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Abstract

Graph signal processing (GSP) extends tools of conventional signal processing to graph
signals, i.e., structured data residing on an irregular domain. The graph Fourier trans-
form (GFT), as an extension of the discrete Fourier transform, defines the notion of
frequency on graph, and can be used as a tool for frequency analysis of graph signals.
However, challenges are posed by the computational complexity of graph signal process-
ing techniques. First, a high dimensional graph Fourier transform can be computationally
expensive and there is no fast algorithms for general graphs. Second, in graph filtering,
which is a crucial tool in many GSP applications, an efficient implementation without
GFT computation is a challenging problem that receives a great amount of attention.
Third, while graph-based transforms have been shown to enhance the coding efficiency
in MSE-based video compression framework, this application in coding schemes based
on perceptually-driven metrics remains an open problem.

With the aim of answering these questions, we propose several techniques in this
work. First, we study algebraic properties of the graph Laplacian matrix that lead to
fast implementations of the graph Fourier transform, based on which we can design
fast algorithms when the graph satisfies certain symmetry or bipartition properties.
Second, we propose data-driven approaches to obtain fast GFT solutions for efficient
separable and non-separable transforms. Third, we extend the notion of lapped transform
to a graph-based setting, and propose a generalized version of the well-known lapped
orthogonal transform. Fourth, we explore sparse graph operators for the well-known
discrete cosine transform (DCT) and discrete sine transform (DST), which lead us to an
efficient DCT/DST graph filtering approach and a fast transform type selection scheme
for video encoder. Finally, we apply irregularity-aware graph Fourier transform (IAGFT)
to perceptual image coding, which gives promising experimental results in terms of a
popular perceptual quality metric, structural similarity (SSIM).
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Chapter 1

Introduction
In recent years, the advances in data storage, communication, and computing power
have led to an explosion of data. The demand for data science tasks, such as clustering,
classification, and data-driven decision making, has been rapidly increasing in various
application fields, and for a wide variety of high dimensional data. In practice, for
some applications such as sensor, social, and transportation networks, data of interest
is usually irregularly structured. However, conventional signal processing tools, such as
the discrete Fourier transform, are targeted at regularly spaced data, such as time series.
Those signal processing tools cannot be easily applied to high dimensional data lying on
an irregular domain.

Graphs offer the capability of representing relations among data samples. For exam-
ple, in a sensor network, each sensor can be represented as a graph node, and the weight of
the graph edge connecting two nodes can model the similarity (based on e.g., distance)
between the associated sensors. In view of this convenience, graph signal processing
(GSP) [90,104,114] has become an emerging research field, where signal processing tech-
niques such as frequency analysis and filtering are extended to signals defined on graphs.
In GSP, a data sample, represented as a vector, is called a graph signal. A graph signal
is associated to a graph that models the underlying relations between elements of the
signal, where each vertex corresponds to a sample and each edge represents the corre-
lation between a pair of samples. Traditional signal processing techniques including the
Fourier transform, filtering, convolution, and downsampling, can be extended for graph
signals. In particular, the graph Fourier transform (GFT) is a generalization of the dis-
crete Fourier transform. The GFT provides the notion of frequency for graph signals,
based on which we can be perform transformations [20,36,106], frequency analysis [105],
filtering [7], and sampling [1, 88] for graph signals, which lead to applications in sensor
networks [21], image and video processing [11], machine learning [6], and so forth.

One drawback of graph signal processing techniques is this increased complexity
compared to conventional signal processing methods. In particular, the graph Fourier
transform in general does not have a fast algorithm. In addition, implementation of
graph filters, which usually require GFT as a key building block, can be challenging
when the graph size is large. To address these issues, the main focus of this thesis is on
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efficient graph Fourier transforms and graph filtering methods. The scope of this thesis,
as well as a summary of contributions, is presented as follows.

• Fast GFTs (Chapter 2): Unlike the discrete Fourier transform, which is fixed and
has a well-known divide-and-conquer algorithm [15] known as the fast Fourier trans-
form (FFT), the GFT is defined based on the graph structure, and in general does
not have a fast algorithm. In this chapter, we investigate conditions on graph
structure for a butterfly stage to be available in the associated GFT implementa-
tion. We show that such fast GFTs arise when the graph has certain symmetric
or bipartite properties, and propose a graph decomposition approach to derive
fast GFT algorithms. We provide several examples for such fast GFTs with their
applications. We also compare the runtimes of these fast GFTs with respect to the
matrix GFT as well as other approximate fast GFT techniques.

• Data-driven fast GFTs for video coding (Chapter 3): We consider various data-
driven fast GFTs for video compression. In Section 3.1 we introduce a graph learn-
ing approach for a fast GFT within the framework of Chapter 2: given a particular
butterfly stage, we learn a graph whose GFT has a fast algorithm with the specified
butterfly stage. Several types of butterfly stages can be used for image and video
coding applications. For example, symmetric line graph transforms (SLGT) can
be applied to 1D pixel blocks (Section 3.2). In Section 3.3, we propose an approx-
imation method to determine the butterfly stage for the problem formulated in
Section 3.1. By learning the optimal parameters of graphs from data, we obtain a
compression gain for both inter- and intra-predicted residual blocks in Section 3.4.

• Lapped GFTs (Chapter 4): When the number of nodes is large, applying a GFT
on the entire graph may not be practical in terms of computational complexity. A
more practical solution is to divide the signal into blocks, and to apply the GFT
block-wise. However, this does not take into account the correlations across the
block boundaries, leading to the so-called blocking artifact. In conventional signal
processing, the lapped transforms [81] was proposed to eliminate blocking artifacts
of block-based discrete cosine transforms (DCT). In this thesis, we extend the
notion of lapped transforms to graph signals. We show that lapped graph Fourier
transforms (LGFT) can be obtained and implemented under a generalized frame-
work of the lapped orthogonal transform design [81]. Using a piecewise smooth
image as an example, we show that the lapped transform leads to a compression
gain compared to DCT and the lapped orthogonal transform, and with blocking
artifacts reduced.
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• Fast DCT and DST graph filtering (Chapter 5): We study the discrete cosine
transform (DCT) and discrete sine transform (DST) and their associated filtering
operations from a graph-based perspective. For each transform within the 16 types
of DCT and DST, we characterize a family of sparse graph operators, where all of
these operators have the DCT/DST as their eigenmatrix. The sparse operators can
be viewed as graph filters operating in the DCT/DST (graph frequency) domain,
but with sample (graph vertex) domain implementation. With the derived sparse
graph filters, we propose a filter design approach that allows us to approximate
a filter with an arbitrary frequency response by a linear combination of sparse
operators that can be applied efficiently in graph vertex domain. Experimental
results demonstrate that DCT/DST filters can be approximated with an efficient
one when the graph size is sufficiently large. In addition, we apply our method
to rate-distortion optimization process for transform type selection in video codec,
which gives a negligible compression loss with a significant encoding time saving.

• Adaptive GFT for perceptual video coding (Chapter 6): In image and video coding
applications, perceptual quality metrics such as Structural Similarity (SSIM) are
typically used after encoding, but not tied to the encoding process. We consider
an alternative framework where the goal is to optimize a weighted MSE metric,
where different weights can be assigned to each pixel so as to reflect their relative
importance in terms of perceptual image quality. For this purpose, we propose a
novel transform coding scheme based on irregularity-aware graph Fourier trans-
form (IAGFT), where the induced IAGFT is orthogonal, but the orthogonality
is defined with respect to an inner product corresponding to the weighted MSE.
We propose to use weights derived from local variances of the input image, such
that the weighted MSE aligns with SSIM. In this way, the associated IAGFT can
achieve a coding efficiency improvement in terms of multi-scale SSIM with respect
to conventional transform coding based on DCT.

1.1 Notations and Conventions

We use bold symbols to denote vectors and matrices. Lowercase symbols with double
sub-indices are used to denote matrix elements. For example, mi,j denotes the (i, j) entry
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of the matrix M. The n× n identity matrix is denoted by In. The n× n order-reversal
permutation matrix is denoted by

Jn =


1

1
...

1

 . (1.1)

When Jn right (resp. left) multiplies another matrix, it flips this matrix left to right
(resp. up to down). It also satisfies Jn = J>n and JnJn = I. In (1.1) and in what follows,
the entries not included in the matrix are meant to be zero. The subscripts of I and J
matrices indicate their sizes, and may be omitted for brevity. For scalars a1, . . . , ak and
square matrices Mi with arbitrary sizes, we denote diagonal and block diagonal matrices
in compact notation as

diag(a1, . . . , ak) =


a1

a2
. . .

ak



diag(M1, . . . ,Mk) =


M1

M2
. . .

Mk

 .

Finally, the set of n-dimensional real-valued vectors is denoted as Rn, and the set of
n× n orthogonal matrices (with columns normalized to have unit norms) is denoted as
On. Finally, the pseudo inverse matrix of M is denoted as M†.

1.2 Review of Graph Signal Processing

In this thesis, all graphs we consider are assumed to be undirected and weighted. Let x
be a length-n graph signal associated to a graph G(V, E ,W). There are n nodes in the
vertex set V, each corresponding to one of the entries of x. Each edge ei,j ∈ E describes
the inter-sample relation between nodes i and j. The (i, j) entry of the weight matrix,
wi,j , is the weight of the edge between nodes i and j. The combinatorial graph Laplacian
(CGL) matrix of G is:

LCGL = D−W, (1.2)
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where the degree matrix D = diag(d1, . . . , dn) is a diagonal matrix with

di =
n∑
j=1
j 6=i

wi,j . (1.3)

The symmetric normalized Laplacian (GGL) is defined as L = D−1/2LCGLD−1/2.
In many cases, we consider graph with self-loops, i.e., edges going from a node to

itself. We allow these self-loops to be weighted, with si := wii being the weight of the
self-loop on node i. This leads to the definition of generalized graph Laplacian:

L = D−W + S, (1.4)

where S = diag(s1, . . . , sn) is the diagonal self-loop matrix. In this thesis, if not stated
otherwise, the terms “Laplacian” or “unnormalized Laplacian” refer to GGL, where the
graph is allowed to have self-loops.

A graph is simple if it does not contain any self-loops, and k-regular if all node degrees
are k. The Laplacian matrix for such graph is called a combinatorial graph Laplacian.
We call a graph bipartite if its vertices can be divided into two disjoint sets (or, two
parts) S1 and S2 such that every edge connects a vertex in S1 and one in S2. An acyclic
graph is a graph with no cycles. If an acyclic graph is connected, it is called a tree.
Otherwise, it is called a forest.

1.2.1 Graph Fourier Transform

There are several definitions of the GFT [36, 90, 104, 114], depending on whether the
graph is directed, which fundamental graph operator is used (e.g., adjacency or Laplacian
matrix), and how the graph signal energy is defined. Here, we adopt the definition in
[114], where the GFT is obtained from the eigen-decomposition of the graph Laplacian
matrix, L = UΛU>. Then, the i-th coefficient of GFT of a graph signal x is defined as
the projection of x onto ui, the i-th column of U. In some applications, such as spectral
clustering [132], it may be beneficial to use a GFT defined on the eigenvectors of the
symmetric normalized Laplacian L. However, in what follows, we use GFTs associated
to the GGL unless stated otherwise.

5



GFT coefficients provide a frequency representation of the given signal, since GFT
basis functions associated to lower (resp. higher) eigenvalues represent lower (resp.
higher) variation on the graph. To see this, we note that the Laplacian quadratic form

f>Lf =
∑

(i,j)∈E
wi,j(fi − fj)2 +

n∑
k=1

skf
2
k (1.5)

measures the variation of signal f on the graph. Since wi,j and sk are non-negative,
L is positive semi-definite and thus f>Lf is always non-negative. We know that the
eigenvectors of L are the solution to

u1 = argmin
‖f‖=1

f>Lf ,

uk = argmin
f⊥u1,...,uk−1,‖f‖=1

f>Lf .

Thus, eigenvectors u1, . . . , un form an orthogonal basis with functions having lower
to higher variations on the graph. The quantities of their corresponding variations are
given by the associated eigenvalues λ1, . . . , λn, which are also called graph frequencies.
In addition, from the graph variation quantity (1.5), we can see the connection between
GFT basis functions and the graph weights. Note that, when wi,j , the weight of edge
(i, j), is large, the first GFT basis function u1 tends to have similar values on entries i
and j. Similarly, when there is a self-loop with a large weight on node k, then u1 tends
to have its k-th entry close to zero.

The GFT has a wide range of applications. First, based on the GFT and its frequency
interpretation, graph spectral filters [51] can be defined by multiplying the GFT coeffi-
cients by the frequency response in the graph spectral domain, leading to applications
such as image denoising and edge-preserving smoothing [7,89]. Second, when the graph
signal is modeled by a Gaussian Markov random field (GMRF) [101], the corresponding
GFT can be regarded as the orthogonal transform that optimally decorrelates the graph
signal and hence reduces spatial redundancies. Based on this fact, the GFT has been
applied to image and video compression [26, 32, 50]. Third, in machine learning, when
relations between data points are modeled by a graph, the GFT can be used for data
clustering [132] and dimensionality reduction for classification [85,121].

1.2.2 Graph Filtering

For a given graph with Laplacian L, we consider a 1-hop graph operator Z, which could
be adjacency or Laplacian matrix. When it is applied to a signal x to compute y = Zx,
it defines an operation for each node with its 1-hop neighbors (e.g., when Z = A,
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y(i) =
∑
j∈N (i) x(j) is a sum over the neighbors of graph node i). Furthermore, it can

be shown that a y = ZKx is a K-hop operation, and thus a degree-K polynomial of Z,

H =
K∑
k=0

gkZk, with Z0 = I, (1.6)

induces an operation for each node with its neighbors within K hops. The operation
defined in (1.6) is thus called a graph filter, an FIR graph filter, or a polynomial graph
filter (PGF). In what follows, we refer to Z as graph operator for short1. For the rest of
this thesis, we choose Z = L or define Z as a matrix with the same eigenbasis as L, e.g.,
Z could be a polynomial of L such as Z = 2I− L.

Let Φ = (φ1, . . . ,φN ) be the matrix of eigenvectors of Z = L, and λj the associated
eigenvalue of φj , then it follows that Φ is also the eigenvector matrix of the polynomial
H. That is,

H = Φ · h(Λ) ·Φ>, h(Λ) := diag(h(λ1), · · · , h(λN )). (1.7)

The eigenvalue h(λj) of H associated to φj is called the frequency response of λj . Note
that with y = Hx, in the GFT domain we have ŷ = h(Λ)x̂, meaning that the filter
operator amplifies or reduces the signal component with λj frequency by h(λj) in the
GFT domain. We also note that the definition via (1.7) generalizes the notion of digital
filter, since when Φ is the discrete Fourier transform (DFT) matrix, H reduces to the
classical Fourier filter [105]. Given a desired graph frequency response h = (h1, . . . , hN )>,
its associated polynomial coefficients in (1.6) by solving a least squares minimization
problem [105]:

g = argmin
g

||h−Ψg||2, where Ψ =


1 λ1 . . . λK1
...

...
...

...
1 λN . . . λKN

 , (1.8)

with λj being the j-th eigenvalue of Z. The PGF operation y = Hx can be done via an
efficient iterative algorithm: 1) t(0) = gKx, 2) t(i) = Zt(i−1) + gK−ix, and 3) y = t(K).
Its complexity is given by O(KE) with E the number of graph edges. Note that this
algorithm does not require GFT computation, and its complexity depends on how sparse
Z is (lower complexity for sparser Z).

1In the literature, Z is often called graph shift operator [34,51,104,109]. Here, we simply call it graph
operator, since its properties are different from shift in conventional signal processing, which is always
reversible, while the graph operator Z, in most cases, is not.
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(a) (b)

Figure 1.1: Graphs associated to (a) DCT-II, (b) DST-IV (ADST).

1.2.3 Gaussian Markov Random Fields (GMRFs)

A Gaussian Markov random field (GMRF) [101] x ∼ N (µ,Σ) is a Gaussian random
vector, whose inverse covariance matrix (also called a precision matrix) L = Σ† is positive
semidefinite. Each GMRF x is associated with an undirected graph G, where the relations
among its entries can be characterized by L: the graph vertices correspond to elements
in x, and edges of G describe the partial correlations among elements of x:

Corr(xi, xj |x−ij) = − lij√
liiljj

, i 6= j,

which is the correlation between elements i and j given all the other elements. Note that
for a general GMRF, the associated graph G may have negative edge weights.

When the precision matrix L of a GMRF x is a graph Laplacian matrix, i.e., its off-
diagonal entries of are non-positive, then x is called an attractive GMRF. In this case, the
graph G associated to x has non-negative edge weights. Among attractive GMRFs, we say
x is a diagonally dominant GMRF if L is diagonally dominant (i.e., |lii| >

∑
j 6= i|lij |);

we call x an intrinsic GMRF if L is singular (i.e., L is a combinatorial Laplacian) [25].
In image and video compression, pixel data can be modeled by attractive GMRFs,

whose probabilistic properties lead to justification of the use of DCT and ADST [99,117].
We summarize the connection between DCT/ADST and graph Laplacian matrices below.

1.2.4 DCT and DST

The discrete cosine transform (DCT) and discrete sine transform (DST) are discrete
trigonometric transforms (DTT). These are orthogonal transforms that operate on a
finite sequence, where the basis functions are cosine functions and sine functions, respec-
tively. Depending on how samples are taken from a continuous cosine and sine functions,
eight types of DCT and eight types of DST can be defined [136]. The definitions are
shown in Table 1.2, where scaling factors cj and dj are included to make the transforms
orthogonal [99, Table A.1]. Table 1.1 shows left and right boundary conditions (b.c.) of
all DTTs, which arise from even and odd symmetries of the cosine and sine functions,
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Right b.c.
φj(N + k)
= φj(N − k)

φj(N + k)
= −φj(N − k)

φj(N + k)
= φj(N − k + 1)

φj(N + k)
= −φj(N − k + 1)

Left b.c.

φj(k)
= φj(−k + 2) DCT-I DCT-III DCT-V DCT-VII
φj(k)
= −φj(−k) DST-III DST-I DST-VII DST-V
φj(k)
= φj(−k + 1) DCT-VI DCT-VIII DCT-II DCT-IV
φj(k)
= −φj(−k + 1) DST-VIII DST-VI DST-IV DST-II

Table 1.1: Left and right boundary conditions (b.c.) of 16 DCTs and DSTs.

and can be trivially verified based on DTT definitions in Table 1.2. We will refer to the
8 DCT types DCT-I to DCT-VIII, and to those DST types DST-I to DST-VIII.

Discrete Cosine Transform (DCT)

In what follows, the term DCT refers to DCT-II, the most widely used type, unless
stated otherwise. For j = 1, . . . , N and k = 1, . . . , N , we write the k-th element of the
j-th DCT-II basis function with length N as

uj(k) =
√

2
N
cj cos

(j − 1)(k − 1
2)π

N
, (1.9)

with normalization constant cj being 1/
√

2 for j = 1 and 1 otherwise. If those basis
functions are written in vector form uj ∈ RN , it was pointed out in [117] that uj are
eigenvectors of the N ×N Laplacian matrix

LDCT-II =



1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1


. (1.10)

This means that the DCT is the GFT of a graph GD associated to Laplacian matrix
LDCT-II. In fact, GD is a line graph with uniform weights, where the case with N = 8 is
shown in Fig. 1.1(a). The eigenvalue corresponding to uj is ωj = 2− 2 cos((j − 1)π/N).
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Table 1.2: Definitions of all types of DCTs and DSTs. The indices j and k range from
1 to N . Scaling factors for rows and columns are given by cj = 1/

√
2 for j = 1 and 1

otherwise, and dj = 1/
√

2 for j = N and 1 otherwise.

DTT Transform functions

DCT-I φj(k) =
√

2
N−1cjckdjdk cos (j−1)(k−1)π

N−1

DCT-II φj(k) = uj(k) =
√

2
N cj cos (j−1)(k−1/2)π

N

DCT-III φj(k) =
√

2
N ck cos (j−1/2)(k−1)π

N

DCT-IV φj(k) =
√

2
N cos (j−1/2)(k−1/2)π

N

DCT-V φj(k) = 2√
2N−1cjck cos (j−1)(k−1)π

N−1/2

DCT-VI φj(k) = 2√
2N−1cjdk cos (j−1)(k−1/2)π

N−1/2

DCT-VII φj(k) = 2√
2N−1djck cos (j−1/2)(k−1)π

N−1/2

DCT-VIII φj(k) = 2√
2N+1 cos (j−1/2)(k−1/2)π

N+1/2

DST-I φj(k) =
√

2
N+1 sin jkπ

N+1

DST-II φj(k) =
√

2
N dj sin j(k−1/2)π

N

DST-III φj(k) =
√

2
N dk sin (j−1/2)kπ

N

DST-IV φj(k) = vj(k) =
√

2
N sin (j−1/2)(k−1/2)π

N

DST-V φj(k) = 2√
2N+1 sin jkπ

N+1/2

DST-VI φj(k) = 2√
2N+1 sin j(k−1/2)π

N+1/2

DST-VII φj(k) = 2√
2N+1 sin (j−1/2)kπ

N+1/2

DST-VIII φj(k) = 2√
2N−1djdk sin (j−1/2)(k−1/2)π

N−1/2

Discrete sine transform (DST)

One of the most notable applications of DST is image and video coding. In particular, it
has been shown that DST-VII optimally decorrelates 1D intra residual blocks following
a Gaussian Markov model [45, 49]. In [46], it was pointed out that a fast algorithm is
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available for DST-IV, a variation of DST-VII that can achieve a comparable compression
gain. While DST-VII has been adopted by the HEVC standard [120], DST-IV is used
in AV1 and AV2 standards [10], developed by the Alliance for Open Media (AOM). In
this thesis, the term ADST refers to DST-IV as in AV1.

We denote vj a DST-IV basis function, which has the form

vj(k) =
√

2
N

sin
(j − 1

2)(k − 1
2)π

N
. (1.11)

The vectors vj are eigenvectors of

LDST-IV =



3 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1


, (1.12)

with corresponding eigenvalues δj = 2−2 cos((j−1/2)π/N). In addition, DST-IV is the
GFT of a graph GA. The graph GA corresponding to N = 8 is shown in Fig. 1.1(b).

1.3 A Roadmap

In the following chapters, we will study various graph-based approaches, such as transfor-
mations and filtering operations based those definitions introduced above. In Chapter 2
we explore conditions of graphs for fast GFT algorithms. Based on the results of Chap-
ter 2, we consider efficient graph-based transform (including GFT and lapped graph
Fourier transform (LGFT)) with applications in image and video coding in Chapter 3.
Then, we investigate efficient DTT filtering methods using graph filter design approaches
in Chapter 5. Finally, we study a variation of GFT, irregularity aware graph Fourier
transform (IAGFT), in Chapter 6 to enhance image perceptual quality.
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Chapter 2

Fast GFT based on graph
symmetry and bipartition

The discrete Fourier transform (DFT) has a well-known divide and conquer algo-
rithm: fast Fourier transform (FFT) [15]. The availability of FFT algorithm is very
important for many signal processing problems, particularly in speech and biomedical
signal processing. However, the GFT, as a generalization of the DFT, does not have fast
algorithms in general. Note that the DFT basis functions are always even or odd sym-
metric, which can be exploited for obtaining fast algorithms. However, arbitrary graph
topologies do not always lead to Laplacian eigenvectors with the same symmetry proper-
ties. Lack of fast algorithms is a significant drawback for GSP approaches, particularly
when the GFT needs to be applied repeatedly. This has led researchers to investi-
gate techniques for fast GFT computation. Magoarou et. al. have proposed a series
of approaches for fast GFT approximation [60–62]. The work in [61] uses a gradient-
descent-based optimization approach to approximate the GFT matrix by a product of
sparse matrices, while [60] refines this method such that the resulting transform matrix
can approximately diagonalize the graph Laplacian. In [62], a truncated Jacobi algorithm
was introduced for picking the Givens rotations used in the approximate fast GFT, lead-
ing to an implementation with the structure shown in Figure 2.1. This approach was
further analyzed in [63], which demonstrates that more Givens rotations are required to
approximate the Laplacian eigenvectors whose corresponding eigenvalues are close.

Although these methods [60–62] are able to find approximate fast GFTs, they do so
without taking advantage of structural properties of the original graph. The relation of
topological properties of graphs, such as bipartition, repeated subgraphs, symmetry, and
uniformity of weights, to the structure of the GFT bases is an important topic in GSP.
In this chapter, we investigate graph topological properties that lead to fast implemen-
tations of the GFT, then derive the resulting fast GFT algorithms. In particular, we
will show that for graphs with certain symmetry or bipartition properties, a exact and
fast GFTs based on Haar units (as will be defined in Section 2.1) can be designed. We

Work in this chapter has been published in [72] with MATLAB and C code implementation available
in [69].
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Figure 2.1: Fast transform using J layers of Givens rotations. The parameter 0 < θi,j ≤ π
is the j-th rotation angle in the i-th butterfly stage, and Πk are permutation operations.

propose divide-and-conquer fast GFT algorithms for symmetric graphs and demonstrate
that the resulting fast GFTs lead to significant complexity reduction, leading to potential
benefits in hardware implementation or in scenarios where the graph is fixed and the
corresponding GFT is applied multiple times. We show that graphs for which such Haar-
unit-based fast GFTs can be developed are useful in applications such as video coding
and human action analysis. Unlike fast approximate GFTs [60–62], our fast GFTs are
based on graph topological properties, and are exact. Experimental results show that as
long as the desired graph symmetry property is available, our fast GFTs can provide a
better speed improvement than [62].

The rest of this chapter is organized as follows. In Section 2.1 we introduce the so-
called Haar unit and derive the conditions for a stage of Haar units to be available in a
GFT implementation. In Section 2.2 we define the notion of symmetry for graphs that
gives rise to a Haar unit stage, and propose a graph decomposition method for obtaining
fast GFT algorithms. Some examples of fast GFTs are shown in Section 2.3. We present
experimental results for the complexity of the derived fast GFTs in Section 2.4. Finally,
Section 2.5 concludes this chapter.
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(a) (b)

Figure 2.2: Two examples of fast algorithms using butterfly stages with n = 8 .

2.1 Haar Units in GFTs

An n dimensional Givens rotation [39], commonly referred to as a butterfly [46, 62, 64],
is a linear transformation that applies a rotation of angle θ to two coordinates, denoted
as p and q. Its associated matrix Θ(p, q, θ) has the form:

Θpp = Θqq = cos θ,
Θqp = −Θpq = sin θ,
Θii = 1, i 6= p, q,

Θij = 0, otherwise.

(2.1)

A system using layers of parallel Givens rotations, such as the one in Figure 2.1, can
be used to design an approximate fast transform. In particular, each Givens rotation
can be implemented using three lifting steps [17], which further reduces the number of
operations involved.

In this work, we aim to achieve computation efficiency by using Givens rotations
with angle θ = π/4, which typically require only an addition and a subtraction (the
factor 1/

√
2 can be absorbed into other stages of the transform computation). This

is also equivalent to a 2×2 Haar transform, so we refer to this operator as Haar unit,
as opposed to general Givens rotations. We say that a butterfly stage is a stage in a
transform diagram with several parallel Givens rotations or Haar units. For example,
in Figure 2.2(a), we call the stage that produces yi from xi a butterfly stage, and the
operator that produces y1 and y8 from x1 and x8 a Haar unit of this butterfly stage.

We consider a divide and conquer framework based on stages of Haar units and
parallel sub-transforms, as illustrated Figure 2.2. For each Haar unit, we always assume
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(a) (b)

Figure 2.3: (a) The 4-node cycle graph and (b) a fast algorithm for its GFT.

that the two output variables, such as y1 and y8 in Figure 2.2(a), will be inputs of
different sub-transforms in the next stage. Otherwise, this Haar unit, such that the one
acting on x1 and x8, can be trivially absorbed into the next stage.

As a first example, we consider a 4-node cycle graph with unity edge weights as in
Figure 2.3(a). It has a GFT matrix

UC4 = 1
2


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

 .

