the corresponding transform matrix T in the lifting scheme can be written as

T =

266666666664

�t
T
1�

�t
T
2�

...

�t
T
N�

377777777775
=

266664
I U

0 I

377775
266664
I 0

�P I

377775 , (2.7)

where the first m rows correspond to the filter response of nodes inU , and the last n rows are
the filter responses for nodes in P. The filter response for node v j in P can be written as

t
T
j = e

T
j

266664
I 0

�P I

377775 , (2.8)

where e j is a column vector with element ej j = 1 and ej k = 0 for k , j. The orthogonalized
update filter U is computed for each node vi 2 U such that the filter response ti is orthogonal
to the filter response t j of its neighbouring nodes v j 2 P. The computation can be done
by solving a linear equation. In orthogonalizing ti, only the responses of its neighbouring
nodes are considered. For localized P, the nodes in P that are not neighbors of vi have
filter responses that have no common support or small common support with ti, and thus
have little e�ect on its orthogonality. In the lifting scheme used in our work, we will apply
the generalized CDF5/3 predictor with orthogonalized update filter, since the orthogonalized
update filter has been shown to have better performance empirically compared to the one
without orthogonalization.
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F����� 2.5: Example of graph downsampling using Kron reduction

2.4.3 Graph Reduction

To obtain a multi-resolution decomposition for signals, the lifting scheme is applied iteratively
onto the downsampled, smooth signal from the update set in the previous lifting level. The
transform further exploits the similarity within the downsampled signal. For the 1 dimensional
signal discussed in Section 2.3.2, where the bipartition divides data into even and odd samples,
the CDF5/3 filterbank exploits the correlation between pairs of data points that are 1 point away
in the first level. For the transform in the 2nd level, the de-correlation considers the similarity
between data samples that are 2 points away in the first level. Similarly for the `th level, the
transform exploits the correlation between samples that are 2 points away in the (` � 1)th

level. The concept can be extended to signals on graphs [54, 57, 58], where for the graph
construction of input signal in level `, the nodes that are 2 hops away in the previous level are
connected. However, the approach cannot maintain graph connectivity as the decomposition
goes to higher levels. In Fig. 2.4, we show an example of graph construction using such
approach, where the update set in each level is chosen by random sampling. In this example,
multiple disconnected components are produced when the decomposition reaches level 3.
As a result, the transform will not be able to exploit the correlation between disconnected
components, losing the opportunity of further energy compaction.

In this work, we apply another graph reduction method, initially proposed in [20], and
designed from a probabilistic viewpoint. We first define a generative Gaussian Markov
Random Field (GMRF) model with inverse covariance (or precision) matrix Q = L + �I,
where L is the graph Laplacian and � is a small constant used to ensure matrix invertibility.
Given a random signal f = [fT

U
, fT
P
]T produced by such GMRF model, where fU and fP are the

signals in the update and prediction sets respectively, the covariance matrix ⌃ and the inverse
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covariance matrix Q can be written in block form as follows:

⌃ =
266664
⌃U,U ⌃U,P

⌃P,U ⌃P,P

377775 , Q =

266664
QU,U QU,P

QP,U QP,P

377775 . (2.9)

After removing signal in P, the downsampled signal fU is also a GMRF, with covariance
matrix ⌃U,U , and the inverse covariance matrix, denoted as Qd, can be written as

Qd = ⌃
�1
U
= QU,U �QU,PQ

†

P,PQP,U . (2.10)

We can derive the corresponding graph Laplacian of fU as Ld ⇡ Qd. The graph connection
in the downsampled signal therefore is based on the partial correlation specified in Qd. The
corresponding adjacency matrix Ad is defined as

Adi,i = 0

Adi, j = �Qdi, j, for i , j .
(2.11)

This method is also known as the Kron reduction in the literature, and was first proposed for
application in electrical networks [22]. The graph derived from Kron reduction has several
desirable properties in particular, and most relevant for our application:

1. If the original graph is connected in the first level, the reduced graph will still be
connected.

2. Two nodes vi and v j are connected in level ` if there is a path through the removed
nodes in P`�1.

3. For two nodes that are connected though a path of large weighted links in level ` � 1,
the link connecting them in level ` will also have large weight.

One drawback in the Kron reduction is that the downsampled graph becomes dense as the
decomposition goes to higher levels. An example is shown in Fig. 2.5, where the downsampled
sets are the same as in Fig. 2.4. This loss of sparsity can increase the computation complexity
in the transform. Also, the transform will fail to capture the local connectivity information.
Therefore, we apply a simple sparsification after downsampling in each level by keeping the
largest k links for each node. In Fig. 2.6, we show an example of sparsification in the reduced
graph, where at least 4 links are kept for each node.
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F����� 2.6: Example of graph downsampling using Kron reduction and sparsification

2.4.4 Complexity of Lifting Scheme

As mentioned in Section 1.2.1, the GFT requires multiplying the input signal (written as
a vector) with a dense matrix, which leads to O(N2) complexity. For lifting, on the other
hand, the transform is highly localized. If half of the nodes are selected into the update set
in each level, at most log N transform levels will be required. For the computation of each
coe�cient in level `, the number of operations is proportional to the degree deg(i) of node
vi, which is usually a constant for graphs of interest in image and video processing and due
to the sparsification after graph reduction in high lifting levels. As a result, only O(N log N )
complexity is needed for lifting application. Besides, the GFT coe�cients are real valued,
while in lifting based on CDF 5/3 filterbank, the coe�cients are rational, which leads to
additional reduction in implementation cost. In our experiments in Chapter 4, we will show
that with the lifting transform, the quality of reconstruction after compression is comparable
to GFT, so that we pay no penalty for these significant reductions in complexity.

2.5 Summary

In this chapter, we have introduced the concept of graphs, and a notion of frequency for graph
signals using the Graph Fourier Transform (GFT). We have discussed the optimality of GFT
in signal energy compaction. In Sections 2.3 and 2.4, we gave an introduction for the lifting
scheme and its generalization to signals on graphs. The design of prediction and update
transforms and graph downsampling used in our work are also described. In the next chapter,
we will focus on the optimization of bipartition in the lifting transform in terms of energy
compaction.
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Chapter 3

Bipartition in Lifting Transforms

In Section 2.4, we have described the problems in applying the lifting scheme to signals on
graphs and the algorithms for prediction, update and graph downsampling utilized in our
experiments. In this chapter, we will be focusing on the optimization of bipartition in order
to maximize energy compaction.

3.1 Related Work

3.1.1 Max Cut based Bipartition

The first bipartition technique proposed for graph based lifting was [56], where a denoising
application was considered. In this work, the authors use a bipartition algorithm called conflict
minimization, which aims to minimize the total weight of links connecting nodes in the same
set (P or U ), i.e., those links that will not be used in the lifting transform. In [53, 54, 57],
a similar idea is applied for the lifting scheme in the application of low pass approximation
and video compression, where the bipartition is done by maximizing the total weights on
links connecting nodes in P to nodes in U . In other words, the algorithm tries to utilize as
many pair-wise similarities as possible after discarding conflicting links to achieve better de-
correlation. This is is equivalent to solving a maximum cut problem (Max Cut). The Max Cut
problem is known to be NP-complete, and therefore some greedy approximations have been
proposed in the literature. In [59], the authors propose a solution for the Max Cut problem
based on maximum spanning tree (MST), whose optimal solution can be formed using methods
such as Prim’s algorithm. The optimality of the Max Cut approach is also analyzed in [59] for
interpolation, where the authors show that by maximizing the cut value between P andU , a
lower bound of the `1 norm error for cross-linear interpolation will be minimized assuming
the samples are i.i.d. However, the signals typically exhibit local correlation, and therefore
the i.i.d assumption does not hold in general. Taking images as an example, there exists high
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correlation between pixels that are adjacent to each other. Moreover, no justification was
provided for optimality in terms compression e�ciency in [59].

3.1.2 Prediction Error Minimization

In [23, 52], Martínez-Enríquez et al. propose an optimal bipartition for lifting transform in
video compression. The objective function is based on minimizing the energy of prediction
error stored in P, thus promoting the energy compaction into the low frequency set U .
Defining f̂P to be the prediction of f + P, the problem can be expressed as

(P,U )⇤ = argmin
(P,U )

E[(fP � f̂P )T (fP � f̂P )]

= argmin
(P,U )

E[(fP � PfU )T (fP � PfU )]

= argmin
(P,U )

X

vi2P

E[( fi � f̂ i)2].

(3.1)

In this work, the authors consider two signal models, namely the noise model (NM), and
moving average (MA) model. The prediction f̂ i2P is computed as the normalized average
of its neighbouring nodes in U . A greedy solution for (3.1) is proposed. In general, the
transform with MA model performs better than the one with NM based bipartition in terms
of minimizing the expected prediction errors in P, showing the significance for considering
local correlation in the designing of signal model. However, the moving average (MA) model
assumes marginal independence for samples that are not immediate neighbors, which is in
general not true for image and video signal where correlation usually also exits between pixels
that are few pixels away. In the next section, we will discuss in detail the di�erence of the two
models in [23, 52] from our proposed signal model.

3.2 Optimized Bipartition for GMRF modeled signal

In this thesis, we propose a bipartition scheme that is optimal in terms of energy compaction
under the assumption that an N dimensional signal f can be modeled as GMRF: f ⇠ N (µ,⌃).
A random vector f = [ f1, f2, · · · , f N ]T can be modeled by a GMRF if its probability density
function can be written as

p(f ) = (2⇡)�
N
2 det(Q)

1
2 exp(�

1

2
(f � µ)T

Q(f � µ)), (3.2)
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where µ is its mean vector and Q is the inverse covariance matrix Q = ⌃�1, also called
precision matrix. The precision matrix Q defines the conditional pair-wise correlations
between signal values, i.e.

p( fi, f j |f/{ fi, f j }) = �
Qi, jp

Qi,iQ j, j
. (3.3)

3.2.1 Relationship to Noise Model (NM) and Moving Average (MA) mod-
els

It can be shown that the NM and MA signal models considered in [23, 52] both correspond to
specific GMRF models. Under the NM case, a signal is defined as

f = c + ⌘, (3.4)

where c consists of constant values [c1, c2, · · · , cN ]T and vector ⌘ contains i.i.d zero mean
Gaussian noises [⌘1, ⌘2, · · · , ⌘N ]T with variance �2⌘,i for ith element. The model can be
expressed as a GMRF with mean µNM = c and covariance

⌃NM = E[(f � c)(f � c)T ] (3.5)

= E[⌘⌘T ] (3.6)

= diag([�2⌘,1,�
2
⌘,2, · · · ,�

2
⌘,N ]). (3.7)

The covariance matrix contains non-zero values only for diagonal elements, i.e., the model
assumes there is no pair-wise correlation between pixels. The assumption is usually not true
for image and video signals, where neighboring pixels usually possess high similarity. For
MA model, on the other hand, the signal value for sample (node) i is defined as

fi =
1

|N[i] |

X

j2N[i]

✏ j + ↵⌘i, (3.8)

where N[i] is the closed set of spatial neighbors of node i (N[i] = N (i) [ i) and ↵ is an
adjustable parameter. ✏ j and ⌘i are both i.i.d zero-mean Gaussian noise with variance �2✏,i
and �2⌘,i respectively. The equation can be expressed in matrix form using the adjacency
matrix A and degree matrix D as

f = (D + I)�1(A + I)✏ + ↵⌘, (3.9)
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where vectors ✏ and ⌘ contain the variance of i.i.d Gaussian noises: ✏ = [✏1, ✏2, · · · , ✏N ]T

and ⌘ = [⌘1, ⌘2, · · · , ⌘N ]T . In [23, 52], the adjacency matrix for video signals contains only
links between each pixel and its four immediate neighbors (pixels on the top, right, left, and
bottom), i.e., pixels within 1 pixel width. Defining Ã = (D + I)�1(A + I), it can be shown
that the model is also a specific GMRF, with zero mean and covariance matrix

⌃MA = E[↵
T ] (3.10)

= E[(Ã✏ + ↵⌘)(Ã✏ + ↵⌘)T ] (3.11)

= ÃE[✏✏T ]ÃT + ↵2E[⌘⌘T ] (3.12)

= Ã diag([�2✏,1,�
2
✏,2, · · · ,�

2
✏,N ]])Ã

T + ↵2 diag(�2⌘,1,�
2
⌘,2, · · · ,�

2
⌘,N ]). (3.13)

In (3.13), the second term is a diagonal matrix consisting of noise variances, while the first
term, which performs left and right multiplication of a diagonal matrix with adjacency matrix
Ã, contains only non-zero elements between each node and its neighbors within 2-hops (2
pixel width). In other words, the model assumes marginal independence between pixel that
are more than two pixels away from each other. The assumption, although taking into account
some local similarities between adjacent pixels, is also not realistic in general for image and
videos, where similarities usually exist between pixels that are few pixels (more than 2 pixel
width) away from each other.

