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Abstract

The recognition of behavioral cues in human interactions is an integral task towards the mapping

of psychological processes in the speaker. The understanding of these processes form a basis for

provision of corrective counseling in many psychotherapy applications. It may also serve as a point

of research in many observational studies in psychology, with objectives such as improvement of

patient care-giving or therapist proficiency. An assistive method for the above applications in the

form of automated behavior annotation is an attractive goal, however identifying behavioral cues

in organic conversational interactions is a challenging task even for humans and is the culmination

of decades of social experience and personal inflection. While many tasks can be adequately

handled by applying deep learning on “big data”, in the domain of behavior understanding data

is often scarce and application-specific, leading to poor performance in automated systems. In

this thesis I aim to overcome some challenges in development of human behavior recognition

systems. I address issues commonly seen in the behavioral domain, such as noisy weak labels and

data scarcity, by proposing various unsupervised representation learning techniques and neural

networks for human behavior recognition.

In the first part of this thesis I propose novel architectures for identifying and rating human

behaviors from lexical transcripts of extended conversations. I tackle the issue of training deep

models with limited in-domain data and weak labels by leveraging out-of-domain word embed-

dings in a recurrent neural network framework. In the second part of this thesis I investigate how

concepts of behavior can be transferred between different behavioral applications through methods

such as contextual learning, online mutlitask learning, and multimodal approaches.

I show that through the proposed learning methods, models can become increasingly adept

at rating behaviors in multiple scenarios. Experiments in this thesis are conducted on annotating

ix



behaviors in couples counseling sessions. I also demonstrate the applicability of these techniques

to the task of emotion recognition, which is a subset of human behaviors requiring shorter time-

frames.
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Chapter 1

Introduction

1.1 Background

1.1.1 Understanding human behavior

The evaluation of mental health is heavily based on the understanding of behaviors exhibited in

human communication. In couples therapy, for example, behaviors in couple interactions are iden-

tified and annotated across numerous dimensions, such as negativity, blame, or acceptance. Coun-

seling therapists may then identify reasons of conflict based on these assessments and encourage

mediatory action to improve couple relationships [1]. The understanding of human behavior is

also prominently applied in many observational studies in psychology. For example in studies of

spousal communication and its effect on care-giving in cancer patients [2]. Or studies in identifying

new cognitive markers of risk for suicide among veterans [3].

Behavior understanding is the complex task of recognizing behavioral cues in human interac-

tions and encodes many layers of complexity: the dynamics of the interlocutors, their perception,

appraisal, and expression of emotion, their thinking and problem solving intents, skills and creativ-

ity, the context and knowledge of interlocutors, and their abilities towards emotion regulation [4].

Behavior is not the same as emotions, but it is encoded in part through the modulation of emotional

expression and affected by the perception and actions of those emotions, and thus shares a tight

relationship with emotional expression.
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1.1.2 Challenges

Annotation of human behaviors is usually performed by trained human coders and is an expensive

and time-consuming process. As such it only takes place in limited cases for research purposes.

Human annotators first have to be trained in accordance with detailed coding manuals [5], [6] to

provide accurate and consistent ratings without the influence of personal bias. Trained annotators

may then be evaluated to select those with the highest agreements for the final annotation task. The

overall process is lengthy and strainful, but even so, agreement in human annotations can still be

quite low [6]. This is possibly caused by inherent cognitive biases of annotators which affect the

degree to which behavioral intensities are scaled.

Human behavior also manifests over longer time frames than emotions and requires a larger

context window to be identified correctly. In addition, many different dimensions of behavior have

only subtle differences between them which makes tracking the presence of a specific behavior

over a long time range more difficult.

One final critical challenge is that behavioral expressions vary between individuals in general.

This difference can stem from the uniqueness of each person in terms of physical and mental

states, health status, current mood, and personality traits, etc. Additional variability might arise

from associated cognitive loads from the task scenario, specifics in the study environment, as well

as behaviors of other individuals. Nonetheless for humans, while tedious, it is possible to identify

common behavioral expressions given enough contextual observations.

1.2 Dissertation Overview

The main theme of this thesis is the exploration of computational models suited for behavior un-

derstanding from spoken conversations and methods in unsupervised representation learning that

can be used to improve their effectiveness.
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1.2.1 Behavior annotation using recurrent neural networks

Recurrent neural networks (RNN) have demonstrated incredible abilities in handling long range

dependencies in data with longer timeframes [7]. In Natural Language Processing (NLP), LSTM

units have produced state-of-the-art results in many tasks [8], [9]. However, the use of RNNs in

behavior estimation has seen limited success due to limitations in available data. Firstly, due to pri-

vacy restrictions, data with rich information of behavior in psychotherapy sessions is often severely

limited in quantity. This greatly restricts the ability to train deep models with good convergence

and generalizable performance. Secondly, due to the additional effort required for fine-grained

annotation, labels are restricted to covering entire sessions with no indication of ground truth for

shorter duration segments. This introduces further challenges in training deep models due to the

large observational window required for a single prediction.

I propose a neural network framework for identifying and rating human behaviors from lexical

transcripts of extended conversations. The neural network composes of recurrent layers to handle

sequences of words obtained from a sliding window. I address the issue of training deep models

with limited in-domain data and weak labels by leveraging out-of-domain word embeddings in the

recurrent neural network framework. The network is trained with weak labels by directly assigning

the session-level rating as targets for all frames contained in respective sessions. A fusion layer is

then applied over frame-level scores in a session to map back to a predicted behavior rating. The

proposed framework is evaluated by annotating behaviors observed in couples therapy sessions

[10].

1.2.2 Unsupervised domain transfer in sentence embeddings

Representation learning is a crucial method for obtaining superior results in many machine learn-

ing tasks [11]. In the scope of natural language processing notable examples of transforming input

into highly informative abstractions are word embeddings such as word2vec [12] or GloVe [13].

The use of neural networks in our proposed behavior annotation framework allows us to leverage
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these embeddings even further through joint optimization. However, as current models are ex-

tended to include more context for better annotation, better embeddings for longer windows such

as sentences are required.

In the second part of this thesis I investigate how concepts such as conversational content or

behavior information can be encoded into meaningful representations from sentences. I present

an unsupervised deep learning method for deriving vector representations from sentences that are

well-suited for behavior annotation. To train the sentence encoder I leverage out-of-domain con-

versational data by sourcing from online databases of movie dialogues. I show that conversational

data is a rich source to learn meaningful embeddings and is suited for use in behavior annotation

due to its relatedness of structure to in-domain behavioral datasets [14].

Following this I then propose the use of an online multitask objective to expand sentence em-

beddings with domain knowledge. I connect sentiment to behavioral expression in text as a funda-

mental basis and aim to predict sentiment labels as an additional training objective. I show through

experiments that such embeddings are a viable and potent feature for multiple tasks of behavior

and emotion recognition [15].

1.2.3 Multimodal and multitask approaches

Word embeddings such as ELMo and BERT have recently been shown to model word usage in

language with greater efficacy through contextualized learning on large-scale language corpora,

resulting in significant performance improvement across many natural language processing tasks.

In last part of this thesis I integrate paralinguistic information into contextualized lexical embed-

dings through the addition of acoustic features to a bidirectional language model followed by a

more recent Transformer architecture. The multimodal models are trained on spoken language

data that includes both text and audio modalities. I then show that such models pretrained on un-

supervised language modeling tasks can provide embeddings which combine paralinguistic cues

with lexical content which improve performance in emotion recognition.
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Chapter 2

Behavior Annotation Using Recurrent Neural Networks

2.1 Introduction

In this chapter we address the issues relating to training recurrent neural networks on long speech

conversations with limited data and weak labels. We propose an LSTM-RNN system for capturing

behavior trajectories in couples interactions in a such an environment. To allow for training of the

RNN with limited data we use pretrained word representations learned from out-of-domain corpora

and joint optimization. We also show the viability of using session-level labels for learning frame-

level behavior. Using a fusion of the frame-level behavior trajectories we show that the ratings

predicted by our proposed system achieve inter-annotator agreement comparable to those of trained

human annotators.

2.2 Behavior Modeling

2.2.1 Maximum likelihood model

In previous works [16], [17], a Maximum Likelihood (ML) model with n-gram statistical language

models of the interlocutor’s language was implemented for behavior recognition. This model

assumed that all the utterances observed in a particular session have been generated from the same

behavioral state. While n-gram language models provide a compact approximation of the joint
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probability of n-length word sequences, they have limitations. First, the framework suffers when

presented with Out-Of-Vocabulary (OOV) test data. Secondly ML models are inflexible to variable

length n-grams based on data availability (backoff helps but doesn’t solve the problem) and this

reduces robustness when longer context is introduced. Finally and very importantly, ML models

are applicable for classification tasks but not estimation of continuous rating values.

2.2.2 Behavior modeling with LSTM

Recurrent neural networks have become increasingly popular for sequence learning tasks as they

are adept at integrating temporal information from the entire sequence history as opposed to a fixed

window of data in feed-forward neural networks. This dynamic context is especially valuable in

natural language processing where semantic meaning may have long-term dependencies across any

number of words. RNNs have been shown to perform better than statistical language models in

such data-sparse situations by learning distributed representations for words [18], [19]. However

the training of RNNs generally requires large amounts of data with accurate labels; something

generally not available in our domain. Therefore, we propose the use of pretrained distributed

representations of words from out-of-domain large corpora to alleviate the problem of data sparsity.

In addition we train the RNN using a weakly supervised method to account for the missing frame-

level labels. The details of our proposed RNN system are described in Section 2.4.

2.3 Data and Associated Challenges

For our experiments, we use the corpus of 134 couples from the UCLA/UW Couple Therapy

Research Project [20]. The dataset contains audio and video recordings, along with transcripts, of

real couples with marital issues interacting. In each session, the couples discuss a specific topic

(e.g. “why can’t you leave my stuff alone ?”) chosen in turn for around 10 minutes. The behaviors

of each speaker are rated by multiple annotators based on the Couples Interaction [21] and Social

Support [22] Rating Systems. This results in 33 behavioral codes such as “Acceptance”, “Blame”,

6



and “Positivity”. Each annotator provides session-level subjective ratings for these codes on a

Likert scale of 1-9, where 1 indicates absence of the behavior and 9 implies a strong presence.

The sessions are rated by 2-12 annotators with majority of the sessions (∼ 90%) rated by 3-4

annotators. Finally, these ratings are averaged to obtain a 33-dimensional vector of session level

behavior ratings per interlocutor per interaction.

In this thesis, we focus primarily on the “Negativity” behavioral code. As was also done in our

earlier work [16], [17], [23] we only consider sessions with mean annotator ratings in the top 20%

(‘High Negativity’) and bottom 20% (‘Low Negativity’) of the code range for the sessions with

good audio quality. This is less than 25% of the whole data set. A more comprehensive description

of this corpus is reported in [21], [22], [24].

2.3.1 Associated challenges

Since human raters do not provide behavioral ratings for each utterance in the session we instead

use the global rating as training labels for the individual sequences. In other words, all word

sequences within a session are trained with the same label as the global rating. This method

assumes that sequences of words from a session are related to global rating in a non-linear, complex

manner. This is depicted in Figure 2.1 where the session-level label ρ is assumed to be a proxy

for the label of the i-th frame ρ ′i . This also infers that the longer our sliding context-window the

less the mismatch between the global rating ρ and ρ ′i . Ideally one would like the whole session

to be passed as a training sample, however this would drastically decrease our training set and

make training difficult. Nevertheless, a larger window can help identify lexical combinations that

contribute towards the expression, and consequently estimation, of specific behaviors.
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Figure 2.1: Training frame-level RNN using global rating values

2.4 Methodology

2.4.1 Proposed architecture

We encode the input as a one-hot vector w, where the n-th word in our dictionary is represented by

setting the n-th element in w to 1 and all other elements to 0. We assume a vocabulary of N unique

words and 0 ≤ n ≤ N. The first layer in our RNN maps the one-hot vectors w into intermediate

continuous vectors using an embedding layer [12].