Note that the second and third columns of UC4 both correspond to eigenvalue 2, which
has multiplicity 2. This means that the GFT basis is not unique, because we can obtain
another orthogonal basis for the eigenspace corresponding to eigenvalue 2. An example
of another basis for this GFT is the length-4 DFT, which has a well-known fast algorithm
[15]. Despite this non-uniqueness, a fast algorithm for a particular GFT basis would still
be useful: we can first apply it to obtain coefficients for this particular basis, then apply
an m-dimensional rotation (m ×m orthogonal transform) on those m GFT coefficients
associated to eigenvalues with a multiplicity m > 1, to obtain coefficients associated
to another GFT basis. For example, if we apply a proper rotation to x̂2 and x̂3 in
Figure 2.3(b), we can obtain the second and third DFT coefficients. In what follows,
we study GFT implementations for which stages of Haar units are available. In cases
where eigenvalues of high multiplicity are present, we favor the set of eigenvectors for
the corresponding subspace that will lead to a more efficient implementation.

Based on the structure of UC4 , it can be seen that the GFT can be implemented using
two butterfly stages, as in Figure 2.3(b). We refer to those Haar units located at the first
stage (such as the one acting on x1 and x4) as left Haar units, and those located at the
last stage (such as the one producing x̂1 and x̂2) as right Haar units. We will explore the
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conditions that allow a GFT to be factored into terms that include left and right Haar
units, which will enable us to develop techniques for designing such fast GFTs. We will
show that right Haar units are associated to bipartite graphs (Section 2.1.1), while left
Haar units are related to graph symmetries (Section 2.1.2).

For a general graph with n nodes, we define the following n × n orthogonal matrix
to represent a stage of p parallel Haar units (with p ≤ n/2):

Bn,p = 1√
2


Ip 0 Jp
0
√

2In−2p 0
Jp 0 −Ip

 . (2.2)

Note that B>n,p = Bn,p, and when we multiply a vector x = (x1, . . . , xn)> by Bn,p, we
have

(Bn,p · x)i =


1√
2(xi + xn+1−i), i = 1, . . . , p

xi, i = p+ 1, . . . , n− p
1√
2(−xi + xn+1−i), i = n− p+ 1, . . . , n

For example, B8,4 are B8,3 are equivalent to the butterfly stages in Figures 2.2(a) and
(b), respectively, with a scaling constant 1/

√
2. The factors

√
2 and 1/

√
2 are included

in (2.2) so that the columns of Bn,p have unit norms; in this way, when an orthogonal
matrix U satisfies U = Bn,pŪ, then Ū is orthogonal as well, meaning that U can be
factorized into a butterfly stage and another orthogonal transform.

2.1.1 Right Haar Units

Let an orthogonal transform U have a right butterfly stage with p Haar units, and
assume without loss of generality that the entries of input and output vectors are properly
ordered. Then, in compact notation, the GFT of input x can be written as

U>x = Bn,p · diag(E>,F>) · x, (2.3)

where E ∈ On−p and F ∈ Op. This means that

U =


E11 E12 0
E21 E22 0
0 0 F

 1√
2


Ip 0 Jp
0
√

2In−2p 0
Jp 0 −Ip

 = 1√
2


E11

√
2E12 E11Jp

E21
√

2E22 E21Jp
FJp 0 −F

 ,
(2.4)

where E11, E12, E21, and E22 are subblock components of E. Recall that J flips a matrix
left to right when right-multiplied. Thus, for k = 1, . . . , p, if we denote the k-th column
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Table 2.1: Definitions of symmetries for vectors, matrices, and graphs.
Subject Terminology Definition

Vector v
Even symmetric v = Jv
Odd symmetric v = −Jv

Matrix M
Symmetric M = M>

Centrosymmetric [5] M = JM>J
Bisymmetric [5] M = M> = JM>J

Graph G(V, E ,W) φ-symmetric (Definition 2) wi,j = wφ(i),φ(j), ∀i, j

of U as uk = (e>k , f>n−p−k+1)>, then the (n−k+ 1)-th column of U is (e>k ,−f>n−p−k+1)>.
GFT matrices with this structure arise for k-regular bipartite graphs (k-RBGs):

Lemma 1 ([52]). Let L be the Laplacian of a k-RBG with S1 = {1, . . . , p} and S2 =
{p + 1, . . . , n}. If u = (u>1 , u>2 )> with u1 ∈ Rp and u2 ∈ Rn−p is an eigenvector of L
with eigenvalue λ, then û = (u>1 , −u>2 )> is an eigenvector of L with eigenvalue 2k − λ.

If we consider eigenvectors of the symmetric normalized Laplacian, the same symme-
try properties hold for any bipartite graph:

Lemma 2 ([14]). Let L be the normalized Laplacian of a bipartite graph with S1 =
{1, . . . , p} and S2 = {p+ 1, . . . , n}. If u = (u>1 , u>2 )> with u1 ∈ Rp and u2 ∈ Rn−p is an
eigenvector of L with eigenvalue λ, then û = (u>1 , −u>2 )> is an eigenvector of L with
eigenvalue 2− λ.

From Lemmas 1 and 2, we know that as long as the graph satisfies certain conditions
(bipartite for L or k-RBG for L), then there exists a GFT matrix with a right butterfly
stage as in (2.3), even though the GFT matrix may not be unique. The matrices E and
F can be obtained by multiplying Bn,p in the right of a pre-computed U:

diag(E,F) = U ·Bn,p.

2.1.2 Left Haar Units

If n is even and the GFT has a butterfly stage in the left with exactly n/2 Haar units
as in Figure 2.2(a), then

U = Bn,n/2

(
U+ 0
0 U−

)
= 1√

2

(
U+ JU−

JU+ −U−

)
,
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where U+,U− ∈ On/2. From the right hand side we see that each column ui of U must
be either even symmetric (i.e., ui = Jui) or odd symmetric (i.e., ui = −Jui). In this
case, the Laplacian must be centrosymmetric (symmetric around the center):

Lemma 3 ([5]). Let n be even. An n× n matrix Q has a set of n linearly independent
eigenvectors that are even or odd symmetric if and only if Q is centrosymmetric, i.e.,
Q = JQ>J.

Note that the Laplacian matrix L of an undirected graph is symmetric (L = L>)
by nature, but an additional centrosymmetry condition (L = JL>J) is required so that
Lemma 3 holds. Such a matrix with both symmetries (L = L> = JL>J) is called
bisymmetric, and its entries are symmetric around both diagonals. The various types of
symmetries considered in this chapter listed in Table 2.1.

Lemma 3 states that for even n, a GFT can be factored to include n/2 left Haar
units if and only if the associated Laplacian matrix is bisymmetric (with nodes properly
ordered). We now generalize this result to the case when there are only p < n/2 Haar
units in the first butterfly stage, and with a possibly odd n. Again, we assume without
loss of generality that the graph nodes, input, and output variables are properly ordered
(notations defined for general node ordering will be introduced in Section 2.2). We let
VX = {1, . . . , p}, VZ = {p+1, . . . , n−p}, and VY = {n−p+1, . . . , n} be disjoint subsets
of vertices. We define

G := B>n,p · L ·Bn,p, (2.5)

and denote the corresponding subblock components of L and G as

L =


LXX LXZ LXY
LZX LZZ LZY
LY X LY Z LY Y

 , G =


GXX GXZ GXY

GZX GZZ GZY

GY X GY Z GY Y

 . (2.6)

Similar to (2.3) and (2.4), the GFT matrix with a first butterfly stage of p Haar units
has the form

U = Bn,p · diag(U+,U−), U+ ∈ On−p, U− ∈ Op. (2.7)

Then the following lemma describes the conditions for L to have a GFT with p left Haar
units.

Lemma 4. Let L be a graph Laplacian matrix, then there exists a GFT matrix U in the
form of (2.7), i.e., the associated G in (2.5) is block-diagonal, if and only if

LY Y = JLXXJ, LY X = JLXY J, LZY = LZXJ. (2.8)
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Note that when Z is empty, i.e., p = n/2, (2.8) implies that L has to be centrosymmetric,
as in Lemma 3.

Proof: If U is a GFT matrix satisfying (2.7), we denote the subblocks of U+ as U+
XX ,

U+
XZ , U+

ZX , and U+
ZZ , and rewrite (2.7) as

U = 1√
2


Ip 0 Jp
0
√

2In−2p 0
Jp 0 −Ip




U+
XX U+

XZ 0
U+
ZX U+

ZZ 0
0 0 U−

 (2.9)

Denote the matrix of eigenvalues of L as Λ = diag(ΛX ,ΛZ ,ΛY ) with subblock sizes
p, n − 2p, and p, respectively. Then, we can express each subblock of L by expanding
L = UΛU> with (2.9), and we can trivially verify that (2.8) holds.

To show the converse, we assume that (2.8) holds. Expanding the right hand side of
(2.5), we can express the subblocks of G in terms of those of L. In particular,

GXY = 1
2 (LXXJ + JLY XJ− LXY − JLY Y ) , GZY =

√
2

2 (LZXJ− LZY ) .

With these expressions, (2.8) implies that GXY , GZY , and their transpose versions GY X ,
GY Z are all zero. This means that G is block-diagonal, and thus has an eigendecompo-
sition as

G = diag(V1,V2) · diag(λ1, . . . , λn) · diag(V1,V2)>,

where V1 ∈ On−p and V2 ∈ Op. It follows that Bn,p · diag(V1,V2) is an eigenmatrix of
L = Bn,p ·G ·B>n,p as in (2.7).

Under the conditions of (2.8), G reduces to

G =


LXX + LXY J

√
2LXZ 0√

2L>XZ LZZ 0
0 0 LY Y − JLXY

 , (2.10)

and U+ and U− are respectively the eigenmatrices of

L+ :=
(

LXX + LXY J
√

2LXZ√
2L>XZ LZZ

)
, L− := LY Y − JLXY . (2.11)

A diagram with n = 8, p = 3 is shown in Figure 2.2(b) as an example.
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(a) G1 (b) G2

Figure 2.4: Example of symmetric graphs. (a) A graph with a bisymmetric Laplacian
matrix. (b) A graph with a Laplacian satisfying (2.8).

Note that the desired properties in L correspond to certain symmetry properties in
the graph topology. If VZ is empty, Lemma 4 implies that

wi,j = wn+1−i,n+1−j , ∀i ∈ V, j ∈ V. (2.12)

In this case, when we plot the nodes in order on a 1D line, we can identify an axis in
the middle, around which all edges and self-loops are symmetric. An example of a graph
whose Laplacian is bisymmetric is shown in Figure 2.4(a).

More generally, if VZ is nonempty, then the first two equations in (2.8) indicate that
the sub-matrix of L associated to VX and VY is bisymmetric. This means that VX and
VY contain vertices that are symmetric to each other. The third equation in (2.8) implies
that when there is an edge connecting k ∈ VZ and i ∈ VX , there must be an edge with
the same weight connecting k and n + 1 − i ∈ VY as well. An example of this type of
graph is shown in Figure 2.4(b), where VX = {1}, VZ = {2, 3}, and VY = {4}. Similar
to Figure 2.4(a), we can identify a symmetry around the middle, though nodes in VZ are
not paired with symmetric counterparts.

Based on the observations above, we see that left Haar units are available when the
graph has symmetry properties related to Lemma 4. However, Lemma 4 assumes that
the nodes had been ordered properly, so that the Laplacian has the required bisymmetric
structure. In general, the node labels of a graph will not be such that this condition
is automatically met, even if the graph is symmetric. For example, if a different node
labeling is applied to the graph of Figure 2.4(a), its corresponding Laplacian may not
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be bisymmetric anymore. In the next section we study methods to identify graph sym-
metries directly using node pairing functions, which will allow us to design fast GFT
algorithms, regardless of how the nodes are initially labeled.

2.2 Fast GFTs Based on Graph Symmetry

In this section, we will characterize how Lemma 4 relates to the graph topology. In par-
ticular, we define the symmetry properties observed in Figure 2.4 based on an involution
(node-pairing function) in Section 2.2.1. Given an observed graph symmetry charac-
terized by an involution, in Section 2.2.2 we define the node sets VX , VY , and VZ . In
Section 2.2.3, we propose a graph decomposition approach for searching fast GFTs in
stages.

2.2.1 Graph Symmetry Based on Node Pairing

The symmetries of Figure 2.4 can be described in terms of complete (Figure 2.4(a))
and incomplete (Figure 2.4(b)) node pairings. Such pairings can be defined by bijective
mappings that are their own inverses, namely, involutions:

Definition 1 (Involution [96]). A permutation on a finite set V is called an involution
if it is its own inverse, i.e., φ(φ(i)) = i for all i ∈ V.

We will use them to identify graph symmetries.

Definition 2 (φ-symmetric graph). Let φ be an involution on the vertex set V of a graph
G, then G is φ-symmetric if wi,j = wφ(i),φ(j) for all i ∈ V, j ∈ V.

Note that in Definition 2 the required property has to hold also for i = j. That is,
si = wi,i = wφ(i),φ(i) = sφ(i), meaning that the self-loops on nodes i and φ(i) are required
to have the same weight. Also note that, among permutations, only involutions are valid
to define the symmetry described in Definition 2, since the pairing functions that lead
to the conditions in (2.8) can only be induced by involutions.1

Let V = {1, . . . , n} be the vertex set, and let us denote an involution φ as φ =
(φ(1), φ(2), . . . , φ(n)). For example, the involutions corresponding to the symmetries of

1Note that graph symmetry can be defined differently in different contexts. In algebraic graph theory,
graph symmetry is defined based on transitivity of vertices and edges [38]. In [28], a graph is called
symmetric if there exists a non-identical permutation φ (not necessarily an involution) on the graph
nodes that leaves the graph unaltered. These definitions are beyond the scope of this work. When we
refer to graph symmetry, we always assume an involution φ is specified such that Definition 2 holds.

21



graphs in Figures 2.4(a) and (b) are φa = (4, 3, 2, 1) and φb = (4, 2, 3, 1), respectively.
We also denote the number of available Haar units for a given φ as

pφ := 1
2 × |{i ∈ V : i 6= φ(i)}| . (2.13)

2.2.2 Node Partitioning for Haar Units

Once we observe a graph symmetry and characterize it by an involution φ, we can identify
the nodes on the axis of symmetry, VZ := {i ∈ V : φ(i) = i}, then partition the other
nodes into two sets VX and VY such that nodes in those sets belong to different sides of
the symmetry axis. In this way, we can define an orthogonal matrix Bφ as a permuted
version of Bn,pφ based on φ, VX , VY , and VZ in the following way:

(Bφ)i,j =



1/
√

2, i = j ∈ VX
−1/
√

2, i = j ∈ VY
1, i = j ∈ VZ
1/
√

2, i ∈ VX , j = φ(i) ∈ VY
1/
√

2, i ∈ VY , j = φ(i) ∈ VX
0, otherwise

(2.14)

This means that Lφ := B>φLBφ is a permuted version of (2.10), whose block diagonal
structure gives the following theorem.

Theorem 1 (Block-diagonalization of Laplacian based on graph symmetry). Let the
graph G with Laplacian L be φ-symmetric. Then, (Lφ)i,j = (Lφ)j,i = 0 if i ∈ VX ∪ VZ
and j ∈ VY .

While Theorem 1 is derived based on the unnormalized Laplacian L, it holds for
normalized Laplacian as well.

2.2.3 Main Approach–Decomposition of Symmetric Graphs

The block-diagonalization of (2.5) maps L to G via Bn,p, where G in (2.10) can be
regarded as the Laplacian of a graph with two connected components, with possibly
negative edge weights and respective Laplacians L+ and L− defined in (2.11). Thus, G
with Laplacian L is decomposed into two separate graphs G+ and G− with Laplacians
L+ and L−, vertex sets V+ := VX ∪ VZ and V− := VY , weight matrices W+ and W−,
respectively. In this way, the GFT of L can be implemented using Haar units in Bn,p,
followed by two sub-GFTs characterized by Laplacians L+ and L−. Explicitly considering
the graphs resulting from this decomposition is useful because the symmetry properties
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in L+ and L− can be further explored to determine whether additional reductions in
complexity are possible. Moreover, considering the transforms after the Haar units as
GFTs can potentially help us provide better interpretations of the overall GFT.

By definition of graph Laplacian, we can express the self-loop weights si and edge
weights wi,j in terms of entries of the Laplacian matrix L = (li,j)i,j , and vice versa:

si =
∑
j∈V

li,j , wi,j = −li,j for i 6= j, (2.15)

lii = si +
∑
j∈V
j 6=i

wi,j , li,j = −wi,j for i 6= j. (2.16)

Together with (2.11), we can express the self-loop/edge weights of G+ and G− in terms
of those of G, as described in the following theorem.

Theorem 2. If G is φ-symmetric with node partitions VX , VY , and VZ , then the weights
of G+ (with vertex set V+ = VX ∪ VZ) and G− (with vertex set V− = VY ) are given by

w+
i,j =


wi,j + wi,φ(j), if i ∈ VX , j ∈ VX√

2wi,j , if i ∈ VX , j ∈ VZ or i ∈ VZ , j ∈ VX
wi,j , if i ∈ VZ , j ∈ VZ ,

s+
i =

{
si − (

√
2− 1)

∑
j∈VZ wi,j , if i ∈ VX

si + (2−
√

2)
∑
j∈VX wi,j , if i ∈ VZ ,

w−i,j = wi,j − wi,φ(j), ∀i, j ∈ VY , i 6= j

s−i = si + 2
∑
j∈VX

wi,j +
∑
j∈VZ

wi,j , ∀i ∈ VY .

The proof of Theorem 2 refers to Appendix A.1. We use the toy examples of Fig-
ures 2.5 and 2.6 (with VZ = ∅ and VZ 6= ∅, respectively) to illustrate the graph decompo-
sition. Note that G+ and G− may have negative weights even if G does not. For any signal
x, we denote the “sum” (low-pass) and “difference” (high-pass) outputs of Haar units as
x+ and x−: ((x+)>, (x−)>)> = B>φ x. For example, in Figure 2.5, x+ = (y1, y2)> and
x− = (y3, y4)>. In Figure 2.6, x+ = (z1, z2, z3)> and x− = (z4).

The graph construction of Theorem 2 creates two disconnected sub-graphs by remov-
ing all edges between Vy and Vx ∪ Vz and preserving all other edges, but changing some
of the weights and adding self-loops. Three types of cases lead to one or two edges being
removed:
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(a) (b)

Figure 2.5: (a) Symmetric graph decomposition for the graph in Figure 2.4(a). Red dia-
monds and blue squares represent nodes in VX and VY , respectively. (b) The associated
fast GFT diagram for G1, where U+

1 and U−1 are the GFTs of G+
1 and G−1 , respectively.

(a) (b)

Figure 2.6: (a) Symmetric graph decomposition for the graph in Figure 2.4(b). Red dia-
monds, green triangles, and blue squares represent nodes in VX , VZ , and VY , respectively.
(b) The associated fast GFT diagram for G2, where U+

2 is the GFT of G+
2 .

1. Edges connecting two symmetric nodes i ∈ VX and φ(i) ∈ VY . The edge
with weight b in Figure 2.5(a) is an example of this case. These edges are removed
and lead to self-loops with twice the original weight in G− (2b in this case).

2. Two symmetric edges: each connecting a node in VX to a node in VY .
The two edges with weight c in Figure 2.5(a) are an example. These edges are
removed, but lead to changes in two edge weights, with the weight of the edge in
G+ increasing and that of the edge in G− decreasing. Two self-loops are also added
to the corresponding nodes in G−.
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Figure 2.7: An example of even and odd symmetric components on the graph in Fig-
ure 2.6. Signals x+ and x− are outputs of the Haar units. Signals xeven and xodd are
associated to x+ and x− by (2.17).

3. Two symmetric edges with a common node in VZ . Edges with weight d in
Figure 2.6(a) belong to this case. This case results in a single edge being kept,
with a modified edge weight and two self-loops in G+, and a self-loop in G−.

Note that, the signals x+ and x− correspond to G+ and G−, and can be regarded
as even and odd symmetric components of the original graph signal x. An example
associated to Figure 2.6 is shown in Figure 2.7. We can see that a graph signal can
be decomposed into two components xeven and xodd, which correspond to x+ and x−,
respectively, by

xeven(i) =


x+(i)/

√
2, i ∈ VX

x+(φ(i))/
√

2, i ∈ VY
x+(i), i ∈ VZ

, xodd(i) =


x−(φ(i))/

√
2, i ∈ VX

−x−(i)/
√

2, i ∈ VY
0, i ∈ VZ

(2.17)

In particular, xeven and xodd have even and odd symmetries based on the node pairing,
i.e., xeven(i) = xeven(φ(i)) and xodd(i) = −xodd(φ(i)) for all i ∈ V. This can be consid-
ered as a generalization of even and odd symmetric components decomposition for finite
length time series. Components xeven and xodd of the graph signal x can be regarded as
intermediate results of the GFT coefficients.
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The decomposition described in Theorem 2 enables us to search for further stages
Haar units in the sub-GFTs U+ and U− by inspecting their associated graphs G+ and
G−. Once a symmetry based on an involution is found in G+ or G−, we can apply the
decomposition again, and repeat until symmetry property cannot be found anymore.
Some examples will be provided in the next section.

2.3 Examples and Applications

In practice, graphs with distinct weights on different edges or graphs learned from data
without any topology constraints are not likely to have the desired bipartition and sym-
metry properties. Searching for an involution that induces symmetry in a given graph
may involve a combinatorial problem because the number of involutions grows faster than
polynomial with n [96]. However, bipartite and symmetric structures arise in graphs con-
sidered in certain fields. Examples of bipartite graphs include tree-structured graphs,
whose GFTs are useful for designing wavelet transforms on graph [112]. Involution-based
symmetries can be found in graphs with regular or partially regular topologies (e.g., line,
cycle, and grid graphs), graphs that are symmetric by construction (e.g., human skeletal
graphs), and uniformly weighted graphs. In the following, we show several classes of
graphs with these desired properties.

2.3.1 Bipartite Graphs

As stated in Lemma 1, a k-regular bipartite graph has a GFT with a right butterfly stage.
Let the sizes of the parts in the bipartite graph be |S1| = p, |S2| = n−p, then sub-GFTs
E and F have sizes p and n− p, and the total number of multiplication operations will
be p2 + (n− p)2. By Lemma 2, the same result can be derived for a GFT derived from
the symmetric normalized Laplacian of any bipartite graph.

2.3.2 Graphs with 2-Sparse Eigenvectors

Conditions for 2-sparse graph eigenvectors to exist have been studied in [124,125]:

Lemma 5 ([124,125]). A Laplacian has an eigenvector u with only two nonzero elements
u(i) = 1/

√
2, u(j) = −1/

√
2 if and only if

∀v ∈ V\{i, j}, wv,i = wv,j . (2.18)

In fact, the condition (2.18) is equivalent to having G φi,j-symmetric, with φi,j(i) = j,
φi,j(j) = i, and φi,j(k) = k for k 6= i, j. In this case, each of VX = {i} and VY = {j =
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φ(i)} has only one node, and U− reduces to a one by one identity matrix. Examples
provided in [124] that satisfies Lemma 5 include uniformly weighted graphs with several
types of topology: 1) star graph, 2) complete graph, 3) complete bipartite graph, and
4) cycle graph. We also note that, a graph with a clique (a complete subgraph), where
at least two nodes in the clique are not connected to any other nodes outside the clique,
also satisfies Lemma 5.

2.3.3 Symmetric Line Graphs

A Laplacian matrix associated to a line graph can be viewed as a precision matrix (inverse
covariance matrix) of a first-order attractive GMRF, which can be used for modeling
image and video pixels [66,143]. One special case is the line graph with uniform weights,
whose GFT is the well-known DCT.

If a line graph Gl is symmetric around the middle, then it is φ = (n, n − 1, . . . , 1)-
symmetric Gl and its GFT has a left butterfly stage (whether n is even of odd). In
Section 3.2, we will study the design of such a fast GFT on symmetric line graphs, and
present coding results on inter-predicted residual blocks.

2.3.4 Steerable DFTs

The Laplacian of an n-node cycle graph Gc with unit weights is a circulant matrix, i.e.,
each of its row is circularly shifted one element to the right relative to the previous row.
Due to this circulant property, the Laplacian can be diagonalized by the DFT matrix,
meaning that DFT is one of the GFTs of Gc (the GFTs of Gc are not unique since some of
the Laplacian eigenvalues have multiplicities greater than one). The family of all GFTs
of Gc is called the set of steerable DFTs (SDFTs) [31].

Fast SDFT algorithms based on graph symmetry

For any n, G is φ-symmetric, with φ = (n, n− 1, . . . , 3, 2, 1), which enables us to explore
fast SDFT algorithms for Gc other than the FFT algorithm [15]. In fact, the trans-
form shown in Figure 2.3(b) can be obtained using the proposed graph decomposition.
Another example with n = 12 is shown in Figure 2.8, where two stages of Haar units are
available, and some of the sub-GFTs after the first two stages can further be simplified.
We also note that, for any SDFT with a length n that is a multiple of 4, the GFTs of
G++
c and G−−c are DCT-II and DST-IV, respectively, which can also be implemented

using fast DCT and ADST algorithms [29,46,59].
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(a)

(b)

Figure 2.8: The 12-node cycle graph: (a) Graph decomposition. (b) The associated fast
GFT diagram. Red diamonds, green triangles, and blue squares represent those nodes
in VX , VZ , and VY , respectively, for the next stage of decomposition. Unlabeled edges
and self-loops have weights 1, and Pc,i are permutation operations. The two shaded
sub-GFTs are (U++

c )>/2 (top) and (U−−c )>/2 (bottom), respectively.

28



(a) (b)

Figure 2.9: (a) The axes/point of symmetry for each symmetry type, with a 6×6 grid
as an example. Node indices are represented based on the image coordinate system. (b)
Relationships among types of symmetries.

Comparison between proposed fast SDFT algorithm and FFT

We also note that, SDFT can be implemented by applying the FFT algorithm, followed
by proper rotations on graph frequencies with multiplicities 2 or larger. However, the
proposed fast SDFT implementations have several advantages. First, unlike the conven-
tional DFT, the derived GFT will have real operations only. Second, while the FFT
algorithm cannot be easily applied when n is a prime number, our method gives at least
one left butterfly stage for any n. Introducing this butterfly stage would reduce the
number of operations by half (for even n) or nearly half (for odd n). To the best of our
knowledge, fast implementations for SDFT other than the FFT algorithm have not been
studied in the literature.

2.3.5 Symmetric Grid Graphs

The 2D DCT can be shown to be the GFT of an N × N uniformly weighted grid2

and provides an optimal decorrelation of block data modeled by a 2D Gaussian Markov
model [142]. Despite the use of DCT, 2D non-separable transforms such as the KLT have
been shown to achieve a significantly compression gain over the DCT for some types of
video blocks such as intra residual blocks with diagonal prediction direction [2]. Such

2The term “grid” refers to a graph with N2 nodes lying in a regular grid pattern within a square
block, where each node can be connected to its 8-neighbors.
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Table 2.2: Types of symmetric N ×N grids and their corresponding involutions. Indices
k and l represent vertical and horizontal coordinates of grid nodes, as in Figure 2.9(a).

Symmetry type Involution
Centrosymmetry φ((k, l)) = (N + 1− l, N + 1− k)
UD-symmetry φ((k, l)) = (N + 1− k, l)
LR-symmetry φ((k, l)) = (k,N + 1− l)
Diagonal symmetry φ((k, l)) = (l, k)
Anti-diagonal symmetry φ((k, l)) = (N + 1− l, N + 1− k)

block-based non-separable transforms correspond to GFTs whose graphs are grids with
n = N2 nodes. Here, we call such a graph with N2 nodes a grid, but do not impose any
constraint on its graph topology to have more flexibility in designing the transforms.

One key limitation of non-separable transforms is that they typically have much
higher computational complexities than separable ones. This issue can be partly
addressed when the grid has symmetry properties for fast GFT algorithms. These grid
symmetries can be defined based on different axes or point of symmetry, as shown in
Figure 2.9(a), and described as follows. We also show in Figure 2.9(b) the relationships
among different symmetry types.

Definition 3 (Grid symmetries). A N by N grid graph is UD-symmetric if it is symmet-
ric around the middle horizontal axis, LR-symmetric if it is symmetric around the middle
vertical axis. It is called centrosymmetric if it is symmetric around the center, diagonally
symmetric if it is symmetric around the main diagonal, and anti-diagonally symmetric
if it is symmetric around the anti-diagonal. When a grid is UD- and LR-symmetric, it
is called UDLR-symmetric. If it is diagonally and anti-diaognally symmetric, we say
it is bidiagonally symmetric. Finally, if the grid has all symmetry properties above
(symmetric around all the four axes and the center), we say it is pentasymmetric.

