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Abstract

Speaker diarization has become an important field in recent years owing to the growing demand for

conversational artificial intelligence and interactive entertainment systems. Within the process of a

conversation analysis system, speaker labels should be predetermined before the natural language

understanding units, allowing the system to achieve an accurate understanding regarding the

content of the conversation. Thus, speaker diarization plays a crucial role in automatic discourse

analysis systems as an essential preprocessing step.

In this dissertation, we propose techniques for multimodal speaker diarization approaches and

self-guided clustering methods that can help in achieving the goal of a context aware speaker

diarization system. Thus, our proposed speaker diarization system focuses on two aspects. First,

we focus on a self-guided speaker diarization system that can determine the parameters on its own,

based on the context of the input samples. This line of research includes a clustering phase and

parameter tuning during speaker representation learning, and the determination of an adequate

segment window length. We demonstrate that certain parameter tuning processes needed to

perform a speaker diarization task can be automated. Second, we also investigate a method for

incorporating other modalities, such as the lexical context, into a speaker diarization system. We

show that, by incorporating the lexical context, the accuracy of the estimated speaker labels can

be improved in the temporal domain. In doing so, we suggest a futuristic speaker diarization

system that we will likely see in both industry and academia.

The overall objective of this dissertation is to propose novel techniques for improving the

speaker diarization system using the aforementioned methods. In addition, we cover the machine

vii



learning approaches behind the proposed techniques and how we can model the clustering and

speaker recognition problems.
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Chapter 1

Introduction

1.1 Introduction to Speaker Diarization

Figure 1.1: Input and output of speaker diarization system.

Speaker diarization is an essential component in speech applications under multi-speaker set-

tings where spoken utterances need to be attributed to speaker-specific classes without prior

knowledge of the speaker’s identity. Speaker diarization is regarded as a task for determining

“who spoke when” in a given audio recording. Fig. 1.1 shows the input and output of a speaker

1



diarization system. Speaker diarization technologies were initially developed as standalone ap-

proaches without much context of other components in a given speech application. Thus, speaker

diarization has been considered an independent module that predicts speaker labels regardless

of the output generated by the ASR module. However, as speech recognition technology be-

comes more accessible and advanced, there is an emerging trend of viewing speaker diarization

as a crucial part of an overall speech recognition application, which can benefit from the speech

recognition output to refine or improve the accuracy of the speaker diarization. Furthermore,

the demand for speaker diarization technology has risen significantly as the demand increases for

voice assistance in various industry applications such as autonomous vehicles, call centers, and

smart homes.

Figure 1.2: Categorization of speaker diarization field.

In terms of categorization, speaker diarization is occasionally categorized as a type of speaker

recognition because the speaker diarization task itself is determining the identity of a short speech

2



Figure 1.3: General speaker diarization process.

segment. However, speaker diarization should be clearly distinguished from the speaker recogni-

tion field, i.e., speaker verification and speaker identification. Speaker verification is concerned

with accepting or rejecting the claim of a speaker’s identity. For example, if a user claims the

identity of person A, the speaker verification system can either reject or accept this hypothesis.

Therefore, the output of the speaker verification system is true or false. By contrast, speaker

identification is about determining the speaker. For example, if person A says something to a

speaker identification system, the system estimates the identity of the individual and determines

whether the speaker is person A, and not person B or person C. Thus, speaker verification and

speaker identification apply the speaker identity recognition task at the utterance level, not at

the segment level. Thus, speaker diarization is not included in the speaker recognition field in a

strict sense. Fig. 1.2 depicts the categorization of the speaker diarization field in comparison to

speaker recognition and speaker verification.

Traditional speaker diarization system consists of a few modules that can be optimized sepa-

rately. Fig. 1.3 shows a conventional speaker diarization pipeline. The raw audio input is processed

using the front-end processing system. In general, front-end processing systems for speaker di-

arization tasks include speech enhancement, speech reverberation, and speech separation. The

output of the front-end processing system affects not only the following modules but also the

final outcome of the speaker diarization task. The refined signal from the front-end processing

module goes into the speech activity detector (SAD) module, which returns the time stamps of

the regions where the speech activities are sensed using a trained machine learning model. Thus,

after applying the SAD module, the speaker diarization system is expected to only deal with

speech signals without silence or noise. Following the SAD module, the segmentation module

3



Figure 1.4: Example diagram of diarization error rate calculation.

returns approximately 0.5 to 2 s of short speech segments that will be used to determine the unit

of the speaker label. The speech segments from the segmentation modules are fed into the speaker

embedding extractor, and speaker representations are generated for each speech segment. These

speaker representations are clustered using clustering algorithms to obtain separate groups that

have a homogeneous speaker identity. Finally, the post-processing module refines the output from

the clustering algorithm to reduce any errors that may occur. The error in a speaker diarization

system output is mostly evaluated by calculating the diarization error rate (DER) [26] with the

given reference transcript (ground truth). The DER is the sum of three different errors: a false

alarm (FA) in the speech, a missed speech detection, and confusion between speaker labels.

DER =
FA + Missed + Speaker-Confusion

Total Duration of Time
(1.1)

Because speakers are not identified through speaker diarization, the hypothesis can include numer-

ous combinations for matching the estimated speakers with the ground truth labels. To establish

a one-to-one mapping between the hypothesis outputs and the reference transcript, the Hungarian

algorithm [12] is employed. The most widely used DER calculation scheme is the method from

4



the Rich Transcription (RT) 2006 evaluation [26]. To mitigate the effects of an inconsistent anno-

tation and human errors in the reference transcript, with the DER calculation scheme proposed

in this document [26], a 0.25 s “no score” collar is set around every boundary of the reference

segment. This “no score” collar mainly prevents the DER from depending too much on human

errors made in the word boundaries in the reference transcripts.

1.2 Research Motivation

Despite the advancements in speaker diarization technology, a huge gap remains between the way

humans process dialogue and the manner in which such dialogue is analyzed by a speaker diariza-

tion system. Human listeners do not need to train each functionality in a speaker diarization

system, such as the speaker segmentation, speaker representation, or clustering. However, the

prevailing speaker diarization systems usually require separate supervised tuning on clustering

algorithms [72, 96, 126]. In addition, human listeners exploit a large amount of contextual in-

formation such as lexical context, speaker roles, and the information that can be captured from

background noise. For example, human listeners can figure out that “I am doing great” will

very likely be spoken from a speaker that is responding to a question such as “how are you do-

ing?” spoken by another speaker. Human listeners also consciously or unconsciously presume the

speaker roles even if such presumption is not completely accurate (e.g., a husband and a wife,

or employees and a manager). Moreover, human listeners can obtain some clues about the loca-

tion of the conversation. For example, typing sounds in the background or car noises from the

street can help the human listeners have a better understanding of the surroundings. However,

even a state-of-the-art speaker diarization system is incapable of incorporating such contextual

information into a speaker diarization system. This leaves more room for improvement of the

performance and robustness to the traditional speaker diarization systems. To deal with this gap

5



between the current speaker diarization paradigm and human listeners, we focus on two problems,

i.e., multimodal approach and self-guided clustering method.

First, focusing on the limitation of the clustering algorithms based on supervised tuning, we

cover the research topics related to self-tuning or autonomous clustering that reduce the burden

of having a development set for clustering algorithms. We show that our proposed clustering

approaches can achieve a competitive performance while not relying on a supervised tuning of the

clustering algorithms.

Second, we focus on the fact that traditional speaker diarization systems do not employ contex-

tual information such as the microphone layout or lexical content. We introduce studies regarding

multimodal speaker diarization and show how different modalities can be integrated to enhance

the performance of a speaker diarization system. Mostly, we focus on text and speech modalities

and show how lexical information can contribute to the performance of the diarization.

Thus, our motivation is building a speaker diarization system that is less dependent on manual

parameter tuning and closer to a context-aware speaker diarization system by employing lexical

information. Thus, we aim to propose speaker diarization techniques that can contribute to

building more advanced conversational AI systems that can perceive and recognize speakers similar

to the way humans do.

1.3 Dissertation Outline

The remainder of this dissertation is structured as follows. In Chapter 2, we introduce previous

studies related to our research, covering the early stage of speaker diarization as well as state-of-

the-art diarization systems. In addition to previous studies, we briefly introduce the concepts of

speaker diarization techniques and the evaluation datasets used in our research. Some passages in

Chapter 2 have been quoted verbatim from the paper [78]. In Chapter 3, our proposed methods

used to determine the parameters of the speaker diarization systems are introduced. In Chapter

6



4, we introduce our proposed methods of incorporating speaker turn probability into speaker seg-

mentation and speaker diarization. In Chapter 5, we discuss the experiment setup used to evaluate

our proposed speaker diarization framework along with the experimental results. In Chapter 6,

we show the experimental results of the diarization system we propose in this dissertation. In

Chapter 7, we discuss a few remaining issues that have yet to be resolved regarding the problem

of speaker diarization and areas of future investigation. Finally, in Chapter 8, we discuss how

our research is related to our initial aim and how it has directly or indirectly helped achieve our

goal. Furthermore, we address the limitations of our proposed approaches and areas that can be

improved in the future.
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Chapter 2

Literature Survey and Background

2.1 Brief History of Speaker Diarization

Speaker diarization studies started being investigated and published in the 90’s. Most of the

speaker diarization studies in the 90’s focused on unsupervised speech segmentation and clustering

of audio segments that include speaker change or environmental or background changes [34, 90,

109, 102, 11]. During the early years of speaker diarization technology, Generalized Likelihood

Ratio (GLR) and Bayesian Information Criterion (BIC) based methods were mainly employed as a

way to model speaker characteristics for segmentation and clustering. Moreover, in this era, most

of the speaker diarization works were expected to benefit Automatic Speech Recognition (ASR)

on broadcast news recordings, by adaptively training acoustic models to speaker characteristics.

[102, 31, 33, 32, 56]. These speaker diarization studies contributed to the activities across research

groups around the world, leading to several research consortia and evaluations in the early 2000s

such as organizations such as Augmented Multi-party Interaction (AMI) Consortium [3] supported

by the European Commission and the Rich Transcription Evaluation [69] hosted by the National

Institute of Standards and Technology (NIST), which is still considered as a major contributor

for speech recognition and speaker recognition community. These aforementioned organizations

have made efforts to contribute on speaker diarization research across different domains from

8



Conversational Telephone Speech (CTS) [86, 91, 57, 116, 85, 46] and broadcast news [2, 115,

128, 87, 10, 64, 63] to meeting conversations [4, 82, 1, 43, 44, 6, 53, 5]. The technologies and

new approaches were not limited to modeling of speaker characteristics or speaker clustering but

also include, but not limited to, beamforming [5], Information Bottleneck Clustering (IBC) [123],

Variational Bayesian (VB) approaches [85, 119], Joint Factor Analysis (JFA) [48, 46]. Specifically,

i-vector [21] approach was the most popular method that was applied for speaker verification and

speaker diarization.

After the advent of deep learning in the early 2010s, the speaker diarization field also employed

numerous advanced modeling capabilities of the neural networks trained on large-scale data.

Owing to the superior feature extraction capabilities of deep neural networks (DNNs), many

of DNN based speaker embedding extractor models such as d-vectors [120, 37, 127] or the x-

vectors [106] gained popularity. Compared to i-vector[21, 100, 24, 99] which is based on JFA,

these DNN based embeddings improved the quality of speaker representations and also made

the training process significantly easier with more data [133], and robustness against speaker

variability and challenging acoustic conditions. More recently, End-to-End Neural Diarization

(EEND) was proposed to replace individual sub-modules in the traditional speaker diarization

pipeline with a single neural network model [28, 29]. Although the performance of EEND still

lags behind the state-of-the-art modular speaker diarization systems, End-to-end structure is

expected to open up unprecedented opportunities to address challenges such as joint optimization

or multi-task training schemes.

2.2 Previous Studies on Speaker Modeling

2.2.1 GMM Based Speaker Modeling

The early days of speaker diarization systems were mostly based on relatively simple statistical

models such as Gaussian Mixture Model (GMM) [88, 89] built on acoustic features such as the

9



Figure 2.1: Gaussian mixture model on an acoustic feature space.

Mel-frequency cepstrum coefficients (MFCCs). Fig. 2.1 depicts how a GMM model can be built

on a feature space with a set of mean and variance values. While there are many hypothesis

testing methods for speech segment clustering processes such as greedy BIC [17], GLR [118] and

KL [92] methods, greedy BIC method was the most popular approach. The BIC approach can

numerically gauge how two Gaussian models are close to each other. In general, the BIC approach

is applied to two separate speech segments as follows: Let X = {x1, · · · ,xN} be the sequence of

speech features sampled from the given audio recording and x is drawn from from an independent

multivariate Gaussian process. Then each feature vector xi can be written as follows:

xi ∼ N (µi,Σi) , (2.1)

10



where µi, Σi is the mean and covariance matrix of the i-th feature window. For the two segments

of length N and M , two hypotheses H0 and H1 are established that can be denoted as follows:

H0 : x1 · · ·xN ,xN+1 · · ·xN+M ∼ N(µ,Σ) (2.2)

H1 : x1 · · ·xN ∼ N (µ1,Σ1) (2.3)

x1 · · ·xM ∼ N (µ2,Σ2) (2.4)

Thus, hypothesis H0 models two sample windows with one Gaussian while hypothesis H1 models

two sample windows with two Gaussians. Using the mean and variance values in Eq. (2.2) to

(2.4), BIC equation can be written in the following way:

BIC = N log |Σ| −N1 log |Σ1| −N2 log |Σ2| − λP, (2.5)

where P is the penalty term [17] defined as

P =
1

2

(
d+

1

2
d(d+ 1)

)
logN, (2.6)

and d is the dimension of the feature. The penalty weight λ is generally set to λ = 1. Along with

the BIC approach, agglomerative hierarchical clustering (AHC) was most popularly employed for

clustering, resulting in the speaker homogeneous clusters. This method was refered to as greedy

BIC [17] because the closest segment pairs are repeatedly merged to form speaker homogeneous

clusters. GMM based hypothesis testing method with bottom-up AHC method was popularly used

until i-vector and DNN-based speaker representations dominate the speaker diarization research

scene.
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2.2.2 Joint Factor Analysis and i-vector

Before the concept of speaker representations (e.g., i-vector [21] or x-vector [106]) gained popular-

ity, “Universal Background Model” (UBM) [89] framework was widely used for speaker recognition

tasks by employing a few hundred of mixtures of Gaussians, which requires a large amount of

speech data. The modeling of voice characteristics with GMM-UBM [89] is largely improved by

the concept of JFA [49, 50]. GMM-UBM based hypothesis testing had a problem of Maximum

a Posterior (MAP) adaptation that the modeling is not only affected by speaker-specific char-

acteristics but also other unwanted factors such as channel and background noise. Therefore,

the concept of supervector generated by GMM-UBM method left much room for improvement

in terms of modeling capability. JFA targeted this problem by decomposing a supervector into

speaker independent, speaker dependent, channel dependent and residual components. In Eq.

(2.7), an ideal speaker supervector s is decomposed into multiple factors where m represents

speaker independent component, U represents channel dependent component matrix, and D rep-

resents speaker-dependent residual component matrix. Along with these component matrices,

vector y is for the speaker factors, vector x is for the channel factors and vector z is for the

speaker-specific residual factors. All the vectors in the Eq. (2.7) have a prior distribution of unit

Gaussian.