3.2.2 Gaussian Markov Random Field (GMRF) Model

In our work, we define a generative GMRF model where the partial correlation, defined in
the inverse covariance matrix (precision matrix) Q, is based on the graph connectivity, i.e.
Qi, j = 0 if there is no connection on the graph between node vi and v j . In the applied GMRF,
Q is defined as

Q = (L + �I), (3.14)

where � is a small constant ⇡ 0 used to ensure the invertibility of Q. Based on the chain rule
in probability theory, the covariance matrix for the proposed GMRF has non-zero elements
for nodes connected with a path within the graph, which provides a more realistic model than
NM and MA models considered in the related work. The described GMRF model has been
adopted with great success in many applications in multimedia signal processing including
[10, 84, 85].
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3.2.3 Optimized Bipartition for GMRF

To find the optimal bipartition in terms of energy compaction, we apply the same objective
function used in (3.1), which minimizes the magnitude of prediction residuals in P. The
bipartition (P,U ) and prediction transform P are jointly optimized. For the GMRF model,
given a chosen bipartition, the optimal predictor f̂ ⇤

P
for fP is the conditional expectation of fP

given fU , which is expressed as

f̂
⇤

P
= E[fP |fU ]

= ⌃P,U⌃
�1
U,U fU

= �Q�1
P,PQP,U fU,

(3.15)

i.e., the maximum a posteriori (MAP) estimation. The prediction error in (3.1) with the
optimal prediction

P
⇤ = ⌃P,U⌃

�1
U,U = �Q

�1
P,PQP,U (3.16)

can therefore be rewritten as

(P,U ) = argmin
(P,U )

⇥(P,U )

= argmin
(P,U )

Tr(E[(fP � P⇤fU )(fP � P⇤fU )T ])

= argmin
(P,U )

Tr(⌃P,P � ⌃P,U⌃�1U,U⌃U,P )

= argmin
(P,U )

Tr(Q�1
P,P ),

(3.17)

where the step going from 3rd to the 4th line above is based on the Schur complement [86].
This is an NP-hard problem, and therefore an approximation is required. In our work, we
apply a greedy approximation for solving (3.17), which is summarized in Algorithm 1. In the
algorithm, given a graph G = (V, E), the update set is initialized as an empty set U0 = ;,
and the prediction set P0, on the other hand, is initialized as the whole node set V . The
superscript denotes the iteration. In iteration t, the algorithm selects an optimal node v from
P

t�1 that minimizes the prediction error⇥(Pt�1/{v},U t�1
[ {v}) of the remaining prediction

nodes given the signal in update set with node v included. The optimal node will then be
added to the update set: U t = U t�1

[ {v}.The process continues until the target size |U | is
reached.

Similar optimization approaches for partitioning have been used in applications such as
dynamic networks [51] and active learning [39]. However, to solve the problem in (3.17)
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Algorithm 1 Greedy solution for bipartition
Input Graph G = (V, E) and target |U | = m
Output Bipartition (U,P)

1: InitializeU0 = ;; P0 = V

2: for t = 1 : 1 : m do
3: Select v⇤ = argminv ⇥(Pt�1/{v},U t�1

[ {v})
4: P

t
 P

t�1/{v⇤}
5: U

t
 U

t�1
[ {v⇤}

6: end for

requires computing the inverse Q
�1
P,P in every iteration t for each potential node v in Pt�1,

which would be too complex in practice. Therefore, in [39], the authors propose an e�cient
sequential optimization scheme. In this algorithm, eigen-decomposition of Q is performed
at the beginning. For the remaining iterations, only matrix-vector multiplication for each
candidate node in Pt�1 is required. As a result, the computation complexity for bipartition
can be reduced to O(N3).

3.2.4 Analysis of Proposed Bipartition

We observe that the selected nodes for U using the proposed algorithm are usually not
distributed evenly. In fact, the distribution varies according to the local correlation defined in
the GMRF model, as shown in the toy example in Fig. 3.1. In the example, pixel intensities
have higher variation on the left side compared to variation on the right side of the block.
We use a 4-connected grid graph to represent the block (Fig. 3.1(b)). The link weights are
decided based on edges detected: the weight on links across edges are assigned a small weight
w < 1, while other links have link weight 1. Then, we apply the proposed algorithm discussed
in the previous section and select 1

4 of the nodes to be included inU (Fig. 3.1(c)). As a result,
the density of nodes selected forU is higher in the high variance regions (left) as compared
to the smooth area. Intuitively, the pixels in low variance region have similar intensities even
though the pixels may be several hops away from each other, and therefore selecting a large
number of samples in these regions can be redundant. For pixels in high variance regions, on
the other hand, a large number of update pixels is required in order to ensure good quality in
prediction.
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(a) Block with edge structure

0.1

1

(b) 4 connected grid graph constructed based on
edge structures in (a)

0.1

1

(c)

F����� 3.1: Example of U node selection by greedy algorithm of MAP error mini-
mization
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(a) (b)

F����� 3.2: Example of block with P nodes (blue nodes) with low connectivity to the
update set (red nodes)

3.3 Bipartite Graph Formulation

In this section, we discuss the method for bipartite graph construction given the bipartition.
In the previous work using lifting [53, 54, 56, 57], bipartite graphs were obtained by remov-
ing those links connecting two nodes in either P or U , i.e., conflicting links. However, as
mentioned in Section 3.2.4, using the proposed bipartition based on minimizing the MAP pre-
diction error, the distribution density of nodes in theU varies depending on local correlation.
As a result, nodes in P in the low variance areas, where distribution of U nodes have low
density, tend to have low connectivity to U . An example is shown in Fig. 3.2(a), where we
consider the same graph used in Fig. 3.1(b), on which half of nodes are selected asU nodes.
If we take a close look at the low variance area (marked with red box), it can be observed that
there exist nodes in P that do not have any direct connection toU , while most of the P nodes
have only one neighbouring node inU . That is, the nodes in P will have limited amount of
information for prediction. As a result, high prediction error may occur in the smooth regions
when using a localized prediction transform, e.g., generalized CDF 5/3.

3.3.1 Kron Reduction based Reconnection

In order to ensure that every node in P has su�cient number ofU neighbors for prediction,
we propose a Kron reduction based reconnection approach in generating the bipartite graph
Gbpt for transform. One important property of Kron reduction, as described in (2.10), is that it
maintains graph connectivity, i.e. after removing nodes in Sc ⇢ V (V = S [Sc), two nodes
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F����� 3.3: Example for iterative Kron reduction by removing 1 node at a time

Algorithm 2 Kron reduction based reconnection for P
Input Adjacency matrix A of graph G and bipartition (U,P)
Output Adjacency matrix Abpt of the bipartite graph Gbpt

1: Initialize Abpt as an empty N ⇥ N matrix
2: Compute degree matrix D, where Di,i =

P
j Ai, j

3: Graph Laplacian L = D �A

4: for vi 2 P do
5: DefineU+ = U [ {vi}, and P� = P/{vi}

6: Compute the Kron reduction LU+ = LU+,U+ � LU+,P�L
†

P�,P�LP
�,U+

7: Assign link weight connecting vi and v j 2 U to be Abpt(i, j) = �LU+ (k, r), where
k and r are the indices of vi and v j in the reduced Laplacian L

8: Keep only the k links between vi andU with the largest weights
9: end for

in S that were connected by a path through the removed nodes Sc will remain connected in
the reduced graph. An example of Kron reduction after removing two nodes sequentially is
shown in Fig. 3.3. Thanks to this property, for a node v 2 P with low connectivity to the
update set in G, we can generate links connecting v to U that are more than 1 hop away by
removing other nodes in P using Kron reduction. The newly connected U nodes are those
which have connection to v in the original graph by a path through the removed P nodes. In
our construction for the bipartite graph, we apply the same process for every node v in P.
Then, a sparsification process, which for a given U keeps only k links with largest weights
connecting to v, is applied for the resulting graph in order to reduce the complexity for the
following transform stages. The detail of the algorithm is summarized in Algorithm 2.

3.3.2 Iterative Kron Reduction

Another useful property of the Kron reduction is that it can be computed iteratively, i.e. the
Kron reduction applied after removing nodes in set Sc = {v1, v2, · · · , vm} leads to the same
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(a) Bipartite graph built by removing links connect-
ing nodes in the same set (U or P

(b) Bipartite graph built using kron reduction and
sparsification for nodes in P

F����� 3.4: Example of bipartite graph construction using two di�erent schemes

graph as removing node vi 2 Sc one at a time over m iterations and adapting the graph at each
iteration. This avoids the computation of matrix inversion (the matrix inversion will become a
simple divison by a constant). Note that the order of nodes removal does not a�ect the result.
If the reduction is done in a certain order: {v1, v2, · · · , vm}, denoting St the node set kept in
the tth iteration, then the Kron reduction in iteration t is computed as

L
t = Lt�1

�vt,�vt �
L

t�1
�vt,vtL

t�1
vt,�vt

L
t�1
vt,vt

, (3.18)

where the index �vt corresponding to the nodes in St�1/{vt }. In each iteration, the complexity
depends on the number of nonzero elements in Lt�1

�vt,vt , i.e. the number of links connecting
to the eliminated node. Define c to be the maximum number of links connecting to the
eliminated node through the iteration, the cost for eliminating one node takes O(c2) operations
by performing the outer product Lt�1

�vt,vtL
t�1
vt,�vt and the total complexity for Kron reduction

will be O(c2N ). In [22], the authors shows that the reduced graph from a graph with sparse
connection will be sparse though Kron iteration in general, thus c is usually much smaller
than N . For bipartite graph construction using the proposed reconnection, the process needs
to be done for all the nodes in v 2 P. Note that during the Kron reduction at each node v,
only the connection from v toU is considered, i.e., only one row from (3.18) is calculated, so
the cost for iterative Kron reduction at each node is reduced to O(cN ). Therefore, the overall
complexity of re-connection for all the nodes in P is O(cN2) in one lifting level.
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3.3.3 Probabilistic Interpretation

Using the Kron reduction based reconnection for every node in P, we can assure that every
node has enough neighbors in U for the prediction with the localized CDF5/3 transform to
be used. Moreover, we can show that the generalized CDF5/3 predictor Pbpt applied on the
bipartite graph G⇤bpt without sparsification, which is written as

Pbpt = D
⇤

bpt
�1
P,P

A
⇤

bptP,U
, (3.19)

where D
⇤

bpt and A
⇤

bpt denote the degree and adjacency matrices of G⇤bpt, is equivalent to the
MAP estimator in (3.15) for the defined GMRF model. A proof is provided in Appendix A.
Therefore, the prediction transform we proposed (without bipartite graph sparsification) is
optimal in terms of prediction error minimization. In addition, with the help of iterative algo-
rithm, the Kron reduction based reconnection has lower complexity compared to computing
directly the MAP estimator, which requires matrix inversion.

3.4 Experiments

In our experiments, we apply the lifting transform using the proposed bipartition and reconnec-
tion algorithms to test images and predicted residues from video data. The graph construction
is based on the edge locations, which is the same approach used in our application for video
compression in the next chapter. For the links across edges, a weight w < 1 is assigned,
while the rest of the links are assigned weight 1. For baseline comparison, we consider the
related approaches described in Section 3.1, namely the (1) Maximum spanning tree (MST),
(2) Noise Model (NM) and (3) Moving Average (MA) model based methods. For the first
approach, since there is no assumption for the types of prediction and update transforms in
the bipartition design, we apply the same reconnection and transforms used in our proposed
scheme. For the bipartition based on the NM and MA, on the other hand, we apply the same
predictor as the assumption in the optimization described in [23, 52]: the predicted signal f̂ i

on node vi 2 P is computed as
f̂ i =

1

mi

X

j2N (i)\U

f j, (3.20)

where mi = |N (i)\U|. Same as the implementation in [23, 52], the weak links across image
edges are removed before the bipartition and prediction. The update filter is orthogonalized
using the method in [68] in all of these cases.
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The comparison is based on the energy compaction in the update setU in the transformed
domain, i.e. we compare the mean squared error of reconstruction after truncating the
coe�cients in P in the transformed domain. The test sets contains 4 images:man, airplane,
lena, peppers and 2 intra-predicted residual sequences: Cactus and Kimono, consisting of 5
frames in each sequence. The images or video frames are firstly divided into multiple non-
overlapping 8 ⇥ 8 blocks, where the lifting schemes are applied separately. In our results, we
only consider blocks where some edges are present, and the mean squared errors are derived
as the average for all the edge blocks. For MST, the number of nodes in setU is determined
given the starting node in the implementation, while in NM, MA, and the proposed method,
the size of U is decided by the users. In the experiments, we consider di�erent bipartition
rates |U |/N for the three methods. Note that for NM and MA model-based bipartition,U is
initialized as the minimum Set Cover, and therefore the minimum bipartition rate is higher.

The results in Fig. 3.5 show that the proposed method using GMRF model consistently
outperforms the baseline approaches especially for lower bipartition rate. This is because the
proposed GMRF model captures more correlation between pixels that are further away from
each other, which is usually high for pixels in smooth areas. Therefore, in the bipartition, the
algorithm will select more nodes in high variation region forU , as described in Section 3.2.4,
resulting in better e�ciency in prediction compared to other baseline approaches. Note that
the experiment only considers a 1 level lifting transform. The extension to multi-level can be
done by applying the same process of bipartition and transform iteratively from low level to
high level on the downsampled graphs as done in [53, 54, 57, 68]. However, the optimization
for bipartition considering multi-level is still an open question. In our application for video
compression discussed in next chapter, we apply a di�erent bipartition approach for multi-
level lifting, which empirically gives better performance than the conventional method in [53,
54, 57, 68].

3.5 Summary

In this chapter, we defined the problem of optimal bipartition in the lifting transform in
terms of energy compaction for the generative GMRF model. The model provides more
accurate modeling for real signals. A greedy approximation was applied for selecting nodes
to be included in the update set in the experiment. In addition, we proposed a reconnection
approach for bipartite graph construction in order to solve the problem of connectivity loss
caused by the uneven distribution of nodes in update set using the proposed bipartition. Our
experimental results show that the proposed method outperforms the baseline bipartition
approaches in terms of energy compaction.
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(a) Man (b) Airplane

(c) Lena (d) Peppers

(e) Kimono: intra-predicted residue (f) Cactus: intra-predicted residue

F����� 3.5: Reconstruction error (MSE) after truncation coe�cients in P for di�erent
bipartition rate
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Chapter 4

Video Coding Application

In Chapter 3, we have discussed optimization of graph based lifting in terms of energy
compaction in a probabilistic perspective. Specifically, we proposed an optimized bipartition
based on a generative GMRF model derived from the graph connectivity, in order to maximize
the energy compacted in the update set (U ) in the transformed domain. Besides, since the
problem is NP-hard, we provided a greedy solution, which has shown promising results in
energy compaction for di�erent |U | as compared to the baselines methods. In this chapter,
we apply the proposed lifting scheme to the application of intra-predicted video compression.
In the design of image and video codecs, there are many components that need to be designed
in addition to the transform scheme discussed in the previous chapter. These include 1) graph
construction, 2) overhead signaling, 3) transformed coe�cient scanning, and 4) rate distortion
optimization.

