
 
 

 
 

 

 
 

USC–SIPI REPORT #439 
 

VISUALIZING AND MODELING VOCAL PRODUCTION 
DYNAMICS 

 
by 

 
Erik Bresch 

 
May 20ll 

Signal and Image Processing Institute 
UNIVERSITY OF  SOUTHERN CALIFORNIA 

USC Viterbi School of Engineering 
Department of Electrical Engineering-Systems 

3740 McClintock Avenue, Suite 400 
Los Angeles, CA 90089-2564 U.S.A. 



VISUALIZING AND MODELING VOCAL PRODUCTION DYNAMICS

by

Erik Bresch

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY

(ELECTRICAL ENGINEERING)

May 2011

Copyright 2011 Erik Bresch



Table of Contents

List Of Tables v

List Of Figures vi

Abstract ix

Chapter 1: Introduction to speech production research using RT-MRI 1

Chapter 2: Audio recordings during RT-MRI scans 5

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 System level description of the data acquisition system . . . . . . . . . . . 7
2.4 Synchronizing hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Software components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Data acquisition and sample rate conversion . . . . . . . . . . . . . 10
2.5.2 Noise cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2.1 Direct NLMS noise cancellation . . . . . . . . . . . . . . 12
2.5.2.2 Model-based NLMS noise cancellation . . . . . . . . . . . 13

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3: MR image processing 18

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Research context and literature review . . . . . . . . . . . . . . . . . . . . 22

3.3.1 The role of MR technology in speech production research . . . . . 22
3.3.2 Various approaches to edge detection and contour tracking and

their methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2.1 Open versus closed contours . . . . . . . . . . . . . . . . 24
3.3.2.2 Contour descriptors . . . . . . . . . . . . . . . . . . . . . 25
3.3.2.3 Energy functionals . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2.4 Edge detection in image domain versus frequency domain 27
3.3.2.5 Probabilistic approaches to edge detection and tracking . 28

3.4 Segmentation of MR data in the frequency domain . . . . . . . . . . . . . 28
3.4.1 The concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 The mathematical procedure . . . . . . . . . . . . . . . . . . . . . 32

ii



3.4.3 An experiment with a simple stationary phantom . . . . . . . . . . 36
3.5 Upper airway multi-coil MR data segmentation . . . . . . . . . . . . . . . 41

3.5.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Refined anatomically informed midsaggital model of the vocal tract 44
3.5.3 Hierarchical gradient descent procedure . . . . . . . . . . . . . . . 47
3.5.4 Implementation of higher-level contour constraints . . . . . . . . . 51
3.5.5 Validation of the hierarchical contour detection algorithm . . . . . 52

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.2 Open research questions . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4: RT-MRI investigation of resonance tuning in soprano singing 61

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Audio analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapter 5: RT-MRI analysis of vocal tract shaping in English sibilant

fricatives 72

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 RT-MRI and synchronized audio acquisition . . . . . . . . . . . . . 76
5.3.3 Image analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.4 Coronal plane images . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 6: Statistical modeling of RT-MRI articulatory speech data 85

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Data preparation and parameterization . . . . . . . . . . . . . . . . . . . 88
6.4 Data modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 7: Conclusions 98

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Glossary 100

iii



References 101

Appendix

Fourier transform of a polygonal shape function and the vertex vector derivative 107

iv



List Of Tables

1.1 Methods for acquiring speech production data of the vocal tract . . . . . 4

2.1 Noise power suppression for the two presented methods during no speech 15

2.2 Noise power suppression for the two presented methods during speech . . 16

3.1 Edge detection on object 1: averaged geometrical accuracy measures and
standard deviations over 10 trials . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Edge detection on object 1 with incomplete geometrical model: averaged
geometrical accuracy measures and standard deviations over 10 trials . . . 40

3.3 Region R1 boundary sections, level 3 boosting factors . . . . . . . . . . . 46

3.4 Region R2 boundary sections, level 3 boosting factors . . . . . . . . . . . 46

3.5 Region R3 boundary sections, level 3 boosting factors . . . . . . . . . . . 46

4.1 1024-point FFT spectra for /i/ at notes 1, 5, 11, and 15 (subject M1). . . 62

4.2 Sample MR images and midsagittal aperture functions of all 5 vowels at
notes 1, 5, 11, and 15 (subject M1). . . . . . . . . . . . . . . . . . . . . . 67

4.3 Linear regression of the vocal tract resonances versus the fundamental. . . 69

4.4 Sign of the statistically significant linear trends of the resonances F1 and
F2 with respect to the fundamental F0. . . . . . . . . . . . . . . . . . . . . 69

4.5 MR images for all 5 subjects and all 5 vowels at note 15 (F0 = 932Hz). . 70

6.1 Sample segmentation results. . . . . . . . . . . . . . . . . . . . . . . . . . 95

v



List Of Figures

1.1 Example vocal tract MR image and tract variables . . . . . . . . . . . . . 3

2.1 System level diagram of the audio acquisition system . . . . . . . . . . . . 8

2.2 Glue logic timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Noise sources and microphone arrangement . . . . . . . . . . . . . . . . . 11

2.4 Adaptive FIR filter using NLMS algorithm for direct cancellation of inter-
ference from MRI scanner noise . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Adaptive FIR filter using NLMS algorithm for model-based cancellation of
interference from MRI scanner noise . . . . . . . . . . . . . . . . . . . . . 14

2.6 Complex adaptive FIR filter using NLMS algorithm for model-based can-
cellation of interference from MRI scanner noise . . . . . . . . . . . . . . . 14

2.7 Sample waveforms for SNR estimation . . . . . . . . . . . . . . . . . . . . 17

3.1 Example vocal tract MR image and tract variables . . . . . . . . . . . . . 19

3.2 MR readout using 13-interleaf spiral trajectories. . . . . . . . . . . . . . . 29

3.3 Overview of Fourier domain region segmentation. . . . . . . . . . . . . . . 31

3.4 Phantom experiment data, initial contours, and final contours. . . . . . . 36

3.5 Edge detection on object 1: time courses of the geometrical accuracy mea-
sures for 10 different initializations (initial 30 iterations shown). . . . . . . 37

3.6 Edge detection on object 1 with single-region geometrical model: Magni-
tude image |m(x, y)|, initial contours, final contours. . . . . . . . . . . . . 39

3.7 Edge location dependency on completeness of the geometrical model. . . . 40

3.8 Multi-coil in vivo upper airway MR sample images. . . . . . . . . . . . . . 41

vi



3.9 Multi-coil upper airway images. . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Upper airway object model. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.11 Velum and epiglottis are articulated structures. . . . . . . . . . . . . . . . 50

3.12 Example 1: Vowel extracted from a read speech sequence . . . . . . . 53

3.13 Example 2: bilabial nasal . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.14 Example 3: lateral approximant . . . . . . . . . . . . . . . . . . . . . . 56

3.15 Example 4: postalveolar fricative . . . . . . . . . . . . . . . . . . . . . 57

3.16 Sequence in 25 images (from left to right, top to bottom). . . . . . 58

4.1 Subject M1, producing /le/ at note 1. . . . . . . . . . . . . . . . . . . . . 65

4.2 Resonances F1 (solid), and F2 (dashed) versus the fundamental F0. . . . . 66

5.1 Production of “pa seep” by subject S1 in 22 midsagittal images (from left
to right, top to bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Midsagittal sample image and geometrical features during the fricative
production in “pa seep.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Midsagittal features sample time functions. . . . . . . . . . . . . . . . . . 79

5.4 Coronal sample image, tongue contour (red), groove tangent (blue), grove
depth feature (green) during the fricative production in “pa seep.” . . . . 80

5.5 Subject A1 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Subject A2 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Subject S1 results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Lip aperture (LA) and tongue tip constriction degree (TTCD) time series
for the utterance /pay nova s/ as derived from RT-MRI data (details given
below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Sample image and direct image feature time series. . . . . . . . . . . . . . 89

6.3 Lip aperture (LA), tongue tip constriction degree (TTCD), and velum
aperture (VEL) for the utterance /pay nova s/ with gestural transcription.
Solid line - feature time series, dashed line - first derivative. . . . . . . . . 91

6.4 3-chain CHMM layout (squares - hidden discrete nodes, shaded circles -
continuous observations). . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vii



A.1 A simple polygon P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

viii



Abstract

Understanding human speech production is of fundamental importance for basic and ap-

plied research in human communication: from speech science and linguistics to clinical

and engineering development. While the vocal tract posture and movement can be inves-

tigated using a host of techniques, the newly developed real time (RT)-magnetic resonance

imaging (MRI) technology has a particular advantage - it produces complete views of the

entire moving vocal tract including the pharyngeal structures in a non-invasive manner.

RT-MRI promises a new means for visualizing and quantifying the spatio-temporal artic-

ulatory details of speech production and it also allows for exploring novel data-intensive,

machine learning based computational approaches to speech production modeling.

The central goal of this thesis is to develop new technological capabilities and to

use these novel tools for studying human vocal tract shaping during speech production.

The research, which is inherently interdisciplinary, combines technological elements (to

design engineering methods and systems to acquire and process novel speech production

data), experimental elements (to design linguistically meaningful studies to gather useful

insights) and computational elements (to explain the observed data and design predictive

capabilities).

In Chapter 1, which was in part published in [6], the use of RT-MRI as an emerging

technique for speech production research studies is motivated. An outline is provided
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of the biomedical image acquisition and image processing challenges, potentials, and

opportunities arising with the use of RT-MRI.

The second part, Chapter 2, describes novel hardware technology and signal process-

ing algorithms which were developed to facilitate synchronous speech audio recordings

during RT-MRI scans. Here, the main problem lies in the loud noise produced by the MRI

acquisition process. The proposed solution incorporates digital synchronization hardware

and an adaptive signal processing algorithm which allows the acquisition of speech audio

with satisfactory quality for further analysis. This enables joint speech-image data acqui-

sition that in turn allows for joint modeling of articulatory-acoustic phenomena. Most of

this chapter was published in [9].

Subsequently, Chapter 3 addresses the extraction of relevant geometrical features

from the vast stream of magnetic resonance (MR) images. In the case of the commonly

used midsagittal view of the human vocal tract the geometrical features of interest are

the locations of the articulators, and hence the underlying image processing problem

to be solved is that of edge detection. Further complications arise from the poor MR

image quality, which is compromised by the inherent trade-off between spatial, temporal

resolution, and signal to noise ratio. A solution to the edge detection problem will be

devised using a deformable geometrical model of the human vocal tract. Mathematically

the proposed procedure relies on designing alternate gradient vector flows for the solution

of a non-linear least squares optimization problem. With the new method the human

vocal tract outline can be traced automatically. These findings were published in [7].

Chapters 4 and 5 describe two vocal production studies using articulatory vocal tract

data. The first study investigates 5 soprano singers’ static vocal tract shaping during

the singing production of vowel sounds, and it considers the much-researched theory of

resonance tuning. The study successfully validates the usefulness of RT-MRI data and the

x



data processing methods of Chapters 2 and 3. The second study focuses on the tongue

shaping of English sibilant fricative sounds, and reproduces previously known findings

with the new RT-MRI modality. The findings of these two studies have been published

in [8, 10].

The last part of this thesis is contained in Chapter 6 and it proposes a statistical

framework for the modeling of articulatory speech data. Here, the main focus lies on the

coupled hidden Markov model (CHMM) as a candidate system to capture the dynamics

of the multi-dimensional vocal tract shaping process. It is demonstrated that using this

methodology it is possible to capture in a data driven way the well-known timing sig-

natures of the velum-oral coordination of English nasal sounds in word onset and coda

positions. The content of this chapter has been published in [5].

This thesis is concluded with a brief summary of the contributions and a discussion

of possible future research directions in Chapter 7.
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Chapter 1

Introduction to speech production research using RT-MRI

Understanding human speech production is of great interest from engineering, linguistic,

and several other research points of view. While several types of data that are available

to speech production studies lead to different avenues for research, in this section we focus

on RT-MRI, as an emerging technique. We discuss the details and challenges of RT-MR

acquisition and analysis, and modeling approaches that make use of MRI data for speech

research.

From an engineer’s point of view, detailed knowledge about speech production gives

rise to refined models for the speech signal that can be exploited for the design of power-

ful speech recognition, coding, and synthesis systems. From the linguist’s point of view,

speech research may be conducted to address open questions in the areas of phonetics

and phonology. These include, what articulatory mechanisms explain the inter and intra

subject variability of speech, what aspects of the vocal tract shaping are critically con-

trolled by the brain for conveying meaning and emotions, and how does prosody affect the

articulatory timing. From other research points of view, speech production is important

to understand language acquisition and language disorders. All of these efforts require

intimate knowledge of the speech generation mechanisms.
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Different types of data are available to the speech researcher – from audio and video

recordings of speech production to muscle activity data produced by electromyography,

respiratory data from subglottal or interoral pressure transduction, and images of the

larynx obtained through video laryngoscopy. Table 1.1 summarizes the most commonly

used techniques and lists advantages and disadvantages. While the vocal tract posture and

movement can be investigated using a number of techniques including x-ray (microbeam),

cinefluography, ultrasound, palatography, electromagnetometry (EMA), RT-MRI has a

particular advantage – it produces complete views of the entire vocal tract including the

pharyngeal structures. Furthermore, RT-MR is a non-invasive and safe procedure. It

allows to capture 3-dimensional data, and also flesh-point tracking is possible using a

variant of this technology called tagged-MRI.

However, RT-MRI also poses a number of technical challenges. The most important

one for the speech researcher lies in the relatively poor spatial and temporal resolution of

the method. While the MR technology inherently allows a trade-off between spatial and

temporal resolution the generally desired sub-mm accuracy at frame rates of 200 frames

per second far exceeds what is technically possible today [45]. The MRI technology is

also relatively expensive when compared with other data acquisition methods, and it is

limited to subjects without major dental work or implants. Moreover a supine position

is generally required for the subject, which may or may not affect the vocal tract shaping

processes. Lastly, simultaneous audio recordings are difficult to obtain, mainly due to the

loud scanner noise.

With RT-MRI, a midsaggital image of the vocal tract from the glottis (bottom) to

the lips (left) can be acquired as illustrated in Figure 1.1(a). In this image, we can trace

the air-tissue boundaries of the anatomical components that are of interest to the speech

researcher and obtain a representation similar to Figure 1.1(b). These components, also

2



known as articulators, are controlled by the brain during speech production and are used

to change the shape of the vocal tract tube. With it, they also change the filter function

for the excitation signal generated at the glottis and elsewhere along the airway. Hence

the motion of the articulators shapes the sounds of speech and other human vocalizations.

(a) Midsagittal real-time MR image
with contours of interest.

tongue

glottis

LA

lower lip

hard palate velum

pharyngeal
wall

epiglottis

VEL

upper lip

TTCD

(b) Articulators and sample vocal
tract variables.

Figure 1.1: Example vocal tract MR image and tract variables

The signal processing challenges when studying speech production using RT-MRI lie

in the fast acquisition of high-quality RT-MR images including simultaneous noise-robust

audio recording, the subsequent detection of the relevant features from each image, and

the analysis and modeling of the time-varying vocal tract shape for the purpose of gaining

deeper understanding of the underlying principles that govern the speech production

process.
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Table 1.1: Methods for acquiring speech production data of the vocal tract
Method Pros Cons Comments
CT

• high temporal and
spatial resolution

• captures pharyn-
geal structures

• 3–D possible

• exposure to radiation • rarely used
in speech
research

EMA
• high spatial and
temporal resolu-
tion

• 3–D

• provides spatially sparse point
tracking data

• cannot capture pharyngeal
structures

• often used
in speech
production
studies.

x-ray
(micro-
beam)

• high spatial and
temporal resolu-
tion

• flesh point track-
ing not possible
for pharyngeal
structures

• exposure to radiation
• images show only a projection

through volume which makes
contour extraction difficult

• x-ray microbeam equipment
not widely available

• spatially sparse data

• rarely used
now in
speech re-
search

• existing data
bases are still
being used

Ultra-
sound • high temporal reso-

lution
• non-invasive, safe
• good audio can be
obtained simulta-
neously

• noisy images
• detects only first tissue-air

boundary
• not suitable for anterior tongue

tip and lip imaging
• detector is in contact with jaw

and may affect speech produc-
tion process

• used pri-
marily for
tongue body
imaging

MRI
• non-invasive, safe
• captures pharyn-
geal structures

• 3–D possible
• tagged MRI allows
flesh-point tracking

• relatively poor spatial and tem-
poral resolution

• expensive
• limited to subjects without ma-

jor dental work/implants
• supine position generally re-

quired
• simultaneous audio recording

difficult due to scanner noise
• teeth do not show in image

• an emerging
technique
for speech
research

4



Chapter 2

Audio recordings during RT-MRI scans

2.1 Abstract

This chapter describes a data acquisition setup for recording, and processing, running

speech from a person in an MRI scanner. The main focus is on ensuring synchronicity

between image and audio acquisition, and in obtaining good signal to noise ratio to facil-

itate further speech analysis and modeling. An field programmable gate array (FPGA)

based hardware design for synchronizing the scanner image acquisition to other exter-

nal data such as audio is described. The audio setup itself features two fiber optical

microphones and a noise-canceling filter. Two noise cancellation methods are described

including a novel approach using a pulse sequence specific model of the gradient noise of

the MRI scanner. The setup is useful for scientific speech production studies. Sample

results of speech and singing data acquired and processed using the proposed method are

given.