The next hidden layer consists of the LSTM blocks that, employing memory cells, will store

non-linear representations of the current sequence history and be better able to encode context. To

prevent overfitting a dropout layer is added after the LSTM.

Finally the last layer is a feed-forward layer that performs non-linear mappings to better ap-

proximate the human scale of behavior. The RNN is then trained for a fixed number of epochs

using an adaptive learning rate optimizer [25].

For evaluation purposes, and to better approximate the human annotation process we also re-

quire a fusion layer after the RNN to combine the behavior metrics over all the time-steps and
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obtain a prediction of the global rating. The proposed 3-layer recursive neural network architec-

ture is shown in Figure 2.2.

LSTM LSTM LSTM

Feed 
forward 

Feed 
forward 

Feed 
forward 

w0 w1 w2

Embedding Embedding Embedding

W2V W2V W2V

Session label 
prediction

…

Fusion layer

Figure 2.2: Recurrent Neural Network system for predicting behavior

2.4.2 Incorporating out-of-domain word representations

Past work has shown that distributed representations of words in a vector space can be trained to

capture syntactic and semantic relationships between words [12], [26]. Such learned representa-

tions of words allow learning algorithms to combine semantic knowledge of words and achieve

better performance in natural language processing tasks.

In our work, we investigate two options for generating such representations. One is to directly

train this on our limited, but domain-specific training data. We will denote this as 1Hot. Another

option that also addresses the problem of data sparsity and allows for a more generalized model,

is to incorporate out-of-domain knowledge by pretraining word representations on larger corpora,

and we will denote this as w2v.

We expect that employing this second method will have advantages: First, by using pre-trained

word representations we can mitigate the issue of data sparsity in our training data. High-quality

word representations will map similar words to closely spaced points in the vector representation
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space. This allows us to use a smaller number of parameters and hyper-parameters in constructing

and training our RNN. Second, by training on the word representations the system will generalize

well in regards to out-of-vocabulary words. Words that were not seen during training will still be

mapped to a continuous vector that preserves its semantic relationships to words that were seen

during training. The RNN will therefore be able to produce reasonable if not accurate predictions

when encountering out-of-vocabulary words in a sequence.

To learn high-quality word representations we use the Google News corpus [27] which contains

more than 4 billion words. We also introduce 1 million words from the General Psychotherapy

corpus transcripts from [28] to allow the word representations to be more representative of our

target domain. The word representations are learned through the methods described in [12] using

the Google word2vec toolkit [29]. Since our final objective is to estimate the behavior metrics for

word sequences we reduce the vector dimensionality from the commonly-used size of 300. In our

experiments we tried vector dimensionality configurations of 300, 50, and 10.

The continuous word representations are incorporated into the RNN system by fixing the

weights in the embedding layer with the learned word to vector mappings. These weights are

then maintained during training to preserve the learned word representations.

2.4.3 Joint optimization

Using pretrained word representations the RNN learns to predict the behavior ratings from contin-

uous vectors that capture the semantic relationships between words. However, although these word

vectors encode a lot of semantic information they are not optimized for predicting behavior. By

jointly training these word vectors with the behavior ratings the word representations become more

indicative of behavior where appropriate while still maintaining semantic relationship. In training

our RNN with pretrained word representations we initialize with the above learned word vectors

and allow the weights in the embedding layer to be updated to allow for this joint optimization.

We will denote this by w2v-joint.
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2.4.4 Fusion layer

Our RNN system is trained to predict behavioral ratings for different sequences of words. Since

we do not have local-level annotations to compare these predictions with, we evaluate the system

at the global session-score level. We do this by fusing the local predictions to arrive at a global

predicted score, similar to the human process of integrating behavioral information over time to

arrive at a gestalt opinion of the session.

We observed that, in general, the median predicted rating exhibited lesser bias as an estimator of

the true rating than the mean rating, possibly due to the former’s robustness to outliers. Therefore,

we used an RBF-Kernel Support Vector Regressor to learn a mapping from the median predicted

rating to the true rating on our training data. At test time, we applied this map on the median

predicted test rating to obtain the predicted session-level rating, which we then compared against

the true session-level rating that had been used to train our RNN system.

2.5 Experimental Results

In our experiments we used a leave-one-couple-out cross-validation scheme to separate train and

test data. In each fold one couple is held out while the rest are used for training. We applied a

sliding window with a 1-word shift across each session to generate multiple training sequences

and trained each RNN architecture for 25 epochs. We also tried different dimension sizes for the

pretrained word vectors and found that the best results can be obtained from a dimension size of

10.

2.5.1 Binary classification of behavior

We first focused on binary classification of “Negativity” at the session level which is easier to

compare with human annotations. A threshold was applied to the average of behavior metrics in a

session to classify that session into High or Low Negativity. For each configuration an Equal-Error
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Table 2.1: Classification accuracy (%) on negativity for different input sequence lengths

RNN Configuration Input sequence length (words)
unigram bigram trigram

1Hot 87.86 85.71 86.43
w2v 87.5 87.1 86.8

w2v-joint 88.93 88.21 87.86

Rate threshold for the binarization task was obtained from the training data. We trained using

different context length for each of the proposed RNN configurations.

The classification accuracy for the different RNN configurations with varying input sequence

lengths is shown in Table 2.1. We observe, as expected due to limited data, a slightly decreasing

accuracy as context is increased, but we also see that the accuracy drop is minimal. We also observe

that the pretrained word representations (w2v) are more robust than embeddings that only employ

only domain data (1hot) but can become even more robust by joint training (w2v-joint).

Note that while the relative improvement is significant it is also limited by the upper limit –

even humans do not agree 100% – so the binary evaluation task is limiting our evaluation abilities.

For instance, if the upper limit was 100% then we have about 15% relative improvement but if the

upper limit is 92% then this jumps to a relative 40% improvement.

2.5.2 Predicting true behavior ratings

2.5.2.1 Behavioral distribution

Observing the individual markers of negativity throughout a couples interaction per session we

see that the w2v-joint system provides a more reasonable distribution of behavior metrics: the

behavioral histogram is more skewed towards the true rating value, while the 1-hot system has

very few discriminating data points. For example, Figure 2.3 shows the distribution of the sequence

scores for one session.
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Figure 2.3: Comparison of distribution of scores for words in a session for 1-hot system (bottome)
versus w2v-joint (top)

2.5.2.2 Handling out-of-vocabulary words

We also analyzed the performance of our RNN system on unseen data: words that were out-of-

vocabulary during training. The pretrained system (w2v-joint) is able to exploit information

from domain-OOV words through their similarity in the general pretraining corpus to seen do-

main words. Table 2.2 shows some examples of domain-OOV words and their estimated behavior

metrics for negativity, where 0 and 1 indicate absence and presence respectively.

Table 2.2: Examples of out-of-vocabulary words and their behavior metrics

OOV Word Behavior Metric
for Negativity

denies 0.91
kill 0.87

dissatisfaction 0.75
funner 0.26
doggie 0.22

coordination 0.09
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2.5.2.3 Agreement with human annotators

To better evaluate our system performance we estimated the behavior ratings which are obtained

through the fusion layer. We compared the estimated behavior ratings to those from human annota-

tors using Krippendorff’s alpha. In the first comparison we randomly replaced a human annotation

with our predicted rating for all sessions. We found that the jointly optimized word representations

gave ratings that had better agreement with human ratings than conventional one-hot vectors. Next,

we replaced human annotations that deviated most from the mean with our predicted ratings. In

this setting we found that our predicted ratings had higher inter-annotator agreement than human-

only annotations. This shows that with jointly optimized word representations our RNN system

can achieve better inter-annotator agreement than outlier human annotators. The inter-annotator

agreement of our predicted ratings for the different comparisons is shown in Table 2.3.

Table 2.3: Comparison of agreement using Krippendorff’s alpha

Annotator Configuration
Krippendorff’s alpha

1Hot w2v-joint

All human annotators 0.821

Random replacement with random
predictions (average)

0.492

Random replacement with machine
predictions (average)

0.7611 0.7739

Outlier replaced with machine
prediction

0.7997 0.8249

2.6 Conclusions

In psychological evaluations of therapy sessions, ratings for behaviors are very often annotated

at the global session-level. This coarse resolution drastically increases the difficulty of learning

frame-level or utterance-level behaviors. In this chapter we have developed a RNN system for
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estimating behavior in variable-length context windows at the frame level. This enables us to

observe continuous metrics of behavior in a sliding window and allows for fusion of behavior from

different modalities. The RNN was trained in a data limited environment and only global ratings.

We showed that by pretraining word representations on out-of-domain large vocabulary corpora

and performing joint optimization we can solve the issue of data sparsity in our data and achieve

increased robustness to out-of-vocabulary words. Finally we applied top level fusion on the frame-

level behavior metrics to evaluate the behavior trajectories and estimate the true session rating. The

estimated behavior rating from our system achieves high agreement with trained human annotators

and even outperforms outlier human annotations.

This chapter proposed a RNN system that can be trained in a data limited environment to obtain

meaningful behavior trajectories in a couples interaction session. This is the first step in allowing

for detailed online analysis by psychologists of the interplay of behaviors in couples interactions at

a finer resolution. Current observational studies in psychology often involve the time-consuming

and expensive process of annotating specific behaviors in lengthy sessions. In the future this model

can be deployed for a more automated method of evaluating behavior in human interactions.
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Chapter 3

Unsupervised Learning of Deep Sentence Embeddings

Previous NLP methods have mainly utilized N-grams for behavior annotation using count-based

or RNN language models [10], [30], [31]. While N-gram models are suited for modeling language

structure they are unable to capture semantic information of entire speech segments. To conceptu-

alize linguistic information from larger context Tanana et al. [32] proposed two methods for deriv-

ing sentence features. One was a discrete sentence feature model using N-grams and dependency

relations in the parse tree. The other was a recursive neural network based on word embeddings in

addition to the parse tree. These methods sought to encode contextual meaning of sentences into

vector representations based on functional relationships of words from the dependency tree.

In this chapter we present an unsupervised deep learning method for deriving distributed vec-

tor representations of sentences that are well-suited for behavior annotation. We explore differ-

ent methods of training such vectors and demonstrate the benefits of unsupervised training on

closely-matched out-of-domain data. We also propose a comprehensive framework for modeling

human behavior using recurrent neural networks (RNN) and the learned deep sentence embed-

dings. The RNN framework estimates the trajectories of behavior in conversational interactions

using sequences of sentence embeddings. Finally, we evaluate our system on behavior ratings

from the Couples Therapy Corpus using a regression model on top of the behavior trajectories.
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3.1 Deep Sentence Embeddings

Recurrent neural networks have shown great ability in capturing temporal information in sequences

by embedding past history information within hidden states in intermediate layers. Using these

hidden states the network then makes the best output decision conditioned on this representation

of history [33].