The advantage of graph representation lies in its adaptation to di�erent signal charac-
teristics. A better graph representation in terms of the connection and weight assignment
that captures the pair-wise similarity more accurately can enable better prediction and energy
compaction. However, a more complex representation also increases the overhead required to
describe the graph structure, i.e., the information needed so that the decoder can construct the
inverse transform. In this chapter, we will discuss a graph construction approache suitable for
predicted video residues and its corresponding overhead signaling. Moreover, we will discuss
the ordering of transformed coe�cients and the associated entropy coding. Most of the work
in this chapter was published in [80].

4.1 Graph Construction

We apply block based encoding, i.e. a video frame is divided into non-overlapping m ⇥ m
blocks, on which transforms are applied. For graph construction in each block, we take a 4-
connected grid graph, shown in Fig. 4.1, which has been widely adopted for image and video
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F����� 4.1: Example of 4-connected grid graph

frame representation, as a starting point. The weight assignment is based on the edge structure.
For two nodes with an edge detected in between, the pair will be considered as having weak
correlation and assigned a nonzero weight w < 1 on the link connecting them. While other
node pairs will be considered as having strong correlation, with link weight equivalent to
1. This is similar to the method applied in [28] for depth map. The only di�erence is that
instead of fully disconnecting links across edges, we assign a nonzero weak weight. This is
because the intensity di�erence of pixels across edges in the intra-predicted video and other
natural images is not as sharp as that encountered with depth maps. Also, edge structures
are more complicated in intra-predicted residual sequences than in depth maps, and therefore
by fully disconnecting the links across edges, lots of disconnected graph components may be
produced.

The choice of w is based on the minimization of prediction error using the generalized
CDF 5/3 transform for every node vi 2 V using the information from its one hop neighbors
v j 2 N (i). The CDF 5/3 predictor of node vi is written as

✓(i) =
1

degi
(

X

j2N (i)w

w f j +
X

j2N (i)s

f j ), (4.1)

where N (i)w and N (i)s indicates the set of adjacent nodes of vi with weak correlation and
strong correlation, and deg(i) is the degree of vi computed as

deg(i) = w · |N (i)w
| + |N (i)s

|. (4.2)
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The optimal weight w⇤ is found by solving the following minimization of the total prediction
error:

w⇤ = argmin
w

X

i

( fi � ✓(i))2. (4.3)

The optimization is performed on the intra-predicted frames from a set of training video
sequences. Note that the problem in (4.3) is not convex since the normalization factor of (4.2)
contains the unknown variable w. In our experiment, we apply gradient descent with multiple
initial points generated randomly, and select the optimal w⇤ with minimum prediction error.
For the construction of downsampled graphs in lifting level ` > 1, we apply Kron reduction
with sparsification, described in Section 2.4.3.

4.2 Bipartition Scheme

Algorithm 3 Boundary/Edge extension for sampling on graphs
Input Graph G = (V, E), and targetU size m
Output U and P after sampling

1: Extend the Adjacency matrix A to include the extended nodes (called Aext) around
boundaries and edges.

2: Compute the Laplacian matrix as Dext �Aext + �I.
3: InitializeU = ;, P = V
4: for t = 1 : 1 : m do
5: Choose the sample y s.t. y, along with its extended nodes {y0, y00 · · · } and U t in the

previous, minimize the MAP error in set P.
6: U = U [ {y}, and P = P/{y}.
7: end for

For bipartition, we apply the optimized scheme based on MAP error minimization pro-
posed in Section 3.2.3. Note that in GMRF, the diagonal element Qi,i in the precision matrix
Q = L + �I can be interpreted as the inverse of the prediction error for node vi givenV/{vi}.
Hence, the nodes around block boundaries and edges, which have lower degree, are consid-
ered to have large prediction error, and therefore are given higher priority in selection for
update set. However, the pixels near boundaries tend to be further away from other pixels,
thus having high density in sampling around boundaries reduces e�ciency in prediction. To
address this issue, we make the number of links for each node equal by using a symmetric
boundary extension as shown in Fig. 4.2. As a result, the graph used for bipartition is aug-
mented. The approach is consistent with the filterbank used later, which also uses a boundary
extension with degree normalization. If a node v (e.g. node 11 in the example) is selected as
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Algorithm 4 Bipartition in multi-level lifting transform
Input graph G = (V, E), maximum level q, and target size {|Um

|}m=1:q
Output {Um

}m=1:q
1: InitializeU = ; and P = V
2: for m = q : �1 : 1 do
3: InitializeUm = ;

4: for s = 1 : 1 : |Um
| do

5: Select vi⇤ = argminvi ⇥(P/{vi},U [ {vi})
6: P = P/{vi⇤}

7: U = U [ {vi⇤}

8: end for
9: U

m = U

10: end for

a sample to be included in U , its mirrored nodes (denoted 110) are also selected. Note that
the weight between extended node v0 and a boundary node x (e.g., node 15) is equal to the
weight between v and x. The same idea is also applied for nodes around edges. This method
of bipartition including the boundary and edge extension is summarized in Algorithm 3. Note
that in this work, we propose a novel bipartition strategy for multi-level decomposition. In
[23, 52], the optimization for U ` in level ` considers only the minimization of errors stored
in P`. It ignores the fact that since U `�1 = U ` [ P`, the selection of U ` will also a�ect
the prediction for P in the lower levels, i.e. {P`�1,P`�2, · · · ,P2,P1

}. Therefore, in our
bipartition scheme for multi-level decomposition, the update set U ` in level ` is optimized
such that the prediction error in S = {P`,P`�1, · · · ,P2,P1

} is minimized. The objective
function is written as

U
`⇤ = argmin

U`

⇥(S,U `)

= argmin
U`

E(kfS � PfU` k)2,
(4.4)

where fS and fU` correspond to the signals in S and U ` and P is the MAP estimator of fS
given fU` . The greedy algorithm is summarized in Algorithm 4.

4.3 Transform Design

The bipartition approximation Gbpt is constructed by reconnecting P nodes using the Kron
reduction, as discussed in Section 3.3. As mentioned, the method solves the problem of
connectivity loss in P due to the uneven distribution of samples in U . The prediction and



�.�. Transform Design 43

(a)

(b)

F����� 4.2: Boundary extension for pixels around (a) block boundaries and (b) edges
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F����� 4.3: The comparison between proposed lifting scheme, MaxCut based lifting,
and the MaxCut based lifting with proposed re-connection technique.
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update transforms are based on the generalized CDF5/3 filterbanks and orthogonalization.
We compare the coding gain of the proposed bipartition and re-connection approach (reconn-
GMRF) with the MaxCut based lifting in [54] (MaxCut). The test sequences consist of 7 frames
from 7 video sequences. The result is shown in Fig. 4.3. we also include results of MaxCut
based bipartition with re-connection using Kron reduction (reconn-MaxCut). Note that even
with a simple bipartition scheme such as MaxCut based method, using re-connection it leads
to performance comparable to reconn-GMRF, making further simplification of bipartition a
direction for future work.

4.4 Overhead Signaling and Entropy Coding

In a practical image/video codec, the transformed coe�cients are usually scanned and entropy
coded in a specific order, such as the zigzag scanning in the conventional DCT, where the
coe�cients are scanned from low frequency components to high frequency components. If the
signal energy is well compacted into the low frequency subband, the high frequency subband
will contains lots of zeros after quantization, leading to highly e�cient encoding since the
number of nonzero components for scanning is small. In the proposed lifting scheme, we
optimize the energy compaction in the update set, and repeat the same process from the
1st level to the highest level of decomposition. As a result, the lifting coe�cients with large
magnitude will tend to be concentrated in the high levels, while the small coe�cients will most
likely be contained in low levels. Therefore, we adopt the same coe�cient reordering method
proposed in [53]. Defining d` and s` as the detail and smooth coe�cients stored in P andU in
the `th level, the coe�cients will be ordered as [sq, dq, dq�1, · · · , d2, d1] before scanning. The
coe�cients within each level will be ordered based on their reliability, defined as the average
of weights on links connected to the node. In general, a node with low reliability has higher
prediction error, and therefore should be scanned earlier than a node with high reliability. For
entropy coding, we apply an amplitude group partition technique called AGP [66]. AGP can
learn and adapt to di�erent coe�cient distributions, thus providing fair comparison between
di�erent transforms. Before quantization, the coe�cients of the CDF53 lifting transform are
first normalized based on [74] so as to compensate for the lack of orthogonality. For the
signaling of graph geometries, we use the Arithmetic Edge Coding (AEC) proposed in [18].
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F����� 4.4: Encoder for intra-predicted videos with mode selection between DCT and
the graph based lifting transform.

4.5 Experimental Results

In our experiments, we generate the intra-predicted residual frames for test sequences Foreman,
Mobile, Silent, and Deadline using HEVC(HM-14) with transform unit size fixed as 8⇥8. The
encoder system is shown in Fig. 4.4. In order to deal with the trade-o� between transform
quality and signaling overhead, for the transform coding, the encoder will select between
the proposed graph based lifting scheme, which requires sending edge locations, and the
conventional DCT. The selection is based on Rate Distortion Optimization (RDO). We define
SSE to be the sum of squared error of the reconstructed signal, and R as the bitrate. For
graph based lifting, both the bits for coe�cient encoding and the edge information overhead
are considered for the bitrate. The RD cost is computed as RDlifting = SSElifting + �(Rcoe�

lifting +

Redge
lifting), where Rcoe� and Redge correspond to the bitrate needed for encoding transformed

coe�cients and the graph geometry based on edges. DCT is chosen if there is no edge
component in the block or if its RD cost, computed as RDDCT = SSEDCT + �Rcoe�

DCT, is smaller
than RDlifting. The parameter � is chosen as 0.85 · 2(QP�12)/5, and the QP values used in this
experiment are from 24 to 36 with step size 2. The flags for transform selection are signaled
using arithmetic coding. In order to further reduce the overhead cost, in each 8⇥ 8 block only
one contour is allowed for AEC.

We compare the the proposed lifting scheme (reconn-GMRF) with 4 baseline approaches,
including the DCT, the GFT, MaxCut, and reconn-MaxCut. The DCT coe�cients are zig-zag
scanned, and the GFT coe�cients are scanned from the smallest eigenvalue to the largest
eigenvalues. The average PSNR gain and bitrate reduction are presented in Table 4.1. For
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Methods GFT reconn-GMRF reconn-MaxCut MaxCut
� PSNR
(dB)

� rate
(%)

� PSNR
(dB)

� rate
(%)

� PSNR
(dB)

� rate
(%)

� PSNR
(dB)

� rate
(%)

Foreman 0.34 -7.28 0.29 -6.42 0.26 -5.77 0.17 -3.63
Mobile 0.17 -1.46 0.10 -0.97 0.10 -0.96 0.08 -0.51
Silent 0.22 -4.28 0.20 -3.88 0.18 -3.58 0.09 -1.66
Deadline 0.37 -4.97 0.31 -3.98 0.30 -3.90 0.24 -3.19

T���� 4.1: PSNR-bitrate comparison with Bjontegaard metric. The negative value for
�rate indicates the average bitrate reduction against DCT, and the positive � PSNR

shows the average PSNR gain.

videos with simple edge structures such as Foreman and Deadline, graph based lifting has
around 0.3dB gain in PSNR. While in the videos with complicated edge structure such as
Mobile, the gain is limited since the edge map dominates the cost. We also show that
reconn-MaxCut provides a good approximation to high complexity reconn-GMRF and GFT.

4.6 Summary

In this chapter, we described the application of our proposed transform coding using graph
based lifting transform in video coding. Novel approaches in graph weights assignment
and multi-level bipartition in lifting are proposed. we also discussed detail in designing
encoding system, e.g., transform selection and signaling overhead. The results outperforms
the conventional DCT based encoding, and their performance approximates that of the high
complexity GFT based encoding.
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Chapter 5

Application: Pre-demosaic Light Field
Image Compression

5.1 Introduction

In this chapter, we introduce a new application of graph based transforms to light field (LF)
image coding1. LF imaging separately captures light rays arriving from di�erent directions
at each pixel in the image sensor. With acquired LF data, multi-view rendering and re-
focusing become possible post-capture. However, due to the additional information of light
ray directions, acquired LF data are large in volume compared to conventional color images
of the same resolution, and hence e�cient compression of LF data is important for storage
and transmission.

In the last decade, many hardware designs have been developed for LF acquisition, includ-
ing multiple camera arrays, aperture cameras, and lenselet-based plenoptic cameras. Among
them, the lenselet-based plenoptic camera is the most popular, and has been made commer-
cially available by companies such as Lytro [50] and Raytrix [62]. In a plenoptic camera, a

1A part of the content in this chapter was published in [8]

F����� 5.1: Conceptual system of lenselet-based plenoptic camera
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microlens array is placed ahead of an otherwise conventional photo sensor embedded with
Bayer color filter, as shown in Fig. 5.1. The resulting raw image is called lenselet image.
Since light fields are commonly represented and processed as 4D functions [45, 63, 72], the
acquired lenselet image typically undergoes demosaicking (pixelwise RGB interpolation) and
conversion to multiple sub-aperture images on a 2D array. Each sub-aperture image can be
seen as a typical 2D photo, gathering pixels from a specific light direction.

