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Abstract

Human speech is a unique capability that involves complex and rapid movement of vocal

tract articulators. To understand the sounds of speech, it is important to see and under-

stand how the different parts of the vocal articulators move to produce sounds. In this

sense, real-time magnetic resonance imaging (RT-MRI) has provided powerful insight into

speech production because of its ability to non-invasively and safely capture the essential

dynamic features of the vocal tract during the speech. RT-MRI has initiated a dramatic

scientific change in the nature of speech production research, including an understanding

of language, improved speech synthesis and recognition, and several clinical applications.

Despite the great success of RT-MRI in the study of speech production, there would be

still unmet needs in improving the quality and quantity of imaging information about the

dynamics of vocal tract articulators. This dissertation introduces new tools for RT-MRI of

speech production that offer steps toward a better understanding of speech production.

First, I develop a model-based deblurring method for spiral RT-MRI of speech pro-

duction. This technique estimates and corrects for dynamic off-resonance that appears

as spatially and temporally varying blurring in the image. This method is possible to

estimate a dynamic field map directly from the phase of single echo-time dynamic images

after a coil phase compensation, and I demonstrate this method can be directly applied to

xiii



an existing multi-speaker dataset of running speech. I demonstrate improvements in the

depiction and tracking of air-tissue articulator boundaries quantitatively using an image

sharpness metric, and using visual inspection, and the practical utility of this method on

a use case.

Second, I develop a data-driven deblurring method for spiral RT-MRI of speech pro-

duction. A 3-layer residual convolutional neural network is present to correct image

domain off-resonance artifacts without the knowledge of field maps. The mathematical

connection between conventional deblurring methods and the proposed network architec-

ture is derived. I propose a model-based framework that leverages the previous model-

based method to generate training data with some augmentation strategy. I validate

the proposed method using synthetic and real in vivo data with longer readouts, quan-

titatively using image quality metrics and qualitatively via visual inspection, and with a

comparison to conventional methods.

Finally, I develop a new 3D RT-MRI technique for imaging the full 3D vocal tract

at high temporal resolution during a natural speech. This technique utilizes an efficient

golden-angle stack-of-spirals sampling, undersampling scheme, and constrained recon-

struction. I evaluate this technique through in vivo imaging of natural speech produc-

tion from two subjects and via comparison with interleaved multislice 2D RT-MRI. This

promising tool for speech science for the first time enables a quantitative identification of

spatial and temporal coordination of important tongue gestures coproduced on and off

the midline in the articulation of English consonants /l/ and /s/ via volume-of-interest

analysis and allows a direct assessment of vocal tract area function dynamics during

natural speaking of utterances.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a vital medical imaging modality that has expe-

rienced tremendous growth over the past few decades. It is non-invasive, involves no

ionizing radiation, provides different types of tissue contrast, and allows for arbitrary

imaging planes. The clinical role of MRI is already established in brain, spine, cardiac,

abdominal, and joint imaging and now is expanding to include many other applications

such as upper airway and interventional imaging.

This dissertation is about real-time MRI (RT-MRI), one emerging research area for

which the primary purpose is to image the dynamic process in the human body as they

occur. MRI was previously considered as a ”slow” imaging modality. Over the last

few decades, however, tremendous technical efforts have been made to push the limit

of spatiotemporal resolution forward. Some of the important advances have been found

in MRI hardware such as strong and fast-switching gradients that enable time-efficient

k-space trajectories and phased-array receive coils that become the crucial part of parallel

imaging; in sequence developments such as steady-state free precession-based sequences

1



that allow for efficiently achieving different types of tissue contrast; in theoretical break-

throughs such as advanced imaging models and reconstruction algorithms that allow for

recovering image from a limited amount of data, and more recently machine and deep

learning technique. Such enormous advances have made real-time imaging feasible and

practical in many different invaluable imaging applications. Among the different areas

of the body that experience rapid and often irregular motion, its unique value of RT-

MRI becomes prominent in imaging the shape and dynamics of human vocal articulators

during speech production. This dissertation focuses on developing and improving tech-

niques for RT-MRI that are successfully applied to (but not limited to) speech production

application.

1.1 Outline of Contributions

The main contributions in this dissertation are as follows:

Chapter 2: Magnetic Resonance Imaging This chapter contains a basic overview

of MR imaging concepts, advanced sampling and reconstruction techniques, and the imag-

ing consideration for speech production applications.

Chapter 3: Model-Based Deblurring for 2D Real-Time MRI of Speech Pro-

duction This chapter describes a new method that estimates and corrects for dynamic

off-resonance to improve the depiction and tracking of vocal tract articulators in spi-

ral RT-MRI of speech production. We show that it is possible to estimate a dynamic

field map directly from the phase of single echo-time dynamic images after a coil phase

2



compensation. We evaluate the present method using simulations and on an existing

multi-speaker dataset of running speech. We demonstrate improvements in the depiction

of air-tissue boundaries quantitatively using an image sharpness metric, and using visual

inspection, and the practical utility of this method on a use case. Prior publication of

this work includes [1].

Chapter 4: Data-Driven Deblurring for 2D Real-Time MRI of Speech Produc-

tion This chapter describes a fast and effective method for deblurring spiral RT-MRI

using convolutional neural networks. A 3-layer residual convolutional neural network

is present to correct image domain off-resonance artifacts in speech production spiral

RT-MRI without the knowledge of field maps. The mathematical connection between

conventional deblurring methods and the present network architecture is derived. Train-

ing data generation and augmentation strategy are present. We investigate the effect of

off-resonance range, shift-invariance of blur, and readout durations on deblurring per-

formance. We validate the present method using synthetic and real data with longer

readouts, quantitatively using image quality metrics and qualitatively via visual inspec-

tion, and with a comparison to conventional methods. Prior publication of this work

includes [2].

Chapter 5: 3D Real-Time MRI of Speech Production Detailed and direct 3D

information about airway shape and spatiotemporal dynamics are essential to under-

standing speech production control and to relating articulation to speech acoustics. This

chapter describes a new technique for imaging the full 3D vocal tract at high tempo-

ral resolution during natural speech. The present technique is implemented based on

3



an efficient golden-angle stack-of-spirals sampling and a constrained reconstruction. We

evaluate this technique through in vivo imaging of natural speech production from two

subjects and via comparison with interleaved multislice 2D RT-MRI. We demonstrate

that this promising tool for speech science for the first time enables a quantitative iden-

tification of spatial and temporal coordination of important tongue gestures coproduced

on and off the midline in the articulation of consonants /l/ and /s/ via volume-of-interest

analysis and allows a direct assessment of vocal tract area function dynamics during

natural speaking of utterances. Prior publication of this work includes [3].

Chapter 6: Conclusion and Future Work This chapter summarizes the contribu-

tions presented in this thesis and outlines areas for future work.

4



Chapter 2

Magnetic Resonance Imaging

This chapter divides into three parts. The first part provides an introduction to the

basics of MR principles which will be useful to understand before moving to the following

chapters. The second part reviews some recent technical advances in data sampling and

reconstruction. The third part discusses speech imaging application which is the topic of

this dissertation.

2.1 Basic MR Principles

2.1.1 Nuclear Magnetic Resonance Physics

Atoms with an odd number of protons and/or an odd number of neutrons possess an

intrinsic spin angular momentum (or spin). The basic motion of a proton spin can

be visualized as a spinning gyroscope that is also electrically charged. Such a charged

spin produces its own field and is capable of interacting with an external magnetic field.

5



Figure 2.1: Spin orientation in the absence and presence of an external magnetic field.
In the absence of any external field, the spins are oriented randomly. In the presence of
a B0 field, spins aline either parallel or anti-parallel, so the net magnization M becomes
non zero.

Sodium (23Na) and phosphorous (31P) are among the elements with such magnetic mo-

ment, but hydrogen (1H) is by far the most abundant in the human body, and the only

species considered in this dissertation.

Magnetization In the absence of an external field, the spins are oriented randomly as

shown in Figure 2.1. Macroscopically, these randomly oriented spins tend to cancel out

each other. But when placed in an external magnetic field B0, the spins tend to align

either parallel or anti-parallel to the applied field, with a slightly greater number in the

parallel direction, therefore resulting in a non-zero net magnetization M.

Precession At thermal equilibrium, B0 and M will align in the same direction (usually

denoted as the z-direction or longitudinal direction). When the spins are perturbed from

6



Figure 2.2: Precession of magnetization about the external magnetic field.

their longitudinal orientation, they start precessing about the direction of the B0 field at

a frequency, called the Larmor frequency ω0 (Figure 2.2):

ω0 = γ|B0| (2.1)

where γ is called the gyromagnetic ratio, an unique constant for each species. For 1H,

γ/2π = 42.58 MHz/T.

Excitation The perturbation of the magnetization from the z-axis can be accomplished

by applying an oscillating magnetic field B1(t). This second field B1(t) leads to flip the

longitudinal magnetization to produce a transverse component, which becomes detectable

by a receive coil. B1(t) field is oriented in the x – y plane (usually denoted as transverse

plane), perpendicular to the main B0 field, and tuned to rotate at the resonant frequency

ω, creating another resonance condition as illustrated in Figure 2.3. The angle of preces-

sion will continue to increase as long as the B1(t) is applied at the resonant frequency.

7



Figure 2.3: Excitation of magnetization by B1(t). B1(t) induces rotation of magnetization
toward transverse plane (figure provided by Brian Hargreaves [4]).

The angle is known as flip angle. Since the resonant frequency is in the radio-frequency

(RF) range, B1(t) field is referred to as RF field.

Relaxation Once perturbed by the applied B1(t) from the equilibrium orientation, the

net magnetization M returns to its equilibrium position based on two time constants

(T1 and T2). The longitudinal relaxation rate T1 specifies the relaxation rate along the

z-direction, while the transverse relaxation rate T2 specifies the relaxation rate in the x

– y plane. Fundamentally T2 < T1 and both relaxation rates vary in different tissues and

with field strength.

Bloch Equation The dynamic behavior of the magnetization described above is gov-

erned phenomenologically by the Bloch equation:

dM(t)

dt
= M(t)× γB(t)− Mx(t)i +My(t)j

T2
− (Mz(t)−Mo)k

T1
(2.2)
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where i, j, and k are the unit vectors in the x, y, and z directions respectively. Mo

is the longitudinal magnetization at the equilibrium. B(t) includes the three magnetic

fields applied such as the static field B0 and RF field B1(t) as well as gradient field G(t),

which will be introduced in the subsquent section. From the Bloch equation, the general

solution for the transeverse component can be derived as

Mxy(r, t) = Mxy(r, 0)e−t/T2(r)exp

(
−iγ

∫ t

0
Bz(r, τ)dτ

)
(2.3)

whereMxy(r, t) = Mx(r, t)+iMy(r, t) andMxy(r, 0) is the initial transverse magnetization

right after excitation. Bz(r, τ) is the magnetic field only pointed in the z-direction.

Signal Reception The precessing transverse magnetization Mxy(r, t) will give rise to

an electromotive force in a receiver coil placed near the sample. From Faraday’s law of

induction, the electromotive force induced in an RF receive coil is proportional to the

changes in the magnetic flux caused by the precessing transverse magnetization. The

resultant received signal sr(t) may be written as

sr(t) =

∫
vol
Mxy(r, t)dV (2.4)

2.1.2 Image Formation

If B1(t) is applied only in the presence of B0, all spins in the volume are excited. There-

fore, the received signal shown in Equation 2.4 is contributed by the entire volume. But,

in practice, it is desirable to excite only a restricted region of the volume of interest. In

addition, the received signal has no spatial information and cannot be distinguished by
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spatial location. In the following subsections, we introduce linear gradient field G(t),

briefly discuss the role of it in selective excitation and spatial encoding, and cover subse-

quent 2D and 3D imaging.

Linear Gradient Field Linear gradient field G(t) provides spatial selectivity, by gen-

erating the longitudinal component of magnetic fields linearly varying proportional to

spatial location. Then spatial position can be mapped, proportionally, to the resonance

frequency by the Larmor Equation (Equation 2.1) such that ω = γ(B0 + G(t) · r).

Selective Excitation Selective excitation is achieved by applying the gradient mag-

netic fields G(t). Figure 2.4 illustrates the selective excitation. Linear gradient field G(t)

is applied in the direction of desired spatial selectivity, for example, the z-direction. With

Gz on, the resonance frequency of spins varies linearly with z such that ω = γ(B0 +Gzz).

B1(t) is then tuned to the Larmor frequency ω0, but must have a temporal frequency

bandwidth that matches the bandwidth of resonance frequencies of spins in the slice

of interest. This can be made possible by varying the amplitude of B1(t) in time. As

a result, only spins in a finite region, say, perpendicular to the z-axis of thickness ∆z

corresponding to the resonance bandwidth, will be selectively excited.

Spatial Encoding In the presence of both B0 and G(t), Bz(r, t) shown in Equation

2.3 becomes Bz(r, t) = B0 + G(t) · r. Then substituting Equation 2.3 into Equation 2.4

yields

sr(t) =

∫
∆z
Mxy(r, 0)e−t/T2(r)e−iω0te−iγ

∫ t
0 G(t)·rdr (2.5)
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Figure 2.4: Selective excitation. With the linear gradient Gz on, resonance frequency of
spins varies linearly with spatial location z. Amplitude modification of B1(t) field creates
limited bandwidth so that only those spins in within the matching frequency band are
excited.

After demodulating it by the baseline frequency ω0 and ignoring T2 decay, we get the

following baseband signal s(k)

s(k) =

∫
∆z
m(r)e−i2πk(t)·rdr (2.6)

where m(r) is a scaled version of the orginal Mxy(r, 0) and k is defined as

k(t) =
γ

2π

∫ t

0
G(t)dτ (2.7)

Equation 2.6 is referred to as the signal equation and matches the Fourier transform (FT)

relationship between the acquired signal s(k) and the image m(r); s(k) is interpreted as

FT of m(r) at a spatial frequency k(t), which is determined by the time integral of
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Figure 2.5: 2DFT acquisition. With Gz, a selective excitation RF field excites the slice
and the Gy gradient turns on at a time t1. Once Gy turns off, the signal is read out in
the presence of a constant Gx gradient (between t2 and t3).

gradient. This Fourier domain of s(k) is known as k -space, the name of which comes

from the coordinate k(t).

2D Imaging Figure 2.5 shows an example of the most commonly used 2D FT ac-

quisition. With the Gz, a selective excitation RF field excites a plane of thickness ∆z,

perpendicular to the z-direction. Therefore m(x, y) :=
∫

∆zm(r)dr and Equation 2.6

reduces

s(kx, ky) =

∫
x

∫
y
m(x, y)e−i2π[kx(t)x+ky(t)y]dydx (2.8)

where kx(t) = γ
2π

∫ t
0 Gx(t)dτ and ky(t) = γ

2π

∫ t
0 Gy(t)dτ . A change in the amplitude of the

Gy gradient (also denoted as phase encode gradient) leads to a different line in k-space

whereas the signal from each k-space line is read out in the presence of a constant Gx

gradient (also denoted as readout gradient).
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Figure 2.6: 3DFT acquisition.

3D Imaging Figure 2.6 shows an example of 3D FT acquisition. For FT imaging, the

extension from 2D to 3D is straightforward by adding one more phase encode gradient

along z-axis. With the additional Gz involved, Equation 2.6 can be expressed as

s(kx, ky, kz) =

∫
x

∫
y

∫
z
m(x, y, z)e−i2π[kx(t)x+ky(t)y+kz(t)z]dzdydx (2.9)

Here, similarly, kz(t) is defined as kz(t) = γ
2π

∫ t
0 Gz(t)dτ .

2.1.3 k-Space Trajectory

2D or 3DFT acquisition is widely used due to the simplicity of reconstruction and ro-

bustness to artifacts. But the drawback of such Cartesian sampling is that it requires a

large number of encoding lines, resulting in increased acquisition time. There are more

time-efficient alternatives to this, having both strengths and weaknesses.
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Figure 2.7: Efficient 2D k-space trajectories. EPI, Echo planar imaging; Radial; Spiral.

2D Trajectory Figure 2.7 illustrates efficient 2D sampling trajectories. Echo planar

imaging (EPI) is an alternative where multiple Cartesian lines are acquired in a raster-

like fashion after each excitation, therefore k-space can be filled only with one or fewer

repetitions. One primary limitation is that its prolonged readout time makes it vulnerable

to off-resonance, eddy currents, gradient delay, and so on, which give rise to ghosting and

distortion artifacts in reconstructed images.

Radial sampling covers k-space by acquiring radial lines at different azimuthal angles.

The order of the angle is a design choice but the golden-angle increment is widely adopted.

Each readout line at an azimuthal angle passes through the k-space origin, resulting in

oversampling the central region of k-space. This offers more robustness to motion than

2DFT and tolerance to spatial aliasing artifact due to undersampling. With moderate

angular undersampling along with the golden angle scheme, the spatial aliasing artifacts

are usually incoherent in appearance, which can be reduced by advanced reconstruction

techniques. While radial sampling is π/2 less efficient than Cartesian, those favorable

properties make it a popular method for rapid imaging.
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Spiral sampling usually starts acquiring data from the origin of k-space and ends at the

periphery after traversing along a spiral trajectory. Spiral sampling can completely cover

k-space with one or a few repetitions to achieve Nyquist sampling of k-space. It provides

excellent velocity PSF and reduces motion artifacts due to its natural oversampling at

the k-space center. Spiral sampling is well-suited for advanced reconstruction algorithms

such as compressed sensing when combined with strategies such as under-sampling and

golden angle scheme similar to radial sampling. Because of its favorable properties, it is

also widely used for RT-MRI where the capability of capturing rapid motion is crucial

such as in cardiac imaging and speech production imaging. However, spiral trajectory

is sensitive to off-resonance that appears as signal loss and/or blurring in reconstructed

images. These artifacts are most pronounced at high field strength and with long readout

duration which is precisely when spiral provides the greatest efficiency. Multi-shot spiral

acquisitions with a short readout time (≤ 2.5 ms at 1.5 T) is often used for the practical

reason.