2.2 Introduction

In recent years, magnetic resonance imaging has become a viable tool for investigating

speech production. Technological advances have enabled studying the structure of the

5



vocal tract, and its dynamical shaping, during speech production. For example, tongue

deformation characteristics have been studied with a cine-MRI technique [57] and a real-

time MR imaging technique described in [45] has been successfully used to capture the

changing mid-sagittal shape of the vocal tract during speech production. One method-

ological challenge, however, is in synchronizing the acquisition of an audio signal with

the collection of time-varying vocal tract images, which is important for any subsequent

analysis and modeling of the acoustic-articulatory relation. In [57] the audio signal was

recorded in a separate procedure after the MR images were collected so that synchronic-

ity of the signals and images could be only approximately achieved through extensive

training of the subject and with a restriction to few utterances.

There have been few studies where MR images and audio signals were obtained si-

multaneously. The problem is posed by the high intensity gradient noise caused by the

scanner, which is in the audible frequency range. This degrades the audio signal such

that acoustic analysis of the speech content is difficult, if not impossible. Previous studies

such as [47] have addressed this problem using a correlation-subtraction method, where

one captures the noise signal separately and relies on its stationarity. This method does

not, however, account for non-stationary noise sources such as body movement of the

subject or vibration of the cooling pump.

There are commercially available noise mitigation solutions that have been used in

some MRI studies, such as the one by Phone-OR1 [29] which provides an integrated MR-

compatible fiber-optical microphone system that allows both real-time and offline noise

cancellation. This proprietary system is described to use a special microphone assembly

which houses two transducers, one to capture the speech signal and one to capture only the

ambient noise. The two microphones are mounted in close proximity but their directional

1http://phone-or.com
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characteristics are at a 90 degree angle so that one (main) microphone is oriented towards

the mouth of the subject to capture the speech signal and the other (reference) microphone

is oriented such that it rejects the speech signal and captures only the ambient noise. In

our own experiments with this system, however, the reference signal contained a strong

speech signal component and the subsequent noise cancellation procedure would remove

the desired speech signal in addition to the noise to an extent that was undesirable for

further analysis of the signal.

Hence, the initial research goal was the development of an alternative system in which

a separate fiber optical microphone was located away from the subject and outside the

magnet, but inside the scanner room, in a place where it captures almost exclusively

the ambient noise and not the subject’s speech. Importantly, also, this system was to

capture the audio and the MR images simultaneously and to ensure absolute synchronicity

for spontaneous speech and other vocal productions including singing. Subsequently,

however, a better noise cancellation methodology was found which omits the use of a

recorded noise reference signal altogether.

2.3 System level description of the data acquisition system

Figure 2.1 illustrates how the various components of the data acquisition system are

located in the scan room, the systems room, and the control room of the MRI facility.

Two fiber optical microphones are located in the scan room. The main microphone is

approximately 0.5 inches (1.3 centimeters) away from the subject’s mouth at a 20 degree

angle, and the reference microphone is positioned on the outside of the magnet, roughly

3 feet (0.9 meters) away from the side wall at a height of about 4 feet (1.2 meters). The

microphones connect to the optical receiver box, which is located in the MRI control

room.
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Figure 2.1: System level diagram of the audio acquisition system

The data are recorded on a laptop computer using a National Instruments NI-DAQ

6036E PCMCIA card2, which provides a total sample rate of 200kHz and supports up to

16 analog input channels. The main and the reference microphone signal are sampled at

100kHz each.

In order to guarantee sample-exact synchronicity the audio sample clock is derived

from the MRI scanner’s 10MHz master clock. Furthermore, the audio recording is started

and stopped using the radio frequency (RF)-unblank signal of the scanner with the help

of some interfacing glue logic. This mechanism is described in detail in the following

section.

2.4 Synchronizing hardware

The GE Signa scanner provides a digital 10MHz master clock signal to its MRI excitation

and readout sequencer circuits, which is also available on the scanner’s service interface.

Furthermore, the scanner allows access to the digital RF-unblank signal, which is a short

2http://www.ni.com
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low-pulse in the beginning of each MRI acquisition. The key part of the data acquisition

system is the FPGA-based digital glue logic that interfaces the MRI scanner hardware to

the audio analog to digital converter (ADC) on the NI-DAQ card. The logic circuitry was

implemented on a DIGILAB 2 XL board3, which contains a XILINX Spartan 2 FPGA4.

The digital glue logic consists of two independent systems, namely a clock divider and

a re-triggerable monostable. The clock divider derives a 200kHz clock signal from the

10MHz master clock, which is used to clock the ADC on the NI-DAQ card, resulting in

a sampling rate of 100kHz for each of the two microphone channels.

10MHz 
master clock

RF-unblank

Monostable
output 

trigger re-trigger re-trigger 

Acq. 1 Acq. 2 Acq. 3 

time TR 0.1us

~1ms 

audio data acquisition  

Figure 2.2: Glue logic timing diagram

The re-triggerable monostable vibrator has a time-constant which equals the MRI rep-

etition time (TR). The monostable is (re-)triggered on the falling edge of each RF-unblank

pulse, i.e., in the beginning of each MRI acquisition. If a number of MRI acquisitions

are performed consecutively a train of RF-unblank low-pulses is observed with a time

distance of TR. Each RF-unblank pulse re-triggers the monostable and keeps its output

high during the entire acquisition period. This process is shown in Figure 2.2, where we

assume a series of three consecutive MRI acquisitions.

3http://www.digilentinc.com
4http://www.xilinx.com
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The output of the monostable is used as an enable signal for the NI-DAQ ADC. This

mechanism turns on the analog-to-digital conversion with the first MRI acquisition in a

series and stops it as soon as the RF-unblank pulses disappear, i.e. exactly one TR after

the last unblank pulse of the acquisition series was observed.

The enable delay of the NI-DAQ card is on the order of 100ns which is negligible

with respect to the audio sample time of 50µs at 20kHz. Therefore the audio recording

begins almost exactly when the MRI acquisitions start. And since the ADC sample clock

is directly derived from the MRI scanner’s 10MHz clock signal, which governs the image

acquisition, the audio and the MRI images are always exactly synchronized.

2.5 Software components

2.5.1 Data acquisition and sample rate conversion

The real-time data acquisition routine was written in MATLAB5 and it uses the Data

Acquisition Toolbox. In the first post-processing step, low-pass filtering and decimation

of the audio data to a sampling frequency of 20kHz is carried out. Finally, the pro-

cessed audio is merged with the reconstructed MRI image sequence using the VirtualDub

software6.

2.5.2 Noise cancellation

The proposed hardware setup allows for a variety of noise canceling solutions. We describe

two noise cancellation methods that we developed: a direct adaptive cancellation method

using the well-known normalized least mean square (NLMS) algorithm, and a novel,

5http://www.themathworks.com
6http://www.virtualdub.org
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model-based adaptive cancellation procedure, which yielded the best results in our speech

and singing production experiments.

main mic

reference mic

SCAN ROOM 

cryogen 
pump

MRI scanner

subject

Figure 2.3: Noise sources and microphone arrangement

Figure 2.3 illustrates the location of the microphones and the main sources of noise

in the scan room in the proposed set up, namely the subject, the MRI scanner, and the

cryogen pump. The dotted lines symbolize the path of the sound, omitting the reflections

on the walls of the scan room: The subject’s speech is first of all picked up by the

main microphone, but there is also a leakage path to the reference microphone. The

MRI gradient noise is picked up by both the main and the reference microphone through

different paths and hence with different time delays and different filtering, but with similar

intensity. Lastly, the cryogen pump noise affects mainly the reference channel.

The GE Signa scanner also has an integrated cooling fan which produces some air

flow through the bore of the magnet. The fan may also produce additional noise but

can be turned off during the scan. In our experiments, however, we found the fan noise

negligible.

It should be noted that the MRI gradient noise is by far the strongest of all noise

sources. But despite its high power, it also has some advantageous characteristics, namely

it is stationary, periodic and directly dependent on the MRI pulse sequence. In our case

we used a 13-interleaf spiral gradient-echo sequence with an echo time (TE) of 0.9ms,
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and a TR of 6.856ms, which results in a period of 89.12ms. This means that the scan

noise can be thought of as a periodic function with a fundamental frequency of 11.22Hz.

As will be shown below, this characteristic can be exploited to achieve very good noise

cancellation results within a modeled-reference framework.

2.5.2.1 Direct NLMS noise cancellation

In order to overcome the above-mentioned limitations, a noise cancellation procedure was

developed which is based on the well-known NLMS algorithm [23, 28]. The corresponding

system diagram is shown in Figure 2.4: The MRI gradient noise n(t) is assumed to be

filtered by two independent linear systems H1 and H2, which represent the acoustic

characteristics of the room, before it enters the main and reference channel microphones,

respectively. The speech signal s(t) on the other hand is captured directly by the main

channel microphone.

speech signal

reference signal
recording

m(t)
recording
main signal

adaptive

NLMS algorithm

linear system

linear system
FIR filter

r(t)

H1

H2

s(t)

n(t)
scan noise

output signal
o(t)

Figure 2.4: Adaptive FIR filter using NLMS algorithm for direct cancellation of interfer-
ence from MRI scanner noise

During the post-processing, the reference signal r(t) is fed into an adaptive finite

impulse response (FIR) filter, and subsequently subtracted from the main channel m(t).

The NLMS algorithm continually adjusts the FIR filter coefficients in such a way that

the average output signal power is minimized. Or, in other words, the adaptive FIR filter

is continuously adjusted in a way that it best approximates the transfer function H1
H2

.
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Since the noise cancellation is done off-line in our setup, the FIR filter is allowed to be

non-causal and the noise cancellation can be achieved regardless whether the time delay

between main and reference channel is positive or negative.

The adaptive FIR filter in our case was of order 4000, and the sampling frequency

was 20kHz. The updating coefficient was set to 0.5. The achieved noise reduction was

around 17dB. Further details are provided in Section 2.6.

2.5.2.2 Model-based NLMS noise cancellation

A much improved noise reduction was achieved using an artificial reference signal, rm,

which is generated based on a pulse-sequence specific model for the MRI gradient noise,

rather than the reference signal captured during the scan. The corresponding system

diagram is shown in Figure 2.5. Hereby we exploit the periodic nature of the gradient

noise, and we generate a signal rm(t) consisting of the sum of unity-amplitude sinusoids of

the fundamental frequency of the MRI scan noise, e.g. f1 =
1

Ninterleaves·TR , and all integer

multiples up to half the audio sampling frequency. For our settings of TR=6.856ms and

Ninterleaves = 13 interleaves we have f1 = 11.22Hz, f2 = 22.44Hz, . . . , f891 = 9996.86Hz.

Hence, this signal contains all spectral components that the periodic gradient noise wave-

form can possibly have in the audio frequency band. The signal now serves as the reference

for an NLMS noise canceller with an FIR filter of order 4000, with an updating coeffi-

cient of 0.5. The achieved noise suppression was around 32dB, and details are provided

in Section 2.6.

While the proposed system of Figure 2.5 achieves decent noise suppression results

and is straightforward to implement, it should be noted that, as shown in [21], given the

sinusoidal nature of the interference the weights of the adaptive FIR filter cannot converge

to a constant value and hence the filter update factor cannot be made arbitrarily small.

13



speech signal

m(t)
recording
main signal

adaptive

NLMS algorithm

linear system

FIR filter

H1

s(t)

scan noise
n(t)

modelled

rm(t)
reference signal

output signal
o(t)

Figure 2.5: Adaptive FIR filter using NLMS algorithm for model-based cancellation of
interference from MRI scanner noise

Instead the filter weights must be free to oscillate, though the magnitude of the oscillation

decreases with the increased filter order. Furthermore, selecting the filter order is not an

easy task, and the value of 4000 was chosen through trial and error.

Both issues can be addressed with a revised system structure which is based on an

algorithm described in [65]. The revised system is shown in Figure 2.6, and it contains

a bank of complex adaptive filters which are each fed with the sine and cosine signal of

the individual harmonics in the noise model. Here the coefficients converge and the filter

order is exactly defined by the number of harmonics of the scan noise in the audio band.

The achieved noise cancellation result is similar to that of the system shown in Figure 2.4

but the revised system is computationally more efficient since it uses only 1782 instead

of 4000 coeficients.

output signal
o(t)

speech signal

m(t)
recording
main signal

linear system
H1

s(t)

scan noise
n(t)

filtersin(2πf891t)

filtersin(2πf1t)

cos(2πf1t)

...

2 coefficient

cos(2πf891t) 2 coefficient

algorithm
NLMS

...

Figure 2.6: Complex adaptive FIR filter using NLMS algorithm for model-based cancel-
lation of interference from MRI scanner noise
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Regardless which system structure is used, the disadvantage of the model-based pro-

cedures is that they do not account for other noise sources than the MRI scanner, such

as the cryogen pump. The major advantage of this approach however is that there is no

leakage of the desired signal, i.e. the subject’s speech, into the reference channel. Though

it might be possible to find a more accurate reference signal model which also includes the

cryogen pump, we found that the cancellation of the MRI gradient noise alone provides

an output signal with sufficient quality for further analysis.

Another advantage of the model-based procedure is that it lends itself to real-time

implementations since even non-causal noise canceling FIR filters are implementable be-

cause the modeled reference signal is deterministic.

2.6 Results

In order to quantify the effectiveness of the noise cancellation algorithms a 30 second

silence recording was obtained, i.e. without any speech activity, and the average output

signal power was measured. Table 2.1 summarizes the achieved noise suppression for

unweighted, A-weighted7, and ITU-R 468 weighted8 output power measurements.

Table 2.1: Noise power suppression for the two presented methods during no speech

unweighted (dB) A-weighted (dB) ITU-R 468 (dB)
Direct NLMS 17.1 17.6 16.3
Model-based NLMS 32.8 31.1 32.7

The verification of the noise canceller for recordings with speech and/or singing is

more difficult since one cannot simply separate the signal and the noise in the recordings

and measure their power independently. However, an estimate of the signal to noise ratio

(SNR) was obtained by measuring the signal power during speech periods, Pspeech+noise,

7IEC 179 standard available at http://www.iec.ch/.
8ITU-R 468 standard available at http://www.itu.int/.
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and scan noise-only periods, Pnoise, for a given recording. Due to the stationarity of the

noise, and the independence of the noise and speech processes, we can compute the signal

power as Pspeech = Pspeech+noise − Pnoise. The SNR for the given recording can now be

expressed as SNR=
Pspeech

Pnoise
=

(Pspeech+noise−Pnoise)
Pnoise

. This computation was carried out for

the original main channel recording, the direct noise-cancelled output, and the model-

based noise-cancelled output. The improvements in SNR with respect to the original

recording are summarized in Table 2.2. The corresponding signal waveforms are shown

in Figure 2.7. Here we see the main channel recording, the directly noise-cancelled output,

the model-based noise-cancelled output and the voice activity flag of the sample utterance

“We look forward to your abstracts by December 19th. Happy holidays! [singing].”

Table 2.2: Noise power suppression for the two presented methods during speech

unweighted (dB) A-weighted (dB) ITU-R 468 (dB)
Direct NLMS 17.2 18.5 13.3
Model-based NLMS 28.4 29.7 26.5

Furthermore, we observed a slight echo-like artifact in the audio output signal most

likely believed to result from the following: After convergence (say in a no-speech period),

the adaptive noise canceller acts like a comb filter and effectively nulls out all frequencies

that are integer multiples of the gradient noise fundamental. If now suddenly a speech

signal appears, which generally has energy at those frequencies, the noise-canceling filter

will take some time to adapt and again block out these frequencies. When the speech

segment is over, the filter again needs a short time to converge back to the no-speech

setting. During this time the audio output obviously contains a residue of the reference

signal causing a reverberant effect.

As a possible remedy for this effect, one can make the adaptation of the filter de-

pendent on voice activity, such that during the no-speech phases the filter adapts fast,

whereas during speech phases the adaptation is slow, or even turned off completely.
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Figure 2.7: Sample waveforms for SNR estimation

Another explanation for the observed residual noise may be that the during the speech

production, when the subjects mouth is open and moving, the broad band scan noise

excites the resonances of the oral cavity. Some test recordings in which the subject

only mouthed an utterance without actually producing the speech contain an obvious

sound signature of the utterance used. While at this point no solution to this problem

can be proposed it should be noted that even with the currently achieved limited noise

cancellation a useful audio signal can be supplied for further analysis in speech production

studies.

