
 
 

USC-SIPI Report #450 
 

Behavior Understanding from Speech under 
Constrained 

Conditions: Exploring Sparse Networks, 
Transfer and 

Unsupervised Learning 
 
By  

Haoqi Li 
 
 

December 2020 
 
 
 

Signal and Image Processing Institute  
UNIVERSITY OF SOUTHERN CALIFORNIA  

USC Viterbi School of Engineering  
Department of Electrical Engineering-Systems  

3740 McClintock Avenue, Suite 400 
Los Angeles, CA 90089-2564 U.S.A. 

 
 



Behavior Understanding from Speech under Constrained
Conditions: Exploring Sparse Networks, Transfer and

Unsupervised Learning

by

Haoqi Li

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(Electrical Engineering)

December 2020

Copyright 2020 Haoqi Li



This dissertation is dedicated to my parents Yurong Zhang and Runlin Li.

ii



Acknowledgements

First and foremost, I want to express my deep gratitude to my advisors Prof. Shrikanth (Shri)

Narayanan and Prof. Panayiotis (Panos) Georgiou for their help and support during my PhD study.

Prof. Shri’s vision, insightful discussion and general openness have led me to freely explore my

interested research areas and gain the courage of out-of-the-box explorations in research. Prof.

Panos’s responsibility, patience and selfless support help me to shape my research aptitude. More-

over, their enthusiasm and genuine personality always make me feel supported, and enable me to

have self-confidence and optimism during my hard time.

I would like to thank Prof. Morteza Dehghani, Prof. C.-C. Jay Kuo and Prof. Jonathan Gratch

for being my dissertation and qualifying committee members. I also would like to thank Prof.

Brian Baucom for his help and suggestions from psychological science. All their constructive

comments and insightful feedback contributed to the work in this thesis.

I also want to thank my labmates in SCUBA and SAIL, my TA partners and my friends at USC,

particularly, Sandeep Nallan Chakravarthula, Shao-Yen Tseng, Prashanth Gurunath Shivakumar,

Arindam Jati, Taejin Park, Raghuveer Peri, Md Nasir, Rimita Lahiri, Bin Wang and Ching-Han

Lee, for an enjoyable collaboration experience, their friendship and support. Especially for those

who worked together with me in EEB Room B16, I really cannot forget those days when we

worked in the basement: fixing AC’s thermostat, solving servers’ noise issues, assembling furniture

etc. All those experiences make us real engineers.

I also want to thank Amazon Inc. JD.com Inc and Sony PlayStation Inc. for providing my

great internship opportunities. I thank Naveen Kumar, Yelin Kim, Ming Tu, Ruxin Chen, Jing

iii



Huang, and Cheng-Hao Kuo for the collaboration and help during my internship. These experi-

ences greatly inspire the scope of my research and it is my great honor to work with these excellent

researchers from the industry.

Finally, I would like to thank my parents and my family for their selfless love. Their constant

support and encouragement give me the momentum and courage to follow my heart, believe my

decisions and achieve my dreams in each step of my life. I express my utmost gratitude to my

parents who have devoted their unfailing love and care to me.

iv



Table of Contents

Dedication ii

Acknowledgements iii

List of Tables viii

List of Figures x

Abstract xii

Chapter 1: Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges and Constrained Conditions . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Sparsely Connected and Disjointly Trained Deep Neural Networks for Be-
havior Classification 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 DNN Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Reduced Feature Dimensionality DNN . . . . . . . . . . . . . . . . . . . 10
2.2.3 Sparsely-Connected and Disjointly-Trained DNN . . . . . . . . . . . . . . 11
2.2.4 Joint Optimization of Sparsely-Connected DNN . . . . . . . . . . . . . . 12
2.2.5 Local to Session mappings . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Couple Therapy Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Acoustic Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Audio Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Acoustic Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Experiment Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 3: Linking Emotions to Behaviors through Deep Transfer Learning 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Proposed Work: Behavioral Primitives . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Emotion Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Behavior Recognition through Emotion-based Behavior Primitives . . . . . 30