Later, it was shown in [34] that significant improvements in NLP tasks such as machine trans-

lation could be obtained by embedding the whole history before generating the output. These

networks were referred to as sequence-to-sequence models and incorporate an encoder-decoder

architecture that encodes the entire input before generating the output at the decoder stage. The

power of sequence-to-sequence models in NLP tasks stems from the fact that the structure of lan-

guage is non-deterministic and highly dependent upon context [34]. By encoding the entire input

as an embedding the network learns how to extract relevant information from the whole input be-

fore generating the output. In a way, we can say that the hidden states of the encoder represent

the contextual concept that is conveyed by the input sentence. These hidden states are sometimes

referred to as deep sentence embeddings and have been shown to be more adept in many NLP tasks

than knowledge-based or handmade features [35], [36].

3.2 Methodology

3.2.1 Deep conversational sentence embeddings

Deep sentence embeddings represent input sentences at a higher or “deeper” level of abstraction.

However, the quality of embeddings depends greatly on the training methodology and learning cri-

teria. Our goal is to estimate behavior in human interactions, therefore it follows that the sentence

embeddings should represent expressed behaviors and conveyed concepts within the conversa-

tions. To this end we employ neural conversation models (CM) [37]. These are encoder-decoder
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networks that have been trained to give responses from queries and are capable of basic conversa-

tions. Embeddings from these networks represent real conversations and encode relevant content

of the conversation. While they are not explicitly trained to identiy behavior, given the short-term

stationarity of behavior we hypothesize that behavioral information is also represented in these

embeddings. Therefore, we extract sentence embeddings from conversational encoder-decoder

networks to use as input features for behavior annotation. The encoder-decoder architecture is

shown in Figure 3.1 and is described in further detail in Section 4.

…

Attention 
Mechanism

hi-1hi-2 hi
…

wi-1wi-2 wi

y1y0 y2

Utterance uk

Reply rk

…Sentence embedding vk

Figure 3.1: The encoder-decoder conversation model for generating deep sentence embeddings

3.2.2 Behavior annotation

The method described in the previous section is used to generate deep sentence embeddings for

each utterance in our dataset. We then combine multiple utterances into sequences of sentence

embeddings. We view these sequences as a representation of conversational information within the

interaction over time. Our assumption is that these sentence embeddings generalize information

from the speaker in a much richer form than those obtained from the word-level while maintaining
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temporal information. These sequences of sentence embeddings are therefore ideal for use as

features in identifying behavior throughout the interaction.

We apply a sliding window to generate frames of sentence embedding sequences and train an

RNN to estimate behavior ratings for each frame. The RNN consists of an LSTM and a feedfor-

ward layer in the hidden layers with dropout added after each layer. Since we are estimating a

normalized behavior rating between 0 and 1 we use a sigmoid function at the output layer. This

architecture is based on the LSTM-RNN described in Chapter 2.4.1 which was proven to be ef-

fective in modeling behavior with limited training data. Figure 3.2 shows the architecture of the

LSTM-RNN.

3.3 Corpora and Learning Methods

3.3.1 Training deep sentence embeddings

In our experiments we used the OpenSubtitles dataset [38] to train the encoder-decoder model for

generating deep sentence embeddings. This dataset contains dialogue from movies which is similar

to the back-and-forth structure of the interaction in our target behavior dataset. We processed the

data by segmenting paragraphs into sentences. We also removed various generic expressions such

as “I don’t know” to prevent overtraining on responses that have little relation to queries. Similar

to [37] we treat any two consecutive sentences as an utterance-reply pair without considering who

uttered the sentence. We then trained the encoder-decoder model to predict the reply given the

utterance. However, our work differs in that our final goal is not a working conversation model,

but rather a rich semantic representation of the utterance to be used as input feature for behavior

annotation. Therefore we want the sentence embeddings to be as compact as possible while still

capturing rich contextual information. In our experiments we tried embedding sizes of 100, 500,

and 1024 with 3 LSTM layers in the encoder and decoders. We also add an attention mechanism

[39] after the encoder to allow the network to focus on more salient portions of the input. The final

training set consists of 35 million utterance-reply pairs.
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Figure 3.2: Architecture of the RNN for estimating frame-level behavior from sequences of sen-
tence embeddings

3.3.2 Behavior Annotation in Couples Therapy

3.3.2.1 Couples Therapy Corpus

To train behavior models we use data from the UCLA/UW Couple Therapy Research Project [1]

which contains audio and video recordings of 134 couples with real marital issues interacting over

multiple sessions. In each session, couples discuss a specific topic chosen in turn for around 10

minutes. The behaviors of each speaker are then rated by multiple annotators based on the Couples
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Interaction [5] and Social Support [40] Rating Systems. The rating system contains 33 behavioral

codes such as “Acceptance”, “Blame” and “Negativity”. Each annotator provides ratings for these

codes on a Likert scale of 1 to 9 for every session, where 1 indicates strong absence and 9 indicates

strong presence of the behavior. There are 2 to 12 annotators per session with the majority of

sessions (∼ 90%) having 3 to 4 annotators. Finally, these ratings are averaged to obtain a 33

dimensional vector of behavior ratings per interlocutor for every session.

In this Chapter, we focus primarily on the behavior code “Negativity”. For our experiments we

use manual transcriptions of sessions with mean annotator ratings in the top and bottom 20% of

the code range for sessions with good audio quality.

3.3.2.2 Frame-level behavior metrics

Behavior ratings in the Couples Therapy Corpus are annotated for entire sessions and no labels

are provided for individual utterances. However, it is infeasible to treat entire sessions as a single

sequence of embeddings due to the high complexity of such a model and data scarcity issues. We

also want fine annotations of utterances in addition to session-level annotations. Therefore we

employ weakly supervised learning and assign session-level ratings as target values for all short

embedding sequences in a session. This assumes that all utterances in a session relate to the overall

rating in a non-linear and complex manner and by only considering shorter sequences we can still

map back to the session rating.

In our experiments we generate frames of embedding sequences using a sliding window of 3

utterances with a shift of 1 utterance. The RNN takes these embedding sequences as input and is

trained to predict the session-level rating using an SGD optimizer. The result is an overlapping

trajectory of frame-level behavior metrics over the session. We refer to these values as metrics

since they convey information of behavior and indirectly relate to the session rating in some form.
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3.3.2.3 Annotating behavior

Since we do not have annotations for individual utterances to compare with, we validate our system

with session-level ratings. We do this by fusing, using the techniques described below, the frame-

level behavior metrics to derive an estimate for the session-level score. In a sense this method is

similar to the human process of integrating behavioral information over time to arrive at a gestalt

opinion of the session.

To compare results we apply the fusion method used in our previous work [10]. Specifically,

we used an RBF-Kernel Support Vector Regressor to learn a mapping from the median of the

frame-level behavior metrics in a session to the true rating. At test time, we apply this map on

the median of the behavior metrics to obtain an estimated rating for the entire session. Although

there are many different fusion techniques we implement this method for consistency with prior

work. Session-level fusion is not the focus of this study. An overview of our proposed behavior

annotation framework is shown in Figure 3.3.
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Figure 3.3: The behavior annotation framework
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3.4 Experimental Evaluation

In all our experiments we used a leave-one-couple-out cross-validation scheme to separate the

Couples Therapy data into train and test sets. For each fold data from one couple is held out

from training and used for evaluation. This resulted in a total of 134 folds. The approach of our

experiments are as follows:

• Train a conversation model using an encoder-decoder architecture by predicting replies to ut-

terances in the OpenSubtitles dataset. This first step is domain-data independent and is only

done once. The following steps are run on the per-fold split.

• Extract deep sentence embeddings for all utterances in the Couples Therapy Corpus. Use the

attention layer of the conversation model as an embedding.

• Use a sequence of sentence embeddings as features and train an RNN to estimate the session-

level ratings from each embedding sequence. This is the first supervised step.

• To obtain session-level behavior ratings we train an RBF-Kernel SVR to map the median of

frame-level behavior metrics to a final score for each fold.

3.4.1 Predicting true behavior ratings

For validation we compared the estimated behavior rating from the fusion outputs to scores given

by human annotators. We trained different RNNs for behavior annotation with various types of

embedding sequences for comparison. These included our previous work of word-level sequences

[10], the sum of word2vec [12] embeddings in a sentence, and deep sentence embeddings extracted

from an English-to-French neural machine translation (NMT) model [34]. For fair comparison the

dimensions of the embeddings were fixed to the same size.

It is important to note that there is no absolute truth in the reference annotations. These are

subjective, and human annotators have disagreements. As such we can at best achieve to reach
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agreement with the mean comparable to the inter-annotator agreement. We thus have two vali-

dation metrics: (1) The Mean Absolute Error (MAE) with the average rating, that we know is

not necessarily the gold standard; and (2) Treat our system as another annotator and see how it

compares to existing human expert annotators in terms of inter-annotator agreement.

Table 3.1 shows the Mean Absolute Error (MAE) between estimated ratings of different models

and the average score of human annotators. Our proposed model using deep sentence embeddings

performs significantly better than prior work [10] (Mann-Whitney U-test, p < 0.05).

Table 3.1: MAE of estimated ratings using different models

Model MAE

Word-level sequences [10] 1.53
Sum of word2vec 1.43
NMT embeddings 1.68
CM embeddings 1.37

To evaluate inter-annotator agreement we mixed our estimated ratings with human annotations

and calculated Krippendorff’s alpha coefficient for two different configurations. In the first con-

figuration we randomly replaced one human annotation with estimated ratings. We found that

while all models achieved lower inter-annotator agreement than human-only annotations, the sys-

tem trained on embedding sequences from the conversation model gave the best results. Next, we

selected human annotations that deviated most from the mean and replaced them with estimated

ratings. Again we found that our proposed method gave the highest agreement and even outper-

formed outlier human annotators in terms of agreement with other annotators. Table 3.2 shows

the inter-annotator agreement between estimated ratings and human annotators under the differ-

ent configurations. The Krippendorff’s alpha for random replacement with random values is also

shown as reference.
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Table 3.2: Comparison of inter-annotator agreement using Krippendorff’s alpha

Annotator Configuration Krippendorff’s Alpha

All human annotators 0.821

Random replacement with
random predictions 0.492

Word seq. [10] Sum W2V NMT embd. CM embd.

Random replacement with
machine predictions 0.7739 0.7776 0.7511 0.7832

Outlier replaced with ma-
chine prediction 0.8249 0.8368 0.8010 0.8403

3.4.2 Rating behaviors in text

To see how our system performs on out-of-domain data we rated negativity on dialogue from the

television series “Friends” as an example. We used transcripts from the show and tokenized each

speaker turn into one or more utterances. To track behavior in the overall interaction we assumed

that all utterances originated from a single person and applied the sliding window on all the data.

Even though “Friends” is a comedy and is expected to be mostly positive, our system was able

to identify many utterances that seem to exhibit negative behavior. Some examples of negativity

in the dialogues are shown in Table 3.3. These results are encouraging in that they show how

our behavior annotation framework is able to learn from weak labels and be transferable to other

domains.

3.5 Conclusions and Future Work

In this chapter we proposed a behavior annotation framework based on deep sentence embeddings

trained using neural conversation models. We theorize that sentence embeddings from conversation
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Table 3.3: Examples of negativity in utterances from Friends

Less Negative Sentences

Alright, this barbecue is gonna be very fun

I’m not saying he has to spend the whole evening with me, but at least check in .

More Negative Sentences

I’m the girl in the veil who stomped on your heart in front of your entire family.