3D Trajectory Analogous to the extension from 2D to 3D FT imaging, direct ex-

tensions of the aforementioned efficient 2D trajectories are possible by augmenting an

additional kz direction. Figure 2.8 illustrates representative examples of 3D stack-of-

stars and stack-of-spiral trajectories. More advanced pure 3D trajectories can be found

in the literature, including 3D radial, 3D cone, and so on.
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Figure 2.8: 3D k-space trajectories. Stack-of-stars and stack-of-spirals.

2.1.4 Off-Resonance

Thus far we have assumed a perfectly uniform magnetic field B0. However, in practice, the

resonant frequency will not be uniform across samples and shifts in the frequency are often

caused by B0 field inhomogeneities, chemical shift, and susceptibility differences between

tissues boundaries. In general, off-resonance can be referenced by deviation frequency ∆ω

(or ∆f in Hz), with respect to the resonant frequency ω0, which is a function of spatial

location. Among several off-resonance sources, susceptibility differences between the soft

tissue (water) and air is of most relevant in this dissertation. A typical range of ∆f due

to the susceptibility difference is proportional to the strength of the external magnetic

field B0; up to ∼ 600 Hz at 1.5 T and ∼ 1200 Hz at 3 T [5]. Off-resonance reflects the

signal equation, say, Equation 2.8 in the case of 2D imaging, as

s(kx, ky) =

∫
x

∫
y

[
m(x, y)e−i2π∆f(x,y)t

]
e−i2π[kx(t)x+ky(t)y]dydx (2.10)
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This equation will be used later in Equations 3.2 and Equations 4.1 in Chapters 3 and 4

in slightly modified forms.

The manifestation of off-resonance in image domain is dependant on the acquisition

trajectories and can be analyzed by examining the impulse response. Suppose that a

point signal source is located at (x0, y0) such that m(x, y) = 2δ(x− x0, y − y0). Then

the resultant signal can be expressed as s(kx, ky) = e−i2π∆f(x0,y0)te−i2π[kx(t)x0+ky(t)y0]. By

reconstructing these signals with conventional reconstruction approach, we can determine

the point spread function (PSF) of the imaging system as

PSF (x, y, x0, y0; ∆f(x0, y0))

=

∫
kx

∫
ky

s(kx, ky)e
i2π[kx(t)x+ky(t)y]dkydkx

=

∫
kx

∫
ky

[
e−i2π∆f(x0,y0)tei2π[kx(t)(x−x0)+ky(t)(y−y0)]

]
dkydkx

(2.11)

In 2DFT imaging, PSF (x, y, x0, y0; ∆f(x0, y0)) = 2δ(x− x0 − ∆f(x0,y0)
γGx/2π

, y − y0), resulting

in image shift by ∆f(x0,y0)
γGx/2π

in the readout direction. In other types of imaging, the artifact

becomes complicated. In EPI, the artifact appears as image shift in the phase encoding

direction, resulting in a geometic distortion. In radial or spiral imaging, the artifact

appears as signal loss and/or blurring. Figure 2.9 illustrates phase error in k-space due to

off-resonance and its corresponding PSF in image space for spiral imaging. When ∆f ≈ 0

or using very short readouts, the phase accrual due to off-resonance during readout such

as e−i2π∆ft shown in Equation 2.11 can be ignored and the PSF is approximately a sharp
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Figure 2.9: PSF in the presence of off-resonance in spiral imaging. Top: phase accrual
due to off-resonance (e−i2π∆ft) in k-space. Bottom: corresponding PSFs as a function of
off-resonance frequency ∆f for spiral imaging. Assuming readout time of 2.5 ms, ∆f =
400Hz yields one cycle of the phase accrual during the readout.

impulse at (0, 0). However, in the presence of off-resonance, the larger ∆f is, the more

phase error of e−i2π∆ft is accured, therefore increasing the spread of PSF.

2.2 Advanced Sampling and Reconstruction

2.2.1 Spatio-Temporal (k-t Space) Sampling

So far, we have assumed a stationary object imaged and the corresponding data acquired

onto k-space. For a dynamic object, in contrast to a stationary object, the signal source

(i.e., the complex magnetization) at a given spatial location varies with time due to

physiological motions, contrast dynamics, or any other type of signal modulation. Thus,

18



a complete description of a dynamic object requires time as an additional variable. k-t

space [6] is an extension of k-space with an additional time axis, t. In the case of 2D

dynamic imaging, one can acquire a series of k-space over time and stack all of the 2D

k-space into a 3D cube, yielding 3D k-t space (kx, ky, and t). Analogously, 3D dynamic

imaging yields a corresponding 4D k-t space.

However, because of physical and physiological constraints on the speed of data acqui-

sition, it is usually impractical to acquire the full k-t space data necessary for reconstruct-

ing each time frame separately. Therefore, methods have been developed that acquire

only a part of the desired k–t space, the rest being recovered or estimated through some

model assumption or advanced reconstruction [7, 8, 9, 10, 11, 12]. When and which data

points are acquired is referred to as k-t sampling pattern or sampling schedule [13]. The

k-t sampling pattern affects the fidelity of the reconstructed image. The more one can

sample data within k-space, the less one can reconstruct images with aliasing artifact.

The more frequently one can sample data along the time axis, the more one can capture

quick temporal changes. The k-t sampling pattern is also associated with model assump-

tions or reconstructions. The k-t sampling patterns for 2D Cartesian, radial, and spiral

imaging are illustrated in Figure 2.10. The concept of the k-t sampling pattern shown

here is also applicable to 3D imaging.

2.2.2 Image Reconstruction

Gridding and NUFFT For FT imaging where k-space samples are acquired on a

rectangular (Cartesian) grid, the image can simply be reconstructed by performing the

inverse fast-Fourier transform (FFT). Gridding [14, 15, 16] is one way to reconstruct an
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Figure 2.10: k-t sampling pattern for 2D Cartesian, radial, and spiral imaging.
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image from k-space samples that do not fall on a regularly spaced Cartesian grid. The

general idea known as ”gridding” is that the data points lying along some non-Cartesian

trajectory through k-space are convolved with a small kernel and resampled onto the

Cartesian grid. Then the image is reconstructed by performing the inverse FFT. Non-

uniform FFT (NUFFT) [17, 18] is another class of dealing with non-Cartesian samples.

Although there are many variations, the NUFFT can be thought of as doing the operation

of gridding in the reverse direction; the forward direction of the NUFFT is from the image

on the Cartesian grid to k-space samples on a non-Cartesian grid. The forward and its

reverse (adjoint) operations of NUFFT are important for iterative reconstruction such

as non-Cartesian SENSE [19]. Several design choices exist for both approaches including

interpolation kernels, oversampling factors, scaling factors, and density compensation.

View Sharing In many cases, successive image frames in a dynamic series are often

more similar than images that are farther apart in time. The idea of view sharing is to

share data (so-called views) across time frames to take advantage of the similarity among

adjacent time frames. View sharing has found its applicability to various spatio-temporal

sampling schemes [13]. View sharing [20, 21] is often used interchangeably with sliding

window reconstruction. Figure 2.11 shows an example of view sharing reconstruction for

interleaved spiral acquisitions. Suppose that thirteen spiral interleaves are required to

form a single image frame. These 13 interleaves are being continuously and repeatedly

acquired while each spiral interleaf or view is being shared across multiple time frames. In

doing so, a different image can be generated after each TR, rather than after 13 TRs (for

example, without view sharing). Sharing data increases the apparent temporal resolution
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Figure 2.11: View sharing sliding window reconstruction illustrated for interleaved spiral
acquisitions. Without view sharing, the complete set of six interleaves is being used to
form an image frame without any overlapping. With view sharing, every image frame
can be generated by sharing data (views within a sliding window) after each or multiple
TRs

since there are 13 times as many time frames but the images may not contain the truly

new information [22].

Compressed Sensing Compressed sensing (CS) technique [23] has been established

as a promising theoretical framework for accelerating MRI acquisitions. According to CS

theory, a signal can perfectly be reconstructed from highly and randomly undersampled

data (i.e., sub-Nyquist sampling rate) provided that the signal is sparse in a certain trans-

form domain (sparsifying transform domain). The CS is based on the fact that aliasing

artifacts due to randomly undersampled measurements occur as incoherent noise in the

transform domain and can effectively be eliminated by using non-linear noise removal

algorithms via a minimum l0 or l1 norm in the context of constrained reconstruction [24]

so that the desired signal can perfectly be recovered.
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In dynamic MRI where the images have highly redundant information in both space

and time, rapid imaging techniques based on CS have been proposed. The underlying

theory can be explained with an example illustrated in Figure 2.12: Obviously, dynamic

scenes can perfectly be reconstructed from fully sampled data. If the dynamic scenes have

periodic behavior of the motion, the temporal variation of the intensity is also periodic

as can be seen in the corresponding spatial–temporal (y–t) space. These scenes can

be represented with a few harmonic frequency coefficients in spatial–temporal frequency

(y–f) space where f is the FT pair of time t in y–t space. Thus, randomly undersampled

patterns in ky–t space yield incoherent aliasing artifacts in the corresponding y–f space.

By using the non-linear reconstruction methods, the incoherent artifacts can be eliminated

and the dynamic scenes can be perfectly reconstructed from the randomly undersampled

data as same as from the fully sampled data.

Spatial and Temporal Constraints In addition to FT that exploits periodicity in

the dynamic time series (e.g., gated cardiac cine), some of the most popular sparsifying

transforms in dynamic MRI are finite differences, total variation, and wavelet, which can

be applied to exploit spatial and/or temporal sparsity.

In speech imaging applications where the primary features of interest are moving

tissue boundaries, temporal finite differences are widely adopted since this encourages

pixel intensity to be piecewise constant along time.
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Figure 2.12: Compressed sensing concept in dynamic MRI
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2.3 Speech MRI

Speech production is a human’s unique capability. It is the result of a well-coordinated

interplay of different soft tissue structures such as the lips, tongue, hard palate, soft

palate, larynx, and epiglottis as well as several muscles in the upper airway. Speech

production mechanism can be summarized as follows [25]: Our brain comes up with a

speech plan, which is sent through our bodies as nerve impulses. These nerve signals

arrive at muscles, causing them to contract. Muscle movements expand and contract our

lungs, allowing them to move air. This air moves through our vocal tract, which we can

shape with more muscle movements. By changing the shape of our vocal tract, we can

block or release airflow, create vibrations or turbulence, change frequencies and tones,

and so on. Through these actions, we produce different speech sounds, which is what we

perceive as speech.

To understand the sounds of speech, it is important to see and understand how the

different parts of the human body move to produce sounds. Speech scientists, linguists,

and clinicians, therefore, have used a wide array of tools to visualize or track the shape and

movements of articulators to gain new insights into sound and speech production both

in typical speakers and in clinical populations. Figure 2.13 shows the existing speech

measurement and/or imaging systems. Table 2.1 lists and evaluates the weaknesses and

strengths of each one of those tools.

Electromagnetic articulography (EMA) and electropalatography (EPG) are sensor-

based techniques. EMA can track the movement of sensor coils glued to the tongue

and other structures in the mouth. EPG can monitor tongue-palate contact from a
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Figure 2.13: Speech measurement and imaging modalities. EMA, Electromagnetic ar-
ticulography [26]; EPG, Electropalatography [27]; X-ray [28]; US, Ultrasound [29]; CT,
Computational tomography [30]; MRI, Magnetic resonance imaging [31];
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Table 2.1: Comparison of speech imaging modalities

EMA EPG X-Ray US CT MRI

Invasive × × X – X X

Ionizing radiation X X × X × X

Spatial resolution × × X X X X

Temporal resolution X X – X X X

Tissue contrast × × × × × X

Spatial coverage × × × × X X

Cost X × X X × ×

strength (X), weakness (×), and neutral (–).
Abbreviations: EMA, electromagnetic articulography; EPG, electropalatography; US,
ultrasound; CT, computer tomography; MRI, magnetic resonance imaging.

customized electro-palate sensor. Both techniques can provide a rapid tracking rate (≥

100 Hz), but are limited to provide information only from exterior surfaces and in the

region covered by the sensors. In addition, the non-invasive set-up for sensors could

potentially cause discomfort and abnormal speech. X-ray fluoroscopy is an alternative,

non-invasive technique that operates at both high temporal (∼30 Hz or frames per second

(fps)) and in-plane spatial resolution (≤ 0.5 × 0.5 mm2). However, it involves ionizing

radiation and is limited to provide projections of the anatomy. Ultrasound is another

imaging technique that is relatively low cost and is widely available both in clinical and

research settings. One primary limitation is that the tongue is only imaged. X-ray

computed tomography (CT) can obtain volumetric images with high spatial resolution

and with the delineation of deep soft tissues and bone structure, but the radiation dose

may render it not a viable method for frequent use.
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Compared with the aforementioned imaging modalities, MRI enables imaging deep

soft-tissues in the arbitrary scan plane without radiation or endoscopy and with excellent

soft tissue contrast. These favorable properties have made MRI an ideal modality for

investigating both the structures and dynamics of the vocal tract. MRI was previously

considered as a ”slow” imaging modality, but tremendous advances in the field of MRI

have made rapid imaging feasible, practical, and readily available.

2.3.1 Speech Real-Time MRI

RT-MRI has gained substantial attention for speech production research because of its

unique advantage of monitoring the complete vocal tract during the speech, safely and

non-invasively at relatively high spatial and temporal resolution [21]. Figure 2.14 shows

an example of 2D RT-MRI of speech production imaged at the mid-sagittal scan plane.

RT-MRI continuously captures the dynamic as it is without the need for repetitions or

gating as opposed to the gated cine MRI technique. This is particularly valuable as the

nature of the movements of the articulators during speech is not necessarily periodic and

is unrepeatable. RT-MRI is also compatible with concurrent audio recording, which could

aid linguistic analysis. RT-MRI can now be combined with intermittent tagging pulses

to visualize internal deformation in the tongue muscles [32, 33].

Applications of RT-MRI in speech production study span several linguistic and speech

scientific areas of research including 1) studies of phonetic and phonological phenomena

and language acquisition, 2) understanding of the dynamics of vocal tract shaping dur-

ing speech or non-speech events, 3) modeling of speech production and motor control,

4) speech synthesis and recognition to clinical applications in the treatment planning of
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Figure 2.14: Example of 2D RT-MRI of the vocal tract. Left: Mid-sagittal image frame.
Right: The intensitivy time profiles corresponding to the cut marked by the dotted line
in the image shown on the left. Spiral acquisition; in-plane spatial resolution = 2.4 mm2;
temporal resolution = 12 ms per frame.

speech disorders. Such speech disorder may arise post-surgery in glossectomy or in con-

ditions like velopharyngeal insufficiency and apraxia. The interested readers can refer to

review articles for other applications and technical aspects of the speech RT-MRI with a

focus on speech [34, 35], speech and sleep [31], and image analysis techniques on RT-MRI

of vocal tract motion [36].

2.3.2 Imaging Requirements

Figure 2.15 shows the imaging requirements of spatial and temporal resolution for var-

ious speech tasks from the 2014 Speech MRI Summit. Each rectangular zone with an

approximate boundary represents a specific speech task in terms of the spatial and tem-

poral resolutions. Although specific imaging parameters would be dictated by the vocal

tract regions and speech tasks of interest, the speech MRI generally requires high spa-

tial and temporal resolution. It is recommended in the speech MRI community that an

29



Figure 2.15: Imaging requirements for different speech tasks. A consensus on the spatial
and temporal resolution requirements for different speech tasks from 2014 Speech MRI
Summit, image courtesy of Lingala [35]. Each rectangular zone with an approximate
boundary represents a specific speech task.

in-plane spatial resolution of no more than 3.5 mm2 and time resolution of below 70 ms

are required to study very fast articulatory movements such as those during consonant

constrictions and coarticulation events that are major tasks of interest [35].

The current state-of-the-art technique uses non-Cartesian sampling (radial or spiral

acquisition) and parallel imaging, combined with constrained reconstruction. This has

enabled visualization of 2D dynamic images with spatial resolutions of 1.3 to 2.4 mm2

at high temporal resolutions of 10 to 60 ms from highly under-sampled MRI data [37,

38, 39, 40, 41, 42, 43]. Imaging 2D mid-sagittal plane is the most preferred (but not

enough) as it has provided good utility to speech scientists due to the fact that important

information about “place of articulation,” which is critical in linguistic contrasts, can

be obtained from constriction details in the mid-sagittal plane (such as, for example, in
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phonemes /p/, /t/, and /k/ with constrictions are located at the lips, alveolar ridge, and

velar region).

2.3.3 Imaging Consideration

Tradeoff In RT-MRI [44], there exists an inherent trade-off between spatial and tem-

poral resolution, spatial (and/or slice) coverage, computation time, as well as noise and

artifact reduction [35]. A major challenge in this domain is its requirement of very high

temporal resolution since the vocal tract contains several rapidly moving articulators some

of which change in less than a few milliseconds. Monitoring such rapid motion has been

made possible by restricting the field-of-view to a few 2D planar images and sampling

along time-efficient non-Cartesian trajectories at sub-Nyquist rates. However, such a

subsampling introduces aliasing artifacts that need to be suppressed during advanced im-

age reconstruction, leading to increased computation time. Furthermore, non-Cartesian

trajectory such as spiral sampling is prone to image artifacts such as blurring due to

off-resonance. These artifacts impair the delineation of speech articulators near the tis-

sue boundaries, which are of utmost interest for linguistic sciences and clinical diagnosis.

Although those non-Cartesian trajectories provide the greatest time efficiency at higher

field strength or longer readouts, this is also when the artifacts are most pronounced.

This leads the current imaging for speech production to be most often conducted using

short duration readouts (∼2.5 ms) and at lower field strength (1.5 T) MRI scanners.
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Field Strength Imaging at higher field strength can provide high SNR. Nevertheless,

higher field strength (≥ 3T) is often avoided because of its higher susceptibility to off-

resonance induced artifacts that significantly degrade image quality around air-tissue

boundaries.