3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.1 Emotion Dataset: CMU-MOSEI Dataset . . . . . . . . . . . . . . . . . . 35
3.5.2 Behavior Dataset: Couples Therapy Corpus . . . . . . . . . . . . . . . . . 35

3.6 Audio Processing and Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.1 Behavioral Dataset Pre-processing . . . . . . . . . . . . . . . . . . . . . . 36
3.6.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Experiments and Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.1 General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 ER and EC for Emotion Recognition . . . . . . . . . . . . . . . . . . . . 38
3.7.3 Context-dependent Behavior Recognition . . . . . . . . . . . . . . . . . . 40
3.7.4 Reduced Context-dependent Behavior Recognition . . . . . . . . . . . . . 44
3.7.5 Analysis on Behavior Prediction Uncertainty Reduction . . . . . . . . . . 46

3.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 4: Speaker-invariant Affective Representation Learning via Adversarial Train-
ing 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Difference with Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Emotion Representation Adversarial Training . . . . . . . . . . . . . . . . 55

4.3.3.1 Training of SC . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3.2 Training of ENC and EC . . . . . . . . . . . . . . . . . . . . . 56

4.4 Dateset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Model Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6.1 Evaluation on IEMOCAP . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 5: Unsupervised Speech Representation Learning for Behavior Modeling using
Triplet Enhanced Contextualized Networks 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Related Work and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Unsupervised Speech Representation Learning for Human Behavior Modeling . . . 67

5.3.1 Behavioral Stationarity Assumption . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Deep Contextualized Network . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Triplet Enhanced Deep Contextualized Network . . . . . . . . . . . . . . 68

5.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.1 Audio Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.3 Model Configurations and Parameter Settings . . . . . . . . . . . . . . . . 76
5.5.4 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.4.1 Evaluation Method for In-domain Couples Therapy Corpus . . . 76
5.5.4.2 Evaluation Method for Diverse Speech Behavior Corpora . . . . 77

5.6 Experimental Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.1 Experiment Results of Couple Therapy Corpus . . . . . . . . . . . . . . . 77
5.6.2 Behavioral Trajectory Analysis . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6.3 Experiment Results on Diverse Speech Behavior Corpora . . . . . . . . . . 82
5.6.4 Nuisance Factors and Selection of Features . . . . . . . . . . . . . . . . . 84

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Chapter 6: Conclusion and Future Work 86
6.1 Summary of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 89

Appendices 102
A Detailed Network Architecture and Training Parameters of Chapter 3 . . . . . . . . 103

vii



List of Tables

2.1 Classification accuracy (%) for the two different feature splits: One random instan-
tiation and one knowledge based . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Classification accuracy (%) with all behavioral recognition systems . . . . . . . . . 17

3.1 Description of behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Weighted classification accuracy (WA) in percentage for emotion recognition on
the CMU-MOSEI dataset. Bold numbers represent the best performing system. . . 39

3.3 Behavior binary classification accuracy in percentage for context-dependent be-
havior recognition model from emotion labels . . . . . . . . . . . . . . . . . . . . 41

3.4 Behavior binary classification accuracy in percentage for context-dependent be-
havior recognition model from emotion-embeddings. Bold numbers represent the
best performing system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Behavior binary classification accuracy in percentage for reduced context-dependent
behavior recognition from emotion-informed embeddings. Bold numbers repre-
sent the best performing system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Model structure and training configuration details . . . . . . . . . . . . . . . . . . 59