In fact, fast GFTs for those grids can be derived based on the involutions shown in
Table 2.2, which follow directly from grid symmetry conditions. Explicit forms of those
fast GFTs can be found in [72]. The GFTs with exact or partial symmetry properties
can lead to a gain in energy compaction with respect to the DCT [37].

In Figure 2.10, we show an example with a 4×4 grid Gb that is bi-diagonally symmetric
(symmetric around both diagonals). We can first decompose Gb based on the diagonal
symmetry into G+

b and G−b . Then, we observe that the symmetry around the anti-
diagonal remains in G+

b and G−b , so further decomposition can be applied. As a result,
the overall GFT has two butterfly stages of Haar units, and can be implemented using
4 sub-GFTs with length 6, 4, 4, and 2, as in Figure 2.10.
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(a)

(b)

Figure 2.10: The bi-diagonally symmetric grid. (a) Graph decomposition. (b) The
associated fast GFT diagram. Red diamonds, green triangles, and blue squares repre-
sent those nodes in VX , VZ , and VY , respectively, for the next stage of decomposition.
Unlabeled edges have weights 1, and Pb,i are permutation operations.
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(a)

(b)

Figure 2.11: The 4×4 z-shaped grid: (a) Graph decomposition. (b) The associated fast
GFT diagram. Red diamonds and blue squares represent those nodes in VX and VY ,
respectively, for the next stage of decomposition. Unlabeled edges have weights 1, and
Pz,1 is a permutation operation.
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As another example, grid graphs with symmetry properties are also considered in the
coding framework proposed in [100], where image blocks are classified into K classes, each
with an associated GFT to be applied. These GFTs are derived from graph templates
including 1) 4-connected grids with horizontal and vertical edges, 2) 4-connected grids
with horizontal and anti-diagonal edges as shown in the top-left of Figure 2.11(a), which
we refer to as z-shaped grid, and 3) rotated and flipped versions of the z-shaped grid.
Those templates are weighted graphs with the constraint that all edges with the same
orientation have a common weight. Without loss of generality, all GFTs from graph
templates within types 2) or 3) can be characterized by the GFT of a z-shaped grid with
horizontal weights 1 and anti-diagonal weights w. We denote this graph as Gz and derive
its fast GFT in Figure 2.11 based on the centrosymmetry of the grid, characterized by
the involution φ(i) = N + 1 − i. Note that, if we flip the nodes v9 to v16 up to down,
then Gz becomes a left-right symmetric grid, based on which we can derive G+

z and G−z
as in Figure 2.11(a). The derived fast GFT diagram in Figure 2.11(b) can thus provide
a computational speedup for the coding framework in [100].

2.3.6 Skeletal Graphs

In human action analysis, the human body can be represented by a hierarchy of joints
that are connected with bones. Many motion capture datasets, such as the Florence 3D
dataset [110], use 3D coordinates of human joints to represent human actions. We can
consider the human skeleton as a graph, and the motion vectors between consecutive
frames on each nodes as a graph signals. Recent work has demonstrated that the GFT
basis has localization properties corresponding to different human parts [54]. For exam-
ple, the second GFT basis function has positive entries on joints in the upper body, and
negative entries on those in the lower body. Thus, the resulting GFT coefficients can
provide a discriminating power between different human actions.

Typical skeletal graphs are symmetric by construction, so a fast GFT can be obtained,
as shown in Figure 2.12, where a 15-node skeleton is considered. Note that the butterfly
stage is also available for skeletal graphs with non-uniform weights or different topologies,
as long as the desired symmetry properties hold.

2.3.7 Search of Symmetries in General Graphs

In the previous examples, symmetry properties of graphs can be easily identified by
inspection. However, in general, and particularly for denser graphs, desired symmetry
properties may not be straightforward to identify, or may not even exist. To design
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(a)

(b)

Figure 2.12: The 15-node skeletal graph: (a) Graph decomposition. (b) The associated
fast GFT diagram. Red diamonds, green triangles, and blue squares represent those
nodes in VX , VZ , and VY , respectively, for the next stage of decomposition. U−,1s and
U−,2s are the GFTs corresponding to two connected components of G−s , respectively.
Unlabeled edges have weights 1, and Ps,1 is a permutation operation.

fast GFTs for graphs beyond the previous examples, an algorithm for searching a valid
involution would thus be useful.

The number of involutions on n elements is [58, Section 5.1.4]

T (n) =
bn/2c∑
k=0

n!
2k(n− 2k)!k! ∼

(
n

e

)n/2 e
√
n

(4e)1/4 , (2.19)
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which asymptotically grows faster than a polynomial in n. This means that an exhaustive
search of valid involutions among T (n) possible candidates is a combinatorial problem.
Here, we provide two methods to reduce the complexity of this search. More detailed
illustrations and implementations of these methods can be found in Appendix B.

• Pruning based on the degree list Note that if G is φ-symmetric, then the
degrees of nodes i and φ(i) must be equal for every i. This necessary condition
for φ-symmetry allows us to prune the involution search: we can compute the list
of degrees first, then prune those involutions ϕ where for some i the degrees di
and dϕ(i) are different. For graphs with many distinct weight values, we tend to
have many distinct node degrees, and thus the number of involutions needed to be
searched can be significantly reduced.

• Searching of identical tree branches Trees (i.e., graphs with no cycles) are
connected graphs that have the smallest number of edges. This sparsity property
implies that symmetry on trees can be characterized by pairs of identical subtrees
(i.e., branches) whose roots are common or adjacent. For example, in Figure 2.12,
the two arms in the skeletal graph are identical branches that share a common
root, and so are the two legs. Based on an algorithm proposed in [30], we provide
in Appendix B an algorithm with O(n logn) complexity that, for any given tree G,
finds all involutions φ such that G is φ-symmetric.

2.4 Experimental Results

In addition to theoretical computational complexity analysis including the number of
operations, we also conduct experiments to measure empirical computation complexities
of the fast GFTs. We have implemented several fast GFTs in C, in order to simulate an
environment closer to hardware.

2.4.1 Comparison with Matrix GFT

In the first experiment, we include the GFTs of several different graph topologies: the
cycle graph with unit weights, the bi-diagonally symmetric 6-connected grid (as in Fig-
ure 2.10, with a = 0.5), the z-shaped grid with w = 2, and the skeletal graph. For each
graph we implement two fast GFTs with different sizes, and compare the runtime of the
matrix GFT implementation and the fast GFT with butterfly stages. We include those
GFTs in Figures 2.8 to 2.12, together with larger graphs with the same topology types:
the 80-node cycle graph, the 8×8 bi-diagonally symmetric 4-connected grid, the 8×8
z-shaped grid, and the 25-node skeletal graph used in [111]. Detailed design of their fast
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Table 2.3: Runtime performance of proposed fast GFTs. The baseline for the runtime
reduction rates is the matrix GFT implementation.

Topology n
Number of Operations Runtime

Matrix (±/∗) Fast (±/∗) Reduction

Cycle
12 132/144 44/30 52.7%

80 6320/6400 1224/1078 79.7%

6-connected grid
16 240/256 80/80 53.7%

64 4032/4096 1104/1072 68.5%

Z-shaped grid
16 240/256 128/112 41.5%

64 4032/4096 2048/2048 45.0%

Skeleton
15 210/225 96/102 45.5%

25 600/625 272/282 47.5%

GFTs can be extended from the examples in Figures 2.8 to 2.12. For each GFT, we gen-
erate 20000 graph signals with a proper length, whose entries are i.i.d. uniform random
variables with range [0, 1]. Then, we compute the percentage of runtime reduction for
the symmetry-based fast GFT compared to the GFT realized by a single n × n matrix
multiplication.

In Table 2.3, we show, for each GFT, the numbers of additions (including subtrac-
tions), multiplications, and the empirical computation time reduction rate compared
to matrix GFT in C implementation. We see that the fast GFT on skeletal graph in
Figure 2.12 with one butterfly stage leads to 45.5% speed improvement, and that on
z-shaped grid in Figure 2.11 gives around 41.5% runtime saving. Fast GFTs on cycle
graphs and 6-connected grids that have multiple butterfly stages yield higher runtime
reduction rates. From the results in Table 2.3, we can see that the butterfly stages
obtained from our proposed method lead to a significant speedup, and can be useful if
the transform is required to be performed many times, and in a low-level or hardware
implementation.

2.4.2 Comparison with Approximate Fast GFTs

In the second experiment, we compare our proposed method with an existing fast GFT
approach [62] on graphs with symmetry properties. We consider two graphs for this
experiment: the 8×8 bi-diagonally symmetric grid with a = 0.5, and the 8×8 z-shaped
grid with w = 2. Note that, when the desired symmetry property is available, existing
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Figure 2.13: Runtime versus sign-normalized relative error δ for different GFT imple-
mentations on different graphs. The numbers labeled alongside the markers indicate the
associated numbers of Givens rotation layers.

methods can be incorporated into the symmetry-based fast GFT scheme to speed up
the computation of sub-GFTs such as U+ and U−. Thus, we can compare the following
four GFT implementations:

1. Matrix GFT : an n× n matrix multiplication.

2. Haar-matrix GFT : symmetry-based fast GFT using Haar units, as shown in Fig-
ures 2.10(b) and 2.11(b), where the sub-GFTs are implemented by full matrix
multiplications.

3. PTJ-GFT [62]: fast GFT using layers of Givens rotations found by the paral-
lel truncated Jacobi (PTJ) algorithm–a greedy-based algorithm that progressively
approximate Û>LÛ to a diagonal matrix. The resulting GFT can be implemented
using the schematic diagram as in Figure 2.1.

4. Haar-PTJ-GFT : symmetry-based fast GFT with sub-GFTs implemented using
PTJ-GFT.

For a given GFT implementation, with GFT matrix Û that approximates the true GFT
matrix U, we define two error metrics as follows.

1. Sign-normalized relative error (RE): we consider the relative error between two
n× n orthogonal matrices,

RE(Û,U) = ‖U− Û‖F
‖U‖F

= ‖Û
>U− I‖F√

n
. (2.20)
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Figure 2.14: Runtime versus empirical average error ε for different GFT implementations
on different graphs. The numbers labeled alongside the markers indicate the associated
numbers of Givens rotation layers.

Note that if Û = −U, the RE will be large although they share a common eigen-
structure. To avoid this sign ambiguity, we modify (2.20) by taking absolute values
elementwise on Û>U:

δ(Û,U) := 1√
n
‖|Û>U| − I‖F .

2. Empirical average error: let X = {x1, . . . ,xM} be the set of input signals, we
define

ε(Û,U,X ) := 1
M

M∑
i=1

n∑
j=1

(
|u>j xi| − |ûj>(xi)|

)2
,

where u>j xi and ûj are the j-th true and approximate GFT coefficients of xi, and
the absolute values are used to avoid the sign ambiguity.

For both graphs considered in this experiment, the eigenvalues of the Laplacians are all
unique, so there is no rotation ambiguity in the GFT basis functions.

We apply the method in [62] to obtain the parameters (angle and node pairings for
Givens rotations) for PTJ-GFT and Haar-PTJ-GFT, then implement the resulting fast
algorithms in C, with different numbers of layers J ∈ {0, 5, 10, . . . }. We use M = 20000
random samples as in Section 2.4.1, and obtain the error metrics, δ and ε, for each GFT
implementation.

The runtime versus sign-normalized RE, and versus empirical average error are shown
in Figures 2.13 and 2.14, respectively. We note that, first, the RE drops more steadily

38



than the empirical error when the number of layers increases. This is related to the order
of GFT basis functions. When more layers of Givens rotations are introduced, more
GFT basis functions will be ordered correctly (i.e., smaller error in the final permutation
operation ΠJ+1 in Figure 2.1). Indeed, we observe that when the number of correctly
ordered GFT coefficients increases, the decrease of the empirical error is usually more
significant than that of the relative error. The second observation is that for the two
graphs with n = 64 nodes, the PTJ-based approach typically takes more than 20 layers
to yield a sufficiently accurate GFT in terms of both error metrics. However, when more
than 20 layers are used, the computation complexity becomes comparable or higher than
Haar-matrix GFT, which provides exact GFT coefficients. Finally, we see that in both
Figures 2.13 and 2.14, the error of Haar-PTJ-GFT drops faster than that of PTJ-GFT.
This means that by applying the symmetry property, we can obtain a significantly higher
convergence rate for the PTJ algorithm. This is a reasonable consequence, as our divide-
and-conquer method reduces the dimension of the problem for the PTJ algorithm.

2.5 Conclusion

We have explored the relationship between the graph topology and properties in the
corresponding GFT for fast GFT algorithm based on butterfly stages. In particular, we
focus on a component of the butterfly stage called Haar unit, and discuss the conditions
for a stage of Haar units to be available in the GFT implementation. We have shown
that a graph has a right butterfly stage with Haar units if it is k-regular bipartite (or if it
is bipartite when we consider the symmetric normalized graph Laplacian). On the other
hand, a left butterfly stage is available if the graph has symmetry properties. We have
formally defined the relevant graph symmetry based on involution, i.e., pairing of nodes.
Then, we have proposed an approach, where once a graph symmetry is identified, we
can decompose a graph G into two smaller graphs, G+ and G−, whose GFTs corresponds
to the two parallel sub-transforms after a butterfly stage of Haar units. Again, from G+

and G− we can explore subsequent butterfly stages if any desired symmetry property
holds in them. Thus, this method enables us to explore butterflies stage by stage.

The desired symmetry properties typically arise in graphs that are nearly regular,
symmetric by construction, or uniformly weighted. We have discussed several classes
of those graphs: bipartite graphs, graphs with 2-sparse eigenvectors such as star and
complete graphs, symmetric line and grid graphs, cycle graphs, and skeletal graphs.
Relevant applications of those GFTs include video compression and human action anal-
ysis. In particular, the fast GFT of a grid graph provides an efficient implementation of
a non-separable transform for video blocks; a fast GFT on skeletal graph can also speed
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up the feature extraction procedure for further action classification tasks. Finally, we
implement the fast GFT algorithms in C and compute the runtime saving for several
graphs. The experiment results show that our method provides a significant computa-
tion time reduction compared to the GFT computed by matrix multiplication. It also
outperforms existing fast approximate GFT approaches in terms of both complexity and
accuracy for graphs with desired symmetry properties.
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Chapter 3

Data-Driven Fast GFTs for Video
Coding

In Chapter 2, we have discussed conditions of graphs for fast GFT algorithms. Here,
we apply some of the results to an important graph signal processing application: image
and video coding, with a focus on transform coding.

Transform coding is a key component in image and video coding applications [41].
Its basic idea is to decorrelate pixel data using a transform kernel, and hence reduce
the redundancies among pixels. The DCT [117] is still by far the most widely used
transform in image and video coding due to its fast implementation. However, it has
been demonstrated that better compression efficiency can be achieved by data-driven
transforms that are obtained based on statistical properties of the residual blocks [2,146,
147]. The Karhunen-Loève Transform (KLT), which is known to provide the optimal
decorrelation, has been proposed for designing mode-dependent transforms of residual
blocks [139]. However, its computational complexity is typically very high, which has
limited its practical use.

Recently, it has been shown that GFT is useful for decorrelating particular types of
pixel data [24,33,50]. However, one of the major challenges of GFT in transform coding
is that, similar to the KLT, those GFTs that optimally adapt to the data are usually
computationally expensive. To address this complexity issue, we note that based on dis-
cussions in Chapter 2, certain graph structural properties, such as symmetry and bipar-
tition, would lead to a computation cost reduction in GFT implementations. Indeed,
once the graph to be learned is restricted to satisfy those structural properties, a GFT
with fast algorithm can be obtained.

In this chapter, we study data-driven fast GFTs to enhance efficiency in transform
coding techniques. To achieve this goal, we consider a graph learning problem to obtain
the graph from sample data. This can be viewed as the problem of learning a data-driven
GFT that adapts to statistical properties of target image/video blocks. Furthermore, we
restrict the graphs to be symmetric or to have a butterfly stage so that a fast algorithm

Work in this chapter has been published in [70,71].
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is available to compute the GFT. First, we introduce a general framework for designing
data-driven fast GFT in Section 3.1. Under this framework, we optimize parameters
of symmetric line graphs (as discussed in Section 2.3.3) to obtain efficient separable
transforms that provide a coding gain in Section 3.2. Then, we propose a method
for non-separable transform extensions with unknown butterfly stages in Section 3.3.
Experimental results are shown in Section 3.4.

3.1 Learning Fast GFTs: A General Framework

Graph learning is an important problem in graph signal processing [22]. This problem
arises from the fact that, given real-world data such as pixel blocks, we may not know
ahead of time what the best graph is to develop graph signal processing tools. In prac-
tice, the graph can be learned from data based on the statistical properties [25], global
smoothness [25], diffusion kernel estimation [92,108], causal dependency [84] and so on.
In what follows, among different graph learning problem formulations, we adopt the one
formulated in [25] and incorporate structural constraints associated to fast GFT imple-
mentations. This allows us to obtain practically useful GFTs that have fast algorithms
and adapt to particular set of pixel data of interest.

We start by formulating a data-driven fast GFT design problem. We denote xi’s
training samples (e.g., these could be image or video blocks used for training), and
µ their sample mean (which is usually assumed to be 0 when dealing with prediction
residual blocks of a video). Then, we let S = 1

m

∑m
i=1(xi −µ)(xi −µ)> be the empirical

covariance matrix. We start with the Gaussian maximum likelihood (ML) estimation
problem [25] for the graph Laplacian precision matrix L:

minimize
L∈L(E)

− log |L|† + trace(LS), (3.1)

where the objective function is the negative log-likelihood function of an attractive
GMRF whose precision matrix is L. In (3.1), L(E) is the set of graph Laplacians with
edge set E . The pseudo-determinant (product of nonzero eigenvalues) |L|† is required
here when a combinatorial graph Laplacian matrix, which is singular, is considered. Note
that, for any E , (3.1) is a convex problem, where general solution can be obtained using
efficient iterative approaches [25,94].

For image and video coding, pixels are usually modeled as 1st order GMRFs, where
each node is connected to its nearest neighbors in the associated graph. In particular,
the following graph structures E (as shown in Figure 3.1) may be considered:
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(a) (b)

(c) (d)

Figure 3.1: Useful graph structures in modeling image and video pixels: (a) length-4
line graph (b) 4×4 4-connected grid, (c) 4×4 8-connected grid, and (d) 4×4 6-connected
grid.

• 1D line graph: it corresponds to a 1st order GMRF for 1D pixel data (a row or
a column of a 2D pixel block). Its associated GFT could be used as a 1D row or
column transform.

• 2D 4-connected grid graph: it is associated to a 1st order GMRF for 2D pixel data.
The resulting GFT corresponds to a 2D block transform.

• 2D 8-connected and 6-connected grid graphs: diagonal edges can be added to the
4-connected grid to capture correlations between each pixel and its 8-neighbors.
Those connections are particularly useful when the image/video content has diag-
onal orientations.

These graphs with length 4 or grid size 4×4 are shown in Figure 3.1.
Our results from Chapter 2 for fast GFTs are mainly based on factorization of Lapla-

cian L = BGB> into a matrix of left Haar units B and a block-diagonal matrix G (see
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Section 2.1.2.). The fast GFT associated to L is U = BUG, where UG is the eigen-
vector matrix of G. This speedup is led by the fact that B is sparse, and UG has the
block-diagonal structure as G does. Here, we generalizing the factorization L = BGB>

to L = HRH> with a sparse H (not necessarily B) and block-diagonal R, such that
there is a fast GFT of L. In particular, we write L = HRH>, with constraints on H
and G given by criteria C1 and C2:

C1 H is orthogonal, and each of its columns is a constant multiple of a vector, on
which the projection can be implemented efficiently. That is, H = GHDH, where
DH is diagonal, GH has orthogonal columns, and G>Hx has fast implementation.
Here are two specific criteria that allow fast implementations:

C1-A All entries in GH are 0, 1, or -1.

C1-B GH is sparse.

C2 R is block diagonal, and as sparse as possible, i.e., having many smaller blocks is
preferable.

Let the eigenmatrix of R be UR, then the GFT of signal x is U>RD>HG>Hx. Note that
multiplying by G>H is efficient, and U>RD>H has the same block diagonal structure as R
does. Thus, the sparsity of R enables reduction in the computation of this GFT.

Writing L = HRH> with C1 and C2 imposed, we have det(L) = det(R) and
trace(LS) = trace(HRH>S) = trace(R(H>SH)). Thus, (3.1) can be rewritten as

minimize
H,R

− log det(R) + trace(R(H>SH))

subject to R � 0,
(
HRH>

)
i,j

= 0 for (i, j) /∈ E ,
(
HRH>

)
i,j
≤ 0 for (i, j) ∈ E

H satisfies C1, R satisfies C2. (3.2)

The problem (3.2) involves a product HRH> of unknown matrices, so it is a noncon-
vex problem that may not have efficient solvers. However, when H that satisfies C1 is
available, (3.2) reduces to a convex problem. This special case will be studied as follows.

3.1.1 Solving (3.2) with a Particular Symmetry Type

As discussed in Section 2.2, when the graph is symmetric in a certain way, we obtain a
fast GFT: by Lemma 3, L = BNGB>N with block-diagonal G if L is centrosymmetric,
which is associated to symmetry properties of the graph. In this case, a fast GFT U can
be obtained using the diagram in Figure 2.2(a), which can be expressed as

U = BN · diag(U+,U−),
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where BN is the orthogonal matrix defined in (2.2) that corresponds to a butterfly stage
of Haar units, and diag(U+,U−) is a block-diagonal matrix associated to two parallel
length N/2 transforms.

From the above statement, if we restrict the graph to be symmetric, an H with some
desirable properties will arise, and the sizes of block diagonal elements of R will be
known. Then, we can show that (3.2) would reduce to a convex problem. We denote
R = diag(R1, . . . ,RM ), where element Ri has size ki×ki and

∑M
i=1 ki = n. We also write

H as H = (H1, . . . ,HM ), where Hi, with size n× ki, is a vertical slice of H containing
ki columns. Thus, HRH> =

∑M
l=1 HlRlH>l , and

(
HRH>

)
i,j

= e>i

(
M∑
l=1

HlRlH>l

)
ej =

M∑
l=1

h(i, l)Rlh(j, l)>,

where h(i, l) denotes the i-th row of Hl. We define Θ as

Θ := H>SH =


Θ1,1 Θ1,2 . . . Θ1,M

Θ2,1 Θ2,2 . . . Θ2,M
...

... . . . ...
ΘM,1 ΘM,2 . . . ΘM,M

 ,

where Θi,j has size ki × kj , then (3.2) can be reduced to a convex problem:

minimize
Ri∈Rki×ki

M∑
l=1

[−log det(Rl) + trace(RlΘl,l)]

subject to Ri � 0,
M∑
l=0

h(i, l)Rlh(j, l)> ≤ 0, i 6= j. (3.3)

The number of variables is reduced from N2 = (
∑M
l=1 kl)2 to

∑M
l=1 k

2
l . Since H is typically

sparse, the constraints in (3.3) are simplified in many practical cases. Note that if Θi,j

is zero for all i 6= j, the solution of (3.3) is the same as that of (3.1).
Based on this framework of data-driven fast GFT, we devote the next two sections to

particular cases: symmetric line graph (Section 3.2) and non-separable fast GFT without
any specified symmetry (Section 3.3).

3.2 Symmetric Line Graph Transforms (SLGT)

As introduced in 3.1, first order GMRF are associated to line graphs. Based on the
connection between graph symmetry and Haar units we have introduced in Section 2.2,
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(a)

(b)

(c)

Figure 3.2: (a) An arbitrary length 8 line graph. (b) A length 8 SLGT. (c) A special
length-8 SLGT.

we note that among all line graphs, those having a butterfly stage of Haar units are
symmetric line graphs. The GFT of a symmetric line graph is thus called a symmetric
line graph transform (SLGT).

With a length 8, an arbitrary line graph can be represented as in Figure 3.2(a),
while a symmetric line graph represented in Figure 3.2(b). The flow diagram for the
computation of a general 8×8 SLGT is shown in Figure 3.3, where U+ and U− are 4×4
transforms characterized by the subgraphs G+ and G−, obtained from the decomposition
described in Section 2.2.3. This fast GFT diagram can be extended to any even size N1.
For any even number N , both U+ and U− have at most N2/4 multiplications, meaning
that the overall N ×N SLGT has at most N2/2 multiplications. This is half the number
of multiplications required by a general N ×N transform such as the KLT.

1As we have pointed out in Section 2.3.3, there also exists a butterfly stage of Haar units for a
symmetric line graph with an odd number of nodes. However, we leave the discussion for future work
since transforms with odd lengths are rarely used in existing image and video coding systems.
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(a) (b)

Figure 3.3: (a) The diagram of general 8×8 SLGT implementation. (b) Graphs that
characterize the sub-transforms in the fast GFT diagram.

3.2.1 DTTs as SLGTs

There are some well-known transforms that can be viewed as SLGTs. For example,
among 16 types of DTTs, the DCT-II, DST-I, and DST-II, as defined in Section 1.2.4
correspond to Laplacian matrices LDCT-II (1.10), and

LDST-I =



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


, LDST-I =



3 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 3


,

respectively. Their associated graphs are uniform line graphs with two self loops with
weights α = 0, α = 1, and α = 2, respectively, as shown in Figure 3.2(c). These three
transforms are known to have fast algorithms for lengths satisfying certain conditions
[9, 134,140].

3.2.2 Closed-Form Graph Learning Solution with Tree Topologies

Here, we highlight a property that provides a closed form solution for learning a simple
(i.e., loopless) line graph2. More generally, the close-form solution would be available if

2The main result of this section has been published in our work [77].
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the graph to be learned is a tree (acyclic graph), where line graph is a particular case.
Those results are potentially useful because 1) those results applies to trees that are more
general than line graphs 2) trees are useful graphs that provide computational benefits.
In particular, trees are the sparsest connected graphs, so graph based filters [105, 114]
have the lowest complexity when implemented on trees. Furthermore, tree are bipartite,
hence perfect reconstruction filterbanks on graphs can be easily implemented [87].

We consider the graph estimation problem with an `1 regularization term, which is
more general than (3.1):

minimize
L∈L(E)

− log |L|† + trace(LS) + α‖L‖1,off, (3.4)

where α is a Lagrange multiplier and ‖L‖1,off is the absolute sum of all off-diagonal
elements of L. The role of the last regularization term in (3.4) is to promote graph
sparsity, which also corresponds to an exponential prior of the GMRF parameters [25].

In fact, closed-form solution for (3.4) is available if the topology set E corresponds
to a tree graph:

Theorem 3. If E corresponds to a simple tree graph G, then the graph weights for the
optimal CGL solution of (3.4) are given by

ws,t =


[
(es − et)>K(es − et)

]−1
=
[

1
N

∑N
i=1 (xi(s)− xi(t))2 + 2α

]−1
, (s, t) ∈ E ,

0, (s, t) /∈ E .
(3.5)

where K = S + α(I− 11>).

Proof: see Appendix A.3.
Using this closed form solution, the complexity of solving a tree CGL can be sig-

nificantly reduced. Given the matrix K, constructing the weights from (3.5) has an
overall complexity of O(n − 1) = O(n). In contrast, the algorithm proposed in [25]
has O(Tp(n) +n2) complexity per block-coordinate descent iteration, where Tp(n) is the
complexity of solving a nonnegative quadratic program of size n.

3.3 Data-driven Non-separable Fast GFTs

In Section 3.1.1 we solved (3.2) for known H. In this section, we provide an approximate
method when H in (3.2) is not known ahead of time.
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When H is not given, (3.2) is a nonconvex problem. We propose an efficient approx-
imation method as follows. We factor N as N = N1N2 and approximate S by the
Kronecker product of two matrices of sizes N2 ×N2 and N1 ×N1:

S ≈ S2 ⊗ S1. (3.6)

The optimal approximation in terms of Frobenius norm is given by the optimal rank-1
approximation of S̃, a matrix with size N2

2 × N2
1 , whose entries are those of S with

rearrangement [98,131]:

S̃ =



vec(S1,1)>
...

vec(SN2,1)>

vec(S1,2)>
...

vec(SN2,N2)>


, with S =


S1,1 S1,2 . . . S1,N2

S2,1 S2,2 . . . S2,N2
...