There exist two types of redundancies within the 4D LF representation: i) spatial redun-
dancy among neighboring pixels in a sub-aperture image, i.e. intra-view correlation, and ii)
angular redundancy among sub-aperture images of nearby directions, i.e. inter-view corre-
lation. The existing works in literature for lenselet-based LF compression can be roughly
grouped into two categories that make use of classic image and video coding techniques.
The first one encodes the entire 2D array of sub-aperture images as an image using an image
coding standard, e.g. JPEG or Main Still Picture Profile in HEVC [15, 16, 65]. The intra
and inter-view correlations are exploited using the regular intra-prediction modes (Angular,
Planar and DC modes) and a newly introduced Self Similarity (SS) mode, which is similar to
the Intra Block Copy (IBC) in HEVC screen content extension. The other type is the pseudo
sequence based approach [3, 21, 25, 30, 48, 69], where each sub-aperture image is treated as
a video frame in a pseudo video sequence. The intra and inter-view correlations are exploited
using the intra and inter prediction in the video coding standard, e.g. H.264 and HEVC.

Exploiting inter-view correlation in compression leads to high computation complexity
(due to motion / disparity prediction) and creates dependencies among coded sub-aperture
images, which is undesirable for random access. In particular, in an archiving scenario, a user
may desire to quickly browse through viewpoint images, each of which can be synthesized
in acceptably high quality using only a small subset of sub-aperture images. Thus, speedy
extraction of this image subset from the LF data compressed in high quality is important.
Furthermore, we note that most standard digital cameras use a low complexity codec (JPEG)
operating by default at very high PSNR. Similarly, in this paper we will consider an intra-view
only approach (which leads to faster encoding and better random access), operating at high
rates/PSNR.

Another problem in the aforementioned existing works is that the compression schemes
are applied on the full color sub-aperture images, where large redundancies are introduced by
demosaicking. Moreover, to incorporate standard codecs, an RGB sub-aperture image must
be converted to 4:2:0 YUV format, which induces distortions due to integer rounding and
color sub-sampling.
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In this paper, we propose a new coding scheme, where compression is applied on the orig-
inal lenselet images captured by the photo sensor, without the aforementioned pre-processing
that increases data volume or distorts captured pixel values. Our work is inspired by schemes
proposed in [12, 13, 43, 44] for regular images, which also postpone the demosaicking step to
the decoder. Specifically, we first map the raw captured pixels directly onto sparse locations
in a series of sub-aperture images. Unlike the input images for compression in [12, 13,
43, 44], where R, G, and B pixels are regularly distributed based on the Bayer pattern, the
color components after the mapping to sub-aperture images are irregularly placed, making it
di�cult to be encoded using conventional schemes, e.g., JPEG or All-Intra mode in HEVC.

In our proposed scheme, novel intra-prediction and transform coding are designed for
non-demosaicked LF data, consisting of sparsely distributed pixels. Specifically, for intra-
prediction, we estimate the local characteristics of each block based on the structure tensor
according to the available pixels. The information will then be used to adjust the shape of
kernel functions used for prediction. For transform coding, the irregularly distributed pixels
in a sub-aperture image will be connected as a graph, with the pixel values interpreted as a
graph-signal. The graph weights, which reflect similarities between connected sample pairs,
are optimized based on Gaussian Markov Random Field (GMRF) modeling of signal. The
problem of learning the optimal graph structure, i.e., graph connection and weights, based on
statistical modeling for image and video signal has been well studied in the last decade [24,
34, 36, 60]. However, the methods can only be applied on data with regular pixel placement.
In this work, we consider the graph learning problem based on sparsely distributed pixels,
namely blocks with missing observations on some pixel positions. Due to the large amount
of data size, the graph-signals are encoded using the low complexity graph-based lifting
transform described in the previous few chapters. In our experiments, we apply the proposed
LF coding scheme on a dataset captured with Lytro Illum. Compared to the state of the art
HEVC-based coding, the results show noticeable gains at high PSNRs, which is useful for LF
rendering in an archival scenario.

The rest of the chapter is organized as follows. In Section 5.2, we present the notation used
throughout this chapter and a review of conventional approaches in lenselet-based LF image
compression. Our proposed coding scheme is described in Section 5.3. In sections 5.4 and 5.5,
we describe the proposed intra-prediction and transform coding based on sparsely distributed
pixels. Experiments and conclusions are presented in sections 5.6 and 5.7 respectively.
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F����� 5.2: Conventional encoder for light field image. The demosaicking and cali-
bration processes are applied before compression.

5.2 Notations and Background

5.2.1 Notations

In this chapter, the elements of a 2-dimensional vector (e.g., v = [v1, v2]T ) in the Euclidean
space will represent the directions along row-axis and column-axis. The notation is commonly
used for image coordinate systems. Compared to the definition in Section 2.1, we consider
here a more general graph structure GG = (VG, EG), where for every node v in VG, there is
an associated non-negative self loop weight hi. The corresponding graph Laplacian matrix,
called generalized graph Laplacian, is defined as LG = D � A + H, where H is a diagonal
self loop matrix with element Hi,i = hi. D and A are the degree matrix and adjacency matrix
defined in Section 2.1. Note that the commonly used combinatorial Laplacian L is a special
case of LG with zero weight for all self loops.

5.2.2 Background: Compression after De-mosaicking

Fig. 5.2 depicts the conventional coding scheme for light field image compression, where
the captured Bayer patterned lenselet image is first converted into an array of full color
sub-aperture images, followed by compression using standard image/video codecs. In the
figure, the conversion process is based on the method proposed by Dansereau et al. [17, 47].
Through the Bayer filter embedded on the photo sensor, each pixel on the captured lenselet
image contains only one color component out of R, G, and B. In order to generate full color
images, the missing color components at each pixel have to be interpolated using the nearby
pixels where the target colors are available. The process is called demosaicking. In this work,
we apply the demosaicking approach proposed by Malvar et al. [31] to the lenselet image.
The number of pixels to be encoded will be increased threefold through the process regardless
of the demosaicking algorithms used.
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F����� 5.3: Proposed LF encoder, where compression is applied on the raw lenselet
data without demosaicking

Projected from the microlens array in the plenoptic camera, a lenselet image consists
of multiple hexagonally arranged pixel patches, which are called macro-pixels (represented
with a dash line in Fig.5.2); each macro-pixel collects light for one image pixel arriving
from di�erent directions. However, due to manufacturing defects, the arrangement of macro-
pixels is usually not aligned with the image coordinates, making it di�cult to infer a pixel’s
corresponding position in the scene and the arriving light angle. In [17], the center of
each macro-pixel is located through the help of white images, which are lenselet images
taken through a white di�user, or lenselet images of a white scene. The center locations
are estimated by finding the local maximum of brightness on the white images. Then, the
color lenselet image needs to be calibrated via rotation, translation and scaling, so that each
macro-pixel center (denoted with red point in the figure) falls onto an integer pixel location
and the arrangement of macro-pixels is aligned to the regular hexagonal grid. Through the
calibration, the amount of data will also be increased due to the interpolation involved in
scaling.

Each pixel in the calibrated image is indexed by its spatial and angular coordinates. The
spatial coordinate is given by the position of the associated macro-pixel and the angular
coordinate is the relative location within each macro-pixel. We then collect pixels of the same
angular coordinate into one sub-aperture image, where the pixels are arranged according to
their spatial coordinates. Each sub-aperture image can be viewed as a typical 2D picture,
where large spatial correlation exists between neighbouring pixels.
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F����� 5.4: Sparsely distributed G components on one sub-aperture image (Figure
Friends1 from EPFL light field dataset)

5.3 Proposed scheme: Compression before De-mosaicking

In the pre-processing stage of the conventional coding scheme, the volume of LF data is
increased greatly during demosaicking and the scaling operation needed for calibration.
In order to avoid these redundancies, we propose a new coding scheme for LF in which
compression is performed on the data collected in the original lenselet image instead of
the pre-processed pixels in the full color sub-aperture images. The flow chart is shown in
Fig. 5.3. Without demosaicking, we map raw pixels onto the calibrated lenselet image
according to the transformation matrix applied in [17]. Pixels that fall onto non-integer
locations after transformation will be rounded to the nearest integer positions. Then, based
on the relative locations within the macro-pixels on the calibrated image, pixels are arranged
onto multiple sub-aperture images, where redundancies between spatial neighbours can be
exploited. Due to the placement of macro-pixels, the pixels in the sub-aperture images will
be placed hexagonally, which is di�erent from the conventional pipeline, where sub-aperture
images are re-sampled into rectangular placement. Note that the pixels around boundaries
of each macro-pixel, which have large noise due to underexposure, are discarded in the
pipeline described in [17]. However, in the rearrangement process in our proposed scheme,
the boundary pixels will be kept. The mapping will not change the number of pixels nor the
intensity values of R, G, and B components from the raw data.

Since no interpolation is applied, some pixel locations are empty in the sub-aperture
images, as shown in Fig. 5.4. Depending on the camera manufacturing, i.e., the type of macro-
pixel misalignment and calibration algorithm adopted, the spatial and angular coordinates for
each pixel on the captured lenselet image may be di�erent. Therefore, the pattern of pixel
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distribution in sub-aperture images is not fixed and is also highly irregular. This is in contrast
with the input signal considered in the pre-demosaic image coding schemes proposed in [12,
13, 43, 44], where R, G, and B pixels are distributed regularly based on Bayer pattern. Due to
such irregularity of spatial distribution for LF data, existing coding techniques, e.g., discrete
cosine transform (DCT) and discrete wavelet transform (DWT), cannot be easily applied. This
motivates the use of graphs, which can represent both regular and irregular data points as long
as the pair-wise relations can be defined properly. In the next section, we will first describe
the proposed intra-prediction that can predict irregularly spaced pixel based on pixels in the
decoded neighbouring blocks. Then, in Section 5.5, the graph construction for graph-based
coding of sparsely distributed pixels will be discussed.

F����� 5.5: Decoder in the proposed LF coding scheme, where demosaicing and
calibration are applied to generate full color sub-aperture image array

At the decoder side, pixels in sub-aperture images are de-compressed and inverse-mapped
back to their original positions in the 2D lenselet image, as shown in Fig. 5.5. The image
will then be demosaicked and calibrated [17, 47] in order to generate full color 4D LF for
further processing, e.g., multi-view rendering and re-focusing. Note that our scheme does not
rely on a particular selection of demosaicking and calibration algorithms. In fact, multiple
works have been proposed over the last few years in LF image calibration and demosaicking.
For example, in [79] and [82], di�erent methods are applied to locate macrolens centers by
examing the dark pixels and line features from the white image. Therefore, the spatial and
angular coordinates estimated are di�erent from the ones in [17], which leads to di�erent
types of sparse distribution within sub-aperture images. In [55, 79], a di�erent strategy of
demosaicking is considered which performs color interpolation on each of the sub-aperture
image instead of the whole lenselet image. Our coding scheme can be easily adapted by
using di�erent transform matrices for pixel rearrangement in the encoder side according to
the calibration algorithm applied. The demosaicking and calibration strategies at the decoder
side can also be adjusted accordingly.
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F����� 5.6: Proposed Intra-prediction system for sparsely distributed pixels

5.4 Proposed Intra-prediction Scheme

In order to facilitate random access for rendering, each sub-aperture image is encoded in-
dependently. A sub-aperture image will be divided into non-overlapping m ⇥ m blocks, as
transform units. A coding scheme with variable block sizes, e.g., the quad-tree partition in
HEVC, is left as a possible future work.

5.4.1 Gradient Estimation

In the latest video standards, e.g., H.264 and HEVC, an intra-prediction mode is selected
through exhaustively searching all the possible directions to find the one with the minimum rate
distortion (RD) cost. The process increases the implementation complexity significantly as the
number of directions allowed increases. In order to reduce the complexity, many methods have
been proposed in literature [4, 26, 37, 40], which exploit the local characteristics, e.g. edge
direction, to reduce the number of candidate modes searched. In these works, the information
of local gradients is used to determine the dominant edge direction within each block. The
intra-modes closely aligned with the estimated edge direction are of higher priority in mode
selection. However, all these methods are restricted to regular videos with a complete set of
pixels within each block. In this section, we propose a new intra-prediction algorithm based
on the structure tensor for intra-predicting the sparsely distributed pixels before demosaicking.

In Fig. 5.6, we show the flow chart of our proposed intra-prediction system. Pixels in
the decoded neighbouring blocks are used as references for each block in the sub-aperture
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images. Based on the structure tensor, which provides information about local gradient in
the reference blocks, we estimate the structure tensor of the current block to be encoded.
Therefore, overhead, such as indices for intra-prediction mode, does not need to be signaled.
With structure tensor, edge direction and strength within a block can be estimated. This
information allows us to define the rotations and stretches of the adaptive kernels used for
intra-prediction. Besides the estimation of structure tensor, where we utilize the correlation
between di�erent color channels, all other steps are applied on R, G, and B components
separately.

The structure tensor of a block B is calculated as

HB = ⌃i2Brf (i)rf (i)T = ⌃i2B

266664
dr (i)2 dr (i)dc(i)

dc(i)dr (i) dc(i)2

377775 , (5.1)

where dr (i) and dc(i) denote the gradient of pixel intensities along row and column axis on
pixel i.