Pulse Sequences The mechanism of MR offers the ability to achieve various image

contrast. Signal strengths are determined by the MR physical parameters such as spin

density, T1, and T2 relaxation rates which differ among tissue types. The imaging se-

quences can play an important role in producing different contrast by controlling its

parameters such as the flip angle, repetition time (TR), and echo time (TE) and by

emphasizing differences between the MR physical parameter values.

Among many of the available imaging sequences, two rapid gradient echo sequences are

widely used for rapid imaging. Spoiled gradient recalled echo (GRE) sequences are robust

to artifacts and provide T1-weighted contrast with a short TR. Balanced steady-state

free precession sequences provide higher SNR efficiency than the spoiled sequences. They

also provide T2/T1 contrast, which is advantageous in applications such as in cardiac

imaging because of the excellent blood–myocardium contrast, although its sensitivity to

off-resonance manifests as banding artifacts, limiting its usage at higher field strength.

Although balanced steady-state free precession could provide a higher SNR and bet-

ter contrast, the banding artifact due to off-resonance is challenging in speech imaging.

Besides, speech imaging is mainly interested in looking at a single type of soft-tissue (wa-

ter) such as the tongue and demands less contrast compared to other applications that

necessitate contrast between different types of tissue.
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Sampling Trajectory As discussed in ”Tradeoff”, one needs to consider imaging re-

quirements for speech region and tasks of interest and the intrinsic trade-off for the

k-space sampling trajectory of the choice. Non-Cartesian trajectories are generally em-

ployed when a higher spatial or temporal resolution is desired.

Receiver Coil Commercially available coils are generally designed for neurovascular or

carotid artery imaging and would not be suitable for imaging the upper airway in terms

of attainable SNR, comfort level for subjects during speaking, and compatibility with

audio recording setup. For those reasons, custom upper airway coil is often used and

has also been shown to provide 2-fold to 6-fold higher SNR efficiency than commercially

available coils, in upper airway vocal tract regions of interests including the tongue, lips,

velum, epiglottis, and glottis [40].

Simultaneous Audio Acquisition Simultaneous acquisition of audio along with RT-

MRI data acquisition is essential for subsequent linguistic analysis and investigation of

articulation relating to speech acoustics. To avoid MRI acquisition from being interfered

with any audio recording setup, a commercially available fiber-optic microphone is widely

used in multiple speech production research groups because of its MR-compatibility.

In simultaneous audio acquisition, synchronization is one practical consideration. One

possible approach is the hardware-synchronization of an audio sample clock to the MRI

scanner’s master clock so that the timing between the audio recording and RT-MRI

acquisition is internally aligned. Another important consideration is the acoustic noise

induced by the rapidly-switching MRI gradient coils during imaging. The microphone

is typically placed near the subject’s mouth inside an MRI magnet bore at which the
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noise level is strongest and often over 100 dB [45, 46]. Along with the audio recording

setup, integrated software based on adaptive noise cancellation can offer real-time noise

cancellation and/or custom algorithms can be utilized to further improve SNR [47, 48].

2.3.4 USC RT-MRI Protocol

In this dissertation, all experiments described were performed on a commercial 1.5 T

scanner (Signa Excite, GE Healthcare, Waukesha, WI) with gradients capable of 40

mT/m magnitude and 150 mT/m/ms slew rate. Figure 2.16 shows our imaging setup

at USC. A body coil was used for RF transmission, and a custom eight-channel upper

airway coil [40] was used for signal reception. The custom coil is positioned close to the

upper airway structures, and has an opening near the mouth for microphone positioning.

All developments are based on GRE sequences that provide T1-weighted contrast and on

multi-shot spiral-based sampling trajectories. The imaging protocol was approved by our

Institutional Review Board.

Any visual or text stimuli were viewed or read in the scanner using a mirror projector

setup for presentation [40]. Acoustic audio data were recorded inside the scanner using

commercial fiber-optic microphones (Optoacoustics Inc., Yehuda, Israel) simultaneous

with the RT-MRI data acquisition using a custom recording setup [47]. The recorded

audio was enhanced using a normalized least-mean-square noise cancellation method [47]

and was aligned with the reconstructed MRI video sequence to aid linguistic analysis.

The data acquisition schemes presented in Chapters 3, 4, and 5 were implemented

using a real-time interactive imaging platform (RT-Hawk, Heart Vista Inc, Los Altos,

CA) [50]. Real-time visualization was implemented within this custom platform by using
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Figure 2.16: USC RT-MRI imaging setup. Image courtesy by Lingala et al [49]

a view sharing sliding window gridding reconstruction [21] to ensure the subject’s compli-

ance with stimuli and to detect substantial head movement. In addition to the automatic

shimming provided by the prescan calibration from the scanner, a manual adjustment

of the center frequency described in Ref. [40] was also performed. Specifically, while

the subject being scanned in a neutral open-mouth position, the center frequency was

adjusted on-the-fly in a way that the air-tongue boundary is sharp in the mid-sagittal

plane.

2.3.5 Unmet Needs

Despite the great success of RT-MRI techniques in providing invaluable imaging tools in

the study of speech production research, there would be still unmet needs in improving

quality and quantity of imaging information about the dynamics of articulators during

speech production.
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2.3.5.1 Artifact Mitigation

While non-Cartesian sampling (for example, spiral acquisition) typically is a preferred

choice in the current state-of-the-art techniques to achieve higher spatio-temporal res-

olutions, it is highly sensitive to errors such as due to off-resonance [5]. Off-resonance

gives rise to blurring and/or signal loss in the image domain and degrades image qual-

ity substantially at the air-tissue boundaries that surround the vocal tract articulators,

which are of utmost interest for linguistic sciences and clinical diagnosis. However, to

date, this remains the predominant challenge for speech RT-MRI application as it can

cause an error in any linguistic analysis made on RT-MRI images and introduce bias as

well as increased variance during data analysis. In addition to that, we often need to

compromise scan efficiency to mitigate this artifact. The first two parts of this disserta-

tion (Chapters 3 and 4) deal with deblurring approaches to improve the delineation of

articulator boundary in spiral-acquisition-based 2D RT-MRI of speech production.

2.3.5.2 Slice Coverage

Generally, most RT-MRI techniques have been limited to one mid-sagittal imaging plane

or a few 2D imaging planes. This is mainly due to the imaging tradeoffs between slice

coverage, temporal resolution, and available information from the imaging data. Aiming

at a high temporal resolution, the mid-sagittal plane is most informative due to its entire

vocal tract coverage from the lips to the glottis. However, speech production involves

the movement of articulators occurring in ”3D” in nature and linguistically fundamental

and interesting speech events cannot be fully understood by only looking at those 2D

imaging planes [51, 52]. Examples include lateral shaping of the tongue, such as grooving
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or doming, and asymmetries in the tongue shape as well as resonate cavity volume. Also,

detailed and direct 3D information about airway shape and spatiotemporal dynamics

are essential to understanding speech production control and to relating articulation to

speech acoustics. Although several research groups have demonstrated 3D vocal tract

imaging techniques [53, 54], those techniques would require a subject to perform speech

tasks under constraints against a natural speech production such as sustaining sounds or

repeating speech tasks during imaging. There would be still an unmet need for developing

a technique that allows for imaging full 3D vocal tract at a high temporal resolution

without any constraints during speech production. The second part of this dissertation

(Chapter 5) deals with the feasibility of 3D RT-MRI of speech production.
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Chapter 3

Model-Based Deblurring for 2D RT-MRI of Speech

Production

Spiral RT-MRI is desirable because it allows for a time efficient acquisition, given that

spirals can provide higher spatio-temporal resolution than alternative schemes [35, 55].

A key drawback of spiral MRI is signal loss and/or blurring artifacts that result from

field inhomogeneity, also called “off-resonance” [56]. This can be significant at air-tissue

interfaces due to their magnetic susceptibility difference (∆χ = 9.41 parts per million)

[5]. Furthermore, these artifacts near the air-tissue boundaries [57] are more pronounced

with long spiral readout or at high field strength MRI scanners. To mitigate this artifact,

current RT-MRI studies for speech production are most often conducted using short

duration readouts (∼2.5 ms) and at lower field strength (1.5 T) MRI scanners [21, 58, 40].

Off-resonance artifacts have a significant potential impact on the analysis of articula-

tory dynamics, which is of prime interest in speech science. The articulators of interest

include the surfaces of the lips, tongue, hard palate, soft palate (velum), and structures

along the pharyngeal airway. These are located at air-tissue interfaces and therefore are

vulnerable to the artifacts. Previously used speech RT-MRI biomarkers, such as average

38



pixel intensity [59, 60] in regions of interest (ROI) are prone to error due to artefac-

tual airway area perturbation. Any temporally varying blur of soft tissues can result in

changes in the detected patent airway, and will disrupt the estimation of constriction kine-

matics, such as timing in consonant production [59]. Air-tissue boundary segmentation

[61, 62, 63] is required as a pre-processing step in acquiring vocal tract area functions [64]

and suffers in the presence of ambiguous boundaries with poor contrast. Velopharyngeal

insufficiency [65, 66, 67, 68, 69] is caused by incomplete closure between the soft palate

and the posterior and lateral pharyngeal walls, and its assessment can be hampered by

signal loss near the soft palate.

Several deblurring methods in spiral scanning have been proposed in the literature

[70, 71, 72, 73, 74, 75, 76], most of which require a measurement of a frequency offset

image, also called a “field map” [70, 71, 72]. A previous study applied this approach

to spiral RT-MRI of vocal tract [77] where spirals with two different echo times (TEs)

were obtained in an interleaved fashion and a dynamic field map was estimated using

each pair of consecutive images. This field map-based method showed improvement of

image quality in the tongue and soft palate. The reconstructed images, however, could

suffer from flickering artifact between consecutive images reconstructed with different

TEs. This scheme also requires a compromise in temporal and/or spatial resolution [77]

and is not applicable to previously-collected single-echo-time data.

An alternative approach is to estimate the field map directly from the dataset itself,

known as “auto-focus” [73, 74, 75, 76]. Auto-focus methods employ an image-domain

focus metric that provides local information about the presence of residual off-resonance

artifacts based on the off-resonance PSF. A widely used metric is the absolute value of the
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imaginary component of the image (after correcting for a coil phase) at an image location

[74]. It assumes that the imaginary component should be zero when the local effects

of off-resonance have been corrected. These methods have shown comparable results to

the methods that acquire the field map. However, these are computationally demanding

and performance depends on the focus metric used and can be sensitive to experimental

factors, such as MRI sequence parameters, SNR, and the accuracy of coil sensitivity maps

(especially their phase). Additionally, spurious minima of the focus metric can occur as

the range of off-resonance at air-tissue interfaces ( 600 Hz at 1.5 T) is large enough to

produce more than one cycle of phase accrual (> 2π) even during a short spiral readout

(∼2.5 ms) [73, 78, 79].

In this chapter, we demonstrate a simple dynamic off-resonance estimation method for

spiral imaging where a dynamic field map is directly estimated from the phase of single-

TE dynamic images after a coil phase compensation. We estimate complex coil sensitivity

maps from the single-TE scan itself. Our approach does not require a dynamic two-echo

measurement of a field map, nor the use of a focus metric. Therefore, it can be performed

on conventional real-time spiral data without the need for additional scanning and is not

computationally intensive. We evaluate this method using simulations and on an existing

multi-speaker dataset of running speech. We demonstrate improvements in the depiction

of air-tissue boundaries quantitatively using an image sharpness metric, and using visual

inspection, and the practical utility of this method on a use case.
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3.1 Theory

3.1.1 Spiral Imaging in the Presence of the Field Inhomogeneity

In spiral MRI, ignoring relaxation and noise, the signal equation of an object with a

transverse magnetization m0(r) is given by

s(τ) =

∫
r
m(r)e−j2πf(r)τe−j2π[k(τ)·r]dr (3.1)

where τ ∈ [0, Tread] is time variable defining τ = 0 as the start of the readout; Tread is

the readout duration. r and k(τ) are the spatial coordinate and the k-space trajectory,

respectively. m(r) = m0(r)C(r)e−j2πf(r)TE ; f(r) is the off-resonance frequency presented

at r; C(r) is the complex coil sensitivity map.

Consider the image signal (m̃(r)) reconstructed from s(τ) without off-resonance cor-

rection as follows:

m̃(r) =

∫
r′
m(r′)PSF (r′, r; f(r′))dr′ (3.2)

where PSF (r′, r; f(r′)) =
∫ Tread

0 W (τ)e−j2π{f(r′)τ+k(τ)·(r′−r)}dr is a PSF of an imaging

system using a particular k-space trajectory in the presence of f(r); W (τ) denotes the

pre-density compensation function for the trajectory. When f(r)·Tread ≈ 0, we can ignore

a phase accrual due to off-resonance during the readout. Then, the PSF in Equation 3.2

is a sharp impulse at r so that the image signal in Equation 3.2 can be approximated by

m̃(r) ≈ m(r) = m0(r)C(r)e−j2πf(r)TE .
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3.1.2 Field Map Estimation in Spiral Imaging

Consider spiral RT-MRI, where the image time series (mi(r, t)) for i-th coil is:

mi(r, t) ≈ m0(r, t)Ci(r)e−j2πf(r,t)TE (3.3)

where t represents time frame; f(r, t) is dynamic off-resonance; Ci(r) is the complex coil

sensitivity map that is spatially smooth and independent of time. Phase accrual during

the spiral readout is ignored. Assuming that m0(r, t) is real, we can compute an estimate

of the dynamic field map, f̂(r, t), as follows:

f̂(r, t) = ∠m̂0(r, t)/(−2πTE) (3.4)

where m̂0(r, t) denotes a coil-composite image using the optimal B1 combination [80],

which is given by

m̂0(r, t) = ΣNc
i=1mi(r, t)Ĉ

∗
i (r) (3.5)

here Ĉi(r) is an estimate of the sensitivity maps, Nc is the number of coil components;

Ĉ∗i (r) is the complex conjugate of Ĉi(r).

3.2 Methods

3.2.1 Implementation of Field Map Estimation for Speech RT-MRI

Figure 3.1 illustrates the proposed field map estimation process. The individual coil image

frames mi(r, t) are first reconstructed from raw k-space si(k, t) using sliding window
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view-sharing with NUFFT [81]. For sliding window view-sharing, reconstructions were

performed every 4 spirals using a temporal window of 13 spirals (fully sampled k-space).

Note that this number matches to a frame rate of dynamic images to be reconstructed

in off-resonance correction, which will be described more in Section 3.2.4. The multi-

coil images are then merged into composite image frames m̂0(r, t) based on Equation 3.5

using complex coil sensitivity maps, whose estimation will be discussed later. m̂0(r, t)

is then smoothed by convolution with a 3D Hanning window (r-t) with size 3×3×3 to

reduce noise, and masked by either of 0 or 1 based on a threshold (2% of maximum of

the absolute squared value of the smoothed image) to control uninitialized values in air

spaces that result from a lack of image signal. Consequently, a dynamic field map is

estimated from the smoothed and masked images of m̂0(r, t) based on Equation 3.4.

Complex coil sensitivity maps Ĉi(r) (the ’i’ subscript indicates the i-th coil element)

are estimated from a temporally averaged and spatially low-pass filtered image. The

individual coil image frames mi(r, t) (shown in Figure 3.1) are averaged over time and low-

pass filtered by a 2D Hanning window with size 15×15 pixels (full-width-half-maximum

≈ 8 pixels). Note that this low-pass filter is different from the smoothing applied to

m̂0(r, t) and is comparable to a low-pass filter that takes 12.5% of the central part of

the k-space. These settings were chosen empirically. Then, the resultant image mlow
i (r)

is used to estimate the coil map by Ĉi(r) = mlow
i (r)/

√
Σi| mlow

i (r) |2. A drawback of

this approach is that the spatially smooth portion of the time-averaged field map will be

spuriously included in the coil sensitivity map, and will not be corrected, which will be

extensively discussed in Section 3.4.
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Figure 3.1: Flow-chart illustrating the proposed field map estimation method. The raw
image frames from individual coils are first reconstructed from the raw k-space data using
view-sharing with NUFFT. The coil sensitivity maps are estimated from the multi-coil
image frames after temporal average and spatial low-pass filter. The multi-coil image
frames are then merged into composite image frames using the complex coil maps by
Equation 3.5. The composite images are smoothed and masked and a dynamic field map
is estimated from the phase of the resulting image frames by Equation 3.4.

3.2.2 Simulation

To assess the accuracy of the proposed field map estimation, a simulation was performed

with various spiral readout durations as follows: Cartesian images with two TEs (∆TE

= 1 ms) were acquired from a healthy subject at 5 postures including mouth open at
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varying angles such as mouth fully open and mouth half open, mouth closed, and tongue

tip raised to the front of the palate. For each of the postures, a reference field map was

obtained from the phase difference between the images acquired at two TEs divided by

∆TE shown in Figure 3.2(a). Then, for a given spiral trajectory, spiral k-space data

were synthesized from the magnitude of the Cartesian image from the first TE based on

Equation 3.1. The reference field map was used to simulate off-resonance effects on the

synthesized spiral k-space data. Those data simulations were performed with different

readout durations varying from 0 ms to 6.3 ms with 0.63 ms increment. Finally, we

estimated a field map from the simulated data and attempted to correct for off-resonance

based on the estimated field map.

3.2.3 Application to Existing Speech RT-MRI Data

Experiments were performed on a speech RT-MRI dataset collected at our institution

using a standardized vocal-tract protocol [49]. It currently contains more than twenty

healthy subjects’ data on a wide variety of speech tasks to capture salient, static and

dynamic, articulatory characteristics of speech production as well as morphological as-

pects of the vocal tract [49]. Notice that the degree of blurring artifacts in their images

varies depending on the subjects and speech tasks. We selected twenty subjects (n = 20,

10F/10M; age 19 – 31 years) with several speech tasks from the dataset.