... . . . ...
SN2,1 SN2,2 . . . SN2,N2

 ,

where Si,j ’s are N1 × N1 block components of S. It can be shown that S2 and S1 can
be obtained by solving the first left and right singular vectors of S̃ followed by vector
reshaping:

Lemma 6 ([131]). For an N ×N matrix S, the optimal solution of

(S∗1,S∗2) = argmin
S1∈RN1×N1 , S2∈RN2×N2

‖S− S2 ⊗ S1‖2

can be obtained from the rank-1 approximation of S̃. In particular, denote µ =
(µ1, . . . , µN2

2
)> and ν = (ν1, . . . , νN2

1
)> the first left and right singular vectors of S̃ asso-

ciated to singular value σ1, then

S∗1 =


ν1 νN1+1 . . . νN2

1−N1+1

ν2 νN1+2 . . . νN2
1−N1+2

...
... . . . ...

νN1 ν2N1 . . . νN2
1

 , S∗2 =


µ1 µN2+1 . . . µN2

2−N2+1

µ2 µN2+2 . . . µN2
2−N2+2

...
... . . . ...

µN2 µ2N2 . . . µN2
2

 .

Next, with S1 and S2 obtained from Lemma 6, we denote the eigendecomposition of
S2 as S2 = E2D2E>2 , then

S ≈
(
E2D2E>2

)
⊗ (IN1S1IN1) = (E2 ⊗ IN1) (D2 ⊗ S1) (E2 ⊗ IN1)> . (3.7)
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Algorithm 1 Proposed Approximation Method for Non-separable Fast GFT
Require: S ∈ RN×N , a chosen factorization N = N1N2
Ensure: (H,R) as a solution of (3.2)

1: Evaluate S1 and S2 such that S ≈ S2 ⊗ S1
2: Evaluate the eigenmatrix E2 of S2
3: H← E2 ⊗ IN1

4: Solve (3.3) for Ri, given H and ki = N1 for each i
5: R ← diag(R1, . . . ,RN2)

If N2 is small, E2 ⊗ IN1 is sparse; thus, it is a legitimate matrix satisfying C1-B that
approximately block-diagonalizes S to D2 ⊗ S1. Therefore, we pick E2 ⊗ IN1 as the H
matrix, and use the block structure of D2 ⊗ S1, to solve (3.3) and obtain R which has
M = N2 nonzero N1 ×N1 diagonal blocks.

We summarize this proposed method in Algorithm 1. For the choice of N1 and N2,
we note that it is preferable to choose N1 ≈ N2. With the resulting H and R matrices,
the number of multiplications required for the fast GFT is N(N1 +N2), which is smaller
when N1 and N2 are closer to each other. In addition, when N1 is closer to N2, there are
more degrees of freedom in S1 ⊗ S2, giving a potentially better approximation in (3.6).

If the signal is a pixel block with size N1×N2, the eigenmatrices E1 and E2 of S1 and
S2 characterize the column and row transforms in a separable scheme. Therefore, the
GFT obtained by the proposed method can be regarded as a non-separable transform
obtained from a separable one: the solver of (3.3) updates D2 ⊗ S1 in (3.7) into an
arbitrary block diagonal matrix (not necessarily a Kronecker product matrix), which
has more degrees of freedom. The resulting fast GFT can be realized by a common
row transform applied to all rows followed by different column transforms applied to
different columns3. The number of multiplications is the same as a separable transform.
The number of required coefficients is NN1 +N2

2 , which is between the numbers in the
separable case (N2

1 +N2
2 ) and the nonseparable case (N2).

3.4 Experimental Results

In this section, we apply data-driven GFTs introduced in Sections 3.2 and 3.3 to video
residual blocks, and obtain the resulting rate-distortion (RD) performance. In Sec-
tion 3.4.1, we obtain a data-driven separable GFT composed of SLGTs (as described in

3Note that when the input covariance matrix has row-first node ordering, the same method will yield
an approximate transform with a common column transform and different row transforms.
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Table 3.1: Parameters of learned symmetric line graphs, and those associated with DCT.
The parameters are weights of self loops and edges, as shown in Figure 3.2(b).

s1 s2 s3 s4 w1 w2 w3 w4
GV 0.15 0 0.02 0.02 0.94 0.96 1 0.90
GH 0.08 0 0.01 0.03 1 0.93 1 0.94
GDCT 0 0 0 0 1 1 1 1

Table 3.2: Average percentage of bit rate reduction of SLGTs as compared to DCT at
32dB-38dB PSNR. Results with and without frequency weighting are compared. Nega-
tive values mean compression gain.

w/o freq. weighting w/ freq. weighting
BQMall 0.04 -0.10

BasketballDrill 0.09 -0.19
Kimono1 -0.75 -1.40
Cactus -0.03 -0.20

ParkScene -0.82 -0.58
BQTerrace -0.31 -0.17

Average -0.39 -0.51

Section 3.2), and evaluate its rate-distortion (RD) performance on a dataset of inter pre-
dicted blocks. Then, in Section 3.4.2, we apply the approach introduced in Section 3.3
to learn mode-dependent non-separable GFTs for intra predicted blocks in particular
prediction modes, and present the resulting RD performance.

3.4.1 Data-Driven SLGTs for Inter Predictive Coding

In this experiment, we obtain a 2D separable transform composed of a row SLGT and
a column SLGT, and apply it to inter predictive coding. We use a dataset of 8 × 8
inter predicted luma blocks, extracted with the HEVC test model (HM-16.9) from sev-
eral video sequences: BasketballDrive, BQMall, BasketballDrill, Kimono1, Cactus,
ParkScene, and BQTerrace, where BasketballDrive is used as the training set and the
other sequences are used for testing.

We solve the problem (3.3) with H = BN and E corresponding to a line graph
topology. For the column transform, we use 1D vertical vectors of length 8 taken from the
8×8 residuals in the training set, to obtain LV, the 8×8 empirical covariance matrix. For
the row transform, we repeat the same procedure using 1D horizontal vectors taken from
the same training set to obtain the empirical covariance matrix LH. Since most residual
blocks are expected to be well approximated by only a few low frequency eigenvectors at
compression rates of interest, we modify the optimization criterion of (3.3) by increasing
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the penalty on the approximation error on the lower frequency basis. To achieve this,
we apply a simple heuristic based on frequency weighting to the covariance matrix [95].
Letting LV = UVΛVU>V and LH = UHΛHU>H, we replace ΛV and ΛH by Λ2

V and Λ2
H,

respectively, then use the modified covariance matrix as input of the program (3.3) to
estimate the Laplacian matrices LV and LH and hence the symmetric line graphs GV/GH.
In this way, the effects of eigenvectors corresponding to low frequencies are magnified in
the objective function of (3.3). As a result, the first few basis functions of the learned
SLGT are expected to better approximate those of KLT. In the implementation of this
experiment, self-loops are allowed to provide more degrees of freedoms for better coding
results4. We use the CVX package [42] to obtain the parameters. Those weights of self
loops and edges, as depicted in Figure 3.2(b), are shown in Table 3.1. The eigenmatrices
of LV and LH are SLGTs that we use as column and row transforms for testing data.

The rate-distortion (RD) performance of the proposed transform is compared with
that of DCT. After the transforms, the coefficients are uniformly quantized, then entropy-
encoded using the AGP encoder [102]. The AGP codec combines an alphabet parti-
tioning and a set partitioning techniques, which are learned based on the distribution
of the transform coefficients; thus, this codec can provide a fair comparison between
different transforms. Since the column/row transform scheme is always applied to all
columns/rows, no side information is required for uniquely decoding the blocks.

The bitrate gains in Bjontegaard-delta measure (BD-rate) [4] at 32dB-38dB peak-
signal-to-noise-ratio (PSNR), with and without frequency weighting, are shown in
Table 3.2, where the coding results with DCT coefficients is used as the baseline. Accord-
ing to the table, we have the following remarks from the results. First, the proposed
transform achieves an average bitrate gain of 0.51% as compared to DCT. In average, the
gain of SLGT is the highest at distortion level of 32dB, and drops when it gets higher.
As our proposed SLGT better approximates the first few basis functions of a learned
KLT, better decorrelation results at lower bit rate is expected. Second, the frequency
weighting procedure provides a more consistent gain in the 6 test sequences compared to
the scheme without frequency weighting. The most significant bitrate gain is observed
in Kimono1 sequence, with frequency weighting applied. Indeed, the residual signal of
Kimono1 has the smallest energy in average, and such blocks are more likely to be rep-
resented by a small number of SLGT coefficients. Thus, the first few basis functions
at low frequency, where the SLGT approximates the KLT with a better accuracy, are
particularly important for those smooth blocks.

4If self-loops are not allowed, the convex program can be solved using the closed form solution
described in Section 3.2.2.
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Table 3.3: Bit rate reduction of separable KLT, fast GFT, and hybrid DCT/ADST as
compared to the 2D separable DCT, tested on residual blocks with intra mode-2 and
mode-16. Negative values mean compression gain, measured in the Bjontegaard metric
(percentage of bit rate reduction).

Separabe KLT Fast GFT DCT+ADST
Mode-2 Mode-16 Mode-2 Mode-16 Mode-2 Mode-16

BQMall -9.7 -6.3 -12.9 -8.2 -0.7 -1.3
BasketballDrill -11.9 -8.6 -14.5 -10.2 -3.4 -2.5

Crew -17.5 -14.8 -20.7 -16.2 -3.2 -1.7
Harbour -26.6 -24.9 -29.7 -23.0 -1.7 -3.2

Ice -28.4 -11.8 -35.5 -16.8 -3.7 -1.7
Soccer -14.6 -12.7 -15.6 -11.2 -3.9 -1.5
Average -13.2 -10.4 -20.2 -11.8 -2.8 -2.1
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Figure 3.4: Rate-distortion performance of separable KLT, fast GFT, and hybrid
DCT/ADST. The testing blocks in this figure are mode-2 intra residual blocks.

3.4.2 Data-Driven Nonseparable GFTs for Intra Blocks

In the second experiment, we apply the learning method proposed in Section 3.3 to intra-
predicted blocks. We extract intra-predictive residual blocks from test video sequences
BQMall, BasketballDrill, City, Crew, Harbour, Ice and Soccer, again with HM-
16.9. Only 8×8 luma residual blocks with intra prediction mode-2 (HOR+8) and mode-
16 (HOR-6), which have nearly diagonal directions of prediction, are considered. We
train a fast GFT for mode-2 (resp. mode-16) based on Algorithm 1, using mode-2 (resp.
mode-16) blocks in the City sequence as the training set. The convex problem (3.2) is
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solved using CVX [42] toolbox. Then, we test the results on mode-2 (resp. mode-16)
blocks in the other 6 sequences, not including the one for training.

To compare the results, we consider several other transforms with comparable or lower
computational costs: the 2D separable DCT, separable KLT, and the mode-dependent
hybrid DCT/ADST transform. In the hybrid scheme, we apply a mode-dependent com-
bination of DCT and ADST, as suggested in [107], for the row and column transform.
Each KLT (for mode-2 and mode-16, respectively) is pre-trained using the same training
set as the fast GFT. The transform coefficients are uniformly quantized using various
quantization steps that yield PSNR levels ranging from 29dB to 38dB. As in Section 3.4.1,
the quantized coefficients are encoded using the AGP codec [102].

Table 3.3 shows the coding gain in BD-rate (percentages of bit rate reduction) over
2D DCT. The RD plot for mode-2 blocks is shown in Figure 3.4. The resulting fast GFT
achieves an average of 20.2% bit rate gain over DCT for mode-2 blocks, and 11.8% for
mode-16 blocks. It also outperforms the hybrid transform for each sequence/mode. In
most cases, the fast GFT also gives a higher coding gain than the pre-trained separable
KLT. In fact, the Laplacian constraint that requires the transform to be a GFT can
be viewed as a regularization, which prevents overfitting. In contrast, a separable KLT
that is learned and tested on different datasets is not regularized, and may suffer from
overfitting.

We also note that in this experiment, data-driven transforms (separable KLT and
fast GFT) yield a very significant gain (> 10%) compared to the scheme with 2D DCT
or hybrid DCT+ADST. While data-driven transforms provide a better adaptation to
statistical properties of blocks, the significant gain we obtain here may not be easily
achievable in practice. In fact, part of the gain we observe is thanks to the fact that
the coding scheme we implement here is an open-loop system, where residual blocks
were extracted from HEVC encoder, and then processed using an independent entropy
encoder. In addition, during block collection process in the HEVC encoder, the decision
of intra prediction mode is based on the RD cost, which is dependent of the transform
coefficients. However, the separable KLT and fast GFT were trained after those blocks
were collected, and prediction modes may be chosen differently when RD cost was eval-
uated based on KLT or GFT coefficients. Thus, while data-driven transforms give a
significant gain on the blocks we extracted, such a big gain may not be attainable when
they are embedded into a real codec as a component of a closed-loop system.
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3.5 Conclusion

In this chapter, we have investigated several data-driven fast GFTs for video coding.
A general graph learning framework for fast GFT was introduced in Section 3.1, where
constrains associated to fast GFT algorithms were incorporated. We showed that if the
desired butterfly stage(s), associated to given graph symmetry properties, is specified,
then the problem is convex and can be solved using existing algorithms. Two approaches
under this framework were considered: in Section 3.2, we learned GFTs corresponding
to symmetric line graphs, and introduced a learning approach that approximates KLT
basis functions using SLGTs. In Section 3.3, we extended the graph learning problem to
non-separable transforms. Without any prior information on graph topology or specified
butterfly stage(s), we proposed an approximate solution that gives a GFT with the same
complexity as a separable transform. Experimental results were shown in Section 3.4,
where the learned SLGT and non-separable fast GFT achieve consistent compression
gains for inter and intra predicted residual signals, respectively.
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Chapter 4

Lapped Graph Fourier Transform

In image and video coding, block-based transforms such as the DCT, are applied
to different blocks independently. In this way, the correlation between pixels on the
boundary of two adjacent blocks cannot be captured. This leads to the so-called block-
ing artifact: an artificial discontinuity across the block boundary in the reconstructed
signal. A well-known approach that addresses blocking artifacts is based on the design
of lapped transforms [79, 80], where a transform is applied to blocks with overlap. This
method has been shown to reduce significantly blocking artifacts. Designs of lapped
transforms include the lapped orthogonal transform (LOT) [81], and a pre- and post-
filtering framework [127], which has been adopted in the Daala codec [130].

However, as many signal processing techniques have been extended to a graph-based
framework, to our knowledge, lapped transforms have not been studied in the context
of graph signal processing. Similar to the block-based DCT, most existing graph-based
transforms for pixel data are applied block-wise without overlap, and may lead to block-
ing artifacts. Thus, an LOT-like graph-based transform that can mitigate blocking arti-
facts would be of practical interest. In this chapter, we extend the notion of lapped trans-
form to graph signals, with particular focus on line graphs with non-uniform weights, as
in Figure 3.2(a). We propose the lapped graph Fourier transform (LGFT): a family of
lapped transforms that have different basis functions for different blocks so as to capture
distinct local statistical properties for different blocks, while having perfect reconstruc-
tion and orthogonality properties. We will show that the conventional LOT can be seen
as approximately optimizing the transform coding gain for signals with a uniform line
graph model, while our proposed LGFT is a generalization of the LOT that considers
more general graph-based models. The LGFT matrix for each block can be obtained from
a Kron reduction [23] of the graph, followed by an eigen-decomposition. Experimental
results show that for data associated to a non-uniform line graph model, the LGFT can
provide a better transform coding gain as compared to existing transforms such as LOT
and DCT.

Work in this chapter has been published in [73].
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The rest of this chapter is organized as follows. In Section 4.1 we review basic
concepts of the LOT. In Section 4.2, we formulate the optimal lapped graph Fourier
transform design problem, and propose an LGFT design method. Experimental results
are shown in Section 4.3. Finally we conclude this work in Section 4.4.

4.1 Review of Lapped Orthogonal Transforms

The lapped orthogonal transform (LOT) is a lapped transform that has orthogonal basis
functions, and is applied to blocks with length 2M and overlap length M . Given a block
size 2M , the LOT matrix is a 2M ×M matrix R = (E>, F>)>, where E and F are
two square matrices to be designed. If we denote x as the input signal and y as the
transform domain vector, then we can define a transform matrix T such that y = T>x,
and the reconstructed signal x̂ = Ty, where

T =


. . .

R
R

. . .

 =



. . .

. . . E
F E

F . . .
. . .


.

The transform R is a valid LOT if and only if TT> = T>T = I, meaning that x̂ = x
and columns of T are orthogonal. The general solution has the form [118]:

E = PQ, F = (I−P)Q, (4.1)

where P can be any symmetric projection matrix, and Q can be any orthogonal matrix,
both with size M ×M .1

Many lapped transform designs use the DCT as a key component. One example of
such a design is:

Ê = 1
2
(
Ue −Uo, (Ue −Uo)Z

)
, F̂ = 1

2
(
J(Ue −Uo), −J(Ue −Uo)Z

)
, (4.2)

where Ue and Uo are M×M/2 matrices whose columns are the length-M DCT functions
of even and odd symmetry, respectively. The matrix Z is a cascade of plane rotations

1In the literature, the general solution is sometimes represented as E = QP, F = Q(I − P). In
fact, this form and (4.1) are interchangeable, and we focus on (4.1) here as it can be extended to the
graph-based design more easily.
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[81] or a product of DST-IV and DCT-II [80], and J is the order reversal permutation
matrix (1.1). Based on the fact that DCT approximates the KLT, the design in (4.2)
approximates the optimal solution characterized in [79]. The projection and orthogonal
matrices corresponding to (4.2) are

P̂ = 1
2(I−UeU>o −UoU>e ), Q̂ = (Ue, −UoZ). (4.3)

4.2 Lapped Transforms on Graphs

We now propose the lapped graph Fourier transform (LGFT) by first investigating the
conditions for perfect reconstruction and orthogonality, and then incorporating the graph
variation (1.5) into the optimality criterion.

4.2.1 Conditions of Perfect Reconstruction and Orthogonality

We denote a graph signal x ∈ RNM as x = (x>1 , . . . ,x>N )>, modeled by an attractive
GMRF: 

x1

x2
...

xN

 ∼ N
0,L† = C =


C1,1 C1,2 · · · C1,N

C2,1 C2,2 · · · C2,N
...

... . . . ...
CN,1 CN,2 · · · CN,N



 ,

where (x>k ,x>k+1)> corresponds to the k-th block with length 2M , and Cp,q is the (p, q)-
th M ×M block component of the covariance matrix C. Unlike the conventional LOTs,
where a common model is used for all blocks, here we consider different models for dif-
ferent blocks, such as a line graph model with non-uniform weights (e.g., Figure 3.2(a)),
where Ck,k are different for different k. Under this assumption, we revisit the conditions
of perfect reconstruction and orthogonality. First, we define a lapped transform matrix
Rk = (E>k ,F>k )> for the k-th block (x>k ,x>k+1)>, where the Rk’s are different in order to
capture distinct statistical properties for different blocks. Based on this definition, the
overall transform matrix TLGFT is

TLGFT =


. . .

Rk

Rk+1
. . .

 =



. . .
Ek

Fk Ek+1

Fk+1
. . .


.

58



Then, we obtain the output signal y = (y>1 , . . . ,yN ) and the reconstructed signal x̂ =
(x̂>1 , . . . , x̂>N ) with

yk = E>k xk + F>k xk+1,

x̂k = Fk−1yk−1 + Ekyk =
(
EkE>k + Fk−1F>k−1

)
xk + Fk−1E>k−1xk−1 + EkF>k xk+1.

By comparing xk and x̂k, we obtain the conditions for perfect reconstruction and aliasing
cancellation. In addition, the orthogonality constraint, R>k Rk = I, is equivalent to
E>k Ek + F>k Fk = I. Thus, for each k, the desired transform should satisfy

EkE>k + Fk−1F>k−1 = I, (Perfect reconstruction) (4.4)

EkF>k = FkE>k = 0, (Aliasing cancellation) (4.5)

E>k Ek + F>k Fk = I. (Orthogonality) (4.6)

Due to the highly nonlinear nature of these constraints as well as the large number
of degrees of freedom in designing Ek and Fk, we propose a LGFT construction that
generalizes the LOT solution of (4.1). We select

Ek = PQk, Fk = (I−P)Qk, (4.7)

where the projection matrix P is common for all k so that (4.4) can be satisfied. Based
on (4.7), one can verify that (4.4)-(4.6) are always satisfied as long as P is a symmet-
ric projection matrix and the Qk are orthogonal matrices. Thus, (4.7) is a sufficient
condition of perfect reconstruction and orthogonality for LGFT.

4.2.2 Proposed LGFT Construction

An optimality criterion for the conventional LOT based on the transform coding gain
can be defined as [53,80]:

GTC =
1
M

∑M
i=1 σ

2
k,i(∏M

i=1 σ
2
k,i

)1/M , (4.8)
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Figure 4.1: An example of Kron reduction on a line graph, where GSk is the graph
obtained from Kron reduction of G with vertex subset Sk.

where σ2
k,i = Var(yk(i)) is the variance of the i-th transform coefficient in block k. With

x ∼ N (0,C), σ2
k,i is the (i, i) entry of

E[yky>k ] =
(

E
F

)>(
Ck,k Ck,k+1

Ck+1,k Ck+1,k+1

)(
E
F

)
(4.9)

= Q>
(

P
I−P

)>(
Ck,k Ck,k+1

Ck+1,k Ck+1,k+1

)(
P

I−P

)
︸ ︷︷ ︸

Gk

Q. (4.10)

It has been shown [80] that, for a fixed P, the optimal Q that maximizes GTC is the
eigenmatrix of Gk. In the data model considered in conventional LOT, Gk = G is
common for all k. In (4.1), Z is typically chosen as an orthogonal transform with fast
implementation such that Q̂ approximates the eigenmatrix of G.

Here, we extend the LOT design problem to LGFT design as follows. Let the signal
x ∼ N (0,C = L†) be an attractive GMRF, where L is a graph Laplacian corresponding
to graph G and Ck,k can be different for different k. Note that the signal in block k is
also an attractive GMRF with length 2M :

(
xk

xk+1

)
∼ N

(
0,L†Sk

)
, LSk :=

(
Ck,k Ck,k+1

Ck+1,k Ck+1,k+1

)†
.

The matrix LSk is a Laplacian obtained by Kron reduction [23] of the graph nodes
VSk = {(k − 1)M + 1, . . . , (k + 1)M} corresponding to block k. In general, the Kron
reduction of a subset of graph nodes VS ∈ V can be expressed as

LS = LS,S′L−1
S′,S′LS′,S , VS′ = V\VS .
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As in (4.9), we consider (4.7) and replace the block components of C by LSk . With
the assumption that LSk can be different for different k, we would like to choose Qk that
diagonalizes

Hk :=
(

P
I−P

)>
LSk

(
P

I−P

)
. (4.11)

In particular, if L corresponds to a line graph, then the Kron reduction LSk is the
Laplacian of the line graph segment of G with nodes VSk . Thus, the retrieval of the k-th
LGFT component Rk boils down to choosing the line graph segment with length 2M
associated to block k, which can be different for different k. An illustrative example is
shown in Figure 4.1.

While the choice of Qk is straightforward with a given P, finding P for globally
optimal solution in term of transform coding gain, even in conventional LOT design,
is a challenging problem [81]. Following the LOT design, we adopt the matrix P̂ in
(4.3) associated to (4.2). With this choice of P, this LGFT design can be regarded as a
generalization of the LOT, where Rk reduces to LOT when Qk = (Ue, −UoZ).

To summarize, given a line graph G with Laplacian L and block size M , the proposed
LGFT can be constructed as follows:

1. Pick P as in (4.3).

2. Pick Qk for each k as the eigenmatrix of the Hk in (4.11).

3. Obtain LGFT components as given in (4.7).

Similar to the LOT, which achieves nearly optimal GTC when L is associated to a uniform
line graph, the proposed LGFT construction, based on a fixed P = P̂, can approximately
optimize GTC when the line graph has non-uniform weights.

4.3 Experimental Results for LGFT

We evaluate the proposed LGFT on a class of line graphs, where some edges have weights
ε that characterize weak correlations, and other edges have weights 1. This line graph
model has been used for encoding intra-predicted images [49] and piecewise smooth
images [50,144].

4.3.1 Transform Coding Gain with a Particular Line Graph

First, we consider a line graph with length n = 400 and ε = 0.05, where weak weights
are located at edges (h, h + 1) with h ∈ {15, 30, 45, 60, . . . , 390}. A covariance matrix
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Figure 4.2: Transform coding gains for different transforms and block sizes M with
signals modeled by a particular line graph. The KLT, GFT, and DCT shown here are
defined in a block-based manner.

C = (L + 0.2I)−1 is used in this experiment to avoid the matrix singularity issue. We
compare the transform coding gains with LOT, LGFT, DCT, KLT, and GFT, where
the three latter transforms are designed and applied in a non-overlapping block-based
manner. The implementation of LOT follows from (4.2), where Z is composed of a DCT-
II and a DST-IV, as suggested in [79]. For each transform, block sizes of M = 4, 8, and
16 are considered.

In Figure 4.2 we show the transform size versus the transform coding gain GTC .
For this model N (0,C), GTC is upper-bounded by 1.736, derived from the length-n
KLT of the overall model. We can see that the LGFT yields the highest gain for all
block sizes included in this experiment. For some block sizes larger than M = 16, the
transform coding gains with the block-based KLT and GFT are higher than those of the
LGFT since there are fewer block boundaries. In practical coding scenarios, additional
information such as the positions of weak edges may be required as bit rate overhead.
This has not been considered in the analysis here.

We show the LGFT basis functions R2 with M = 8 in Figure 4.3. Note that R2 is
designed for the block (x>2 , x>3 )> with nodes 9 to 24, where a weak edge (15, 16) lies
between the 7th and 8th nodes within this block. We can observe in most basis functions
a discontinuity between entries 7 and 8 that corresponds to the lower correlation, showing
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Figure 4.3: Basis functions of the LGFT for k = 2 with M = 8.

that the LGFT basis can capture the local weak correlation in the graph topology through
different choices of Qk.

4.3.2 LGFT for Image Coding

In the second experiment, we apply an LGFT to image coding. A 480×640 piecewise
smooth image from the Tsukuba dataset [97] is used for this experiment. For demonstra-
tion and comparison purpose, we apply different transforms (LGFT, LOT, DCT, and
GFT) horizontally, then a common transform (block-based DCT) vertically. We quantize
the coefficients and apply inverse horizontal transforms and vertical block-based DCT to

63



(a) Full Image

(b) Original (c) Edge map

(d) LGFT (PSNR=42.27dB) (e) LOT (PSNR=42.14dB)

(f) GFT (PSNR=42.57dB) (g) DCT (PSNR=42.33dB)

Figure 4.4: Subjective comparison different transforms with QP=30. (a) The full piece-
wise smooth image and a 160×60 patch. (b) Original image patch. (c) Sobel edge map.
(d)-(f) Recovered image patches with different transforms.

reconstruct the signal. To define the line graphs for LGFT and GFT, we apply a Sobel
edge detector [40] to obtain an edge map. For each image row we define a line graph
based on image discontinuity information in the Sobel edge map: an edge weight of the
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QP PSNR (dB)
LGFT LOT GFT DCT

25 48.24 48.12 48.63 48.38
30 44.84 44.74 45.11 44.93
35 41.94 41.83 42.11 41.91
40 37.74 37.73 37.69 37.62
45 33.15 33.15 33.09 33.06

Table 4.1: Quality comparison of different horizontal transforms on full test image.

line graph is ε = 0.7 if any of the two corresponding pixels is an edge point in the Sobel
map. We use a block size M = 8, and quantization parameters (QP) ranging from 25
to 45, corresponding to quantization factors 2(QP−4)/6. Note that, in a practical image
coding scheme, the edge location can be transmitted as side information to the decoder
for unique decodability. In this experiment, we only compare the distortion but not the
number of bits required for encoding. This means that we can fairly compare LGFT
with GFT, but not with DCT and LOT, which do not require side information.

Table 4.1 shows the peak-signal-to-noise ratio (PSNR) of different transforms with
different QPs. We note that, similar to the GFT, which provides a higher PSNR than
the DCT, the LGFT gives a higher PSNR than LOT for almost all QPs. This gain
results from the fact that the line graph model, which LGFT and GFT are based on, can
better capture the discontinuities in the image signal. In Figure 4.4 we show the original
image, the Sobel edge map, and the reconstructed images using different transforms
with QP=30. With this quantization level, while LGFT does not give higher PSNRs
than GFT, it yields reduced blocking artifacts (reduced vertical image discontinuities)
as compared to the GFT.