In our work, the gradient rf (i) for each pixel i is estimated with linear regression. Using
Taylor’s theorem, the pixel value at a given point x can be expressed as

f (x) = f (a) + rf (a) · (x � a) +O(kx � ak2), (5.2)

where rf (a) is the gradient vector at point a. For a su�ciently close to x, the pixel value
f (x) can be well approximated with the first two terms

f (x) ⇡ f (a) + rf (a) · (x � a). (5.3)

Based on the linear approximation, we estimate the gradient rf (a) at point a by fitting a
hyperplane that best satisfies (5.3) for a number of pixels {x1, x2, · · · xk } close to a. The fitting
can be represented as an overdetermined system:

F = X · rf (a) (5.4)

=

266666666664

f (x1) � f (a)
f (x2) � f (a)

...

f (xk ) � f (a)

377777777775
=

266666666664

(x1 � a)T

(x2 � a)T

...

(xk � a)T

377777777775
· rf (a). (5.5)
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The optimal gradient rf (a)⇤ can be derived by solving the least square problem

rf (a)⇤ = argmin
rf (a)

kF � X · rf (a)k22, (5.6)

which has a closed form solution

rf (a)⇤ = (XTX)†XTF. (5.7)

For each pixel, we use 4 nearby pixels (k = 4) for hyperplane fitting in (5.5). The neighbouring
pixels are selected as the 2 closest neighbours in terms of Euclidean distance in horizontal and
vertical orientations, respectively. This choice is made in order to avoid the ill-conditioning
that may result if the pixels picked were all aligned on the same line.

After computing the structure tensor in (5.1) using the estimated gradients, we apply
eigen-decomposition on the 2 ⇥ 2 matrix HB:

HB =
f
e1 e2

g 266664
�1 0

0 �2

377775
266664
e1

T

e2
T

377775 (5.8)

= �1e1e1
T + �2e2e2

T . (5.9)

The resulting eigenvectors e1 and e
2 along with their corresponding eigenvalues �1 and �2,

where �1 < �2, summarize the gradient distribution within block B. The eigenvector e2

represents the direction maximally aligned with the gradient, while the orthogonal direction
e1 roughly represents the edge direction.

5.4.2 Structure Tensor Estimation

Leveraging the local redundancy among neighbouring pixels in the sub-aperture image, we
can estimate the local gradient, and therefore the structure tensor, of each input block I using
the information from its decoded neighbouring blocks {B1,B2, · · · }. In our algorithm, the
estimate of the structure tensor HI of block I is calculated as the weighted average of the
structure tensors from its neighbouring blocks:

HI =
1

c
⌃iwi · (

1

ni
HBi ), (5.10)

where ni denotes the number of available pixels in reference block Bi, wi is the weight
associated to block Bi, and c is the normalization constant c = ⌃iwi.
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F����� 5.7: 4 decoded reference blocks and the vectors indication their relative loca-
tions to the input block I and edge direction estimated

The weight value wi is a function of the edge orientation in Bi and the reference block’s
relative location from the input block I. This design is based on the observation that edges
in natural images are continuous contours, and can be approximated locally with straight
lines. In other words, the orientation of edges is mostly consistent locally. Therefore, if the
edge direction calculated on one reference block Bi is consistent with its relative location
from I, e.g., if the reference block in the top-left corner has edge orientation from top-left
to bottom-right, the input block to-be coded is more likely to have the same edge direction.
In estimating the gradient in the input block, blocks with consistent edge orientation will be
assigned larger weights. In our algorithm, we consider up to 4 decoded neighbouring blocks,
i.e., blocks on the top-left corner, top, top-right corner, and left, as the references for structure
tensor estimation and the following intra-prediction. The unit vectors vi from I to each of the
Bi reference blocks are [�1p

2
, �1p

2
]T, [�1, 0]T, [�1p

2
, 1
p
2
]T, [0,�1]T , respectively. Denote ei to be the

edge direction calculated with the structure tensor in block Bi, and ✓i to be the angle between
v

i and e
i, calculated as

✓i = arccos(
v

i
· e

i

kvik2
) 2 [0, ⇡], (5.11)

depicted in Fig. 5.7. The weight wi in (5.10) is defined as

wi =
8>><>>:
exp(� ✓i� ) if ✓ < ⇡2
exp(� ⇡�✓i� ) if ✓ > ⇡2

, (5.12)

where � is an adjustable parameter. In (5.12), larger weights are assigned to the blocks
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F����� 5.8: Illustration of kernel size and shape in the smooth block (left) and the
block with strong edge (right)

with smaller ✓i, i.e., the edge directions ei and v
i are nearly consistent. The structure tensor

estimation described in (5.10) is done only on the G channel. For R and B channels, the
structure tensors are calculated based the reconstructed G channel pixels in the same block,
since there exists high correlation between gradients in R, G, and B channels.

5.4.3 Data-adaptive Kernel Regression

For intra-prediction, we apply the same adaptive kernel regression on each pixel in a given
block, similar to what was done in [35]. In the case of zero-order estimation, the prediction of
the pixel intensity at x can be calculated by taking the weighted average of its neighbouring
pixels xi, written as

f̃ (x) =
1

zx
⌃xi2Rx (K (xi � x) · f (xi)), (5.13)

where Rx denotes the set of neighbouring pixels of x in the decoded reference blocks, and zx
is the normalization constant zx = ⌃xi2RxK (xi � x). A common choice of the kernel function
K (·) is the Gaussian kernel

K (xi � x) =
1

2⇡�2
exp(�

(xi � x)T (xi � x)
2�2

), (5.14)

which gives higher weights to nearby pixels than to pixels that are far away. However, such
kernel selection assumes isotropy in image characteristics, ignoring local features such as
edges. For data-adaptive kernel regression used in this work, the Gaussian kernel is adapted
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based on the edge orientation and strength derived from structure tensor as

K (xi � x) =
p

det(C)
2⇡�2

exp(�
(xi � x)T

C(xi � x)
2�2

), (5.15)

whereC is the local gradient covariance based on the eigenvectors and eigenvalues of structure
tensor defined in (5.9), and can be decomposed as

C = � ·
f
e1 e2

g
⇤
266664
e1

T

e2
T

377775 (5.16)

⇤ =
266664
1
✏ 0

0 ✏

377775 , ✏ =
�2 + p2
�1 + p2

(5.17)

� =
1

n
p
�1�2 + p1, (5.18)

where [e1 e2] rotates the coordinates of Gaussian kernel along the edge direction and
dominant gradient. ✏ is the ratio of two eigenvalues, representing the relative strength of
gradient in e2 from the perpendicular direction e1. The kernel will be elongated for blocks
of strong edges, where �2 � �1, and will be near-circular for smooth blocks (�2 ⇡ �1 ⇡ 0),
as illustrated in Fig. 5.8. � determines the scaling of the kernel size, where n is the number
of available pixels in the block. p1 and p2 are two positive scalars used to ensure numerical
stability.

5.5 Proposed Transform Coding

As described in Section 5.3, the pixels rearranged onto the sub-aperture images before de-
mosaicking are distributed sparsely, which motivates the usage of graph-based transform in
exploring data redundancies. In this section, we discuss the graph construction, on which
the graph based transform will be applied. Each node on the graph represents one pixel and
each link connects distinct pixels within the same color component. Note that the graphs for
di�erent blocks are constructed independently. For graph construction, we will discuss two
algorithms: 1) a simple heuristic based on geometric distance between pixels and 2) graph
learning from training data based on GMRF modeling.
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(a) (b)

F����� 5.9: A part of graph constructed for irregularly placed R components. In (a),
the one using 4 nearest neighbor method is shown. In (b), each pixel is connected to 2

neighbors in horizontal and vertical orientations respectively

5.5.1 Graph Construction base on Geometric Distance

In each sub-aperture image, similar to natural images, large local redundancies exist among
pixels that are close in distance. Hence, the most straightforward approach in exploiting
the pair-wise correlation is to connect each pixel with its k nearest neighbors in terms of
Euclidean distance. For complexity reduction in the graph-based lifting transform, where the
computation for each node depends on its connected neighbours, we consider mainly sparse
graphs, i.e., small k. However, the graph connection based on k-nearest neighbour with small
k can be highly sensitive to the pixel arrangement. For example, in the cropped sub-aperture
image shown in Fig. 5.9, R components are mostly aligned horizontally. The resulting graph,
based on k-nearest neighbor (k = 4), thus consists of mostly horizontal links as shown in
Fig. 5.9(a), and is unable to capture local similarity in regions with vertical features, e.g.,
vertical edges.

In order to exploit similarity along di�erent orientations, yet still keep connection sparse,
we instead connect each pixel to an equal number of neighbours in horizontal and vertical
directions, as shown in Fig. 5.9(b). The weight wi, j on the link connecting node vi and v j is
defined as

wi, j = exp

 
�

dist(i, j)2

�2

!
, (5.19)

with the assumption that pixels that are closer in distance are more likely to be similar in pixel
intensities. The function dist(i, j) measures the Euclidean distance between node vi and v j .
This approach has been adopted in our previous publication in [8].
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5.5.2 Graph Learning based on Statistics Modeling

In addition to the simple heuristic using geometric distance, we also consider optimized graph
construction based on the statistics of residual blocks in LF images. Since the information
about the graph, i.e., connection, link weights, and self loops, can be uniquely and fully
represented using a graph Laplacian matrix LG, the problem of finding the optimal graph can
be seen as being equivalent to the optimization of LG.

In the literature, many works have studied the problem of finding the optimal graph
Laplacian matrix based on observations in di�erent applications. In [24, 33, 34, 60, 78], a
statistical assumption has been made on data, where each observation f 2 RN is modeled as
a realization of a GMRF, i.e. f ⇠ N (µ,⌃ = Q

�1) and the problem for learning the graph
Laplacian matrix LG for this type of data modeling boils down to the maximum likelihood
estimation of the precision matrix Q, which defines the partial correlation between pair-wise
variables in f . In [33, 34], Egilmez et al. proposed an algorithm specifically for finding a
precision matrix Q with graph Laplacian structure, i.e.

8>><>>:
Qi, j < 0 if Ai, j > 0

Qi, j = 0 if Ai, j = 0
, (5.20)

with additional constraints on the graph connectivity. For a graph of N nodes and M links,
given p i.i.d observations {f1, f2, · · · fp} of zero mean GMRF, the precision matrix can be found
by solving the maximum likelihood (ML) problem:

argmax
Q

Y

i=1:p

p(fi |Q, µi = 0)

= argmin
w,h

log det(Q) � Tr(QS)

subject to Q = B diag(w)BT + diag(h),

(5.21)

where S is the N ⇥ N sample covariance matrix, and B is the N ⇥ M incidence matrix,
specifying the connectivity between node pairs. The M ⇥ 1 vector w contains the weights
associated to each link, and the N ⇥ 1 vector h contains the self loops associated to each node.

The aforementioned Laplacian learning algorithms are all based on the assumption that
each N dimensional observation fi contains a complete set of variables, i.e. a pixel value is
available at each index in f

i. In a block of a non-demosaicked sub-aperture image, however,
pixels are distributed sparsely and each index in fi contains at most one color component out
of R, G, and B. Therefore some modifications are required for using the existing learning
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algorithm. Without loss of generality, we can write the observed block as a column vector
with its elements ordered as

fi =

266664
fiO

fiM

377775 , (5.22)

where fiO is a r dimensional vector containing the observed pixel intensities, and fiM of
dimensional N � r is the missing pixels. r and the indices specified by O andM are both
variables that are block dependent. In order to optimize the graph for fiO , we assume fiO

to be a sub-sampled version of fi, which is modeled as a GMRF. In the statistics literature,
many methods are proposed for estimating the inverse covariance matrix in a GMRF model
based on observations with missing variables [41, 49, 71]. In the work by Kolar and Xing
[41], a simple plug-in algorithm is proposed. The method consists of two steps: First, the
sample covariance matrix is estimated using the incomplete observations. Define ri to be the
indicator vector of fi, where element

8>><>>:
ria = 1 if fia is available

ria = 0 otherwise
, (5.23)

the estimated sample covariance matrix S̃ is calculated as

S̃a,b =

P
i=1:p ria · rib · ( fia � µi a)( fib � µi b)

P
i=1:p ria · rib

. (5.24)

Readers are referred to [41] for more details on the theoretical justification of the estimation.
In the second step, S̃ will be plugged into the objective function of the maximum likelihood
estimation of the precision matrix Q. In this work, we will optimize Q based on (5.21) with
S replaced by S̃.

We can write the covariance and precision matrices of the estimated GMRF model in
block form as

⌃ = Q
�1 =

266664
⌃O,O ⌃O,M

⌃M,O ⌃M,M

377775 ,

Q =

266664
QO,O QO,M

QM,O QM,M

377775 .
(5.25)

Once the precision matrix Q, and therefore the graph Laplacian matrix, is derived for the
whole block, which includes the positions of both available and missing data, the graph
Laplacian L for fiO can be calculated by taking the Schur complement of the sub-matrix ⌃O,O
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of ⌃:
L = ⌃�1

O,O = QO,O �QO,MQ
�1
M,MQM,O . (5.26)

In our experiment, light field images are divided into two groups: training set and test set.
Blocks of intra-predicted residuals from the training data are classified, based on the structure
tensor, into 8 directional modes:

M = {M✓ | ✓ =
�3⇡

8
,
�⇡

4
,
�⇡

8
, 0,
⇡

8
,
⇡

4
,
3⇡

8
,
⇡

2
} (5.27)

and one DC mode, MDC, if there is no dominant edge direction. Given the edge angle
� of a training block derived from its structure tensor, i.e., the angle between the smallest
eigenvector and the horizontal axis, and the eigenvalues �1 and �2 (�1  �2), the associated
class is determined based on

8>><>>:
MDC if �2�1 < T

M✓ if � 2 [✓ � ⇡16, ✓ +
⇡
16 )
. (5.28)

Training blocks within a class are assumed to be samples from the same GMRF model.
Therefore, in total 9 graph Laplacian matrices {LGi |i = 1, 2, · · · 9} are derived using the plug-
in algorithm for intra-predicted residuals. We consider 8 connected graph for pixels on the
hexagonal grid as the connectivity constraint in (5.21). For residual blocks in test set, blocks
will be classified into 9 modes based on the edge angle derived from the estimated structure
tensor, whose calculation is described in Section 5.4. The graph construction of pixels in each
block is obtained with Schur complement from the Laplacian matrix LGi of the corresponding
class.