M(s) = m + Vy + Ux + Dz. (2.7)

The idea of JFA approach is later simplified by employing the concept of “Total Variability”

matrix T which models both the channel and the speaker variability at the sametime. The vector

w which is referred to as the “i-vector” [21]. Therefore, the Eq. (2.7) is simplified as follows:

M = m + Tw. (2.8)
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Figure 2.2: Diagram of d-vector model.
Figure 2.3: Diagram of x-vector embedding
extractor.

In Eq. (2.8), m is the session and channel-independent component of the mean supervector.

Similarly to JFA, w is assumed to follow unit Gaussian distribution and calculated by the MAP

estimation process which is described in [47]. i-vectors had been considered to be the most effective

speaker representations for speaker recognition and speaker diarization before the advent of DNN

based speaker representations.

2.2.3 Neural Network Based Speaker Representations

The advent of neural networks and deep learning largely influenced the field of speaker repre-

sentations learning. Thus, many of the recent speaker diarization systems employed DNN based

speaker representations. The idea of representation learning or embedding learning appeared in

face recognition field [111, 113]. The underlying idea of representation learning is that the neural

network architecture can map the raw input signal source (e.g., image or audio clip) to a dense

floating point vector by feeding the input through multiple non-linear activation layers in a neural

network model. Compared to the JFA approach, the DNN based representations do not require a

hand-crafted design of the intrinsic factors such as factor analysis model. Moreover, DNN based

models do not require an assumption of Gaussianity for the input feature data unlike GMM-

UBM, JFA and i-vector models. Thus, thanks to the advance in artificial neural networks and
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deep learning, the speaker representation learning process has also become more straight-forward

and concise. On top of that, the inference speed is greatly improved compared to the i-vector

approach since DNN based models do not involve a heavy computation such as matrix inversion

in the inference process.

Among many DNN based speaker embedding extractors, d-vector [121] is one of the most well

known early speaker embedding extractor models. d-vector employs stacked filter-bank features

that are fed with context frames as an input feature. In terms of architecture, d-vector model

is based on multiple fully connected layers and trained by cross entropy loss. In inference mode,

the d-vector embedding vector is collected in the last fully connected layer as in Fig. 2.2. The

d-vector model appeared in numerous speaker diarization studies, e.g., , in [127, 133] showing

superior performance over i-vector.

More recently, x-vector [105, 106] was proposed with more advanced architectures that are

solely designed for time series signal. x-vector is based on time-delay neural network (TDNN)

which models long term temporal dependencies better than Recurrent Neural Network (RNN) or

multi-layer perceptron (MLP) based models with context windows. Moreover, x-vector employs

a statistical pooling layer that mitigates the dependency on the utterance length. The statistical

pooling approach is especially advantageous when it comes to speaker diarization since the speaker

diarization systems are bound to process segments that are shorter than the regular window length.

The structure of x-vector model is shown in Fig. 2.3. In terms of speaker representation quality,

x-vector showed a superior performance by winning the NIST speaker recognition challenge [124]

and the first DIHARD challenge [96].
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2.2.4 Distance Measures for Speaker Embeddings

The most basic way to calculate the distance between two speaker embedding vectors is calculating

cosine similarity between two vectors.

cos(θ) =
xA · xB
‖xA‖‖xB‖

(2.9)

Cosine similarity is still used in many of speaker diarization systems with spectral clustering or

mean shift clustering algorithms. Cosine similarity does not require any training or parameter

tuning but at the same time, it does not have any capability to project or weight the embedding

vectors to enhance or refine the similarity measurement.

Another popular distance measurement technique for speaker embedding is Probabilistic Linear

Discriminant Analysis (PLDA). PLDA has been widely used with x-vector or i-vector as a distance

measurement method. PLDA models the given speaker representation φij of the i-th speaker and

j-th session into multiple factors as below:

φij = µ+ Fhi + Gwij + εij . (2.10)

Here, m represents mean vector, F represents speaker variability matrix, G represents channel

variability matrix and ε represents residual component. hi and wij are latent variables for F and

G, respectively. While training a PLDA model, m,Σ,F and G are estimated using expectation

maximization (EM) algorithm where Σ is a covariance matrix. Based on the estimated variability

matrices F and G and the latent variables hi and wij , the distance between two embedding

vectors is calculated by hypothesis testing: hypothesis H0 assumes that two samples are from the
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same speaker and hypothesis H1 assumes that the case that two samples are from two different

speakers. The hypothesis H0 can be written as follows:

 φ1

φ2

 =

 µ

µ

+

 F G 0

F 0 G




h12

w1

w2

+

 ε1

ε2

 . (2.11)

On the other hand, The hypothesis H1 that assumes that the two speaker embedding vectors are

from two different speakers is modeled as the following equation:

 φ1

φ2

 =

 µ

µ

+

 F G 0 0

0 0 F G





h1

w1

h2

w2


+

 ε1

ε2

 . (2.12)

In the above equation, the PLDA model projects the given speaker embedding vector φij onto

the subspace F to co-vary the most and de-emphasize the subspace G which pertains to channel

variability. Using the above hypotheses, we can calculate a log likelihood ratio as the following

equation.

s (φ1, φ2) = log p (φ1, φ2 | H0)− log p (φ1, φ2 | H1) (2.13)

The likelihood ratio value s (φ1, φ2) is usually employed with the AHC method by selecting the

pairs with the biggest likelihood ratio value and merging the pair first. Ideally, stopping criterion

should be s (φ1, φ2)=0, but in practice, the best performing stopping criterion varies over datasets

and speaker embedding extractors. Therefore, the stopping criterion needs to be tuned on a

development set to get the best performance. Setting the adequate stopping criterion is very

crucial to the accuracy of the estimated number of speakers because the clustering process stops
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when the distance between closest pairs reaches the threshold and the number of clusters is

determined by the number of remaining clusters when the clustering process is stopped.
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2.3 Previous Studies on Clustering Algorithms for Speaker

Diarization

Clustering process is essential for the speaker diarization pipeline since the clustering algorithm

finally groups the speech segments into the speaker homogeneous groups. Therefore, clustering

algorithms largely determine the performance of a speaker diarization system. While numerous

clustering algorithms have been proposed for speaker diarization, we review the most widely used

clustering algorithms, AHC and spectral clustering.

2.3.1 Agglomerative Hierarchical Clustering

Figure 2.4: Agglomerative Hierarchical Clustering.

AHC is a clustering algorithm that has been widely used in many speaker diarization systems

[7] with a number of different distance metric such as BIC [17, 36], KL [92] and PLDA [96, 8, 70].

AHC is based on an iterative process of merging the existing clusters of speech segments until the

distance of the closest cluster pair meets a predetermined stopping criterion. The AHC process

starts by calculating the similarity between N singleton clusters. At each step of the iteration,

a pair of clusters that has the highest similarity is merged to form a new cluster. The iterative

merging process of AHC can be described as a dendrogram in Fig. 2.4. One of the most crucial
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aspects of AHC is the stopping criterion. Especially for speaker diarization tasks, the AHC

process can be stopped using either a threshold for similarity or a target number of speakers.

It is a common practice to adjust the stopping criterion to get an accurate number of clusters

based on a development set. On the other hand, if the number of speakers is known or estimated

in advance, the AHC process can be stopped when the number of merged clusters reaches the

predetermined number of speakers.

2.3.2 Spectral Clustering

Spectral Clustering is another popular clustering approach for speaker diarization. Unlike AHC,

spectral clustering is based on the similarity graph and the clustering is done by spectral em-

bedding that is obtained by eigen decomposition of the affinity matrix. While there are many

variations, spectral clustering involves the following steps.

1. Affinity Matrix Creation: In the context of speaker diarization, an affinity matrix con-

tains each and every similarity between speech segment pairs in the given session. There are

numerous ways of generating an affinity matrix A depending on the way the affinity value is

generated and processed. For example, kernel methods were used in [68, 61, 100]. In these

studies, the raw affinity value d is processed by a kernel such as exp
(
−d2/σ2

)
where σ is a

scaling parameter. On the other hand, in the masking method [127], the raw affinity value

d could also be masked by zeroing the affinity values below a threshold to only keep the

prominent affinity values that actually affect the clustering process.

2. Laplacian Matrix Calculation: The graph Laplacian can be calculated in two different

ways [125]: Normalized and unnormalized. The degree matrix D contains diagonal elements

di =
∑n
j=1 aij where aij is the element of the i-th row and j-th column in an affinity matrix

A.
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(a) Normalized Graph Laplacian:

L = D−1/2AD−1/2. (2.14)

(b) Unnormalized Graph Laplacian:

L = D−A. (2.15)

3. Eigen Decomposition: The graph Laplacian matrix L is decomposed into the eigenvector

matrix X and the diagonal matrix that contains eigenvalues. Thus, L = XΛX>.

4. Re-normalization (optional) : the rows of X is normalized so that yij = xij/
(∑

j x
2
ij

)1/2
where xij and yij are the elements of the i-th row and j-th column in matrix X and Y,

respectively.

5. Speaker Counting: Speaker number is estimated by finding the maximum eigengap in

the eigengap vector egap in the following equation.

egap = [λ2 − λ1, λ3 − λ2, · · · , λN − λN−1] (2.16)

We refer to the estimated number of speakers as k in this article.

6. k-means Clustering: The spectral embedding is collected by taking the k-smallest eigen-

values λ1, λ2,..., λn and the corresponding eigenvectors v1, v2,..., vk to make matrix

U ∈ Rm×n where m is dimension of the row vectors in U. Finally, the row vectors u1,

u2,...,un are clustered by k-means algorithm.

There are many variations of spectral clustering methods that are used in the field of speaker

diarization. Among these variations of spectral clustering algorithms, Ng-Jordan-Weiss (NJW)
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Figure 2.5: General steps of spectral clustering.

spectral clustering algorithm [66] is the most widely employed algorithm for speaker diarization.

The NJW algorithm employs a kernel, exp
(
−d2/σ2

)
, where d is a raw distance for calculating

an affinity matrix. The affinity matrix, which can be regarded as a similarity graph, is used for

calculating a normalized graph Laplacian. Moreover, NJW spectral clustering algorithm includes

re-normalization before the k-means clustering process. The speaker diarization system in [68]

used NJW algorithm while choosing σ by using predefined scalar value β and variance values from

the data points. On the other hand, the speaker diarization system in [61] did not use β value

for NJW algorithm. The speaker diarization system in [100], used fixed scalar value σ2 = 0.5 for

NJW algorithm.

Aside from the NJW algorithm, there are a few other types of spectral clustering methods

that were successfully applied to speaker diarization tasks. The speaker diarization system in

[127] used Gaussian blur for processing the affinity values by referring it to as diffusion process,

Y = XXT, and employed row-wise max normalization (Yij = Xij/maxkXik). In the spectral

clustering approach appeared in [55], similarity values that are predicted from a DNN model were
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used. We will discuss the importance of affinity value processing and parameter tuning in spectral

clustering in Chapter 3.

2.4 Previous Study on Using Lexical Information for Speaker

Diarization

Speaker diarization has long been considered a pre-processing procedure for ASR. In the tradi-

tional system structure for speaker diarization, speech inputs are processed sequentially without

considering the ASR objective and thus separately trained and predicted. However, the traditional

stand-alone type of speaker diarization has an issue that the tight boundaries of speech segments

as the outcomes of speaker diarization are very likely to cause unexpected word truncation or

deletion errors in ASR decoding. This is mainly because the unit of speaker diarization is based

on the segments that are created from the speaker diarization module while word boundaries

are generated from the decoder of ASR. In this section, we introduce the previous studies that

employed speaker diarization systems in the context of ASR. These speaker diarization methods

include the speaker diarization systems that are designed to refrain from truncating the word

boundaries by taking the ASR output and process it with speaker diarization result. In addition,

a few studies investigated on the joint modeling of speaker diarization and ASR to simultaneously.

Thus, we will review the previous works that attempted the integration of ASR output or lexical

information into speaker diarization systems.

2.4.1 Early Studies on Using Word Boundary Information

The lexical information from ASR output has been employed for speaker diarization system in

a few different ways. First, the earliest approach was RT03 evaluation [117] which used word

boundary information for segmentation purpose. In [117], a general ASR system for broadcast

news data was built where the basic components are segmentation, speaker clustering, speaker
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adaptation and system combination after ASR decoding from the two subsystems with the differ-

ent adaptation methods. To understand the impact of the word boundary information, they used

ASR outputs to replace the segmentation part and compared the diarization performance of the

each system. In addition, ASR result was also used for refining SAD in IBM’s submission [39] for

RT07 evaluation. The system appeared in [39] incorporates word alignments from speaker inde-

pendent ASR module and refines SAD result to reduce false alarms so that the speaker diarization

system can have better clustering quality. The segmentation system in [103] also takes advantage

of word alignments from ASR. The authors in [103] focused on the word-breakage problem where

the words from ASR output are truncated by segmentation results since segmentation result and

decoded word sequence are not aligned. Therefore, word-breakage (WB) ratio was proposed to

measure the rate of change-points that are detected inside intervals corresponding to words. The

DER and WB were reported together to measure the influence of word truncation problem. While

the fore-mentioned early works of speaker diarization systems that are leveraging ASR output are

focusing on the word alignment information to refine the SAD or segmentation result, the speaker

diarization system in [15] created a dictionary for the phrases that commonly appear in broadcast

news. The phrases in this dictionary provide the identity of who is speaking, who will speak and

who spoke in the broadcast news scenario. For example, “This is [name]” indicates who was the

speaker of the broadcast news section. Although the early speaker diarization studies did not

fully leverage the lexical information to drastically improve DER, the idea of integrating the in-

formation from ASR output has been employed by many studies to refine or improve the speaker

diarization output.

2.4.2 Recent Studies on Using Lexical Information for Diarization

More recently, a few speaker segmentation and diarization studies that take advantage of the

lexical information from ASR by leveraging the turn probability of each word. The speaker change

detection system proposed in [41] employed Long-Short Term Memory (LSTM) to estimate the

23



speaker change point by using i-vector [22] and word sequence together. The speaker change point

detection in [41] should be categorized differently from the systems we introduced in Section 2.4.1

since the early studies only employed word boundaries or phrases that are commonly used while

the method that use sequence of words to leverage the turn probability that can be inferred from

long-term pattern of the multiple words.

The speaker diarization system proposed in [27] employed neural network models to utilize the

linguistic patterns in the training data to improve the speaker diarization outcome. In addition,

The proposed system in [27] targets speaker diarization tasks where participants in the given

dialogue have distinct roles that are already known. To achieve this, a neural text-based speaker

change point detector and a text-based role recognizer are employed to the speaker diarization

system. Thus, the speaker diarization result was improved compared to the conventional acoustic-

only speaker diarization system by employing both linguistic and acoustic information.

In addition, a joint training approach was recently applied to speaker diarization by simulta-

neously training an ASR model with speaker diarization system [98]. To train a joint ASR-SD

model, a speaker tag in the transcription is fed to the end-to-end ASR models in the output

of a recurrent neural network-transducer (RNN-T)-based ASR system. Although the benefit of

jointly trained speaker diarization model over traditional speaker diarization model trained solely

on speaker label, the proposed joint training method in [98] still has a potential to be an approach

to leverage the lexical modality to create an additional benefit for the speaker diarization output.

2.5 Evaluation Datasets

The following datasets are used in the studies appearing in this dissertation.