4.4 Conclusion

In this chapter, we have extended the well-known lapped transform to a graph-based
setting. We derived the conditions for perfect reconstruction and orthogonality of the
lapped graph Fourier transform (LGFT), which is more general than the lapped orthog-
onal transform (LOT). Then, we proposed a design of LGFT on an arbitrary line graph,
where different transform functions are applied to different blocks to adapt to different
local statistical properties. Experimental results showed that on a nonuniform line graph,
the LGFT can achieve a better energy compaction than the block-based graph Fourier
transform and a conventional LOT in terms of transform coding gain. The extensions to
different lengths of overlap and to graphs with more general topologies, as well as fast
implementations of the LGFT, will be explored in future work.
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Chapter 5

Efficient DCT and DST Filtering
with Sparse Graph Operators

Filtering, where frequency components of a signal are attenuated or amplified, is
a fundamental operation in signal processing. Similar to conventional filters in digital
signal processing, which manipulate signals in Fourier domain, a graph filter selectively
reduces or amplifies graph Fourier coefficients, and can be characterized by a frequency
response that indicates how much the filter amplifies each graph frequency component.
This notion of frequency selection leads to various applications, including graph signal
denoising [7, 89, 138], classification [78] and clustering [128], and graph convolutional
neural networks [19,55].

For an undirected graph, we recall (1.7) in Section 1.2.2, which represents the fre-
quency domain graph filter operation:

H = Φ · h(Λ) ·Φ>, h(Λ) := diag(h(λ1), · · · , h(λN )). (1.7)

The operation y = Hx with input signal x and filter matrix H involves a forward
graph Fourier transform (GFT) Φ>, a frequency selective scaling operation h(Λ), and
an inverse GFT Φ. However, as fast GFT algorithms may not exist for any arbitrary
graphs (see Chapter 2), GFT often introduces a very high computational overhead when
the graph is large. To address this issue, graph filters can usually be implemented with
polynomial operations in vertex domain as (recall again in Section 1.2.2)

H =
K∑
k=0

gkZk, with Z0 = I, (1.6)

where the gk’s are coefficients and Z is called the fundamental graph operator, or graph
operator for short. With this expression, graph filtering can be applied in the vertex
(sample) domain via y = Hx, which does not require GFT computations. A graph filter
in the form of (1.6) is usually called an FIR graph filter [16, 51] as it can be viewed as

This chapter is an extended version of the work in [74,75].
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an analogy to conventional FIR filters with order K, which are polynomials of the delay
z. In what follows, we call the filters defined as in (1.6) polynomial graph filters (PGFs).

Various methods for designing vertex domain graph filters given a desired frequency
response have been studied in the literature. Least squares design of polynomial fil-
ters given a target frequency response was introduced in [105]. The recurrence relations
of Chebyshev polynomials provide computational benefits in distributed filter imple-
mentations as shown in [44, 115]. In [109] an extension of graph filter operations to a
node-variant setting is proposed, and polynomial approximation approaches using con-
vex optimization are introduced. Autoregressive moving average (ARMA) graph filters,
whose frequency responses are characterized by rational polynomials, have been inves-
tigated in [51, 68] in both static and time-varying settings. Design strategies of ARMA
filters are further studied in [67], which provides comparisons to PGFs. Furthermore, in
[16], state-of-the-art filtering methods have been extended to an edge-variant setting.

Recently, it has been pointed out that multiple operators can be obtained for
cycle graphs [34] and line graphs [74]. For those graphs, multiple graph operators
Z = {Z(1),Z(2), . . . ,Z(m)} that are jointly diagonalizable (i.e., have a common eigenba-
sis) can be obtained. Essentially, those operators are by themselves graph filter matrices
with different frequency responses. Thus, unlike (1.6), which is a polynomial of a single
operator, we can design graph filters as follows:

HZ,K = pK(Z(1),Z(2), . . . ,Z(m)), (5.1)

where pK(·) stands for a multivariate polynomial with degree K and arbitrary coef-
ficients. Iterative algorithms for the implementation of such graphs filters have been
further studied in [27]. Since H{Z},K = pK(Z) reduces to (1.6), the form (5.1) is a gen-
eralization of the PGF expression. We refer to (5.1) as multivariate polynomial graph
filter (MPGF).

In this chapter, we focus on filter operations based on the well-known DCTs and
DSTs. Notably, the DCT is the GFT associated to a uniform line graph, which means
that DCT filters are essentially graph filters. A DCT filter [8] is defined as the following
operation: 1) applying the DCT, 2) scaling DCT coefficients selectively, and 3) perform-
ing the inverse DCT. While implementation of DCT filter is typically done using forward
and inverse DCT, in fact, we can apply graph filter approaches to design and implement
DCT filters. More generally, it has been shown in [99] that all members of the family
of discrete trigonometric transforms (DTTs), i.e., 8 types of DCTs and 8 types of dis-
crete sine transforms (DSTs), are associated with line graphs. This allows us to exploit
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graph filter approaches to all DTT filters, whose applications include image resizing [91],
biomedical signal processing [113], medical imaging [129], and video coding [143].

Our work approaches the design of efficient sample domain (graph vertex domain)
graph filters, with particular focus on DTT filters. In particular, we show that if the
GFT is one among the 16 DTTs, then, in addition to the graph operator obtained
from the well-known line graph model [99], we can derive a family Z of sparse graph
operators with closed form expressions. In this way, efficient DTT filters can be obtained
using PGF and MPGF design approaches, yielding a lower complexity than a DTT filter
implementation in the transform domain. Experimental results in video coding are
presented to demonstrate the effectiveness of the proposed DCT and DST filters.

In the remainder of this chapter, we summarize our contributions with respect to
previous work in Section 5.1. In Section 5.2, we consider DTTs, where sparse operators
can be obtained by extending well-known properties of DTTs. We also extend the results
to 2D DTTs and provide some remarks on sparse operators for general graphs. Section 5.3
introduces PGF and MPGF design approaches using least squares and minimax criteria.
An efficient filter design for Laplacian quadratic form approximation is also presented.
Experimental results are shown in Section 5.4 to demonstrate the effectiveness of our
methods in graph filter design as well as applications in video coding. The conclusion of
the chapter will be drawn in Section 5.5.

5.1 Summary of Contributions

The first contribution of this work is to introduce novel DTT filter design methods for
graph vertex domain implementation. We note that DTT filters are special cases of
graph filters, which can be implemented using PGFs and MPGFs. The DTT case has
not been explored in existing work on general graph filters [16, 51, 67, 68, 109, 115]. We
also introduce multiple sparse graph operators specific to DTTs and allowing fast MPGF
implementations. In addition, while in related work [12, 82, 99], DTT filtering is typi-
cally performed in the transform domain using convolution-multiplication properties, we
introduce sample domain DTT filter implementations based on PGF and MPGF designs,
and show that our designs with low degree polynomials lead to faster implementations
as compared to those designs that require forward and inverse DTTs, especially in cases
where DTT size is large. Furthermore, in addition to the well-known least squares graph
filter design, we propose a novel minimax design approach for both PGFs and MPGFs.

Second, we provide novel insights on multiple sparse graph operators. Motivated by
the previous work [27, 34], we use multiple graph operators for filter design, but focus
particularly on operators that are sparse. Notably, we show that for each of the 16 DTTs,
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whose associated graph is a uniform line graph or its variants, there exist a series of oper-
ators that are sparse and have closed form expressions. We demonstrate that those oper-
ators lead to more efficient implementations, as compared to conventional PGF designs,
for DTT filters with frequency responses that are non-smooth (e.g., ideal low-pass filter)
or non-monotonic (e.g., bandpass filter). Note that [27] studies MPGFs with a focus on
distributed filter implementations, but does not investigate design approaches for those
filters or how sparse operators for generic graphs can be obtained other than cycle and
Cartesian product graphs. Our work complements the study in [27] by considering 1)
the case where GFT is a DTT, which corresponds to various line graphs, and 2) design
approaches for MPGFs. To the best of our knowledge, sparse DTT operators other than
those derived from line graphs are not known in the literature.

Third, we demonstrate experimentally the benefits of sparse DTT operators in image
and video compression applications. In addition to filter operation, our approach can
also be used to evaluate the transform domain weighted energy given by the Laplacian
quadratic form, which has been used for rate-distortion optimization in the context of
image and video coding [33,50]. We implement the proposed method in AV1, a real-world
codec, where our method provides a speedup in the transform type search procedure.

5.2 Sparse DCT and DST Operators

Classical PGFs can be extended to MPGFs [27] if multiple graph operators are available
[34]. Let L = ΦΛΦ> be a Laplacian with GFT Φ, we assume that we have a series of
graph operators Z = {Z(k)}Mk=1 that share the same eigenvectors as L, but with different
eigenvalues:

Z(k) = ΦΛ(k)Φ>, Λ(k) = diag(λ(k)) = diag(λ(k)
1 , . . . , λ

(k)
N ),

where λ(k) = (λ(k)
1 , . . . , λ

(k)
N )> denotes the vector of eigenvalues of Z(k). When the

polynomial degree K = 1 in (5.1), we have:

HZ,1 = g0I +
M∑
m=1

gmZ(m), (5.2)
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where gk are coefficients. When K = 2, we have

HZ,2 = g0I +
M∑
m=1

gmZ(m)

+ gM+1Z(1)Z(1) + gM+2Z(1)Z(2) + · · ·+ g2MZ(1)Z(M)

+ g2M+1Z(2)Z(2) + · · ·+ g3M−1Z(2)Z(M)

+ . . .

+ g(M2+3M)/2Z(M)Z(M), (5.3)

where the terms Z(j)Z(i) with j > i are not required because all operators commute, i.e.,
Z(i)Z(j) = Z(j)Z(i). Expressions with a higher degree can be obtained with polynomial
kernel expansion [47]. We also note that, since H{Z},K reduces to the form of H in (1.6),
HZ,K is a generalization of PGF and thus provides more degrees of freedom for the filter
design procedure.

As pointed out in the introduction, DTT filters are essentially graph filters. This
means that they can be implemented as PGFs (1.6) without applying any forward or
inverse DTT. Next, we will go one step further by introducing multiple sparse operators
for each DTT, which allows the implementation of DTT filters using MPGF.

5.2.1 Sparse DCT-II Operators

Recall that uj denotes the DCT functions as in (1.9), and LD represents the Laplacian of
a uniform line graph as in (1.10). Here, we revisit a validation in [117] to verify that uj
is an eigenvector of LD with eigenvalue ωj = 2− 2 cos((j − 1)π/N) for each j = 1, . . . N .
Then, we extend it to a generalized version, which contains not only LD but a family of
sparse graph filters that all have uj as an eigenvector.

To verify that LD ·uj = ωjuj , it suffices to consider an equivalent equation: ZDCT-II ·
uj = (2− ωj)uj , where

ZDCT-II = 2I− LD =



1 1
1 0 1

. . . . . . . . .
1 0 1

1 1


. (5.4)
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Table 5.1: Matrix structure and corresponding eigenpairs of sparse operators associated
to all DCTs and DSTs. The indice j ranges from 1 to N .

GFT Structure of Z(`) (Eigenvalue, Eigenvector) of Z(`)

DCT-I Figure 5.2(a), ` = 1, . . . , N − 1
(
2 cos

(
`(j−1)π
N−1

)
, φj

)
DCT-II Figure 5.2(b), ` = 1, . . . , N

(
2 cos

(
`(j−1)π

N

)
, φj

)
DCT-III Figure 5.2(c), ` = 1, . . . , N − 1

(
2 cos

(
`(j−1/2)π

N

)
, φj

)
DCT-IV Figure 5.2(d), ` = 1, . . . , N − 1

(
2 cos

(
`(j−1/2)π

N

)
, φj

)
DCT-V Figure 5.2(e), ` = 1, . . . , N − 1

(
2 cos

(
`(j−1)π
N−1/2

)
, φj

)
DCT-VI Figure 5.2(f), ` = 1, . . . , N − 1

(
2 cos

(
`(j−1)π
N−1/2

)
, φj

)
DCT-VII Figure 5.2(g), ` = 1, . . . , N − 1

(
2 cos

(
`(j−1/2)π
N−1/2

)
, φj

)
DCT-VIII Figure 5.2(h), ` = 1, . . . , N

(
2 cos

(
`(j−1/2)π
N+1/2

)
, φj

)
DST-I Figure 5.3(a), ` = 1, . . . , N + 1

(
2 cos

(
`jπ
N+1

)
, φj

)
DST-II Figure 5.3(b), ` = 1, . . . , N

(
2 cos

(
`jπ
N

)
, φj

)
DST-III Figure 5.3(c), ` = 1, . . . , N − 1

(
2 cos

(
`(j−1/2)π

N

)
, φj

)
DST-IV Figure 5.3(d), ` = 1, . . . , N − 1

(
2 cos

(
`(j−1/2)π

N

)
, φj

)
DST-V Figure 5.3(e), ` = 1, . . . , N

(
2 cos

(
`jπ

N+1/2

)
, φj

)
DST-VI Figure 5.3(f), ` = 1, . . . , N

(
2 cos

(
`jπ

N+1/2

)
, φj

)
DST-VII Figure 5.3(g), ` = 1, . . . , N

(
2 cos

(
`(j−1/2)π
N+1/2

)
, φj

)
DST-VIII Figure 5.3(h), ` = 1, . . . , N − 1

(
2 cos

(
`(j−1/2)π
N−1/2

)
, φj

)

For 1 ≤ p ≤ N , the p-th element of ZDCT-II · uj is

(ZDCT-II · uj)p =


uj(1) + uj(2), p = 1
uj(p− 1) + uj(p+ 1), 2 ≤ p ≤ N − 1
uj(N − 1) + uj(N), p = N.
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Following the expression in (1.9), we extend the definition of uj(k) to an arbitrary integer
k. The even symmetry of the cosine function at 0 and π gives uj(0) = uj(1) and
uj(N) = uj(N + 1), and thus

(ZDCT-II · uj)1 = uj(0) + uj(2),

(ZDCT-II · uj)N = uj(N − 1) + uj(N + 1). (5.5)

This means that for all p = 1, . . . , N ,

(ZDCT-II · uj)p = uj(p− 1) + uj(p+ 1) (5.6a)

=
√

2
N
cj

[
cos

(j − 1)(p− 3
2)π

N
+ cos

(j − 1)(p+ 1
2)π

N

]
(5.6b)

= 2
√

2
N
cj cos

(j − 1)(p− 1
2)π

N
cos (j − 1)π

N
(5.6c)

= (2− ωj)uj(p), (5.6d)

which verifies ZDCT-II · uj = (2− ωj)uj .
Note that in (5.6b), we have applied the sum-to-product trigonometric identity:

cosα+ cosβ = 2 cos
(
α+ β

2

)
cos

(
α− β

2

)
. (5.7)

Indeed, when uj(q±1) is replaced by uj(q± `) in (5.6a), this identity also applies, which
generalizes (5.6a)-(5.6d) to

uj(p− `) + uj(p+ `) =
√

2
N
cj

[
cos

(j − 1)(p− `− 1
2)π

N
+ cos

(j − 1)(p+ `− 1
2)π

N

]

= 2
√

2
N
cj cos

(j − 1)(p− 1
2)π

N
cos `(j − 1)π

N

=
(

2 cos `(j − 1)π
N

)
uj(p). (5.8)

As in (5.5), we can apply even symmetry of the cosine function at 0 and π, to replace
indices p− ` or p+ ` that are out of the range [1, N ] by those within the range:

uj(p− `) = uj(−p+ `+ 1), uj(p+ `) = uj(−p− `+ 2N + 1).

Then, an N ×N matrix Z(`)
DCT-II can be defined such that the left hand side of (5.8)

corresponds to (Z(`)
DCT-II · uj)p.
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1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

 0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0


(a) Z(1)

DCT-II, Z(2)
DCT-II, Z(3)

DCT-II, and Z(4)
DCT-II 1 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 1

  2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

  2 0 −1 −1
0 1 0 −1
−1 0 1 0
−1 −1 0 2

  2 0 0 −2
0 2 −2 0
0 −2 2 0
−2 0 0 2


(b) L(1)

DCT-II, L(2)
DCT-II, L(3)

DCT-II, and L(4)
DCT-II

(c) G(1)
DCT-II, G

(2)
DCT-II, G

(3)
DCT-II, and G(4)

DCT-II

Figure 5.1: (a) Sparse operators Z(j)
DCT-II, (b) their associated Laplacian matrices

L(j)
DCT-II = 2I− Z(j), and (c) associated graphs G(j)

DCT-II for the length-4 DCT-II.

Proposition 1. For ` = 1, . . . , N −1, we define Z(`)
DCT-II as a N ×N matrix, whose p-th

row has only two non-zero elements specified as follows:

(
Z(`)

DCT-II

)
p,q1

= 1, q1 =
{
p− `, if p− ` ≥ 1
−p+ `+ 1, otherwise(

Z(`)
DCT-II

)
p,q2

= 1, q2 =
{
p+ `, if p+ ` ≤ N
−p− `+ 2N + 1, otherwise

This matrix Z(`)
DCT-II has eigenvectors uj with associated eigenvalues 2 cos(`(j − 1)π/N)

for j = 1, . . . , N .

Note that Z(1)
DCT-II = ZDCT-II as in (5.4). Taking ` = 2 and ` = 3 and following

Proposition 1, we see that nonzero elements in Z(2)
DCT-II and Z(3)

DCT-II form rectangular-
like patterns similar to that in ZDCT-II:

Z(2)
DCT-II =



1 1
1 1

1
. . .

1 1
. . . 1

1 1


, Z(3)

DCT-II =



1 1

1
. . .

1 1
1 1

. . . 1
1 1


(5.9)
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For ` = N , the derivations in (5.8) are also valid, but with Z(N)
DCT-II = 2J. The rectangular

patterns we observe in (5.9) can be simply extended to any arbitrary transform length
N (e.g., all such operators with N = 6 are shown in Fig. 5.2(b)). We also show the
associated eigenvalues of Z(`)

DCT-II with arbitrary N in Table 5.1.

Example–Length 4 DCT-II Operators

We show in Figure 5.1(a) all sparse operators Z(`)
DCT-II of DCT-II for N = 4. In fact,

those matrices can be regarded as standard operators on different graphs: by defining
L(`)

DCT-II = 2I−Z(`)
DCT-II, we can view Lm

(`)
DCT-II as a Laplacian matrix of a different graph

G(`)
DCT-II. For example, all the resulting L(`)

DCT-II’s and G(`)
DCT-II’s for a length-4 DCT-II

are shown in Figure 5.1(b) and (c), respectively. The rectangular patterns we observe
in (5.9) can be simply extended to any arbitrary transform length N . We also show the
associated eigenvalues of Z(`)

DCT-II with arbitrary N in Table 5.1.
We observe that, among all graphs in Figure 5.1(c), G(4)

DCT-II is a disconnected graph
with two connected components. It is associated to the operator

Z(4)
DCT-II = ΦDCT-II · diag(2,−2, 2,−2) ·Φ>DCT-II.

Note that, while Z(4)
DCT-II is associated to a disconnected graph, it can still be used as a

graph operator for DCT-II filter because it is diagonalized by ΦDCT-II. However, Z(4)
DCT-II,

as well as its polynomials, have repeated eigenvalues, i.e., eigenvalues with multiplicity
2. This means that a filter whose frequency response has distinct values (e.g. low-pass
filter with h(λ1) > · · · > h(λ4) cannot be realized as a PGF of Z(4)

DCT-II.
Based on the previous observation, we can see that those operators associated to

disconnected graphs, and those having eigenvalues with high multiplicities would provide
less degrees of freedoms in PGF and MPGF filter designs, as compared to an operators
with distinct eigenvalues such as Z(1)

DCT-II.

5.2.2 Sparse Operators of 16 DTTs

In fact, the approach in Section 5.2.1 can be adapted to all 16 DTTs to obtain their
sparse operators. For illustrative purpose, we present in Section A.2 the derivations for
DST-VI, DST-VII, and DCT-V, which share the same right boundary condition with
DCT-II, but have different left boundary condition (see Table 1.1). Results for those
DTTs with other combinations of left/right boundary condition can be easily extended.

In Table 5.1, we list the sparse operators and their associated eigenpairs for all DTTs.
Figures 5.2 and 5.3 show the operators for N = 6, which can be easily extended to any
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(a) Z(1)
DCT-I to Z(5)

DCT-I (b) Z(1)
DCT-II to Z(6)

DCT-II

(c) Z(1)
DCT-III to Z(5)

DCT-III (d) Z(1)
DCT-IV to Z(5)

DCT-IV

(e) Z(1)
DCT-V to Z(5)

DCT-V (f) Z(1)
DCT-VI to Z(5)

DCT-VI

(g) Z(1)
DCT-VII to Z(5)

DCT-VII (h) Z(1)
DCT-VIII to Z(6)

DCT-VIII

Figure 5.2: Sparse graph operators with length N = 6 that associated to DCT-I to
DCT-VIII. Different symbols represent different values: × = −1, · = 0,© = 1, 4 =

√
2,

and � = 2.

arbitrary length. Interestingly, we observe that the non-zero entries in all sparse opera-
tors have rectangle-like patterns. Indeed, the 16 DTTs are constructed with combinations
of 4 types of left boundary conditions and 4 types of right boundary conditions, which
are associated to 4 types of upper-left rectangle edges and 4 types of lower-right rectangle
edges in Figures 5.2 and 5.3.

Some of DCT sparse operators and their variants in Figures 5.2 and 5.3 were already
known such as Z(1)

DCT-I [57], I + Z(1)
DCT-III and I + Z(1)

DCT-IV [43], whose results are then
summarized in [103] under a more general framework. In [99], left and right boundary
conditions have been exploited to obtain sparse matrices with DTT eigenvectors, which
correspond to the first operator Z(1) for each DTT. However, to the best of our knowledge,
graph operators with ` > 1 (i.e., Z(2) to Z(N−1) for each DTT) have not been studied in
the literature.
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(a) Z(1)
DST-I to Z(7)

DST-I (b) Z(1)
DST-II to Z(6)

DST-II

(c) Z(1)
DST-III to Z(5)

DST-III (d) Z(1)
DST-IV to Z(5)

DST-IV

(e) Z(1)
DST-V to Z(6)

DST-V (f) Z(1)
DST-VI to Z(6)

DST-VI

(g) Z(1)
DST-VII to Z(6)

DST-VII (h) Z(1)
DST-VIII to Z(5)

DST-VIII

Figure 5.3: Sparse graph operators with length N = 6 that associated to DST-I to DST-
VIII. Different symbols represent different values: + = −2, × = −1, · = 0, © = 1, and
4 =

√
2.

5.2.3 Sparse 2D DCT/DST Filters

In image and video coding, the DTTs are often applied to 2D pixel blocks, where a
combination of 1D DTTs can be applied to columns and rows of the blocks. We consider
a N1 ×N2 block (with N1 pixel rows and N2 pixel columns),

X1,1 X1,2 . . . X1,N2

X2,1 X2,2 . . . X2,N2
...

...
...

...
XN1,1 XN1,2 . . . XN1,N2

.

We use a 1D vector x ∈ RN1N2 to denote X with column-first ordering:

x = (X1,1, X2,1, . . . , XN1,1, X1,2, X2,2, . . . , XN1,2, . . . , XN1,N2)>

We assume that the GFT Φ = Φr ⊗Φc is separable with row transform Φr and column
transform Φc. In such cases, sparse operators of 2D separable GFTs can be obtained
from those of 1D transforms:
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Figure 5.4: Graphs associated to sparse operators of 2D 4 × 4 DCT. For visualization,
coordinates are slightly shifted to prevent some edges from overlapping. Self-loops are
not shown in the graphs.

Proposition 2 (Sparse 2D DTT operators). Let Φ = Φr ⊗ Φc with Φr and Φc being
orthogonal transforms among the 16 DTTs, and let Zr and Zc be the set of sparse opera-
tors associated to Φr and Φc, respectively. Denote the eigenpairs associated to the oper-
ators of Zr and Zc as (λr,j ,φr,j) and (λc,k,φc,k) with j = 1, . . . , N1 and k = 1, . . . , N2.
Then,

Z = {Zr ⊗ Zc, Zr ∈ Zr, Zc ∈ Zc}

is a set of sparse operators corresponding to Φr ⊗ Φc, with associated eigenpairs
(λr,jλc,k,φr,j ⊗ φc,k).
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Figure 5.5: Sparse operators associated to 2D 4× 4 DCT. Symbols · and © represent 0
and 1, respectively.

Proof: Let Z(1)
r , . . . , Z(M1)

r be sparse operators in Zr with associated eigenvalues con-
tained in vectors λ(1)

r , . . . , λ(M1)
r , respectively. Also let Z(1)

c , . . . , Z(M1)
c be those in Zc

with eigenvalues in λ(1)
c , . . . , λ(M2)

c , respectively. We note that

Z(m1)
r = Φr · diag(λ(m1)

r ) ·Φ>r , m1 = 1, . . . ,M1,

Z(m2)
c = Φc · diag(λ(m2)

c ) ·Φ>c , m2 = 1, . . . ,M2.
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Applying a well-known Kronecker product identity [145], we obtain

Z(m1)
r ⊗ Z(m2)

c = Φ · diag(λ(m1)
r ⊗ λ(m2)

c ) ·Φ>.

In Proposition 2, we allow Φc and Φr to be the same. An example is shown in Figures 5.4
and 5.5, where Φc = Φr is the length-4 DCT-II, and Φ is the 4× 4 2D DCT.

5.2.4 Remarks on Graph Operators of Arbitrary GFTs

Obtaining multiple sparse operators Z(k) for a fixed GFT Φ ∈ RN×N is a challenging
problem in general. Let the graph Laplacian associated to Φ be L, and λj be the
eigenvalue of L associated to eigenvector φj . It can be seen that, if the graph does not
have any self-loops, the Laplacian of the complement graph [86]

Lc := NwmaxI− wmax11> − L,

has eigenpairs (0,φ1) and (n − λj ,φj) for j = 2, . . . , N . However, Lc will be a dense
matrix when L is sparse, and thus it may not provide an efficient MPGF design.

Some additional remarks on the retrieval of sparse graph operators are presented as
follows. More details on those remarks can be found in Appendix C.

Characterization of Sparse Laplacians with a Common GFT

Extending a key result in [92], we can characterize the set of all graph Laplacians (i.e.,
that satisfy (1.4) with non-negative edge and self-loop weights) sharing a given GFT Φ
by a convex polyhedral cone. In particular, those graph Laplacians that are the most
sparse among all correspond to the edges of a polyhedral cone (i.e., where the faces of
the cone meet each other). However, the enumeration of edges is in general an NP-hard
problem since the number of polyhedron vertices or edges can be a combinatorial number
of N .

Construction of Sparse Operators from Symmetric Graphs

If a graph with Laplacian L satisfies the ϕ-symmetry property in Definition 2, then we
can construct a sparse operator in addition to L. Recall that for an involution ϕ on
graph vertices, a graph is ϕ-symmetric if wi,j = wϕ(i),ϕ(j) for all i, j ∈ V. For such a
graph, a sparse operator can be constructed as follows:

Lemma 7. Given a ϕ-symmetric graph G with Laplacian L, we can construct a graph
Gϕ by connecting nodes i and j with edge weight 1 for all node pairs (i, j) with ϕ(i) =
j, i 6= j). In this way, the Laplacian Lϕ of Gϕ commutes with L.
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Figure 5.6: An example for PGF and MPGF fitting results on a length 12 line graph.
The desired frequency response is h∗(λ) = exp(−4(λ−1)2). The PGF and MPGF filters
have been optimized based on (1.6) and (5.10).

The proof of this theorem and a illustrative example are presented in Appendix D.

5.3 New Graph Filter Designs with Sparse Operators

In this section, we introduce some filter design approaches based on sparse operators
for DTTs. The least squares design method will be summarized in Section 5.3.1. We
also propose a minimax filter design in Section 5.3.2 for both PGF and MPGF. Then,
in Section 5.3.3 we show that weighted energy in graph frequency domain can also be
efficiently approximated using multiple graph operators.

5.3.1 Least Squares (LS) Graph Filter

For an arbitrary graph filter H∗, its frequency response h∗ = (h∗(λ1), . . . , h∗(λN ))>, can
be approximated with a filter HZ,K in (5.1) by designing a set of coefficients g as in
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(5.2) or (5.3). Let h(λj) be the frequency response of corresponding to HZ,K , then one
way to obtain g is through a least squares solution:

g∗ = argmin
g

N∑
j=1

(h∗(λj)− h(λj))2

= argmin
g

N∑
j=1

(
h∗(λj)− pK(λ(1)

j , . . . , λ
(M)
j )

)2

= argmin
g

∥∥∥h∗ −ΠK(λ(1), . . . ,λ(M)) · g
∥∥∥2
, (5.10)

where ΠK for K = 1 and K = 2 are

Π1(λ(1), . . . ,λ(M)) =


1 λ

(1)
1 . . . λ

(M)
1

...
...