17



Chapter 3

MR image processing

3.1 Abstract

A method is described for unsupervised region segmentation of an image using its spatial

frequency domain representation. The algorithm was designed to process large sequences

of RT-MR images containing the 2-dimensional midsagittal view of a human vocal tract

airway. The segmentation algorithm uses an anatomically informed object model, whose

fit to the observed image data is hierarchically optimized using a gradient descent proce-

dure. The goal of the algorithm is to automatically extract the time-varying vocal tract

outline and the position of the articulators to facilitate the study of the shaping of the

vocal tract during speech production.

3.2 Introduction

The tracking of deformable objects in image sequences has been a topic of intensive

research for many years, and many application specific solutions have been proposed. In

this part of the dissertation we describe a method which was developed to track tissue

structures of the human vocal tract in sequences of midsagittal RT-MR images for the

use in speech production research studies. The term “real-time” hereby means that the
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MR frame rate is high enough to directly capture the vocal tract shaping events with

sufficient temporal resolution, as opposed to the repetition-based cine MRI techniques.

(a) Midsagittal real-time MR image
with contours of interest.

tongue

glottis

LA

lower lip

hard palate velum

pharyngeal
wall

epiglottis

VEL

upper lip

TTCD

(b) Articulators and sample vocal
tract variables.

Figure 3.1: Example vocal tract MR image and tract variables

The movie file movie1.mov1, shows an example RT-MR image sequence containing

German read speech. This file contains 390 individual images at a rate of approximately

22 frames per second. These MR data were acquired with a GE Signa 1.5T scanner with

a custom-made multi-channel upper airway receiver coil. The pulse sequence was a low

flip angle 13-interleaf spiral gradient echo saturation recovery pulse sequence with RF and

gradient spoiler and slight T1 weighting [45]. The TR was 6.3ms. The reconstruction

was carried out using conventional sliding window gridding and inverse Fourier transform

operations. Note that a specially designed, highly directional receive coil was necessary

to allow for such a small field of view (FOV) without the inevitable MR-typical spatial

aliasing, while using spiral read-out trajectories.

A single image has been extracted in Figure 3.1(a) and we have manually traced the

contours that are of interest to the speech production researcher. Since the imaging slice

is thin (3mm), the air tissue boundaries of the vocal tract tube exhibit a sharp intensity

gradient and they appear as distinct edges in the image. Notice that the upper and lower

1http://sail.usc.edu/span/tmi2008/index.php
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front teeth do not show up in the image since their hydrogen content is near zero. The

edges which outline the time-varying vocal tract follow these anatomical features:

1. larynx - epiglottis - tongue - lower lip (shown in red),

2. pharyngeal wall - glottis (shown in green),

3. velum - hard palate - upper lip (shown in blue).

These 9 anatomical components, with exception of the hard palate, are called articulators,

and they are controlled during the speech production process.

Knowledge about the position and movements of the articulators is fundamental to

research on human speech production. More specifically, in the articulatory phonology

framework introduced in [50], tract variables are commonly defined to provide a low order

description of the shape of the vocal tract at a particular point in time. These variables

measure constriction degree and location between various articulators. As an example,

Figure 3.1(b) shows some tract variables of interest, such as the lip aperture (LA), the

velum aperture (VEL), as well as the tongue tip constriction degree (TTCD), but other

tract variables between different pairs of articulators can be defined.

For the time evolution of the vocal tract shaping to be studied in speech production

experiments, many such image sequences are acquired from a particular subject, which

contain numerous different utterances of interest, and subsequently the relevant tract

variables need to be extracted. This task comprises for each image the tracing of the

air-tissue boundary of the articulators and the search for the minimum aperture(s) in the

appropriate regions.

From an image processing point of view, the problem to be solved is not just that

of contour detection but also object identification. This is to say, it is not sufficient to

automatically identify in each image the air-tissue boundaries shown in Figure 3.1(a).
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Instead, the anatomical subsections of those boundaries corresponding to the articulators

have to be, at least approximately, found as well in order to be able to compute the tract

variables.

This contour tracing process is time consuming and tedious when carried out by a

human. As an example, assuming a time requirement of 3 minutes for the manual tracing

of a single image the tracing of the entire 390-frame example image sequence above

would take almost 20 hours. Hence, it is the goal of this article to provide an algorithm

for the unsupervised extraction of the outline of the individual articulators to facilitate an

automatic computation of the tract variables. It is desired to reduce the required human

interaction to a minimum, limiting it only to a one-time manual initialization step for a

particular subject, whose data will be used for all images of all sequences recorded from

said subject.

Since the tracing process can be carried out off-line, i.e., after completion of the

MR data acquisition, there is no requirement for real-time execution of the tracing task.

However, we desire to process each image of a particular sequence independently, so as to

be able to achieve fast tracing of a sequence through the use of parallel image processing

on a computing cluster.

Overview and contributions

From an algorithmic standpoint, a main contribution of this paper is a formulation of the

edge detection problem in the spatial frequency domain, where we utilize the closed-form

solution of the Fourier transform of polygonal shape functions. For the intended applica-

tion of our method in the context of upper airway MR imaging and vocal tract contour
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extraction, we furthermore propose the use of an anatomically informed geometrical ob-

ject model in conjunction with a corresponding anatomically informed gradient descent

procedure to solve the underlying optimization problem.

This part of the thesis is organized as follows: In Section 3.3 we will review some

relevant literature and the research context. In Section 3.4 we will then outline a frequency

domain-based algorithm, which addresses the edge detection problem through region

segmentation. The algorithm requires solving a non-linear least squares optimization

problem, which is handled through a gradient descent procedure. This algorithm operates

directly on single channel MR data in k-space and it will be validated using a simple MR

phantom experiment.

In Section 3.5 we extend and modify our algorithm to process multi-channel in vivo

upper airway MR data. The extensions to the algorithm include some data pre-processing

steps, the introduction of an anatomically informed 3-region geometrical model of the

upper airway, as well as the use of an anatomically informed gradient descent procedure.

The modified version of our algorithm will be validated using linguistically informed

example images.

Finally, Section 3.6 includes a discussion of the capabilities, advantages, and disad-

vantages of the algorithm, as well as conclusions and further research suggestions.

3.3 Research context and literature review

3.3.1 The role of MR technology in speech production research

Due to the fact that MR imaging allows to safely and non-invasively observe the en-

tire vocal tract including the deep-seated structures, this technology has gained much

importance in the field of speech research. However, compared to other currently used
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modalities such as x-ray [19], ultrasound [64], or electromagnetic articulography [48], MR

imaging yields only moderate data rates. Due to the low spatio-temporal resolution of

conventional MRI acquisition techniques, the earliest MR-based speech studies were lim-

ited to vocal productions with static postures such as vowel sounds (see [45] and the

references therein). The subsequent development of cine MR imaging techniques [56][62]

allowed the imaging of dynamic vocal tract shaping with sufficient spatial and temporal

resolution but this method relies on multiple exact repetitions of the utterance to be

studied with respect to a trigger signal. Hence, cine MR imaging may be difficult to use

for the study of continuous running speech.

Recent advances in MR pulse-sequence design reported in [45] allow real-time MR

imaging of the speech production process at a suitably high frame rate. At the same

time, a new image processing challenge has been posed by the necessity of the contour

extraction from the real-time MR images which are, generally speaking, of poor quality

in terms of noise. A similar problem has been addressed in [19] for the case of x-ray image

sequences showing the sagittal view of the human vocal tract. However, midsagittal MR

images and sagittal x-ray images are quite different since the x-ray process only allows a

projection through the volume of interest, i.e., the head of the subject, so that for instance,

the teeth obstruct the view of the tongue. The MR imaging process on the other hand

allows the capture of a thin midsagittal slice and hence the contours of interest are not

compromised. The algorithm presented in this paper is particularly geared towards an

application in the MR imaging context.
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3.3.2 Various approaches to edge detection and contour tracking and

their methodologies

3.3.2.1 Open versus closed contours

From the problem definition in Section 3.2, it is clear that our task is to identify in each

image the air tissue boundary of the articulators, which are open contours. That requires

first of all finding the start and end points of the boundary sections. Unfortunately, we

have no artificial markers or anatomical landmarks available that can be easily registered.

We have previously attempted to solve this problem using the optical flow approach, as

reported in [3]. Here the first frame of a given image sequence was manually initialized,

and the start and end point locations of the boundary segments were then consecutively

estimated for the subsequent images. The main problem with this approach is that

any estimation error propagates forward, requiring frequent and time-consuming manual

correction throughout the entire contour detection process of an image sequence.

In contrast, a closed contour processing framework appears to be much more attrac-

tive, since it is area-based and would be expected to be more noise robust. The authors

of [18] have proposed a powerful algorithm to segment from an image a single region

with a constant level of intensity, and hence detect this region’s boundary against the

background. However, this algorithm has two short comings, namely it cannot associate

sections of the boundary with certain image features, i.e., anatomical components of inter-

est, and it is only defined for one region of interest. Nevertheless, this procedure inspired

our algorithm, and we will cast our problem of identifying the vocal tract articulator

boundaries into a multi-area closed-contour framework.
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3.3.2.2 Contour descriptors

A central issue in any type of contour tracking or edge detection application is that

of contour representation. In general, an ideal boundary contour descriptor allows to

express the contours with few parameters and does not produce self-intersecting curves.

Additionally, the roughness of the boundary needs to be somehow controllable in order

to mitigate the effect of image noise. However, anatomical objects are often smooth but

globally enforcing smoothness on an anatomical boundary may result in significant errors

if pointy structures, e.g., the velum or the epiglottis in the airway, make up a part of the

boundary. We hence wish to have easy local control over the smoothness. That, however,

is only useful if we can also robustly identify those sections of the boundary that differ

in their local smoothness properties in order to select the local smoothness constraints

appropriately.

A variety of contour descriptors have been used for both open and closed 2-dimensional

boundaries such as the B-spline [18], wavelet [24], Fourier [52], and polyline descrip-

tors [30], none of which is guaranteed self-intersection free. In our algorithm we use the

polyline contour descriptor since it is the only one which affords us a convenient closed

form solution of the external energy functional and its gradient with respect to the contour

parameters if used for closed polyline contours.

3.3.2.3 Energy functionals

No matter which particular contour detection method is used, in order to evaluate the

goodness of the fit of a candidate contour to the underlying observed image a measure

Eext is commonly designed. This measure is referred to as external energy. Depending

on the application, this measure quantifies how well the contour corresponds to edges in

the image, intensity extrema, or other desired image features [40].

25



In the edge detection case, the external energy is commonly chosen as the line integral

along the boundary contour C over the negative image intensity gradient magnitude

Eext(C) = −
∫

C
|∇(h(x, y) ∗m(x, y))| ds (3.1)

where m(x, y) is the observed image intensity function, and h(x, y) is an optional smooth-

ing filter kernel, which may be used to mitigate the effects of noise in the image.

This way, if the candidate contour coincides well with an edge in the image, i.e.,

with a line of high intensity gradient magnitude, the external energy will have a large

negative value. The edge finding process now consists of minimizing the external energy

by adjusting the shape of the contour through an appropriate optimization algorithm:

Ĉ = argmin
C

Eext(C) (3.2)

At this point we can identify a number of mathematical issues: First, the external

energy is an integral quantity along the candidate contour, which can be difficult to

evaluate analytically depending on the underlying m(x, y) and the shape of the contour.

In practice, approximations are often used to resolve this problem. Second, a derivative of

Eext(C) with respect to the parameters of the contour C will be needed if the optimization

is to be carried out through a gradient descent procedure, which in practice can oftentimes

only be approximated using a finite difference. And third, the convexity of the function

Eext(C) cannot necessarily be guaranteed and a direct gradient descent optimization

procedure may get stuck in a local minimum unless a careful initialization of the contour

near the optimum location can be carried out.

Furthermore, we identify additional practical problems. First, if the image m(x, y)

is noisy in the area of the edge of interest the optimum contour will deviate from the
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true underlying edge. If the true edge is known to be smooth, one can combat this effect

by designing a penalty term for the optimization problem referred to as internal energy

Eint(C). It measures the curvature of the candidate contour (see [30, 40] for detailed

information). The optimization problem of Equation 3.2 now becomes

Ĉ = argmin
C

(Eext(C) + Eint(C)) (3.3)

but the mathematical issues identified above have now become even more difficult to deal

with. Secondly, the application of the filter h(x, y) on the image data may smooth away

some of the image noise and remove some local minima in the energy landscape of the

optimization problem, yet at the same time it may destroy important detail information

in m(x, y) and actually hinder the edge finding process.

3.3.2.4 Edge detection in image domain versus frequency domain

Most edge detection algorithms devised to date operate directly on the pixelized image,

one exception being the method introduced in [52]. Here, a Fourier contour descriptor

is used to capture in a given scene the outline of a single region of interest. The region

is modelled to have unity amplitude, and a discretized spatial frequency domain repre-

sentation of this object model is computed. A nonlinear optimization is subsequently

carried out, which aims at matching the frequency domain representation of the model

to the frequency domain representation of the observed image by adjusting the boundary

contour of the region of interest in the image model.

This approach has the advantage that the accuracy of the boundary is not limited by

pixelization in the image space. However, for the particular choice of the Fourier contour

descriptor a closed form solution is available neither for the external energy functional
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nor for its gradient. The authors in [52] furthermore report a problematically unstable

behavior of the optimization algorithm.

We can further note three more shortcomings of this approach, namely, the algorithm

is only defined for a single region of interest, second the region’s true amplitude in the

image may not be unity and there is a mismatch between model and observation, and

lastly, the procedure does not match sections of the boundary to particular scene features.

3.3.2.5 Probabilistic approaches to edge detection and tracking

As outlined in [40] and references therein, deformable object models have been used in

a probabilistic setting to accomplish the task of edge detection. Here prior knowledge

of the probability associated with the object’s possible deformation states is required.

However, while some statistical models exist for describing vocal tract dynamics during

speech, such as the one introduced in [34], the development of comprehensive models that

describe natural spontaneous speech phenomena is a topic of ongoing research. Thus, the

method presented in this article aims to provide the means to utilize real-time MR imaging

technology to produce large amounts of articulatory data for the future development and

training of such advanced statistical models.

3.4 Segmentation of MR data in the frequency domain

3.4.1 The concept

The 2-dimensional MR imaging process produces, per frame, Q samples M(kx,q, ky,q), q =

1 . . . Q of the Fourier transform of the spatially continuous magnetization functionm(x, y)

in the selected imaging slice. Due to non-ideal nature of the MR scanner’s receiver coil

and circuitry, as well as off-resonance, the samples M(kx,q, ky,q) can also be subject to

an additional constant phase shift, which in general is not known to the user. In our
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case we use a 13-interleaf spiral readout pattern as shown in Figure 3.2(a). It consists of

13 identical (but individually rotated) spiral readout paths which start at the origin of

the spatial frequency domain, which is also called k-space. Each spiral readout produces

638 k-space samples, totalling 8294 samples for the k-space coverage as shown. While

the MR operator has the capability of applying a zoom factor to increase or reduce the

FOV by scaling the readout pattern, the relative geometry of the pattern is the same

for all experiments in this article. Notice also that the required number of pixels for the

conventional gridded reconstruction process, and with it the relative spatial resolution,

is constant regardless of the applied zoom factor, since a scaling of the readout pattern

changes equally the radial gap and the k-space coverage area. For the readout pattern

used here the image matrix has the size 68-by-68 pixels and all geometrical measurements

that appear in this text have been converted into the pixel unit, i.e., any additional FOV

change has been accounted for in any of the data below.
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Figure 3.2: MR readout using 13-interleaf spiral trajectories.
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By using the k-space sample values as the coefficients of a truncated two-dimensional

Fourier series one can reconstruct an approximation of the underlying continuous mag-

netization function

m(x, y) =
Q
∑

q=1

W (kx,q, ky,q)M(kx,q, ky,q)e
j2π(kx,qx+ky,qy), (3.4)

where W (kx,q, ky,q) are the read-out trajectory-specific density compensation coefficients.

These weighting coefficients are commonly obtained using a Voronoi tessellation of the

sampling pattern, and they represent the area of the Voronoi cell corresponding to each

sample point. Figure 3.2(b) shows the weighting coefficients for the 638 samples of one

spiral starting at the origin of k-space. Due to the symmetry of the read-out pattern the

weighting coefficients are the same for all 13 spiral trajectories.

While m(x, y) is a continuous function it is commonly evaluated only punctually, i.e.,

sampled on a cartesian grid, and the resulting sample values are displayed as square

patches in a pixelized image matrix. While oversampling and interpolation are viable

options to increase the fidelity of the patched approximation it is the goal of our approach

to circumvent this pixelization process altogether and carry out the contour finding on

the continuous function m(x, y) directly. As benefits of this methodology we expect

an improved edge detection accuracy as well as simple and straightforward methods to

mathematically evaluate the external energy of the contour and its gradient.

Figure 3.3 shows a flow chart of our proposed algorithm using some sample upper

airway images, which for the specified FOV always consist mainly of three large con-

nected regions of tissue. The MR data acquisition (left hand side in the figure) produces

k-space samples of the object which are collected in the Q-by-1 column vector M. On the

right hand side in the figure, we have a geometrical object model that consists of three

disjoint regions R1...3 in the image domain, described by their polyline boundaries and
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Fourier data difference

data aquisition vertices V0...L, intensities µ0...L

geometrical object model:

(output)

model
Fourier data

observed Fourier
data M

gradient descent:

optimized model

argminV,µ J(M,V0...L, µ0...L)

conventionally
reconstructed
MR image
(not used)

Figure 3.3: Overview of Fourier domain region segmentation.

their intensities µ1...3 (see also Figure 3.10(a) and Figure 3.10(b)). These three regions

are additive to a square background R0 with intensity µ0, which spans the entire FOV.