Joey, this is sick, it’s disgusting, it’s not really true, is it?

models are more adept at capturing conversational concepts which relate better to behavior. We

then modeled interactions using sequences of these embeddings and trained an LSTM-RNN to

estimate trajectories of behavior in Couples Therapy Sessions. Finally, we evaluated our system

by fusing local behavior metrics into a session-level rating and compared with human annotations.

The results of our experiments showed that using embedding sequences from conversation models

as input features for behavior modeling achieves higher inter-annotator agreement with human

annotators over other types of sentence embeddings. Such an approach gives session-level behavior

ratings close to human annotators and even outperforms outlier humans.

Our system seeks to alleviate the expensive and time-consuming process of manual behav-

ior annotation required for observational studies in psychotherapy. In addition, through weakly

supervised learning, we provide objective behavior ratings at a finer resolution of per utterance.

The utterance-level behavior ratings are more capable than previous works at capturing behavior

trajectories in a couples interaction session and allow for more detailed analysis by psychologists.
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Chapter 4

Online Multitask Learning

4.1 Introduction

Word embeddings exploit the use of language by learning semantic regularities based on a context

of neighboring words. This form of contextual learning is unsupervised, which allows learning

from large-scale corpora and is the main reason for its effectiveness in improved performance

on many tasks such as constituency parsing [41], sentiment analysis [42], [43], natural language

inference [44], and video/image captioning [45], [46].

With the introduction of sequence-to-sequence models (seq2seq) [47], embeddings were ex-

tended to encode entire sentences and allowed representation of higher level concepts through

longer context. For example, [48] obtained sentence embeddings, which they referred to as skip-

thought vectors, by training models to generate the surrounding sentences of extracts from contigu-

ous pieces of text from novels. The authors showed that the embeddings were adept at representing

the semantic and syntactic properties of sentences through evaluation on various semantic related

tasks. [49] extracted sentence embeddings from an LSTM-RNN which was trained using user

click-through data logged from a web search engine. They then showed that embeddings gener-

ated by their models were especially useful for web document retrieval tasks. Later, [14] extracted

sentence embeddings from a conversation model and showed the richness of semantic content by

applying an additional weakly-supervised architecture to estimate the behavioral ratings of couples
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therapy sessions. More recently, [50] learned unsupervised sentence embeddings using an exten-

sion of the training objective used in word2vec [12]. The authors proposed an unsupervised model

which composes sentence embeddings from word vectors and n-gram embeddings through joint

optimization. They then showed the generalizability of their sentence embeddings by evaluating

on a wide range of downstream NLP tasks.

Sentence representations that are not task-specific but rather general-purpose and can be ap-

plied directly to multiple NLP tasks have also been proposed. [51] achieved this by training for

various tasks such as machine translation, constituency parsing, and image caption generation, to

produce embeddings which improved the translation quality between English and German. Sub-

sequently in [52] it was hypothesized that a single Natural Language Inference (NLI) task [53]

was sufficient in learning general purpose embeddings due to it being a high-level understanding

task. The authors then showed the effectiveness of the sentence embeddings in 12 transfer tasks,

examples of which include semantic relatedness, sentiment analysis, and caption-image retrieval.

Later, [54] presented a large-scale multitask framework for learning general purpose sentence em-

beddings by training with a multitude of NLP tasks, including skip-thought training, machine

translation, entailment classification, and constituent parsing. Similarly, [55] proposed a trans-

former based sentence encoding model trained on multiple tasks which also include skip-thought

training, conversational response generation, and NLI.

The benefit of many of the methods in the aforementioned work is that the embedding trans-

formation is learned on large amounts of data. Since the generation of natural language is an

extremely complex process, it is crucial to leverage large corpora when training embeddings so

as to capture true semantic concepts instead of regularities of the data, e.g. domain-specific topics

[56]. Previously this was achieved through the use of abundant unlabeled datasets and unsuper-

vised learning techniques [48], [50], [57]. However, as recent work [54], [55] has shown, learning

sentence representations from multiple labeled datasets can produce significant improvements over

prior unsupervised methods.
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A common issue with unsupervised training of word or sentence embeddings is the unpre-

dictability of the resulting embedding transformation. In other words, the information carried by

embeddings is highly uninterpretable and may often contain redundant or irrelevant information

[58]. In addition, depending on training conditions such as architecture or dataset, the representa-

tions might fail to capture informational concepts or even semantics of the input data [52].

It has also been noted that the quality of sentence embeddings is often highly dependent on the

training dataset [14], [49]. In fact, the benefit of using matched datasets may be so prominent that

embeddings trained on small domain-relevant datasets could yield results better than those trained

on larger generic unlabeled datasets [48]. And while many general purpose sentence embeddings

have been trained with large amounts of labeled data through multitasking, applications by others

to their respective domains might not guarantee the same significant improvement of results. This

problem is inherent in the fact that a domain adaptation step is generally still required over the

embeddings.

One way that unsupervised representations can better gain domain-specificity is through multi-

task learning (MTL). For example prior work has shown the benefits of leveraging MTL to enhance

the informational content of word embeddings in many NLP applications [59]–[61]. In recent

years, through the advancement of computational methods, MTL has been applied to the learning

of sentence embeddings that allow for a larger context window. For example, [62] jointly learned

sentence embeddings with an additional pivot prediction task in conjunction with sentiment classi-

fication. [63] predicted neighboring words as a secondary objective to improve accuracy of various

sequence labeling tasks.

One of the challenges in MTL is that the labels required by the secondary task are not often

available for the vast amounts of unlabeled datasets employed in representation learning. One of

the contributions towards this direction is that we do not require the existence of such labeling.

Our work differs in that we build on unsupervised contextual learning to learn the sentence rep-

resentation and attempt to guide the sentence embeddings to become domain relevant through a

related multitask objective. The underlying assumption of our work is that the behavior expressed
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in two adjacent sentences will be the same due to short term stationarity. However, the resulting

representation encodes a vast amount of information, which we hope to further attune towards

domain-relevance. We achieve this through the related task of emotion-related labels. Unlike prior

works however, our second emotion-related guiding task does not require prior labeling. We target

unsupervised scenarios and use a naive scheme based on limited human-knowledge to automat-

ically generate multitask labels from unlabeled data in an online manner. We hypothesize that

by adopting an extremely simple form of sentiment analysis [64] as the multitask objective the

unsupervised sentence embeddings will become more adept in behavior understanding.

Specifically in this work we aspire to combine the advantages of unsupervised learning with

multitask learning to derive representations that are better suited for affect and behavior recognition

tasks. We propose an online MTL framework which aims to guide unsupervised sentence embed-

dings into a space that is more discriminative in the targeted application scenario even under the

use of mismatched and limited data. In our framework, transfer of domain-knowledge is achieved

through an additional task in parallel with contextual learning. The labels for the multitask are

generated online from the data to maintain an unsupervised scenario. We show that embeddings

trained through this framework offer improved deftness in multiple supervised affective tasks.

4.2 Unsupervised Multitask Embeddings

In this section we describe the methods used to learn domain-adapted unsupervised sentence em-

beddings. We introduce the learning of sentence embeddings using sequence-to-sequence models

followed by the formulation of our online multitask training objective and its architecture.

4.2.1 Sequence-to-sequence sentence embeddings

The sequence-to-sequence model maps input sequences to output sequences using an encoder-

decoder architecture. Given an input sentence x=(x0,x2, ...,xT ) and output sentence y=(y0,y2, ...,yT ′),
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where xt and yt represent individual words, the standard sequence model can be expressed as com-

puting the conditional probability

P(y |x) =
T ′

∏
t=0

P(yt | yi<t ,s,h) (4.1)

where s is the sequence of outputs st from the encoder and h is the internal representation of the

input given by the last hidden state of the encoder. For a given dataset D = {(xn,yn)}N
n=1, we

denote the learned internal representation as

hθ ≡ f (x |D) = f (x |θ)

where f (·) is the encoder function and θ is the set of parameters resulting from D .

The internal representation hθ encodes the input x into a vector space that allows the decoder

to generate a good estimate of y. In cases where D contains semantically-related data pairs, hθ

can be viewed as a semantic vector representation of the input, or sentence embedding, which

can be useful for subsequent NLP tasks. In our case we apply contextual learning and designate

consecutive sentences in continuous corpora as x and y.

While this model allows us to obtain semantically rich embeddings through training on unla-

beled data, the quality of the embeddings is highly influenced by biases in the data and prevents the

embeddings from becoming specialized in any target task [52]. Therefore we propose to enhance

the quality of unsupervised sentence embeddings through multitask learning.

4.2.2 Multitask embedding training

The addition of a multitask objective can guide embeddings into a space that is more discriminative

in a target application. We hypothesize that this holds true even when the multitask labels are

generated online from unlabeled data with no assumption of label reliability, as long as there is

some relation between the multitask and target application.
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Assuming an online system which generates multitask labels b for each input x we can augment

the dataset to yield Daug = {(xn,yn,bn)}N
n=1. We then aim to predict this new label b in conjunction

with the original output sequence y. This is implemented in our seq2seq model by adding another

head to the internal representation h, shown in Figure 4.1, which we will refer to as the multitask

network. In addition to Eq. 4.1, the model now also estimates the conditional probability

P(b |x) = g(h |Daug) = g(hθaug)

where g(·) is the network function for online transfer learning using the multitask network and

hθaug is the new internal representation given by Daug. In this work, g(·) is implemented using a

multilayer perceptron. The overall architecture is shown in Figure 4.1.

The training loss is then the weighted sum of losses from the multiple tasks, defined as

J = λ ·L1(y,x)+(1−λ ) ·L2(b,x)

where L1 and L2 are the cross entropy losses for contextual learning and the additional task, re-

spectively.

With most multitask setups there is an issue on how to control the training ratio λ to account

for different data sources. For example, if there is no overlap in inputs of the multiple tasks then λ

can only alternate between 0 and 1 during training to switch between the different tasks. However,

since we propose a multitask objective whose labels are generated from incoming data we are able

to freely adjust λ . It is possible to adjust the multitask ratio as training progresses to put emphasis

on different tasks but we do not make any assumptions on the optimal weighting scheme and give

equal importance to both tasks by setting λ to 0.5.

4.2.3 Online multitask label generation

To guide the embeddings in becoming more suitable for affective tasks, we select a multitask

objective that classifies the polarity in sentiment (positive or negative) of input sentences. Tasks
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Figure 4.1: Bidirectional sequence-to-sequence conversation model with multitask objective
The GRU blocks represent multi-layered RNNs using GRU units, C is the concatenation function,
and Attn is an attention mechanism [65] with dotted arrows representing connections to and from
other timesteps. For simplicity, only one timestep (yt) of the decoder is shown.

such as emotion recognition or human behavior analysis [66] are more complicated than these

two affective states, however we hypothesize this is a related task allowing for domain knowledge

transfer into the sentence embeddings.

We generate the affective labels for each input during training using an online mechanism. In

our online approach we apply the simplest method by automatically labeling inputs using a simple,

knowledge-driven, look-up table of likely affect of single words [67]. Specifically, we use words

categorized in the two top-level affective states: negative and positive emotion. An input sentence

is assigned a Negative or Positive label based on the majority number of words corresponding to

each affective state. Some examples of affective words in the affective look-up table are shown in

Table 4.1.

Evidently, this labeling approach differs slightly from sentiment analysis [64], which mostly

focuses on classifying the polarity of subjective opinions. In our case we label all the inputs naively

based on the count of affective words and do not consider semantic context or even simple word

negation. We expect this approach to deviate greatly from the ground truth, and that truth may
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be contextual, subjective, and fluid, however we hypothesize the inclusion of affective knowledge

in embeddings will still be beneficial in identifying more complex behaviors or emotions later.