...
...

1 λ
(1)
N . . . λ

(M)
N

 ,

Π2(λ(1), . . . ,λ(M)) =


1 λ

(1)
1 . . . λ

(M)
1 λ

(1)
1 λ

(1)
1 λ

(1)
1 λ

(2)
1 . . . λ

(M)
1 λ

(M)
1

...
...

...
...

...
...

...
1 λ

(1)
N . . . λ

(M)
N λ

(1)
N λ

(1)
N λ

(1)
N λ

(2)
N . . . λ

(M)
N λ

(M)
N

 .
This formulation can be generalized to a weighted least squares problem, where we

allow different weights for different graph frequencies. This enables us to approximate
the filter in particular frequencies with higher accuracy. In this case, we consider

g∗ = argmin
g

N∑
j=1

ρ2
i (h∗(λj)− h(λj))2 = argmin

g
‖diag(ρ)(h∗ −ΠK · g)‖2 , (5.11)

where ρi ≥ 0 is the weight corresponding to λi. Note that when ρ = 1, the problem
(5.11) reduces to (5.10).

When g is more sparse, (i.e., has a smaller `0 norm), fewer terms will be involved
in the polynomial pK , leading to a lower complexity for the filtering operation. This
`0-constrained problem can be viewed as a sparse representation of diag(ρ)h∗ in an
overcomplete dictionary diag(ρ)ΠK . Well-known methods for this problem include the
orthogonal matching pursuit (OMP) algorithm [93], and the optimization with a sparsity-
promoting `1 constraint:

minimize
g

‖diag(ρ)(h∗ −ΠK · g)‖2 subject to ‖g‖1 ≤ τ, (5.12)
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where τ is a pre-chosen threshold. In fact, this formulation can be viewed as an extension
of its PGF counterpart [115] to an MPGF setting. Note that (5.12) is a `1-constrained
least squares problem (a.k.a., the LASSO problem), where efficient solvers are available
[126].

Compared to conventional PGF H in (1.6), the implementation with HZ,K has sev-
eral advantages. First, when K = 1, the MPGF (5.2) is a linear combination of different
sparse operators, which is amenable to parallelization. This is contrast to high degree
PGFs based on (1.6) that require applying the graph operator repeatedly. Second, HZ,K
is a generalization of H and provides more degrees of freedom, which may lead to a more
accurate approximation with a lower order polynomial. Note that, while the eigenval-
ues of Zk for k = 1, 2, . . . are typically all increasing (if Z = L) or decreasing (if, for
instance, Z = 2I − L), those of different Z(m)’s have more diverse distributions (i.e.,
increasing, decreasing, or non-monotnoic). Thus, it is more likely that MPGFs can effi-
ciently approximate filters with non-monotonic frequency responses. For example, we
demonstrate in Figure 5.6 the resulting PGF and MPGF for a bandpass filter. We can
see that, for K = 2 and K = 3, a degree-1 MPGF with K operators gives a higher
approximation accuracy than a degree-K PGF, while they have a similar complexity.

5.3.2 Minimax Graph Filter

The minimax approach is a popular filter design method in classical signal processing.
The goal is to design an length-K FIR filter whose frequency response G(ejω) approxi-
mates the desired frequency response H(ejω) in a way that the maximum error within
some range of frequency is minimized. A standard design method is the Parks-McClellan
algorithm, which is a variation of the Remez exchange algorithm [83]. Here, we explore
minimax design criteria for graph filters. We denote h∗(λ) the desired frequency response,
and g(λ) the polynomial filter that approximates h∗(λ).

Polynomial Graph Filter

Let g(λ) be the PGF with degree K given by (1.6). Since graph frequencies λ1, . . . ,
λN are discrete, we only need to minimize the maximum error between h∗ and g at
frequencies λ1, . . . , λN . In particular, we would like to solve polynomial coefficients gi:

minimize
b

max
i

ρi

∣∣∣∣∣∣h∗(λi)−
K∑
j=0

gjλ
j
i

∣∣∣∣∣∣︸ ︷︷ ︸
‖diag(ρ)(h∗−Ψg)‖∞
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Figure 5.7: Example illustrating the frequency responses of degree K = 4 PGF with least
squares (LS) and minimax criteria, with weighted or unweighted settings. The filters are
defined on a length 24 line graph. In the weighted setting, weights ρi are chosen to be
2, 0, and 1 for passband, transition band, and stopband, respectively.

where Ψ is the matrix in (1.8), ρi is the weight associated to λi and ‖ · ‖∞ represents
the infinity norm. Note that, when K ≥ N − 1 and Ψ is full row rank, then h∗ = Ψg
can be achieved with g = Ψ†h∗. Otherwise, we reduce this problem by setting ε =
‖diag(ρ) (h∗ −Ψg) ‖∞:

minimize
g, ε

ε subject to − ε1 � diag(ρ) (h∗ −Ψg) � ε1, (5.13)

whose solution can be efficiently obtained with a linear programming solver.

Multivariate Polynomial Graph Filter

Now we consider g(λ) a graph filter with M graph operators with degree K, as in (5.1).
In this case, we can simply extend the problem (5.13) to

minimize
g, ε

ε subject to − ε1 � diag(ρ) (h∗ −ΠKg) � ε1, (5.14)

where a `1 or `0 norm constraint on g can also be considered.
To summarize, we show in Table 5.2 the objective functions of least squares and

minimax designs with PGF and MPGF, where weights on different graph frequencies
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PGF MPGF

Least squares min
g

||diag(ρ)(h−Ψg)||2 (5.11)

Minimax (5.13) (5.14)

Table 5.2: Least squares and minimax design approaches of for PGF and MPGF, with
weights ρi on different graph frequencies.

are considered. Note that the least squares PGF design shown in Table 5.2 is a simple
extension of the unweighted design (1.8) in [105].

Using an ideal low-pass filter as the desired filter, we show a toy example with
degree-4 PGF in Figure 5.7. When different weights ρi are used for passband, transition
band, and stopband, approximation accuracies differ for different graph frequencies. By
comparing LS and minimax results in a weighted setting, we also see that the minimax
criterion yields a smaller maximum error within the passband (see the last frequency bin
in passband) and stopband (see the first frequency bin in stopband).

5.3.3 Weighted GFT Domain Energy Evaluation

Let x be a signal and Φ be a GFT to be applied, we consider a weighted sum of squared
GFT coefficients:

CΦ(x; q) =
N∑
i=1

qi(φ>i x)2, (5.15)

where arbitrary weights q = (q1, . . . , qN )> can be considered. Denote the graph Lapla-
cian associated to Φ as L = ΦΛΦ>, then CΦ(x; q) has a similar form to the Laplacian
quadratic form (1.5), since

x>Lx =
N∑
l=1

λl(φ>l x)2. (5.16)

Note that computation of x>Lx using (1.5) can be done in the vertex domain, and does
not require the GFT coefficients. This provides a low complexity implementation than
(5.16), especially when the graph is sparse (i.e., few edges and self-loops).

Similar to vertex domain Laplacian quadratic form computation (1.5), we note that
CΦ(x; q) can also be realized as a quadratic form:

CΦ(x; q) =
N∑
i=1

qi(φ>i x)2 = x>
(
Φ · diag(q) ·Φ>

)
︸ ︷︷ ︸

Hq

x, (5.17)
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where Hq can be viewed as a graph filter with frequency response hq(λi) = qi. Thus, we
can approximate Hq with a sparse filter Hq̂ such that x>Hq̂x approximates CΦ(x; q).
For example, if we consider a polynomial with degree 1 as in (5.2), we have

x>
[
g0I +

M∑
m=1

gmZ(m)
]

︸ ︷︷ ︸
Hq̂

x =
N∑
i=1

(
g0 +

M∑
m=1

gmλ
(m)
i

)
︸ ︷︷ ︸

q̂i

(φ>i x)2. (5.18)

The left hand side can be computed efficiently if there are only a few nonzero gm, making
Hq̂ sparse. The right hand side can be viewed as a proxy of (5.15) if gm’s are chosen
such that q̂i ≈ qi. Such coefficients gm can be obtained by solving (5.12) with h∗ = q.

5.3.4 Complexity Analysis

For a graph with N nodes and E edges, it has been shown in [16] that a degree-K
PGF has O(KE) complexity. For an MPGF with R terms, we denote E′ the maximum
sparsity of the operator among all operators involved. Each term of MPGF requires
at most O(KE′) operations, so the overall complexity of an MPGF is O(KRE′). We
note that for DTT filters, the sparsity of all operators we have introduced is at most
2N . Thus, complexities of PGF and MPGF can be reduced to O(KN) and O(KRN),
respectively. We note that O(KRN) is not a tight upper bound for the complexity
if many terms of the MPGF have lower degrees than K. In addition, the polynomial
degree required by an MPGF to reach a similar accuracy as a PGF can achieve may be
lower. Thus, an MPGF does not necessarily have higher complexity than a PGF that
bring a similar approximation accuracy. Indeed, MPGF implementation may be further
optimized by parallelizing the computation associated to different graph operators.

5.4 Experiments

We consider two experiments to validate the filter design approaches. In Section 5.4.1,
we evaluate the complexity of PGF and MPGF for DCT-II, and compare the trade-
off between complexity and filter approximation accuracy as compared to conventional
implementations in the DCT domain. In Section 5.4.2 we implement DTT filters in a
state-of-the-art video encoder–AV1, where we obtain a computational speedup in trans-
form type search.
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Figure 5.8: Runtime vs approximation error for (a)(c) Tikhonov DCT filter, (b)(d)
bandpass exponential DCT filter. Those filters are defined based on two different graphs:
(a)(b) 16 × 16 grid, (c)(d) length-64 line graph. Different PGF degrees K, MPGF
operators involved R, and ARMA iteration numbers T , are labelled in the figures.

5.4.1 Filter Approximation Accuracy with Respect to Complexity

In the first experiment, we implement several DCT filters on a 16 × 16 grid, and a
length-64 line graph. Those filters are implemented in C in order to fairly evaluate
computational complexity under an environment close to hardware.

Comparison among filter implementations.

First, the following filters are considered:
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• Tikhonov filter: given z = x + n, a noisy observation of signal x, the denoising
problem can be formulated as a regularized least squares problem:

minimize
x

‖x− z‖2 + µx>Lx.

The solution is given by x̂ = Htx, where Ht = (I + µL)−1 is known as the
Tikhonov graph filter with frequency response ht(λ) = 1/(1 + µλ). Applications
of the Tikhonov filter in graph signal processing include signal denoising [114],
classification [78], and inter-predicted video coding [143].

• Bandpass exponential filter: bandpass graph filters are key components in M -
channel graph filter banks [122,123]. Here, we consider the frequency response

hexp(λ) = exp(−γ(λ− λpb)2),

where γ is a decaying factor and λpb is the central frequency of the passband.

For the choice of parameters, we use µ = 0.25, γ = 1, and λpb = 0.5λmax in this experi-
ment, to characterize a smooth Tikhonov filter and a bandpass filter with a symmetric
frequency response, respectively. The following filter implementations are compared:

• Polynomial DCT filter: given the desired frequency response, two design methods
for PGF coefficients are considered. The first method is a least squares design
(PGF, LS) [105] with iterative implementation described in Section 1.2.2. The
second method is the Chebyshev polynomial approaches (PGF, Chebyshev) [115],
where PGF is implemented based on recurrence relations of Chebyshev polynomi-
als.

• Multivariate polynomial DCT filter: we consider all sparse graph operators (289
operators for the 16 × 16 grid and 65 operators for the length-64 line graph).
Then, we obtain the least squares filter (5.10) with an `0 constraint and K = 1
using orthogonal matching pursuit, with R being 2 to 8.

• Autoregressive moving average (ARMA) graph filter [51]: we consider an IIR graph
filter in rational polynomial form, i.e.,

HARMA =

 P∑
p=0

apZp
−1 Q∑

q=0
bqZq

 .
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We choose polynomial degrees as Q = P = 2 and consider different numbers of
iterations T . The graph filter implementation is based on the conjugate gradient
approach described in [67], whose complexity is O((PT +Q)E).

• Exact filter with fast DCT: the filter operation is performed by a cascade of a
forward DCT, a frequency masking with h, and an inverse DCT, where the forward
and inverse DCTs are implemented using well-known fast algorithms [9]. For 4× 4
or 16 × 16 grids, 2D separable DCTs are implemented, where a fast 1D DCT is
applied to all rows and columns.

In LS designs, uniform weights ρ = 1 are used. For each graph we consider, 20000
random input signals are generated. The complexity for each graph filter method is then
evaluated as an average runtime over all 20000 trials. We measure the error between
approximate and exact frequency responses with the root normalized mean square error
‖happrox − h‖/‖h‖.

We show in Figure 5.8 the resulting runtimes and errors, where a point closer to
the origin correspond to a better trade-off between complexity and approximation accu-
racy. We observe in Figure 5.8(a)(c) that low degree PGFs accurately approximate
the Tikhonov filter, whose frequency response is closer to a linear function of λ. In
Figure 5.8(b)(d), for bandpass exponential filter on the length-64 line graph, MPGF
achieves a higher accuracy with lower complexity than PGF and ARMA graph filters.
As discussed in Section 5.3.4, the complexity of PGF and MPGF grows linearly with
the graph size, while the fast DCT algorithm has O(N logN) complexity. Thus, PGF
and MPGF would achieve a better speed performance with respect to exact filter when
the graph size is larger. Note that in this experiment, a fast algorithm with O(N logN)
complexity for the GFT (DCT-II) is available. However, this is not always true for arbi-
trary graph size N , nor for other types of DTTs, where fast exact graph filter may not
be available.

Evaluation of minimax designs.

Next, we consider an ideal low-pass filter:

hLP (λ) =
{

1, 0 ≤ λ ≤ λc
0, otherwise

where λc = 0.5λmax is the cut-off frequency. The weight ρi is chosen to be 0 in the
transition band 0.4 ≤ λi ≤ 0.6, and 1 in passband and stopband. Figure 5.9 shows the
resulting runtimes and approximation errors, which are measured with the maximum
absolute error between approximate and desired frequency responses in passband and
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Figure 5.9: Runtime vs maximum absolute error for various designs of ideal low-pass
filter on (a) 16×16 grid, and (b) length-64 line graph.

stopband: maxi ρi|happrox(λi) − h(λi)|. We can see in Figure 5.9 that, when K or R
increases, the maximum absolute error steadily decreases in PGF and MPGF designs
with minimax criteria. In contrast, PGF and MPGF designs with LS criterion may lead
to non-monotonic behavior in terms of the maximum absolute error as in Figure 5.9(a).
In fact, under the LS criterion, using more sparse operators will reduce the least squares
error, but does not always decrease the maximum absolute error.

Based on the results in Figures 5.8 and 5.9, we provide some remarks on the choice
of DTT filter implementation:

• If the desired frequency response is close to a linear function of λ, e.g., Tikhonov
filters with a small µ or graph diffusion processes [116], then a low-order PGF
would be sufficiently accurate, and has the lowest complexity.

• If the graph size is small, or transform length allows a fast DTT algorithm, or
when separable DTTs are available (e.g., on a 16×16 grid), DTT filter with fast
DTT implementation would be favorable.

• For a sufficiently large length (e.g., N = 64) and a frequency response that is
non-smooth (e.g., ideal low-pass filter) or non-monotonic (e.g., bandpass filter),
an MPGF design may fit the desired filter with a reasonable speed performance.
In particular, we note that Z(2) is a bandpass filter with passband center λpb =
λmax/2. Thus, MPGF using Z(2) would provide an efficiency improvement for
bandpass filters with λpb close to λmax/2.

• When robustness of the frequency response in the maximum absolute error sense
is an important concern, a design based on minimax criterion would be preferable.
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5.4.2 Transform Type Selection in Video Coding

In the second experiment, we consider the quadratic form (5.15) as a transform type cost,
and apply the method described in Section 5.3.3 to speed up transform type selection
in the AV1 codec [10]. In transform coding [41], (5.15) can be used as a proxy of the
bitrate cost for block-wise transform type optimization [33,50]. In particular, we denote
x an image or video block, and Φ the orthogonal transform applied to x. Lower bitrate
cost can be achieved if Φ gives a high energy compaction in the low frequencies, i.e., the
energy of Φ>x is concentrated in the first few entries. Thus, the proxy of cost (5.15)
can be defined with positive and increasing q (0 < q1 < · · · < qN ) to penalize large
and high frequency coefficients, thus favoring transforms having more energy in the low
frequencies.

AV1 includes four 1D transforms: 1) U: DCT, 2) V: ADST, 3) JV: FLIPADST,
which has flipped ADST functions, and 4) I: IDTX (identity transform), where no
transform will be applied. For small inter predicted blocks, all 2D combinations of
1D transforms are used. Namely, there are 16 2D transforms candidates, (Tcol,Trow)
with Tcol,Trow ∈ {U,V,JV, I}, which makes the encoder computationally expensive.
Recent work on encoder complexity reduction includes [65,74,119], which apply heuristic
and data-driven techniques to prune transform types during the search.

To speed up transform type selection in AV1, for 1D pixel block x ∈ RN , we choose
the following increasing weights for (5.15)1:

qi = δi = 2− 2 cos
(

(i− 1
2)π

N

)
. (5.19)

Then, different transform type costs would be given by (5.15) with different Φ, i.e.,
CT(x; q) with T ∈ {U,V,JV, I}. This choice allows efficient computation of exact
CV(x; q) and CJV(x; q) through their corresponding sparse Laplacian matrices:

CV(x; q) = x>LAx, CJV(x; q) = x>JLAJx,

where JLAJ is the left-right and up-down flipped version of LA. For the approximation
of DCT cost CU(x; q), we obtain R = 3 nonzeros polynomial coefficients gm with degree

1As (5.15) serves as a proxy of the actual bitrate cost, we leave out the search of optimal weights.
Weights are chosen to be increasing functions because transform coefficients associated to a higher fre-
quency typically requires more bits to encode. The weights in (5.19) are used because of their computa-
tional for QV = x>i LAxi. In fact, we have observed experimentally that different choices among several
increasing weights produce similar coding results.
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Table 5.3: Encoding time and quality loss (in BD rate) of different transform pruning
methods. The baseline is AV1 with a full transform search (no pruning). A smaller loss
is better.

Method Encoding time Quality loss
PRUNE LAPLACIAN [74] 91.71% 0.32%

PRUNE OPERATOR 89.05% 0.31%
PRUNE 2D FAST [119] 86.78% 0.05%

L = 1 as in (5.18) using an exhaustive search. As a result, costs for all 1D transforms
can be computed in the pixel domain as follows

QU = x>i

(
g0I +

M∑
m=1

gmZ(m)
DCT-II

)
xi

QV = CV(xi; q) = x>i LAxi
QJV = CJV(xi; q) = x>i JLAJxi
QI = CI(xi; q) =

∑
j

wjxi(j)2, (5.20)

where M is the number of DCT operators and gm has only R = 3 non-zero elements.
Extending an experiment PRUNE LAPLACIAN in [74], we implemented a new

experiment named PRUNE OPERATORS in AV12. We implement the integer versions
of the transform cost evaluation (5.20) for transform lengths 4, 8, 16, and 32. Within
each 2D block, we take an average over all columns or rows, to obtain column and row
costs Q(col)

T and Q(row)
T with T ∈ {U,V,JV, I}. Those costs are aggregated into 16 2D

transform costs by summing the associated column and row costs. For example, the cost
associated to vertical ADST and horizontal DCT is given by

Q(V,U) = Q(col)
V +Q(row)

U .

Finally, we design a pruning criteria, where each 2D column (or row) transform will
be pruned if its associated cost is relatively large compared to the others.

C1. For Tcol,Trow ∈ {U,V,JV}, prune (Tcol,Trow) if

Q(Tcol,Trow) > τ1
(
Q(col)

U +Q(col)
V +Q(col)

JV +Q(row)
U +Q(row)

V +Q(row)
JV

)
.

C2. For Tcol = I or Trow = I, prune (Tcol,Trow) if

2The experiment has been implemented on a version in July 2020. Available: https://
aomedia-review.googlesource.com/c/aom/+/113461
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Table 5.4: Encoding time and quality loss (in BD rate) of PRUNE OPERATORS versus
PRUNE 2D FAST. Smaller or negative loss is better.

Sequence Encoding time Quality loss
akiyo 102.10% 0.00%
bowing 97.22% -0.14%

bus 103.92% -0.17%
city 102.36% 0.18%
crew 103.65% 0.07%

foreman 104.29% 0.07%
harbour 106.49% -0.06%

ice 105.22% 0.30%
mobile 103.27% 0.23%
news 103.29% -0.09%

pamphlet 97.75% 0.21%
paris 105.54% 0.21%
soccer 104.53% 0.22%

students 100.71% 0.03%
waterfall 102.34% 0.23%

Overall 102.61% 0.26%

Q(Tcol,Trow) > τ2
(
Q(col)

U +Q(col)
V +Q(col)

JV +Q(col)
I +Q(row)

U +Q(row)
V +Q(row)

JV +Q(row)
I

)
,

where threshold parameters are chosen as τ1 = 0.34 ,τ2 = 0.33. Note that the number
of 1D transforms being pruned can be different for different blocks. The pruning rules
C1 do not depend on QI because IDTX tends to have a larger bitrate cost with a
significantly lower computational complexity than the other transforms. Thus, more
aggressive pruning criteria C1 is applied to U, V, and JV to reduce more encoding
time.

This pruning scheme is evaluated using 15 benchmark test sequences: akiyo, bowing,
bus, city, crew, foreman, harbour, ice, mobile, news, pamphlet, paris, soccer,
students, and waterfall. The results are shown in Table 5.3, where the speed improve-
ment is measured in the percentage of encoding time compared to the scheme without
any pruning. Each number in the table is an average over several target bitrate levels:
300, 600, 1000, 1500, 2000, 2500, and 3000 kbps. Note that the proposed method yields
a smaller quality loss with shorter encoding time than in our previous work [74]. Our
method does not outperform the state-of-the-art methods PRUNE 2D FAST in terms of
the average BD rate, but shows a gain in particular video sequences such as bowing (as
shown in Table 5.4. Note that in [119], for each supported block size (N ×N , N × 2N
and 2N × N , with N ∈ {4, 8, 16}), a specific neural network is required to obtain the
scores, involving more than 5000 parameters to be learned in total. In contrast, our
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approach only requires the weights q to be determined for each transform length, requir-
ing 4 + 8 + 16 + 32 = 60 parameters. With or without optimized weights, our model is
more interpretable than the neural-network-based model, as has a significantly smaller
number of parameters, whose meaning can be readily explained.

5.5 Summary

In this chapter, we explored discrete trigonometric transform (DTT) filtering approaches
using sparse graph operators. First, we introduced fundamental graph operators asso-
ciated to 8 DCTs and 8 DSTs by exploiting trigonometric properties of their transform
bases. We also showed that these sparse operators can be extended to 2D separable
transforms involving 1D DTTs. Considering a weighted setting for frequency response
approximation, we proposed least squares and minimax approaches for both polynomial
graph filter (PGF) and multivariate polynomial graph filter (MPGF) designs. We demon-
strated through an experiment that PGF and MPGF designs would provide a speedup
compared to traditional DTT filter implemented in transform domain. We also used
MPGF to design a speedup technique for transform type selection in a video encoder,
where a significant complexity reduction can be obtained.
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Chapter 6

Irregularity-Aware GFT for
Image and Video Coding

Mean square error (MSE) is commonly used as quality metric in many image and
video coding standards. However, as it is well-known that MSE does not always reflect
perceptual quality, it is important to incorporate a perceptually-driven metric into the
coding optimization process. Based on such a metric, it would be possible to formu-
late a bit allocation problem with the goal of spending more bits on image regions that
are perceptually more sensitive to quantization error. In the literature, this problem is
typically addressed by designing perceptual quantization strategies. For example, JPEG
quantization tables can be designed based on human visual system (HVS) [133], while
JPEG-2000 adopts a visual masking technique [141] that exploits self-contrast masking
and neighborhood masking, leading to adaptive quantization of wavelet coefficients with-
out any overhead. Quantization parameter (QP) adjustment is a popular approach in
video codecs such as HEVC [120], in which QP is changed per block or per coding unit.

In this chapter, we propose a novel approach based on designing transforms with
the goal of optimizing a weighted mean square error (WMSE), which allows us to adapt
the perceptual quality pixel-wise instead of block-wise. We make use irregularity-aware
graph Fourier transforms (IAGFTs) [36], generalized GFTs where orthogonality is defined
with respect to an inner product such that distance between a signal and a noisy version
corresponds to a WMSE instead of the MSE. This leads to a generalized Parseval’s
Theorem, in which the quantization error energy in the IAGFT transform domain is
the same as the pixel domain WMSE. Based on the IAGFT, we design an image coding
framework, where perceptual quality is characterized by choosing suitable weights for
the WMSE. Under this framework, the overall perceptual quality of an image can be
enhanced by weighting different pixels differently based on their perceptual importance,
while the quantization step size is fixed for the entire image. We consider a noise model,
under which the WMSE weights are chosen to maximize the structural similarity (SSIM)
[135]. Besides WMSE weights driven by SSIM, other perceptual weights may also be used

Work in this chapter has been published in [76].
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to optimize other metrics. We demonstrate experimentally the benefits of our framework
by modifying a JPEG encoder to incorporate these novel transforms, showing coding
gains in terms of multi-scale SSIM [137].

In Section 6.1 we give a summary of IAGFT. In Section 6.2, we propose a weight
design for IAGFT that favors improved SSIM. Some properties of IAGFT basis are
discussed in Section 6.3. In Section 6.4, we demonstrate of perceptually driven IAGFT
through experimental results. Finally we conclude this chapter in Section 6.5.

6.1 Irregularity-aware graph Fourier transform (IAGFT)

The IAGFT [36] is a generalization of the GFT, where the graph Fourier modes (i.e., GFT
basis functions) are determined not only by the signal variation operator L, but also by
a positive definite matrix Q that leads to a Q−inner product [36]: 〈x,y〉Q = x>Qy, and
therefore to a new definition of orthogonality: x is orthogonal to y if and only if x>Qy =
0. Typically, Q is chosen to be diagonal, so that the energy of signal x is a weighted
sum of its squared components: ‖x‖2Q =

∑
i∈V qi|xi|2, with Q = diag(q1, . . . , qn). The

notion of generalized energy leads to a generalized GFT, i.e., the IAGFT:

Definition 4 (Generalized graph Fourier modes). Given the Hilbert space defined by
the Q−inner product and a graph variation operator L, the set of (L,Q)−graph Fourier
modes is defined as the solution {uk}k to the following sequence of minimization prob-
lems: for increasing K ∈ {1, . . . , N},

minimize
uK

u>KLuK subject to U>KQUK = I, (6.1)

where UK = (u1, . . . ,uK).

Definition 5 (Irregularity-aware GFT). Let U be the matrix of (L,Q)−graph Fourier
modes, the (L,Q)−GFT is F = U>Q and its inverse is F−1 = U.

In fact, (6.1) can be written as a generalized Rayleigh quotient minimization, whose
solution can be obtained efficiently through the generalized eigenvalue problem. Note
that when Q = I, F reduces to conventional GFT as in Section 1.2.1. One key property
of the IAGFT is the generalized Parseval’s theorem:

〈x,y〉Q = 〈x̂, ŷ〉I , (6.2)

with x̂ and ŷ being the (L,Q)−GFT of x and y, respectively. Depending on the appli-
cation, various choices of Q may be used. Examples include diagonal matrices of node
degrees and Voronoi cell areas (refer to [36] for details).

95



Figure 6.1: Flow diagrams of JPEG encoder.

6.2 Perceptual coding with Weighted MSE

We focus on the weighted mean square error (WMSE) as an image quality metric, where
different pixels are associated with different weights. First, in Section 6.2.1, we design
a transform coding scheme that optimizes the WMSE, and analyze its error in pixel
domain. We focus on the choice of perceptual quality inspired weights in Section 6.2.2.