5.5.3 Graph-based Lifting Transform

Due to the large data size of light field images, we apply the localized graph based lifting
transform with the Max Cut bipartition and re-connection (reconn-MaxCut) described in
Chapter 4, which was shown to have comparable performance but lower complexity than
reconn-GMRF. As described in Chapter 3, for the context of compression, the main objective
in designing the lifting scheme is to compress most of the data energy in the low frequency
band, i.e., in the update set U , or correspondingly reduce the energy of prediction residuals
d = fP �PfU . For a signal f modeled as GMRFN (µ,Q�1), the minimum mean square error
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estimator (also MAP estimator) of signal value fi on node vi 2 P is expressed as

f̂ i = µi �
X

j

Qi, j

Qi,i
( f j � µ j )

= �
X

j

Qi, j

Qi,i
f j + (µi +

X

j

Qi, j

Qi,i
µ j ).

(5.29)

The matrix form of (5.29) for the case of zero mean is the same as in (3.15). If the precision
matrix estimated satisfies the graph Laplacian structure, as described in (5.20), and if µi ⇡

µ j = µ, which is usually true for neighboring nodes of high correlation, the above equation
can be simplified as

f̂ i = �
X

j

Qi, j

Qi,i
f j + µ(1 +

X

j

Qi, j

Qi,i
)

=
1

Di,i + Hi,i

X

j

Ai, j f j +
Hi,i

Di,i + Hi,i
µ.

(5.30)

The estimator is simply a weighted average of the signal values f j on the neighbouring
nodes v j and the associated mean µ of vi. The self loop weight Hi,i can be interpreted as
a measurement of similarity to the mean µ. In our experiment, we assume µ = 0 since the
sub-aperture images after intra-prediction usually have average value close to 0. Note that if
the graph is bipartite, i.e. links only exist between nodes from opposite sets, the prediction
operation in (5.30) is equivalent to the low complexity CDF53 filterbank

f̂ i =
1

Di,i

X

vj2U

Ai, j f j (5.31)

described in Section 2.4, when self loop weight Hi,i = 0. In this work, we consider a more
general CDF5/3 filterbank with non-zero self loops:

f̂ i =
1

Di,i + Hi,i

X

vj2U

Ai, j f j +
Hi,i

Di,i + Hi,i
µ. (5.32)

For bipartite graphs, the proposed filterbanks are optimal in terms of mean square error for
the GMRF model, as shown in (5.30).

For graphs that are not bipartite, we use the re-connection algorithm with sparsification
described in Section 3.3, which re-connects each vi 2 P to be predicted to nodes in U ,
and apply CDF5/3 predictor in (5.32) on the newly formed bipartite graph. As proven in
Appendix A, without the sparsification, the applied predictor is equivalent to the minimum
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mean square error estimator (MMSE) for fP given fU , and therefore is optimal in terms of
energy compaction.

For Max Cut bipartition, we apply the algorithm proposed in [59] using MST algorithm.
The update filter is calculated through orthogonalization, and the construction of graphs for
lifting transform in levels � 2 is based on Kron reduction. For entropy coding, we apply the
Amplitude and Group Partitioning (AGP) algorithm [66]. Note that the graph-based lifting
transform applied is the same as in Section 4.5 (reconn-MaxCut), but with graphs designed
in this chapter.

5.6 Experiments

5.6.1 Experimental Setting

For archival purpose, one should assess the quality of reconstructed lenselet image in the
original RGB pattern. However, current state of the art schemes using HEVC discard un-
derexposed pixels at the boundary of macro-pixels during the conversion to sub-aperture
image array, so it is di�cult to recover the lenselet image on the decoder side. Hence, for
evaluation, we compare performances on the reconstructed full color sub-aperture images.
The full color sub-aperture image before compression, generated from the raw lenselet data
using the demosaicking and calibration pipeline described in [17, 47], is taken as the ground
truth. As a baseline, we consider the HEVC (HM 16.9) encoding of sub-aperture images
in original 4:4:4 RGB (intraHEVC-RGB444) and 4:2:0 YUV (intraHEVC-YUV420) formats.
Since we consider a coding scheme that allows e�cient random access, the configuration used
in HEVC is All-Intra coding, which allows intra-prediction but no inter-prediction. For fair
comparison, the post filters in HEVC, including deblocking filter and SAO are disabled. In
our proposed scheme, the same demosaicking and calibration will be applied on the decoder
side to the reconstructed lenselet image, in order to generate the reconstructed sub-aperture
images for evaluation. Images from the proposed and baseline schemes are compared in
RGB format without sub-sampling. For intraHEVC-YUV420, the reconstructed sub-aperture
images are translated back to 4:4:4 RGB format before evaluation. The up-sampling for U
and V components is based on nearest neighbor interpolation.

In our method, each sub-aperture image is divided into non-overlapping 8⇥ 8 blocks. The
light field images we consider in the experiments are obtained from the EPFL database [46].
We consider three di�erent scenarios for the graph based coding scheme:
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(a) ✓ =
3⇡

8

(b) ✓ = 0 (horizontal)
F����� 5.10: Graph structure optimized for classes corresponding to intra-prediction
angle (1) ✓ =

3⇡

8
(nearly vertical) and (2) ✓ = 0 (horizontal). The link color indicates

the associated weight and the node color indicates the associated self loop weight
(darker: larger weight)

1. DGLT: geometric Distance based graph construction (Section 5.5.1) in Graph Lifting
Transform without intra-prediction, which has been use in [8].

2. intraDGLT: geometric Distance based graph construction in Graph Lifting Transform
with the proposed intra-prediction (Section 5.4)

3. intraLGLT: graph Learning based graph construction (Section 5.5.2) in Graph Lifting
Transform with the proposed intra-prediction

For graph learning in scenario 3, we select 4 sub-aperture images from each of the following
LF images from EPFL dataset: Ankylosaurus_&_Stegosaurus, Ceiling_Light, ISO_Chart_16,
Perforated_Metal_1, Sophie_&_Vincent_3, and Yan_&_Krios_standing to form the training
set. The parameter � in (5.12) is set as 0.9, and the parameters �, p1, p2 in (5.15) and (5.17)
for data-adaptive Gaussian kernels are chosen to be 1.6, 0.001 and 0.001. The threshold value
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T in (5.28) for training block classification is set as 1.5. We apply 2 level lifting transform for
transform coding for pixels in each block.

In Fig. 5.10, two illustrative examples are shown for weighted graph optimized for set
M✓= 3⇡

8
and M✓=0. The color on links and nodes indicates the associated link weight and

self loop weights. It can be seen that the orientation of links with strong weights (links with
darker color) well matches the intra-prediction direction, which is also the edge direction of
the block. The nodes with large self loop weights concentrate around the boundaries close
to the reference blocks, which have better prediction. Therefore, the associated residuals
on those pixels tend to have lower variance. The observation matches our interpretation in
Section 5.5 that self loop weights model the similarity of observed values on a node to their
expected value.

The raw data in [46] are captured with Lytro Illum camera [64]. Each test image is of size
5368 ⇥ 7728. In the baseline scheme, the raw data will be converted into 15 ⇥ 15 full color
sub-aperture images. Each sub-aperture image is of size 434 ⇥ 625. Therefore for each test
image, there are a total of 91546875 = 15 ⇥ 15 ⇥ 434 ⇥ 625 ⇥ (1 + 1

4 +
1
4 ) pixels that need

to be encoded by HEVC when using 4:2:0 YUV format. In our scheme, on the other hand,
the compression is applied on the original raw data without demosaicking, and therefore only
41483904 = 5368 ⇥ 7728 pixels are required, saving more than 55% in input data size.

5.6.2 Results

Fig. 5.11 shows the PSNR comparisons for images Friends_1, Bikes, Flowers, and Anky-
losaurur_&_Diplodocus from EPFL dataset. The considered QP values range from 4 to 36.
For applications such as archiving and instant storage on cameras, images are typically stored
in very high quality. Therefore, in the evaluation, we consider mainly the high bitrate region.
It can be seen that for higher bit rates (bpp > 2), graph based coding schemes significantly
outperform the conventional approach using HEVC. This is because as the bit rate increases,
indicating a smaller quantization step, more high frequency components will be kept in the
transform domain after quantization. Using conventional approach to encode will incur a
large cost to encode all the coe�cients, while in the proposed method, only around half as
many coe�cients are encoded. For low bit rate region, since most of the high frequency
coe�cients will be discarded after quantization, the number of coe�cients that need to be
encoded in HEVC are much smaller than the total number of coe�cients. Therefore, the
advantage of having a smaller amount of data is not as significant in this case. With the
proposed intra-prediction, correlations between neighbouring blocks are utilized to reduce
redundancies before compression. As a result, performance is improved by about 5dB over
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(a) (b)

(c) (d)

F����� 5.11: Average PSNR over R, G, and B components for test images (a) Friends1
(b) Bikes, (c) Flowers, and (d) Ankylosaurur & Diplodocus
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our results without intra-prediction. Moreover, with graph learning, directional local charac-
teristics are exploited in selecting graph link weights, which provides more accurate modeling
of the similarity between pixels as compared to the link weight selection based solely on
Euclidean distance. In the results, using graph learning leads to around 0.5dB gain over
graph construction based on distance. For baseline method using 4:2:0 YUV format, PSNR
will mostly saturate near 43dB, which is mainly caused by the color conversion. During
the conversion, some details are lost when rounding floating point values, and resolution is
reduced as down-sampling is performed. In the proposed method, since the compression is
performed on the raw RGB data, the performance will not be degraded by distortion of color
conversion and downsampling.

5.7 Summary

In this chapter, we have described a novel coding scheme for light field images based on graph
based lifting transform. The scheme is able to encode the original raw data without introducing
redundancies from demosaicking and calibration and distortion from color conversion and
downsampling. Moreover, we proposed an intra-prediction and graph learning algorithm for
pixels in sub-aperture images that are sparsely distributed. The pixels are then connected as
graphs and encoded with low complexity graph based lifting transform. The coding results at
high bitrates using the proposed method outperform the widely applied HEVC based approach.
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Chapter 6

Edge Adaptive Graph-Based Transforms
Step/Ramp Edge Models for Video Compression

6.1 Introduction

In this chapter, we study edge models for edge adaptive graph-based transforms (EA-GBTs)
in video compression. In particular, we consider step and ramp edge models to design
graphs used for defining transforms, and compare their performance on coding intra and inter
predicted residual blocks. EA-GBTs are special types of Graph Fourier Transforms (GFTs),
described in Section 2.2, where the graphs are constructed based on the edge information.
The first example of an EA-GBT was proposed in [28] for depth-map coding. By adjusting the
graph weights based on the edge information, i.e., smaller weights are assigned for links across
edges, an EA-GBT was defined for each block. Such adaptation provides better compression,
since the resulting transforms avoid filtering across the discontinuities which could have
created high frequency coe�cients. Recently, Hu et.al [76] proposed an EA-GBT to capture
both strong and weak edges for depth-map coding. In our previous work [32, 80], we show that
EA-GBTs can also be used to improve inter and intra predicted residual coding performance
over the DCT. However, prior work only considers the step edge model for the EA-GBT design
by implicitly assuming that all edges can be represented with ideal step functions, as shown in
Fig. 6.1(a). As pointed out in [61], this is usually not the case, especially for high resolution
natural images where edges are mostly ramps, as illustrated in Fig. 6.1(b). In this work,
we show that such property also holds for intra predicted residual blocks generated in video
coding and that better compression can be achieved by using the proposed ramp-edge model.
In contrast, for inter predicted coding, we obtain better compression performance using the
step edge model. Most of this work was published in [81].

In order to optimize EA-GBTs whose associated graphs are designed based on a ramp
edge model, we propose a new probabilistic model for ramp edges and estimate the parameters
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(a) (b)
F����� 6.1: (a) The step function and (b) ramp function for edge modeling

by training on residual block data. The optimized model parameters are used to design EA-
GBTs by adjusting the graphs’ weights according to the detected ramp edges within blocks.
For compression, we employ a block-adaptive coding scheme, i.e., di�erent EA-GBTs are
designed for blocks with di�erent edge positions, which requires sending edge information to
the decoder for reconstruction. For e�cient edge coding, we propose a new method for ramp
edges, called arithmetic ramp edge coding (AREC), extending AEC proposed in [19]. In our
experiments, we compare EA-GBT with step and ramp models for inter and intra predicted
residual videos. The results show that the proposed ramp edge model performs better than step
edge model for intra predicted residuals, and both models outperform DCT-based encoding.