1. NIST SRE 2000 (LDC2001S97) NIST SRE 2000 has been the most widely used dataset

for speaker diarization in recent studies, and is referred to as CALLHOME. CALLHOME

contains two to seven speakers for each utterance. For the CALLHOME dataset, a 2-fold
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cross validation is conducted to match the test conditions with those in [106, 104] for all

experiments.

2. CALLHOME American English Speech (CHAES) (LDC97S42) CHAES is a corpus

that contains only English speech data and each conversation involves two to four speakers.

CHAES is divided into training (train), development (dev), and evaluation (eval) sets, and

the DER of the eval set is reported. Both the train and dev sets are used for parameter

turning. A subset of CHAES, which contains only two speakers, is referred to as CH109 in the

literature, and the CH109 dataset is tested by providing the number of speakers in advance

to all tested systems. Since CH109 only contains two-speaker conversations, estimation

of number of speakers is not performed for CH109 dataset. The remaining utterances in

CHAES are used as a dev set for CH109.

3. RT03 (LDC2007S10) RT03 is an English telephonic speech dataset. The conversations

in this dataset contain two to four speakers. The evaluations are based on the 14-vs-58 dev

and eval split provided by the authors in [127].

4. AMI meeting corpus The AMI database consists of meeting recordings from multiple

sites. We evaluate our proposed systems on the subset of the AMI corpus, which is a

commonly used evaluation set that has appeared in many of the previous studies, and we

use the splits (train, dev, and eval) appeared in these studies [71, 110, 129].
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Chapter 3

Self-guided Clustering Approaches

3.1 Self-guided Approach for Multistream Diarization Task

In this section, we introduce our earliest clustering method work that targets a self-guided ap-

proach while having two streams of feature inputs: Acoustic feature (MFCCs) and amplitude

(volume level). Specifically, the proposed method in this research [74] focuses on the specific task

of speaker diarization from two information streams where two microphones are assigned to two

speakers of interest. Some figures and formulas in [74] were used in this chapter and some passages

in this chapter have been quoted verbatim from the paper [74].

In real-life scenarios, speakers are oftentimes co-located in the same room or close range in

noisy environments with interfering background speakers. To tackle such speaker diarization tasks,

the proposed multistream diarization system can exploit additional information. We propose

Figure 3.1: Illustration of main speakers co-located with the interfering speakers.
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Minimum Variance of Bayesian Information Criterion (MVBIC) method to combine information

from multiple diarization streams. To show the benefit of the multistream diarization system, we

use a 2-microphoone setting and Root Mean Square Energy (RMSE) and MFCC features as our

two diarization streams to evaluate the proposed self-tuning multistream diarization method.

3.1.1 Diarization Fusion: MVBIC

In this research, we investigate the MVBIC technique that efficiently weights BIC distances accord-

ing to their reliability towards improved clustering accuracy. The concept of minimum variance

optimization has also appeared in the studies from other fields, such as finance [94] or acoustics

[60]. We assume that there is an underlying correct BIC stream that we are observing through a

noisy channel. Thus, the hidden, correct BIC stream will be represented by b and its two observed,

noisy versions by b̃i, where in our case i ∈ [1,M ] and M = 2. Therefore:

b̃i = b+ ni (3.1)

where the above three are all random variables. With the above model (3.1), we want to obtain

the optimal fusion weights that will lead to accurate estimation of the true b value:

b̂ =
M∑
i=1

ωi bi = wTb (3.2)

where i is index of vector representations and M is the number of feature vector representations.

If we consider all Ns speech segments as given data points, we can calculate the sample variance

of b̂ from given Ns segments as below:

V ar
[
b̂
]

= wTΣbw (3.3)
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Here, we make an assumption that the noise random variable ni is mean zero and the two noise

streams are uncorrelated. This assumption mostly holds if the features are exploiting diverse

information as is in the case of MFCC and RMSE. In addition, we also assume that the ran-

dom variable b, which is the hidden and correct BIC value, and noise random variable ni are

uncorrelated. Thus, the M by M covariance matrix Σb in equation (3.3) has elements described

as:

σ2
b,i = σ2 + σ2

n,i

σb,ij = σb,ji = σ2

where i 6= j and i, j ∈ [1,M ]

(3.4)

where σ2
b,i, σ

2 and σ2
n,i are variances of bi, b and ni respectively. Using the above assumptions

and constraining the sum of weights to 1, we can rewrite the variance of b̂ as follows:

V ar[ b̂ ] =

( M∑
i=1

ωi

)2

σ2 +

M∑
i=1

ω2
i σ

2
n,i (3.5)

= σ2 +

M∑
i=1

ω2
i σ

2
n,i. (3.6)

Thus, minimizing variance of b̂, we can also minimize the variance of noise σ2
n,i on the assumption

we make while keeping the σ2 intact. Thus, we can set up a minimization problem as:

Minimize: V ar
[
b̂
]

= wTΣbw

Subject to: wT1 = 1.

(3.7)

The solution to the equation (3.7) would be given as below:

ŵ =
Σ−1b 1

1TΣ−1b 1
(3.8)

With the solution in equation (3.8), we estimate the weight in equation (3.2) to obtain b̂.
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Figure 3.2: Average DER by distances of interfering speakers from primary speakers.

3.1.2 Performance of MVBIC Approach

We verify the performance of the MVBIC method on the simulated data, USCDiarLibri2,4 [74],

and on the real-life recording, RT-06S data. For the individual diarization streams we perform

BIC value based clustering down to 4 clusters. All the experimental results below are tested with

md-eval software in RT06S dataset [26]. The following results are only evaluated for the primary

speakers.

In this experiment described in the Fig.3.2, we evaluate the effect of the distance of the in-

terfering speakers from the microphone locations. For this experiment, we use a rectangular

arrangement for the 4 speakers and generated 20 sessions per distance. We keep the distance

between the two primary speakers fixed (to 5L) and vary the distance a1 and b1, as in Fig. 3.1,

keeping a1 = b1. As Fig.3.2 shows, MVBIC keeps the DER lower than the single feature diariza-

tion methods regardless of the location of the interfering speakers. Furthermore, this experiment

indicates that both features perform worse when interfering speakers are near the primary speak-

ers. Importantly we note that the distance of the interfering speaker greatly influences the relative

accuracy of each diarization stream and hence the weight the stream should hold in case of fusion.

This points further to the need for a dynamic fusion stream, such as MVBIC.

To verify the performance of the proposed MVBIC technique, we randomly assign the distance

between all sources to be between 2 and 20 times L, as in Fig.3.1 and generate 50 sessions.
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Figure 3.3: Plot of the estimated weights (×) layered on the results by each weight for the first
20 sessions.

Figure 3.4: Average DER by fixed weights and estimated weights from MVBIC for generated
dataset

Using this test dataset, the performance of the proposed MVBIC method is compared with fixed

BIC weights. In Fig. 3.3 the x-axis represents w, the weight of the RMSE stream as follows:

wT = [wRMSE, wMFCC] = [w, 1−w]. We use w = [0, 0.1, . . . , 1.0]. The DER results are visualized

for each session and each weight in Fig. 3.3. Note that to keep the figures readable, only the

first 20 sessions are depicted. The “×” marks in Fig. 3.3 describes BIC weights that MVBIC

technique estimated for each session. We can see that the choice of w can play a significant role

in the DER for each session. We also observe that the estimated weights by proposed MVBIC,
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Figure 3.5: Plot of the estimated weights (×) layered on the results by each weight for the subset
of RT06S dataset. Indexes h1-h4 refer to index of microphones.

marked “×”, are mostly tracking the minima of DER (whitest regions of each row). This outcome

indicates that MVBIC can estimate the values of the fusion vector w from given BIC streams that

result in near optimum fusion DER. In Fig. 3.4, the DER results are shown for 50 sessions. The

DER averages are plotted for the 50 for the different values of w as above. The last bar shows

the result with the average DER based on the proposed MVBIC method.

By optimizing on the test set a fixed w we can see that we can obtain significant benefits over

individual streams (w = 0 or w = 1) or equal weights (w = 0.5). The best performing value in

this case would be wT =[0.3, 0.7]. However such optimization is not possible as the test data

are not available at training time, but only serves as an upper bound for the static w fusion.

The MVBIC method in contrast, even without optimization on the test data, can outperform any

static fusion weight w as we can see from the last bar. This result points out that if the data is of

high variability or mismatched to the training and development data, the proposed MVBIC can

perform significantly better than a static, pre-tuned weight.
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Figure 3.6: Average DER by grid-searched weights and esimated weights from MVBIC for subset
of RT06S dataset

3.1.3 Evaluation on Real-life Data: RT06S

We test the performance of the proposed MVBIC system with individual head microphones for

each session in RT06S dataset [26], which is real-life recording. We pick three meetings (EDI1:

EDI 20050216-1051, EDI2: EDI 20050218-0900, TNO: TNO 20041103-1130) which have the same

number of total speakers in USCDiarLibri2,4. Among the four speakers in each meeting, two

speakers are regarded as primary speakers and the rest of two speakers are regarded as interfering

speakers. Thus, total 6 (4C2) microphone combinations are tested for each of the three meetings.

Fig. 3.5 shows the same type of visualization as Fig. 3.3. We see that the MVBIC method

does not pick as good candidates as we would expect. We also see that there seem to be multiple

minima in the DER vs w space. This is likely due to the longer length of the sessions and

the varying acoustic conditions. Since we only find one w using MVBIC per session, this is

suboptimal. Fig. 3.6 shows the result for RT06S dataset in the same format as 3.4. The proposed

method shows 46.5% of DER while the most accurate fixed weight result showed 41.5% of DER.

Again we observe that the MVBIC method approaches the optimize-on-test-set performance of

the static weight. Despite the highly mismatched conditions of this experiment, i.e. assuming

stationary environment throughout the length of the session, which is false, and obtaining a

single MVBIC weight w per session, and the higher-quality head-worn microphones, we still see

significant benefits in using MVBIC.

32



In summary, we introduced a new simulated dataset USCDiarLibri for evaluating Diarization

algorithms that enables tunable task difficulty and conditions. We described and employed a

subset of the proposed dataset. More importantly, we introduced a MVBIC method to estimate

the fusion weights among multiple diarization streams. The proposed technique does not require

any tuning data to determine the weights while it closely estimates the ideal weights, optimally

according to the minimum variance criterion. This has significant benefits in real-world envi-

ronments where the recording conditions are highly variable and heterogeneous. Moreover, the

proposed method allows to exploit any available diarization stream dynamically, i.e., increasing

the fusion information streams if appropriate.
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3.2 Auto-tuning Clustering Method

Spectral clustering has been widely adopted in numerous speaker diarization studies [68, 61,

100, 101, 127, 55], and is a graph-based clustering technique that applies an affinity matrix,

each element of which is the distance between a pair of speaker embeddings. Throughout the

Laplacian matrix computations, the affinity matrix is converted into spectral embeddings, which

are clustered using the k-means algorithm [58]. Despite its popularity, spectral clustering has a

limitation in that its performance is sensitive to the quality of the affinity matrix. Owing to the

noisy nature of the speaker embeddings and distance metrics, it is highly likely for some elements

of the affinity matrix to possess noisy signals that can degenerate the clustering process. To

tackle this issue, the spectral clustering algorithms applied in recent studies have employed either

a scaling parameter [68, 100, 61] or a row-wise thresholding parameter [127] to place different

weights across the elements in the affinity matrix. The downside of these approaches is that

those parameters for either scaling or thresholding need to be optimized on a development set

to obtain the maximize the performance. The burden of such hyper-parameter tuning during

spectral clustering makes it more difficult to achieve a generalization of the clustering algorithm

in an unseen testing environment.

In this section, we introduce a novel spectral clustering framework we proposed in [77]. Some

figures, formulas and passages have been reused from [77]. The auto-tuning spectral clustering

method is designed for self-tuning the clustering parameters that avoids the need for a hyper-

parameter tuning when applying a development dataset. In this section, our proposed autotuing

spectral clustering is compared with a well-known spectral clustering approach [67] described

in a number of speaker diarization studies [68, 100, 61], and an AHC approach coupled with a

PLDA [42, 84], which has also appeared in recent studies [30, 96, 104]. In addition, the performance

of the development-set-optimized version of the proposed spectral clustering method was also

tested to verify the benefit of our auto-tuning approach. The experimental results reveal that
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the proposed auto-tuning approach achieves a comparable or even better performance than other

widely used clustering algorithms with an optimized development set.

3.2.1 Traditional Spectral Clustering Algorithm

Spectral clustering is a graph-based clustering technique based on an affinity matrix and its

eigenvalues. The affinity matrix is a similarity matrix for a given set of data points, where each

element is determined based on the distance between a pair of data points in a given input.

This algorithm has been widely used in a wide range of fields, such as image segmentation [132],

multi-type relational data [59], and speaker diarization [68, 61, 100, 101, 127, 55], owing to its

simple implementation and decent performance. Among the many variants of spectral clustering

algorithms, the Ng-Jordan-Weiss (NJW) algorithm [67] has been the most widely used for speaker

diarization tasks. The NJW algorithm consists of three steps, namely, the creation of an affinity

matrix, Laplacian matrix computations, and k-means clustering [58]. The NJW algorithm employs

a kernel method to form an affinity matrix. The similarity measure, which we refer to as d(wi,wj),

between two speaker embeddings from two speech segments is obtained through the following

cosine similarity measure:

d(wi,wj) =
wi ·wj

‖wi‖ ‖wj‖
. (3.9)

Each entry in affinity matrix A is defined as follows:

aij =


exp
( (−d(wi,wj)

2

σ2

)
if i 6= j

0 if i = j,

(3.10)

where σ is a scaling factor requiring tuning, and A can be considered an undirected graph

G=(V,E). In this graph G, V represents the vertices (rows and columns in A) and E represents
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undirected edges (elements in A). In the NJW algorithm, this affinity matrix A is normalized

with the diagonal matrix D as follows:

L = D−
1
2 AD−

1
2 , (3.11)

where D = diag{d1, d2, ..., dN} and N indicates the number of dimensions of A.

While the NJW algorithm has been widely employed for numerous applications, the NJW

algorithm has inherent limitations in the context of speaker diarization. The similarity values we

obtain from the distance measurements of a speaker's voice, for example, the cosine similarity

described in (3.9), and used for an affinity matrix are merely estimated distant measurements and

are dependent on how representative the speaker embeddings are in terms of speaker's particular

voice characteristics. Thus, it is likely for some entries in the affinity matrix to have noisy signals

that may degenerate the clustering process later during the process. Thus, without having a

proper scheme to mitigate the effects of such inaccurate information from the affinity matrix,

noisy similarity values could lead to a poor clustering result.

To deal with the above issue, there have been a number of schemes proposed in the literature

that place different weights across the elements in the affinity matrix. In previous studies, only

those entries in each row of the affinity matrix within the p-percentile are chosen [127], or scaling

factors are used to control the weights of each element of the affinity matrix [68, 100]. The

downside of such approaches is that the parameters for either thresholding or scaling need to be

tuned using a development dataset, which can lead to a dependency of the clustering performance

when selecting the development data. However. requiring such hyper-parameter tuning will

become a burden in generalizing the clustering algorithm under unseen testing conditions. Thus,

our proposed auto-tuning method addresses the problem of tuning the parameter without relying

on additional development dataset. Our auto-tuning method is based on normalized Maximum

Eigengap (NME) analysis and the following chapter describes the NME analysis in detail.
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3.2.2 Normalized Maximum Eigengap Analysis

The following is an itemized description of the applied procedure:

1) Affinity Matrix: Unlike with the NJW algorithm, the affinity matrix A in the proposed

framework is formed using raw cosine similarity values in (3.9) without applying a kernel or

scaling parameter. From all N speech segments in the given input utterance, we obtain N2

similarity values as described below:

aij = d(wi,wj), (3.12)

where i and j are indexes of the speech segments.