4.2 Classification accuracy (%) comparison on IEMOCAP . . . . . . . . . . . . . . . 59

4.3 Emotion classification accuracy (%) on CMU-MOSEI . . . . . . . . . . . . . . . . 62

5.1 Description of behavior codes in Couples Therapy Corpus . . . . . . . . . . . . . 73

5.2 Description of evaluation data in Diverse Speech Behavior corpora . . . . . . . . . 74

5.3 Classification accuracy (%) of behavior codes in Couple Therapy Corpus . . . . . . 78

5.4 Original annotation ratings and binarized classification labels for each behavior code 81

6.1 Network architecture of ER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Network architecture of EC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 B-BP based context-dependent behavior recognition model framework . . . . . . . 104

viii



6.4 E-BP based context-dependent behavior recognition model framework . . . . . . . 105

6.5 E-BP based reduced context-dependent behavior recognition model framework.
Those AvgPool1d layers are optional to adjust temporal receptive field size. . . . . 106

ix



List of Figures

2.1 During training, local reference is assumed to be equal to global as denoted by
the green row of ρ . During testing the mean rating is assigned as the estimated
session-level rating ρ ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Basic behavior recognition system based on sub feature set . . . . . . . . . . . . . 11

2.3 Sparsely-Connected and Disjointly-Trained DNN . . . . . . . . . . . . . . . . . . 11

2.4 Output of SD-DNN for one sample test session with three behavior codes . . . . . 18

3.1 Illustration of task complexity or age of acquisition for machines and humans. . . . 24

3.2 Models of ER, EC and two kinds of BPs. L is the input feature length. . . . . . . . 29

3.3 B-BP based context-dependent behavior recognition model . . . . . . . . . . . . . 31

3.4 E-BP based context-dependent behavior recognition model. E-BP l is the output
from lth pretrained CNN layer. In practice multiple E-BP l can be employed at
the same time through concatenation. In this work we only employ the output of a
single layer at a time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Illustration of local context awareness and global context reduction. In previous
sections, the E-BPs (and B-BPs) are passed to a GRU that preserves their se-
quences. Here they are processed through pooling and context is removed. . . . . . 33

3.6 E-BP reduced context-dependent behavior recognition model. Model (A) has a
smaller receptive field while model (B) has a larger receptive field because of the
added local average pooling layers. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Sessions with similar percentage of emotions presence but different behavior label . 41

3.8 PUR optimal value of E-BP based context-dependent and reduced context-dependent
models across behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Model structure with loss propagating flow . . . . . . . . . . . . . . . . . . . . . 54

4.2 t-SNE plot of emotion embedding with both 4 emotion labels (left) and 2 speaker
labels (right) for multi-task model and our proposed MEnAN model. . . . . . . . . 61

x



5.1 Behavior representation learning framework via the DCN model. During train-
ing, the model encodes neighboring frames with a DCN. The choice of features
promotes the behavior information as the extracted common information in the be-
havior manifold. During evaluation, similarity comparison is made by calculating
distance within the behavior manifold. . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Behavior representation learning framework via the TE-DCN model. The model
has a triplet structure with shared weights. Audio 1 and 2 can be two temporally-
distant regions or two different files. During training, the model is optimized to
minimize both reconstruction loss and triplet loss. During evaluation, representa-
tion similarity comparison is performed within the behavior manifold. . . . . . . . 70

5.3 One sample session with five behavior score trajectories . . . . . . . . . . . . . . . 82

5.4 Confusion matrix of behavior scenario similarity evaluation . . . . . . . . . . . . . 83

xi



Abstract

The expression and perception of human behavioral signals play an important role in human inter-

actions and social relationships. However, the computational study of human behavior from speech

remains a challenging task since it is difficult to find generalizable and representative features be-

cause of noisy and high-dimensional data, especially when data is limited and annotated coarsely

and subjectively. This dissertation focuses on the computational study of human behaviors via

deep learning techniques.