6.2.1 Transform Coding with IAGFT

We define the WMSE with weights q ∈ Rn (or, in short, q-MSE) between a distorted
signal z ∈ Rn and its reference signal x ∈ Rn as

WMSE(z,x,q) := 1
n

n∑
i=1

qi(zi − xi)2 = 1
n
〈z− x, z− x〉Q , (6.3)

where Q = diag(q). When q = 1, i.e., Q = I, the WMSE reduces to the conventional
MSE. We note that the right hand side of (6.3) is a Q-inner product, so the generalized
Parseval’s Theorem gives

WMSE(z,x,q) = 1
n
〈ẑ− x̂, ẑ− x̂〉I = 1

n

n∑
i=1

(ẑi − x̂i)2.

This means that minimizing the q-MSE is equivalent to minimizing the `2 error energy
in the IAGFT domain. Based on this fact, we propose an image coding scheme that
integrates IAGFT into the JPEG framework. The diagram is shown in Figure 6.1, where
the values in Q are quantized and transmitted as signaling overhead for the decoder to
uniquely reconstruct the image. Further details for implementation will be described in
Section 6.4.

Next we provide a pixel domain error analysis under uniform quantization noise
assumption. Let εp and εt be the vectors of errors within a block in the pixel and
IAGFT domain, respectively. Then, the variance of the i-th element in εp is

E
[
εp(i)2

]
= E

[
(e>i Uεt)2

]
= tr

(
U>eie>i U · E

[
εtε
>
t

])
,
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where ei is the i-th standard basis. Denote the quantization step size for the j-th
transform coefficient as ∆j and model the quantization noise with uniform distribution
εt(i) ∼ Unif(−∆i/2,∆i/2). Thus, we have E

[
εtε
>
t

]
= diag(∆2

1, . . . ,∆2
n)/12. When a

uniform quantizer with ∆i = ∆ is used for all i,

E
[
εp(i)2

]
= ∆2

12 tr
(
U>eie>i U

)
= ∆2

12 tr
(
eie>i Q−1

)
= ∆2

12qi
, (6.4)

where we have used UU> = Q−1, which follows from the fact that U>(QU) = I =
(QU)U>. With (6.4), we know that the expected WMSE for this block is

E [WMSE(z,x,q)] = 1
n

n∑
i=1

qi
(
E
[
εp(i)2

])
= ∆2

12 ,

which only depends on the quantization step.
Note that the scheme shown in Figure 6.1 can be viewed as a bit allocation method.

When qj = 2qi for pixels i and j within a block, the quantization error of IAGFT
coefficients tends to contribute more error to pixel j than to pixel i in the pixel domain.
Implicitly, this indicates that more bits are spent to accurately encode pixel j. On the
other hand, if Q` = 2Qk for blocks k and `, we can show that the IAGFT coefficients
will satisfy x` =

√
2xk, meaning that the encoder tends to use more bits for block ` than

for block k.

6.2.2 SSIM-Driven Weights for WMSE

In this work, we adopt the structural similarity (SSIM) as the target metric for perceptual
quality, and design a WMSE to optimize it1. SSIM is one of the most popular image
quality assessment metrics, with many experiments demonstrating its better alignment
with perceptual visual quality as compared to MSE [135]. For a distorted image z and
its reference image x, the definition of SSIM is

SSIM(x, z) = 1
n

n∑
i=1

SSIM(xi, zi),

SSIM(xi, zi) = 2µxiµzi + c1
µ2
xi + µ2

zi + c1
· 2σxizi + c2
σ2
xi + σ2

zi + c2
, (6.5)

1In fact, our proposed method can be applied for any arbitrary WMSE. The application of this method
based on other metrics such as Video Multimethod Assessment Fusion (VMAF) is considered for future
work.
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Figure 6.2: Values of qi with respect to local variance, with ∆ = 8.

where µxi and σ2
xi are local mean and variance around pixel i and the summation is

taken over all n pixels in the image.
We denote z = x + εp, and assume that x and εt are independent. Based on the

statistics of εp derived in Section 6.2.1, we have µzi = µxi , σ2
xizi = σ2

xi , and σ2
zi =

σ2
xi + ∆2/12qi. Thus, the local SSIM in (6.5) reduces to

SSIM(xi, zi) =
2σ2

xi + c2

2σ2
xi + c2 + ∆2/(12qi)

= qi
qi + γi

, .

where γi = ∆2/12(2σ2
xi + c2). To obtain q that maximizes the SSIM, we introduce an

upper bound for
∑
i qi as a proxy of the bitrate constraint, and solve

maximize
q

1
n

n∑
i=1

qi
qi + γi

subject to
n∑
i=1

qi ≤ n. (6.6)

It can be shown that this problem is convex in q. Using the Lagrangian cost function
and Karush-Kuhn-Tucker (KKT) conditions, we can obtain a closed-form solution:

qi =
(n+

∑n
i=1 γi)

√
γi∑n

i=1
√
γi

− γi. (6.7)

While q is a high dimensional vector (with dimension n, the number of pixels in
the image), (6.7) provides an efficient way to obtain the optimal solution, which only
depends on the quantization step and local variance. The computation of all qi can be
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(a)

(b) (c)

Figure 6.3: (a) Basis, (b) Q0-energy and (c) variations of Q0-IAGFT modes. We use j
to denote indices of basis functions. In (b) and (c), two curves represent quantities for
pixels with qi = 1.6 and with qi = 0.4, respectively.

carried out in O(n) time. Figure 6.2 shows the resulting of qi with different local variance
values and a fixed quantization step size. The fact that qi decreases with respect to local
variance means that larger weights are used for pixels in uniform or smooth regions of
the image, which in turn results in higher quality in those regions.

6.3 IAGFT Transform Bases

In this section, we provide some remarks on IAGFT basis functions. First, we consider
the case with Q = kI, where the IAGFT coefficients are

√
k times the DCT coefficients.

In this case, when we apply a kI-IAGFT followed by a uniform quantization with step
size ∆, it is equivalent to applying a DCT followed by a quantization with step size√
k∆. Therefore, this special case reduces to a block-wise quantization step adjustment

scheme, as in related work such as [48]. This means that our scheme can be viewed as
a generalization of quantization step adjustment method, and it can adapt the quality
per pixel, which is finer than a per block adaptation.
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Figure 6.4: Flow diagrams of our proposed scheme. Blocks highlighted in blue are new
components.

Figure 6.5: Vector quantization codewords of qi for 8× 8 blocks.

As a second example, we show the 2D Q0-IAGFT basis in Figure 6.3(a), where Q0

is the diagonal matrix associated to a 4× 4 block with WMSE weights:
1.6 1.6 1.6 1.6
1.6 1.6 1.6 0.4
1.6 0.4 0.4 0.4
0.4 0.4 0.4 0.4

 .

Note that the pixels in the top left corner have larger weights, while the weights sum
to 16 as in the I-IAGFT (i.e., DCT). In Figure 6.3(b)(c) we show the Q0-energy and
variation of each basis function, within top-left regions (qi = 1.6) and within bottom-right
regions (qi = 0.4). By definition of IAGFT (Definition 5), functions uj with increasing j
would correspond to lower to higher variations u>j Luj , while having the same Q0-energy
u>j Q0uj . In Figure 6.3(b) we observe that those basis functions corresponding to low to
medium frequencies (i.e., u1 to u9) have increasing variations for pixels in the top left
region. In fact, the Q0-energy of u1 to u9 are highly concentrated to pixels with a larger
q. On the other hand, other basis functions associated to higher frequencies (u11 to u16)
are localized to the lower right corner, where qi = 0.4. This means that in the pixel
domain, the energy in the area with large qi will be mostly captured by low frequency
IAGFT coefficients. As a result, when the importance of pixel i is characterized with qi,
those IAGFT basis function with lower frequencies would tend to represent information
on more important pixels.
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(a) (b)

(c) (d)

Figure 6.6: An example: (a) original image, (b) local variance map (c) qi map, and (d)
quantized qi map with vector quantization.

6.4 Experiments

6.4.1 Image Coding Results on JPEG

To demonstrate the effectiveness of the proposed framework, we apply the coding scheme
illustrated in Figure 6.4 in JPEG. Note that the non-uniform quantization table in JPEG
standard was designed based on perceptual criteria for DCT coefficients. We propose
a similar non-uniform quantization for IAGFTs as follows. For an IAGFT with basis
functions uk, we find the unique representations in DCT domain, denoted as uk =∑n
i=1 φkivi with vi being the i-th DCT basis vector. Then, we choose quantization step

associated to uk as a weighted mean: ∆k =
∑n
i=1 |φki|∆i, where ∆i is the quantization

step associated with vi. In this way, when uk has low frequency in DCT domain, a small
quantization step size will be used, and vice versa. The Laplacian of a uniform grid graph
is used as variation operator to define the IAGFT. The weights q for WMSE are first
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(a) (b)

Figure 6.7: RD curves for Airplane image in (a) PSNR and (b) MS-SSIM.

obtained from (6.7), then quantized using entropy-constrained vector quantization (VQ)
[35] with 10 codewords trained from the 8 × 8 blocks of qi values in house image. The
resulting codewords are shown in Figure 6.5, and signaling overhead for each codeword
is based on the selection frequency during VQ training. In particular, the number of
bits for each codeword is d−p log2(p)e, where p is the empirical probability obtained for
this codeword during the training procedure. For each 8 × 8 block of testing images,
we quantize the corresponding q to the closest codeword, and apply the associated
8 × 8 non-separable IAGFT. We assume that transform bases and quantization tables
for the IAGFTs represented by the codewords are embedded in the codec, so we do not
require eigen-decomposition or side information for bases and quantizers. For illustration,
Figure 6.6(b) shows the local variance map obtained as in SSIM formula (6.5), and
Figure 6.6(c)(d) show that resulting qi obtained from (6.7) and the quantized qi with
VQ, respectively.

The RD performances in terms of PSNR and multi-scale SSIM (MS-SSIM) [137] are
shown in Figure 6.7. We observe that the proposed scheme leads to a loss in PSNR, while
giving a compression gain in MS-SSIM. In Table 6.1, we show the BD rate performance
in PSNR, SSIM, and MS-SSIM for several benchmark images. By comparing the “NU,
DCT” and “NU, IAGFT” rows, we note that with non-uniform quantization, the IAGFT-
based scheme yields a MS-SSIM gain compared to the DCT-based scheme (i.e., standard
JPEG), even though (6.6) was derived under a uniform quantization assumption. One
probable reason for a higher gain in MS-SSIM than in SSIM is that qi’s have been
smoothed by the vector quantizer. Thus, the quantized qi’s are no longer optimal for
SSIM. Alternatively, such a smoothing procedure may potentially favor the MS-SSIM
metric, which takes into account the quality of smoothed and downscaled versions of
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Mandrill Lena Airplane Sailboat

Uniform,
IAGFT

PSNR 14.78% 17.64% 20.40% 17.69%
SSIM 1.28% 2.18% 3.81% 1.64%

MS-SSIM -2.09% -2.25% -8.18% -7.70%

Non-uniform,
DCT

PSNR 8.42% 5.14% 8.90% 3.82%
SSIM -6.23% -5.22% -9.00% -10.64%

MS-SSIM -27.82% -17.05% -17.76% -30.27%

Non-uniform,
IAGFT

PSNR 22.64% 17.96% 26.14% 14.36%
SSIM -2.05% -1.99% -2.82% -6.19%

MS-SSIM -28.15% -17.74% -21.28% -31.74%

Table 6.1: Bit rate comparison with respect to DCT-based scheme with uniform quanti-
zation table (i.e., “Uniform, DCT”). Negative numbers correspond to compression gains.
Uniform and Non-uniform refer to uniform and non-uniform quantization tables, respec-
tively.

the original output image. We also note that for this experiment, the side information
accounts for 6% to 8% of the bit rates. Thus, further optimization for signaling overhead
may lead to a coding gain in SSIM.

6.4.2 Subjective Comparison–An Example

Here, we show an example of output images using DCT-based and IAGFT-based schemes
in Figure 6.8. Those image patches are chosen to have similar bitrates, but the IAGFT
encoded image has a better quality in SSIM and MS-SSIM. We can compare these images
in two different regions circled in blue (smooth region) and yellow (texture region) boxes.
In the smooth region, the qi values are larger, meaning that the IAGFT scheme spends
more bits on this region and produces smaller error. Indeed, less blocking artifacts
are observed in the blue region in the IAGFT encoded image compared to the same
region in the DCT encoded image. On the contrary, qi values in the texture region are
smaller, so IAGFT produces a larger error in terms of the MSE, compared to the same
region in the DCT encoded image. Perceptually, the reconstruction error in texture
region would be less visible as that in a smooth region. Such a difference in perceptual
sensitivity to distortion demonstrates how different weights qi in different pixels lead to
an improvement in human perceptual quality.

6.5 Conclusion

In this chapter, we consider weighted mean square error (WMSE) as an image quality
metric, as a generalization of the widely used MSE. By selecting proper weights, WMSE
offers a high flexibility and enables us to better characterize human perceptual quality
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Figure 6.8: Encoded image patches of (a) DCT and (b) IAGFT.

than the MSE. In order to optimize WMSE-based image quality, we proposed a novel
image coding scheme using irregularity-aware graph Fourier transform (IAGFT). Based
on the generalized Parseval’s theorem, we have shown the optimality in terms of WMSE
when uniform quantization is performed in the IAGFT domain. We then design weights
to maximize the structural similarity (SSIM), where the weights are determined by the
local image variances and quantization step size. When integrated into JPEG standard,
our method with the associated SSIM-driven WMSE can provide a compression gain
in MS-SSIM. In the future, we will extend this method to schemes with non-uniform
quantization and consider the integration into existing video codecs.
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Chapter 7

Conclusion and Future Work
7.1 Summary of this Thesis

The primary goal of this thesis was to provide efficient graph-based approaches, including
speedup techniques for the graph Fourier transform and efficient graph filtering. Among
possible applications, we focused primarily on image and video compression, where graph
Fourier transform (GFT) and its variations (such as lapped GFT and irregularity aware
GFT) can be applied in transform coding.

Firstly, in Chapter 2, we explored fast GFTs with Haar units as components. In
particular, algebraic conditions for a graph such that the Haar units emerge in its GFT
were derived. Those conditions indicate that butterfly stages of Haar units arise when
the graph have symmetry or bipartition properties. We then defined a notion of graph
symmetry, such that a graph with this symmetry property is guaranteed to have a
fast GFT algorithm. We presented an approach to derive divide-and-conquer fast GFT
algorithm, and show a number of examples with potential fields of application. Our fast
GFT approach is suited for graphs with regular or nearly regular topologies, uniformly
weighted graphs, or graph that are symmetric by construction. Experimental results
showed that the GFT run time can be reduced significantly using the proposed fast
GFTs.

In Chapter 3 we applied efficient graph-based transforms to video coding in different
aspects. We formulated a general convex problem for solving this graph learning problem.
Under this framework, we considered the so-called symmetric line graph transforms
(SLGT), which are 1D transforms with a butterfly stage. Then, we applied the learning
method to non-separable transforms, i.e., GFTs on grid graphs, and then propose an
approximate fast GFT solution when the butterfly stages are not known ahead of time.
Experimental results showed that, by learning parameters of the symmetric line graph,
we obtained useful SLGTs that give a compression gain for inter residual blocks. In
addition, we can also obtain non-separable GFTs to approximate KLTs, which, when
applied to intra residual block with some certain modes, can improve the compression
efficiency.
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In addition to block-based GFTs, we have also extended classical lapped transforms
(transforms on overlapping blocks) to a graph-based setting in Chapter 4. Perfect recon-
struction and orthogonality properties were re-examined for lapped transforms defined
on graphs. With the focus on line graphs, we proposed the design of lapped graph
Fourier transform, which leads to a nearly optimal transform coding gain, and can be
applied to piecewise smooth image compression. We showed experimentally that the pro-
posed lapped transform outperforms the DCT and the conventional lapped orthogonal
transform.

We investigated in Chapter 5 DTT (DCT and DST) filters in a graph-based perspec-
tive. We showed that all types of DCTs and DSTs are associated to a family of sparse
graph operators, which are DTT filters by themselves. Thus, those operators allow us to
design efficient approximation of DTT filters with arbitrary frequency responses using 1)
polynomial graph filter (PGF) and 2) multivariate polynomial graph filter (MPGF). We
introduced design approaches of both PGF and MPGF with least squares and minimax
criteria, to obtain efficient DTT filters. With experiments implemented in C, the derived
DCT and DST filters yields a speedup in popular graph filters–Tikhonov filter, band-
pass exponential filter, and ideal low-pass filter, when graph size is sufficiently large. Our
method can also be applied to rate-distortion optimization for transform type search,
yield a significant speed up in the AV1 codec.

Finally, in Chapter 6, we studied the application of irregularity aware GFT (IAGFT)
for perceptual coding. In particular, we pointed out the fact the IAGFT has orthogonal-
ity property with respect to a weighted mean square error (WMSE), which can be used to
characterize perceptual image quality. Given a certain WMSE, the generalized Parseval’s
theorem implies that minimum WMSE distortion can be achieved when uniform quanti-
zation is applied in the IAGFT domain. Based on these properties, we designed WMSE
weights to align with the well-known structural similarity (SSIM) index for perceptual
image quality. For validation, a coding scheme is built on top of the JPEG encoder,
where IAGFT with the SSIM-driven weights is applied instead of the traditional DCT.
Our preliminary results showed a promising coding gain in MS-SSIM.

7.2 Future Work

For future work, we consider the following issues or extensions:

1. Lapped GFTs for more general graphs and applications. In Section 4.2.2, we have
demonstrated some results on piecewise smooth images. In fact, the definition
of the lapped transforms on graphs can be applied to general graph topologies.
Thus, we would like to explore a wider range of applications, and with different
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types of graphs. For example, image filtering can be an application because con-
ventional graph-based filtering cannot be easily applied without partitioning the
image, especially when the number of pixels is large.

2. Extensions for IAGFT in perceptual video coding. With the generalized Parseval’s
theorem, we can design a variety of useful transforms based on different WMSEs.
Choices of weights that lead to perceptual quality enhancement, or other video
coding benefits, would be an interesting problem. For example, larger weights can
be chosen for pixels that are used to predict many other pixels, to achieve higher
prediction accuracy. Another extension would be exploring efficient methods to
reduce signaling overhead. For example, weights for the WMSE may be derived
from information that are available to both encoder and decoder, so that no extra
bits will be required.
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Appendix A

Proofs of Theorems and Lemmas
A.1 Proof of Theorem 2

In the following, we will repeatedly use (2.15) and (2.16). Also recall that in (2.11),

L+ =
(

LXX + LXY J
√

2LXZ√
2L>XZ LZZ

)
, (A.1)

L− = LY Y − JLXY . (A.2)

From the block partition structure (2.6), we also have

(LXX)i,j = li,j , (LXZ)i,j = li,p+j , (LXY )i,j = li,n−p+j , (LZZ)i,j = lp+i,p+j ,

(LY Y )i,j = ln−p+i,n−p+j , (JLXY )i,j = lp+1−i,n−p+j , (LXY J)i,j = li,n+1−j .

Such changes of indices will be used in the derivations below.

• Edges of G+. With i, j ∈ V+ = {1, . . . , n−p} and i 6= j, we discuss three different
cases separately, all based on (A.1). If i, j ∈ VX = {1, . . . , p}, then

w+
i,j = − (LXX + LXY J)i,j = −(li,j + li,n+1−j) = wi,j + wi,n+1−j .

If i ∈ VX = {1, . . . , p} and j ∈ VZ = {p+ 1, . . . , n− p}, then

w+
i,j = −

(√
2LXZ

)
i,j−p

= −
√

2li,j =
√

2wi,j ,

and the same holds for i ∈ VZ and j ∈ VX . If i, j ∈ VZ = {p+ 1, . . . , n− p}, then

w+
i,j = − (LZZ)i−p,j−p = −li,j = wi,j .
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• Self-loops of G+. To express s+
i , we discuss the cases with i ∈ VX and i ∈ VZ

separately. If i ∈ VX = {1, . . . , p}, then from (A.1) we have

s+
i =

p∑
j=1

(LXX + LXY J)i,j +
n−2p∑
j=1

(√
2LXZ

)
i,j

=
p∑
j=1

(li,j + li,n+1−j) +
√

2
n−2p∑
j=1

li,p+j

= si +
n∑
j=1
j 6=i

wi,j

︸ ︷︷ ︸
li,i

+

− p∑
j=1
j 6=i

wi,j


︸ ︷︷ ︸
li,j with i 6=j

−
p∑
j=1

wi,n+1−j −
√

2
n−2p∑
j=1

wi,p+j

= si − (
√

2− 1)
n−p∑
j=p+1

wi,j .

If i ∈ VZ = {p+ 1, . . . , n− p}, then (A.1) gives

s+
i =

n−2p∑
j=1

(LZZ)i−p,j +
p∑
j=1

(√
2LXZ

)
i−p,j

=
n−2p∑
j=1

li,p+j +
√

2
p∑
j=1

lj,i

= si +
n∑
j=1
j 6=i

wi,j

︸ ︷︷ ︸
li,i

+

− n−p∑
j=p+1
j 6=i

wi,j


︸ ︷︷ ︸

li,j with i 6=j

−
√

2
p∑
j=1

wi,j

= si +
p∑
j=1

wi,j +
n∑

j=n−p+1
wi,j −

√
2

p∑
j=1

wi,j = si + (2−
√

2)
p∑
j=1

wi,j

• Edges of G−. With i, j ∈ VY = {n− p+ 1, . . . , n} and i 6= j, from (A.2) we have

w−i,j = − (LY Y − JLXY )i−n+p,j−n+p = −(li,j − ln+1−i,j) = wi,j − wn+1−i,j .

• Self-loops of G−. Here, we have i ∈ VY = {n− p+ 1, . . . , n}, so, by (A.2),

s−i =
p∑
j=1

(LY Y − JLXY )i−n+p,j =
p∑
j=1

(li,n−p+j − ln+1−i,n−p+j)

= si +
n∑
j=1
j 6=i

wi,j

︸ ︷︷ ︸
li,i

+

− n∑
j=n−p+1

j 6=i

wi,j


︸ ︷︷ ︸

li,j with i 6=j

+
p∑
j=1

wi,p+1−j = si + 2
p∑
j=1

wi,j +
n−p∑
j=p+1

wi,j .
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The results derived above apply to the case when φ = (n, n − 1, . . . , 1). For any
arbitrary φ, we can simply modify the sub-indices based on φ. Thus, the results
above can be written as in Lemma 2.

A.2 Derivations for Sparse Operators of DST-IV, DST-
VII, and DCT-V

A.2.1 Sparse DST-IV Operators

Recall the definition of DST-IV functions as in (1.11):

φj(k) = vj(k) =
√

2
N

sin
(j − 1

2)(k − 1
2)π

N

As in Section 5.2.1, we can obtain

vj(p− `) + vj(p+ `) =
√

2
N

[
sin

(j − 1
2)(p− `− 1

2)π
N

+ sin
(j − 1

2)(p− `− 1
2)π

N

]

= 2
√

2
N

sin
(j − 1

2)(p− `− 1
2)π

N
cos

`(j − 1
2)π

N

=
(

2 cos
`(j − 1

2)π
N

)
vj(p),

where we have applied the trigonometric identity

sinα+ sin β = 2 sin
(
α+ β

2

)
cos

(
α− β

2

)
. (A.3)

By the left and right boundary condition of DST-IV, we have

vj(p− `) = −vj(−p+ `+ 1), vj(p+ `) = vj(−p− `+ 2N + 1).

which gives the following result:

Proposition 3. For ` = 1, . . . , N −1, we define Z(`)
DST-IV as a N ×N matrix, whose p-th

row has only two non-zero elements specified as follows:

(
Z(`)

DST-IV

)
p,q1

=
{

1 with q1 = p− `, if p− ` ≥ 1
−1 with q1 = −p+ `+ 1, otherwise

,

(
Z(`)

DST-IV

)
p,q2

= 1, q2 =
{
p+ `, if p+ ` ≤ N
−p− `+ 2N + 1, otherwise
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The corresponding eigenvalues are λj = 2 cos `(j−
1
2 )π

N .

A.2.2 Sparse DST-VII Operators

Now, we consider the basis function of DST-VII:

φj(k) = 2√
2N + 1

sin

(
j − 1

2

)
kπ

N + 1
2

.

Then, by (A.3) we have

φj(p− `) + φj(p+ `) = 2√
2N + 1

sin

(
j − 1

2

)
(p− `)π

N + 1
2

+ sin

(
j − 1

2

)
(p+ `)π

N + 1
2


= 2√

2N + 1
2 sin

(
j − 1

2

)
pπ

N + 1
2

cos
`
(
j − 1

2

)
π

N + 1
2

=

2 cos
`
(
j − 1

2

)
π

N + 1
2

φj(p) (A.4)

The left boundary condition (i.e., φj(k) = −φj(−k)) of DST-VII corresponds to
φj(p − `) = −φj(−p + `). Together with the right boundary condition φj(p + `) =
φj(−p− `+ 2N + 1), we have the following proposition.

Proposition 4. For ` = 1, . . . , N − 1, we define Z(`)
DST-VII as a N × N matrix, whose

p-th row has at most two non-zero elements specified as follows:

(
Z(`)

DST-VII

)
p,q1

=
{

1 with q1 = p− `, if p > `

−1 with q1 = −p+ `, if p < `
,

(
Z(`)

DST-VII

)
p,q2

= 1, q2 =
{
p+ `, if p+ ` ≤ N
−p− `+ 2N + 1, otherwise

The corresponding eigenvalues are λj = 2 cos `(j−
1
2 )π

N+ 1
2

.

In Proposition 4, note that the `-th row has only one nonzero element because when
p = `, φj(p− `) = 0, and (A.4) reduces to

φj(p+ `) =

2 cos
`
(
j − 1

2

)
π

N + 1
2

φj(p).
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A.2.3 Sparse DCT-V Operators

Here, φj are defined as DCT-V basis functions

φj(k) = 2√
2N − 1

cjck sin (j − 1)(k − 1)π
N − 1

2
.

Note that ck = 1/
√

2 for k = 1 and 1 otherwise. For the trigonometric identity (5.7) to
be applied, we introduce a scaling factor such that bkck = 1 for all k:

bk =
{ √

2, k = 1
1, otherwise

.

In this way, by (5.7) we have

bp−` · φj(p− `) + bp+` · φj(p+ `)

= 2√
2N − 1

cj

[
cos (j − 1)(p− `− 1)π

N − 1
2

+ cos (j − 1)(p+ `− 1)π
N − 1

2

]

= 2√
2N − 1

cj2 cos (j − 1)(p− 1)π
N − 1

2
cos `(j − 1)π

N − 1
2

=
(

2 cos `(j − 1)π
N − 1

2

)
bpφj(p),

so this eigenvalue equation can be written as

bp−`
bp
· φj(p− `) + bp+`

bp
· φj(p+ `) =

(
2 cos `(j − 1)π

N − 1
2

)
φj(p). (A.5)

The left boundary condition of DCT-V corresponds to φj(p − `) = φj(−p + ` + 2),
and the right boundary condition gives φj(p + `) = φj(−p − ` + 2N + 1). Thus, (A.5)
yields the following proposition:

Proposition 5. For ` = 1, . . . , N −1, we define Z(`)
DCT-V as a N ×N matrix, whose p-th

row has at most two non-zero elements specified as follows:

(
Z(`)

DCT-V

)
p,q1

=


√

2 with q1 = 1, if p− ` = 1
1 with q1 = p− `, if p− ` > 1
1 with q1 = −p+ `+ 2, if p− ` ≤ 0, p 6= 1

,

(
Z(`)

DCT-V

)
p,q2

=


√

2 with q2 = 1, p = 1
1 with q2 = p+ `, p 6= 1, p+ ` ≤ N
1 with q2 = −p− `+ 2N + 1, otherwise
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The corresponding eigenvalues are λj = 2 cos `(j−1)π
N− 1

2
.

The values of
√

2 in Proposition 5 arise from bp−`/bp and bp+`/bp in the LHS of (A.5).
In particular, when p = `+ 1 we have bp−`/bp =

√
2 and bp+`/bp = 1, so (A.5) gives

√
2φj(p− `) + φj(p+ `) =

(
2 cos `(j − 1)π

N − 1
2

)
φj(p).

When p = 1, bp−`/bp = bp+`/bp = 1/
√

2. In addition, by the left boundary condition,
φj(p− `) = φj(p+ `), so (A.5) reduces to

√
2φj(p+ `) =

(
2 cos `(j − 1)π

N − 1
2

)
φj(p), for p = 1.

meaning that the first row of Z(`)
DCT-V has one nonzero element only.