6.2 Edge Models for Residual Signals

6.2.1 Ramp-Edge Model
The derivation of the optimal graph for EA-GBT in [76] is based on the assumption that
1-D signals with an edge can be modeled as auto-regressive (AR) processes with a step
transition. However, edges with step transition rarely exist in natural images. The edges
mostly have a smoother (ramp-like) transition as a result of image capture and digitization,
which is particularly true for high resolution images. Therefore, in our work, we model the
1-D signals [x1, x2, · · · xN ]t with an edge in a block as AR processes with a sloped transition
from pixels xi to xi+`, where ` denotes the ramp width, immersed in an independent and
identically distributed (i.i.d.) Gaussian noise ek ⇠ N (0,�e

2). The model is written as
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x1 = ⇢(y + ✏ ) + e1

x2 = ⇢x1 + e2

. . .

xi = ⇢xi�1 + ei

xi+1 = ⇢xi + ei+1 + t1

. . .

xi+` = ⇢xi+(`�1) + ei+` + t`

xi+(`+1) = ⇢xi+` + ei+(`+1)

. . .

xN = ⇢xN�1 + eN,

(6.1)

where y is the reference sample in the neighboring block, and ✏ ⇠ N (0,�2✏ ) is the associated
distortion. A sloped transition is denoted as an i.i.d. random gap tp ⇠ N (m,�t

2). Note that
the model is equivalent to the model in [76] for ` = 1 and y = 0, and thus can be seen as
a generalization of that work. We can express (6.1) in matrix form as Fx = b + y, where
y = [⇢y, 0, 0, · · · 0]t and

F =

26666666666666666664

1 0 0 · · · · · · 0

�⇢ 1 0
. . . . . .

...

0 �⇢ 1
. . . . . .

...
...
. . . . . . . . . . . .

...
...
. . . . . . �⇢ 1 0

0 · · · · · · 0 �⇢ 1

37777777777777777775

, b =

26666666666666666666664

e1 + ⇢✏
e2
e3
...
...
...

eN

37777777777777777777775

+

26666666666666666666664

0
...

t1
...

t`
...

0

37777777777777777777775

. (6.2)

Since F is invertible, the signal can be written as x = F
�1
b+F�1y, where F�1y is the optimal

prediction for x, and r = F
�1
b is the resulting residual signal. The optimal transform for

compressing r can be derived by computing the KLT. In order to do it, we first compute the
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F����� 6.2: 1-D line graph with weak link weights w for the ramp spanned from xi to
xi+`

covariance matrix of r as

C = �e
2
F
�1

266666666666666666666666664

1 + � 0 · · · · · · · · · · · · · · · 0

0 1
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .
...

...
. . . . . . 1 + ↵t 0

. . . . . .
...

...
. . . . . . 0

. . . 0
. . .

...
...

. . . . . . . . . 0 1 + ↵t
. . .

...
...

. . . . . . . . . . . . . . . . . . 0

0 · · · · · · · · · · · · · · · 0 1

377777777777777777777777775

(F�1)t, (6.3)

where ↵t =
�t2

�e2
and � = (⇢�✏ )2

�e2
. In this chapter, we only consider the case when ⇢ = 1. Then,

the precision matrix, defined as Q = C
�1, can be written as

Q =
1

�e2
·

26666666666666666666666666666666664

1 + 1
1+� �1

�1 2 �1
. . . . . . . . .

�1 2 �1

�1 1 + 1
1+↵t

�
1

1+↵t

�
1

1+↵t
2

1+↵t
�

1
1+↵t

. . . . . . . . .

�
1

1+↵t
1 + 1

1+↵t
�1

�1 2 �1
. . . . . . . . .

�1 1

37777777777777777777777777777777775

. (6.4)

Given the 1-D signal f = [ f1, f2, · · · f N ]t of length N with the sloped edge between location
xi and xi+`, we can represent the signal using a line graph shown in Fig.6.2. It can be shown
that if we assign the weights w across the ramp to be 1

1+↵t
= 1

1+�2t /�
2
e

, while others are set
to 1, the graph Laplacian L is approximately equivalent to Q in (6.4) if the distortion of the
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reference sample is large. Since precision matrix Q ⇡ L and the covariance matrix C share
the same eigenvector set, the EA-GBT basis U defines the KLT. In our simulation, we assume
the noise variance �2e is 1. The parameter �2t , can be estimated from the sample variance �̂2t
of pixel gradients {| fi � fi+1 |, | fi+1 � fi+2 |, · · · , | fi+`�1 � fi+` |} extracted from the detected
ramps.

6.2.2 Experimental Justification of the Edge Models

We justify our proposed model experimentally by learning a graph from the real inter/intra
predicted residuals. We employ one of the graph learning methods proposed in [24]. The
residual signal f 2 RN is first modeled as a Gaussian Markov Random Field (GMRF) defined
as follows.

p(f |Q) =
1

(2⇡)N/2det(Q)�1/2
exp

✓
�
1

2
f

t
Qf

◆
, (6.5)

where Q is the precision matrix to be estimated. Note that the AR model described in the
previous subsection is one special case of a parametric GMRF model. The optimal precision
matrix in (6.5) is computed by solving the maximum likelihood problem:

Q = argmax
Q2�

logdet(Q) � Tr (QS) , (6.6)

where S is the sample covariance of residual signal f and � defines the matrix type and graph
connectivity constraint for Q. In our case, we constrain the matrix to be a combinatorial
Laplacian of a 2-connected line graph. In (6.6), the objective function is derived by taking
the natural logarithm of likelihood term in (6.5).

In order to form the training set, we apply Sobel detector to identify step edges, and the
edge detector proposed in [61] to identify ramp edges of width ` = 2 on unquantized residuals
obtained from HEVC intra and inter prediction for 8 video sequences, with block size fixed as
8⇥8. The training set is composed of row/column residual vectors [x1, x2, · · · , x8]t with a step
edge detected between pixel x4 and x5, and a ramp edge detected between pixel x3 and x5. By
solving for the graph Laplacian L ⇡ Q in (6.6) for the training data, which includes residuals
where both step and ramp edges were identified, the resulting model gives an estimate of the
most e�cient representation for the edge structure. The results are shown in Figs. 6.3 and 6.4,
where the maximum link weights are normalized to 1. It can be seen that the graph derived
for INTRA predicted residuals (Fig. 6.4) has a similar structure to the model in (6.1) with
` = 2, which o�ers some justification for the application of ramp edge models. On the other
hand, the step edge model, (6.1) with ` = 1, is better for representing the INTER predicted
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residuals (Fig. 6.3). This is because edges in inter predicted residuals tend to have sharper
transitions due to motion estimation mismatches for some pixels with respect to the reference
block.

F����� 6.3: The optimal line graph for INTER predicted residuals

F����� 6.4: The optimal line graph for INTRA predicted residuals

6.3 Ramp Coding and Graph Construction
6.3.1 Arithmetic Ramp Edge Coding (AREC)

The ramp edge detection for each transform block is based on the work in [61]. Similar
to Canny edge detector, the algorithm can be implemented in two steps: pre-filtering and
di�erentiation. The optimal pre-filter coe�cients are listed in [61] for ramps with di�erent
widths ` (` is restricted to be even). For di�erentiation, a pixel with gradient larger than a
threshold T in the pre-filtered image is detected as a ramp center and stored in a binary map
B. The information of B will be used to define the graphs in EA-GBT, and thus needs to be
signaled to the decoder. We extend the idea of arithmetic edge coding (AEC) [19], which
was proposed for step edge coding, for encoding the positions of ramp centers. The proposed
method is called arithmetic ramp edge coding (AREC).

Given the ramp positions p1, p2, · · · , pn in B, as shown in Fig.6.5, we create an ordered
chain code {c1,2, c2,3, · · · , cn�1,n} by traversing through the ramp pixels, where each element in
the chain code denotes a directed link connecting two adjacent ramp components. Note that
there are 8 possible directions that ci�1,i can take: {N, NE, E, SE, S, SW, W, NW}, as shown
in Fig. 6.6(a). Given the direction of link ci�1,i from node pi�1 to pi, there are only 5 possible
directions for ci,i+1 from node pi to pi+1: {forward, slight right, right, slight left, left}, as
denoted in Fig. 6.6(b), assuming the ramp edge detected contains no sharp corners. As in
AEC, the chain code is encoded using arithmetic coding. However, the chain code in AEC
is composed of boundaries detected for step edges, and for each boundary, only 4 directions:
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(a) (b)

F����� 6.5: (a) An example of binary ramp map with pixels p1, p2, · · · p5 indicating
the ramp centers, and (b) the chain code formed by traversing though the consecutive

ramp pixels.

(a) (b)

F����� 6.6: (a) The 8 directions that can be taken by ci . (b) The potential traversing
directions from pi to pi+1 given the direction from pi�1 to pi .
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{N, E, W, S} can be taken, as shown in Fig. 6.7. AREC details are summarized in Algorithm
5, where the prediction for c̃i,i+1 is computed using linear regression on k previously traversed
pixels pi�k�1, · · · pi�1, pi. k is set to 4 in our simulation. The top most uncoded ramp center
is chosen as p1 with S (south) as the initial traversing direction.

(a) (b)
F����� 6.7: (a) An example of AEC coding on step edges and (b) AREC on ramp

edges

In order to evaluate the coding e�ciency of AREC, we compare AREC for ramp edge
coding and AEC for step edge coding on the same set of 8 ⇥ 8 residual blocks taken from 8
video sequences without rate distortion optimization. The step edges are found using Sobel
detector. The average bits per pixel (BPP) results are shown in Table 6.1. It can be seen that
AREC achieves around 11.5% bitrate reduction with respect to AEC for both inter and intra
predicted residuals.

AEC for Step model AREC for Ramp model
BPP (⇥10�2) BPP (⇥10�2) �BPP (%)

INTER predicted 6.50 5.71 -12.2
INTRA predicted 6.95 6.17 -11.2

T���� 6.1: Bitrate comparison between AEC and AREC. �BPP indicates the bitrate
gain of AREC over AEC

6.3.2 Graph Construction from the Edge Map

After applying ramp detector, a graph can be constructed based on the positions of detected
ramp centers. A residual block is first represented as a 4-connected grid graph, where each
link has weight 1, as shown in Fig. 6.8. Then for each ramp center detected, the neighbors
along 4 directions: {top, bottom, le f t, right} are inspected. If the neighbor along direction
m is not a ramp component, the estimated weight w < 1 is assigned onto the `2 links along
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Algorithm 5 Arithmetic Ramp Edge Coding (AREC)
Input Binary map B with one ramp contour {p1, p2, · · · pn}
1: Initialize p1 and traversing direction c0,1
2: for i = 1 : n � 1 do
3: Search for pi+1 from the 5 possible directions d j with the priority ordered as
{forward, slight right, slight left, right, left}

4: if i  k then
5: Assign equal probability

1

5
for d j .

6: else
7: Predict the direction of ci,i+1 as c̃i,i+1
8: Compute the angle ↵ j between each d j and c̃i,i+1.
9: Compute the von Mises distribution '(↵ j ) of angle ↵ j

10: Assign the probability for d j to be
'(↵ j )

P5
r=1 '(↵r )

11: end if
12: Encode ci,i+1, with one of the 5 possible directions, using the arithmetic coding with the

assigned probability
13: end for

F����� 6.8: An example of residual block and the corresponding 4-connected grid
graph (red nodes indicate the detected ramp centers)

direction m. An example is shown in Fig. 6.9(a), where the red nodes indicate the ramp
centers detected and the dashed red links denote the links with the small weight. For ramp
center c, `2 links along the right direction, where the neighbor n2 is a non-ramp pixel, are
assigned to be weak. In Fig. 6.9(b), we show an example of graph construction for ` = 2.

6.4 Experimental Results
We apply the proposed transform to 6 test sequences: BQMall, BasketballDrill, City, Crew,
Harbour, and Soccer. The transform block size is fixed as either 8⇥8 or 16⇥16. The encoder
flow chart is shown in Fig. 6.10. The unquantized residual blocks for both inter and intra
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(a) (b)

F����� 6.9: Examples of weak link assignment based on ramp positions

prediction are generated with HEVC (HM-14.0) at QP = 32. Each block is represented using
a 4-connected grid graph. For transform coding, we apply a hybrid scheme, EA-GBT and
DCT, of which the encoder will compare the rate distortion cost, defined as Sum of Squared
Error + �· bitrate. The transform with the lower cost will be selected as the final approach
for the associated block. In our experiment, we consider two hybrid schemes, including the
EA-GBT/DCT with step edge model and the EA-GBT/DCT with ramp edge model. The
parameter � is defined as � = 0.85 · 2(QP�12)/3, where QP = 24, 26, 28, 30, 32, 34. For step
edge detection, we use the Sobel operator, while for ramp edge detection, the method proposed
in [61] is applied. For blocks using EA-GBT, the edge positions are encoded and signaled
as an overhead. For step model, we use AEC proposed in [19]. For ramp model, we use
AREC. In order to reduce the overhead, only one contour is allowed in each block. The
ramp width is fixed as 2, chosen empirically, and therefore no signaling is required. The
transformed coe�cients for both EA-GBT and DCT are uniformly quantized and encoded

F����� 6.10: The video encoder with hybrid EA-GBT/DCT mode selection based on
rate-distortion optimization (RDO)
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using arithmetic coding.
The average PSNR and bitrate gain for the inter and intra predicted residual videos over

pure DCT based encoder are shown in tables 6.2 and 6.3. For the intra predicted videos, EA-
GBT/DCT with ramp edge model performs slightly better than EA-GBT/DCT with step edge
model. For inter predicted residuals, even though AEC is not as e�cient as AREC (shown in
Table 6.1), EA-GBT/DCT with step model achieves better overall e�ciency, indicating better
edge representation for this model. The results coincide with our justifications discussed in
Section 6.2.2. For both step and ramp models, EA-GBT/DCT outperforms the DCT based
encoder. Note that as the size of transform block increases, the performance of EA-GBT
improves, since larger blocks are more likely to have edges.