Imaging was performed using a real-time interactive imaging platform (RT-Hawk,

Heart Vista Inc, Los Altos, CA) [50] on a commercial 1.5 T scanner (Signa Excite, GE

Healthcare, Waukesha, WI). The body coil was used for RF transmission, and a custom

eight-channel upper airway coil [40] was used for signal reception. A 13-interleaf spiral
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Figure 3.2: Representative simulation results. (a) A magnitude image and reference field
map acquired from Cartesian dual-TE acquisition. (b) Synthesized spiral images using
the magnitude image and reference field map with different readout durations (1.26, 3.15,
and 5.04 ms). Off-resonance blurring is most apparent near the lips, hard palate, and
tongue boundary and becomes worse with the longer readouts. (c) Field maps (Unit: Hz)
estimated from the phase of the spiral complex images shown in (b). (d) Estimation errors
in the field map (error maps amplified by a factor of 3 for better visualization). (e) Spiral
images after correction for off-resonance based on the estimated field map represented in
(c).

spoiled gradient echo pulse sequence was used. Imaging was performed in the mid-sagittal

plane. Imaging parameters used were: Tread = 2.52 ms, spatial resolution = 2.4×2.4 mm2,
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slice thickness = 6 mm, field of view (FOV) = 200×200 mm2, TR = 6.004 ms, TE = 0.8

ms, receiver bandwidth = ±125 kHz, and flip angle = 15◦. In addition to the automatic

shimming provided by the prescan calibration from the scanner, we performed a manual

adjustment of the center frequency as described by Lingala et al. [40]. Specifically, we

on-the-fly adjusted the center frequency in a way that the air-tongue boundary is sharp

in the mid-sagittal plane while the subject being scanned is in a neutral open-mouth

position.

3.2.4 Off-resonance Correction

We utilize an iterative approach [82, 83] where the off-resonance exponential term is

approximated by a set of bases to improve computational speed and to reconstruct a

deblurred image. We integrate this approach into a recent sparse-SENSE reconstruction

method [40] that utilizes temporal finite difference constraint to improve time resolution

in the time-series of spiral images of speech. Specifically, the off-resonance exponential

term shown in Equation 3.1 is approximated by non-exponential bases at each time frame,

by using histogram principal components (K=40 bins) and singular value decomposition

analysis (L=6) described in Equation 19, 20 from Ref. [83]. Then the approximated

bases are incorporated into the imaging model used in the sparse-SENSE reconstruction

[40]. Raw k-space data and an estimated coil map are then fed into the reconstruction

algorithm as inputs. In turn, it generates a corrected time-series of images. For evaluating

the effectiveness of off-resonance correction, the original time-series of images were also

reconstructed using the sparse-SENSE reconstruction without the modification. All the

images were reconstructed with a temporal resolution of 24 ms/frame (41.66 frames/s,
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4 spiral interleaves/frame, and with reduction factor R = 3.25). For implementation, a

nonlinear conjugate gradient (CG) algorithm with NUFFT was coded using MATLAB

(The MathWorks, Inc., Natick, MA) using 8 cores on a 16-core Intel(R) Xeon(R) CPU

E5-2698 v3; 2.30GHz, with 40 MB of L3 cache. The computation time was ≈60 s to

estimate the coil sensitivity maps and the field maps for 400 time frames from raw k-

space data (≈10 s long dynamic images) and 30 and 180 mins to reconstruct images

without and with off-resonance correction, respectively.

3.2.5 Sharpness Score

We introduce an image sharpness measure to investigate the impact of the proposed

method on articulator air-tissue boundaries. We quantitatively compare the metric scores

between the images with and without correction. We hypothesize that the proposed

method would improve the image depiction at air-tissue articulator boundaries in two

ways – the blurred-edge width be narrowed and/or the contrast at the edge be enhanced.

We define an edge-slope metric for sharpness as follows:

Using a semi-automatic boundary extraction method [62], we extract the superior-

posterior (upper) boundary and the inferior-anterior (lower) boundary as shown in Figure

3.3(a). Then, intensity profiles (grid lines) perpendicular to the upper and lower boundary

(Figure 3.3(b)) of the patent airway are chosen and extracted from a reconstructed image

series with a normalized intensity between 0 and 1, and linearly interpolated to generate

ten times greater spatial resolution. Finally, the sharpness score (S) is calculated (Figure

3.3(c)) as follows;

S = αCNR/d (3.6)
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Figure 3.3: Illustration of articulator boundary identification and sharpness score evalu-
ation. (a) Airway boundary segmentation with the upper (superior-posterior) boundary
(green, color online) and the lower (inferior-anterior) boundary (red, color online). (b)
Gridlines of the upper (yellow) and lower boundaries (cyan) at several locations along
the airway are chosen to obtain intensity profiles. (c) Intensity profile of the gridline is
plotted where a sharpness metric is measured as a slope between the points of 80% and
20% of the maximum intensity values (CNR/d).

where α is a scaling factor associated with the intensity normalization, d = |p80 − p20|,

and CNR = (I(p80)− I(p20))/σ; p80 and p20 are points (nearby the extracted boundary

pixel location) at 80% and 20% of the maximum intensity value in grid lines, respectively;

I(p) is an intensity value at point p; σ is the standard deviation of an ROI outside the

object where there is no signal. The sharpness score was calculated over valid time frames

in which a distance between upper and lower boundary pixel locations is greater than

5 pixels. The sharpness score was compared using paired t-tests for statistical analysis,

assuming that the samples collected along the grid lines are uncorrelated. A P value of

< 0.001 was used to determine statistical significance.

49



3.2.6 Practical Utility of the Off-resonance Correction

Finally, to determine the practical utility of the off-resonance correction on an end-use

case, we measure vocal tract distance, which is the desired metric that is often used in

the speech RT-MRI analysis to obtain constriction degree [84, 85, 86] or vocal tract area

function [87, 88, 89]. The distance metric is defined as the physical distance between

the upper and lower boundaries shown in Figure 3.3(a). The boundaries are extracted

using the aforementioned method [62] with the same initialization in both sets of images,

without and with off-resonance correction. Distances were measured from both images.

3.3 Results

3.3.1 Simulation

Figure 3.2 shows a representative example (static posture with the mouth fully opened)

of simulation results with different spiral readout durations. Off-resonance blurring is

seen most clearly at the lips, hard palate, and tongue boundary and becomes more severe

with the longer readouts as shown in Figure 3.2(b). As the duration of the readout is

longer, the estimated field maps (Figure 3.2(c)) tend to be blurred and amplified in some

areas such as the tongue surface and lips surface. Accordingly, high spatial frequency

error can be seen in those areas (Figure 3.2(d)). The estimated field map fails to correct

for the simulated off-resonance for the longer readout duration (> 5 ms) and the blurred

anatomical structures remain unresolved.
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3.3.2 Existing Speech RT-MRI Data

Figure 3.4 contains representative mid-sagittal image frames and the corresponding field

map estimated for four subjects, which, on visual assessment, presented the most signif-

icant blurring artifacts among the twenty subjects. Note that subject numbers of 4, 6,

9, and 13 shown in Figure 3.4 correspond to those shown in Figure 3.5. For every im-

age reconstructed with off-resonance correction, the soft palate, hard palate, and medial

surface of the tongue become more intense and sharper compared to the blurred images

(see yellow arrows). For all the four subjects, posterior to the alveolar ridge, the hard

palate appears sharper up to the soft palate in the deblurred images. Correspondingly,

in the estimated field maps, the regions that have shown blurred anatomical structures

represent high off-resonance frequency values of > 200 Hz.

Figure 3.6 shows the profiles that are extracted at the solid lines in the sample image

frames from the three subjects. For Subject 9, the intensity profile from the deblurred

image provides a clear delineation of the soft palate movements. For Subjects 6 and 13,

the intensity in the hard palate in the deblurred image sequence is more constant along

time than the intensity value in the blurred image sequence. This result agrees with the

fact that the hard palate, which is a bony structure covered by a thin layer of tissue, does

not change its shape during speech production [63]. Furthermore, the intensity profile

from the deblurred image exhibits a sharper boundary between the tongue and air.

Figure 3.7 illustrates one more example of correction result from Subject 4, especially

showing the estimated field map over time. As depicted in the off-resonance frequency

value vs. time profile, the proposed method enables the capturing of the dynamic change

51



Figure 3.4: Representative mid-sagittal image frames of vocal tracts for four subjects,
which, on visual assessment, presented the most significant blurring artifacts and were
selected among the twenty subjects. The first and the second columns show images
reconstructed with no correction and with correction, respectively. The last column
shows the estimated field maps corresponding to those image time frames. Yellow arrows
point out the regions that are most affected by off-resonance blurring, and corrected by
the proposed method. (The video can be found in Supporting Information Video S1 at
Wiley Online.)
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Figure 3.5: Sharpness without and with correction at different articulator boundary lo-
cations. Sharpness scores are measured at the upper boundaries (upper lip, hard palate,
and soft palate) and lower boundaries (lower lip, anterior-, medial-, and posterior-tongue)
along time. The mean and the standard deviation of the sharpness scores over time are
shown here where the nineteen subjects are presented in descending order of average un-
corrected sharpness score. A paired t-test was performed at each articulator boundary
for each individual subject to test for the significance of the sharpness difference. The
sharpness scores marked with an asterisk (*) were not found to be statistically different.
All remaining scores were found to have significant mean differences (P < 0.001). The
summary table in the bottom left panel summarizes the significance of the mean sharp-
ness score difference between no correction and correction in three different categories:
(white) no correction < correction, (gray) no significant difference between no correction
and correction, and (black) no correction > correction.
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Figure 3.6: Illustration of improved sharpness of articulator boundaries. The first column
shows an example frame for three different subjects and the second column shows intensity
vs. time profiles marked by the solid lines in the first column images where each of the
solid lines corresponds to one of the gridlines shown in Figure 3.3. For all subjects, the
intensity time profiles from image sequences reconstructed with correction exhibit sharper
boundary between tongue and air than that from image sequences with no correction.
For Subject 9, the intensity profile from the correction provides a clear delineation of
the soft palate movements. For Subjects 6 and 13, the correction method provides more
constant intensity in the hard palate along time than image sequence with no correction.

in off-resonance at the tissue boundaries. Whereas the estimated field map shows high

off-resonance frequency values at the hard palate and tongue boundaries over time, it

shows a low frequency value at those boundaries during the event of the tongue touching

the hard palate because there is no air between the tongue and hard palate (see white

arrows).

54



Figure 3.7: Illustration of the estimated field map over time. The first column shows
example frames of reconstructed images and field map corresponding to the white dot
box shown in Figure 3.4. The second column shows intensity vs. time profiles marked by
the dot lines in the first column images. In the estimated field map, high off-resonance
frequency values are shown at the hard palate (400 Hz) and tongue (200 Hz) boundaries
over time except when the tongue contacts the hard palate. This is because when the
tongue touches the hard palate, there is neither air and susceptibility difference between
them. (The video can be found in Supporting Information Video S2 at Wiley Online.)

3.3.3 Sharpness Score

Figure 3.5 illustrates the sharpness scores and summary table. Sharpness scores without

and with correction were measured at upper airway boundaries (upper lip, hard palate,

and soft palate) and lower boundaries (lower lip, anterior-, medial-, and posterior-tongue)

described in Figure 3.3 and averaged over time. The boundary extraction method used

failed to segment the image from one subject due to low image quality, which was excluded

in this sharpness analysis. Overall, the sharpness scores show a statistically significant

difference in mean values (correction > no correction, P < 0.001) for the subjects tested
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at a majority of the boundaries. The lower lip shows negligible sharpness improvement

in ten subjects and worse sharpness scores in three subjects when the correction was

applied. The hard palate exhibits worse sharpness score in three subjects after correction

compared to no correction, whereas fifteen subjects show improvement in sharpness score

after correction.

3.3.4 Practical Utility of the Off-resonance Correction

Figure 3.8 illustrates an airway boundary segmentation result based on which the corre-

sponding vocal tract distance is measured from images without and with the correction

from Subject 6 shown in Figure 3.4. The uncorrected image exhibits noticeable errors in

the segmentation due to off-resonance-induced blurring around the hard palate and soft

palate, as indicated with arrows in Figure 3.8(a) and erroneous results on the correspond-

ing vocal tract distance in those areas as shown in Figure 3.8(b).

3.4 Discussion

We have developed a dynamic field map estimation method for spiral RT-MRI where

a dynamic field map is directly estimated from the phase of single-TE dynamic images

after a coil phase compensation. We estimated complex coil sensitivities from single-echo

data itself – temporally averaged and spatially low-pass filtered image. The proposed

method could provide partial off-resonance correction for previously collected spiral RT-

MRI datasets because it does not require the additional acquisition of the coil sensitivity
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Figure 3.8: Representative illustration of airway boundary segmentation results on images
without and with correction from Subject 6. (a) Airway boundary segmentation with the
same initialization was performed on images without and with correction, to extract the
upper and lower boundaries (green and red contours). As indicated by red arrows, the
un-corrected image shows segmentation errors at the hard palate and soft palate due to
off-resonance-induced blurring. (b) Vocal tract distance, defined as the distance between
the upper and lower boundaries, is plotted. Discernible errors are observed around the
hard palate and soft palate in the un-corrected data.

map. The proposed method is simple, computationally less demanding and when com-

bined with the iterative image reconstruction, improves sharpness of the vocal tract artic-

ulator boundaries including the upper lip, hard palate, soft palate, and tongue boundaries

(except for the lower lip) in a majority of the nineteen subjects tested. This has the po-

tential to improve the downstream analysis of the dynamics of articulators during speech.

The signal equation in Equation 3.3 ignores phase accrual during the spiral readout.

This assumption is not strictly true, and becomes less valid for long spiral readout dura-

tion and/or large resonant frequency offsets. In most cases, the PSF in Equation 3.2 is
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no longer a sharp impulse nor pure real at the origin, which distorts the complex images

used for the field map estimation. This PSF distortion is the basis of auto-focus methods.

As readout duration is increased, phase and therefore the estimated field map tends to be

erroneously blurred and amplified as can be seen in the simulation result (Figure 3.2(c)).

These are practical limitations to the proposed method. Our findings suggest that for

speech RT-MRI at 1.5 T, the proposed method will fail to work reliably for readout du-

rations > 5 ms. An area of future work is investigating and predicting phase error caused

by the non-ideal impulse with longer spiral readout.

An important issue in the field map estimation relates to the accuracy of the coil

sensitivity maps. We low-pass-filtered the time-averaged image to estimate the coil map.

This stems from the assumption that the coil maps contain only low spatial-frequency

information and are stationary. Although the deblurred result demonstrated improvement

in the sharpness at the boundaries compared to the original uncorrected images, the

correction based on this coil map estimation depends on whether the anatomical structure

and its field map are passed by its filtering process and show up in the sensitivity map

or not. It corrects field that is not low-pass filtered and the kernel width of the low pass

filter needs to be chosen as large as possible not to capture abruptly varying phase due

to off-resonance at articulator boundaries while the size needs to be kept at some point

to realize the spatially smoothly varying coil phase. However, it would be hard for one

to optimize the choice of the size without knowing the object and the coil configuration

in detail. In addition, as we described earlier, a precise shimming is required because the

zero- and first-order field inhomogeneity is highly likely to be included in the estimated coil

map and could be a main source of the error in the estimated field map. An alternative
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solution to these limitations of the coil sensitivity map estimation would be to use an

additional two-echo, static scan to estimate coil sensitivity maps that are free of phase

due to off-resonance and B0 field inhomogeneity [90]. This solution is a work in progress

in terms of comprehensive data collection and validation.

Another consideration for the field map estimation is to maintain an acceptable SNR

level for the complex image. This is because error in phase is closely related to the

SNR of the magnitude image (i.e., σθ = 1/SNR) [91], as is the field map error (i.e.,

σf = σθ/(2π × TE) = 1/(2π × TE × SNR)). For example, if SNR = 10 and TE =

0.8 ms, the field map standard deviation is σf = 19.9 Hz. At readout duration of 2.5

and 5.0 ms, this error causes phase accrual error during spiral readout at the edge of the

k-space of 18◦ and 36◦, respectively. Therefore, it is important to have sufficient SNR

with respect to the given TE and readout duration so that the accuracy of the estimation

is less affected by noise. We chose a 3 × 3 × 3 Hanning window (in r-t) to maintain

an adequate SNR > 60 in the ROI so that σf < 3.3 Hz theoretically. Note that SNR is

approximately increased by 1/
√

Σ(wi)2 where wi is the weight of the Hanning window.

However, the use of a large window could also result in smoothing out high frequency

features.

Field map was estimated from images reconstructed using view-sharing with a tem-

poral window of 78 ms (fully sampled k-space, 13 spirals). It is possible that articulator

movement within the temporal window (<< 78 ms) could result in temporal blurring of

the field map or residual spiral artifact. Temporal blurring could give rise to errors in the

artifact-corrected image as there is a discrepancy in the temporal windows between the

estimated field maps and the corrected images. For example, if the tongue tip moves so
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rapidly that temporal blurring around the tongue tip appears in the field map but not in

the image to be reconstructed, there could be unresolved blurring by off-resonance around

the tongue tip. Residual spiral artifact that affects the phase of the complex image also

could lead to an erroneous field map. This is one of the limitations of the view-sharing

scheme used in this work for field map estimation.

We excluded the noise-only area in the estimated field map using a mask. The mask

was calculated from the distorted complex images where signal loss often manifests at

some boundaries such as the hard palate and soft palate. Therefore, locations containing

a high frequency feature could erroneously be masked out as zero. A more sophisticated

method for generating field map masks should be investigated to mitigate this type of

error.

We measured the sharpness score in several specific air-tissue boundary locations

along the vocal tract to quantitatively evaluate the effectiveness of the proposed method.