2) p-Neighbor Binarization: The cosine similarity values in the affinity matrix A are binarized

as either 0 or 1 to mitigate the effect of unreliable similarity values. This can be achieved by

converting the p largest similarity values in each row into 1 while zeroing out the remaining

values. In addition, p is an integer, and is determined based on the NME analysis described

later.

Ap = binarize(A, p) (3.13)

3) Symmetrization: To transform the affinity matrix Ap into an undirected adjacency matrix

from a graph theory perspective, we apply symmetrization by taking the average of the

original and transposed versions of Ap as follows:

Āp =
1

2
(Ap + AT

p ). (3.14)
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4) Laplacian: For a graph Laplacian, we use the unnormalized graph Laplacian matrix [125]

as follows:

di =
N∑
k=1

aik

Dp = diag{d1, d2, ..., dN}

Lp = Dp − Āp,

(3.15)

where N is the size of the matrix Āp ∈ RN×N in (3.14).

5) Eigenvalue Decomposition (EVD): Apply an EVD to obtain eigenvalues for the Laplacian

matrix Lp:

Lp = VpΛpV
−1
p . (3.16)

6) Eigengap Vector: Create an eigengap vector ep using the eigenvalues from Λp in (3.16) as

follows:

ep = [λp,2 − λp,1, λp,3 − λp,2, · · · , λp,N − λp,N−1], (3.17)

where λp,i is the i-th sorted eigenvalue in ascending order, given p for the binarization

process in step 2).

7) Normalized Maximum Eigengap (NME): To compare the size of the maximum eigengap,

max(ep), over different p values, we normalize max(ep) based on the maximum eigenvalue

λp,N to obtain the relative size of max(ep) compared to the scale of the eigenvalues. Thus,

the NME value gp for the given p is defined as follows:

gp =
max(ep)

λp,N + ε
, (3.18)
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where λp,N = max(Λp) and ε is an extremely small value (ε=1 × 10−10). We obtain the

ratio r(p) between the pruning threshold p for the row-wise binarization and the NME value

gp as follows:

r(p) =
p

gp
. (3.19)

8) Estimation of p, p̂: The value rp is calculated throughout every p ∈ N ∩ [1, P ] and is stored

in the list r as described below:

r = [r(1), r(2), · · · , r(P )]. (3.20)

We find the index of r(p) that is the minimum value in r and name the index as p̂. Conse-

quently, the parameter p̂ attempts to minimize the DER:

p̂ = argmin(r). (3.21)

With this p̂, we estimate the number of clusters k:

k = argmax(ep̂). (3.22)

9) Spectral Embedding: We take the smallest k eigenvalues and their corresponding eigenvec-

tors to obtain the matrix of k-dimensional spectral embeddings S ∈ Rk×N :

S = Vp̂[1, N ; 1, k]T = [s1, s2, ..., sN ]. (3.23)

10) k-means Clustering: We use the k-means clustering algorithm [58] to obtain k clusters from

S.
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Figure 3.7: An example plot showing the relationship between the NME value of (a) gp versus
p, (b) p/gp versus p, and (c) DER versus p. This example is from the utterance iacg in the
CALLHOME dataset.

Since our approach for pruning the graph connections of the affinity matrix based on the p-neighbor

binarization scheme is heavily dependent on the value of p, an in-depth analysis is required for the

relationship between the NME value gp and the pruning parameter p. In the previous study [125],

it has been discovered that the size of the eigengap can be used as a quality criterion for a spectral

clustering. More specifically, the relationship between the size of the eigengap and the purity of

the clusters was investigated in [125, 107] using the perturbation theory and the Davis-Kahan

theorem. In this context, We use the NME value gp to gauge the purity of the clusters because

such purity is directly linked to the speaker diarization performance. In so doing, we search for the

most probable k and the most adequate p together using the eigenvalues. The most important part

of the NME analysis is the relationship between p and gp. Having a higher p value in an affinity

matrix A generally leads to a larger gp value with a higher purity measure of the clusters because

the graph obtains more connections within each cluster. However, these binarized connections

should be added with consideration on the accuracy of the estimation of the number of clusters

because the binarization process makes all connections have an equal weight of 1, an excessive

number of connections (i.e., a high p value) gives rise to a poor estimation of the number of

clusters followed by a poor diarization result, although it gives a high gp value. The worst case
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can be easily understood by thinking of an affinity matrix whose elements are all equal to 1, which

will always yield only a single cluster regardless of the actual number of clusters. As shown in

Fig. 5.5=(a), we can see a gradual increase in gp as p increases, whereas this tendency stops at

approximately p = 50. As we increase p even more from p = 50, the estimated number of clusters

drops and gp increases again, meaning that we obtain a higher gp value with a smaller estimated

number of clusters.

To take advantage of the aforementioned trend, we focus on r(p) = p/gp value. The p value

should be minimized to obtain an accurate number of clusters, whereas the gp value should be

maximized to obtain a higher purity of clusters. Thus, we calculate the ratio r(p) = p/gp to find

the best p value by obtaining a p value in proportion to gp. It is clearly shown in Fig. 5.5(b)

and Fig. 5.5-(c) that the ratio of p to gp, r(p) follows the trend of DER. As described in (3.19),

r(p) indicates the slope in the p versus gp plot. The lowest r(p) value indicates that the resulting

clusters have the highest purity measure gp in proportion to p. In Fig. 5.5, the solid vertical lines

indicate the estimated point of the lowest DER, whereas the dotted vertical lines show where the

actual DER is the lowest value.

3.2.3 Experimental Results

To test the contributing performance of the clustering algorithms, we use the same speaker embed-

ding extractor proposed in [106, 104] for all experiments described in this study. The evaluation

method and metrics follow the approach described in [26]. The estimated number of speakers is

limited to a maximum of eight speakers for all experiments. We test the following five different

clustering algorithms:

1. COS+NJW-SC: This setup is the NJW algorithm from [67], which incorporates a cosine

similarity measurement. The number of clusters is estimated using the method in [68].
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Table 3.1: Experimental results using Oracle SAD

COS+NJW-SC COS+AHC PLDA+AHC COS+B-SC COS+NME-SC
Oracle SAD Spk. Err. (DER) Spk. Err. (DER) Spk. Err. (DER) Spk. Err. (DER) Spk. Err. (DER)

CALLHOME 24.05 21.13 8.39 8.78 7.29
CHAES-eval 30.31 31.99 24.27 4.4 2.48

CH109 13.06 29.8 9.72 2.25 2.63
RT03 6.56 5.66 1.73 0.88 2.21

Table 3.2: Experimental results with the system SAD

COS+NJW-SC COS+AHC PLDA+AHC COS+B-SC COS+NME-SC
System SAD DER Spk. Err. DER Spk. Err. DER Spk. Err. DER Spk. Err. DER Spk. Err.

CALLHOME 26.99 20.67 20.14 13.82 12.96 6.64 13.23 6.91 11.73 5.41
CHAES-eval 12.04 7.73 9.96 5.85 5.52 1.45 5.07 1.00 5.04 0.97

CH109 5.85 1.56 28.92 24.63 6.89 2.6 5.75 1.46 5.61 1.32
RT03 6.42 3.88 6.24 4.7 3.53 0.99 3.1 0.56 3.13 0.59

2. COS+AHC: This setup is identical to the setup in [106, 104], which uses the AHC algorithm;

however, we use the cosine similarity instead of the PLDA for this setup.

3. PLDA+AHC: This setup, which is identical to [106, 104], is the AHC algorithm coupled

with the PLDA. The stopping criterion of the AHC was grid-searched on each development

set. We used the PLDA model from [104], and the mean vector and transform matrix for

whitening were obtained from each development set.

4. COS+B-SC: This is the proposed spectral clustering framework using the p-neighbor bina-

rization scheme, without the NME-based auto-tuning approach. i.e., p is optimized on each

development set instead of applying p̂ from (3.21).

5. COS+NME-SC: This is the proposed NME-based clustering algorithm, which includes the

proposed auto-tuning approach. No hyper-parameter tuning or optimization is applied. For

each utterance, bN4 c of p values are searched by setting the P value in Algorithm 1 to bN4 c,

where N is the number of total segments in a given input utterance. This search process

requires P operations of the EVD, incurring a complexity of O(PN3).

Table 3.1 shows the experimental results when using Oracle SAD. Note that, except for the

RT03 dataset, NME-SC shows a competitive performance with no parameter tuning at all. The

DER of NME-SC is impressive, particularly for the CALLHOME dataset, where each utterance
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has a varying number of speakers, and the proposed auto-tuning approach gains numerous advan-

tages. Table 3.2 shows the experimental results for the system SAD. We used the ASpIRE SAD

model [83], which is publicly available. With the system SAD setting, which is closer to scenarios

found in a real-world environment, NME-SC outperforms all other methods except for RT03,

where it shows an extremely close performance to the dev-set-optimized COS+B-SC method.

The performance gain from NJW-SC to B-SC indicates that the p-neighbor binarization scheme

applying an unnormalized Laplacian approach can be effective because it demonstrates an ex-

tremely distinctive performance. More importantly, the performance gain from B-SC to NME-SC

shows that the value of p can be effectively auto-tuned even without optimization on a develop-

ment set. We also found a performance improvement of NME-SC over PLDA+AHC, indicating

that the proposed clustering scheme can still obtain a competitive speaker diarization result with-

out employing PLDA as a distance measure, all of which validate the effectiveness of the proposed

auto-tuning spectral clustering framework using an NME analysis.

To summarize, a new framework for spectral clustering with auto-tuning was introduced in

this research. The experimental results show that the proposed NME-based spectral clustering

method is competitive in terms of performance, while not requiring any hyper-parameter tuning.

Promisingly, the proposed method outperforms the widely used AHC method applying a PLDA.

We will show how the auto-tuning approach can be exploited for multimodal speaker diarization

in the later chapters.
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3.3 Multi-scale Speaker Diarization

In general, the speaker diarization pipeline consists of speech activity detection (SAD), segmen-

tation, speaker representation extraction, and clustering. The segmentation process largely de-

termines the accuracy of the final speaker label because the segmentation determines the unit of

diarization output that cannot be altered during the clustering process. In terms of segmentation,

a speaker representation faces an inevitable trade-off between the temporal accuracy and speaker

representation quality. It has been shown in many previous studies that the speaker representa-

tion accuracy improves as the segment length increases [105]. However, specifically in the context

of speaker diarization, a longer segmentation means a lower resolution in the temporal domain

because a segment is the unit of the process that determines the speaker identity.

In the early days of speaker diarization, the clustering process was BIC [17], which employs

MFCCs as a form of representation for speaker traits. With BIC-based clustering and MFCCs,

speech segmentation techniques [102] with a variable segmentation length have been employed

because the benefit of having a proper segment length for input speech outweighs the performance

degradation from variable segment lengths. This trend has changed with the increase in newer

speaker representation techniques, such as i-vector [101, 95] and x-vector [106, 96], where fixing

the length of the segments improves the speaker representation quality and reduces additional

variability. For this reason, many previous studies have made a point of compromise at 1.0 [97] to

1.5 s [96, 52] depending on the domains they target. However, a fixed segment length has inherent

limitations in terms of the temporal resolution because the clustering output can never be finer

than the predetermined segment duration.

In this chapter, we introduce the method that we proposed in [80] which is our proposed

multi-scale approach that addresses the problem arising from such a trade-off and applies a new

segmentation approach. We notify that some passages, formulas and figures in this chapter

have been reused from [80]. The proposed method employs a multi-scale diarization solution
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Figure 3.8: Trade-off curve between fidelity of speaker representations and temporal resolution.

where affinity scores from multiple scales of segmentation are fused using a neural score fusion

system. The graph in Fig. 3.8 shows the trade-off between segment length and fidelity of speaker

representations from two segments. Our goal is for our system to be located on the graph above

the trade-off curve with a higher temporal resolution while at the same time achieving a superior

accuracy of the affinity measure. We categorize the multi-scale approach as one of the self-guided

clustering approaches since it instantaneously determines the weights between the given scales

without manually setting up the proper segment length for each input. However, this does not

indicate that the multi-scale speaker diarization approach we propose is an unsupervised method.

There have been few studies related to the problem discussed herein. In terms of speaker

embedding extraction, few studies have employed a multi-scale concept for speaker embedding

[45, 114] in the pursuit of processing short utterance lengths. These studies apply multi-scale

aggregation [45] or multilevel pooling [114] in the feature level in the neural network models.

Because the proposed neural network model does not generate speaker embeddings, feature-level

multi-scale approaches are far from our focus.

By contrast, there are a few studies in which diarization systems aggregate the output of mul-

tiple modules. In [40], the authors employed a majority voting scheme on multiple segmentation

streams. In [13], the authors introduced a cluster matching procedure that can integrate multiple

diarization systems. In addition, in [108], a diarization output voting error reduction (DOVER)

was presented for improving the diarization of a meeting speech. These previous studies deal with
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either a feature-level multi-scale concept of a neural network [45, 114] or a diarization system

integration [40, 13, 108], whereas the proposed method focuses on the score fusion of multi-scale

speech segments.

Our proposed multi-scale approach has the following novelties. First, unlike conventional

varying-length speech segmentation or single-scale segmentation modules, our system employs

multiple discrete segment lengths and proposes a method to integrate the given scales. Second, the

proposed method can attentively weigh the affinity from multiple scales depending on the domain

and characteristics of the given speech signal. This distinguishes our work from approaches that

require fusion parameters to be manually tuned on a development set. [72, 130]. In addition to

these novelties, the proposed multi-scale approach outperforms a single-scale diarization system

and achieves a state-of-the-art performance on the CALLHOME diarization dataset.

3.3.1 Motivation of the Multi-scale Speaker Diarization System

Fig. 3.9 shows a block diagram of the proposed method as opposed to the conventional speaker

diarization pipeline. For the embedding extractor, we employ an x-vector in [106, 104]. We

replace the segmentation process with a multi-scale segmentation process followed by a neural

affinity score fusion (NASF) system, which will be described in the following sections. The NASF

module outputs an affinity matrix similar to that in a conventional speaker diarization framework.

In the proposed diarization, we employ the clustering method presented in [77].

Our proposed segmentation scheme for each scale is based on the segmentation scheme that

appeared in a previous study [96, 104]. Fig. 3.10 shows how the proposed multi-scale segmentation

scheme works. Although many different scale lengths and numbers of scales can be adopted, we

employ three different segment lengths: 1.5, 1.0, and 0.5 s. The hop-length is half the segment

length, which is 0.75, 0.5, and 0.25 s, respectively. In addition, the minimum segment length of

each scale is set to 0.5, 0.25, and 0.17 s, respectively.

46



Figure 3.9: Comparison of multi-scale segmentation scheme to the traditional speaker diarization
pipeline.

Figure 3.10: Example of multi-scale segmentation and mapping scheme.