The parameters of our geometrical model are the vertex vectors of the polylines V1...3,

as defined in Equation A.1 as well as the intensities µ0...3. From these geometrical pa-

rameters, we derive the frequency domain representation of the model with help of the

analytical solution of the 2-dimensional Fourier transform of the polygonal shape func-

tions. Details of this key mathematical component of our algorithm can be found in the

Appendix. An optimization algorithm is then used to minimize the mean squared differ-

ence J(M,V1...3, µ0...3) between the observed frequency domain data and the frequency

domain data obtained from the model by adjusting the model’s parameters and hence

improving the model’s fit to the observed scene. Hereby, the model’s frequency domain

representation is obtained at the same k-space sampling locations that were used for the

observed data. Hence, any spatial aliasing and/or Gibbs ringing affects the model in the

same way as the object.

The final desired output of the algorithm for a given set of input data is the geomet-

rical description of the best-fitted polyline boundary of the model. Using the polyline
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boundaries one can then easily compute the apertures that correspond to the vocal tract

variables.

At this point it must be clearly stated that the geometrical model must be able to

sufficiently approximate the underlying observed data. If any other FOV is chosen, or

even a totally different object is imaged then the geometrical model has to be re-designed

accordingly.

3.4.2 The mathematical procedure

To rigorously derive our algorithm we start in the continuous spatial domain with an

object model consisting of L = 3 disjoint regions plus the background. We express the

difference image energy between the underlying observed function m(x, y) and the model

as

J =

∫∫

∣

∣

∣

∣

∣

m(x, y)−
L
∑

l=0

µls(x, y,Vl)

∣

∣

∣

∣

∣

2

dxdy (3.5)

where s(x, y,Vl) is a polygonal shape function as defined in Equation A.2.

Using Parseval’s Theorem and Equation 3.4 we now step into the frequency domain

by sampling the frequency domain representation of the model on the same grid as the

measured frequency domain data. With S(kx, ky,Vl) being the Fourier transform of

s(x, y,Vl) as stated in Equations A.4 and A.5 we write

J (M,V0...L, µ0...L) =
Q
∑

q=1

W (kx,q,ky,q)

∣

∣

∣

∣

∣

M(kx,q, ky,q)−
L
∑

l=0

µlS(kx,q, ky,q,Vl)

∣

∣

∣

∣

∣

2

(3.6)

To express this in matrix form, we define

M̄ =
[
√

W (kx,1, ky,1)M(kx,1, ky,1), . . . ,
√

W (kx,Q, ky,Q)M(kx,Q, ky,Q)
]T

(3.7)
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which is a Q-by-1 column vector consisting of the observed frequency domain measure-

ments multiplied by their corresponding weighting factor, and

S̄(Vl) =
[
√

W (kx,1, ky,1)S(kx,1, ky,1,Vl), . . . ,
√

W (kx,Q, ky,Q)S(kx,Q, ky,Q,Vl)
]T

(3.8)

which is a Q-by-1 vector of the frequency domain representation of the region l at the

same spatial frequencies as the observed data, multiplied by the same weighting factor.

Furthermore, we define

Ψ(V0...L) = [S̄(V0), . . . , S̄(VL)] (3.9)

which is a Q-by-(L+1) matrix combining the frequency domain representations of the L

segments and the background, and

µ = [µ0, . . . , µL]
T (3.10)

which is a (L + 1)-by-1 vector containing the intensities of the L regions and the back-

ground. Lastly, we write the scalar objective function J as

J
(

M̄,V0...L,µ
)

=
∥

∥M̄−Ψ(V0...L)µ
∥

∥

2
(3.11)

The goal is now to minimize

V̂1...L, µ̂ = argmin
V1...L,µ

J
(

M̄,V0...L,µ
)

(3.12)

in order to find the best fitting model to the observed data, i.e., we optimize the boundary

curves of the L segments (but not the background) as well as all intensities.
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Estimation of the region intensities

Following [22], we separate from the optimization problem posed in Equation 3.12 the

linear part, and for a given model region geometryV0...L we jointly estimate the intensities

of all model regions including the background as

µ̂ = argmin
µ

∥

∥M̄−Ψ(V0...L)µ
∥

∥

2
(3.13)

We can solve this system of equations in the minimum mean square sense with the

pseudo-inverse Ψ+ =
(

ΨHΨ
)−1

ΨH and we obtain

µ̂ = Ψ+(V0...L)M̄ (3.14)

Notice at this point that the region intensities µ̂ can obtain complex values.

Estimation of the region shapes

The result of Equation 3.14 can be used to simplify Equation 3.11 to

J
(

M̄,V0...L
)

=
∥

∥M̄−Ψ(V0...L)Ψ
+(V0...L)M̄

∥

∥

2
(3.15)

and we now state the optimization goal for Vi, i = 1 . . . L

V̂i = argmin
Vi

J
(

M̄,V0...L
)

(3.16)

We will tackle this unconstrained non-linear optimization problem using a gradient

descent procedure. Let vij be a vertex vector belonging to the boundary polyline Vi
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of region Ri. The gradient of the objective function J with respect to this vector’s x-

coordinate is

∂J

∂xij
= −2ℜ

{

(

M̄−Ψµ̂
)H

(

∂Ψ

∂xij
µ̂+Ψ

∂µ̂

∂xij

)}

(3.17)

In Equation 3.17, the derivative ∂Ψ
∂xij

expresses how the model’s frequency domain repre-

sentation changes if the x-coordinate of vij is changed. This term can be obtained using

Equation A.12 from the Appendix. With Equation 3.14 the term Ψ ∂µ̂
∂xij

, can be written

as

Ψ
∂µ̂

∂xij
= Ψ+H ∂ΨH

∂xij
(M̄−Ψµ̂)−ΨΨ+ ∂Ψ

∂xij
µ̂ (3.18)

where we used the formula for the derivative of an inverse matrix2 dA−1

dt = −A−1 dA
dt A

−1.

Similarly, the gradient of J with respect to the vertices y-coordinate can be found along

the same lines, and both can be combined into the vector ∂J
∂vij

=
[

∂J
∂xij

, ∂J
∂yij

]

.

At this point we would like to carry out a simple gradient descent for each vertex

vector in the model

v
(n+1)
ij

= v
(n)
ij

− ϵ
∂J

∂vij

(n)

(3.19)

but the convexity of the objective function J cannot be guaranteed. Hence for all but the

simplest object geometries and a close initialization of the model to the true edge location

the descent is highly likely to get stuck in a local minimum. To overcome this problem for

the upper airway scenario we propose in Section 3.5 the use of an anatomically informed

object model in conjunction with a hierarchical optimization algorithm. However, for

a first validation of our method we will now present the results of a simple phantom

experiment which utilizes the direct gradient descent optimization.
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Figure 3.4: Phantom experiment data, initial contours, and final contours.

3.4.3 An experiment with a simple stationary phantom

For our first edge detection validation experiment we imaged the cross-sectional slice of

two stationary cylindrical objects, which were thin-walled plastic containers filled with

butter3 using a GE Signa 1.5T scanner with single channel bird-cage head coil. A con-

ventionally reconstructed magnitude image of the phantom is shown in Figure 3.4(c),

and the goal of the first experiment is to determine the location of the boundaries of

the two objects. Notice that the rasterized approximation of |m(x, y)| is displayed in

2http://planetmath.org/encyclopedia/DerivativeOfInverseMatrix.html
3Water was found not suitable as phantom material since it warms up during the scan process and

flow-artifacts appear in the image. Hence the containers were filled with butter instead, then heated and
subsequently cooled, so as to achieve a complete filling of the volume with solid material.
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Figure 3.4(c) for illustration purposes only, while the segmentation algorithm utilizes the

samples M(kx,q, ky,q) directly, whose corresponding complex valued transform function

m(x, y) is shown in Figure 3.4(a) (real part) and Figure 3.4(b) (imaginary part).

The object model for this experiment consisted of the background and two additive

octagons, one for each of the two circular phantom areas. While we carefully initialized

the boundary for one of the circular regions (object 2) we deliberately mis-initialized the

other (object 1) to be significantly offset. The initial boundaries are shown as dotted

lines in Figure 3.4(c) and polyline vertices are shown with “o” markers, while the final

boundaries are shown as solid lines with “+” markers. Figure 3.4(d) shows how the

objective function J converges over the course of 300 direct gradient descent steps with

a step width ϵ = 0.01. And we see that eventually both objects’ boundaries are well

captured by the algorithm despite the grossly mis-initialized boundary for object 1.
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Figure 3.5: Edge detection on object 1: time courses of the geometrical accuracy measures
for 10 different initializations (initial 30 iterations shown).

Since the true boundaries of the objects are circular whereas the model’s boundaries

are octagons it is not directly possible to quantify the accuracy of the final achieved

boundary detection result. Furthermore, the true locations of the objects are unknown,

so we cannot easily evaluate the positional accuracy of our algorithm either. Instead

we will compare the enclosed area of the boundary polygon 1 to the true area of the
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circular object, which has been determined through 10 manual measurements of the

phantom. Furthermore, 10 manual tracings of object 1 have been carefully carried out on

the image and the average centroid will be used as the as a substitute for the true center

location of the object. This value will then be compared with an averaged centroid from

10 differently initialized automatic edge finding results. Lastly, the averaged achieved

circularity4 measure of the 10 manual tracings and 10 automatic detection results can be

compared to the maximum possible value, which for a regular octagon equals π
8 (1+

√
2) ≈

0.9481.

Table 3.1: Edge detection on object 1: averaged geometrical accuracy measures and
standard deviations over 10 trials

manual (σ) automatic (σ) true (σ)
area [px2] 108.6 (7.1) 119.8 (0.03) 119.9 (0.18)
centroid x [px] 6.34 (0.14) 6.42 (0.0004) unknown
centroid y [px] -14.06 (0.10) -14.13 (0.0022) unknown
circularity 0.941 (0.0015) 0.945 (0.0002) 0.9481

The averaged results of the 10 validation runs (300 iterations each, ϵ = 0.01) are

summarized in Table 3.1, and the initial 30 values of the time courses of the various

measures are shown in Figure 3.5(a) and Figure 3.5(b), and 3.5(c). For the enclosed

polygon area we find that the automatic detection results are well within one standard

deviation of the true value of 119.9 square pixels, whereas the manual tracings were

on average significantly too small. The centroid x and y coordinates of manual and

automatic tracing coincide well at around (6.4,−14.1), though the manual results exhibit

larger variations than the automatic tracking results. It is also important to note that

the standard deviations of both the manual and automatic processing are in the sub-

pixel range, i.e. both human as well as automatic tracing results in sub-pixel spatial

accuracy. Finally, the circularity measure, which equals 1 for a perfect circle and 0.9481

4The circularity of a polygon is defined as 4π area
perimeter2

. It is a dimensionless quantity whose maximum
value equals 1, which is achieved for a perfectly circular area.
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for a perfectly regular octagon, shows that on average the automatic tracings are closer

to the optimum value than the manual tracings.

In order to investigate the dependency of the algorithm on the completeness of the

geometrical model we repeat the experiment with the same parameters but with an

incomplete geometrical model which only includes a region for object 1 in addition to

the background. The intial and final boundaries for object 1 are shown in Figure 3.6

superimposed on the magnitude image, and we observe that the shape and the location

of object 1 are again well captured despite the obvious mismatch between geometrical

model and observed scene.
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Figure 3.6: Edge detection on object 1 with single-region geometrical model: Magnitude
image |m(x, y)|, initial contours, final contours.

Table 3.2 summarizes the averaged measurements and standard deviations of enclosed

area, centroid coordinates, and circularity of 10 trials with different initial contours.

While the centroid coordinates and the circularity value are virtually equivalent to those

achieved with a complete geometrical model (Table 3.1, column 3) the enclosed area was

estimated smaller than previously, yet still more accurately than the manual results.

The reason for this outcome is illustrated in Figure 3.7 with the help of an example.

In Figure 3.7(a) we consider the noisy image intensity profile (black line) obtained at

a particular y-coordinate of a hypothetical scene which includes an object (on the left;
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Table 3.2: Edge detection on object 1 with incomplete geometrical model: averaged
geometrical accuracy measures and standard deviations over 10 trials

automatic (σ)
area [px2] 119.1 (0.03)
centroid x [px] 6.42 (0.0004)
centroid y [px] -14.13 (0.0022)
circularity 0.945 (0.0002)

mean amplitude 2) and the background (on the right; mean amplitude 1). The geometrical

model consists only of a single constant-intensity region (red) to capture the object in

addition to the background (green). The optimum boundary (blue) for this scenario is

found at x = 30. If, on the other hand, an additional object 2 is present in the scene

(Figure 3.7(b); mean amplitude 1.5) but the geometrical model does not account for

it then the optimum boundary is found at x = 27 since the background amplitude is

estimated larger. However, the shift of the boundary location would not occur if the

transition between object 1 and the background amplitude were very steep.
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Figure 3.7: Edge location dependency on completeness of the geometrical model.

In summary we conclude from this simple phantom experiment that our region-based

contour detection algorithm works well for objects with a simple geometry and sharp
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boundaries, and it meets or surpasses human contour tracing performance. We do require,

however, a good geometrical model which is capable of capturing all objects in the scene.

In the following section we will address the problem of multi-coil human upper airway

region segmentation.

3.5 Upper airway multi-coil MR data segmentation

3.5.1 Data pre-processing
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Figure 3.8: Multi-coil in vivo upper airway MR sample images.

In order to capture the entire human vocal tract a specialized highly directional multi-

channel MR receiver coil was employed, and we utilized data from two coils that were
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located in front of the subject’s face. For a sample image, the complex valued magne-

tization function is shown Figure 3.8, where Figure 3.8(a) and Figure 3.8(b) show the

real and imaginary part reconstructed from coil 1, and Figure 3.8(c) and Figure 3.8(d)

those from coil 2. In these images light intensity means positive values, whereas dark

intensity means negative values. These images clearly demonstrate that each coil has its

own (unknown) spatially varying phase offset, and it is not clear at this point what the

best strategy might be to combine the two coils’ complex data.

From the magnitude images produced from each coil (Figure 3.9(a) and Figure 3.9(b))

we additionally conclude that we cannot use a single constant-amplitude 3-region object

model since the 3 regions of interest (Figure 3.1(a)) show up only partly in each of the

coils’ data. This effect is due to the spatial roll-off of the individual coil sensitivity

functions.

We hence proceed at this point with conventionally reconstructed 68-by-68 cartesian

sampled root sum square (RSS) magnitude images such as the one shown in Figure 3.9(c),

and we apply the thin-plate spline-based intensity correction procedure proposed in [38]

to obtain an estimate of the combined coil sensitivity map (Figure 3.9(d)), which is

constant for all images contained in the sequence. We can thus obtain corrected max-

imally flat magnitude images showing 3 connected constant-amplitude regions of tissue

(Figure 3.9(e)). These images’ cartesian 68-by-68 Fourier transform matrices will be the

starting point for the area-based contour detection following the mathematical procedure

as outlined in Section 3.4.

While we have now stepped away from using the MR data directly in k-space, we

continue to use our frequency domain based segmentation framework since it affords us

a very convenient way to compute in closed form the external energy of the contours as

well as the corresponding gradient without any additional interpolation or zero-padding
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(a) Coil 1 magnitude. (b) Coil 2 magnitude.

(c) RSS image. (d) Estimated combined coil sensi-
tivity pattern.

(e) Sensitivity corrected RSS im-
age.

Figure 3.9: Multi-coil upper airway images.

operations. In fact, it is clear that processing in the discretized Fourier domain, given a

sufficiently densely sampled Fourier representation of the image, is equivalent to operating

on an infinitely accurately sinc-interpolated spatial representation of the image. This fact
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is easy to understand if one considers that a perfect sinc-interpolation of an image is just

the same as infinite zero-padding in the Fourier domain. That means that processing

on the original non-zeropadded Fourier domain samples exploits the same information as

processing a perfectly sinc-interpolated image, as derived using Equations 3.5 and 3.6.

3.5.2 Refined anatomically informed midsaggital model of the vocal

tract
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(a) Geometrical model. (b) Intensity image corresponding to
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Figure 3.10: Upper airway object model.