However, no metric is perfect, and the sharpness score was found to be sensitive to several

factors. The boundary sharpness score is highly dependent on the location pre-identified

as the true boundary. In the presence of signal loss due to off-resonance effect, the semi-

automatic boundary segmentation method may fail. Specifically, the boundary location

can be incorrectly identified. We often found this case in the original uncorrected image.

For example, the boundary at the hard palate and soft palate is ambiguous and segmented

erroneously as shown in Figure 3.8(a). In this case, it is hard to fairly compare the scores

between the uncorrected and corrected images. To address this problem, in this work,

we used a boundary location extracted from the corrected image to measure the score in

both the uncorrected and corrected images.
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Ultimately, it is important to evaluate the impact of the off-resonance correction

on RT-MRI analysis in speech science. For example, in Figure 3.8, we have conducted

segmentation of the vocal tract and shown observable improvement in the segmentation

and measurement of the vocal tract distance after correction is applied as a use case

example in RT-MRI analysis. Nevertheless, since in many cases the improvement would

be not so much noticeable by visual inspection as shown in Figure 3.8, a better way to

evaluate improvement in the segmentation result would be to compare the segmentation

results with manual segmentation results. However, because of the very large number

of frames in the RT-MRI datasets, performing a manual segmentation is not practical.

Hence, in ongoing work, we are investigating a methodology to evaluate the segmentation

results without manual reference.

3.5 Conclusion

We have developed and demonstrated a simple method for estimating a dynamic field

map from spiral RT-MRI data of speech and incorporating the correction of the off-

resonance into the constrained image reconstruction. We use the base image phase from

single-echo data, after some initial processing, to estimate the field map directly by assign-

ing the smoothly varying time-averaged phase to be used as coil phase and the residual

high-frequency phase variations to the dynamic field map. We have demonstrated im-

provements in the depiction of the vocal tract articulators at several air-tissue boundaries

both visually and through a sharpness metric, and the practical utility of this method on

the boundary segmentation and distance metric as a use case example.
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Chapter 4

Data-Driven Deblurring for 2D RT-MRI of Speech

Production

Spiral data sampling is used in a variety of MRI applications due to its favorable proper-

ties. It requires only a few TRs to achieve Nyquist sampling of k-space, provides excellent

velocity PSF [92, 57], and reduces motion artifacts due to its natural oversampling at the

k-space center [93, 94]. Spiral sampling is well-suited for advanced reconstruction algo-

rithms such as compressed sensing when combined with strategies such as under-sampling

and golden angle scheme [58, 40]. Spiral imaging is also widely used for RT-MRI where

the capability of capturing rapid motion is crucial such as in cardiac imaging and speech

production imaging [40, 20, 95, 96, 97, 21, 98].

One major limitation of spiral sampling is image blurring due to off-resonance [56].

Off-resonance causes the accumulation of phase error along the readout in the k-space

domain, resulting in blurring and/or signal loss in the image domain. To date, this

artifact remains the predominant challenge for several RT-MRI applications: In speech

RT-MRI it degrades image quality primarily at the air-tissue boundaries which include

the vocal tract articulators of interest [77, 1, 35]. In cardiac RT-MRI, it degrades image
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quality in the lateral wall and adjacent to draining veins, and around implanted metal

(e.g., valve clips, etc) [97, 99]. In interventional RT-MRI, it may degrade image quality

around the tools used to perform intervention (depending on the precise composition of

the tools) [100]. These artifacts are most pronounced with long readout durations which

is precisely when spiral provides the greatest efficiency. In speech production RT-MRI,

the convention is to use extremely short readouts (≤ 2.5 ms at 1.5 T) [35].

Many spiral off-resonance correction methods have been proposed in the literature.

Most existing methods require prior information about the spatial distribution of the off-

resonance, also called the field map, ∆f (x, y) [101, 102, 70, 71, 72, 78, 103]. For RT-MRI,

this field map needs to be updated frequently throughout the acquisition window because

of local off-resonance changes as motion occurs. Several research groups have proposed

to estimate the dynamic field maps either from interleaved two-TE acquisition using the

conventional phase difference method [77, 72, 104] or from single-TE acquisition after coil

phase compensation [1]. Common limitations of these approaches are field map estimation

errors due to off-resonance induced image distortion and/or reduced scan efficiency which

is undesirable for RT-MRI.

Given a field map, the conventional approach to deblur the image is conjugate phase

reconstruction (CPR) [101, 102] or one of its several variants [70, 71, 105]. One such

variant is frequency-segmentation which reconstructs basis images at demodulation fre-

quencies and applies spatially-varying masks to the basis images to form a desired sharp

image. While it is an efficient approximation to assume off-resonance to be spatially

varying smoothly, the assumptions are typically violated at air-tissue interfaces. Alterna-

tively, iterative approaches [82, 83] are known to be effective at resolving abruptly varying
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off-resonance at the cost of increased computation complexity. Note that neither iterative

nor non-iterative approaches are able to overcome the performance dependence on the

quality of the estimated field maps.

Recently, convolutional neural networks (CNN) have shown promise in solving this

deblurring task. Zeng et al [106] have proposed a 3D residual CNN architecture to correct

off-resonance artifacts from long-readout 3D cone scans. Specifically, off-resonance was

framed as a spatially varying deconvolution problem. Synthetic data was generated by

simulating zeroth-order global off-resonance at a certain range of demodulation frequency.

The trained network was applied successfully to long-readout pediatric body MRA scans.

Is there an underlying principle that explains why and how CNNs work well in this

deblurring task? Perhaps it is the combinatorial nature of nonlinearities such as the

rectified linear unit (ReLU) in CNN models. Traditional methods require field maps

[101, 102, 70, 71, 72, 78, 103] or focus metrics [74, 73, 107] to estimate the spatially-

varying mask. In contrast, CNNs utilize prior information about characteristics of off-

resonance in the synthesized training data, while ReLU nonlinearities provide the mask

to the convolutional filters, which enables spatially-varying convolution [108]. Once the

network is trained, the feedforward operation of CNNs generates a desired sharp image

given a blurry image input in an end-to-end manner, without explicit knowledge of field

maps.

In this chapter, we attempt to establish a connection between the CNN architecture

and traditional deblurring methods. We utilize a compact 3-layer residual CNN archi-

tecture to learn the mapping between distorted and distortion-free images for 2D spiral

RT-MRI of human speech production. We consider this application [35, 55, 34] because
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off-resonance appears as spatially (and temporally) abruptly varying blur, degrades im-

age quality at the vocal tract articulators of interest, and therefore is a fundamental

limitation to address. We leverage field maps estimated from a previously proposed dy-

namic off-resonance correction method that is presented in Chapter 3 [1]. Specifically, we

synthesize spatially varying off-resonance by using the estimated field maps with various

augmentation strategies. We test the impact of the augmentation strategies on deblurring

performance and generalization in terms of several image quality metrics. We evaluate the

proposed method using synthesized and real test data sets and compare its performance

quantitatively using metrics and qualitatively via visual inspection against conventional

deblurring methods.

4.1 Theory

4.1.1 Image Distortion Due to Off-resonance

In spiral MRI, off-resonance results in a spatially varying blur that can be characterized

by a PSF [74]. Off-resonance causes the local phase accumulation in the k-space signal. In

the spatial domain, this can be viewed as an object being convolved with spatially varying

filter kernel (PSF) that is determined by the local off-resonance and trajectory-specific

parameters such as a readout time map. Here, we briefly introduce this representation in

the discrete domain, which we use throughout this chapter.

In the presence of off-resonance effects, the signal equation after discretization ap-

proximation [82, 83] can be expressed as:
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yi ≈
Np∑
j=1

xje
−j2πfjtie−j2π(ki·rj) (4.1)

where ki and rj represent k-space and spatial coordinates for i = 1, . . . , Nd and j =

1, . . . , Np, respectively; yi is the complex k-space measurement at time ti ∈ [TE , TE+Tread]

defining t1 = TE as the start of the readout; Tread is the readout duration and TE is

echo time. xj is the transverse magnetization of an object at location rj . fj is off-

resonance frequency present at location rj . Here e−j2πfjti is the local phase error that

is induced by off-resonance present at location rj and is multiplied to the k-space signal

at ki. Note that Equation [1] can be expressed in a matrix vector form as y = Afx

where y = (y1, . . . , yNd
) ∈ CNd , x = (x1, . . . , xNp) ∈ CNp , f = (f1, . . . , fNp) ∈ RNp ,

and Af ∈ CNd×Np with [Af ]ij = e−j2πfjtie−j2π(kirj). In the absence of off-resonance

effects (i.e., f = 0), Af is reduced to the conventional (non-uniform) Fourier basis matrix

A0 with [A0]i,j = e−j2π(kirj). Without considering the off-resonance effect, we could

reconstruct a blurry image x̃ ∈ CNp by applying A0
TW to y as follows:

x̃ = A0
TWy = A0

TWAfx = Hf (4.2)

where T denotes the conjugate transpose of a matrix. W ∈ RNd×Nd is a diagonal matrix

defining [W]i,i = wi where wi denotes a density compensation weight at ki. Here, Hf ∈

CNp×Np is a blurring operator matrix defining [Hf ]j,k = ΣNd
i=1wie

−j2πfkti)ej2πki(rj−rk).

The k-th column of Hf corresponds to the discretized PSF for a point-source located at

rk. The effect of off-resonance can be seen as a spatially varying convolution since the PSF

is shift-variant due to e−j2πfkti with non-zero fk. Whether the PSF is sharp or blurred is
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dependent on the off-resonance frequency (fk) given the trajectory-specific parameters –

trajectory ki and time map ti for i = 1, . . . , Nd. Likewise, the readout time (Tread = tNd
)

determines the shape of the PSF given fk. For example, the larger fk and/or the longer

Tread are, the more phase error of e−j2πfkti is accrued, therefore increasing the spread of

the PSF.

4.1.2 Approximation of Spatially Varying Blur

The blurring operation is described in Equation 4.2 as a matrix vector multiplication. An

approximate analytical solution to the deblurring problem is therefore:

x̂ = (Hf
THf )

+Hf
Tx̃ (4.3)

where [Hf
THf ]j,k ≈ ΣNd

i=1wie
j2π(fj−fk)tiej2πki(rj−rk) and + denotes the pseudo-inverse.

Noll et al. have shown that Hf
THf can be approximated well by an identity matrix

under the condition that the phase term due to off-resonance is sufficiently small (i.e.,

2π|fj − fk|ti � π/2) [105]. This is the underlying principle behind CPR and its variants.

This condition is met whenever the off-resonance f(x, y) due to B0 inhomogeneity and

susceptibility exhibits smooth spatial variation [5]. Under this assumption, the deblurred

image can be obtained by projecting the blurred image onto the column space of Hf
T:

x̂ ≈ Hf
Tx̃ (4.4)

Note that CPR performs these projections in the frequency domain while other ap-

proaches [103, 109] including Equation [4] perform them in the spatial domain.
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Next, we approximate e−j2πfkti of Equation 4.1 by e−j2πfkti ≈ ΣL
l=1bilclk. This ap-

proximation is supported by literature [83] for general choices of bil and clk. For instance,

time-segmentation approximates bil = bl(ti) and clk = e−j2πfktl for a predetermined set of

time points tl while frequency-segmentation approximates bil = e−j2πflti and clk = cl(fk)

for a predetermined set of frequencies fl. Substituting such an approximation into Hf

yields [Hf ]j,k ≈ ΣL
l=1[ΣNd

i=1bilwie
j2πki(rj−rk)clk]. In matrix form, this can be expressed as:

Hf ≈ ΣL
l=1A0

TWBlA0Cl = ΣL
l=1HlCl (4.5)

where Bl ∈ CNd×Nd and C l ∈ CNp×Np are diagonal matrices with [Bl]i,i = bil and

[Cl]k,k = clk, respectively. Equation 4.5 can be viewed as a decomposition of the shift-

variant blurring operator Hf as a sum of L (L� Np; Np = the number of pixels) convolu-

tions Hl (i.e., approximately shift-invariant blurring operators) with prior weightings Cl.

In frequency-segmentation [105], Hl can be given by PSFs at a set of L equally spaced

off-resonance frequencies and Cl is a spatially varying mask that has a diagonal element

of 1 if a corresponding pixel needs to be assigned to the l-th off-resonance frequency or

0 otherwise. Other types of decomposition are possible for the spatially varying blur

operator Hf in both MR and non-MR literature [83, 110, 111].

Substituting Equation 4.5 into Equation 4.1 yields

x̂ ≈ ΣL
l=1Cl

THl
Tx̃ = SCTHTx̃ (4.6)
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where S ∈ RNp×LNp = [INp · · · INp ], C=
[C1 ··· 0

...
. . .

...
0 ··· CL

]
and H = [H1 · · ·HL]. INp ∈ RNp×Np

is an identity matrix. Equation 4.6 can be interpreted as a blurred image x̃ being con-

volved by H with spatially varying weighting (C), followed by summation (S) along the

dimension corresponding to L basis images.

4.1.3 Spatially Varying Deblurring using CNN

Interestingly, the solution described in Equation 4.6 resembles the feedforward operation

of a simple two-layer CNN. Let us consider a two-layer CNN:

x̂ = DΛ(x̃)ETx̃ (4.7)

where D ∈ CNp×LNp = [D1 · · ·DL], E ∈ CNp×LNp = [E1 · · ·EL], and Λ(x̃) ∈ RLNp×LNp

is a diagonal matrix with 0 and 1 elements that are determined by the nonlinear ReLU

activation output (i.e., [Λ(x̃)]i,i = 1 if [ETx̃]i > 0, otherwise 0). El and Dl refer to

convolution matrices associated with the l -th channel output and input at the first and

second layers, respectively. With 1 × 1 convolutions in the second layer, D reduces to

D = [d1INp ...dLINp ] with channel-wise trainable weights dl for l = 1, . . . , L.

D in the second layer and E of the first layer of the CNN perform frequency sum-

mation S and input filtering H in Equation 4.6, respectively. The convolution matrices

D and E are learned from the training data, whereas the convolution matrix H and

spatially-varying mask C are determined by field maps f . More importantly, the zero-

one switching behavior of the element-wise ReLU induced nonlinear operator Λ can derive

the spatially-varying weight adaptively from the different filtered inputs, and analogously
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achieve the spatially varying weighting of the matrix C in Equation 4.6. Rather than re-

lying on measuring exam-specific field maps, the CNN would learn from training samples

to recognize and undo characteristic effects of off-resonance.

While the implementation of Equation 4.7 would be a direct replicate of current

state-of-the-art off-resonance deblurring methods, we take this starting point and build

on the following recent advances in machine learning to arrive at the proposed network

architecture shown in Figure 4.1. First, we increase the CNN architecture from two to

three layers by replacing the single convolutional layer E with two convolutional layers

with the ReLU in between. For the single convolutional layer, there exist maximum

2L distinct combinations of different convolution kernels. This is because there are L

convolutional filter outputs for each spatial location and summing up the L coefficients

at the second layer yields 2L possible number of combinations due to the one or zero

selection of the element-wise ReLU. From one to two cascaded layers, the number of

configurations is increased from 2L to (2L1 − 1)2L2 as also similarly derived for encoder-

decoder CNNs by Ye et al [108]. Second, we consider residual learning by adding a skip

connection between input and output. Residual learning is widely used for medical image

restoration [112, 113, 114, 115] and we experimentally found that it improves deblurring

performance (comparison not shown).
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Figure 4.1: Proposed network architecture. The input is distorted complex images, and
the output is distortion-free complex images, each consisting of two channels (real and
imaginary). The first convolutional layer takes the input distorted image of size 84 ×
84 × 2 and applies n1 2D convolutions with filter size f1 × f1 × 2 (the last dimension
2 equaling the depth of the input), followed by the ReLU operation. The second layer
takes the output of the first layer of size 84 × 84 × n1 and applies n2 2D convolutions
with filter size f2 × f2 × n1, followed by the ReLU operation. The third layer takes the
output of the second layer of size 84 × 84 × n2 and applies 2 2D convolutions with filter
size 1 × 1 × n2. The output of the third layer is added to the input images via the skip
connection to generate the final distortion-corrected image of size 84 × 84 × 2.

4.2 Methods

4.2.1 Network Implementation Details

The convolutional neural network (Figure 4.1) is comprised of 3 convolutional layers.

The network architecture is practically implemented by real-valued operations. Although

both input and output of the networks consist of two channels (real and imaginary com-

ponents), we do not explicitly separate the real and imaginary image processing into

separate streams and therefore information between the real and imaginary images is

shared between the intermediate layers.

The filter widths are set to n1 = 64, n2 = 32, n3 = 2. We choose f1 = 9, f2 = 5, and

f3 = 1. We experimentally determined convolutional filter sizes of f1 and f2 that give the
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best deblurring performance in terms of image quality metric described in the following

section.

We train the model in a combination of Lp loss and Lgdl gradient difference loss [116]

between the prediction x̂ and ground truth x:

L(x̂,x) = Lp + λLgdl (4.8)

where Lp(x̂,x) = ‖x̂−x‖pp and Lgdl(x̂,x) = ||∇xx̂|− |∇xx||+ ||∇yx̂|− |∇yx||. We choose

to use p=1 (i.e., L1 loss) instead of p = 2 (L2 loss) because L1 loss is known to provide a

sharp image prediction. We also add Lgdl loss because directly penalizing the differences

of image gradient also enhances the sharpness of the image prediction [116]. We set λ =

1. We report the experimental results on the performance of choosing the different values

of λ and choosing between L1 and L2.

For training the model, we use ADAM optimizer [117] with a learning rate of 0.001,

a mini-batch size of 64, and 200 epochs. We implement the network with Keras using

Tensorflow backend. The network is trained using a 16-core Intel Xeon E5-2698 v3 CPU

and a graphical processing unit of Nvidia Tesla K80.