We refer to the finest scale, 0.5 s, as the base scale because the unit of clustering and labeling

is determined by base scale. For each base scale segment, we select and group the segments from

the lower temporal resolution scales (1.0 s and 1.5 s) whose centers are the closest to the center

of the base scale segment. This mapping is shown by the red bounding boxes in Fig. 3.10. By

selecting the segments as in Fig. 3.10, the clustering results are generated based on the base scale

segments, whereas measuring the affinity for the clustering process is achieved using the distance

obtained from all three scales.

3.3.2 Neural Affinity Score Fusion Model

For the speaker diarization task, learning an affinity fusion model is not a straightforward down-

stream task unlike training speaker embedding from speaker labels because the diarization output

is obtained through a clustering (unsupervised learning) approach. Thus, we derived an indirect
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Figure 3.11: Example of training data label generation.

method that can learn a model for estimating the desirable weights for the affinity scores from

multiple scales.

To represent the ground-truth composition of the speakers in the given segments, we employ

a concept of a speaker label vector based on the duration of each speaker. The dimensions of the

speaker label vector are determined based on the total number of speakers in a session. Fig. 3.11

shows an example of how we create labels of training data. Let segments A and B be a pair of

segments for which we want to obtain an affinity score label. In Fig. 3.11, the speaker label vector

vA obtains values of (0, 0.5) and (0.5, 0.25) from the duration of the speaker labels from segments

A and B, respectively. Since the speaker label vectors are always positive, the ground truth cosine

distance value ranges from zero to one. To match the range, the cosine similarity value from the

speaker embeddings are min-max normalized to the (0, 1) scale. In total, for L segments in the

given session, we obtain LC2 ground truth affinity score labels, which were created for the base

scale that has a segment length of 0.5 s.

To tackle the affinity weighting task, we employ a neural network model optimized using the

Mean Square Error (MSE) between the ground truth cosine similarity d and weighted cosine

similarity value y. We expect the estimated weight to minimize the gap between the ideal cosine

similarity and the weighted sum of the given cosine similarity values (c1, c2, c3). To achieve this,

we employ an architecture similar to that of a Siamese network [51], which shares the weights of

the networks to process the two different streams of information. Thus, we build a neural network
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model that can capture the non-linear relationship between a set of affinity weights and a pair of

speaker representations by setting up a pair of cloned neural networks.

Fig. 3.12 shows the architecture of the proposed affinity score fusion network. After the

multi-scale segmentation process, speaker embeddings for each scale are extracted for the three

segment scales. The set of embeddings (segment set A) are then processed using three parallel

multi-layer perceptrons (MLPs) and the output of the MLPs is merged to form an embedding

from all three scales. The forward propagation of the input layer to the merging layer is also

applied to another set of segments (segment set B) to obtain a merged embedding for this set.

After forward propagation of two streams of input, the difference between two merged embeddings

are passed to the shared linear layer, which outputs the softmax values. We then take the mean

of the softmax values from N input pairs.

w =

(
1

N

N∑
n=1

w1,n,
1

N

N∑
n=1

w2,n,
1

N

N∑
n=1

w3,n

)
(3.24)

The set of averaged softmax values w = (w̄1, w̄2, w̄3) weights the cosine similarity values, c =

(c1, c2, c3), which are calculated using the speaker representations to obtain the weighted cosine

similarity value as follows:

yn =

3∑
i=1

ω̄ici,n = wT cn, (3.25)

where yn is the output of the affinity weight network for the n-th pair out of N pairs. Finally,

the MSE loss is calculated using the ground truth cosine similarity value d as follows:

L(y,d) =
1

N

N∑
n=1

(yn − dn)2, (3.26)

where dn is the n-th ground-truth cosine score for the n-th pair of segments. In inference mode,

we also take the mean of N sets of softmax values to obtain a weight vector w.
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Figure 3.12: Neural multi-scale score fusion model

The NASF model estimates a weight vector w for each input session (an independent audio clip

under a real-world scenario). For inference of the affinity weight, we randomly select N=5 · 105

samples out of LC2 pairs per session, which has L base scale segments, and weigh the given

affinity matrices as indicated in Fig. 3.13. The weighted affinity matrix is then passed to the

clustering module. In our previous study about auto-tuning clustering in the previous section,

we showed that the cosine similarity when applying the NME-SC method can outperform that of

the prevailing clustering approaches, such as a PLDA coupled with AHC. Thus, we employ cosine

similarity and NME-SC method to verify the efficacy of the proposed multi-scale affinity weight

model by showing the additional improvement from the results in [77]. In addition, we compare

the performance with systems based on single-scale segmentation methods.

3.3.3 Experimental Results

For the training of the proposed neural network model, we use the CHAES- and AMI-train splits.

We also apply the CHAES-dev and AMI-dev sets to tune the hyper-parameters of the network.

We use MLPs with 2 hidden layers and 128 nodes and apply the Adam optimizer with a learning
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Figure 3.13: Example of weighted sum of affinity matrices

Table 3.3: Experimental results of baselines and the proposed methods

# of PLDA+AHC Previous COS+NME-SC Multi-scale COS+NME-SC
Dataset Sessions 0.5s 1.0s 1.5s Studies 0.5s 1.0s 1.5s EW 1 NASF-D NASF-S

AMI 12 38.42 20.07 10.55 8.92 [71] 26.96 9.82 3.37 6.51 3.89 3.32
CHAES-eval 20 4.58 3.15 3.28 2.48 [77] 8.71 3.35 2.48 2.52 2.47 2.04
CALLHOME 500 17.89 9.13 8.39 6.63 [54] 20.96 7.81 7.29 6.64 7.02 6.46

rate of 0.001. In this experiment, all systems employ a speaker embedding extractor (x-vector)

that appeared in [106, 104]. The following baselines are for the distance measure and clustering

method.

1. PLDA+AHC This approach is based on the AHC algorithm coupled with the PLDA as it

appeared in [106, 104]. The stopping criterion of the AHC was selected based on a grid-

search for each development set. We use the PLDA model provided in [104].

2. COS+NME-SC As stated in [77], NME-SC does not require a development set to tune

the clustering algorithm. We use the same set of segments and speaker embeddings as

PLDA+AHC but replace the distance measure with NASF from three different scales and

replace the clustering algorithm with NME-SC. In this study, we do not evaluate combina-

tions such as PLDA+NME-SC or COS+AHC because such combinations of algorithms have

under-performed PLDA+AHC and COS+NME-SC in our previous experiments in [79].
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• Equal Weight: This system is evaluated to show the efficacy of the NASF method over naive

cosine similarity averaging. An equal weight system does not use any inference and applies

equal affinity weights ( 1
3 ,

1
3 ,

1
3 ) for all sessions in all datasets.

• NASF-D: This system divides the input session into three equal-length sub-sessions and esti-

mates six different affinity weight vectors (w) for the six different affinity matrices (3! = 6),

which are intra-sub-session (three sessions) and inter-sub-session (three sessions) affinity ma-

trices. Finally, we calculate the weighted sum of these matrices and join the affinity matrices

to cluster the integrated matrix as a single affinity matrix.

• NASF-S: This system estimates a set of affinity weights for an entire session. Thus, we have

one affinity weight vector w for each session, and the entire affinity matrix is weighted using

this single weight vector.

To gauge the performance of speaker diarization accuracy, we use oracle SAD output that

excludes the effect of SAD module. For all evaluations and datasets, we estimate the number of

speakers in the given session without additional information about speaker numbers. We employ

an evaluation scheme and software that appeared in [26] to calculate Diarization Error Rate

(DER).

We compare the DER obtained from the proposed method with the DER values obtained from

each segment scale. Table 3.3 shows the DER from numerous settings and datasets. We show

the DER values of the PLDA+AHC approach for three different segment scales (1.5, 1.0, and 0.5

s) and how the performance of the diarization changes with the distance measure and clustering

method. We also list the lowest DER value that we could find that has appeared in a published

paper on speaker diarization [71, 54], including the CHAES-eval results of our previous study [77].

Most importantly, we compare the COS+NME-SC methods with segment lengths of 0.5, 1.0,

and 1.5 s with the proposed method. The best performing system, NASF-S, obtains relative im-

provements with error rates of 1.5%, 17.3%, and 11.4% for AMI, CHAES-eval, and CALLHOME,
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Figure 3.14: Plot of affinity weights by datasets.

respectively, over the 1.5-s COS+NME-SC baseline. For the AMI corpus, the improvement was

minor whereas the CALLHOME and CHAES-eval sets showed a significant improvement given

that the DER result from COS-NME-SC with 1.5-s segments is already competitive compared to

the results appearing in previous published studies. In Fig. 3.14, we show the ranges and averages

of the estimated weights over the sessions in each dataset. We can see that only the CALLHOME

dataset shows a range that includes equal weight within the weight range for 1.0-s segments,

whereas the weight ranges from AMI and CHAES-eval show no overlap with an equal weight. We

conjecture that this is related to the result in which an equal weight shows an improvement for

only CALLHOME.

From the experiment results, we can obtain a few valuable insights. The equal weight exper-

iment gives conflicting results for AMI and CALLHOME. Nevertheless, from the equal weight

experiment, we can verify that the desirable affinity weight cannot be simply found by averaging

it and that the NASF approach can be a solution for estimating the desirable weights. The dif-

ference in performance gains between AMI and CALLHOME also shows the characteristics of a

multi-scale approach. Because the longest segment we employ in our system is 1.5 s, we can argue
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that the DER reduction comes from the higher resolution of the segments. This becomes clear

if we compare the proposed method with the DER we obtain from 0.5-s segments. However, the

gain from the proposed method was not that significant with the AMI corpus. We speculate that

this is caused by the characteristics of the dataset because the average length of the continuous

speaker homogeneous region in the AMI corpus is 2.56 s, whereas the lengths for CALLHOME

and CHAES are 2.17 and 2.07 s, respectively. In this sense, we can argue that the CALLHOME

and CHAES datasets are more likely to benefit from the proposed multi-scale diarization approach

because a higher resolution can capture shorter speaker homogeneous regions. Another important

finding obtained from this study is that varying the affinity weights in a session (i.e., a diarization

session that is being clustered) does not lead to a good performance. Having a constant affinity

weight in a single affinity matrix leads to a better performance, as we can see from the NASF-S

outperforming NASF-D. In summary, the proposed neural network model, NASF module, esti-

mates a set of weights that minimizes the gap between the weighted sum of the cosine affinity and

the ground-truth affinity between a pair of segments. The proposed NASF system has a temporal

resolution of 0.5 s and improves the diarization performance over conventional single-scale sys-

tems, achieving state-of-the-art performance on the CALLHOME dataset. In the later chapters,

we will show how the multi-scale approach can benefit the multimodal speaker diarization system

we propose in this dissertation.
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Chapter 4

Lexical Modality for Speaker Diarization

4.1 Multimodal Speaker Segmentation and Diarization

While aforementioned methods show promising performance for speaker segmentation problems,

very few studies have been published regarding the use of lexical information for the segmentation

problem. This bias in speaker segmentation research is stemmed from the role that speaker di-

arization before ASR helps the performance of ASR performance. The motivation of the research

we did in [73] started from changing the order of speech processing pipeline by putting speaker

diarization after the ASR module. Thus, we were motivated to investigate a system that incorpo-

rates both lexical cues (language model) and acoustic cues. Moreover, incorporating both lexical

cues and acoustic cues would be close to the way humans process speech signals. In this chapter,

we introduce the system we proposed in [73] and its performance by comparing the proposed sys-

tem to the traditional segmentation and diarization system. Some passages, formulas and figures

in this chapter have been reused from [74].
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4.1.1 Previous Studies

Most of the studies that involve lexical information or transcript is related with speaker identity

detection [15, 25] by directly extracting the information from transcript to specify who the speaker

is. The closest research so far is the approach with LSTM using character level Convolutional

Neural Network (CNN) and i-vector training on transcript [41]. Unlike previous studies, this work

targets the way to improve segmentation and the resulting diarization performance by integrating

both language model and acoustic cues. To achieve this goal, we investigate the way to integrate

both lexical cues and acoustic cues to perform speaker segmentation and speaker diarization

using the output of the sequence-to-sequence model. Sequence-to-sequence models have been

widely used for translation [112], end-to-end ASR systems [16] and text summarization[65]. The

advantage of sequence-to-sequence model over Recurrent Neural Network (RNN) based models

(LSTM [38], GRU [18]) is that it can summarize the whole sequence into an embedding and then

pass it to the decoder. Moreover, sequence-to-sequence models can integrate information and

process variable length sequences.In doing so, such a model can capture the information from

both before and after the speaker change points. Moreover, attention structure helps the decoder

create an accurate sequence by directly relating the speaker change points and the input sequence.

In addition, we also experimented with the effect of the performance degradation from the

ASR output. In real life scenario, word by word transcription with word alignment information

will never be given to the speaker diarization system. Therefore, we tested the performance of the

proposed system with ASR output and compared the result with diarization performance based on

transcription. Although ASR output hugely deteriorates the performance of diarization systems,

we showed that sequence-to-sequence models with acoustic features can improve the diarization

result over lexical information alone. The following sections explain the multimodal system we

proposed in [73].
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4.1.2 Proposed Sequence-to-sequence Model

Our proposed sequence-to-sequence model in [73] consists of an encoder, decoder and attention

model that connects encoder and decoder. We use GRU with a 256 hidden layer and an attention

model that has been applied to many state-of-the-art machine translation systems [9]. In this

work, all the feature extraction was done along with word boundaries. In our proposed method

the features are time-synchronous. All the features align with the word boundaries as follows:

WORD: The word sequences we use are obtained either from the reference transcripts or from

an ASR output. We use a linear layer to convert one-hot word vector into word embedding

as described in Fig. 4.1. The source sequence is 32 words in the reference transcript or ASR

output. The target sequence for training is 32 words and added speaker turn tokens.

MFCC: We use 13-dimensional MFCCs extracted with a 25ms window and 10ms shift. Detailed

specifications follow the feature extraction method proposed in [62]. We then average the

MFCC features for the word-segment and thus derive a 13 × 1 vector for each word.

In the proposed system, the encoder is the part where all the features are integrated. Fig.4.1

shows how the proposed encoder is structured. Word embeddings and MFCC features are con-

nected through linear layers. After the fully-connected layers, the embeddings are concatenated to

be passed simultaneously. The concatenated vector is then fed to the GRU that is the encoder of

the sequence-to-sequence system. We use 256 hidden unit size, word embedding size and output

layer of linear layer for MFCC vector.

On the other hand, decoder only outputs the word sequence and the turn token and also

trained with the word sequence and the speaker turn token. The speaker turn token is obtained

from the transcription data. Note that we use “]A” and “]B”. Fig. 4.2 describes the decoder side

in our proposed system. Unlike word tokens, the loss of the speaker turn tokens are calculated in

a different way that ignores the speaker IDs and only focuses on speaker groupings. For example,

the speaker turn sequence of “]A ]B ]A” is considered the same as “]B ]A ]B”. Between these two
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Figure 4.1: Encoder side of the proposed network.

versions of losses, our loss function selects the smaller loss. This loss function also avoids learning

the probability between speaker turn tokens and words in the target sequences in the training set.

Figure 4.2: Decoder side of the proposed sequence-to-sequence model.