Specifically, we do not want to constrain the system through methods such as [64] but rather place

emphasis and focus on domain relevant terms.

Table 4.1: Examples of positive and negative affect words

Affective State

Positive Negative

cute love ugly hate
rich nice hurt nasty
special sweet wicked distraught
forgive handsome shame overwhelm

4.3 Evaluating on Behavior Identification using Embeddings

After MTL training, the encoder in the seq2seq model is used to extract embeddings for use as fea-

tures in behavior identification in long pieces of text (which we refer to as sessions). Each session

has a behavior label and contains multiple sentence embeddings. We define sentence embeddings

to be the concatenation of the final output states of both the forward and backward RNNs in the

encoder. We also concatenated the output states from all the intermediate layers of the encoder.

This is an extension of history-of-word embeddings [68] and is motivated by the intuition that in-

termediate layers represent different levels of concept. By utilizing intermediate representations of

the sentence, we expect that more information related to human behavior can be captured.

To evaluate the ability of the proposed system in creating behavior-tuned embeddings we apply

the embeddings to task of behavior and emotion analysis. We do this in multiple ways: from min-

imal information about the domain, to training supervised neural networks over the unsupervised

sentence embeddings. These methods are described below.
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4.3.1 Unsupervised clustering of embeddings

As an initial evaluation step we analyzed the performance of the embeddings on a binary behavior

classification task using minimal training on the Couples Therapy Corpus which will be described

below. We applied a simple k-means clustering method on sentence embeddings from training

sessions to obtain two clusters. We then labeled the clusters by randomly selecting a single session

from the training set as seed and assigning the session label to the cluster which the majority

of embeddings in that session belonged to. The other cluster was subsequently labeled as the

opposite class label. Final test session labels were predicted based on which cluster the majority

of embeddings from a session were in. Although this method of behavior classification is very

rudimentary with the possibility the randomly selected session being an outlier, it nonetheless

gives valuable insight on the discriminative power of the sentence embeddings. It should be noted

that we do not make any assumptions on the meaning behind the clusters other than their adeptness

in classifying behavior.

4.3.2 Embeddings as features in supervised learning

We also evaluated two supervised techniques on both the IEMOCAP and Couples Therapy Corpus.

The two methods are k-nearest neighbor and a more advanced neural network-based method, both

of which utilize the unsupervised embeddings as features in supervised learning.

4.3.2.1 k-Nearest neighbors

In this evaluation scenario we used the labels in the training data towards constructing a very

simple classifier using the k-nearest neighbors (k-NN). All embeddings in the training set were

assigned the label of the session they belonged to. A test embedding was then labeled according to

its k-nearest neighbors in the training set. The final session label was obtained by a majority vote

over all embeddings in the session.
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4.3.2.2 Neural networks

Finally, we employed neural networks to estimate behavior ratings as well as recognize emotions.

For behavior annotation we applied the framework proposed in [14]. Sessions were segmented into

sentences and represented as a sequence of embeddings. A sliding window of size 3 was applied

over the embeddings followed by an RNN using LSTM units. LSTM units were used instead of

GRUs, which were used in the seq2seq model, to allow direct comparison with results from [14].

However we do not expect significant differences in performance between the two types of units,

as was shown by [69] in their own applications.

The network was trained to predict the session rating from each window of multiple sentences

representations. The final rating was obtained by training a Support Vector Regressor to map from

the median value of all window predictions in a session to the session rating.

4.4 Experimental Setup

4.4.1 Datasets

In this section we describe the datasets that were used in the experiments. We used the Open-

Subtitles2016 corpus [70] to pre-train sentence embeddings in the online multitask framework. To

evaluate the embeddings in domain-specific tasks, we used the Couples Therapy Corpus [1] and

IEMOCAP [71].

4.4.1.1 OpenSubtitles

Since our final task is emotion and behavior analysis of human interactions, we applied a dataset

that contains conversational speech to pre-train our embeddings. A natural choice for a source rich

in dialogue is subtitles from movies and TV shows. To this end we used the OpenSubtitles2016

corpus [70] to train the unsupervised sentence embeddings.
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The OpenSubtitles2016 corpus was compiled from a database dump of the opensubtitles.org

repository and comprises of subtitles from 152,939 movies and TV episodes spanning a time pe-

riod of over 20 years. Out of more than 60 languages in the corpus we selected only subtitles

in the English language for use in our training. The original corpus applied basic pre-processing

through text standardization and segmentation of the subtitles into sentences [72]. We then used

further techniques to clean up the text by applying auto-correction of commonly misspelled words,

contraction removal, and replacement of proper nouns through parts-of-speech tagging.

To generate back-and-forth conversations we assigned consecutive sentences in the subtitles

as turns in an interaction. Since there is no speaker information in the corpus, distinguishing

between dialogues and monologues without the use of more advanced content analysis methods is

nontrivial. However, we assume that this difference in conversational continuity will be dampened

by the large amount of data available. We also reason that monologues also represent some form of

internal dialogue which also ties the concepts between sentences. More importantly, since our final

task is to represent behavior, we desire that sentence pairs carry information related to behavior.

This can be achieved through the concept of short-term behavior stationarity in which two nearby

sentences are likely to represent the same behavior, irrespective of turn-taking. This property was

also shown by [73] wherein correlations in behavior were observed across interlocutors.

After forming all utterance/reply pairs from the corpus we randomly sampled 30 million sen-

tence pairs as the final training data.

4.4.1.2 Couples Therapy Corpus

We evaluated our sentence embeddings in the task of annotating behaviors in human interactions

using data from the UCLA/UW Couple Therapy Research Project [1]. This corpus pertains to the

training of unsupervised, k-NN, and neural network learning methods described in the previous

section.

The Couples Therapy Corpus contains recordings of 134 real couples with marital issues inter-

acting over multiple sessions. In each session the couples each discussed a self-selected topic for
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around 10 minutes. The recordings of the session were then rated by multiple annotators based on

the Couples Interaction [5] and Social Support [40] rating systems. The combined rating system

describes 31 behavioral codes rated on a Likert scale of 1 to 9, where 1 indicates strong absence

and 9 indicates strong presence of the given behavior. The number of annotators per session ranged

from 2 to 12, however the majority of sessions (∼90%) had 3 to 4 annotators. Annotator ratings

were then averaged to obtain a 31 dimensional vector of behavior ratings per interlocutor for every

session. The ratings were binarized to produce labels for the classification task and the Likert scale

values were used for behavior rating estimation.

In this chapter we focused on the behaviors Acceptance, Blame, Humor, Sadness, Negativity,

and Positivity. While the behaviors Negativity and Positivity are more certain to benefit from the

affect labels in MTL, which may be loosely similar, the remaining behaviors have more specific

definitions which may be more challenging in identifying. We formulated two tasks for each of the

behaviors: (1) binary classification on the presence of a behavior and (2) regression on the rating

of a behavior in the whole session.

Similar to prior works [14], [74] we used only those sessions that had averaged ratings in the

top and bottom 20% of the dataset. In total, 85 individual couples were included in our evaluation

dataset. Evaluation of the models was performed using a leave-one-couple-out cross-validation

scheme. That is, for each fold, sessions from one couple were used as the test set while the

remaining sessions were used as the training and validation set. We report evaluation metrics

averaged across these 85 folds.

4.4.1.3 IEMOCAP

We also evaluated the effectiveness of our sentence embeddings in emotion recognition using the

Interactive Emotional Dyadic Motion Capture Database (IEMOCAP) [71]. We use this corpus

for domain-supervised learning using the embeddings as features. This dataset contains recordings

from five male-female pairs of actors performing both scripted and improvised dyadic interactions.
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Utterances from the interactions were then rated by multiple annotators for dimensional and cate-

gorical emotions. Similar to other works [75], [76], we focused on four categorical labels where

there was majority agreement between annotators: happiness, sadness, anger, and neutral, with

excitement considered as happiness. We used the transcripts from the dataset and removed any

acoustic annotations such as “laughter” or “breathing”. After discarding empty sentences our fi-

nal dataset consisted of 5,500 utterances (1103 for anger, 1078 for sadness, 1615 for happiness,

and 1704 for neutral). To evaluate the domain-supervised layers we used a leave-one-pair-out

cross-validation testing scheme and report the evaluation metrics averaged across 5 folds.

4.4.2 Model architectures and training details

4.4.2.1 Sentence embeddings

The sequence-to-sequence model with multitask objective comprises three sections: encoder, de-

coder, and the multitask network. The encoder was implemented using a multi-layered bidirec-

tional RNN using GRU units. We performed a grid search using hyper-parameter settings of 2 and

3 layers, and, 100 and 300 dimensions in each direction per layer. For the decoder a unidirectional

RNN using GRU units was used instead of bidirectional. The number of layers in the decoder were

the same as the encoder while the dimension size was doubled to account for the concatenation of

states and outputs from both directions.

The multitask network was implemented using a neural network with four hidden layers of

sizes 512, 512, 256, and 128. The final output had a dimension size of 2 to represent Positive

and Negative affect class labels. We used the rectified linear unit (ReLU) function as activation

functions in the hidden layers and a softmax activation function in the final output layer. No other

network hyper-parameters were tried for the multitask network.

The sentence embedding models were trained with the OpenSubtitles dataset for 5 epochs using

stochastic gradient descent with an added momentum term. The learning rate was set to 0.05 and

momentum set to 0.9. We also reduced the learning rate by a factor of 10 every epoch.
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4.4.2.2 Supervised behavior annotation

Similar to [14] we used a recurrent neural network to estimate behavior ratings in the Couples

Therapy Corpus. The network had a single recurrent layer implemented using LSTM units with

dimension size 50. A sigmoid function was applied before the output to estimate the normalized

rating value. In each fold one couple was randomly selected as validation to select the best model.

4.4.2.3 Supervised emotion recognition

A neural network with four hidden layers was used to classify emotions using embeddings of

sentences from the IEMOCAP dataset. The hidden layers were of size 256 and used ReLU as the

activation function. The model was trained for 20 epochs using Adagrad [77] as the optimization

method. No other network hyper-parameters were tried for the emotion recognition network. A

subset of the training data (∼10%) was used as validation in selecting the best model.

4.5 Experimental Results

We evaluated the performance of our unsupervised multitask sentences embeddings on the task

of behavior annotation in the Couples Therapy Corpus, as well as emotion recognition on the

IEMOCAP dataset. We also compared to multiple state-of-the-art general purpose embeddings

such as InferSent [52], GenSen [54], and Universal Sentence Encoder [55].

4.5.1 Results on Couples Therapy Corpus

We defined two sub-tasks in behavior annotation on the Couples Therapy Corpus: (1) binary clas-

sification of the presences of behaviors and (2) regression for real-valued session ratings of the

behaviors.

For the classification sub-task we used the accuracy averaged across all test folds as the eval-

uation metric. Table 4.2 shows the accuracy results on different behaviors in the Couples Therapy

Corpus. The addition of the multitask objective improved the classification accuracy of sentence
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embeddings from the conversation model across all behaviors except Positivity in unsupervised

classification with k-Means. Under supervised learning using k-NN, our multitask embeddings

improved accuracy on all behaviors except Humor. In terms of mean accuracy, our multitask em-

beddings performed better than other sentence embeddings with an absolute improvement over

no multitasking of 1.07% and 3.24% for unsupervised and supervised methods respectively. Our

multitask embeddings also achieved the highest mean accuracy over all the behaviors. The im-

provement over the second best results obtained from GenSen was statistically significant with

p-value < 0.006 using McNemar’s test.