4.2.2 Generation of Training Data

We acquired data from 33 subjects on a 1.5T scanner (Signa Excite, GE Healthcare,

Waukesha, WI) at our institution using a standard vocal-tract protocol [40]. The imag-

ing protocol was approved by our Institutional Review Board. A 13-interleaf spiral-out

spoiled gradient echo pulse sequence was used with the body coil for RF transmission and
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a custom 8-channel upper airway coil for signal reception. Imaging was performed in the

mid-sagittal plane while subjects being scanned followed a wide variety of speech tasks

to capture various articulatory postures. Imaging parameters used included: TR = 6.004

ms, TE = 0.8 ms, Tread = 2.52 ms, spatial resolution = 2.4 × 2.4 mm2, slice thickness =

6 mm, FOV = 200 × 200 mm2, receiver bandwidth = ± 125 kHz, and flip angle = 15◦.

Although this protocol uses a short spiral readout (2.52 ms), we found the off-

resonance in this data corpus to be diverse and necessary to be corrected to obtain

high-quality images. We employed the dynamic off-resonance correction (DORC) method

[1] described in Chapter 3 to estimate dynamic field maps and to reconstruct dynamic

images in conjunction with off-resonance correction. The resultant dynamic images (and

field maps) were of size 84 × 84 × 400 (time) for each subject. We regarded these images

(x) and estimated field maps (f ) as ground truth. We split 33 subjects into 23, 5, and

5 subjects for the training, validation, and test sets, respectively. The validation set was

used for choosing network parameters and performing validation experiments. The test

set was used for evaluating the performance of the proposed method.

Blurred images x̃ were simulated from the ground truth x with augmented field maps

f ′ by employing Equation 4.2 (x̃ = A0
TWAf ′x) frame by frame as illustrated in Figure

4.2A. Augmentation included a scale α and an offset β to the field map f such that

f ′ = αf +β and synthesizing blurred images was based on the augmented field map. Note

that α 6= 0 would inherit original spatially varying off-resonance blur from the field maps

f up to scale, whereas α = 0 leads to spatially uniform blur analogous to the work of

Zeng et al [106]. We added the offset β to simulate the zeroth-order frequency offsets

in image space. Such offsets are a typical result of imperfect shimming. We considered
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Figure 4.2: Generation of training data. (A) The ground truth image x and field map f are
obtained from short readout (2.52 ms) data with off-resonance estimation and correction.
Blurred images x̃ are synthesized via simulating Equation 4.2 using the ground truth
image x and field map f ′ augmented by α and β and different spiral readout durations
(Tread). (B) The field maps are augmented by f ′ = αf + β with scale α ranging from 0
to 1 and constant offset β from -300 to 300 Hz. We also consider four different spiral
readout durations (Tread = 2.52, 4.02, 5.32, and 7.94 ms). Those correspond to 13-, 8-, 6-,
4-interleaf spiral-out trajectories, respectively, with the same field of view and in-plane
resolution.
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Figure 4.3: Time maps for four different spiral trajectories. Left to right: 13-, 8-, 6-,
4-interleaf spiral-out samplings, with readout times (Tread) of 2.52, 4.02, 5.32, and 7.94
ms, respectively, with the same field of view and in-plane resolution. Only one spiral
interleave out of fully sampled interleaves is shown here. Here, TE = 0.8 ms.

four different spiral trajectories as shown in Figure 4.3. Those correspond to 13-, 8-,

6-, 4-interleaf spiral-out samplings, with readout times (Tread) of 2.52, 4.02, 5.32, and

7.94 ms, respectively, with the same field of view and in-plane resolution. Figure 4.2B

contains examples of synthetic images. During the implementation of Af in Equation

4.2, we approximated e−j2πfkti as e−j2πfkti = ΣL
l=1bilclk as described earlier and executed

Af with L = 6 times NUFFT [81] calls.

4.2.3 Validation Experiments

Here, we evaluated the impact of various data augmentation strategies (for f) on deblur-

ring performance and generalization. Specifically, we trained the same network architec-

ture using reference data from 23 subjects synthesized with different combinations of the

scale factor α, frequency offset β, readout duration Tread (spiral trajectories), and the

training data size as summarized in Table 4.1. We then measured the effectiveness of the

different configurations by using the validation set (5 subjects) listed in Table 4.1.
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EXP I–A. Off-resonance range: The off-resonance frequency range is typically un-

known. We examined the impact of off-resonance frequency range (fmax denoting the

maximum frequency value) in training data on deblurring performance. We trained

the network on training data simulated with the 4 different values of fmax using α ∈

{1/6, 1/3, 2/3, 1}, resulting in four trained networks, and compared their model perfor-

mance on validation data with varying fmax as listed in Table 4.1. We considered β = 0

and Tread = 2.52 ms for both training and validation sets. Note that the frequency range

from -625 to 625 Hz (fmax = 625 Hz) for the original field maps (i.e., when α = 1 and β

= 0).

EXP I–B. Frequency offset and training set size: We added a frequency offset β

when synthesizing the training data. This is equivalent to simulating a constant frequency

offset over image space. We considered two training configurations; one with β = 0 and

one with β ∈ {−300,−200, . . . , 300}. The former had N (= 9200) samples, while the

latter had different sample sizes from N to 7N. The range of β from -300 to 300 Hz is

deliberately chosen broadly to cover the maximum center frequency error that could be

expected.

EXP II. Spatially varying versus spatially uniform blur: Recent work by Zeng et

al [106] generated training data by simulating off-resonance at evenly spaced frequencies

between ± 500 Hz. This approach, if generalized to spatially varying blur, could benefit

situations where the field map is not available for synthesizing spatially varying blur. To

test the generalizability of this approach and more importantly the necessity of the field

maps for the spatially variant blur, we generated synthetic data of spatially invariant
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blur by setting α = 0 and β ∈ {−600,−550, ..., 600} and of spatially variant blur by

using α = 1 and β ∈ {−300,−200, . . . , 300}, the same setting as in EXP I–B. We then

tested each trained network to another configuration setting by considering two validation

configurations of spatially variant and invariant blur listed in Table 4.1.

EXP III. Readout duration: We investigated whether a network trained on a par-

ticular Tread (spiral trajectory) can be generalized to unseen Tread in test time. We

used 13-, 8-, 6-, 4-arms trajectories corresponding to Tread of 2.52, 4.02, 5.32, 7.94 ms to

synthesize blur data, while setting α = 1 and β ∈ {−300,−200, . . . , 300}.

For all experiments, the accuracy and robustness of deblurring performance were

evaluated using multiple image quality metrics. We used the high-frequency normalized

error norm (HFEN) [118], due to the expectation that high spatial frequency features

would be restored after the blurred boundary is recovered. We also used common metrics,

such as peak-signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [119].
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4.2.4 Evaluation using Synthetic Test Data

We tested the model on unseen synthetic test data from 5 subjects (independent from

training and validation datasets). We used the model trained in EXP III. The test

data were simulated from all spiral trajectories without any augmentation (i.e., α = 1,

β = 0). For comparison, we applied 1) frequency-segmentation-based multi-frequency

interpolation (MFI) [71] and 2) model-based iterative reconstruction (IR) [82] into the

synthetically generated test k-space data (y). For MFI, we obtained a deblurred image

by x̂ = Af
TWy. For IR, we obtained a deblurred image by solving minx ‖y −Afx‖22

iteratively by using conjugate gradient with 16 iterations. In both methods, we used the

ground truth field map f to construct Af . HFEN, PSNR, and SSIM metrics were used

for evaluation.

It is worth noting that the IR method is known to provide more accurate results than

the non-IR method for abruptly varying off-resonance in space. This IR approach could

provide the best achievable deblurring performance given the ground truth field map f ,

although it is not available in practice.

4.2.5 Evaluation using Real Experimental Data

We applied the trained network to real data. We acquired spiral RT-MRI data with

four readout durations (2.52, 4.02, 5.32, and 7.94 ms) from two subjects and performed

image reconstruction as described by Lingala et al [40]. We performed the deblurring on

the reconstructed images frame by frame by using the trained network. We compared

results with DORC [1]. This auto-calibrated method estimates dynamic field maps from
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Figure 4.4: Quantitative comparison of deblurring performance for different filter sizes.
Image Quality Metrics (PSNR, SSIM, and HFEN) are shown as a function of filter sizes.
Each curve with the corresponding color represents a trained network with different filter
size of f1, whereas the horizontal axis represents filter size of f2. The filter size of the
first and second convolutional layers (f1 and f2, respectively) were varied from 3 to 27
and from 1 to 5, respectively whereas f3 = 1 was kept constant. We choose f1 = 9, f2=
5, and f3= 1 (f1-f2-f3=9-5-1).

single-TE blurred image itself after coil phase compensation, with no scan time penalty

and iteratively reconstructs off-resonance-corrected image using the estimated field map.

4.3 Results

4.3.1 Convolution Filter Size

Figure 4.4 shows a comparison of deblurring performance for different filter sizes in terms

of PSNR, SSIM, and HFEN. For all comparison metrics, a combination of the filter sizes,

f1 = 9, f2 = 5, and f3 = 1, yields the best performance, which is chosen for the rest of

the work presented in this chapter.
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4.3.2 Loss Function

Figure 4.5 shows the deblurring results as a function of penalty on Lp loss and gradient

difference loss in the model training. For L2 loss, as gradient difference loss penalty λ

increases from 0.01 to 1 (3rd and 4th columns), image sharpness is improved visually.

This trend can also be observed in the three metrics shown in (A). Compared to L2 loss,

L1 loss with the same value of λ visually improves the sharpness at the soft palate (4th

and 5th columns) as well as it improves the metrics, although the visual difference might

not be observed as clearly as that can be observed when increasing λ from 0.01 to 1. We

choose to use p = 1 and λ = 1.

4.3.3 Learned Convolution Kernels

Figure 4.6 visualizes the representative examples of learned kernels from the first and

second convolutional layers. Kernels shown at the left and right in panel (A) were applied

to real and imaginary input channels, respectively. Some of the kernels are shown to be

circular symmetric with varying degrees of sharpness, which is similar to off-resonance-

induced PSFs observed in spiral trajectories. It is also observed that some of the learned

convolution kernels lack circular symmetry.

4.3.4 Validation Experiments

Figure 4.7A shows deblurring performance (SSIM and PSNR) as a function of the range

of off-resonance (fmax) in the train and validation sets (EXP I-A). For corrected images,

each curve represents a separate network trained with different fmax. For no correction (a,

black dashed curve), the values of SSIM and PSNR gradually decrease as fmax increases in
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Figure 4.5: Combination of Lp loss and gradient difference loss in the model training. (A)
Image Quality Metrics (PSNR, SSIM, and HFEN) are shown. L1 loss in a combination
with gradient difference loss with λ = 1 exhibits the highest values of PSNR and SSIM
over other combinations. (B) Representative image results for combinations of Lp loss
and gradient difference loss.

the validation sets, which is likely due to worsened blurring artifact. All but the network

trained with fmax of 104 Hz (b, blue curve) improve image quality for all fmax tested

compared with the uncorrected case. Each network is shown to exhibit the highest values

of SSIM and PSNR for validation data fmax, with which the network is trained. The

performance then quickly degrades for fmax greater than that of its best performance
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Figure 4.6: Representative examples of learned convolution kernels at the first and second
convolutional layers. (A) Kernels shown at the left and right are respectively correspond-
ing to 64 9 × 9 × 1 kernel weights applied to real and imaginary input channels in the
first layer. The majority of kernels exhibit circular symmetry which corresponds to the
expected shape of off-resonance PSFs in spiral MRI. (B) 18 5 × 5 × 1 kernels are visu-
alized out of 32 convolutional kernels of size 5 × 5 × 64 in the second layer. The kernels
in the first 8 columns represent structured patterns whereas the kernels shown in the last
column represent unstructured patterns.

(see c, orange curve). In Figure 4.7B, representative frames are shown. The uncorrected

image presents fmax = 625 Hz as shown in (a) and the model trained with fmax of 625 Hz

shown in (e) exhibits the best deblurring performance qualitatively against other models

shown in (b-d, f). We observe that it is essential for the frequency range of the training

set to be a superset of the validation data.
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Figure 4.7: Performance depends on the training set (EXP I-A). (A) Averaged SSIM
and PSNR as a function of the frequency range (fmax denoting the maximum frequency
value) for the uncorrected (black dotted) and corrected (non-black solid) images in the
validation set. Color (non-black) represents a separate network trained with different
fmax. Note that higher SSIM and PSNR correspond to better performance. The best
performance is achieved when the training and validation datasets share the same range
of off-resonance (arrows). When severe off-resonance appears in the validation data as
the off-resonance range is increased, performance for the network trained with fmax less
than that of the validation data quickly degrades. (B) A representative example of the
ground truth, uncorrected, and corrected images. The uncorrected image had fmax =
625 Hz and was deblurred using models trained with fmax of 104, 208, 417, 625 Hz, and
all of them. We observe that it is essential for the frequency range of the training set to
be a superset of the validation set.
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Table 4.2: Quantitative evaluation of model performance in terms of the PSNR, SSIM,
and HFEN, without and with offset β, and as a function of the number of training samples
(EXP I-B)

Training data
PSNR SSIM

HFEN

offset β no. of samples (×1000)

Without offset β = 0 Na 32.75 0.979 0.274

With β ∈ {-300,-200,. . . ,300}

N 33.43 0.980 0.125

3.5N 34.40 0.983 0.094

7N 34.53 0.983 0.103

No correction 26.82 0.951 0.890

aN = 9200 84 × 84 image pairs of distorted and distortion-free complex images.
Abbreviations: EXP, experiment; HFEN, high-frequency normalized error norm; PSNR,
peak SNR; SSIM, structural similarity index.

We also found that adding frequency offsets when synthesizing the training data help

the network perform better, which is shown in Table 4.2 (EXP I-B). In addition, as the

training samples increase from N to 7N, the performance improvement can be found of

2.1, 0.003, and 0.022 in PSNR, SSIM, and HFEN, respectively.

Table 4.3 presents the average PSNR, SSIM, and HFEN values for the quantitative

comparison of model performance on spatially invariant and variant blur (EXP II). The

network trained on spatially variant blur has superior PSNR, SSIM, and HFEN values for

both validation data of spatially invariant and variant when compared to no correction

and the network trained on spatially invariant blur. The network trained on spatially

invariant blur improves all the image metrics for the validation data of spatially invariant

blur compared to no correction, but when applied to spatially variant blur, it presents

even lower values in all the metrics than no correction, indicating it fails to deblur spatially

varying off-resonance.
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Figure 4.8 presents image metrics as a function of readout duration (Tread) in the

train and validation sets (EXP III). For each of Tread tested, the network trained with the

corresponding Tread has superior PSNR, SSIM, and HFEN compared to no correction and

networks trained with other Tread (see arrows). For each trained network, the performance

then quickly degrades for Tread longer than that of its best performance. In contrast to

the individually trained networks, the network trained using all the Tread (see green, “All

included”) exhibits consistent improvement over the Tread.

4.3.5 Evaluation using Synthetic Data

Figure 4.9 compares image metric results as a function of Tread for images with no cor-

rection and after correction using various methods applied to synthetic test data of 5

subjects. The proposed method (purple) is compared against no correction (blue), MFI

(red), and IR (orange). For all methods, performance gradually degrades as readout du-

ration increases. Overall, IR has superior PSNR, SSIM, and HFEN values for all readout

durations, followed by the proposed method, MFI, and no correction. MFI had lower

PSNR than that for no correction for Tread ≥ 2.52 ms (black arrows).

Figure 4.10 contains representative image frames of the ground truth, uncorrected

image, and images corrected by various comparison methods. In Figure 4.10A, blurring

is clearly seen around the lips, tongue surface, and soft palate in the uncorrected image

(yellow arrows). After correction, MFI even deteriorates the delineation of the boundaries

in those regions, whereas the IR method almost perfectly resolves the blurring artifact as

also clearly observed in the difference images (see Figure 4.10B). The proposed method

successfully resolves the blurring artifact in those regions, which is visually comparable to
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Figure 4.8: Impact of readout duration (EXP III). Image Quality Metrics (PSNR, SSIM,
and HFEN) as a function of readout duration (2.52, 4.02, 5.32, and 7.94 ms) for the uncor-
rected (black) and corrected (non-black) images are shown. For corrected images, color
represents a separate network trained with different readout durations; “All included”
(green) indicates all of four readout durations are used during training. All metrics are
averaged across time and subjects. Note that higher PSNR and SSIM and lower HFEN
correspond to better performance. The best performance is almost always achieved when
the training and validation datasets share the same readout duration as indicated by
arrows in each panel of the image metrics. The performance then quickly degrades for
longer readout durations in the validation set than that with which the network was
trained.
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Figure 4.9: Quantitative comparison of deblurring performance for comparison methods
using synthetic test data. Image Quality Metrics (PSNR, SSIM, and HFEN) are shown
as a function of readout duration (2.52, 4.02, 5.32, and 7.94 ms). All metrics are aver-
aged across time and subjects and error bars were calculated as the standard deviation.
Note that higher PSNR and SSIM and lower HFEN correspond to better performance.
The proposed method (purple) is compared against no correction (blue), multi-frequency
interpolation (MFI, red), and iterative reconstruction (IR, orange). For all methods,
performance gradually degrades as readout duration increases. IR performs best for all
readout durations, followed by the proposed method, MFI, and no correction. Note that
MFI had lower PSNR than that for no correction for readout duration ≥ 2.52 ms (black
arrows).
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Figure 4.10: Qualitative comparison of deblurred images for comparison methods using
synthetic test data. Left to right: the ground truth, uncorrected, multi-frequency interpo-
lation (MFI), model-based iterative reconstruction (IR), and the proposed method. (A)
images before and after deblurring with various methods, (B) absolute difference images
(amplified by a factor of 4 for better visualization) with respect to the ground truth, and
(C) an intensity vs time (y-t) plot marked by a dotted white line in (A). Yellow arrows
point out the regions that are most affected by off-resonance blurring and that present
contrast in deblurring performance for various methods. The proposed method success-
fully resolves the blurring artifact, which is superior to uncorrected image and image
using MFI, and is visually comparable to IR method that presents the best performance
over all others.

the result from the IR. Figure 4.10C shows the intensity time profiles that are extracted

at the dotted line marked in the ground truth. Both IR and the proposed methods

exhibit sharp boundaries between the tongue and air and around the soft palate, which

is consistent over time frames.
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4.3.6 Evaluation using Real Experimental Data

Figure 4.11 contains representative experimental data using different spiral readout du-

rations. Image is reconstructed with no off-resonance correction and using the DORC

[1]. The proposed method took the uncorrected images (left column) as an input to the

trained network and performed deblurring frame-by-frame. In the uncorrected image,

off-resonance blurring is most clearly observed at the lower lip (green arrows) and hard

palate (red arrows) and becomes severe with the longer readouts. The proposed method

can improve the delineation of boundaries in those locations. For example, the lower

lip becomes sharper and the structure of the hard plate becomes visible after correction

using the proposed method (see red arrows), which is consistent for all readout durations

considered. DORC exhibits improved depiction of air-tissue boundaries for short readouts

(≤ 5.32 ms) but the signal intensity in several regions becomes spuriously amplified, and

the blurred anatomic structures remain still unresolved for longer spiral readouts (7.94

ms) (see yellow arrows).