In this section we will propose a method to mitigate the potential danger of the contour

detection optimization algorithm to get stuck in a local minimum while addressing the

specifics of the midsaggital view of the human vocal tract. As outlined in Section 3.4 our

model for the midsagittal upper airway image consists of three homogeneous regions on

a square background. We now divide the boundary polygon of each region into sections

that correspond to anatomical entities as shown in Figure 3.10(a)5 . This implies that

the vertices of a particular boundary section are likely to move in concord during the

5The number of polyline vertices in each section was chosen manually so as to capture the underlying
geometry with reasonable detail. While [18, 52] showed that a minimum description length criterion can
been used to determine the optimum order of B-spline and Fourier contour descriptors, at this point, we
leave this issue outside the scope of this thesis.
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deformation process. Additionally, we may hypothesize, based on the anatomy, that

for a given section particular types of deformation are more prevalent than others. We

distinguish the “rigid” deformations of translation, rotation, and scaling from the “non-

rigid” complementary deformations. We will explain in Section 3.5.3 how we exploit

this knowledge about a section’s deformation space with our hierarchical optimization

algorithm by selectively boosting and/or inhibiting the gradient descent with respect to

the individual deformation components.

As an example, one may consider the boundary section denoted P11 in Figure 3.10(a),

which corresponds to the hard palate. Since the hard palate is a bony structure covered by

a thin layer of tissue it does not change its shape during speech production data collection.

However, a possible in-plane head motion of the subject can change its position in the

scene through translation, rotation or a combination of both.6

The other mostly translating and rotating sections are the mandible bone cavity (P3),

the chin (P5), the front of the trachea (P6), the pharyngeal wall (P7), the upper, right-

hand and lower edge of the chosen field of view (P8, P9, P10), the bone structure around

the nasal cavity (P13), and the nose (P14). While the lips (P4, P15) may undergo strong

non-rigid deformations, the cross-sectional area visible in the midsagittal plane is assumed

to be constant, i.e., in general they will not be subject to a strong scaling deformation.

The epiglottis (P1) and the velum (P12) are special in that they are articulated struc-

tures, i.e., they are flexible tissues that are attached to the surrounding structure at one

end, where the attachment point is the rough center of rotation. This is illustrated in Fig-

ure 3.11, and the mathematical consequences for the model are explained in Section 3.5.3.

However, neither the epiglottis nor the velum is expected to scale during the vocal tract

shaping process since the amount of tissue in the scan plane is largely constant.

6Of course a head motion by the subject perpendicular to the scan plane can very well change the
observed shape of the palate, but the subject’s head is properly immobilized through secure sideways
padding inside the MR receiver coil.
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Lastly, the tongue (P2) undergoes the most complex deformation of all components.

Translation and rotation can be caused by changing the mouth opening, but scaling must

also be considered since the tongue tissue can move laterally into and out of the scan

plane [55]. And given the complex muscular structure of this organ, we expect large

deformations complementary to translation, rotation, and scaling as well.

Table 3.3: Region R1 boundary sections, level 3 boosting factors

Section Feature λT λR λS

P1 epiglottis 1 10 0
P2 tongue 1 1 1
P3 lower teeth / mandible 1 1 0
P4 lower lip 1 1 0
P5 chin 1 1 0
P6 front of trachea 1 1 0

Table 3.4: Region R2 boundary sections, level 3 boosting factors

Section Feature λT λR λS

P7 pharyngeal wall 1 1 0
P8 FOV upper boundary 1 1 0
P9 FOV right boundary 1 1 0
P10 FOV lower boundary 1 1 0

Table 3.5: Region R3 boundary sections, level 3 boosting factors

Section Feature λT λR λS

P11 hard palate 1 1 0
P12 velum 0 10 0
P13 nasal cavity 1 1 0
P14 nose 1 1 0
P15 upper lip 1 1 0

All individual sections and their deformation boosting factors corresponding to the

specific anatomical characteristics are listed in Tables 3.3, 3.4, and 3.5. The boosting

factors are λT , λR, and λS for translation, rotation, and scaling, respectively, and the

next section will describe how they are used. In general, the factors are unity if the
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corresponding deformation type is expected for the given section, and zero otherwise.

Exceptions are the epiglottis and the velum, which are articulated structures. They

receive a boosted rotational component, with λR = 10. This choice was experimentally

found to speed up the convergence of the optimization algorithm without compromising

the stability.

3.5.3 Hierarchical gradient descent procedure

Based on our anatomical model we can now use a hierarchical optimization procedure to

improve the fit of the model’s geometry to the observed image data through a gradient

descent. As outlined above, the main challenge here is to ensure that the optimization

flow does not get trapped in a local minimum of the objective function. The authors

of [14, 16] demonstrate that in the realm of irregular mesh processing a practical solution

to this type of problem is the design of optimizing flows with “induced spatial coherence,”

and we utilize the same concept in our application.

Upon an initialization with a manually traced subject-specific vocal tract geometry

representing a fairly neutral vowel posture, e.g., roughly corresponding to the vowel,

we optimize the fit of our model’s geometry independently for each MR image. The opti-

mization procedure according to Equation 3.16 is carried out in four separate consecutive

stages, each of which features a particular modification of the gradient descent flow:

• Level 1 - allowing only translation and rotation of the entire 3-region model geom-

etry, thereby compensating for the subject’s in-plane head motion,

• Level 2 - allowing only translation and rotation of each region’s boundary, thereby

fitting the model to the rough current vocal tract posture,
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• Level 3 - allowing only rigid transformations, i.e., translation, rotation, and scal-

ing, of each anatomical section obeying the section-specific boosting factors of Ta-

bles 3.3, 3.4, and 3.5,

• Level 4 - independent movement of all individual vertices of all regions.

Thus this approach tries to find a good global match first and then zooms into optimizing

smaller details.

In order to describe the mathematical procedure for the boosting of the rigid defor-

mations of a particular contour polygon it is first necessary to define a point which serves

as the center for the rotation and the radial scaling. With the exception of the articulated

structures in our model, i.e., the epiglottis and the velum, we choose the center of mass of

the polygon of interest. Denote with vij = [xij , yij ] the vertex vector j of the boundary

polygon Pi. The center or mass of Pi is

v̄i =

∑

∀vij
∈Pi

lijvij
∑

∀vij
∈Pi

lij
(3.20)

where

lij =
∥vij+1

− vij∥+ ∥vij − vij−1
∥

2
(3.21)

is the length of the polyline section associated with vertex vij . Denoting with Fij =
[

∂J
∂xij

, ∂J
∂yij

]

the force on a vertex as derived in Equation 3.17, we find the net translation

force on a polygon section Pi

F̄i =
∑

∀vij
∈Pi

Fij (3.22)

and similarly, the net rotation torque on a polygon can be computed as

T̄i =
∑

∀vij
∈Pi

Fij × (vij − v̄i) (3.23)
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and it is clear that it has only a z-component denoted T̄i. Lastly, the net radial scaling

force on a polygon is

K̄i =
∑

∀vij
∈Pi

Fij · (vij − v̄i) (3.24)

With these formulas we are now in a position to replace the direct gradient descent

of Equation 3.19 by a transformed gradient descent step

v
(n+1)
ij

=
(

1− ϵλSK̄
(n)
i

)

·
⎡

⎢

⎣

cos
(

ϵλRT̄
(n)
i

)

sin
(

ϵλRT̄
(n)
i

)

− sin
(

ϵλRT̄
(n)
i

)

cos
(

ϵλRT̄
(n)
i

)

⎤

⎥

⎦

(

v
(n)
ij

− v̄
(n)
i

)T

− ϵλT F̄
(n)
i + v̄

(n)
i (3.25)

Here we rotated the vertex position first, then scaled it, and finally added a translational

displacement. Each step can be controlled with the section-specific boosting factors λT ,

λR, and λS for translation, rotation, and scaling, respectively. The boosting factors, the

step width ϵ, and the partitioning of the boundaries of our 3-region vocal tract model into

connected sections are dependent on the current hierarchical optimization level, details

of which are elaborated below.

Level 1

For the top level we set λT = 1, λR = 1, and λS = 0, and all vertices of R1...3 are

considered as belonging to a single polygon. The center of rotation is computed with

Equations 3.20 and 3.21. An initial stepwidth of ϵ = 0.0005 was chosen, and a simple

variable stepwidth algorithm was used in order to achieve faster convergence and avoid

oscillations near the minimum. If an iteration step did not lead to a decrease of the

objective function J , then its result is discarded, the stepwidth ϵ is cut in half, and the

49



iteration step is carried out anew. In our experiments, a total of 10 iteration attempts

are made, and the algorithm then proceeds with level 2.

Level 2

For this stage of the optimization the same transformed gradient descent method is used

except that each individual region’s complete boundary is now considered a single polyline

segment. Here ϵ was set to 0.001, λT = 1, λR = 1, and λS = 0 so that the gradient descent

is limited to independent translation and rotation of the regions R1...3. The center of

rotation is again computed with Equations 3.20 and 3.21. A total of 40 gradient descent

steps are attempted.

Level 3

We now break the 3 regions’ boundaries into the segments P1...15 corresponding to the

anatomical components introduced in section 3.5.2, and we apply the boosting factors that

are listed in Tables 3.3, 3.4, and 3.5 for the gradient descent with Equation 3.25. Since
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(a) Velum.
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(b) Epiglottis.

Figure 3.11: Velum and epiglottis are articulated structures.

we consider the velum and epiglottis as articulated structures, their centers of rotation

v̄12, and v̄1, respectively, are found with the help of the neighboring (non-articulated)
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structures as shown in Figure 3.11(a) and Figure 3.11(b) as black x-markers. The centers

of rotation are computed as the mean of the connection vertices (black dot markers). For

all other segments we determine the center of rotation and scaling using Equations 3.20

and 3.21. We set ϵ = 0.001 and allow 300 gradient descent attempts.

Level 4

Lastly, we carry out a direct gradient descent according to Equation 3.19 with a step-

size ϵ = 0.05, and we allow a total of 300 iteration steps. At this point also non-rigid

deformations are accommodated and no manipulation of the gradient descent is done.

3.5.4 Implementation of higher-level contour constraints

When applying the contour detection process described so far no constraints on the bound-

ary polygons are implemented and the vertices move freely during the last optimization

stage. At this point we identify two potential problems that can appear during the gra-

dient descent optimization. These problems are possible region overlap, and boundary

polygon self-intersection. In general, one can address such issues on a lower level by

adding appropriate penalty terms to the objective function, or one can combat these

problems at a higher level by directly checking and correcting the geometrical model af-

ter each gradient descent step. Our general approach is to operate at a higher level to

circumvent the potentially difficult evaluation of such penalty terms and their respective

gradients.

The three tissue areas in our upper airway image model are naturally always non-

overlapping regions but occlusions happen frequently in the vocal tract during speech

production. In these cases two adjacent tissue regions of the model appear connected and

the unconstrained gradient descent procedure may in fact let the regions grow into one
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another. We handle this issue by detecting after each gradient descent step if a vertex

has been moved into a neighboring region’s boundary polygon, and if so it is reset in the

middle of the two closest correct neighboring boundary vertices.

At this point our algorithm does not include a way of handling self-intersections of

the boundary polygons but in practice this seems not to be an issue as the provided

sample images will show. Here the reader should keep in mind that our final goal is to

be able to extract the vocal tract aperture, and as long as possible self-intersections in

the boundaries do not hinder this process we will tolerate them.

3.5.5 Validation of the hierarchical contour detection algorithm

In this section we present simulation results to demonstrate the effectiveness of our

method, and we address the verification of the algorithm. Here we face three prob-

lems when trying to assess the achievable accuracy with the proposed algorithm. First,

we have no information on the true underlying contours of a particular image. A compre-

hensive upper airway MR phantom does not exist, and the validity of a manually traced

reference of real-time MR images is doubtful given the poor quality in terms of image

noise. We have already shown in Section 3.4.3 that manual tracings can exhibit larger

variations and are less accurate than automatic tracings. Second, we would need a mea-

sure that captures the difference between a reference boundary and the boundary found

by the algorithm, as well as the accuracy with which the individual anatomical sections

of the boundary contours are found. Third, as pointed out in Section 3.5.2, we currently

have fixed the number of vertices for the contour representation, and the achieved fit of

the model to the observed image data is dependent on the number of degrees of freedom.

At this point, we present a variety of sample images that have been processed with

our algorithm, and we will qualitatively judge the detected contours and analyze the
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results from an intended end-use application point of view. All images presented in this

paper were extracted from a recording of German read speech, and we refer the reader

to download7 and view the entire video movie1_processed.mov.

Lastly, we have made available online two other MR video sequences movie2.mov and

movie3.mov and their corresponding contour-traced versions movie2_processed.mov and

movie3_processed.mov, which contain English read speech from two female subjects.

These two sequences were recorded with an appropriate zoom factor setting since the

female vocal tract is in general smaller than the male vocal tract. All segmentations were

automatically derived using the algorithm presented in this paper. The audio track for

all movies was obtained concurrently using the procedure described in [9].

(a) Initialization. (b) Level 1. (c) Level 2.

(d) Level 3. (e) Level 4.
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Figure 3.12: Example 1: Vowel extracted from a read speech sequence

7http://sail.usc.edu/span/tmi2008/index.php
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For the purpose of evaluation we consider four different images that contain distinct

vocal tract postures obtained from German speech in a real-time MR scan. The posture

shown in Figure 3.12 belongs to the vowel . Figure 3.12(a) shows the image and the ini-

tialization contour, whereas Figure 3.12(b), Figure 3.12(c), Figure 3.12(d), Figure 3.12(e)

show the result at the end of stages 1, 2, 3, and 4 of the optimization algorithm, re-

spectively. We can see that at the end of the last stage, the outline of the articulators

of interest are well captured. The critical and difficult-to-capture velum posture was

detected only partly correct in as the velum falsely appears shortened and the pharyn-

geal wall appears to bulge. This result is due to the occlusion with the pharyngeal wall,

i.e., no air-tissue boundary exists which could be found by any edge detection algorithm.

Putting a constraint on either the rigidity of the pharyngeal wall contour, or the constant

cross-sectional area of the velum could improve this result. However, the velum and pha-

ryngeal wall contours do touch and the occlusion was recovered correctly, and hence the

zero velum aperture would be detected properly. Figure 3.12(f) shows the evolution of

the objective function J over the course of the 650 iterations. The major discontinuities

in the curve correspond to the changing of the iteration level, whereas the noise-like per-

turbations during the final 300 iterations are caused by the higher-level contour clean-up

procedure which keeps removing overlap between velum and pharyngeal wall.

Figure 3.13 is an example with a bilabial closure corresponding to the nasal . Notice

that the lowered velum posture was identified correctly and the corresponding velum

aperture tract variable can be estimated meaningfully. Furthermore, we notice that the

shape of the glottis was not captured correctly since the spacing of the boundary vertices

for the pharyngeal wall was chosen a bit too coarse. As before, the objective function

time evolution exhibits distinct jumps at 10, 50, and 350 iterations, which correspond to

the changes of the optimization level.
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(a) Initialization. (b) Level 1. (c) Level 2.

(d) Level 3. (e) Level 4.
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Figure 3.13: Example 2: bilabial nasal

Figure 3.14 and Figure 3.15 contain two examples with two different and often oc-

curring types of occlusions in the oral cavity. The former shows the tongue tip touching

the alveolar ridge as is the case for the lateral approximant , while the second example

corresponds to the postalveolar fricative . In both cases the critical tongue posture was

found to be consistent with what is expected for the articulation of these speech sounds.

The 25 images corresponding to the spoken sequence are shown in Figure 3.16.

We can see that the lips, the velum, and the tongue position and shape are captured well

in spite of the poor quality of the image data.
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(a) Initialization. (b) Level 1. (c) Level 2.

(d) Level 3. (e) Level 4.
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Figure 3.14: Example 3: lateral approximant

3.6 Discussion

3.6.1 Summary

In this chapter we presented a spatial frequency domain-based method for unsupervised

multi-region image segmentation with application to contour detection. The formulation

in the spatial frequency domain allows the direct analytical closed-form computation of

the external energy of the boundary contour as well as its gradient with respect to the

contour parameters. The key mathematical ingredient to this approach is the closed-

form solution of the 2-dimensional Fourier transform of polygonal shape functions, and

it affords the continuous valued optimization of the boundary contour parameters.

The spatial frequency domain image data can be obtained through MR acquisitions

directly, or through the Fourier transform of any general pixelized image data stemming
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(a) Initialization. (b) Level 1. (c) Level 2.

(d) Level 3. (e) Level 4.

100 200 300 400 500 600
0

20

40

60

80

100

120

140

iteration

sc
or

e

(f) Objective function vs.
iteration.

Figure 3.15: Example 4: postalveolar fricative

from any other image sampling method, e.g., digital photography or raster scanning. The

operation in the Fourier domain circumvents any fine-grain interpolations of such raster-

sampled image data, and it is equivalent to operating on an ideally sinc-interpolated

version of the rasterized image.

For the case of medical image processing, our segmentation algorithm introduces a

general framework for incorporating an anatomically informed object model into the

contour finding process. The algorithm relies on the manipulation of the gradient descent

flow for the optimization of an overdetermined non-linear least squares problem.

We quantitatively evaluated our method using direct processing of MR data obtained

from a phantom experiment with a relatively simple geometry. Our method was found

to outperform careful manual processing in terms of achieved accuracy and variation of

the results. We furthermore demonstrated the effectiveness of our algorithm for the case
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Figure 3.16: Sequence in 25 images (from left to right, top to bottom).

of air-tissue boundary detection in midsagittal real-time MR images of the human vocal

tract, and we illustrated the method using a variety of sample images representing vocal

tract postures of distinct phonetic quality.