A.3 Proof of Theorem 3

Denote the objective function of the CGL estimation problem (3.4) as J (L). It have
been shown in [25] that

J (L) := − log |L|† + trace(LS) + α‖L‖1,off = − log |L|† + trace(LK), (A.6)

where K = S + α(I− 11>). The derivation from the function in (3.4) to (A.6) is based
on the facts that ‖L‖1,off = trace(L(I− 11>)) when L is a CGL.

First, we consider the oriented incidence matrix of a graph: Ξ = (ξ1, . . . , ξm) ∈
Rn×m. Each of its columns ξj has two nonzero elements, 1 and -1, representing an edge
εj connecting nodes sj and tj :

ξj = esj − etj for εj = (sj , tj) ∈ E ,

where ei is the i-th vector of the standard basis, that is, ei(i) = 1 and ei(j) = 0, j 6= i.
We can express L in terms of the edge weights and Ξ:

L =
m∑
j=1

wsj ,tjξjξ
>
j = Ξ · diag(ws1,t1 , . . . , wsm,tm) ·Ξ>, (A.7)

where diag(ws1,t1 , . . . , wsm,tm) is the m × m diagonal matrix formed by wsi,ti . Note
that, as εj is undirected, either ξj = esj − etj or ξj = etj − esj is allowed ((A.7) holds
either way, and the choice does not affect the following results). For simplicity, we define
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uj := wsj ,tj to represent weights with a single subscript, and also define a weight vector
as u = (u1, . . . , um)> for compact notation.

Next, we note that |L|† can be simplified using Kirchhoff’s matrix tree theorem:

Theorem 4 (Matrix Tree Theorem [56]). For a CGL L of a connected graph G, we have

|L|† = n
∑
T ⊆P

∏
ε∈T

wε,

where P is the set of all spanning trees of G and wε is the weight of edge ε.

By the assumption that G is a tree, the only spanning tree of G is itself. Thus,
Theorem 4 implies that

|L|† = n
m∏
j=1

u. (A.8)

Now, we can reduce (A.6) to

J (u) = − log

n m∏
j=1

uj

+ trace

 m∑
j=1

ujξjξ
>
j K


= − log(n)−

m∑
j=1

log(uj) +
m∑
j=1

uj(ξ>j Kξj),

which is a convex function in u. By setting its derivative with respect to uj to zero,
we obtain the optimal weights uj = 1/

(
ξ>j Kξj

)
. Note that, with the expression K =

S + α(I− 11>) and S =
∑N
i=1 xix>i /N , the weights can be expressed in terms of xi:

ws,t =
[
(es − et)>K(es − et)

]−1
= (ks,s + kt,t − 2ks,t)−1

=


1
N

N∑
i=1

(xi(s)− xi(t))2

︸ ︷︷ ︸
:=δs,t

+2α


−1

, for (s, t) ∈ E ,

It is clear that this value is always positive given α > 0, so u ≥ 0 is satisfied, meaning that
the derived form is indeed the closed form solution of (3.4). Note that the quantity δs,t
is the mean-square-difference between the s-th and the t-th elements over all realizations
xi.
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Appendix B

Search of Involutions in General
Graphs

In this appendix, we introduce two algorithms for searching valid involutions in a
general graph. The purpose of these algorithms is to identify symmetry properties of a
given graph that lead to fast graph Fourier transform (GFT) implementations discussed
in Chapter 2. As in Section 1.2, we denote a graph as G with vertex set V of n nodes,
edge set E , and weighted adjacency matrix W. Weighted self-loops are allowed in the
graphs. Degrees of graph nodes are denoted as d1, d2, . . . , dn. Recall Definition 1 that
a permutation on the set V is called an involution if φ(φ(i)) = i for all i ∈ V. For
V = {1, . . . , n}, we denote an involution φ : V → V as φ = (φ(1), φ(2), . . . , φ(n)). As
defined in Definition 2, a graph G is called φ-symmetric if wi,j = wφ(i),φ(j) for all i ∈ V,
j ∈ V. We say φ is a valid involution for graph G if G is φ-symmetric.

Essentially, finding all valid involutions of a graph is a combinatorial problem, since
the number of all involutions T (n), also known as the telephone number (2.19), grows
asymptotically faster than polynomials in n [58] (T (n) with n from 1 to 12 are shown in
Table B). An exhaustive search of valid involutions among T (n) of possible candidates,
as described as in Algorithm 2, has an exponential (or higher) complexity.

However, given the knowledge of the graph structure and associated properties (e.g.,
when the graph is a tree), we can exploit useful strategies to prune the brute force
algorithm, or even design an algorithm of polynomial complexity. In what follows, we
will present two methods in Sections B.1 and B.2, respectively. The first method takes
advantage of the degree list, and prune the exhaustive search based on the degrees of
the nodes. The intuition behind it is that two nodes that are paired by an involution
φ in a φ-symmetric graph must have the same degree. This provides a criterion for
pruning involutions that are not valid during the search. The second approach is designed
particularly for trees, which are special cases where O(n logn) complexity (or O(n)
complexity, when a O(n) sort is used) can be achieved. In this method, we consider
a property that involutions of a tree graph can be characterized by pair(s) of identical

Work in this appendix is included in a technical report that can be found in [69].
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Algorithm 2 Exhaustive search of graph symmetry
1: procedure Exhaustive(G = (V, E ,W))
2: Π← ∅
3: T ← set of all involutions on V
4: while φ ∈ T do . Loop over all involutions
5: if wi,j = wφ(i),φ(j) for all i, j ∈ V then
6: Π← Π ∪ {φ}
7: end if
8: end while
9: return Π . Set of all valid involutions

10: end procedure

Table B.1: Telephone numbers T (n) with n from 1 to 12
n 1 2 3 4 5 6 7 8 9 10 11 12
T (n) 1 2 4 10 26 76 232 764 2620 9496 35696 140152

tree branches whose roots are either common or adjacency. This property enables us
to search involutions by comparing out-going branches at each tree node, leading to a
linear complexity.

B.1 Pruning based on Degree Lists

From Definition 2, we obtain a necessary condition for nodes i and φ(i) being paired:
nodes i and φ(i) have the same weighted degree (sum of weights on edges adjacent to a
node). This is given by

di =
∑

(i,j)∈E
wi,j =

∑
(i,j)∈E

wφ(i),φ(j) =
∑

(φ(i),φ(j))∈E
wφ(i),φ(j) = dφ(i). (B.1)

In addition, we can also consider the unweighted degree (number of neighbors of a node).
We denote this number of neighbors for node i as fi. Similar to (B.1), we have

fi =
∑

(i,j)∈E
1(wi,j) =

∑
(i,j)∈E

1(wφ(i),φ(j)) =
∑

(φ(i),φ(j))∈E
1(wφ(i),φ(j)) = fφ(i), (B.2)

where 1 is the indicator function with 1(w) = 1 if w 6= 0 and 1(w) = 0 otherwise.
Based on these two conditions (B.1), (B.2), we obtain a useful pruning rule for the

exhaustive search: only search those involutions in which all pairs of nodes have the same
degrees and numbers of neighbors. To apply this criterion, we first partition the vertex
set V into subsets {Vd,f}, each of which contains nodes that share the common weighted

116



Algorithm 3 Truncated search of graph symmetry based on degree lists
1: procedure Truncated(G = (V, E ,W))
2: Compute the weighted degree list d = (d1, . . . , dn)> with di =

∑n
j=1wi,j

3: Compute the unweighted degree list f = (f1, . . . , fn)> with fi =
∑n
j=1 1(wi,j)

4: S ← GetTruncatedList(d, f)
5: Π← ∅
6: while φ ∈ S do . Loop over all involutions that are not pruned
7: if wi,j = wφ(i),φ(j) for all i, j ∈ V then
8: Π← Π ∪ {φ}
9: end if

10: end while
11: return Π . Set of all valid involutions
12: end procedure
13: procedure GetTruncatedList(d, f)
14: Vd,f ← ∅ for all d and f
15: for i = 1, . . . , n do
16: Vdi,fi ← Vdi,fi ∪ {i}
17: end for
18: for Vd,f 6= ∅ do . Loop over all Vd,f
19: Sd,f ←set of all involutions on Vd,f
20: end for
21: S ←

⊗
d,f Sd,f . Direct product of all involution sets

22: return S . Set of all valid involutions after pruning
23: end procedure

and unweighted degrees (d and f). Then, for each vertex subset Vd,f , we list all T (|Vd,f |)
possible involutions on it. Finally, we search all combinations of the listed involutions
across all vertex subsets. Note that, the number of such involutions is Πd,fT (|Vd,f |),
which is typically significantly smaller than T (n) for graphs that are not regular (node
degrees are not all equal).

An example is shown in Figure B.1. We note that the graph nodes have weighted
degrees d ∈ {1, 2, 3, 4, 5, 7} and unweighted degrees f ∈ {1, 2, 3, 4}. As in Figure B.1(c),
there are 7 combinations of (d, f), so the vertex set is partitioned into 7 subsets with
sizes 2, 3, 2, 1, 1, 1, 1, and 1. For the node in each class with size 1, all valid involutions
must map it to itself, which reduces the dimension of the search. On the other hand,
those classes V1,1, V2,1, and V2,2 have 2, 3, and 2 elements, respectively, so there are
T (2) = 2, T (3) = 4, and T (2) = 2 candidates of involutions to be searched. As a
result, the number of total involutions to be searched is reduced from T (12) = 140152
to T (2)2T (3) = 2× 2× 4 = 16.
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(a) Graph

(b) Degree lists

(c) Tables of involutions

Figure B.1: An example of pruning based on degree lists. (a) An example graph, (b) its
weighted and unweighted degree lists, and (d) its vertex partitions and involutions on
them.

To summarize, we show the procedures based on this pruning criterion in Algorithm 3,
whose MATLAB implementation can be found in [69].
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(a) (b)

Figure B.2: Symmetry of tree characterized by identical branches. (a) Two branches with
a common root. (b) Two branches with adjacent roots. Their associated involutions are
φa = (1, 6, 8, 9, 7, 2, 5, 3, 4) and φb = (5, 7, 8, 6, 1, 4, 2, 3).

B.1.1 Complexity Analysis

Let the number of nodes be n and the number of edges be m. We note that, for a
given involution φ, checking whether it is a valid involution (lines 5 and 6 in Algo-
rithm 2) requires O(m) time. This means that Algorithm 2 takes an overall complexity
of O(mT (n)). To analyze the complexity of Algorithm 3, we break it into several parts:

• Retrieval of the degree lists (lines 2 and 3). This can be done by accumulating all
edge weights, so the complexity is O(m) of each of d and f .

• Obtaining the truncated list of involutions (lines 10-17). The algorithm requires
scanning through all nodes (lines 12-13), visiting all possible involutions for each
Vd,f (lines 14-15), and applying the direct product of all sets of involutions (line
16). Let the number of partitions be q and the sizes of partitions be k1, k2, . . . ,
kq. Then, these three procedures take O(n), O(

∑q
i=1 T (ki)), and O(Πq

i=1T (ki)),
respectively.

• Searching over the truncated set of involutions (lines 6-8). This takes
O(mΠq

i=1T (ki)).

Combining all the complexities above, we obtain an overall complexity of
O(mΠq

i=1T (ki)). This reduces the complexity of Algorithm 2 by a factor of
T (n)/Πq

i=1T (ki), where n =
∑q
i=1 ki.
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B.2 Searching of Identical Tree Branches

In this section, a polynomial time (O(n logn), or O(n) with optimization) algorithm
is provided for the search of involution on trees. This algorithm arises from the fact
that a symmetry in a tree can be uniquely characterizedby identical branches of the
tree whose roots are common (as in Figure B.2(a)) or adjacent (as in Figure B.2(b)).
In what follows, we refer to such branches as adjacent identical branches (AIB). The
main algorithm is based on the fact that AIBs can be identified efficiently through a
bottom-up traversal in a tree.

This approach is motivated by related work in [13, 30], where the so-called subtree
repeats can be found in linear time. The subtree repeat problem and our problem are
similar, but different in two aspects. First, we do not allow the subtrees to overlap.
Second, from the condition of graph symmetry, we require that the roots of the target
subtrees to be adjacent. Thus, the algorithm we design can be regarded as a simplified
version of the forward/non-overlapping stage in [30], and has the same time and space
complexity.

First, we show that if a tree G is φ-symmetry, then this symmetry can be characterized
by a pair, or several pairs of adjacent identical branches in G:

Lemma 8. Let φ be a non-trivial involution (φ (φ(i) 6= i for some i) and let G =
(V, E ,W) be a φ-symmetric tree. Then, the tree nodes can be partitioned into V =
VX ∪VY ∪VZ such that φ(i) ∈ VY if i ∈ VX and φ(j) = j if j ∈ VZ , and there is at most
one edge (k, l) ∈ E with k ∈ VX , l ∈ VY .

From this lemma, we know that involution φ is associated to a pair of branches
(sub-trees) whose vertex sets are VX and VY , respectively.

Proof. We define VZ = {i ∈ V|φ(i) = i} 6= V, and discuss two cases: VZ 6= ∅ and VZ = ∅.
If VZ is non-empty, since φ is non-trivial, there must be a (possibly non-unique) node

k1 ∈ VZ connected to two nodes that are not in VZ , denoted as i1 and j1 = φ(i1). First,
we start with VX = {i1} and VY = {j1}. Then, we apply a depth-first search (DFS) to
traverse the branch rooted by i1 toward its other neighbors than k1, and include those
nodes being visited into VX . Note that, from the φ-symmetry, every step of the DFS
corresponds to a traversal step from j1 towards its other neighbors than k1. In this way,
we can obtain an identical branch rooted by j1, and include all nodes in this branch into
VY . If there exists another node k2 ∈ VZ other than k1 connected to two nodes i2 and
j2 = φ(i2), we apply the same traversal procedure again and append VX and VY in the
same way. This procedure can be repeated until all nodes are classified into VX , VY , and
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VZ . The resulting VX and VY will end up containing one or several identical branches
of the original tree.

If VZ is empty, then by connectivity of the tree graph, there must be an edge con-
necting two nodes paired by φ, i and φ(i). Then, we apply a DFS to traverse the branch
rooted by i toward its other neighbor than φ(i), and include all visited nodes into VX .
Similarly, the φ-symmetry also gives an identical branch rooted by φ(i). We include
nodes in this branch into VY . The connectivity of the graph implies that all nodes are
included in these two indentical branches.

Note that the converse of this theorem is straightforward: when there are two iden-
tical branches whose roots are common or adjacent, we can identify an involution φ that
pairs the nodes of the branches such that the graph is φ-symmetric.

B.2.1 Algorithm

Since tree symmetry can be characterized by adjacent identical branches, we can build
branch descriptors for all branches in the tree, and compare branches that are joined or
adjacent. Note that, to apply this method, the tree needs to be rooted, i.e., has a root
so that there is a hierarchy with different levels of nodes.

The reasonable choice of root would be a node in the center of the tree. The center
of a graph is the set of vertices v where the greatest distance d(u, v) to other vertices v is
minimal. In fact, if (z1, . . . , zL) is a longest path of the graph (whose length is called the
diameter of the graph), then the center node(s) of this path must belong to the center
of the graph. An important consequence of this property is given as follows.

Lemma 9. A node in the center of a tree cannot be an internal node of a branch that
has an adjacent identical branch.

Proof. If otherwise, joining these two branches leads to a path whose length is greater
than the diameter, yielding a contradiction.

To find the center of a tree, we can apply breadth-first search (BFS) twice to obtain
the longest path in the tree, and identify the nodes in the center of the longest path. An
algorithm for obtaining the center is shown in Algorithm 4. Then, with Lemma 9, we
design a bottom-up branch matching algorithm on a tree rooted with its center, which
is summarized in Algorithm 5.

As a demonstration of this algorithm, an example with graph in Figure B.3 is provided
in Table B.2, where we show the iterations in reverse topological order of nodes (from
bottom to top of the tree). Note that in iteration 5, an involution associated to the two
AIBs is φ1 = (1, 2, 3, 5, 4, 6, 7, . . . , 13) (pairing of nodes 4 and 5), while the involution
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Algorithm 4 Finding the center of a tree
1: procedure TreeCenter(G) . G is a tree
2: Pick any node v1 ∈ V
3: Run BFS on G from v1, and obtain the furthest node v2
4: Run BFS on G from v2, and obtain the furthest node v3
5: Retrieve the v2−v3 path (z1 = v2, z2, . . . , zL = v3) from the previous BFS solution
. This path is the diameter of the tree

6: if L = 2n+ 1 is odd then
7: return {zn} . The tree has one center
8: end if
9: if L = 2n is even then

10: return {zn, zn+1} . The tree has two centers
11: end if
12: end procedure

Algorithm 5 Finding valid involutions in a tree
1: procedure FindInvolutionInTree(G)
2: Take a node v ∈ C=TreeCenter(G)
3: Run BFS from v, and obtain the node list with topogolical order (u1, . . . , un)
4: I ← ∅ . List of valid involutions
5: for i = n, . . . , 1 do . Build branch descriptor bottom-up
6: if ui has no childs then
7: Si ←‘’ . Empty descriptor
8: end if
9: if ui has childs then

10: (ti,1, . . . , ti,ci)←list of childs, sorted w.r.t. their descriptors.
11: If any two branch descriptors are equal, append I with the involution

characterized by the two identical branches
12: Si ←‘(wui,ti,1Sti,1)(wui,ti,2Sti,2) . . . (wui,ti,ciSti,ci )’ . Build descriptor by

concatenating the weights and the descriptors of the sorted child branches
13: end if
14: end for
15: if |C| = 2 then . The center has two nodes
16: if Two branches rooted by the two center nodes are identical then
17: Append I with the involution characterized by these two branches
18: end if
19: end if
20: return I
21: end procedure
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Figure B.3: An example graph for demonstration of Algorithm 5. The center of this
graph is {1}. Note that a topological order given by BFS from node 1 would be
(1, 2, 7, 12, 3, 6, 8, 9, 13, 4, 5, 10, 11).

found in iteration 8 is φ2 = (1, . . . , 8, 9, 11, 10, 12, 13) (pairing of nodes 10 and 11). In
the last iteration, the involution corresponding to the largest AIBs is

φ3 = (1, 7, 9, 10, 11, 8, 2, 6, 3, 4, 5, 12, 13),

that pairs nodes 2, 3, 4, 5, and 6 with nodes 7, 9, 10, 11, and 8, respectively. Note that,
when each descriptor is built, the sorting of branch descriptors from the lower level will
fix the order, so two AIBs must have identical branch descriptors.

B.2.2 Complexity Analysis

The algorithm consists of the following steps:

• Finding the center (line 2). This requires two BFS’s and a traversal of a path.
For a tree, the number of edges is m = n − 1, so the overall complexity of these
operations on a tree is O(m+ n) = O(n).

• Finding a topological order using a BFS (line 3). The complexity of this step is
O(n).

• Building descriptors for all nodes (line 5-11). Here, it take n iterations to loop over
all tree nodes. Let pi be the number of childs of node ui. In iteration i, sorting the

123



Table B.2: Demonstration of Algorithm 5.
Iteration Node Branch descriptor Comment
1 4 S4 =‘’
2 5 S5 =‘’
3 10 S10 =‘’
4 11 S11 =‘’

5 3 S3 = (w3,4S4)(w3,5S5) AIB found=‘(1)(1)’
6 6 S6 =‘’
7 8 S8 =‘’

8 9 S9 = (w9,11S11)(w9,10S10) AIB found=‘(1)(1)’
9 13 S13 =‘’

10 2 S2 = (w2,6S6)(w2,3S3)
=‘(1)(3((1)(1)))’

11 7 S7 = (w7,8S8)(w7,9S9)
=‘(1)(3((1)(1)))’

12 12 S12 =‘(1)’

13 1 S1 = (w1,12S12)(w1,2S2)(w1,7S7) AIB found=‘(1(1))(2(1)(3(1)(1)))(2(1)(3(1)(1)))’

descriptors takes O(pi log(pi)), and concatenating them takes O(pi). The overall
complexity of this loop is

n∑
i=1

pi log(pi) = (n− 1)
[
n∑
i=1

pi
n− 1 log(pi)

]

= (n− 1)
[
n∑
i=1

pi
n− 1 log

(
pi

n− 1

)
+

n∑
i=1

pi
n− 1 log(n− 1)

]

= (n− 1)
[
−Hp +

∑n
i=1 pi
n− 1 log(n− 1)

]
≤ (n− 1) log(n− 1) (B.3)

where the equation
∑n
i=1 pi = n− 1 has been applied, and Hp ≥ 0 because it is an

entropy quantity. From (B.3), we obtain a complexity of O(n logn).

• Check complete symmetry (line 13-14). This requires a comparison of two descrip-
tors, and takes O(n) time.

In fact, as mentioned in [30], sorting of descriptors can be implemented by radix sort,
which requires only O(pi), due to the finite range of strings to be sorted. As a result,
the overall complexity is O(n logn) with an O(n logn) sort, or O(n) with a O(n) sort.
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B.3 Conclusion

In this appendix, we discuss two methods for searching a valid involution φ in a graph for
graph symmetry. The first method is based on the fact that two symmetric nodes must
have the same weighted and unweighted degrees. The second approach takes advantage
of the sparsity of tree graphs, in which case the graph symmetry can be characterized
by adjacent identical branches. We show the algorithms of both methods as well as
examples for illustration. The complexities of both methods are analyzed. The MATLAB
implementations can be found in the companion github repository [69].
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Appendix C

Characterization of Sparse
Laplacians with a Common GFT
This section includes remarks on the retrieval of sparse operators for general GFTs
beyond DCT and DST.

The characterization of all Laplacians that share a common GFT has been studied
in the context of graph topology identification and graph diffusion process inference
[18,92,108]. In particular, it has been shown in [92] that the set of normalized Laplacian
matrices having a fixed GFT can be characterized by a convex polytope. Following
a similar proof, we briefly present the counterpart result for unnormalized generalized
Laplacians, where self-loops are allowed:

Theorem 5. The set of Laplacian matrices with a fixed GFT can be characterized by a
convex polyhedral cone in the space of eigenvalues (λ1, . . . , λN ).

Proof: For a given GFT Φ, let the eigenvalues λj of the Laplacian be variables. By
definition of the Laplacian (1.4), we can see that

L = Φ · diag(λ1, . . . , λN ) ·Φ> =
N∑
k=1

λkφkφ
>
k (C.1)

is a valid Laplacian matrix if lij ≤ 0 (non-negative edge weights), lii ≥
∑N
j=1,j 6=i lij (non-

negative self-loop weights), and λk ≥ 0 for all k (non-negative graph frequencies). With
the expression (C.1) we have lij =

∑N
k=1 λkφk(i)φk(j), and thus the Laplacian conditions

can be expressed in terms of λj ’s:

N∑
k=1

λkφk(i)φk(j) ≤ 0, for i 6= j,

N∑
k=1

λkφk(i)2 ≥
N∑
j=1
j 6=i

λkφk(i)φk(j), for i = 1, . . . , N,

λk ≥ 0, k = 1, . . . , N. (C.2)
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Figure C.1: An illustrative example of a polyhedral cone in R3 with a vertex at 0 and 5
edges. Any element of the cone can be represented as

∑5
m=1 amL(m) with non-negative

am.

These constraints on λ = (λ1, . . . , λN )> are all linear, so the feasible set for λ ∈ RN is a
convex polyhedron. We denote this polyhedron by P, and highlight some properties as
follows:

• P is non-empty: it is clear that λ = 1 gives L = I, which is a trivial, but valid,
Laplacian.

• λ = 0 is the only vertex of P: when λj = 0 for all j, equality is met for all
constraints in (C.2). This means that all hyperplanes that define P intersect at a
common point 0, which further implies that P does not have other vertices than
0.

From those facts above, we conclude that P is a non-empty convex polyhedral cone.
For illustration purpose, we can visualize the structure of a 3-dimensional polyhedral

cone with 5 edges in Figure C.1. Notably, any element in P can be expressed by a conical
combination (linear combination with non-negative coefficients) of elements on the edges
of P, as illustrated in Figure C.1. In particular, let P have M edges, and let L(1), . . . ,
L(M) be points on different edges, then any element Q ∈ P can be represented as

Q =
M∑
m=1

amL(m), am ≥ 0.
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The fact that Laplacians have non-positive off-diagonal entries implies that the L(m)’s
are the most sparse Laplacians. This can be seen by noting that a conical combination of
two Laplacians must have more non-zero off-diagonal elements than the two individual
Laplacians do.

Since sparse Laplacians are characterized by edges of a polyhedral cone, we can choose
sparse filters in (5.1) as those Laplacians: Z = {L(k)}k. The retrieval of those matrices
would require an algorithm that enumerates the vertices and edges given the description
of a polyhedron. A popular algorithm for this problem is the so-called reverse search
[3], which has a complexity O(rdv), where r is the number of linear constraints in Rd,
and v is the number of target vertices. In (C.2), d = N and m = (N2 + 3N)/2, so the
complexity reduces to O(N3v). In practice, the vertex enumeration problem is in general
an NP-hard problem since the number of vertices v can be a combinatorial number:

(r
d

)
.

For the purpose of efficient graph filter design, a truncated version of the algorithm [3]
may be applied to obtain a few instead of all vertices. The study of such a truncated
algorithm will be left for our future work.

128



Appendix D

Construction of Sparse Operators
in Symmetric Graphs
This section shows a construction of sparse operator for graphs with certain symmetry
properties. In Chapter 2, we highlighted that a GFT has a butterfly stage for fast
implementation if the associated graph demonstrates a symmetry property based on
involution. Here, we show how a sparse operator can be constructed for a ϕ-symmetric
graph G.

Lemma 10. Given a ϕ-symmetric graph G with Laplacian L, we can construct a graph
Gϕ by connecting nodes i and j with edge weight 1 for all node pairs (i, j) with ϕ(i) =
j, i 6= j. In this way, the Laplacian Lϕ of Gϕ commutes with L.

Proof: We note that, for i ∈ V, we either have ϕ(i) = j 6= i with ϕ(j) = i or ϕ(i) = i.
Without loss of generality, we order the graph vertices such that ϕ(i) = N + 1 − i for
i = 1, . . . , k and ϕ(i) = i for i = k+ 1, . . . , N + 1− k. With this vertex order, we express
L in terms of block matrix components,

L =


L11 L12 L13

L>12 L22 L23

L>13 L>23 L33

 ,
where L11,L33 ∈ Rk×k and L22 ∈ R(N−2k)×(N−2k). By ϕ-symmetry, the block compo-
nents of L satisfy Lemma 4:

L13 = JL>13J, L33 = JL11J, L23 = L>12J. (D.1)

We can also see that the Laplacian constructed from Lemma 10, with the same node
ordering defined as above, is

Lϕ =


I 0 −J
0 0 0
−J 0 I

 .
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(a) (b)

Figure D.1: An illustrative example for graph operator construction based on graph
symmetry. (a) The 15-node human skeletal graph G. (b) The graph Gϕ associated to an
alternative sparse operator by construction. All edge weights are 1.

Then, using (D.1), we can easily verify that

LLϕ =


L11 − L13J 0 −L11J + L13

0 0 0
L>13 − JL11 0 −L>13J + JL11J

 = LϕL,

which concludes the proof.
We demonstrate an example for the construction of Gϕ, in Figure D.1. Figure D.1(a)

shows a 15-node human skeletal graph G [54]. A left-to-right symmetry can be observed
in G, which induces an involution ϕ with ϕ(i) = i for i = 7, 8, 9 and ϕ(i) = 16 − i

otherwise. With the construction in Lemma 10, we obtain a graph Gϕ as in Figure D.1(b)
by connecting all pairs of symmetric nodes in Figure D.1(a). We denote Z(1) = L and
Z(2) = Lϕ the Laplacians of G and Gϕ, respectively, and Ψ = (ψ1, . . . ,ψ15) the GFT
matrix of L with basis functions in increasing order of eigenvalues. Thus, we have

Z(2) = Ψ · diag(λ(2)) ·Ψ>, λ(2) = (0, 0, 2, 2, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0)>.

Since Z(2) has only two distinct eigenvalues with high multiplicities, every polynomial
of Z(2) also has two distinct eigenvalues only, which poses a limitation for graph filter
design. However, an MPGF with both Z(1) and Z(2) still provides more degrees of
freedom compared to a PGF with a single operator.
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