4.4 Discussion and Conclusion

We have demonstrated a machine learning method for correcting off-resonance artifacts

in 2D spiral RT-MRI of human speech production without exam-specific field maps. We

trained the CNN model using spatially varying off-resonance blur synthetically generated

by using the discrete object approximation and field maps. Once the network is trained,

the proposed method is computationally fast (12.3 ± 2.2 ms per-frame on a single GPU)

and effective at resolving spatially varying blur that occurs most significantly at the vocal
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Figure 4.11: Representative experimental results using long readout spirals. Left to
right: Image reconstruction with no off-resonance correction, image reconstruction using a
previous auto-calibrated dynamic off-resonance correction (DORC), and image deblurred
by the proposed method. Top to bottom: readout duration from 2.52 to 7.94 ms and
temporal resolution of 78 (13-interleaf) to 46 ms (4-interleaf). Green (lower lip) and red
(hard palate) arrows point out the regions that are most affected by off-resonance blurring
and corrected by the DORC and proposed methods. The proposed method provides
improved delineation of the boundaries, which is consistent for all readout durations
considered, whereas DORC fails to resolve the blurred boundaries for a longer readout
duration of 7.94 ms (yellow arrows). The video can be found in Supporting Information
Video S1 at Wiley Online. 92
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tract air-tissue boundaries of interest. The performance was superior to the current state-

of-the-art auto-calibrated method and only slightly inferior to an ideal reconstruction with

perfect knowledge of the field map.

We utilized a simple 3-layer residual CNN to learn the deblurring operation based

on the training set of paired blurred and ground truth images. The network with the

learned parameters is applied to different subjects with different speech patterns and

spatio-temporal off-resonance patterns. The results indicate that frame-by-frame blurring

is resolved in a matter that is far superior to the correction of the temporal average blur.

The CNN performance is invariant to rotation/flipping, although some of the learned

convolution kernels lack circular symmetry (Figure 4.6). Our interpretation is that the

CNN estimates local deblurring from the features of the input image while allowing

for adaptation to the changing off-resonances. Even in blurred images, the necessary

information for deblurring remains local (cf., local imaginary components exploited by

Noll et al [74]). We speculate that the convolutional filters are able to pick up information

from surrounding pixels and use nonlinearities such as the ReLU operation to preserve

only the filter outputs that are relevant to deblurring for each spatial location.

To train the proposed network architecture, we synthetically generated spatially vary-

ing off-resonance blur using reference data with field maps estimated from the auto-

calibrated method [1] with affine linear data augmentation of the field maps (f ′ = αf +β).

This is different from the approach taken by Zeng et al [106] where spatially invariant

off-resonance was simulated at a range of off-resonance frequencies. We experimentally

found that our network architecture trained for spatially invariant blur would not be

able to resolve the spatially varying blur, and the usage of spatially-varying field maps
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is valuable (EXP II). This is consistent with one of the critical underlying assumptions

pertaining to machine learning that unseen test data comes from the same distribution as

training data. We also investigated generalizability for readout duration. We found that

the readout duration of the training and test sets should be the same for the network

to correct off-resonance without performance degradation (EXP III). This is consistent

with expectation, because each readout (trajectory) presents a unique PSF for a given

off-resonance frequency, which might not be generalized by the other readouts unless data

from the other readouts are also present during the training phase. One exception would

be spiral imaging with extremely short echo time.

We compared the proposed method with several conventional methods. For the syn-

thetic test data, MFI exhibited the worst performance (see Fig. 4.9). This is likely due

to the air-tissue boundary presenting abrupt spatially-varying off-resonance that would

not fulfill the assumption of smooth spatial off-resonance variation. Model-based IR with

knowledge of the true field map was superior to all others in terms of PSNR, SSIM, and

HFEN. However, these two approaches are impractical as they require knowledge of the

field map and are therefore limited by the quality of field map estimates. This is a prac-

tical limitation of conventional methods. One such case is shown in Figure 4.11, where

auto-calibrated methods do not reliably work at longer readout duration (7.94 ms). This

is because the field maps are estimated from the severely distorted images and this error

propagates to the estimated field maps and the iterative off-resonance correction proce-

dure. The proposed method avoids this issue and provides superior performance even at

a longer spiral readout than the iterative approach.
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We used a simple 3-layer CNN architecture, which is motivated by an analogy to

traditional deblurring procedures. With the continually growing number of state-of-the-

art network architectures, many of which are much deeper, we expect that there is further

room for improvement. Nevertheless, there should be a balance between performance and

the ability to explain such performance. The purpose of this study was to demonstrate the

feasibility of spatially varying off-resonance correction using a simple CNN architecture,

and this was achieved. We only examined a single contrast and a single region of the

body from the midsagittal imaging plane. A larger study encompassing multiple body

regions with different imaging parameters would be valuable in future work.

We considered the speech production application because off-resonance artifacts sig-

nificantly hamper the detailed speech scientific and linguistic analyses using the dynamic

imaging data. The proposed method has shown to provide sharp delineation of artic-

ulator boundary with readouts up to ∼ 8 ms at 1.5T, which is 3-fold longer than the

current standard practice [35] and would provide 1.7-fold improvement in scan efficiency.

This would allow for improved accuracy and precision of speech analysis beginning with

boundary segmentation [63, 62, 120] that is often impaired by blurring artifact [1]. It

would also potentially be feasible to achieve higher temporal resolution using a longer

readout with image quality comparable to a short readout (see Fig. 4.11) or to use spiral

readouts at higher field strengths such as 3T which is available on more sites and provides

higher SNR. The low-latency processing of off-resonance deblurring (12.3 ± 2.2 ms per

frame) without field map would also be valuable for other RT-MRI applications such as
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cardiac studies and interventional RT-MRI where off-resonance at the lateral wall, ad-

jacent to draining veins, or around metal implants and tools impedes diagnostic use of

RT-MRI.
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Chapter 5

3D RT-MRI of Speech Production

In the previous chapters, we have focused on discussing techniques in only 2D imaging.

Generally, RT-MRI techniques have been limited to one mid-sagittal imaging plane or

a few 2D imaging planes [21, 77, 52, 40, 41, 38, 67, 121, 122]. This has nevertheless

provided good utility to speech scientists due to the fact that important information

about “place of articulation,” which is critical in linguistic contrasts, can be obtained

from constriction details in the mid-sagittal plane (such as, for example, in phonemes

/p/, /t/, and /k/ with constrictions are located at the lips, alveolar ridge, and velar

region). However, vocal tract shaping during speech is enormously complex in geometry

and in temporal structuring and cannot be fully understood from mid-sagittal constriction

posture along the vocal tract [123]. For example, articulation of English fricative /s/ and

lateral approximant /l/ both involve constriction of the tongue tip at the alveolar ridge,

but the production of these sounds differ in that [s] has the tongue sides braced and air

directed centrally along a groove, while [l] has (one or both) tongue sides lowered, allowing

for lateral airflow channels [123]. Detailed and direct three-dimensional (3D) information

about airway shape and spatiotemporal dynamics is essential to understanding speech
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production control and to relating articulation to speech acoustics. However, in the

past shaping imaging for speech has only been available indirectly from mid-sagittal

2D dynamic MRI after transformation to 3D or in static volume from 2D multi-planar

imaging or in 3D for non-natural/sustained phonation [87, 124, 88, 89].

Recently, several research groups have demonstrated dynamic 3D MRI of the vocal

tract [53, 125, 54]. Burdumy et al proposed an imaging method with 200×200×62 mm3

spatial coverage using variable density and stack-of-stars radial sampling patterns [53],

and measured dynamic modification of articulators during singing and speech tasks. With

a temporal resolution of 1.3 s, this approach was restricted to relatively slow speech

tasks. Fu et al proposed an imaging method using a combination of 3D cones sampling

for a navigator acquisition and Cartesian sampling for image encoding [54]. The method

achieved full vocal tract coverage with a high frame rate (166 fps) by employing a partially

separable model (low-rank constraints) during reconstruction. This approach inherently

requires long acquisition times, potentially resulting in several repetitions of speech tasks,

and reconstruction performance may depend on a reliable estimation of temporal basis

from the navigator [35]. These constraints may limit its application to natural speech

tasks. A review of current state-of-the-art MRI protocols for speech production study

can be found in Ref [35].

In this chapter, we address the unmet need for full vocal tract 3D dynamic MRI at

high temporal resolution during natural speech, without requiring multiple repetitions of

a speech task. We have developed a new technique that achieves 2.4×2.4×5.8 mm3 spatial

resolution and 61 ms temporal resolution over a 200×200×70 mm3 field-of-view (FOV),

using parallel imaging and simple spatiotemporal constraints previously validated in the
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context of 2D dynamic MRI [126] (and used in > 50 cases [40, 49]). We extend a 2D

spiral gradient sequence [40] to 3D by incorporating a slab excitation and adding phase-

encoding along the kz direction and use spatiotemporal finite difference (FD) constrained

reconstruction with an empirically optimized penalty.

5.1 Methods

5.1.1 Data Sampling

The proposed method uses a pseudo-golden angle (GA) stack-of-spirals sampling pat-

tern. Spiral trajectories balance trade-offs among temporal resolution, spatial resolution

and signal-to-noise ratio, and have been shown to be robust in speech MRI acquisition

[35, 21, 40, 58, 1]. Pseudo-GA increment has previously been used in the context of 2D

spiral dynamic MRI [40, 58] and provides a nearly uniform sampling pattern that allows

more reduced side-lobe energies of the point spread function and retrospective tempo-

ral resolution selection [58]. Most importantly, the pseudo-GA increment (compared to

true GA) allows for high quality audio recording because the gradient waveforms and

corresponding acoustic noise are periodic. The 2D spiral sequence can be converted to

3D stack-of-spirals sequence by adding phase-encoding lines along the kz direction. We

leverage the pseudo-GA spiral sampling in the kx-ky plane.

Figure 5.1 illustrates the data sampling scheme. A pseudo-GA spiral sampling is used

in the kx-ky plane and Cartesian sampling is employed along the kz direction. Each spiral

is acquired for all kz phase encodes (linear order) before moving to the next spiral, with

a GA increment, θGA = 2π × 2/(
√

(5) + 1). The spiral angle is reset after N interleaves,
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Figure 5.1: An example of a pseudo golden angle stack-of-spirals sampling scheme for 3D
RT-MRI. Spiral interleave with a rotation angle is acquired for all kz phase encodes while
the kz step is sequentially increased. After acquiring all of the kz steps, the rotation angle
of spirals is increased by the golden angle, θGA = 2π × 2/(

√
(5) + 1). The spiral angle

is reset after N interleaves. Inverse Fourier transform is applied to the data collected
within a temporal window along the (fully sampled) kz direction. Then 2D constrained
reconstruction is performed slice-by-slice to form a 3D image series.

e.g., after 12·N TRs with 12 phase encoding lines as illustrated in Figure 5.1, where N is

a periodicity of the pseudo-GA [40]. We use N=34 in this work.
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5.1.2 Image Reconstruction

3D reconstruction is performed slice-by-slice, after inverse Fourier transforming data col-

lected within a temporal window (12 TRs) along the fully sampled kz direction, as il-

lustrated in Figure 5.1. Note that it is also possible to perform a full 3D reconstruction

instead, but given a very large dataset (e.g., 630 samples × 800 spirals × 8 channels

× 12 kz), decoupling the reconstruction into 2D problems is more computationally effi-

cient and practical. We employ a sparse SENSE-based parallel imaging and compressed

sensing approach with spatiotemporal first-order FD constraints [126]. Regularization

parameters for spatial and temporal sparsity (λs and λt, respectively) are empirically

chosen by visual assessment and once calibrated, are held constant for all studies. Coil

sensitivity maps are assumed to be time-invariant and are estimated from time-averaged

3D data from each coil by using ESPIRiT [127]. We perform the reconstruction using the

Berkeley Advanced Reconstruction Toolbox [128].

In this work, the full data collection window for each clip (11 to 25 seconds) was

reconstructed in a single step. Shorter time segments can also be reconstructed, and we

report the impact of this segment duration on image quality in the Supporting Information

Materials and Video S1.

5.1.3 3D Dynamic MRI Acquisition

3D slab excitation is achieved by using a minimum phase RF pulse designed with the

Shinnar-LeRoux RF design tool software package [129]. The pulse excites a mid-sagittal

slab with 5 cm thickness using a flip angle of 5◦and a time-bandwidth product of 16, and

stop-band and pass-band ripples of 0.5 % and 1 %, respectively. The benefit of using the
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Table 5.1: Acquisition parameters for 2D multislice and 3D dynamic MRI protocols

2D Multislice 3D

FOV (mm3) 200 × 200 × 6 200 × 200 × 70

FA (◦) 15 5

TR (ms) 6.004 5.048

TE (ms) 0.8 0.68

Spatial resolution (mm3) 2.4 × 2.4 × 6 2.4 × 2.4 × 5.8

Slices (N) 2 3 12 (no. of kz encodes)

Temporal resolution (ms/frame) 12 18 61

BW (KHz) ±125

The period of pseudo-GA 34 interleaves

Interleaves for Nyquist sampling (N) 13 in the kx-ky plane

Acceleration factor for reconstruc-
tion

13

minimum phase pulse is that it can provide a sharp slice profile (higher time-bandwidth

product) for a given specification and allows for shorter TE because it has an asymmetric

pulse shape and requires a short refocusing gradient. 3D data acquisition was performed

using a stack-of-spirals spoiled gradient echo readout with imaging parameters presented

in Table 5.1.

5.1.4 2D Multislice Dynamic MRI Acquisition

For comparison, we also perform 2D pseudo-GA dynamic MRI with two or three inter-

leaved slices — one mid-sagittal and one or two oblique slices — relevant to the speech

task [40], using a previously published approach [52]. The GA increment for the two-
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and three-slice sequence occurred every 2 and 3 TRs, respectively. The periodicity of the

pseudo-GA (34 interleaves) was the same as in the 3D sequence. Imaging parameters

used are listed in Table 5.1. We reconstruct the dynamic image slice-by-slice by using the

sparse SENSE-based reconstruction described in “Image Reconstruction” section with

1 spiral interleave per frame with a reduction factor of 13, which corresponds to the

temporal resolution of 12 ms per frame and 18 ms per frame for two- and three-slice,

respectively.

5.1.5 In-Vivo Speech Experiments

All experiments were performed on a commercial 1.5 T scanner (Signa Excite, GE Health-

care, Waukesha, WI) using a real-time interactive imaging platform (RT-Hawk, Heart

Vista Inc, Los Altos, CA) [50] with a gradient strength of 40 mT·m−1 and a maximum

slew rate of 150 mT·m−1·ms−1. A body coil was used for RF transmission, and a custom

eight-channel upper airway coil [40] was used for signal reception. The imaging protocol

was approved by our Institutional Review Board. Two healthy adult volunteers were

scanned, after providing written informed consent.

For Speaker 1, audio was recorded inside the scanner simultaneously with data ac-

quisition using a commercial fiber optic microphone (Optoacoustics Ltd., Yehuda, Israel)

and a custom recording setup [47]. The recorded speech was then enhanced using a

dictionary learning-based acoustic denoising method [48] and was synchronized with the

reconstructed dynamic images to aid linguistic analysis.

All the stimuli were read in the scanner using a mirror projector setup for presentation

[49]. Speaker 1 (female American English speaker) was scanned with both the 3D and
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Figure 5.2: Reconstructed images from both 2D multislice and 3D RT-MRI for Speaker
1. (a) Three orthogonal planes (from the left: mid-sagittal, axial, and coronal slices) at
consonant /s/ from 2D multislice and 3D RT-MRI. For comparison purpose, three slices
are extracted from 3D that would be aligned with those obtained from 2D multislice RT-
MRI. See Table 5.1 for acquisition parameters for both the protocols. (b) Illustration of
the tongue movements for speech tasks DU 2-5 listed in Table 5.2. Two intensity versus
time profiles corresponding to the cuts marked by the dot lines in the images in (a) are
shown. Both use the same regularization parameters (λt = 0.02 and λs = 0.01).
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Table 5.2: The stimuli for speaker 1.

Index Stimuli
”Temporal” dstance be-
tween [s] and [l]

UD1 Type ”a slab,” Abigail [.sl]
Adjacent in same syllable
(cluster)

UD2 Type ”pass lab,” Abigail [s.l]
Adjacent across a word
boundary

UD3 Type ”a Sal,” Abigail [.sVl.]
Vowel intervening (in mono-
syllable)

UD4 Type ”a say lab,” Abigail [.sV.l]
Vowel intervening (in disylla-
ble)

UD5 Type ”a sap lab,” Abigail [sVC.lV]
Vowel + consonant interven-
ing

DU1a – [.ls] same as UD1

DU2 Type ”pall sap,” Abigail [l.s] same as UD2

DU3 Type ”alas,” Abigail [.lVs.] same as UD3

DU4 Type ”a lay sap,” Abigail [.lV.s] same as UD4

DU5 Type ”a lab sap,” Abigail [lVC.sV] same as UD5

Abbreviations: UD and DU, directions of movements; UD, sides up (groove) to sides
down (lateral); DU, the reverse of UD; ., a syllable and/or word boundary; V, a stressed
vowel; C, a consonant.
aDU1 (the word-initial cluster [ls]) does not exist in English.
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2D three-slice sequences with plane locations as shown in Figure 5.2A. The stimuli for

Speaker 1 are listed in Table 5.2 and were each spoken twice at a natural speech rate.