4.1.3 Speaker Turn Estimation

To maximize the accuracy of speaker turn detection, we employ shift and overlap schemes to

predict the speaker turn. Fig. 4.3 explains how speaker turn prediction is done. A target window

that has 32 word length sweeps the whole session from the beginning to the end. For each

target window, we predict speaker turn tokens with our trained sequence-to-sequence model. At

each prediction, we extract 32 words and 32 MFCC vectors from transcript and audio stream,
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respectively. After we get the speaker turn vector, this vector is compared with the cumulative

speaker turn sequence which is a matrix that stores all the speaker turn vectors obtained so far.

The speaker turn vector is flipped if flipping the speaker vector gives less hamming distance. After

we collect all the speaker vectors in the session, we take a majority vote for each word and finally

make a decision for each speaker turn. A set of speaker turns for the given session is estimated

through this process.

4.1.4 Clustering

We employ our BIC based agglomerative clustering algorithm based on [17] to perform the segment

clustering. For the agglomerative clustering we employ the raw frame-level MFCC as features.

We obtain the segmented MFCC streams using speaker turn information that is obtained from

the speaker turn estimation process described in the previous section.

Figure 4.3: Decoder output and overlapping speaker turn vectors.

59



4.1.5 Experimental Results

Our proposed system is tested with two different lexical data: transcription and ASR output. We

trained our system on Fisher English Training Speech Part 1 and Part 2 [20]. For experiment with

ASR output, we used Switchboard-1 Telephone Speech Corpus [35] as a testset. The datasets we

used in this set of experiments contain word level alignments and speaker turn level alignment

information. We created ground truth diarization labels and evaluated the performance of the

proposed system. The second experiment was based on ASR output, which is bound to be far

less accurate than transcription data. To benchmark the performance of the proposed method,

we used the speaker segmentation software in LIUM speaker diarization tool [93] to perform the

speaker segmentation task. The software we used performs feature extraction, Speech Activity

Detection (SAD) and speaker segmentation sequentially to obtain speaker segmentation result.

In the research, we intend to test the diarization performance rather than segmentation accuracy.

Therefore, we implemented a BIC based clustering algorithm based on [17] to perform clustering

tasks. This clustering algorithm is applied to all of the models in the research.

Before training the proposed system, we have randomly chosen and separated 20 sessions as

test set and 567 sessions as dev set from the original Fisher dataset. Thus, in total, we trained

11112 sessions with approximately 19 million words. We used unit training sentence length of

32 words. We trained and tested three different models separately. The first model is trained

only on word embeddings only (for convenience, we will refer to it as W model), the second

one is trained on both word embeddings and MFCC (WM model) and the third one is trained

on word embeddings, MFCC and pitch (WMP model) feature. We trained each model for 20

epochs. Figure 4.4 shows the dev-set accuracy while training. The WM model clearly showed

improved performance over W model while WMP model showed very minor improvement over

WM model. Note that accuracy in Figure 4.4 is accuracy measured between word sequences that
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contain speaker turn tokens and output from the decoder. Thus, this accuracy does not always

mean a superior segmentation or diarization accuracy.

The first experiment is the performance test based on transcription data. For transcript

based experiment, MFCCs are obtained within the word boundary using the word alignment

from transcript. Thus, we use 100% accurate word embedding and temporal information of

each word. Table 4.1 shows the result we obtained from transcript data. The result clearly

shows that integrating MFCC features helps the performance of diarization when word embedding

and temporal information is 100% correct. We also tested the diarization system with ground

truth speaker label per word and it showed 16.22% and 18.06% for Fisher and Switchboard data

respectively. This is due to the frequent overlaps in dialogues and inaccurate labeling of speaker

turn level transcript data. Therefore, the ”Ideal” DER is the best performance we can achieve

with word level. To check the performance of the proposed system from different angles, we also

measured Word-level Diarization Error Rate (WDER) which means ”who says this word”. Table

4.2 shows WDER result for transcript based experiment. WDER also shows similar results with

DER result where WM model and WMP model shows nearly 4% improvement over W model.

Figure 4.4: Training and validation set accuracy during training.
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Table 4.1: DER on transcription data.

DER(%) W WM WS Oracle LIUM

Fisher 28.02 24.26 44.53 16.22 77.45
Switchboard 27.89 22.44 46.4 18.06 66.57

Table 4.2: WDER on transcription data.

WDER(%) W WM
Fisher

Transcript
16.42 12.32

Switchboard
Transcript

12.4 8.56

For ASR transcript, we use the Kaldi Speech Recognition Toolkit [83] and ASR model trained

on whole Fisher English Speech data. As a test-set, we choose the 30 audio files that have

the lowest index in each of 30 folders in the Switchboard-1 dataset for reproducibility of our

experiment. Table 4.3 shows the result from the ASR based experiment. Unlike in the case

of reference transcripts, WM models did not improve the performance. However, ASR based

results are still better than diarization based on segmentation results obtained from LIUM Speaker

Diarization Tools. Moreover, WS model also performed better than LIUM Speaker Diarization

Tools, which shows that using word-level segmentation from ASR can outperform the BIC based

segmentation system.

Since we test the improvement by incorporating acoustic cues with transcript data, perfor-

mance degradation in the experiment with ASR transcript is entirely caused by poor ASR Word

Error Rate (WER). The average WER for 30 Switchboard sessions is 35.15%. Fig. 4.5 shows

the scatter plot between WER vs DER for the experiment with ASR transcript (Table 4.3). As

depicted in Fig. 4.5, no session shows good speaker diarization performance when WER is high.

However, in some cases, although WER is pretty low DER can be very high. Based on this out-

come, we could conclude that low WER is a necessary condition for low DER, not the sufficient

condition.
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Table 4.3: DER on ASR transcript and baseline system.

DER(%) W WM WS Oracle LIUM
Switchboard

ASR
38.64 50.95 46.02 18.06 66.57

Figure 4.5: Scatter plot of WER vs DER.

The two experiments on transcript and ASR output with the proposed system show that ASR

performance hugely affects the performance of DER. However, the experiment with transcript still

shows that acoustic cues can improve the diarization performance. From the experimental results,

we can conclude that acoustic cues can be integrated with lexical cues but the ASR performance

is critical. In addition, the training-set and test-set mismatch also affected the degradation with

the ASR output since the proposed model is only trained on the ground-truth transcript, not the

actual ASR output.

In this research, we investigated the way to integrate lexical cues and acoustic cues to improve

speaker diarization performance. The experiment result showed that if word embeddings and

word alignment information are accurate, we can improve the speaker diarization system by

incorporating lexical cues and acoustic cues. However, in real life scenario, ASR performance plays

a crucial role to the performance of the proposed system and poor WER degrades the proposed
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system trained on both acoustic features and word embeddings. In the following section, we

introduce a system that incorporates the lexical information directly into the clustering process.
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4.2 Multimodal Diarization in Clustering Phase

4.2.1 Acoustic and Lexical Modalities

In the research we introduced in the previous chapter, we focused only on the segmentation pro-

cess in the research we introduced in the previous section [73]. In this chapter, we introduce the

exploitation of lexical information provided by an ASR system to a speaker clustering process

in speaker diarization. Thus, the lexical information is more directly integrated with acoustic

information and influences the performance of the speaker diarization result. The challenge of

employing lexical information to speaker clustering is multifaceted and requires practical design

choices. In our proposal, we use word-level speaker turn probabilities as lexical representation

and combine them with acoustic vectors of speaker embedding when performing spectral clustering

[125]. In order to integrate lexical and acoustic representations in the spectral clustering frame-

work, we create adjacency matrices representing lexical and acoustic affinities between speech

segments respectively and combine them later with a per-element max operation. It is shown

that the proposed speaker diarization system improves a baseline performance on two evaluation

datasets.

The data flow of the proposed multimodal speaker diarization system is depicted in Fig. 4.6.

In the proposed system, there are two streams of information: lexical and acoustic. On the

lexical information side, we use the automated transcripts with the corresponding time stamps

for word boundaries from an available ASR system. This text information, which is a sequence

of words with timestamps, is passed to the speaker turn probability estimator to compute word-

level speaker turn probabilities. On the acoustic information side, we perform a general speaker

diarization task that is only based on acoustic signal. In this general speaker diarization module,

MFCCs are extracted from the input speech signal after speech activity detection (SAD). Following

SAD, we uniformly segment the SAD outputs. These uniform segments are relayed to the speaker
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embedding extractor that provides speaker embedding vectors. We use the publicly available

Kaldi ASpIRE SAD Model1 [83] for SAD in the proposed diarization pipeline.

Figure 4.6: Data flow of the proposed system.

After processing the two streams of information, we create two adjacency matrices which hold

lexical as well as acoustic affinities between speech segments, respectively, and combine them

with a per-element max operation to generate the integrated affinity matrix. Thus, the integrated

matrix contains lexical and acoustic information in a comprehensive space. With the integrated

adjacency matrix, we obtain speaker labels using a spectral clustering algorithm.

4.2.2 Acoustic Information Stream: Speaker Embedding Extractor

We employ the x-vector model2 [106] as our speaker embedding generator that showed the state-

of-the-art performances for speaker verification and diarization tasks. For windowing of the speech

1http://kaldi-asr.org/models/m4
2http://kaldi-asr.org/models/m6
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signal, we use 0.5 second window, 0.25 second shift and 0.5 second minimum window size for 23-

dimensional MFCCs. Note that we do not focus on improving the the performance of speaker

embedding since it is out of the scope of this research.

4.2.3 Lexical Information Stream: Speaker Turn Probability Estimator

While acoustic speaker characteristics can be used for speaker turn detection tasks [14], our

proposal of word-level speaker turn probability estimation comes behind the reasoning that lexical

data can also provide an ample amount of information for similar tasks. It is likely for words in

a given context (i.e., utterance) to have different probabilities on whether speaker turns change

at the time of being spoken. For example, the words in the phrase “how are you” are very likely

to be spoken by a single speaker rather than by multiple speakers. This means that each word in

this phrase “how are you” would likely have lower speaker turn probabilities than the word right

after the phrase would have. In addition to lexical information, we also fuse a speaker embedding

vector per each word to increase the accuracy of the turn probability estimation.

Figure 4.7: Illustration of the proposed speaker turn probability estimator.
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To estimate speaker turn probability, we train bi-directional three-layer gated recurrent units

(GRUs) [19] with 2,048 hidden units on the Fisher [20] and Switchboard [35] corpora using the

force-aligned texts. The actual inputs to the proposed speaker turn probability estimator would

be the decoder outputs of the ASR. The words and the corresponding word boundaries are used

to generate word embedding and speaker embedding vectors respectively, as follows:

• Speaker embedding vector (S): With the given start and end timestamps of a word from

ASR, we retrieve the speaker embedding vector using the speaker embedding extractor described

in Section 4.2.2. The x-vector speaker embedding is 128-dimensional.

• Word embedding vector (W): We map the same word input to a 40K-dimensional one-hot

vector, which is fully connected to the word embedding layer shown in Fig. 4.7. The dimension

of the embedding layer is set to 256.

These two vectors are appended to make a 384-dimensional vector for every word and fed to

the GRU layer. The softmax layer has one node and, during inference, outputs speaker turn

probability. The parameters of the speaker turn probability estimator are trained with the cross

entropy loss. The ASR system used in the research for decoding is the Kaldi ASpIRE recipe3 [83]

that is publicly available.

Figure 4.8: Example of the word sequence processing for the adjacency matrix calculation using
the speaker turn probabilities.

3http://kaldi-asr.org/models/m1
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Figure 4.9: Example of the speech segment selection process using the utterance boundary infor-
mation.

4.2.4 Adjacency Matrix Calculation and Integration

The most challenging part of integrating speaker turn probabilities (from lexical information) and

speaker embedding vectors (from acoustic information) in the spectral clustering framework is

the heterogeneity of the information sources for these representations. That is, the two quantities

do not share any common ground that could be used to measure one quantity against the other.

To tackle this challenge, we first create two independent adjacency matrices that contain lexical

and acoustic affinities between speech segments, respectively, and then combine them with a per-

element max operation to handle the two different types of information from the two different

sources. For each adjacency matrix, we employ undirected graphs to represent the corresponding

affinities between the speech segments.

• Adjacency matrix using speaker embeddings

1) Initially compute the cosine similarity pi,j between speaker embedding vectors for segments

si and sj to form the adjacency matrix P, where 1 ≤ i, j ≤ M and M is the total number of

segments in a given audio signal.

2) For every i-th row of P, update pi,j as follows:

pi,j =


1 if pi,j ≤W (r)

0 otherwise

(4.1)
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where W (r) is the cosine similarity value that is at r-percentile in each row and r is optimized

on the dev set. This operation converts P to a discrete-valued affinity matrix through N

nearest neighbor connections.

3) Note that P is asymmetric and can be seen as an adjacency matrix for a directed graph where

each node represents a speech segment in our case. As spectral clustering finds the minimum

cuts on an undirected graph in theory [125], we choose an undirected version of P, Pud, as

the adjacency matrix for speaker embeddings by averaging P and PT as below:

Pud =
1

2
(P + PT) (4.2)

The pictorial representation of Pud is given on the left side of Fig. 5.

• Adjacency matrix using speaker turn probabilities

The following steps 1) to 4) match to the numbered illustrations in Fig. 4.8, where c = 0.3 and

ν = 3 are given as example parameters.

1) For a given threshold c, pick all the turn words that have speaker turn probabilities greater

than c in the word sequence provided by ASR. The colored boxes in Fig. 4.8-1) indicate the

turn words. The threshold c is determined by the eigengap heuristic that we will discuss in

Section 5.2.

2) Break the word sequence at every point where the turn word starts as in Fig. 4.8-2). The

given word sequence is broken into multiple utterances.

3) Select all the utterances that have more than one word since a duration spanning one word

may be too short to carry any speaker-specific information. For example, in Fig. 4.8-3),

the words “well” and “great” are thus not considered for further processing. Additionally, we

always consider the seven back channel words (“yes”, “oh”, “okay”, “yeah”, “uh-huh”, “mhm”,

“[laughter]”) as independent utterances regardless of their turn probabilities.
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4) To mitigate the effect of any miss detection by the speaker turn probability estimator, we

perform over-segmentation on the utterances by limiting the max utterance length to ν. In

Fig. 4.8-4), the resulting utterances are depicted with different colors. Maximum utterance

length ν is optimized on the dev set in the range of 2 to 9.

5) Find all the speech segments that fall into the boundary of each utterance. Fig. 4.9 explains

how speech segments within the boundary of the example utterance “how are you” are selected

and matched. If a segment partly falls into the utterance boundary and its overlap (l in Fig.

4.9) is greater than 50% of the segment length, the segment is considered to fall into the

utterance boundary.

6) Let sm be the first segment and sn be the last segment falling into the utterance boundary

(e.g., segments s3 and s6, respectively, in Fig. 4.9). For the elements qi,j in an adjacency

matrix Qc (with the threshold c) being initialized with zeros, we do the following operation

for all the utterances:

qi,j =


1 if m ≤ i, j ≤ n

qi,j otherwise

(4.3)

The right side of Fig. 4.10 shows an example of Qc by the utterance “how are you” in Fig.

4.9.

Figure 4.10: Examples of the two adjacency matrices.
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• Combining adjacency matrices

We combine the two adjacency matrices:

Ac = max (Pud,Qc) = max (
1

2
(P + PT),Qc) (4.4)

where max is a per-element max operation.