The algorithm is applied to individual images, and it is hence useful for parallel pro-

cessing of image sequences on computing clusters. After determining a general upper

airway initialization contour for a subject, which takes about 5 minutes for the selection

and manual tracing of a suitable frame, the algorithm is unsupervised. For each upper
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airway image the processing time for 650 gradient descent optimization steps was approx-

imately 20 minutes using a MATLAB8 implementation on a modern desktop computer.

If longer processing time is tolerable better results can be achieved by using more itera-

tions, smaller step width, and more densely spaced vertices to allow to capture even finer

details of the boundary contours.

3.6.2 Open research questions

Our framework leads to a variety of new open research questions, one being how to

quantitatively assess the achievable segmentation accuracy for in vivo upper airway data.

This requires constructing a realistically moving upper-airway MR phantom which is

capable of mimicking the tissue deformations typical for speech production.

Also of interest are the development of procedures to combine directly the k-space

data of multiple MR receiver coils so as to circumvent the current pre-processing step in

the discretized image domain.

Furthermore, it is an open question if there are any other boundary contour descriptors

which have a closed form mathematical solution to the 2-dimensional Fourier transform

of the corresponding shape function, and ideally are also inherently self-intersection free.

While it is possible to approximate smooth boundaries with the help of densely spaced

polyline vertices, and detect and remove self-intersections using a higher level process

there is a price in terms of computation time.

Another research avenue could lead to a more sophisticated gradient descent procedure

for solving the inherent optimization problem, possibly using implicit Euler integration.

Since we have the capability for polygonal boundaries to analytically evaluate the Hessian

8http://www.mathworks.com/
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of the objective function along with the gradient the application of the Newton-algorithm

may be a way to speed up the algorithm’s performance as well.

Yet another improvement to the method could possibly be made by imposing more

refined constraints on the boundary contours, such as roughness penalties, or a constant

enclosed area constraint. An example would be the velum, whose midsaggital cross-

sectional area can be considered constant. For the tongue, on the other hand, such a

constant area constraint would probably not work since its volume can move in and out

of the midsaggital scan plane. Such additional constraints can be implemented on a low

level by adding internal energy terms to the objective function. It is also possible to

constrain at a higher level the geometrical object model directly.

Furthermore of interest are the extensions to other related imaging applications such

as coronal or axial vocal tract real-time MR images, as well as models for other medical

applications, e.g., cardiac real-time MR imaging. Corresponding to the available image

data, new object models could be either 2- or 3-dimensional. Notice that the necessary

closed-form equation for the 3-dimensional Fourier transform has been derived in [41]

as well. This also makes possible the construction of geometrical models that do not

only include constant amplitude regions but even areas with spatially linearly varying

intensity.

Moreover, future research could be directed towards the application of our framework

for MR acceleration using the methods of compressed sensing MRI. There the objec-

tive will be to reduce the over determinedness of the optimization problem and utilize

fewer MR data samples to accomplish the region segmentation task, which can lead to a

shortened acquisition time and/or higher frame rate.

60



Chapter 4

RT-MRI investigation of resonance tuning in soprano

singing

4.1 Abstract

This section investigates using RT-MRI the vocal tract shaping of 5 soprano singers

during the production of two-octave scales of sung vowels. A systematic shift of the first

vocal tract resonance frequency with respect to the fundamental is shown to exist for high

vowels across all subjects. No consistent systematic effect on the vocal tract resonance

could be shown across all of the subjects for other vowels or for the second vocal tract

resonance.

4.2 Background

The singing voice has been of considerable interest to the acoustics researcher for a long

time, and in particular the concept of resonance tuning has drawn notable attention over

the past decades [13, 63]. Resonance tuning is a strategy that trained opera singers

are hypothesized to employ in order to increase their vocal efficiency and output power.

Before the availability of audio power amplification this was an obvious necessity when

performing in large concert halls.
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During a vocal song production, the artist faces at least three constraints. Besides

the need for an adequate intensity, the pitch at any given point in time is dictated by the

melodic score of the music. Furthermore, the lyrics of the song have to be rendered with

some degree of fidelity, which in turn demands the maintenance of the linguistic identities

of the sung sounds (e.g., vowels) to some extent [58].

The theory of resonance tuning now contends that the vowel identity requirement is

relaxed in practice and that trained singers actively modify their vocal tract shape so as

to shift one of the resulting resonance frequencies to a multiple of the current (target)

pitch frequency [60]. So, even though the changed formant structure alters the vowel

quality, the singer is able to maintain the pitch in accordance with the score of the music

while simultaneously maximizing the voice output.

Table 4.1: 1024-point FFT spectra for /i/ at notes 1, 5, 11, and 15 (subject M1).
F0 [Hz] 233 349 622 932
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Showing evidence for resonance tuning using audio recordings alone is not straightfor-

ward since the estimation of vocal tract resonance frequencies can be difficult, in particular

for the case of high-pitched singing, e.g., soprano singing [27]. Here, the glottal source

spectrum contains much wider spaced harmonics than in normal speech, so that the esti-

mation of the resonance frequencies from peaks in the spectral envelope of the recorded

signal is severely compromised (see, for example, Table 4.1). Therefore, researchers have

resorted to other methods for the investigation of the vocal tract transfer function.
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One possibility is the use of an artificial external broad-band noise source to excite

the vocal tract while the soprano singer tries to maintain her natural singing vocal tract

posture without actually producing any sound [26]. Subsequently, a resonance frequency

estimation can be carried out from the reflected sound waves.

Another option is to obtain direct evidence of the vocal tract shaping strategies auch

as using MRI [61, 59]. However, to acquire a conventional (static) MRI recording the

singer may have to hold the vocal tract posture for an unusually long time, e.g., on the

order of a few minutes as would be the case for a high resolution 3-D volumetric scan.

To alleviate this issue researchers often restrict themselves to capturing the midsagittal

view of the vocal tract and then performing an aperture-to-area function conversion to

facilitate a tube model description of the vocal tract. However, even a 2-D static MRI

scan can easily take a few seconds.

In contrast to the previous studies, this study employs RT-MRI technology to obtain

midsagittal vocal tract image data from a total of 5 soprano singers. While thus far RT-

MRI has been mostly used to study dynamic speech production processes, it also appears

well suited for the investigation of scale singing since it allows the subjects to produce

vocal sounds in a more natural way, i.e., they are not required to maintain the vocal tract

posture for unnaturally long periods of time [6].

Furthermore, RT-MRI allows the researcher to investigate other aspects of song pro-

ductions, such as their expressive qualities, rhythm and pausing behavior, etc., which

require data from dynamic productions. Though this article focuses on sung vowel scales,

it does describe the data acquisition, processing, and analysis steps relevant for general

song production (data examples can be found in1). In that regards, it can be viewed

1http://sail.usc.edu/span/
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as providing a proof-of-concept for the use of RT-MRI technology for studies of vocal

productions of song.

4.3 Data collection

The subjects for this study were 5 female sopranos (M1, S2, K3, L4, H5) trained in

Western opera and who were native American English speakers. The subjects sang two-

octave vowel scales (/la/, /le/, /li/, /lo/, /lu/) without vibrato, and they were allowed

to breathe after the first octave.

Midsagittal MR images were collected with a GE Signa 1.5T scanner [45]. Synchro-

nized audio recordings were obtained, and the scan noise was subsequently removed [9].

During the data collection the subjects were in a supine position.

4.4 Data analysis

4.4.1 Audio analysis

Using the noise-cancelled audio recording, a pitch estimation was carried out using the

PRAAT software2. However, as described above, the estimation of the vocal tract reso-

nances from the audio signal is difficult, especially at high pitch values. This is due to the

fact that the harmonics of the source spectrum are widely spaced, and consequently the

filter function of the vocal tract gets sampled only at relatively fewer frequency points

(see Table 4.1). Therefore, the vocal tract resonance frequencies were estimated directly

using the midsagittal image data. And while these estimates can be noisy, we are mainly

interested in statistically significant trends of the resonance frequencies with respect to

the fundamental.

2http://www.fon.hum.uva.nl/praat/
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4.4.2 Image analysis

(a) Sample midsagittal real-time
MR image.
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(b) Aperture function from glottis (left) to lips
(right).

Figure 4.1: Subject M1, producing /le/ at note 1.

From each of the notes of the scales, one image was extracted corresponding to the

midpoint of the vowel segment, i.e., from a relatively stable vocal tract configuration. In

these images the vocal tract outline was then automatically detected[7] and then manually

corrected if necessary. The glottis position was manually determined in each image. A

sample image is shown in Figure 4.1(a), showing subject M1 singing /le/ at note 1. Here,

the vocal tract outline is shown in red.

Subsequently, the aperture function from the glottis to the lips was derived from the

vocal tract contours. This was accomplished by first constructing a vocal tract midline

using repeated geometrical bisection, and, secondly, finding densely spaced perpendic-

ulars along the midline and their intersections with the vocal tract contours [3]. The

perpendiculars are the midsagittal aperture lines, and they are shown in green in Fig-

ure 4.1(a). Figure 4.1(b) shows the aperture function corresponding to the vocal tract

shape of Figure 4.1(a). This graph displays the length of the aperture lines as a function

of position along the midline. In Figure 4.1(b) the left side corresponds to the glottis,

while the right side corresponds to the lips. The units used in the graph are pixels.
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(a) Subject M1.
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(b) Subject S2.
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(c) Subject K3.
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(d) Subject L4.
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(e) Subject H5.

Figure 4.2: Resonances F1 (solid), and F2 (dashed) versus the fundamental F0.

The midsagittal aperture function was then converted to the cross-sectional area func-

tion of a tube model whose resonance frequencies were computed using the VTAR[66]

software. Figure 4.2 shows the resonances F1 and F1 as a function of the fundamental F0

for all 5 vowels for all 5 subjects. The resonance frequency estimates then form the basis

of the statistical analysis in Section 4.5.

It must be pointed out that numerous methods have been proposed for the aperture-

to-area conversion and, in general, their optimum parameters are subject specific [54].
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For this study the method described in [32] and extended in [35] was employed without

adaptation of the parameters. Hence deviations of the computed tube model resonances

from the true vocal tract resonances must be expected. However, this study aims at

identifying global trends in the formant frequencies with respect to the pitch frequency

for a given subject, as opposed to quantifying absolute formant frequency measurements.

4.5 Results

Table 4.2: Sample MR images and midsagittal aperture functions of all 5 vowels at notes
1, 5, 11, and 15 (subject M1).
F0 [Hz] /a/ /e/ /i/ /o/ /u/
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Table 4.2 shows the midsagittal images for subject M1 for all 5 vowels at notes 1, 5, 11,

and 15 with fundamental frequencies of 233Hz, 349Hz, 622Hz, and 932Hz, respectively.

It can be seen that for the low notes the vocal tract configuration is distinct for the

individual vowels, and the distinction decreases as the pitch increases. This behaviour

was observed for all 5 subjects.

The bottom row in Table 4.2 shows the aperture functions of subject M1 for the 5

vowels for the notes 1 (blue), 5 (dark purple), 11 (light purple), and 15 (red). It can be

seen that at higher notes the individual differences between the vowels decrease, and in

particular the shape of the oral cavity converges to a widely open configuration.

Corresponding to the /i/-column of Table 4.2, the 1024-point FFT spectra at notes 1,

5, 11, and 15 are shown in Table 4.1, which were derived from the noise-cancelled audio

recording. These examples illustrate the difficulty of the estimation of the vocal tract

resonances at high pitch values. At the low note 1 resonance peaks can be recognized in

the spectrum easily, whereas at the high note 15 no resonances are readily observable.

In order to investigate the dependence of the vocal tract resonances F1 and F2 on the

fundamental F0, linear models were fit of the form

F1,2 = β1,2 × F0 + α1,2 + ϵ (4.1)

for each vowel. Here, α has the dimension of [Hz], and β is the dimensionless slope of

the regression line. The value ϵ represents the error. The calculated values are listed

in Table 4.3, and we also list the resulting p-value for the respective β coefficient. In

Table 4.4 we compact this information more, and we list only the sign of the statistically

significant trends (β≠0 with significance ≥95%) for all subjects and all vowels.

These values suggest that for the high vowels /i/ and /u/ for all subjects there is

a consistent dependency of the first vocal tract resonance F1 on the fundamental F0 in
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Table 4.3: Linear regression of the vocal tract resonances versus the fundamental.

Subject Vowel
F1 F2

α1 [Hz] β1 p α2 [Hz] β2 p

M1

/a/ 639 0.126 0.061 1769 0.061 0.427
/e/ 506 0.221 3×10−5 1676 0.036 0.783
/i/ 291 0.490 6×10−10 2025 -0.314 0.032
/o/ 580 0.167 0.003 1613 0.230 0.092
/u/ 378 0.405 6×10−7 1884 -0.213 0.088

S2

/a/ 975 -0.297 1×10−4 1808 -0.000 0.999
/e/ 851 -0.099 0.21198 2305 -0.598 0.053
/i/ 360 0.425 4×10−10 2133 -0.401 0.115
/o/ 812 -0.108 0.037 1796 0.085 0.412
/u/ 538 0.301 2×10−4 2099 -0.401 0.043

K3

/a/ 732 -0.272 6×10−4 1539 0.446 2×10−5

/e/ 603 -0.179 0.003 1516 0.429 0.004
/i/ 357 0.123 4×10−4 1470 0.339 0.002
/o/ 663 -0.178 4×10−4 1582 0.245 0.065
/u/ 431 0.090 0.017 1643 0.217 0.026

L4

/a/ 809 0.051 0.186 1782 0.161 0.060
/e/ 692 0.148 0.002 1738 0.465 0.016
/i/ 256 0.671 2×10−9 2269 -0.170 0.352
/o/ 715 0.149 0.002 1784 0.044 0.593
/u/ 418 0.498 2×10−8 1846 0.084 0.464

H5

/a/ 853 -0.067 0.282 1579 0.343 0.057
/e/ 729 0.102 0.108 1942 -0.033 0.841
/i/ 237 0.680 2×10−8 2256 -0.393 0.066
/o/ 789 0.016 0.789 1281 0.570 5×10−4

/u/ 460 0.305 5×10−5 1341 0.587 0.002

Table 4.4: Sign of the statistically significant linear trends of the resonances F1 and F2

with respect to the fundamental F0.

Subject
F1 F2

/a/ /e/ /i/ /o/ /u/ /a/ /e/ /i/ /o/ /u/
M1 + + + + −
S2 − + − + −
K3 − − + − + + + + +
L4 + + + + +
H5 + + + +

terms of a positive correlation. Other than that, no clear patterns can be readily observed

that apply across all subjects.
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4.6 Discussion

The finding that the first resonance of the high vowels rises with the fundamental fre-

quency is consistent with previous findings. Considering the sample images in Table 4.2,

it is easy to see that the front cavity opens more widely as the singer goes to higher

fundamental frequencies, and it is well known that F1 is directly related to the opening

degree. The relative opening effect is certainly strongest for the high vowels /i/ and /u/,

which are most constricted in their natural oral cavity configuration. Hence the quan-

titative findings are well in accordance with the expectations, and we conclude that the

RT-MRI data and the proposed processing steps offer merit.

Table 4.5: MR images for all 5 subjects and all 5 vowels at note 15 (F0 = 932Hz).
Subject /a/ /e/ /i/ /o/ /u/

M1

S2

K3

L4

H5
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However, based on our study, we cannot conclude that all sopranos employ generaliz-

able strategies for resonance tuning the way it has been described in prior literature. To

illustrate the qualitative differences in the shaping strategies, we show in Table 4.5 the

MR images for all 5 subjects and all 5 vowels corresponding to note 15 (F0 = 932Hz),

which is the highest note in our data set. We observe that in particular subject M1 but

also S2 (top 2 rows) show evidence of some of the vowel-specific tongue shaping even at

this extreme pitch, whereas the rest of the subjects appear to have converged to a single

canonical vocal tract shape for all vowels. Furthermore, the width of the oral cavity varies

considerably across subjects, with M1 being on one extreme and K3 on the other.

We speculate that the observed variability in the vocal tract shaping may be due to

the individual training that each of the singers had received. In this regard it would be

also interesting to see if RT-MRI recordings can be used in the future as a teaching tool

for voice teachers to help sopranos acquire consistent tuning strategies. In summary, we

find that the interaction between singing and linguistic goals of producing speech sounds

is complex and needs further exploration.
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Chapter 5

RT-MRI analysis of vocal tract shaping in English sibilant

fricatives

5.1 Abstract

This study uses RT-MRI to investigate shaping aspects of two English sibilant fricatives.

The purpose of this article is to 1) develop linguistically meaningful quantitative measure-

ments based on vocal tract features that robustly capture the shaping aspects of the two

fricatives, and 2) provide qualitative analyses of fricative shaping. Data was recorded

in both midsagittal and coronal planes. The proposed three quantitative measures of

this study provide robust results in categorizing shape. The qualitative analyses describe

tongue shape in terms of grooving and doming and they support previous research.