For the regression sub-task we evaluated performance using Krippendorff’s alpha coefficient

[78]. Krippendorff’s alpha is a reliability measure of the agreement between independent observers

in regards to their annotation of data, commonly known as the inter-annotator agreement. We

used this metric to evaluate how well trained models would function as a replacement for human

annotators. Similar to [14] we evaluate the agreement with various ways of incorporating machine-

generated ratings. In the first method, human annotations were randomly replaced by the estimated

ratings in each session. This was performed 10 times to obtain the average Krippendorff’s alpha

of random injection. In the second method, the outlier annotation (rating farthest from the mean)

in each session was replaced by the estimated ratings.

Table 4.3 shows the inter-annotator agreement of the different injection methods. While no

system was consistently optimal, we observed that our online MTL embeddings were comparable

with state-of-the-art general purpose embeddings. In fact, statistical tests using Mann–Whitney U

test on the annotation errors showed no significant differences between the best model and ours.
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Table 4.2: Accuracy (%) of behavior identification using sentence embeddings

Method Embedding Model Acceptance Blame Humor Negativity Positivity Sadness Mean Accuracy

k-Means InferSent [52] 58.9 63.6 60.7 61.4 62.1 58.9 60.93
GenSen [54] 53.9 66.4 58.9 61.4 61.4 59.6 60.27
Universal Sentence Encoder [55] 59.3 65.7 59.6 61.8 64.3 59.6 61.72
Conversation Model [14] 61.9 65.4 59.1 64.6 65.7 57.9 62.43
+ Online MTL (proposed) 64.0 66.4 62.1 65.0 62.1 61.4 63.50

k-NN InferSent [52] 83.2 81.1 57.1 85.4 78.6 65.7 75.27
GenSen [54] 85.0 85.0 56.1 85.7 81.1 63.2 76.02
Universal Sentence Encoder [55] 80.0 82.5 60.4 83.9 79.6 66.8 75.53
Conversation Model [14] 79.6 80.0 59.6 85.7 82.5 64.6 75.53
+ Online MTL (proposed) 85.0 85.4 60.0 87.9 86.8 67.9 78.77

The improvement of our model over the next best performing model across all behaviors is statistically significant with p < 0.006.
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Table 4.3: Inter-annotator agreement (Krippendorff’s alpha) of estimated behavior ratings using different incorporation methods

Method Model Acceptance Blame Humor Negativity Positivity Sadness

Human 0.790 0.828 0.584 0.829 0.695 0.623

Random injection Random ratings 0.387 0.443 0.161 0.522 0.384 0.274
InferSent [52] 0.790 0.828 0.455 0.829 0.695 0.455
Gensen[54] 0.736 0.773 0.452 0.772 0.649 0.460
Universal Sentence Encoder [55] 0.742 0.773 0.457 0.778 0.643 0.472
Conversation model [14] 0.722 0.757 0.442 0.782 0.644 0.462

+ Online MTL (proposed) 0.735 0.773 0.450 0.787 0.645 0.468

Worst-annotation-out Random ratings 0.341 0.405 0.127 0.521 0.392 0.304
InferSent [52] 0.790 0.829 0.584 0.829 0.695 0.563
Gensen [54] 0.804 0.820 0.565 0.844 0.731 0.559
Universal Sentence Encoder [55] 0.814 0.818 0.575 0.846 0.726 0.574
Conversation model [14] 0.786 0.796 0.568 0.856 0.725 0.572

+ Online MTL (proposed) 0.801 0.815 0.567 0.861 0.727 0.578

No statistical significant differences were found between pairs of models, however all models have significant improvement over ran-
domly generated ratings.
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To factor out the influence of hyper-parameters and randomness of training we analyzed the

performance of all the seq2seq models in our hyper-parameter search space. For each model con-

figuration, five intermediate checkpoints from training were randomly selected. Sentence embed-

dings were then extracted from these individual models and applied to the behavior classification

task. We then compared the performance of models with and without multitask learning. The

standard error plot of the performance in Positivity and Negativity recognition is shown in Fig-

ure 4.2. We observed that the addition of the multitask learning objective collectively increased

performance in the final task for most behaviors. This shows that the addition of online transfer

learning through multitask to unsupervised sentence embeddings does indeed provide an advantage

in performance.
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Figure 4.2: Standard error plot of classification accuracy on Negativity and Positivity for various
model hyper-parameter configurations across multiple iterations

4.5.2 Results on IEMOCAP

We evaluated the performance of emotion recognition on IEMOCAP using weighted accuracy

(WA) which avoids inflation due to imbalanced number of labels in each class. This is also equiva-

lent to the macro-average of recall scores per class. In addition to general purpose embeddings we

also compared with other works that only used IEMOCAP transcripts [76], [79], [80] . It should

be noted that there is no official consensus on train/test split or evaluation procedure in IEMOCAP,
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and while we made every effort to be consistent with past work (in terms of label classes, number

of utterances used, and cross-validation scheme) the results may not be exactly comparable.

The results of emotion recognition on IEMOCAP are shown in Table 4.4. We observed that the

addition of online MTL improved the accuracy of conversation model embeddings by an absolute

value of 8.02%, which is more than 14% relative improvement. When comparing among our own

implementations we observed that the highest accuracy was obtained using embeddings from the

Universal Sentence Encoder which had a weighted accuracy of 64.83%. The system trained using

our sentence embeddings offered a close second by less than one percent with 63.84% accuracy.

Statistical analysis using McNemar’s test showed that the improvement of the best system over our

proposed embeddings was not significant. However, we observed significant improvement from

our model over embeddings from InferSent with p-value < 0.02. Given the considerably smaller

amount of pre-training data required and the simpler structure of our proposed MTL system this

similarity in performance to Universal Sentence Encoder and advantage over other embeddings is

notable.

Table 4.4: Weighted Accuracy of Emotion Recognition on IEMOCAP

Method WA (%)

Lex-eVector [79] 57.40
E-vector + MCNN [76] 59.63
mLRF [80] 63.80

InferSent [52] + DNN 62.60
GenSen [54] + DNN 60.62
Universal Sentence Encoder [55] + DNN 64.83
Conversation Model [14] + DNN 55.82
+ Online MTL (proposed) + DNN 63.84

4.6 Conclusion

In this chapter we explored the benefits of introducing additional objectives to unsupervised con-

textual learning of sentence embeddings. We found empirical evidence that supports the hypothesis
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that MTL can increase the affective deftness of unsupervised sentence embeddings, even when the

multitask labels are generated online using a naive, knowledge driven, approach.

Our proposed model has the benefit of not requiring additional effort in generating or collect-

ing data for multitask training. This allows learning from large-scale corpora in an unsupervised

manner while simultaneously applying transfer learning. In contrast to general purpose sentence

embeddings, our model for learning sentence representations is less complex and requires less

training effort, while at the same time yields similar or higher performance in our target task. We

have shown that there are benefits in adopting guided unsupervised learning during embedding

pre-training instead of overemphasis on universal applications.

While we do expect that further improvements can be obtained through better labels for the

multitask objective, that would entail additional effort in system design and label generation while

not undermining our conclusions. In addition, we also expect that multitask labels that are too

domain-specific (e.g. focusing on a specific way or definition of affective expression) may actually

hinder the performance of unsupervised embeddings.
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Chapter 5

Multimodal Approaches to Modeling Behavior

In this chapter I explore various multimodal approaches for modeling human behavior. I propose

two types of models that combine acoustic features with spoken language for the selected task

of emotion recognition. I then show that unsupervised pretraining on spoken language modeling

enables transfer learning of mutlimodal fusion improving the performance of emotion recognition

over other systems.

5.1 Introduction

Acoustic and visual elements in human communication, such as vocal intonation and facial expres-

sions, incorporate semantic information and paralinguistic cues conveying intent and affect [81].

For this reason many multimodal systems have been proposed which integrate information from

multiple modalities to improve natural language understanding. This effort has many applications

such as in video summarization [82], [83], dialogue systems [84], [85], and emotion and sentiment

analysis [86]–[89].

The study of multimodal fusion in affective systems is an especially prevalent and important

topic. This follows from the fact that human behavioral expression is fundamentally a multifaceted

phenomenon that manifests over multiple modalities [90] and can be more accurately identified

through multimodal models [91]. Another factor is the importance of affective information as an
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ingredient in a variety of downstream tasks such as in language modeling [92], dialogue system

design [93], [94], and video summarization [95].

Many multimodal systems for recognition of sentiment, emotion, and behaviors have been

proposed in prior work, including recent neural network based approaches. In feature-level fusion,

Tzirakis et al. [96] combined auditory and visual modalities by extracting features using convo-

lutional neural networks (CNN) on each modality which then were concatenated as input to an

LSTM network. Hazarika et al. [97] proposed the use of a self-attention mechanism to assign

scores for weighted combination of modalities. Other works have applied multimodal integration

using late fusion methods [98], [99].

For deeper integration between modalities many have proposed the use of multimodal neural

architectures. Lee et al. [100] have proposed the use of an attention matrix calculated from speech

and text features to selectively focus on specific regions of the audio feature space. The memory

fusion network was introduced by Zadeh et al. [101] which accounted for intra- and inter-modal

dependencies across time. Akhtar et al. [102] have proposed a contextual inter-modal attention

network that leverages sentiment and emotion labels in a multi-task learning framework.

The strength of deep models arises from the ability to learn meaningful representations of, and

association between, features from multiple modalities. This is learned implicitly by the model in

the course of training [11]. In this work we propose a model to explicitly learn informative joint

representations of speech and text. This is achieved by modeling the dynamic relations between

lexical content and acoustic paralinguistics through a language modeling task on spoken language.

We augment a bidirectional language model (biLM) with word-aligned acoustic features and op-

timize the model first using large-scale text corpora, and then followed by speech recordings. We

evaluate the effectiveness of representations extracted from this model in encoding multimodal

information on the task of emotion recognition on the emotion datasets IEMOCAP [71], MSP-

IMPROV [103], and CMU-MOSEI [104].
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5.2 Related Work

Lexical representations such as ELMo [105] and BERT [106] have recently been shown to model

word semantics and syntax with greater efficacy. This is achieved through contextualized learning

on large-scale language corpora which allows internal states of the model to capture both the

complex characteristics of word use as well as polysemy due to different contexts. The integration

of these word embeddings into downstream models has improved the state of the art in many NLP

tasks through their rich representation of language use.

To learn representations from multimodal data Hsu et al. [107] proposed the use of variational

autoencoders to encode inter- and intra-modal factors into separate latent variables. Later, Tsai et

al. [108] factorized representations into multimodal discriminative and modality-specific gener-

ative factors using inference and generative networks. Recent work by Rahman et al. [109] has

concurrently proposed the infusion of multimodal information into the BERT model. There the

authors have combined the generative capabilities of the BERT model with a sentiment predic-

tion task to allow the model to implicitly learn rich multimodal representations through a joint

generative-discriminative objective.

In this chapter we propose to explicitly learn multimodal representations of spoken words by

augmenting the biLM and BERT models with acoustic information. This is motivated from how

humans integrate acoustic characteristics in speech to interpret the meaning of lexical content from

a speaker. Our work differs from prior work in that we do not include or target any discriminative

objectives and instead rely on generative tasks to learn meaningful multimodal representations.