We employ a spectral clustering algorithm to obtain the speaker clusters from the integrated

affinity matrix. In spectral clustering, the Laplacian matrix is employed to get the spectrum of

the given adjacency matrix. We employ the unnormalized graph Laplacian matrix Lc [125] as

below:

Lc = Dc −Ac
(4.5)

where Dc = diag{d1, d2, ..., dM}, di =
∑M
k=1 aik and aij is the element in the ith row and jth

column of the adjacency matrix Ac. We calculate eigenvalues from Lc and set up an eigengap

vector ec:

ec = [λ2 − λ1, λ3 − λ2, · · · , λM − λM−1] (4.6)

where λ1 is the smallest eigenvalue and λM is the largest eigenvalue. The resulting adjacency

matrix Ac is passed to the spectral clustering algorithm, for which we use the implementation in

[81].

The number of clusters (in our case, number of speakers) is estimated by finding the arg max value

of the eigengap vector ec as in the following equation:

n̂s = arg max
n

(ec) (4.7)

where n̂s refers to the estimated number of speakers.
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Table 4.4: DER (%) on the RT03-CTS dataset.

Number of Speakers Unknown

Dataset Split(Quantity) Dev(14) Eval(58)

Quan et al. [127] System SAD - - 12.3 3.76

Baseline M1 4.00 1.03 6.97 2.90

Proposed
M2 W 3.97 1.00 5.19 1.93

M3 W+S 3.79 0.82 5.11 1.85

We evaluate the proposed system (M3) with the baseline system configuration (M1) on the

two evaluation datasets (CH-109 and CH-Eval) as well as the RT03-CTS dataset. To evaluate

the systems in terms of diarization error rate (DER) and speaker error rate (SER), we use the

md-eval software presented in [26]. The gap between DER and SER originates from the false

alarms and missed detections that are caused by SAD. The systems compared in the tables above

are configured in the following manners:

• M1: This baseline system configuration only exploits Pud as Ac for spectral clustering (i.e., Ac

= Pud). This is the general speaker diarization system utilizing acoustic information only in

speaker embeddings. The results of this system would contrast how much lexical information

can contribute to the speaker clustering process to enhance the overall speaker diarization

accuracy in M2 and M3.

• M2: This configuration for the proposed system excludes the speaker embedding part for the

speaker turn probability estimator in Fig. 2 to show the contribution of lexical information in

the speaker turn probability estimation process.

• M3: This is the full-blown configuration, as explained throughout this chapter.

4.2.5 Experimental Results

The performance of the proposed system is compared to previously published results [127, 131]

on the same dataset. However, it should be noted that results in [127] and the proposed system
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Table 4.5: DER (%) on the CHAES dataset.

Number of Speakers Unknown Known
Dataset(Quantity) CH-Eval(20) CH-109(109)

Error Type DER SER DER SER

Quan et al. [127] System SAD 12.54 5.97 12.48 6.03
Zaj́ıc et al. [131] Oracle SAD - - - 7.84
Baseline M1 7.00 2.94 6.42 2.13

Proposed
M2 W 7.04 2.97 5.96 1.67
M3 W+S 6.97 2.9 6.03 1.73

are based on system SAD that is bound to give higher DER than the systems based on oracle

SAD. On the other hand, the system in [131] uses oracle SAD which makes DER equal to SER.

• Table4.4 (RT03-CTS): The M3 system improves the performance over M2, but the relative

improvements are minimal as compared to the improvements of M2 over M1. This shows that

most of the performance gain by the proposed speaker diarization system comes from employing

lexical information to the speaker clustering process.

• Table4.5 (CH-Eval, CH-109): This table compares the proposed speaker diarization system

with the recently published results [127, 131] on the CHAES datasets. For a fair comparison,

we applied the eigengap analysis based speaker number estimation in Eq. (3.17) only to the

CH-Eval dataset while fixing the number of speakers to 2 in the CH-109 dataset (since CH-

109 is the chosen set of the CHAES conversations with only 2 speakers). It is shown in the

table that the proposed system (M3) outperforms the previously published results in [127, 131]

on both CH-Eval and CH-109. It is worthwhile to mention that the proposed system did

not gain the noticeable improvement in the CH-Eval dataset as compared to the baseline

configuration (M1). As for the CH-109 dataset, on the other hand, M3 seems to provide a

noticeable jump in SER over M1. Given our observation that in the CH-109 evaluation most of

the performance improvement from M1 to M3 was from the worst 10 sessions that the baseline

system performed poorly on, we presume that the proposed system improves the clustering

results on such challenging data.
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The experimental results show that the baseline system outperforms the previously published

results due to the performance of ASpIRE SAD [83] and x-vector [106]. However, the proposed

system still improves the competitive baseline system by 36% for RT03-Eval and 19% for CH-109

in terms of SER. As we discussed in this chapter, the experimental results based on the multimodal

segmentation approach showed that the proposed system provides meaningful improvements on

both of the CHAES and RT03-CTS datasets outperforming the baseline system which is already

competitive against the previously published state-of-the-art results. This supports our claim

that lexical information can improve diarization results by incorporating turn probability and

word boundaries. We inform that some passages, formulas and figures in this chapter have been

reused from [76].
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Chapter 5

Proposed Speaker Diarization Framework

In this chapter, we propose a speaker diarization system that takes advantage of multimodal

information and self-guided clustering approach. The system that we propose in this dissertation

is partially based on the study [75] we introduced in the previous chapter. Our proposed speaker

diarization framework consists of two main parts: Acoustic side and lexical side. Fig. 5.1 describes

the overall structure and the data flow in our proposed system. Unlike the speaker diarization

system we introduced in the Chapter 4, we apply multi-scale speaker diarization approach [80] and

auto-tuning spectral clustering [77] in the proposed speaker diarization system to build self-guided

multimodal speaker diarization system.

The acoustic part of the system, which is described on the left side of the Fig. 5.1, is basically

the same as the conventional speaker diarization system where segmentation is led by speaker

embedding extraction. An affinity matrix calculated from the extracted speaker embedding is

passed to the affinity integration module to be integrated with speaker representation affinity

matrix. On the other hand, on the lexical side of the system which is described on the right side

of Fig. 5.1, the word sequence from the input transcript is converted to one-hot vectors then fed

into a neural language model that estimates the speaker turn probability for each word. The

speaker turn probabilities are matched with the speech segments based on the timestamps that

can specify the word boundaries. Thus, we group the speech segments that belong to the word
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Figure 5.1: Overall structure of the proposed multimodal speaker diarization system.

groups that are very likely to be spoken by a single speaker and represent this information in a

lexical information matrix. Finally, we integrate the speaker representation affinity matrix and

lexical information matrix to create a final affinity matrix that can provide graph information

for spectral clustering. After the clustering process, we get the labels from the cluster labels. In

the following sections, the modules we mentioned above will be described in detail. The Acoustic

information side of the proposed speaker diarization system is almost identical to the speaker

diarization system we described in the previous work [77]. However, there is a distinct difference

in terms of segmentation and affinity value processing since we employ the multi-scale speaker

diarization system [80] in our proposed system.

5.1 Multi-scale Speaker Diarization

Extracting an authentic speaker representation from a short audio segment is a very challenging

task. In general, speaker representations of short speech segments (less than 0.5 second) are known
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Figure 5.2: Three different segment scales aligned with an audio stream and a word sequence.

to be very unreliable and show a poor performance on speaker recognition tasks. In the previous

chapter, we introduced the novel method [80] that deals with the trade-off between temporal

resolution and the quality of the speaker representations. The proposed multi-scale diarization

approach in [80] employs multiple discrete segment lengths and proposes a method to integrate the

given multiple scales. The multi-scale speaker diarization system employs Neural Affinity Score

Fusion (NASF) model that can attentively weigh the affinity from the multiple scales depending

on the domain and characteristics of the given speech signal. Fig. 5.2 shows the dataflow of

the multi-scale speaker diarization system. For the multi-scale processing, we need to generate

multiple streams of information for each scale. We employ three scales, 1.5 s, 1.0 s and 0.5 s as in

[80]. As shown in the experiment section in [80], multi-scale approach outperforms a single-scale

diarization system while having the same dataset and speaker embedding extractor. It is worth

emphasizing that we employ the multi-scale approach for having a better resolution for matching

the speech segments to word boundaries, as we will state in the following section.

5.2 Segment-word Matching

The shorter segment scale has an integral benefit for matching word boundaries to the existing

speech segments. Fig. 5.2 shows the three scales we use and the input waveform displayed with

the word boundaries. As shown in the diagram, 1.5 s scale can contain up to 4 words in a

single segment. On the other hand, 0.5 s segment has relatively lower chance to contain multiple
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Figure 5.3: Example diagram: (a) Affinity matrix P from the similarities between speaker em-
beddings. (b) Affinity matrix Q from speaker turn probabilities.

words in a single segment. Since the temporal resolution of the multi-scale diarization system is

determined by the finest scale, in this case 0.5 s, having shorter scales will eventually help the

speaker diarization system to more precisely match the word boundaries with the given audio

segments. We will show this benefit in the experimental section.

5.3 Matrix Integration Using NME-SC Method

In this section, we describe how the two affinity matrices are integrated by the NME-SC method

instead of using max operation we used in our previous work [75]. We calculate the sum of two

affinity matrices: Affinity matrix P form Eq. 3.9 and affinity matrix Q that is calculated by

speaker turn probabilities. Thus, the sum of matrix is A as follows:

A = P + Q. (5.1)

However, adding two matrices is not enough since using the raw affinity values without processing

it leads to a poor clustering performance. Thus, we apply NME-SC clustering using the affinity
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Figure 5.4: Example diagram of Acoustic affinity matrix, lexical information matrix and fused
affinity matrix. The word sequence is matched with the speech segments using the time stamps.

matrix A. To obtain eigenvalues and eigenvectors, we calculate a Laplacian matrix for every p

value of the affinity matrix A as follows:

di =
N∑
k=1

aik

Dp = diag{d1, d2, ..., dN}

Lp = Dp − Āp.

(5.2)

We calculate eigenvalues from Lp and then build an eigengap vector ep:

ec = [λ2 − λ1, λ3 − λ2, · · · , λN − λN−1] (5.3)
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Figure 5.5: Example plot showing the trend between (a) p/gp versus gp plot and (b) DER versus
gp plot. The green dotted line shows the gp value that returns the minimum value for both p/gp
and DER.

where λ1 is the smallest eigenvalue and λM is the largest eigenvalue. The number of clusters,

which is assumed to be number of speakers, is estimated by finding the arg max value of the

eigengap vector ep as follows:

n̂s = arg max
n

(ep) (5.4)

where n̂s represents the estimated number of speakers. Using the eigengap values in ep To com-

pare the size of the maximum eigengap max(ep) with the range of different p values, we normalize

max(ep) with the maximum eignenvalue λp,N to calculate the normalized size of max(ep). There-

fore, the NME value gp for the given binarization parameter p is defined as follows:

gp =
max(ep)

λp,N + ε
, (5.5)
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where λp,N = max(Λp) and ε is an extremely small value (ε=1 × 10−10) for avoiding instability.

We obtain the ratio r(p) between the binarization threshold p and the NME value gp as follows:

r(p) =
p

gp
. (5.6)

The r(p) value of an example session is plotted against gp in Fig.5.5-(a) in red dots. The green

dotted line Fig.5.5-(a) represents the minimum of p
gp

value. In Fig.5.5-(b), DER value is plotted

against gp. The minimum DER value is also marked by the green dotted line. We can notice

that the overall trend is similar with each other and the gp value that makes the minimum of r(p)

also makes the minimum of DER value. In this way, we find the most desirable p value and then

perform spectral clustering on Ap as in [77]. The process mentioned above is depicted in Fig.5.4

with an example value p=4. After we cluster the speaker representation with NME-SC method,

the rest of the speaker assigning and evaluation process follow our previous work [77, 75] and the

experimental result will be discussed in the following chapter.
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Chapter 6

Experiments and Results

6.1 Datasets

6.1.1 Training Data

We confine the target language to English and train our system on English corpora. We combine

the following training datasets to create an integrated word set for our proposed speaker turn

estimator. In addition, for speaker turn estimation, the speaker embeddings were also extracted

from the same corpora along with word sequences. Henceforth, we refer to the training dataset

as FisherSwbd for brevity.

• Fisher English Training Speech (LDC2004S13, LDC2005S13) Fisher corpus contains

telephonic speech of the conversations between two speakers. We use a total of 11699

conversions from Part 1 and Part 2 of Fisher English Training Speech corpora. Fisher

corpus contains 2742 hours of speech.

• Switchboard-1 Release 2 Switchboard [35] dataset contains telephonic speech with a

total of 2434 conversations while there are two speakers per conversation. In total, the

Switchboard dataset contains 260 hours of speech and 543 speakers.
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(a) model W (b) model W+S

Figure 6.1: ROC curves of speaker turn estimation for each dataset and method.

Table 6.1: Turn probability estimation accuracy based on the ground-truth transcript.

model W model W+S

EER AUC EER AUC

Fisher-Swbd Dev 13.51 0.894 10.49 0.923

CHAES-eval 15.55 0.885 11.89 0.919

RT03 16.56 0.880 13.76 0.902

AMI 24.67 0.839 18.04 0.890

6.1.2 Evaluation Data

The evaluation splits from RT03, CHAES and AMI are used for evaluation of our proposed

method. We use the development set splits of the following datasets to tune the parameters of

our proposed system.

6.2 Speaker Turn Estimation Results

Speaker turn estimation is the most essential part of our proposed system since it provides the

speaker turn probability that contains the information we can extract from the lexical side. Thus,
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evaluating the performance of speaker turn estimation is very crucial to analyze the system and

figure out which part is contributing to the overall performance. However, if we employ ASR re-

sults to evaluate the speaker turn estimation accuracy, it cannot accurately show the performance

of the speaker turn estimator since ASR systems are bound to have errors such as missed words

and insertions. Thus, we use ground truth transcription to assess the actual contribution of the

speaker turn probability estimator and compare that with the ASR based speaker turn estimator.

Fig. 6.1 shows Receiver Operating Characteristic (ROC) curve for model W and model W+S

tested on FisherSwbd dev-set, AMI-eval, RT03-eval and CHAES-eval. The two-speaker dataset

FisherSwbd dev, RT-03 and CHAES-eval show relatively similar performance compared to AMI-

eval. We conjecture that this is due to the overlaps caused by the number of speakers where AMI

corpus has more speakers (3 5 speakers) per session and it creates significantly more overlaps

among speakers. This can be intuitively observed in Fig. 6.1: For the same true positive rate,

AMI-eval shows significantly higher false positive rate. This indicates that the trained speaker

turn estimator model overestimates the probability of the speaker turns especially in AMI-eval

split.

More importantly, we can check the performance gap between model W and model W+S in

Table 6.1. The accuracy of the turn probability estimation is shown in equal error rate (EER)

and area under cover (AUC) values that are obtained from Table 6.1. On average, model W+S

shows 22.4% of relative EER improvement. The performance gap in AMI-eval showed the biggest

improvement from adding speaker embedding to the speaker turn estimator. This shows that the

speaker turns in the AMI-eval set is more challenging to be estimated by the word-only system,

model W.
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Table 6.2: DER (%) based on ground-truth transcription.

Scale Turn Est. Model CHAES RT03 AMI

SS No Lex. 2.48 2.21 3.37

MS No Lex. 2.04 2.17 3.32

SS model W 2.48 2.11 4.02

SS model W+S 2.32 2.11 3.89

MS model W 1.64 1.76 2.94

MS model W+S 1.47 1.68 2.78

MS Oracle Lex. 1.05 1.22 2.07

Table 6.3: WER (%) of evaluation set.