5.2 Introduction

RT-MRI promises a new means for visualizing and quantifying the spatio-temporal ar-

ticulatory details of speech production. This study uses RT-MRI to study the shaping

and dynamic aspects of two English sibilant fricatives /s/ and /S/. The RT-MRI data,

which affords views of the entire moving vocal tract, and is accompanied by synchronized

audio recordings, aims to build upon, and add to, the several excellent previous/ongoing
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Figure 5.1: Production of “pa seep” by subject S1 in 22 midsagittal images (from left to
right, top to bottom).

studies that aim to fully capture the static and dynamic properties of fricatives. Acous-

tic studies are capable of illuminating the dynamical nature of fricatives, as changes in

formant structure indicate changes in the vocal tract while producing speech sounds,

(e.g., [1], [53]). However, acoustic studies are unable to characterize the exact shaping

of the tongue (and perhaps other articulators) necessary for the production of fricatives.

Other experimental methods for obtaining speech production information (e.g. EMA,
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static MRI, x-ray, etc.), lack information about change over time, or lack the spatial res-

olution necessary to properly characterize the complete shape of articulators during the

production of fricatives. RT-MRI provides an ideal tool for measuring both the posture

and temporal (dynamic) properties of fricatives and the effect of surrounding vowel con-

text on the fricatives, as MRI provides us a (nearly) complete picture of the dynamics of

the vocal tract. RT-MRI additionally provides valuable insights into the production of

fricatives as it is able to examine the shaping of such fricatives in various planes. The

current study employs this technique to obtain data from both midsagittal and coronal

planes of the vocal tract.

Specifically, the aim of this paper two-fold. The primary objective is to investigate

various derived measurements from MR images that are linguistically meaningful. These

measurements are based on tongue shape and other properties of the vocal tract seen

in the MR images, and they allow for analysis of the two fricatives under examination.

The measurements described below allow for the explicit study of shaping differences

between the tongue tip and tongue body gestures of /s/ and /S/. Sibilant fricatives are of

particular interest because of the complexities displayed in their shape during production.

This shaping of fricatives (e.g. the grooving of the tongue for sibilant fricatives) has shown

to be crucial in yielding their acoustic properties necessary for perception [37]. Thus,

defining measurements that allow for shape to be investigated as a variable is crucial

for the validation of any hypothesis addressing the role of shape in the production of

fricatives. Three derived measures are shown to yield linguistically meaningful results.

They are 1) tongue-palate area behind fricative constriction (midsagittal), 2) tongue-

palate area deformation (midsagittal), and 3) fricative groove-depth (coronal). These

measurements are discussed in the methods section.
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Secondly, the study aims to describe various strategies used by speakers to pro-

duce sibilant fricatives. Based on previous research on the shaping of English fricatives

(e.g., [43]) it is expected that /s/ will show grooving of the tongue and /S/ will show

doming of the tongue. This study also asks what effect surrounding vowel context will

have on the shaping of the fricatives. The fricatives under examination were preceded

and followed by the vowels /i/ and /a/. The vowel /i/ has been described as showing a

convex dome-like shape, whereas /a/ is considered to be flat [44]. The study thus seeks

to determine what happens when two contrasting shapes (such as flat /a/ and grooved

/s/) are adjacent. Two possible hypotheses are considered: target shaping in the fricative

will be more pronounced when contrasting shapes are adjacent, or target shaping in the

fricative will be more pronounced when comparable shapes are present.

Several previous studies using MRI have shown shape as crucial parameter in the

production of fricatives. Co-articulatory effects have been shown to be important in

describing the shape of Swedish fricatives [17]. When examining English sibilant fricatives

with MRI, various observations about tongue posture have been shown to be important.

/S/ has been shown to be articulated with a raised tongue blade that is distributed across

the alveolar ridge. /S/ also shows a sublingual cavity behind the constriction, whereas [s]

shows an absence of a sublingual cavity [49]. The concave shaping of the tongue has also

been shown to be crucial for the production of English sibilant fricatives; /s/ consistently

shows concavity behind the constriction region, whereas /S/ does not [43]. The area

posterior to the constriction has also been shown to be important: the area functions

derived for /s/ tend to be less smooth than those for /S/. This difference has been shown

to be due to a slight raising of the tongue for /s/ postures. This study further investigates

the importance of the area behind the constriction during fricatives, examining area and
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area deformation behind the tongue. These two variables are shown to be important to

quantitatively characterize the shaping differences in the two fricatives.

5.3 Methods

Three native speakers of American English were used as subjects, two female (A2, S2),

and one male (A1). Subjects had no known speech or hearing deficits.

5.3.1 Stimuli

The fricatives /s/ and /S/ under analysis occur between either the vowels /i/ or /a/ in

a carrier phrase (“Go pVCVp okay”, V∈{/a, i/}, C∈{/s, S/}). There are four different

surrounding vowel contexts: symmetrical: /i i/, /a a/; asymmetrical: /i a/, /a i/. As

there are two different fricatives, this yields eight different stimuli.

The sentences were grouped into fourteen blocks, seven blocks for each fricative. Thus

each stimulus was read seven times by each subject. Each block containing four sentences

was randomized, and the order of the blocks was randomized, with the constraint that

blocks alternated according to fricative (two /s/ blocks were never consecutive).

5.3.2 RT-MRI and synchronized audio acquisition

MR images were acquired on a GE Signa 1.5 Tesla scanner using a fast gradient echo

pulse sequence with a 13-interleaf spiral readout [45] within the RTHawk framework [51].

A four-channel targeted phased-array receiver coil was employed. Images were formed

from the data of two coils located in front of the subject’s face and neck through root sum

of squares combining. The repetition time TR was 6.376ms. The MRI reconstruction was

carried out using a standard gridding and sliding-window technique [25] with a window

76



offset of 7 acquisitions. The resulting in a frame rate for processing and analysis was 22

frames per second. The slice thickness was 3mm.

Images were acquired in the midsagittal plane and in a coronal plane. The midsagittal

field-of-view (FOV) was chosen to capture the entire vocal tract from glottis to lips. The

image rotation was chosen so that the pharyngeal wall is approximately vertical. A

sample midsagittal image sequence of the utterance “pa seep” is shown in Figure 5.1.

The coronal scan plane was selected perpendicular to the midsagittal scan plane at the

position of maximal doming of the hard palate. The FOV was identical in size with

respect to the midsagittal value. A sample coronal image is shown in Figure 5.4.

Simultaneous synchronized speech audio was collected during the MRI scans. Sub-

sequently, a noise cancellation procedure was applied to the audio signal to remove the

MRI gradient noise [9]. Sample videos are available at http://sail.usc.edu/span/

interspeech2008/index.php.

5.3.3 Image analysis

In the midsagittal MR images the vocal tract contours were traced using the procedure

described in [7]. Figure 5.2(a) shows an example midsagittal MR image of the fricative

/s/ during its maximum constriction. Here the red lines delineate the outline of the vocal

tract, and the green lines are the aperture lines which were computed using the methods

described in [3].

In order to quantify the spatio-temporal shaping characteristics of the speech sounds

of interest appropriate geometrical features have to be derived from each image. For the

fricative sounds /s/ and /S/ one candidate feature is the midsagittal aperture at, and

posterior to, the critical vocal tract constriction, which in these cases is formed using the

tongue tip and the alveolar ridge/front palate. We hence proceed by defining a region

77



(a) Midsagittal RT-MRI image
with vocal tract contours (red),
aperture lines (green), and tongue-
palate region boundaries (blue).
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(b) Aperture function (green), tongue-
palate region boundaries (blue), mean aper-
ture in tongue-palate region (magenta), and
aperture deformation area (black).

Figure 5.2: Midsagittal sample image and geometrical features during the fricative pro-
duction in “pa seep.”

of interest in the midsagittal profile of vocal tract bordered by the minimum opening

between tongue and hard palate on the left (left blue line in Figure 5.2(a)) and a vertical

line dropping from the hinge point of the velum (right blue line in Figure 5.2(a)). The

selection of these boundaries is motivated by the relatively reliable detection of these

anatomical landmarks. Figure 5.3(a) shows the time evolution of the size of this tongue-

palate area for single tokens of the utterances “pee seep” and “pa sop.” During the interval

of the fricative production, which was identified for all tokens using the spectrogram of

the synchronized audio recording, we observe a local minimum in the time function for

the /a a/ context and a local maximum for the /i i/ context. The same holds for the /S/

sound as shown in Figure 5.3(b).

However, in order to better discriminate between the shaping difference of /s/ and /S/

it is also desired to devise a shape feature that is largely independent of the morphology

of the subject’s hard palate. To be more specific, we would like a measure of how parallel

the palate and the tongue contours are in the region of interest in order to be able to

deduce information on the nature of the airway channel. We hence propose the use of
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(a) Tongue-palate area for /VsV/.
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(b) Tongue-palate area for /VSV/.
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(c) Tongue-palate area deformation for
/VsV/.
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(d) Tongue-palate area deformation for
/VSV/.

Figure 5.3: Midsagittal features sample time functions.

a tongue-palate area deformation measure, which is illustrated in Figure 5.2(b). Here,

the aperture function is shown (green) in addition to the location of the boundaries of

the tongue-palate area of interest (vertical blue lines). As the deformation measure we

use the variation (black shaded area) of the aperture about its mean value (magenta

line) in the region of interest. This scalar deformation value will be near zero if the

tongue is largely parallel to the hard palate, irrespective of the actual shape, and it

will be large for non-parallel configurations. Figures 5.3(c) and 5.3(d) show sample time

functions for the deformation feature for /s/ and /S/, respectively, for the /a a/ and

/i i/ context, and we observe a local non-parallelity maximum during the interval of the
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fricative production. We assume that at the maximum point the constriction target was

achieved the preparation of the production of the following vowel will set it.

Our subsequent investigations will utilize the averaged maximum deformation over

all tokens of a particular type, as well as the averaged area size at the time of maximum

deformation. However, at this point we also want to point out a limitation of the proposed

feature extraction process. As can be seen in Figure 5.1 the region of the hard palate is

generally subject to rather larger image noise. This likely due to the fact that it consists

of bone which is covered with a rather thin layer of soft-tissue. Since bone has a very low

hydrogen content it produces a weak signal to noise ratio leading to faint MRI contrast.

Hence the hard palate contour location, if left unconstrained during the automatic tracing

process, can be adversely affected more than other sections of the vocal tract contours.

5.3.4 Coronal plane images

For the coronal images, the tongue contour was traced using a semi-automatic method [3].

Contours were initialized and corrected manually. Figure 5.4 shows an example coronal

image with the traced tongue contour (red).

Figure 5.4: Coronal sample image, tongue contour (red), groove tangent (blue), grove
depth feature (green) during the fricative production in “pa seep.”
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As the analysis feature of interest we chose the coronal tongue groove depth. It is

derived from the coronal tongue surface contour by finding the tangent (blue) onto the

surface which forms the triangle with a maximum height (green). This is accomplished

through an exhaustive search over all triangle combination of contour points for a given

frame.

It should be noted that while the choice of the scan plane here was motivated to cap-

ture the nature of shaping in the region behind tongue front constriction (based on [43]),

since it was anchored to an anatomical landmark, the images are not expected to align

to any key shaping landmark such as maximal grooving for /s/ or doming for /S/, but

instead provide an indication of the general shaping in that region.

5.4 Results

Using the measures discussed above, clear systematic differences between the two English

fricatives /s/ and /S/ can be identified. Figures 5.5, 5.6, and 5.7 show the measurements

for subjects A1, A2, and S1.
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Figure 5.5: Subject A1 results.
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Figure 5.6: Subject A2 results.
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Figure 5.7: Subject S1 results.

The tongue-palate area at the time of maximum constriction shows robust differences

between /s/ and /S/ for all three subjects. The fricative /s/ has a greater tongue-palate

area at time of maximum constriction across all vowel contexts.

The differences in the measures were most robust for speaker A2. For tongue-palate

area deformation and for tongue-palate area, clear differences are seen for the two frica-

tives. The maximum tongue-palate area deformation for speaker A2 was much greater

for /s/ than it is for /S/ across all vowel contexts. The groove depth measurement for the

coronal slice shown in Figure 5.6(c) also yields robust measurements. The grooving for

/s/ was consistently seen in all subjects; the groove depth measured from the coronal slice

was significantly greater under /a a/ context than the /i i/ context, with the other two
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vocalic conditions considered showing intermediate values. The coronal plane choice for

/S/ was further back in the oral cavity to capture the doming; rather, it provided a slice

through the posterior tongue region that shows a cupping formation to support a raised

doming in the anterior region [43]. In fact, the derived measures for /S/ do not show any

significant variations indicating that this tongue back is not directly manipulated in the

constriction formation.

The derived measures proposed in this paper are thus able to robustly account for the

differences in articulation between /s/ and /S/.

5.5 Discussion

The measurements of MR images of the vocal tract discussed here provide useful tech-

niques for studying the differences between the two English fricatives /s/ and /S/. The

measurements of area and variance (midsagittal) and groove depth (coronal) are able to

provide a way to distinguish between the two fricatives, which is not always a transparent

and simple task.

Deriving concrete measurements of the articulatory properties of fricatives is neces-

sary for further studies examining the shaping properties of fricatives. The real-time

MRI techniques described here provide for fruitful analyses of the co-articulation effects

between vowels and consonants. Examining the concavity of the fricatives with respect

to the convexity of /i/ and the flatness of /a/ allows for several linguistic hypotheses to

be addressed. The level of explicit control of tongue shape during fricative production is

one such research question that will be considered using the data set discussed above.

Another possible avenue of research involves examining the variability across speakers.

In our data, A1 uses a different part of the tongue tip to produce the sibilant fricatives

than the other two subjects. Palatal morphology or other physiological differences could
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play a role. The MR data and measures developed here provide for clear ways of answering

this question.
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Chapter 6

Statistical modeling of RT-MRI articulatory speech data

6.1 Abstract

This chapter investigates different statistical modeling frameworks for articulatory speech

data obtained using RT-MRI. To quantitatively capture the spatio-temporal shaping

process of the human vocal tract during speech production a multi-dimensional stream of

direct image features is extracted automatically from the MRI recordings. The features

are closely related, though not identical, to the tract variables commonly defined in the

articulatory phonology theory. The modeling of the shaping process aims at decomposing

the articulatory data streams into primitives by segmentation. A variety of approaches

are investigated for carrying out the segmentation task including vector quantizer (VQ),

Gaussian mixture model (GMM), hidden Markov model (HMM), and a CHMM. We

evaluate the performance of the different segmentation schemes qualitatively with the

help of a well understood data set which was used in an earlier study of inter-articulatory

timing phenomena of American English nasal sounds.
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6.2 Introduction

The recent technological advances in RT-MRI allow the speech researcher access to large

quantities of rich articulatory data of running speech [6]. As opposed to previously avail-

able speech production data from EMA, which provides spatially sparse point tracking,

and ultrasound, which is confined to capturing the tongue shape, RT-MRI captures the

air-tissue boundaries along the entire vocal tract from the glottis to the lips. RT-MRI data

hence appear to be a good basis for studying the vocal tract shaping process in a holis-

tic way, i.e., they allow the investigation of individual articulators while simultaneously

taking into account the effects of inter-articulatory coupling. However, the identification

of shaping primitives from RT-MRI data (or from any other articulatory data) is not

trivial, due to the data’s high dimensionality, the complexity of the deformation space of

the vocal tract, and the inter and intra subject variability in articulation.

In this article we will address the problem of identifying articulatory gestures from

streams of RT-MRI image sequences. According to the theory of articulatory phonol-

ogy [11], a gesture is a goal directed action of constriction forming by a vocal tract

articulator. This process is modeled using the response of a second order linear system

to a constriction target input step function. An articulator may be used to execute a

sequence of consecutive gestures which leads to temporal gestural overlap. The gestures

are quantified using tract variables, and it is important to realize that the mechanical cou-

pling, due to the anatomical constraints, may produce spatially correlated measurement

noise across different tract variables. So, the recognition of gestures from articulatory

data must undo or at least take into account this spatio-temporal mixing.

For example, we can consider the lip aperture (LA) and tongue-tip constriction degree

(TTCD) time series for the token /pay nova s/ as segmented from the carrier “Type pay

nova slowly.” (Fig. 6.1). Here, we have manually marked the critical constriction forming
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Figure 6.1: Lip aperture (LA) and tongue tip constriction degree (TTCD) time series for
the utterance /pay nova s/ as derived from RT-MRI data (details given below).

processes. The segment labeled “A” of the LA trace corresponds to the bilabial closure

for the formation of the /p/. Note that TTCD is also relatively constricted during this

interval, due to articulatory coupling: the jaw contributes to lip closure, and brings the

tongue tip towards the palate as a side-consequence. The purple arrow pointing down is

meant to represent the direction of this coupling effect – from a phonologically controlled

gesture to a passive coupling consequence. This is followed by the TTCD segment “B”

for the formation of the diphthong /ay/. The diphthong is made using tongue body

gestures which couple into the TTCD measurements. The subsequent tongue tip closure

at the alveolar ridge in segment “C” is critical for the formation of the nasal, and we can

identify a subtle effect on the LA trace due to the spatial coupling of the lips and the

tongue via the jaw. As the tongue body is then used to produce the /o/ in segment “D”,

the lips move closer for the labiodental /v/ in segment “E,” which again has an effect on

the TTCD through spatial coupling. Finally, the production of the vowel /a/ (“F”) with
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the tongue body is followed by a period of narrow TTCD for the sibilant /s/ in segment

“G.”