We adopt the ELMo and BERT architecture for its use of a language modeling task and explore

methods of injecting acoustic information during language understanding. We show how these

model can be easily trained with large-scale unlabeled data and also demonstrate the usefulness of

the resulting multimodal embeddings in an example task of emotion recognition.
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5.3 Multimodal Embeddings from Language Models

We extract multimodal embeddings through the use of a bidirectional language model (biLM)

infused with acoustic information. The biLM comprises stacked layers of bidirectional LSTMs

which operate over lexical and audio embeddings. The lexical and audio embeddings are calculated

from respective convolutional layers and combined using a sigmoid-gating function. Multimodal

embeddings are then computed using a linear function over the internal states of the recurrent

layers. The architecture of the mutlimodal biLM is shown in Figure 5.1.
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Figure 5.1: Architecture of the multimodal bidirectional language model

5.3.1 Bidirectional language model

A language model (LM) computes the probability distribution of a sequence of words by approx-

imating it as the product of conditional probabilities of each word given previous words. This has

been implemented using neural networks in many prior work yielding state of the art results [110].

In this work we applied the biLM model used in ELMo, which is based on the character-level

RNN-LM [111].
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The biLM is composed of a forward and backward LM each implemented by a multi-layer

LSTM. The forward LM predicts the probability distribution of the next token given past context

while the backward LM predicts the probability distribution of the previous token given future

context. Each LM operates on the same input, which is a token embedding of the current token

calculated through a character-level convolutional neural network (CharCNN) [112]. A softmax

layer is used to estimate token probabilities from the output of the two-layer LSTM in the LMs.

The parameters of the softmax layer are shared between the LMs in both directions.

Different from ELMo, our input to the biLM includes acoustic features in addition to word

tokens. Now the forward LM aims to model, at each time step, the conditional probability of the

next token tk+1 given the current token tk, acoustic features ak, and previous internal states of the

stacked LSTM~sk−1:

P(tk+1 | tk,ak,~sk−1) (5.1)

The backward LM operates similarly but predicts the previous token tk−1 given the current token tk,

acoustic features ak, and internal states resulting from future context ~sk+1. Details of the acoustic

features are given in Section 5.5.1.

5.3.2 Acoustic convolution layers

To integrate paralinguistic information into the language model, time-aligned acoustic features of

each word are provided in adjunct to word tokens. We add additional convolutional layers at the

input of the biLM to compute acoustic embeddings from the acoustic features. The convolutional

layers provide a feature transformation of the acoustic features which are then combined with token

embeddings using a gating function.

Due to the varying duration of spoken words, acoustic features are zero-padded to a fixed frame

size before being passed to the CNN. This is similar to the use of a maximum number of charac-

ters per word in the CharCNN. The acoustic CNN is implemented by series of 1-D convolution

layers each followed by a max-pooling layer. The final feature map is then projected to the same
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dimension size as token embeddings to allow for element-wise combination. The architecture of

the acoustic CNN is shown in Figure 5.2.
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Figure 5.2: Architecture of the acoustic CNN

5.3.3 Extracting Multimodal Embeddings

We combine token and acoustic embeddings using a sigmoid gating function:

Mk = U(tk)�σ(V(ak)) (5.2)

where U and V are the embeddings calculated from the token and corresponding acoustic features,

respectively, σ is the sigmoid function, and� represents element-wise multiplication. The sigmoid

gate is a useful mechanism in language modeling [113] as it allows the network to select relevant

features in the token embedding. In our case it serves to modify semantic meaning of words

through scaling of the token embedding based on acoustic information. The embeddings after the

gated sigmoid function are considered to be multimodal and are used as input to both the forward

and backward LM.
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Word embeddings are extracted for use in downstream models in a similar fashion to ELMo.

That is, we define each word vector as a task-specific weighted sum of all LSTM outputs as well

as the input token embedding Mk. We additionally average over all word vectors in a sentence to

form sentence embeddings for use in downstream models. A similar approach of obtaining sen-

tence embeddings from a weighted average of word vectors was shown in [114] to be surprisingly

effective in many NLP tasks.

The final multimodal ELMo (M-ELMo) sentence embedding is given as

M-ELMo = γ
1
N

N

∑
k=1

L

∑
j=0

c jhk, j (5.3)

where hk, j are the concatenated outputs of LSTMs in both directions at the jth layer for the kth token

and j = 0 corresponds to the input to the LSTM. Values {c j} are softmax-normalized weights for

each layer and γ is a scalar value, all of which are task-specific and tunable parameters in the

downstream model. An architectural overview of the downstream model for speaker emotion

recognition is shown in Figure 5.3.
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Figure 5.3: DNN model for emotion recognition using the multimodal embeddings

5.4 Multimodal Transformers

Recent work has shown the benefits of using attention in the form of Transformers for natural lan-

guage processing applications [115]. One such model, BERT [106], demonstrates the importance

of pre-training bidirectional language representations using a language modeling-based task. A
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significant contribution in their work is the use of Transformer blocks in their task of masked lan-

guage modeling as well as the addition of multitask pre-training followed by fine-tuning. In this

section I describe our method of extending our previous multimodal ELMo model to a Transformer

based implementation and the addition of multitask learning.

5.4.1 Masked language modeling using attention layers

Attention layers combine information from all time steps of an input sequence concurrently irre-

spective of position. A major advantage of this mechanism is that this allows model layers to be

processed in a single step which allows for efficient parallel processing. This is opposed to the

biLM which requires unfolding of the recurrent structure followed by back-propagation through

time. An effect of this method is that prediction of the next token as derived in Equation 5.1 is no

longer applicable since the attention weights operate with the entire view of the input sequence. To

overcome masked language modeling was applied as in [106], however in our case we additionally

include acoustic information as another sequence type. The pretraining task thus becomes pre-

diction of a masked-out word given surrounding words and acoustic features, as shown in Figure

5.4.

To implement the multimodal Transformer we replaced the bidirectional LSTMs described

in Section 5.3.1 with Transformer layers. Now instead of recurrent pathways operating across

the sequence the attention layers combine information from the previous layer in a single pass.

A consequence of this is that tokens are now without order meaning there is little need for the

modalities to be aligned. With that in mind we used separate CNNs for each modality and passed

the resulting embeddings to the Transformer layers without the use of a gated-sigmoid function as

in mutlimodal ELMo. To maintain token order and modality information we added a modality and

positional encodings after respective convolutional layers for each modality. The arhcitecture of

the multimodal Transformer is shown in Figure 5.5.
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Figure 5.4: Example of multimodal masked language modeling

5.5 Experimental Setup

5.5.1 Features

Since a CharCNN is used as the lexical embedder, input words to the biLM are first transformed

into a character map and padded to a fixed length. The character-level representation of each word

is then given as a c× lc matrix, where c is the dimension size of the character embedding and lc is

the maximum number of characters in a word. For the Transformer model the original word tokens

are used.

We used acoustic features extracted using COVAREP (v1.4.2) [116] similar to [102], [104].

There are 74 features in total and include, among others, pitch, voiced/unvoiced segment features,

mel-frequency cepstral coefficients, glottal flow parameters, peak slope parameters, and harmonic

model parameters.

The acoustic features are aligned with word timings to provide acoustic information for each

word. Since the time duration varies between words we pad the number of acoustic frames per

token to a fixed length. Thus, word-aligned acoustic features are given as a d× la matrix, where
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Figure 5.5: Architecture of the multimodal Transformer model

d is the number of acoustic features and la is the maximum number of acoustic frames in a word.

In our experiments we used a maximum frame length of 2 seconds per word. This corresponds to

more than 99.9% of all words in the dataset. We assume any truncated words to be unrepresentative

of conventional articulation during conversations (e.g. purposely drawn-out words) which may

require specific modeling outside the scope of normal interactions.

5.5.2 Multimodal biLM architecture parameters

For the lexical and recurrent components of the multimodal biLM we used the same model archi-

tecture as the final model in [105]. This model comprises a character CNN with 2048 character

n-gram convolutional filters followed by a two-layer biLSTM (L = 2) with 4096 units and a pro-

jection size of 512 dimensions.

The architecture of the acoustic CNN is inspired by keyword spotting CNNs proposed in [117],

however we applied 1-D convolution since our acoustic features include non-spatial categories. We

also used a smaller kernel size in the time dimension to model acoustic variations at a finer scale.

56



The acoustic CNN comprises three 1-D convolutional layers using kernels of size 3 and a stride of

1. Each layer is followed by a max-pooling function over three frames.

5.5.3 Pre-training the multimodal biLM

The multimodal biLM is pre-trained in two stages. In the first stage the lexical components of the

biLM are optimized prior to the inclusion of acoustic features. This is achieved by training on

a text corpus and fixing the acoustic input as zero. We use the 1 Billion Word Language Model

Benchmark [118] and train the biLM for 10 epochs. After training, the model achieves perplexities

of around 35 which is similar to values reported in pretrained models from [105].

In the second stage of pre-training we optimize the biLM using the multimodal dataset CMU-

MOSEI (described in Section 5.5.6). In our experiments we use text and audio which are not in the

testing split of the dataset to train the biLM. In terms of word count CMU-MOSEI contains around

447K words which is much smaller than the 1-billion word LM benchmark. Therefore, to prevent

over-fitting we reduce the learning rate used in the previous stage by a factor of 10 and train for an

additional 5 epochs. After pretraining, the we extract multimodal sentence embeddings for use in

downstream models.

5.5.4 Multimodal Transformer architecture parameters

For the multimodal Transformer we applied a configuration based on the bert-base-uncased

model from [106]. The model is built using 12 Transformer layers with 12 attention heads in each

layer. The size of the hidden layers is 768 dimensions. For the convolutional embedder the same

acoustic CNN structure was used as in Section 5.5.2. For the lexical tokens WordPiece embeddings

[119] were used to generate the token embeddings. We use positional encodings representing up

to 512 positions and 2 types of modality encodings.
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5.5.5 Multitask learning on the multimodal Transformer

The first output token of the Transformer layers is defined as a pooled output of the input sequence

CLS while the remaining are defined as sequence outputs {ti}. By applying additional layers on

top of these two outputs we can train the mutlimodal Transformers using multiple tasks. In this

thesis we apply linear layers on the CLS and {ti} outputs for the task of emotion recognition and

masked language modeling, respectively.

CLS t1 tN…

Emotion 
recognition Masked language modeling

Transformer layers

Figure 5.6: Training the multimodal Transformer model with multitask

5.5.6 Emotion recognition as a downstream task

In our experiments we adopt emotion recognition as the downstream task and evaluate on the

datasets IEMOCAP, MSP-IMPROV, and CMU-MOSEI.

CMU-MOSEI contains 23,453 single-speaker video segments from YouTube which have been

manually transcribed and annotated for sentiment and emotion. Emotions are annotated on a [0,3]

Likert scale and include categories such as happiness, sadness, anger, fear, disgust, and surprise.

We binarize these annotations to arrive at class labels by predicting the presence of emotions, i.e.

any emotion with a rating greater than one. Since video segments have ratings for all emotions this

becomes a multi-label classification task.

IEMOCAP is a multimodal emotion dataset consisting of 10 actors displaying emotion in

scripted and improvised hypothetical scenarios. This dataset was described in Section 4.4.1.3

58



however following more recent work [120] we evaluate on 7 emotion categories: angry (1103),

excite (1041), happy (595), sad (1084), frustrated (1849), surprise (107), and neutral (1708) for

a total of 7487 utterances. We report results from 10-fold cross validation where in each fold one

speaker is used as the test set while their conversation partners and remaining speakers are used as

the development and training set, respectively.