These stimuli deployed two sounds [s] and [l] with contrasting lingual actions: [s] involves

tongue sides up and braced and the tongue surface grooved for central airflow, while [l]

involves tongue sides low, allowing lateral airflow. The stimuli placed [s] and [l] temporally

“closer together” or “farther apart” in both orders — i.e. [s] preceding [l] and [l] preceding

[s] — creating a direction of lingual action of the tongue sides going from up to down or

down to up, respectively. Speaker 2 (male native Korean speaker producing English as a

second language) was scanned with both the 3D and 2D two-slice (one mid-sagittal and

one axial plane at the level of the mid-pharyngeal airway) sequences. This speaker read

the English stimuli: “/loo/-/lee/-/la/-/za/-/na/-/za/” repeated twice at a natural rate to

produce alternating consonant and vowel sounds. These consonant-vowel syllables utilize

consonants ([l], [z], [n]) made with the tongue tip and relatively extreme vowel postures

(“ee” [i], “ah” [a], “oo” [u]) made respectively with the tongue body high & front, low &

back, and high & back.

5.1.6 Data Analysis

VOI Analysis for Identifying Tongue Actions for [l] and [s] Actions of the

tongue tip, sides, and rear (dorsum) are critical in the production of [s] and/or [l], so

form the basis of our derived data analysis. In analogy with established region-of-interest

analyses [59, 60, 86], volumes-of-interests (VOIs) were designated around three vocal tract

locations — the tongue tip (TT), dorsum (TD), and tongue sides (TS) — by manually

drawing 2D regions-of-interest in the mid-sagittal and axial image planes and extending
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Figure 5.3: VOI analysis for identifying tongue action for [l] and [s]. (a) Placement
of VOIs at the tongue tip (blue), back (red), and sides (cyan) overlaid on sagittal and
axial images. Illustration of (b) the synchronized denoised audio signals and (c) mean
intensity for three VOI locations over time for different stimuli. Mean intensity over time
was calculated within each of the VOIs shown in (a). Each time window corresponds to
1.35s with a temporal resolution of 61 ms.

those regions to adjacent parallel image planes as shown in Figure 5.3A. Mean pixel

intensity was calculated within each VOI over time. Lingual tissue moving into and out

of these VOIs allows the identification of three critical lingual gestures for these sounds: a

tongue tip raising gesture, a tongue dorsum backing gesture, and a tongue lateral lowering

or dipping gesture. Specifically, the actions of these articulatory gestures are expected to

reflect:
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1. Between /l/ and /s/, the temporal lag or offset between the two segmental artic-

ulations, which should accord with the phonological “temporal distance” between

the target consonants, as organized in Table 5.2.

2. Within /l/, the relative coordination of the lingual gestures within the articulation of

[l]. In particular, this should accord with prior data from other techniques regarding

the internal temporal organization of tongue tip and dorsum gestures for [l] [130,

131].

Measurement of Vocal Tract Area Function The vocal tract area function is de-

fined as the cross-sectional area of the airway as a function of distance from the glottis

and is an important measurement in the study of the relation between vocal tract shap-

ing and acoustics. We tested the ability of 3D dynamic MRI to estimate the dynamics

of vocal tract area function (using Speaker 2’s data). From the mid-sagittal plane, we

obtained grid lines that were perpendicular to the airway centerline obtained from an

airway boundary segmentation method [62] and extracted angled slices along the grid

lines through the 3D volume (61 slices with 2 mm increments). From each of the angled

slices, we estimated the airway area [cm2] encompassed by articulator boundaries from

a region growing method [89], applied in this case to the dynamic data. Region growing

was performed for each of the angled slices at every time frame independently with seed

points automatically chosen as the intersection of the airway centerline from the mid-

sagittal plane, and the angled slices. Note that the teeth are not visible in this imaging

modality and thus are not reflected in the area function. The resulting error is temporally

constant and appears only at the mouth termination region. A subject-specific dental
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correction could be performed during post-processing, using additional data that captures

the geometry of the teeth [123, 132].

5.2 Results

Figure 5.2 shows representative reconstruction results from 2D multislice and 3D methods

for Speaker 1’s utterances DU 2-5 (see Table 5.2). The tongue shape at onset of /s/ in

the syllable “sap” is shown in three different views in Figure 5.2A; constriction of the

tongue tip and grooving of the medial tongue surface are clearly observed in the sagittal

and coronal slices, respectively, from both results. Figure 5.2B compares temporal tongue

tip dynamics from the 3D result with that from the 2D multislice. The 3D result shares

a similar temporal pattern with the tongue tip motion with the 2D multislice result,

although it exhibits a slight temporal blurring around the tongue tip compared with its

2D counterpart. Overall, the 3D result provides adequate quality to discern tongue tip

actions for the articulation of these consonants in this natural speech task.

Figure 5.3C shows mean pixel intensity curves calculated from three VOIs (TT, TD,

and TS) over time for stimuli UD 1, 3, 5, and DU 2, 3, 5. The temporal positions of /s/

and /l/ are measured at their TT mean intensity peaks (i.e., the maximum constriction)

as annotated on the time functions in panel C. It is clearly apparent that the articulation

/s/ and /l/ are temporally close in “a slab” and “pall sap” and become farther away

from each other as other vowel and consonant segments intervene between the two target

consonants. This pattern is consistent with the phonological “temporal” organization of

the stimuli as listed in Table 5.2.
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For /s/ the tongue tip raising motion is the sole critical articulation apparent, whereas

for /l/ co-articulation of tongue tip raising, dorsum backing (higher signal in TD), and

sides lowering (lower signal in TS) is observed. Interestingly, depending on the position

of /l/ in the syllable, distinct spatiotemporal characteristics are observed for the gestures

of /l/. In a syllable-final /l/ (e.g., “a sal” and “pall sap”), the tongue dorsum backing is

extended for a longer period of time and is more spatially extreme than in a syllable-initial

/l/ (e.g., “a sap lab” and “a lab sap”). Similarly, the tongue sides are lowered more in a

syllable-final /l/ than in a syllable-initial /l/ as indicated with up-down arrows in Figure

5.3C. The word-internal, intervocalic ambisyllabic /l/ in “alas” shows an intermediate

behavior in this regard. In terms of [l]’s internal gestural coordination, its three lingual

gestures begin almost simultaneously in syllable-initial position, whereas in syllable-final

position the tongue dorsum backing and tongue sides lowering start earlier than the

tongue tip raising gesture, leading to a timing lag. This syllable-driven coordination

asymmetry has previously been observed for tongue tip-dorsum coordination using point

tracking kinematic data on [l] [130, 131]; the proposed protocol not only replicates this

finding but also provides new quantitative evidence of a parallel coordination asymmetry

involving the tongue sides.

Figure 5.4 shows a direct comparison of tongue shape for /l/ versus /s/ in the phrase

“pall sap” for Speaker 1. For both segments, constriction of the tongue tip at the alveolar

ridge can be observed in the mid-sagittal images. For /l/, side channels are visible in

the axial and coronal slices, as well as tongue body retraction in the coronal slices, all of

which funnel air laterally along the tongue sides, whereas for /s/, the tongue is grooved
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Figure 5.4: Comparison of the vocal tract shape between /l/ and /s/ in the context of
“pall sap” for Speaker 1. (a) Mid-sagittal, (b) axial, and (c) coronal views. For both
(top) /l/ and (bottom) /s/, mid-sagittal images show constriction of the tongue tip at
the alveolar ridge. For /l/, side channels are shown in the axial and coronal slices, as well
as the retraction of the tongue rear in the coronal slices; whereas for /s/, grooving of the
tongue is shown in the coronal slices. The videos can be found in Supporting Information
Video S2 and S3 at Wiley Online.

mid-sagittally as shown in the coronal slices, channeling the airstream anteriorly toward

the front teeth.

Figure 5.5 shows vocal tract area function dynamics for the utterances of Speaker 2.

Critical constriction events are visible along the length of the vocal tract. Specifically,

when consonants /l/, /z/, and /n/ are articulated (e.g., frames 12, 27, 39, 52, 65, 79

shown in Supporting Information Video S4), the relatively rapid tongue tip constrictions

used to create these consonants are clearly shown in the area function dynamics (grid line

3). And, when the vowel /ee/ is articulated (frames 31-34 and 117-122), vocalic tongue

body constrictions are observable in the palatal region (grid lines 4-7), as is pharyngeal

volume expansion (grid line 13-15) associated with /ee/’s tongue body fronting.
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Figure 5.5: Illustration of the capability of estimation of vocal tract area function from 3D
RT-MRI for the “na” utterance of Speaker 2. Panel (a) shows an image at the midsagittal
plane for /n/ in “na” from dynamic 3D. Grid lines that are perpendicular to the airway
centerline are chosen to obtain angled slices shown in Panel (c) (only 16 of the 61 gridlines
are shown here). Panel (b) shows the vocal tract area functions for /l/, /z/, /n/, and /ee/
estimated from the 61 angled slices. The videos can be found in Supporting Information
Video S4 at Wiley Online.

5.3 Dicussion

We have demonstrated a dynamic 3D imaging technique that provides complete spatial

coverage of the human vocal tract, with spatiotemporal resolution adequate to visualize

lingual tongue movements occurring during natural speech without the need for task rep-

etition and with results comparable to interleaved multislice 2D dynamic MRI. Based on

data obtained using this proposed technique, we developed a VOI analysis to characterize
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the coordination of tongue gestures for consonants /l/ and /s/. Earlier point-tracking

techniques have established that coordination of the tongue tip and dorsum gestures

for American English /l/ varies as a function of syllable position [130, 131, 133]. To

our knowledge, the work presented here provides for the first time quantitative imaging

data on the magnitude and duration of tongue side movement and on its relative timing

variation with respect to the other lingual gestures comprising /l/. Additionally, this

technique has allowed us to quantify dynamic vocal tract area functions during natural

productions of consonant-vowel syllables having varied consonants articulated with the

tongue tip and vowels with varied tongue postures. These area functions show a conser-

vation relation between the changes in area function at different parts of the vocal tract,

which is expected to be the case [134].

Validation of our proposed technique is challenging because vocal tract shaping during

speech, unlike cardiac or respiratory motion, is not cyclic, and intra-speaker variability

makes it difficult to compare the results between methods in a reproducible way (although

see Ref [54]). Even after acoustic alignment, the quality of retrospective CINE 3D MRI

of the vocal tract is poor [135]. In this work, we use the multislice 2D dynamic MRI as

an image quality reference because it provides the current best data quality for natural

speech in our experience. However, this 2D method lacks information beyond the acquired

(usually mid-sagittal) slices, and this method is applied during a separate production

of the speech task. Further validation may be possible with numerical 3D vocal tract

phantoms that allow realistic simulation of fluent speech, repeated speech utterances and

flexibility of varying speech rate, or with simultaneous acquisition of MRI with another

modality such as optical endoscopy.
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This work should be considered an initial demonstration of feasibility. The parameters

chosen, specifically, the spatial and temporal resolutions may not be optimal for all speech

tasks or regions of interest. Higher spatial resolution in the slice (left-right) direction

may be needed to precisely measure the vocal tract area function or to precisely identify

the borders of smaller articulators such as the laryngeal structures (e.g., the arytenoid

cartilages). Higher temporal resolution may be desirable for the study of rapid speech

tasks such as alveolar trills, whose rate is about 30 Hz and duration is shorter than 100

ms [35].

In addition, the RF pulse used for 3D slab excitation may be further improved. The

slab thickness was designed to be 2 cm thinner than FOV along the slice direction. This

margin along with a high TBW allows the avoidance of aliasing in the slice direction due

to a transition in the slab profile and/or shifts by resonant offsets that can be up to ±

625 Hz at 1.5 T at air-tissue interfaces. It is possible that the margin can be reduced.

Likewise, there may be room to reduce the TBW and/or employ variable-rate selective

excitation pulse [136], which would allow for shorter pulse duration and shorter TR.

Speech production experiments require that the scan operator be able to monitor

the articulatory movements to identify when there might be a substantial unexpected

change in head positioning, and to identify when speech utterances have been performed

correctly per instructions. In the proposed method, these requirements are fulfilled by

lower-quality zero-filled linear reconstructions with mediocre temporal resolution (303 ms

/ frame) and low reconstruction latency (< 10 ms / frame), which were not shown here.

Detailed linguistic analysis and computational modeling of speech MRI is almost always

performed off-line [36], permitting a high-quality and high-latency reconstruction prior
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to processing. The constrained reconstruction temporal window is the only fundamental

limit on latency for the proposed method. We found that adequate image quality can be

achieved with a temporal window of ≥ 16 frames (976 ms) (see Supporting Information

Video S1). This indicates that the ultimate minimum latency of the proposed method is

approximately 1 second. In the future, this could make it possible to perform real-time

analysis with an overall latency of a few seconds.

5.4 Conclusion

We demonstrated a technique for 3D dynamic imaging of the full vocal tract at high

temporal resolution during natural speech. The proposed method uses a minimum-phase

3D slab excitation, pseudo GA stack-of-spirals, and spatiotemporal finite difference con-

strained reconstruction and achieves 2.4×2.4×5.8 mm3 spatial resolution and 61 ms tem-

poral resolution over a 200×200×70 mm3 FOV. This technique is evaluated through

in-vivo imaging of natural speech production from two subjects with synchronized audio

and via comparison with interleaved multislice 2D dynamic MRI. This promising tool

for speech science for the first time enables a quantitative identification of spatial and

temporal coordination of important tongue gestures coproduced on and off the midline in

the articulation of consonants /l/ and /s/ via VOI analysis and allows a direct assessment

of vocal tract area function dynamics during natural speaking of utterances.
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Chapter 6

Conclusion and Future work

RT-MRI has recently gained substantial attention for speech production research be-

cause of its unique advantage of monitoring the complete vocal tract dynamics during

the speech, safely and non-invasively at relatively high spatial and temporal resolution.

This has been made possible by tremendous technical efforts that push the limit of spa-

tiotemporal resolution forward. However, the current state-of-the-art RT-MRI has several

limitations and unmet challenges for speech production application, which often render

imaging’s operating point below application demands and introduce bias as well as in-

creased variance during data analysis. This dissertation addresses two specific unmet

needs for RT-MRI of speech production – 1) off-resonance deblurring and 2) 3D RT-

MRI, and presents new tools that improve the quality and quantity of imaging informa-

tion about the dynamics of articulators, providing steps toward a better understanding

of human speech production.

The specific contributions of this dissertation in the field of RT-MRI of speech pro-

duction can be summarized as follows.
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• The development of fully automated off-resonance deblurring for spiral RT-MRI.

The dynamic field map is estimated directly from the base image phase from single-

echo data with no cost in scan time. Model-based reconstruction is able to correct

off-resonance in a previously acquired large corpus of single-echo spiral data. This

method improves the depiction of the vocal tract articulators at several air-tissue

boundaries both visually and through a sharpness metric, and provides the practical

utility on the boundary segmentation and distance metric.

• The conception, design, and implementation of CNN-based off-resonance deblurring

for spiral RT-MRI. The network structure is mathematically related to classical

conjugate phase reconstruction and a minimal network is designed to achieve the

deblurring task. A model-based framework along with a data augmentation scheme

is proposed to generate training data. The present method is efficient, effective,

and superior to the current state-of-the-art method and only slightly inferior to an

ideal reconstruction with perfect knowledge of the field map.

• The development of 3D RT-MRI, which achieves 2.4×2.4×5.8 mm3 spatial resolu-

tion and 61 ms temporal resolution over a 200×200×70 mm3 FOV. This technique

for the first time enables a quantitative identification of spatial and temporal co-

ordination of important tongue gestures coproduced on and off the midline in the

articulation of consonants /l/ and /s/ via VOI analysis and allows a direct assess-

ment of vocal tract area function dynamics during natural speaking of utterances.
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6.1 Future Work

The following list summarizes specific possibilities for future work in each of the above

chapters.

Model-Based Deblurring

• Use an additional static two-echo scan to estimate the coil sensitivity map. The coil

sensitivity estimation is a critical step for dynamic field map estimation and the

two-echo scan could be conducted at a static posture before dynamic imaging scan

and will provide the coil sensitivity maps that are free of phase due to off-resonance

and B0 field inhomogeneity.

• Explore the joint estimation of both dynamic image and field map [137]. Deblurring

performance can further be improved by jointly estimating both the image and field

map in the model-based reconstruction. In this scheme, the initial guess for the

field map estimate would be critical to reaching an optimal solution due to the non-

convexity in the joint optimization. The field map estimation proposed in Chapter

3 could be used as an initial input to the joint estimation. This approach would be

particularly beneficial when the longer spiral readout is used.

Data-Driven Deblurring

• Explore other non-Cartesian trajectories such as radial or echo-plannar imaging.

• Explore other clinical applications that experience off-resonance artifacts, such as

brain imaging near sinuses or imaging near the metal implant.
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3D RT-MRI

• Explore more advanced and efficient k-t sampling schemes to improve temporal or

spatial resolution and/or enlarge slice coverage. Those include rotated golden-angle

scheme, variable density in-plane spiral sampling, variable density sampling along

the kz-t direction, partial Fourier scheme along the kz direction, and so on.

• Explore other clinical applications that undergo rapid and/or irregular motion but

where capturing 3D dynamics is critical, such as cardiac, musculoskeletal, and fetal

imaging.
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