Previously, a variety of heuristic approaches have been pursued to model the shaping

kinematics, such as the decomposition of individual EMA-traces into strokes [31], though

with mixed results. In this paper we explore the use of a dynamical Bayesian network [42]

to model the articulatory multi-stream data in a machine learning framework. Hereby,

the joint modeling of different regions of the vocal tract is critical for coping with inter-

articulator coupling, and the statistical processing will ensure a degree of robustness

against intra subject variability.

This article is organized as follows. In Section 6.3 we will propose a simple yet robust

way to obtain shaping information from the midsagittal MR images which aims at pro-

viding measurements closely related to the tract variables. Given a low-order parametric

representation of the vocal tract shape we will, in Section 6.4, attempt a segmentation of

image feature time series with VQ, GMM, uncoupled HMM, and a coupled HMM CHMM.

The CHMM network is versatile, and it is particularly attractive since it is capable of

handling asynchrony between data streams [46]. Finally, in Sections 6.5 and 6.6 we will

discuss the results and draw conclusions.

6.3 Data preparation and parameterization

The data corpus for this case study consisted of two types of utterances produced by

a female native American English speaker, namely “Type pay nova slowly.” and “Type

pain over slowly.” The recordings were made using the scan protocol described in [45].

Seven realizations of each type, extracted from the carrier phrase, yielded the tokens /pay

nova s/ and /pain over s/ used for our analysis. The starting frame was identified by

the bilabial closure for /p/, and the end frame was chosen based on the narrow tongue
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tip constriction at the alveolar ridge for /s/. The token duration was on the order of

1 second, and our MRI frame rate is approximately 22 frames per second. No timing

normalization was carried out. A sample midsagittal MR image is shown in Fig. 6.2(a).

(a) Sample image. (b) Masked image.
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(c) Feature time series for 7 realiza-
tions of /pay nova s/.
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(d) Feature time series for 7 realiza-
tions of /pain over s/.

Figure 6.2: Sample image and direct image feature time series.

The robust automatic extraction of the vocal tract shape in terms of its air tissue

boundaries from the midsagittal MRI is not straightforward and is still considered to

be an active domain of research [7, 20]. A versatile yet compact shape representation

and parameterization, which would be beneficial for speech modeling purposes such as

recognition, inversion, or synthesis, is not easy to obtain. Previous work in this domain

includes the principal components based shape model used in [2, 39] or the constriction

based vocal tract model implied by articulatory phonology [11]. Deriving such constric-

tion measurements from image sequences can increase uncertainty of the data used for
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modeling. Given the complex geometry of the vocal tract using a region based descrip-

tion of constriction events, rather than pinpointing a specific constriction location or its

degree, appears to be a more robust choice. We focus on such a parameterization of the

image sequences directly so as to capture the constriction events implicitly but robustly.

In this study we confine ourselves to investigating the articulatory processes involving

the lips, the tongue tip, and the velum, and we select correspondingly in each image

rectangular regions of interest as shown in Fig. 6.2(a) (shown as red, green, and blue box,

respectively). The location of the regions is considered fixed, although this choice can also

be dictated in a data driven way based on the region statistics such as the local image

intensity correlation properties [33]. We can assume negligible head motion occurred

during the experiment since the subjects head was well immobilized.

We then mask out the rest of MR image as shown in Fig. 6.2(b) and compute for each

frame the average image intensity in each of the regions. The time series of these image

intensity features are shown in Fig. 6.2(c) and 6.2(d) for all 7 realizations of /pay nova/

and /pain over/, respectively, and they have been ten-fold interpolated. The time series

have a straightforward intuitive interpretation, since constriction forming events corre-

spond to increasing the average image intensity because tissue moves into the particular

region of interest. Conversely, a constriction release leads to a drop of average intensity

over time since tissue moves out of the affected region. Hence the features closely resem-

ble the constriction degree tract variables defined in articulatory phonology. Further, this

representation can inherently capture the linguistically meaningful events in the presence

of production variability, including due to inter-speaker morphological differences.

The two utterances were chosen because they differ minimally in the syllable position

of the nasal, which is in coda position for /pain over/ and in onset position for /pay

nova/. Previous studies [12, 4] have shown that systematic relative timing differences
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exist for the tongue tip closure gesture and the velum opening gesture during the nasal

production depending on its position in the utterance, and we will hence use this data

set as a test case for our modeling framework.

6.4 Data modeling
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Figure 6.3: Lip aperture (LA), tongue tip constriction degree (TTCD), and velum aper-
ture (VEL) for the utterance /pay nova s/ with gestural transcription. Solid line - feature
time series, dashed line - first derivative.

Due to the limited number of training realizations in the data set considered, we

will confine ourselves to detecting the gross shaping phenomena, i.e., the closure events

“A,” “C,” “E,” and “G” in Fig. 6.1. A simplified gestural transcription is shown in

Fig. 6.3, where “OP” means open, “CL” means closed, and “X” means irrelevant state.

The challenge for the segmentation algorithm will be to not give a false “CL” detection

result at the very end of the LA trace (solid red), since that maximum is due to coupling

from the TTCD (solid green). Equivalently, we would like no false “CL” alarm in the
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beginning of the TTCD trace, since that maximum is due to spatial coupling with the

LA trace. Both requirements are difficult to achieve robustly by a simple quantization

of the time series. As noted earlier, the image sequences of vocal tract contours reflect

a fairly complex dynamic geometry, and simple rule-driven ways of robustly identifying

minimum constriction location/degree are difficult to implement, even with region based

parameterization.

Generally, the time series data are quite noisy, and their first derivatives even more

so (dotted lines in Fig. 6.3), especially for the velum (blue curves) due to the low image

contrast in the pharyngeal region. So, rules such as through simple thresholding to find

inflection points often do not yield reliable results. Hence, statistically capturing the time

series behavior directly appears as a reasonable approach to pursue.

In the following we will augment the feature streams by their first derivatives, and

attempt the modeling using VQ, GMM, HMM, and CHMM systems. These methods

were chosen for a variety of reasons. The VQ is the most straightforward way to im-

plement a simple instantaneous, i.e., time independent, thresholding mechanism for the

individual 2-dimensional augmented feature data streams. The quantization levels can

be found robustly using the well known k-means procedure, which, given the number of

quantization levels, is otherwise parameter free. A manual transcription of all 14 data

tokens as shown in Fig. 6.3 was produced, and it was used for the training of all of the

methods. For the VQ, two centers were allocated corresponding to the two class labels. It

should be noted that a VQ could also be implemented on the joint feature streams of all

measurements, though we chose to keep the streams separate to allow “fair” comparisons

of the VQ, GMM, and HMM methods.

The GMM can be considered a more sophisticated statistical way to achieve an in-

stantaneous quantization, and it affords soft output values. However, in our case we
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implemented subsequent hard clipping and thereby lose this advantage, but we included

the GMM approach since it is often used in practice, and it can provide initialization

parameters for the subsequent HMM systems. Just as the HMM and CHMM, the GMM

is trained using the expectation maximization (EM) algorithm, which for all applica-

tions in this study was employed with a convergence threshold of 10−5. The GMMs

were implemented using the MATLAB Netlab toolbox which is a component of the BNT

toolbox [42]. The models were initialized using k-means, and they had a full covariance

matrix.

The HMM is a step up from the GMM in terms of modeling power and system

complexity. It can be thought of as a time-dependent quantizer, and this method was

chosen to address the temporal gestural overlap within a tract variable feature time

series. Three individual HMMs were used for the LA, TTCD, and velic aperture (VEL)

data. The HMMs were implemented using the MATLAB HMM toolbox which is also

included in the BNT package. The hidden nodes had two states corresponding to the two

segmentation labels used for each tract variable. Using the transcriptions, we initialized

the observation models as bi-variate Gaussians with full covariance matrices, as well as

the state priors and the ergodic state transition model.

The CHMM is the most complex system that we tested for this study, and it allows

spatio-temporal modeling of the combined time series data. The model had three chains

corresponding to the LA, TTCD, and VEL features (see Fig. 6.4), and it was implemented

using the MATLAB BNT toolbox. The three hidden nodes had two states each, and the

observations were bi-variate Gaussians. The CHMM parameters were initialized using

the previously trained uncoupled HMMs.

We carried out the segmentation of our 14 observed articulatory traces using leave-

one-out cross-validation, and we present in Table 6.1 some typical results. The graphs in
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Figure 6.4: 3-chain CHMM layout (squares - hidden discrete nodes, shaded circles -
continuous observations).

the left column correspond to a realization of /pay nova/ while the right column come

from a realization of /pain over/. The top row shows the segmentation results for the LA

trace, the middle row for TTCD, and the bottom row for VEL. The 4 plots in each row

show the tract variable trace versus time (blue) and the segment boundaries (red vertical

bars) as found by the VQ, GMM, HMM, and CHMM methods (top to bottom). The

segments are labeled k1,2 for VQ, g1,2 for GMM, h1,2 for HMM, and c1,2 for CHMM.
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Table 6.1: Sample segmentation results.
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6.5 Discussion

In general we observed that the VQ and the GMM methods produced more spurious tran-

sitions, as shown for LA and VEL segmentation for /pay nova/, and TTCD segmentation

for /pain over/ in Table 6.1. Generally, the HMM and the CHMM produce comparable

and more consistent results.
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With respect to the HMM and CHMM method, we found that both of them consis-

tently labeled the initial bilabial closure segment in the LA trace. They also found the

onset of the labiodental segment, but they repeatedly failed to identify its correct ending.

However, both methods managed to avoid giving a false closure segment in the beginning

of the TTCD trace. We found one realization of /pay nova/ for which the HMM, as

opposed to all other methods, did not identify the VEL gesture at all.

Using the CHMM segmentation, we can now investigate the lag time difference be-

tween TTCD and VEL events for the formation of the nasal for the two types of tokens,

i.e., we measure the time difference between the onset of the VEL opening (labeled c2 in

the bottom row, bottom graph of Table 6.1) and the onset of the TTCD closure (labeled

c1 in the center row, bottom graph). For the /pay nova/ tokens we obtain an average lag

time of 96.8ms (σ=68ms), whereas for /pain over/ we obtain a lag of 279ms (σ=39.5ms).

These results are encouraging since they are in accordance with previous findings [12, 4],

and they seem to suggest that the proposed feature extraction procedure and the CHMM

segmentation method appear to be robust and provide results that are consistent with

our expectations.

In general we can suggest a number of ways to continue this study in order to improve

the segmentation performance. On the one hand, one can certainly choose more complex

models, e.g., higher-order mixtures for modeling the observations. And of course one can

also scale up the entire procedure to include other image regions, leading to more chains

in the CHMM. In any case, as more model parameters will have to be estimated a larger

data corpus will be necessary. The possibility of collecting significant amounts of imaging

data with RT-MRI holds promise in this regard.
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6.6 Conclusions

We conclude from our study that the proposed method of image feature extraction has

merit, and that the CHMM framework is a promising candidate for the discovery of

articulatory primitives from RT-MRI data.

On a wider scope, this study indicates that if we combine (a) an explicit multistream

transcription (gestures) with (b) appropriate techniques for extraction of articulatory

time functions from RT-MRI data and with (c) the appropriate statistical models, we

are well positioned to derive phonological information automatically from a rich set of

articulatory data.
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Chapter 7

Conclusions

7.1 Contributions

In summary, the core contributions of this thesis are (1) the design of a synchronized audio

recording system, (2) the development of a model-based MRI noise cancellation algorithm,

(3) the development of an upper-airway image-specific edge detection algorithm, (4) the

pioneering use of RT-MRI data in speech production studies of soprano singing and

fricative sounds, and (5) the introduction of a spatio-temporal statistical multistream

modeling framework for RT-MRI data.

7.2 Future directions

Data is integral to advancing speech communication research, and vocal tract shaping

information provides a crucial piece of the puzzle. There is an obvious need to gather

and integrate multiple, disparate sources of information toward getting a more complete

picture of the underlying processes.

The problem is highly challenging from both the technological as well as the theoret-

ical perspective. In the future there is tremendous potential for applications including

machine recognition, coding, and synthesis of speech.
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Above all, acquiring, interpreting and utilizing speech production information is an

ongoing interdisciplinary scientific endeavor.

99



Glossary

ADC analog to digital converter. 9, 10

CHMM coupled hidden Markov model. xi, 85, 88, 92–97

EMA electromagnetometry. 2, 73, 86

FIR finite impulse response. 12, 13, 15

FOV field of view. 19, 29–32

FPGA field programmable gate array. 5, 9

GMM Gaussian mixture model. 85, 88, 92–95

HMM hidden Markov model. 85, 88, 92–96

LA lip aperture. 86, 87, 91–96

MR magnetic resonance. x, 1–3, 6, 7, 18, 19, 21–23, 28–30, 41, 42, 45, 47, 52–54, 56–60,
71, 74, 77, 83, 88, 90

MRI magnetic resonance imaging. ix–xi, 1–3, 5–13, 15, 19, 23, 60, 61, 63, 64, 70–72,
74–77, 80, 85, 86, 96–98

NLMS normalized least mean square. 10, 12, 13

RF radio frequency. 8–10, 19

RSS root sum square. 42

RT real time. ix–xi, 1–3, 18, 19, 61, 63, 64, 70–72, 74, 85, 86, 96–98

SNR signal to noise ratio. 15, 16

TE echo time. 11

TR repetition time. 9, 10, 12, 19
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TTCD tongue-tip constriction degree. 86–88, 91–96

VEL velic aperture. 93–96

VQ vector quantizer. 85, 88, 92, 94, 95
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Appendix

Fourier transform of a polygonal shape function and the

vertex vector derivative

A simple polygon P with the counterclockwise oriented vertices vi = [xi, yi], i = 0 . . . (M−
1) in the x− y plane is shown in Fig. A.1. With

V = [vT
0 , . . . ,v

T
M−1]

T (A.1)

we can define the shape function

s(x, y,V) =

{

1 for (x, y) in P (V)

0 otherwise
(A.2)

and the corresponding two-dimensional Fourier transform

S(kx, ky,V) = F{s(x, y,V)}

=

∫ ∞

−∞

∫ ∞

−∞

s(x, y,V)e−j2π(kxx+kyy)dxdy

=

∫∫

(x,y)insideP (V)
e−j2π(kxx+kyy)dxdy (A.3)

where x and y are the spatial coordinates, and kx and ky are the spatial frequency
variables.

y

z x

ri

vi

vi+1

vM−1

v0

Ci

Ci+1
P

Figure A.1: A simple polygon P

107



Analytic expressions for the Fourier transform S(kx, ky,V) have been derived using
various methods in numerous articles such as [36], [15], and [41]. The latter contribution
elegantly employs Stokes’ Theorem and yields for kx = 0 and ky = 0

S(kx, ky,V) =
1

2

M−1
∑

i=0

(xiyi+1 − xi+1yi) (A.4)

and otherwise

S(kx, ky,V) =

1

j2π(k2x + k2y)

M−1
∑

i=0

(

sinc

(

(vi+1 − vi) ·
[

kx
ky

])

e

−jπ(vi+1+vi)·

⎡

⎣

kx
ky

⎤

⎦

(vi+1 − vi) ·
[

ky
−kx

])

(A.5)

where sinc(x) = sin(πx)
πx .

With the help of the chain rule we can now find an expression the derivative of
S(kx, ky,V) with respect to a vertex vector vi

∂S(kx, ky,V)

∂vi
=

[

∂S(kx, ky,V)

∂xi
,
∂S(kx, ky,V)

∂yi

]

(A.6)

and with
ai = vi+1 − vi (A.7)

bi = vi+1 + vi (A.8)

ci = −kx sinc
′

(

ai ·
[

kx
ky

])

e
−jπbi·

⎡

⎣

kx
ky

⎤

⎦(

ai ·
[

ky
−kx

])

(A.9)

di = −jπkx sinc

(

ai ·
[

kx
ky

])

e

−jπbi·

⎡

⎣

kx
ky

⎤

⎦ (

ai ·
[

ky
−kx

])

(A.10)

ei = −ky sinc

(

ai ·
[

kx
ky

])

e

−jπbi·

⎡

⎣

kx
ky

⎤

⎦

(A.11)

where sinc′(x) = d sinc(x)
dx , we finally obtain

∂S(kx, ky,V)

∂xi
=

{

yi+1−yi−1

2 for kx = 0, ky = 0
ci+di+ei−ci−1+di−1−ei−1

j2π(k2x+k2y)
otherwise

(A.12)
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The expression for ∂S(kx,ky,V)
∂yi

can be derived along the same lines and is omitted
here.
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