MSP-IMPROV is another collection of emotional audiovisual recordings performed by actors.

However in this dataset the authors strove to increase naturalness by using target sentences within

improvised conversational scenarios. Additional segments of natural interaction of actors during

breaks were also included. We evaluate on the emotion categories angry (789), happy (2603), sad

(882), neutral (3340), for a total of 7714 utterances. The dataset consists of 6 sessions between

male and female pairs which leads to 12-fold cross validation.

We trained the network using data from the training split provided in each dataset and validated

using the validation split. We also used the validation split as a development set in choosing hyper-

parameters of the network.

5.5.7 Evaluation methods

We evaluated the emotion recognition model using weighted accuracy (WA) and F1 score on each

emotion. Weighted accuracy [104] refers to the macro-average recall value of a multi-class prob-

lem. We also averaged the metrics across all emotions to obtain an average WA and F1 score.

F1 scores are weighted by support to account for label imbalance. The downstream model was

trained for 30 epochs using binary cross-entropy loss for each individual class. The best model

was selected based on the average WA and F1 across all emotions using the validation set. The

final model was a neural network with two hidden layers using Tanh activation functions.

Due to the lack of work on CMU-MOSEI which focuses on text and audio only, we compared

with two recent state of the art emotion recognition models that additionally consider the visual

modality. Specifically, these are the graph Memory Fusion Network (Graph-MFN) [104] and the

contextual inter-modal attention framework (CIM-Att) [102]. To match learning conditions, we
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compared with the single task learning (STL) model of [102] where only emotion labels are used

in training. As a baseline we also compared to various single modality models, including a neural

network model using sentence embeddings from a fine-tuned ELMo model.
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Table 5.1: Emotion recognition results on CMU-MOSEI test set for various multimodal models

Anger Disgust Fear Happy Sad Surprise Average
Method WA F1 WA F1 WA F1 WA F1 WA F1 WA F1 WA F1
(Single modality)
Acoustic [104] 56.4 71.9 60.9 72.4 62.7 89.8 61.5 61.4 62.0 69.2 54.3 85.4 59.6 75.0
Lexical [104] 56.6 71.8 64.0 72.6 58.8 89.8 54.0 47.0 54.0 61.2 54.3 85.3 57.0 71.3
ELMo + NN‡ 64.4 75.4 73.6 82.4 61.8 86.0 65.4 65.1 60.1 71.8 62.5 84.7 64.6±0.3 77.6±0.3

(A + L + V)
Graph-MFN [104] 62.6 72.8 69.1 76.6 62.0 89.9 66.3 66.3 60.4 66.9 53.7 85.5 62.3 76.3
CIM-Att-STL [102] 64.5 75.6 72.2 81.0 51.5 87.7 61.6 59.3 65.4 67.3 53.0 86.5 61.3 76.2

(A + L)
CIM-Att-STL [102] - - - - - - - - - - - - 59.6 76.8
M-ELMo + NN 63.9 75.7 72.3 81.7 57.4 84.8 67.2 66.6 61.2 72.1 61.4 85.0 65.0 77.6
M-BERT - - - - - - - - - - - - 66.6 -

Modalities: acoustic (A), lexical (L), visual (V).

Table 5.2: Emotion recognition results on IEMOCAP

Model Modality UA (%)

MDRE [86] Audio + Lexical 53.6
MHA [121] Audio + Lexical 55.5

ELMo + NN Lexical 49.32
M-ELMo + NN Audio + Lexical 52.3

Table 5.3: Emotion recognition results on MSP-IMPROV

Model Modality UAR

[103] Audio 41.4
[122] Audio 52.6
[123] Audio 44.4
[124] Audio 52.43

ELMo + NN Lexical 50.70
M-ELMo + NN Audio + Lexical 53.94
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5.6 Results and Analysis

The results of emotion recognition on CMU-MOSEI are shown in Table 5.1. Our feedforward

neural network using multimodal embeddings shows improvement in terms of average WA and

F1 over all emotions at 65.0% and 77.6%, respectively. While the mutlimodal Transformer model

achieved a weighted accuracy of 66.6%. The improvement of M-ELMo over ELMo embeddings is

significant with p-value < 0.05 under McNemar’s test. Surprisingly, a neural network using ELMo

embeddings led to higher performance than other advanced models using multiple modalities.

This result demonstrates the effectiveness of unsupervised contextualized embeddings over other

methods such as GloVe [13], which were used in [102] and [104].

By observing the mixing weights {c j} for each layer in ELMo and M-ELMo we can highlight

the importance of syntactic (lower layers) versus semantic (higher layers) information in each

model [105]. An analysis of the distribution of mixing weights is shown in Figure 5.7. We observed

that models using M-ELMo focused more on the lower layers compared to those using ELMo.

This could be due to the importance of semantics over syntax in text-based emotion recognition,

whereas in multimodal configurations paralinguistic information is more dominant in lower layers

which can aid in improving recognition ability.
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Figure 5.7: Distribution of scalar weight for each layer calculated over 50 runs.
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5.7 Conclusion

In this chapter I proposed a method for extending ELMo and BERT embeddings to include acoustic

information. Convolutional layers were used on acoustic features to calculate acoustic embeddings.

These were then combined with token embeddings using a sigmoid gating function the ELMo

model and with attention layers in the BERT model. The multimodal ELMo model was trained on

a language modeling task, first with a text corpus followed by inclusion of audio from a multimodal

dataset. And the mutlimodal BERT model was trained using multitask on emotion recognition and

masked language modeling. I then showed the effectiveness of sentence embeddings extracted

from this multimodal biLM on emotion recognition as well as the direct improvements in multi-

modal BERT. The results are promising especially given that our downstream model using a neural

network with two hidden layers outperform state of the art architectures. This demonstrates that

such multimodal approaches are effective in capturing inter- and intra-modal dynamics of lexical

content and paralinguistic cues in spoken language.
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Chapter 6

Summary, Future Work, and Closing Words

6.1 Summary

6.1.1 Behavior annotation using recurrent networks

In the first part of this thesis I presented a neural network framework for rating human behaviors

in recorded sessions from couples therapy. The neural network was composed of recurrent layers

to handle sequences of words obtained from a sliding window operating over transcripts of the

therapy sessions. Each observation window, or frame, covers only a portion of words within the

session, however behaviors ratings take into account behaviors exhibited throughout the entire

interaction. The labels are therefore considered coarse-grained with respect to the frames and

not always representative of the ground-truth. This constitutes as a weakly supervised learning

problem. I tackle the issue of weak labels by directly assigning the session-level rating as targets for

all frames contained in respective sessions. A fusion layer using a Support Vector Regressor is then

applied on the median of frame-level scores in a session to map back to a predicted behavior rating.

Evaluating on behavior annotation of couples therapy sessions, I show that such a framework can

generate behavior ratings with high inter-annotator agreement to trained human annotators. In

addition, experiments show improvement of predicted ratings over outlier human annotators. The

experimental results are a promising step towards more advanced automated behavior annotation
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systems and showcases the applicability of deep models to behavior signal processing for improved

performance.

6.1.2 Unsupervised learning of deep sentence embeddings

In the next part of this thesis I presented multiple methods to further improve the previously de-

scribed framework using unsupervised learning for domain transfer. The first approach addressed

the issue of limited context within frames in the previous model by expanding the observation

window to cover entire sentences instead of multiple words. To improve convergence and increase

generalizability of the model sentence embeddings from a neural conversation model were applied

as input features. The conversation model offers an unsupervised method for encoding sentences

into representations which maintain information on conversational content, which were proved

experimentally to be beneficial in behavior annotation.

In the second approach I explored methods of gaining domain relevance in unsupervised sen-

tence embeddings. This was achieved through the inclusion of an additional task of sentiment

analysis during learning of sentence embeddings using a multitask framework. To show applica-

tion of this technique in an unsupervised scenario, labels for the task of sentiment classification

were generated online using a naive look-up table approach. I then experimentally showed that

such online multitask unsupervised sentence embeddings showed improved performance in be-

havior recognition and annotation on our in-domain data.

6.1.3 Multimodal embeddings

In the final portion of this thesis I explored methods of aggregating information from speech-based

modalities for behavior signal processing. This entailed the combination of acoustic features and

lexical content extracted from the spoken interactions. To achieve this I proposed a RNN-LM

based multimodal model for fusing the two modalities. The bidirectional RNN-LM model included

additional convolutional layers at the input to process acoustic feature inputs. Acoustic embeddings

generated from these convolutional layers were then combined with lexical embeddings through
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a sigmoid gating function. The main novelty of my contribution was to show that by pre-training

this model on a task of spoken language modeling, the multimodal RNN-LM could be trained to

combine embeddings from multiple modalities in a way that was suited for the downstream task of

speaker emotion recognition.

6.2 Future Work

6.2.1 Advanced methods of modality fusion

The multimodal fusion methods described in the latter part of this dissertation combine modality

embeddings at the initial stage of the model, either through sigmoid-gating or attention. This

method of early fusion attempts to model spoken words as a joint representation of acoustic and

lexical meaning. However, it may be beneficial if we allow the model to form higher levels of

representation from each modality before joint modeling of the embeddings. This way the fusion

of information is based on a more processed transformation of the input. There are various ways

that this can be achieved.

One method is through the addition of heads in the attention layers. In the multi-head attention

formulation multiple attention units operate on the input and the outputs from all the attention units

are concatenated to form the output. By adding additional attention heads and restricting the input

to a certain modality through masking we can allow the model to form high levels of abstraction

based on only on a single modality. The outputs from these single-modal attention heads can be

combined in layer layers of the Transformer. A multimodal attention path can be maintained in

conjunction with the single-modal path which gradually incorporates information at each layer. An

example architecture of individual attention heads per modality is shown in Figure 6.1.

6.2.2 Incorporating additional modalities and tasks

In this thesis I have focused primarily on speech-based modalities but many behavioral cues are

expressed through visual means, such as facial expressions, gestures, and overall body language

66



 Normal Transformer layers

t1 a1tN aN

Embedding Acoustic CNN

……

Multimodal 
attention

Figure 6.1: Individual attention heads per modality

(posture, orientation, etc). Computer vision technologies for facial recognition and pose detection

etc. are currently quite mature and many well-performing implementations have been proposed.

However, study into multimodal fusion of all these modalities for affective computing or behavior

annotation is an ongoing endeavor. A possible approach is the exploration of unsupervised pre-

training methods for learning how to interpret each modality individually as well as in conjunction

with others. Data containing combinations of these modalities may be abundant, however the im-

plementation of efficient pretraining procedures with or without labels, as well as design of fusion

models for various downstream applications is a challenging future direction.

6.3 Closing Words

Throughout this dissertation I have focused on developing neural models that strive to recognize

and annotate human behavior with performance and capabilities exceeding that of human anno-

tators and observers. To this end I explored many representation learning techniques that take

advantage of readily available out-of-domain data sources through unsupervised methods. I be-

lieve that by leveraging large-scale datasets neural models can be trained to efficiently encode

not only contextual but also behavioral information from both natural language and paralinguistic

cues. I have shown that such behavioral information encoded in unsupervised embeddings can be

used effectively for behavior annotation in Couples Therapy and speaker emotion recognition. I
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acknowledge that many applications of behavior signal processing exist and whether such methods

can be applied from theory to real-world implementations for the benefit of users is a feat I hope

to witness.
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