CHAES-eval RT03 AMI

WER (%) 23.27 25.61 34.49

6.3 Diarization Evaluations

The estimated speaker turn probability values are used to obtain the actual speaker diarization

output. For calculating diarization error rate (DER), we employ the evaluation schemes and

software that appeared in [26]. This evaluation method involves 0.25 second of collar region.

Table 6.2 shows the DER of the diarization systems based on ground truth transcriptions. In

the leftmost column, the segmentation types, multi-scale (MS) and single-scale (SS) with 1.5 s

segments, is notified. The 1.5 s scale is selected since the 1.5 s segment performs the best for

all the datasets and methods when it comes to the single-scale speaker diarization. Oracle Lex.

represents the performance we get by providing the ground truth turn probability to the clustering

system. Even if we provide the ground truth turn information, errors can be generated since the

speaker turn probability only provides what speech segments should be tied together. Therefore,

there is a chance that the several speech segments that are grouped by the lexical information

can still be incorrectly clustered. Therefore, the performance of Oracle Lex. in Table 6.2 can be

regarded as a system that has oracle ASR (ground truth transcript) and a perfect speaker turn

estimator that has 0% EER and 1.0 of AUC. No Lex. system represents speaker diarization system

without any lexical information. This is identical to the speaker diarization system appeared in
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Table 6.4: DER (%) based on ASR outputs.

Scale Turn Est. Model CHAES RT03 AMI

MS No Lex. 22.04 2.17 3.32

MS model W 1.87 2.01 3.25

MS model W+S 1.71 1.86 3.25

[80] where the multi-scale diarization approach is applied with auto-tuning clustering [77]. We

use No Lex. as a baseline to compare the performance of our proposed system.

The most consistent trend we notice in the Table. 6.2 is the performance improvement from SS

to MS. There are two different factors in the improvement from SS to MS. First, the multi-scale

approach itself brings about a certain degree of DER improvement. However, the performance

degradation of SS-model-W and SS-model-W+S are explained by the poor temporal resolution of

1.5 s segment length. As we explained in the Fig. 5.2, 1.5 s segments are bound to create more

errors than shorter segments. This becomes evident as we evaluate the model with 1.5 s single-

scale and compare it to multi-scale based models. Thus, we are able to check that multi-scale

approach helps matching the temporal alignment between word boundaries and speech segments

and the finer base scale length reduces the error.

More importantly, Model-W and Model-W+S show a good margin of improvement for CHAES-

eval and RT-03 dataset. However, even if we use ground truth transcript, the improvement made

for AMI-eval was relatively minor. This result is conjectured to be originating from the poor

speaker turn probability in Table 6.1. Thus, we can observe that the speaker turn estimation

accuracy is affecting the improvement of the model W and model W+S from No Lex. system.

The DER results with ASR output are shown in Table 6.4. Since the quality of ASR largely affects

the turn probability estimation, we provide word error rate (WER) of ASR in Table 6.3. We use

the trained model from the ASR system in the Kaldi ASpIRE recipe1 [83] that is openly accessible

to the public. In Table 6.4, AMI-eval performance did not show significant improvement from

the No Lex. system. This improvement is worse than the ground truth transcription based result

1http://kaldi-asr.org/models/m1
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(Table 6.2) and this is conjectured to be caused by poor ASR result. The evaluation results from

transcription and ASR suggest that the conversations with more speakers are more challenging

to benefit from lexical information. However, it must be noted that the result shown in Table 6.4

is heavily dependent on the accuracy of the ASR system. In addition, it is highly likely that the

improvement in ASR makes the diarization performance higher since the DER with ground truth

transcript is a lot lower than the ASR based DER results. This leaves room for improvement

and makes us expect the further improvement of our proposed method as the ASR technologies

constantly improve and get more and more accurate.
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Chapter 7

Future Work

In the previous chapters, we covered our research endeavors regarding multimodal diarization and

self-guided clustering methods. In the future, we plan to add two more research topics. First,

we will employ a pre-trained language model that helps the speaker turn-probability estimator

capture more sophisticated patterns. Because our proposed speaker turn-probability estimator

is trained on a relatively small number of datasets, we plan to employ a language model that

is trained with a significant number of text data, thereby benefiting from out-of-domain data.

Second, we plan to extend the speaker diarization system to a multi-task system that conducts

not only speaker diarization tasks but also audio scene detection or topic classification. The

benefit of the additional performance improvement will also be investigated through a multi-task

approach.
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7.1 Pre-trained Language Model for Multimodal Speaker

Diarization

Extending from the multimodality related studies introduced in the previous chapters, we plan

to employ a pre-trained language model that can boost the turn probability estimation perfor-

mance. A proposed language model called Bidirectional Encoder Representations from Trans-

formers (BERT) [23] has demonstrated state-of-the-art performance on most natural language

processing (NLP) tasks. BERT is based on a sequence transducer called a transformer [122].

BERT showed that a language model that is trained on a huge amount of text data including

Wikipedia and published books. We plan to integrate the encoder part of the BERT language

model into our speaker turn-probability estimator network.

Figure 7.1: Decoder side of the proposed sequence-to-sequence model.

Fig. 7.1 shows the simplified structure of the speaker turn-probability estimator with a pre-

trained language model. The multi-layer GRU units are replaced with transformer modules that

return encoded embedding to the GRU layer (the final layer). The GRU layer outputs the speaker

turn-probability similar to the GRU-based speaker turn-probability estimator. However, there

are some expected problems with the employment of the pre-trained language model. First,
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BERT is not trained on a conversational speech dataset. Conversational speech datasets usually

contain different vocabularies and sentence lengths. Thus, the speaker turn-probability estimation

model should be fine-tuned on a conversational dataset and tested with the conversational speech

datasets. Second, because BERT has a bidirectional structure, it can be difficult to transform into

an online model, whereas RNN models can simply employ a one-directional RNN to conduct the

prediction task in an online manner. These problems should be investigated further in a future

study.

7.2 End-to-end Speaker Diarization System

Figure 7.2: End-to-end speaker diarization system with multimodal input

An end-to-end neural network based system has also recently been employed in a diarization

system [28]. The benefit of an end-to-end model includes a straight-forward training process and
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an easier implementation in a production system. Despite these strengths, end-to-end systems

have certain weaknesses. First, an end-to-end system cannot be trained module-by-module and

needs to be trained on a dataset with sufficient variability in acoustic conditions, as well as a

significant number of vocabularies and speakers. In addition, it is difficult to validate each function

(e.g., speaker representation or speaker clustering). Moreover, the accuracy of an end-to-end

diarization system has lagged behind that of a modular speaker diarization system [28]. Although

there are several shortcomings to an end-to-end approach, we still recognize some benefits for

speaker diarization tasks. First, an end-to-end speaker diarization system does not require a

Figure 7.3: End-to-end speaker diarization system with lexical information input

special process for multimodal clustering, as we described in the previous chapter. Instead of

employing a relatively complicated segment mapping and matrix fusion, the layers from a speaker

representation can be integrated with a lexical layer through a simple concatenation of the layers.

Fig.7.2 describes the end-to-end multimodal speaker diarization system. Note that we need a

module that estimates the number of speakers of a given utterance because such a number is

never given in a real-life scenario. Second, by employing an end-to-end approach, we are able to
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train our multimodal speaker diarization system with multiple labels. For example, we can train

the speaker diarization system with topic labels in [20], as indicated in Fig.7.3.

The contextual labels in Fig. 7.3 not only operate as an additional loss for training but also

as an estimation system for estimating the topic of the conversation. The contextual labels can

be emotion or location labels (e.g., in an office, outdoors, or on a telephone call). Thus, we plan

to broaden the potential applications of an end-to-end multimodal speaker diarization system

such that the multi-task system can also perform tasks such as an audio scene analysis and topic

classification.
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Chapter 8

Conclusions

In this dissertation, we described our effort to build a speaker diarization system that leverages

self-guided clustering methods and multimodal approaches. We proposed novel self-guided clus-

tering approaches. With the NME-SC method, we showed that the performance of the speaker

diarization can be significantly improved if we can successfully estimate the parameter for each

session rather than using the same parameter for multiple sessions by optimizing the parameters

through the development set. Thus, the NME-SC method not only improves the performance

but makes a more generalizable speaker diarization system that can cope with variability of the

input data. Moreover, we proposed a multi-scale speaker diarization system that determines the

weights between multiple scales such that the multi-scale speaker diarization system can improve

the temporal resolution while achieving a superior fidelity of the speaker representation. In addi-

tion, we showed that the multi-scale speaker diarization method can help match the words to the

speech segments by applying a finer temporal resolution.

On the multimodal side, we proposed a multimodal speaker diarization system that can inte-

grate lexical information into a speaker diarization system. Unlike previous studies, our proposed

multimodal speaker diarization system involves the lexical information directly in the form of

word-by-word speaker turn-probability. Our proposed method is fundamentally different from

previous studies in which the lexical information is employed to refine the segmentation result
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or to find the phrases that can identify the potential speakers. Moreover, our proposed lexical

information integration scheme captures the aspects of a conversation that can never be captured

by the traditional acoustic feature based speaker diarization systems. Through this study we

discovered the following key findings. First, we showed that the lexical cues can be captured

by the speaker-turn probability for a speaker diarization task. The discrepancy between speech

segments and word boundaries from ASR has been one of the most frequent problems in speech

processing. Second, we showed that a multi-scale approach can help the speaker diarization system

achieve a finer base-scale, leading to an improved temporal resolution. We showed that the im-

proved temporal resolution can help the matching between speech segments and word boundaries.

Third, we showed that the integration of a lexical information matrix can be achieved through an

auto-tuning clustering method. This removes the burden of additional parameter tuning for the

clustering process and successfully replaces the maximum operation that we used in a previous

study.

However, there are a few limitations to our proposed method. First, the overall system is

overly complicated compared to other speaker diarization systems. We need to employ three

different neural network models: a speaker embedding extractor, speaker turn estimator, and

neural affinity fusion network, each of which needs to be optimized separately and integrated with

a parameter tuning. Second, the proposed method does not handle overlapping speech, which

is one of the most difficult problems in speaker diarization and the ASR field. In this study,

overlapping speech also causes a significant degradation because the turn-probability cannot be

accurately estimated in the overlapping regions.

Therefore, further studies should include the following aspects. To reduce the effort for op-

timizing the parameters or separately training each module, we can investigate an end-to-end

model that accepts speech and returns a speaker label. Thus, such an end-to-end model can be a

type of jointly modeled system that is simultaneously optimized for the ASR criterion and speaker

diarization criterion. However, the end-to-end approach for ASR and speaker diarization requires
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a sizable dataset and securing a high-quality dataset to obtain a competitive performance could be

a challenge. In addition to an end-to-end system, source separation techniques or a personalized

SAD system can be integrated to deal with the overlapping speech problem.

We believe that the future of speaker diarization systems will focus more on the contextual

aspect of a conversation. However, even to date, state-of-the-art speaker diarization systems do

not consider contextual information and only apply acoustic information. This is largely because

the technology for incorporating contextual information has yet to be fully developed and matured

to improve the speaker diarization performance. We strongly believe that our study fills in the gap

between traditional speaker diarization methods and the contextual speaker diarization systems

that will likely appear in the future. Thus, we hope that our research can be a cornerstone for

building a contextual speaker diarization system in the future.
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[11] Homayoon S.M. Beigi and Stéphane H. Maes. Speaker, channel and environment change
detection. In Proceedings of World Congress of Automation, 1998.

[12] Paul E. Black. Hungarian algorithm. https://xlinux.nist.gov/dads/HTML/HungarianAlgorithm.html,
[Accessed Feb. 3, 2021].

97



[13] Simon Bozonnet, Nicholas Evans, Xavier Anguera, Oriol Vinyals, Gerald Friedland, and
Corinne Fredouille. System output combination for improved speaker diarization. In Pro-
ceedings of the Annual Conference of the International Speech Communication Association,
pages 2642–2645. ISCA, 2010.
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speaker identities from transcriptions. In Eighth Annual Conference of the International
Speech Communication Association, 2007.

98



[26] Jonathan G Fiscus, Jerome Ajot, Martial Michel, and John S Garofolo. The rich transcrip-
tion 2006 spring meeting recognition evaluation. In Proceedings of International Workshop
on Machine Learning and Multimodal Interaction, pages 309–322, May 2006.

[27] Nikolaos Flemotomos, Panayiotis Georgiou, and Shrikanth Narayanan. Linguistically aided
speaker diarization using speaker role information. arXiv, pages arXiv–1911, 2019.

[28] Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Kenji Nagamatsu, and Shinji Watanabe.
End-to-end neural speaker diarization with permutation-free objectives. Proceedings of the
Annual Conference of the International Speech Communication Association, pages 4300–
4304, 2019.

[29] Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Yawen Xue, Kenji Nagamatsu, and Shinji
Watanabe. End-to-end neural speaker diarization with self-attention. In Proceedings of
IEEE Workshop on Automatic Speech Recognition and Understanding, pages 296–303. IEEE,
2019.

[30] Daniel Garcia-Romero, David Snyder, Gregory Sell, Daniel Povey, and Alan McCree.
Speaker diarization using deep neural network embeddings. In Proceedings of IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, pages 4930–4934, Mar.
2017.

[31] J.-L. Gauvain, G. Adda, L. Lamel, and M. Adda-Decker. Transcription of broadcast news:
The LIMSI Nov 96 Hub4 system. In Proceedings of ARPA Speech Recognition Workshop,
pages 56–63, 1997.

[32] J.-L. Gauvain, L. Lamel, and G. Adda. Partitioning and transcription of broadcast news
data. In Proceedings of the International Conference on Spoken Language Processing, pages
1335–1338, 1998.

[33] J.-L. Gauvain, L. Lamel, and G. Adda. The LIMSI 1997 Hub-4E transcription system.
In Proceedings of DARPA News Transcription and Understanding Workshop, pages 75–79,
1998.

[34] H. Gish, M. . Siu, and R. Rohlicek. Segregation of speakers for speech recognition and
speaker identification. In Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 873–876, 1991.

[35] John J Godfrey and Edward Holliman. Switchboard-1 release 2. Linguistic Data Consor-
tium, Philadelphia, 926:927, 1997.

[36] Kyu J Han and Shrikanth S Narayanan. A robust stopping criterion for agglomerative hier-
archical clustering in a speaker diarization system. In Proceedings of the Annual Conference
of the International Speech Communication Association, 2007.

[37] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer. End-to-end text-dependent speaker
verification. In Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 5115–5119, 2016.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[39] Jing Huang, Etienne Marcheret, Karthik Visweswariah, and Gerasimos Potamianos. The
ibm rt07 evaluation systems for speaker diarization on lecture meetings. In Multimodal
Technologies for Perception of Humans, pages 497–508. Springer, 2007.

99



[40] MAH Huijbregts, DA van Leeuwen, and FM Jong. The majority wins: a method for
combining speaker diarization systems. In Proceedings of the Annual Conference of the
International Speech Communication Association, pages 924–927. ISCA, 2009.
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ilarity measurement with spectral clustering for speaker diarization. In Proceedings of the
Annual Conference of the International Speech Communication Association, pages 366–370,
2019.

[55] Qingjian Lin, Ruiqing Yin, Ming Li, Hervé Bredin, and Claude Barras. LSTM based sim-
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