Methods Size Ramp 8 ⇥ 8 Step 8 ⇥ 8
� PSNR (dB) � rate (%) � PSNR (dB) � rate (%)

BQmall 832 ⇥ 480 0.23 -4.04 0.24 -4.20
Basketball Drill 832 ⇥ 480 0.18 -3.82 0.18 -3.87

City 704 ⇥ 576 0.21 -3.37 0.23 -3.60
Crew 704 ⇥ 576 0.10 -2.04 0.11 -2.33

Harbour 704 ⇥ 576 0.21 -2.84 0.24 -3.26
Soccer 704 ⇥ 576 0.20 -2.88 0.24 -3.37

Average 0.19 -3.17 0.21 -3.44
Methods Size Ramp 16 ⇥ 16 Step 16 ⇥ 16

� PSNR (dB) � rate (%) � PSNR (dB) � rate (%)
BQmall 832 ⇥ 480 0.35 -6.20 0.37 -6.65

Basketball Drill 832 ⇥ 480 0.18 -4.24 0.22 -5.11
City 704 ⇥ 576 0.25 -4.35 0.27 -4.91
Crew 704 ⇥ 576 0.14 -3.41 0.15 -3.64

Harbour 704 ⇥ 576 0.24 -3.46 0.24 -3.51
Soccer 704 ⇥ 576 0.21 -3.10 0.22 -3.34

Average 0.23 -4.13 0.25 -4.53
T���� 6.2: Bjontegaard Delta Criterion for INTER predicted videos: PSNR and bitrate

gain of EA-GBT-step and EA-GBT-ramp over DCT

6.5 Summary
In this chapter, we proposed a new edge model in EA-GBT based on ramp edges, which is
justified experimentally for intra-predicted residuals using graph learning. Arithmetic ramp
edge coding (AREC) is proposed to encode the detected ramp positions. Experimental results
for EA-GBT with both step and ramp models demonstrate improved performance over DCT-
based video coding. Moreover, for intra-predicted residuals, EA-GBT with the new ramp
edge models performs better than EA-GBT with step edge models.
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Methods Size Ramp 8 ⇥ 8 Step 8 ⇥ 8
� PSNR (dB) � rate (%) � PSNR (dB) � rate (%)

BQmall 832 ⇥ 480 0.29 -3.40 0.27 -3.16
Basketball Drill 832 ⇥ 480 0.16 -2.69 0.15 -2.58

City 704 ⇥ 576 0.20 -2.13 0.14 -1.48
Crew 704 ⇥ 576 0.08 -1.52 0.06 -1.26

Harbour 704 ⇥ 576 0.21 -2.21 0.15 -1.58
Soccer 704 ⇥ 576 0.20 -1.98 0.13 -1.32

Average 0.19 -2.32 0.15 -1.90
Methods Size Ramp 16 ⇥ 16 Step 16 ⇥ 16

� PSNR (dB) � rate (%) � PSNR (dB) � rate (%)
BQmall 832 ⇥ 480 0.48 -5.43 0.40 -4.61

Basketball Drill 832 ⇥ 480 0.15 -2.57 0.13 -2.22
City 704 ⇥ 576 0.24 -2.55 0.23 -2.40
Crew 704 ⇥ 576 0.13 -2.80 0.11 -2.38

Harbour 704 ⇥ 576 0.29 -2.96 0.26 -2.63
Soccer 704 ⇥ 576 0.22 -2.25 0.21 -2.15

Average 0.25 -3.09 0.22 -2.73
T���� 6.3: Bjontegaard Delta Criterion for INTRA predicted videos: PSNR and

bitrate gain of EA-GBT-step and EA-GBT-ramp over DCT
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In this dissertation, we proposed several graph based algorithms for e�cient compression
images and video. In our first work, with theory and application discussed in Chapter 3 and 4,
a low complexity graph based lifting transform is proposed. A problem of optimal bipartition,
which divides nodes into a Prediction set and Update set, is defined in terms of energy
compaction of the transformed coe�cients. We applied a greedy algorithm for selecting the
most representative nodes to be included in the Update set in each lifting level assuming the
signal can be well modelled as GMRF. This statistical model has been widely used in the
image and video processing literature. The results for the proposed bipartition outperform
related work in terms of the mean square error of the high frequency coe�cients stored int
the Prediction set. Moreover, since for lifting transforms, graph links connecting nodes in
the same sets cannot be utilized for filtering, we propose a bipartite graph reconnection based
on Kron reduction, which is able to capture similarity between Prediction Set and Update set
more accurately than the conventional approaches. The results in intra-predicted video coding
show outstanding performance as compared to the state of the art DCT coding. In addition,
comparable performance to the high complexity GFT can be achieved using the proposed
lifting scheme with optimized bipartition and bipartite graph approximation.

In the second work in Chapter 5, we presented an application of graph based transform in
light field image compression for random access. We proposed a novel coding scheme for light
field images which is able to encode the original raw data without introducing redundancies
from demosaicking and calibration. An intra-prediction algorithm is developed that explores
the correlation between the sparsely distributed pixels between each block and its decoded
neighbouring blocks within each sub-aperture images. The residual pixels are then connected
as graphs and encoded with a graph based lifting transform. A learning algorithm for graph
structure is also proposed using Maximum Likelihood (ML) estimation of GMRF model
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parameters based on the observations with incomplete data. The results show very significant
gains in coding e�ciency against the All intra HEVC in high bit rates, which is commonly
considered in archival scenario.

Finally, we discuss an edge model for video residuals and the construction of graphs
in GFT based on di�erent edge modeling. Each column and row from images signal is
modeled as an Autoregressive Regressive (AR) process with edges modeled as i.i.d noise.
We consider step edge and ramp edge models in our design, and derive the optimal GFTs
for decorrelation. The discussion and justification of the two edge model on di�erent types
of predicted video residuals, i.e. the intra and inter-predicted residuals, is presented. The
experiment on intra-predicted residuals shows promising performance using the proposed
ramp edge model. Moreover, we developed a novel signalling method, call Arithmetic Ramp
Edge Coding, for graph geometry based on ramp edges.

7.2 Future Work

There are several question we would like to address in future work. For lifting bipartition
described in Chapter 3, currently we are using a greedy algorithm for selecting nodes to
be included in the Update set. However, this has high complexity due to calculating and
comparing the variance on each node. It will be interesting to develop a fast heuristic with
the desired properties in the current algorithm, which include:

1. More nodes in areas with high variance texture should be included in the Update set.
2. Nodes with more local neighbours of large similarity, namely nodes that can provide

better prediction for neighbouring nodes, should have higher likelihood to be selected
into the Update set

3. Nodes having very few neighbours with large similarity, i.e. nodes that are nearly
isolated on graphs, should have high likelihood to be included in the Update set, since
they cannot be predicted well by any other nodes.

In the current light field coding scheme described in Chapter 5, we target a situation
requiring e�cient random access and therefore ignore the prediction and transform across
di�erent sub-aperture images. In the future work, we would like to consider a more general
coding scheme considering both intra and inter view correlation, which may include block
matching algorithm for sparsely distributed pixels and the possible edge connection between
blocks in di�erent sub-aperture images. In the last work in Chapter 6, currently we only
consider the 1D AR process in modelling statistics in video residuals. Therefore the graph
assignment for the 2D grid graph in our experiment is still an approximation. The extension
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to a 2D model can be helpful in analysis. Also, it would be interesting to consider more edge
models, e.g., line edge, in future work.
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Appendix A

Reconnection using Kron Reduction

In this appendix we will prove that the prediction of any node v in the Prediction set (P) using
the proposed predictor scheme, namely applying the generalized CDF5/3 filterbanks after
graph reconnection, is equivalent to applying the maximum a posteriori estimation (MAP)
for v usingU assuming the signal can be modeled as GMRF defined by the graph structure.

Define m and n as the size of P andU , and sets P� = P/{v} andU+ = U [ {v}. Without
loss of generality, the indices of nodes inU+ are ordered as [v,U ], and the indices of nodes
in P are ordered as [v,P�]. The MAP estimation of P givenU is calculated as

PP|U fU = �L
�1
P,PLP,U fU . (A.1)

We can rewrite LP,P and LP,U in block matrix forms:

LP,P =

266666666666666664

deg(v) + hv Lv,P�

LP�,v LP�,P�

377777777777777775

(A.2)

LP,U =

266666666666666664

Lv,U

LP�,U

377777777777777775

, (A.3)
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where deg(v) and hv are the degree and self loop of node v. Define c = LP�,v, bT = Lv,P� ,
and sv = deg(v) + hv, the matrix in (A.2) can be re-written as

LP,P =

266666666666666664

sv b
T

c LP�,P�

377777777777777775

. (A.4)

The inverse can be calculated using block-wise matrix inversion:

L
�1
P,P =

266666666666666664

(sv � bT
L
�1
P�,P�c)�1 �s�1v b

T (LP�,P� � cs�1v b
T )�1

�L
�1
P�,P�c(sv � bT

L
�1
P�,P�c)�1 (LP�,P� � cs�1v b

T )�1

377777777777777775

.

(A.5)
The MAP estimated of v given U , which corresponds to the first row in PP|U , is therefore
expressed as below.

PP|U (1, :) = �L�1
P,P (1, :) · LP,U

= �
f

(sv � bT
L
�1
P�,P�c)�1 �s�1v b

T (LP�,P� � cs�1v b
T )�1

g
266666666664

Lv,U

LP�,U

377777777775
= �(sv � bT

L
�1
P�,P�c)�1Lv,U + s�1v b

T (LP�,P� � cs�1v b
T )�1LP�U .

(A.6)
Define constant q as

q = �(sv � bT
L
�1
P�,P�c), (A.7)
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(A.6) can be further simplified as

q�1Lv,U + s�1v b
T (LP�,P� � cs�1v b

T )�1LP�,U

= q�1Lv,U + q�1qs�1v b
T (LP�,P� � cs�1v b

T )�1LP�U

= q�1(Lv,U + qs�1v b
T (LP�,P� � cs�1v b

T )�1LP�U )

= q�1(Lv,U�(sv � bT
L
�1
P�,P�c)s�1v b

T (LP�,P� � cs�1v b
T )�1LP�U )

= q�1(Lv,U � (bT
� s�1v b

T
L
�1
P�,P�cb

T )(LP�,P� � cs�1v b
T )�1LP�U )

= q�1(Lv,U � b
T (I � s�1v L

�1
P�,P�cb

T )(LP�,P� � s�1v cb
T )�1LP�U )

= q�1(Lv,U � b
T (I � s�1v L

�1
P�,P�cb

T )(LP�,P� � LP�,P�L�1P�,P� s�1v cb
T )�1LP�U )

= q�1(Lv,U � b
T (I � s�1v L

�1
P�,P�cb

T )((LP�,P� )(I � s�1v L
�1
P�,P�cb

T ))�1LP�U )

= q�1(Lv,U � b
T (I � s�1v L

�1
P�,P�cb

T )(I � s�1v L
�1
P�,P�cb

T )�1L�1
P�,P�LP�U )

= q�1(Lv,U � b
T
L
�1
P�,P�LP�U ).

(A.8)

In our design of prediction transform, we apply the generalized CDF5/3 after reconnecting
nodes v 2 P to U = [v1, v2, · · · , vn]. The reconnection is derived with Kron reduction
by removing nodes in P� = P/{v}. We define the the weights on links between v and
[v1, v2, · · · , vn] after reconnection as [wv,v1,wv,v2, · · · ,wv,vn]. The graph Laplacian Lkron after
removing nodes in P� can be written as

Lkron = LU+,U+ � LU+,P�L
�1
P�,P�LP�,U+ . (A.9)

The first row of Lkron, provides the information for connecting v and U and the associated
weight on each link. The matrix LU+,U+ , LU+,P� , and LP�,U+ , can be expressed in block
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matrix forms as

LU+,U+ =

266666666666666664

sv Lv,U

LU,v LU,U

377777777777777775

(A.10)

,

LU+,P� =

266666666666666664

Lv,P�

LU,P�

377777777777777775

=

266666666666666664

b
T

LU,P�

377777777777777775

(A.11)

, and

LP�,U+ =

266666666666664

LP�,v LP�,U

377777777777775

=

266666666666664

c LP�,U

377777777777775

. (A.12)

The first row of Lkron can therefore be written as

Lkron(1, :) =
f

sv Lv,U

g
� b

T
L
�1
P�,P�

266666666666664

c LP�,U

377777777777775
=

f
sv � bT

L
�1
P�,P�c Lv,U � b

T
L
�1
P�,P�LP

�,U

g
.

(A.13)

The first term sv � b
T
L
�1
P�,P�c is the summation of degree and self loop of node v after the

reconstruction, which is also equivalent to the negative of constant q defined in (A.7). The
negative of the 1 ⇥ n vector Lv,U � b

T
L
�1
P�,P�LP

�,U , on the other hand, stores the weights
[wv,v1,wv,v2, · · · ,wv,vn] on links between v to U . As mentioned in Section 2.4.1 and 5.5.3,
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the prediction of node v, denoted as f̂v, using CDF5/3 is expressed as

f̂v =
1

deg(v) + hv

X

vj2U

wv,v j fvj

=
1

deg(v) + hv
[wv,v1,wv,v2, · · · ,wv,vn]fU

, (A.14)

where deg(v), hv, and wv,v j are the degree, self loop, and link weights on the links connecting
v in the graph after reconnection. Replace the variables with the representation derived in
(A.13), (A.14) can be written as

f̂v = �(sv � bT
L
�1
P�,P�c)�1(Lv,U � b

T
L
�1
P�,P�LP�,U )

= q�1(Lv,U � b
T
L
�1
P�,P�LP�,U )

, (A.15)

which is equivalent to the MAP estimation in (A.8). We therefore prove that the proposed
prediction with the generalized CDF5/3 after reconnection is equivalent to the MAP estimation
of the underlying GMRF.
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