Deep Neural Networks (DNN) have shown promise in a wide range of machine learning tasks,

but for Behavioral Signal Processing (BSP) tasks, their application has been constrained due to

limited quantity of data. In the first part of this dissertation, we propose a Sparsely-Connected

and Disjointly-Trained DNN (SD-DNN) framework to deal with limited data. First, we break the

acoustic feature set into subsets and train multiple distinct classifiers. Then, the hidden layers of

these classifiers become parts of a deeper network that integrates all feature streams. The overall

system allows for full connectivity while limiting the number of parameters trained at any time

and allows convergence possible with even limited data. The results demonstrate the benefits in

behavior classification accuracy.

An important cue of behavior analysis is the dynamical changes of emotions during the con-

versation. In the second part of this dissertation, we employ deep transfer learning to analyze

inferential capacity and contextual importance between emotions and behaviors. We first train a

network to quantify emotions from acoustic signals and then use information from the emotion

recognition network as features for behavior recognition. We treat this emotion-related informa-

tion as behavioral primitives and further train higher level layers towards behavior quantification.

xii



Through our analysis, we find that emotion-related information is an important cue for behavior

recognition. Further, we investigate the importance of emotional-context in the expression of be-

havior by constraining (or not) the neural networks’ contextual view of the data. This demonstrates

that the sequence of emotions is critical in behavior expression.

The results suggest that it is feasible to use emotion-related speech representation for behavior

quantification and understanding. However, the representation learning for speech emotion recog-

nition is also challenging. There is much variability from input speech signals, human subjective

perception of the signals and emotion label ambiguity. In the third part of this dissertation, we pro-

pose a machine learning framework to obtain speech emotion representations by limiting the effect

of speaker variability in the speech signals. Specifically we propose to disentangle the speaker

characteristics from emotion through an adversarial training network in order to better represent

emotion. Our method combines the gradient reversal technique with an entropy loss function to re-

move such speaker information. We show that our method improves speech emotion classification

and increases generalization to unseen speakers.

Though we use a range of techniques for dealing with limited resources, domain specific data

and entanglement of information, supervised behavioral modeling mostly relies on domain-specific

construct definitions and corresponding manually-annotated data, rendering generalizing across

domains challenging. In the last part of this dissertation, we exploit the stationary properties of

human behavior within interactions and present a representation learning method to capture behav-

ioral information from speech in an unsupervised way. We hypothesize that nearby segments of

speech share the same behavioral context and hence map onto similar underlying behavioral rep-

resentations. We present an encoder-decoder based Deep Contextualized Network (DCN) as well

as a Triplet-Enhanced DCN (TE-DCN) framework to capture the behavioral context and derive a

manifold representation, where speech frames with similar behaviors are closer while frames of

different behaviors maintain larger distances. The models are trained on movie audio data and

validated on diverse domains including on a couples therapy corpus and other publicly collected

xiii



data (e.g. stand-up comedy). With encouraging results, our proposed framework also shows the

feasibility of unsupervised learning within cross-domain behavioral modeling.

xiv



Chapter 1

Introduction

1.1 Motivation

Human communications include a complex dynamic interplay of rich verbal and nonverbal behav-

ior signals, including prosodic cues, spoken language and body language etc.. The expression and

perception of human behavioral signals play an important role in human interactions and social

relationships. These behavioral signals are both causes and consequences of different manifesta-

tions from speakers’ underlying communicative intents and purposes, emotional states and stances.

They not only shape the structure of an interpersonal interaction but also elicit more natural and

intellectual human communications. The study of human behaviors is central to the understanding

of human interactions and is essential for the advancement of computational affective models.

Signals of expressive human behaviors have also been used in the assessment of mental health

and well being. Analysis and classification of human behaviors exhibited in patient interactions

have gradually become one of the core tasks among a variety of clinical domains in psychother-

apy, in which certain behaviors have been widely used as indicative cues of mental health in ob-

servational studies [105]. Observation, evaluation, and identification of domain-specific human

behaviors are essential for psychologists to provide effective and specific treatment to patients. In

the traditional behavior annotation process, manual behavior rating is a costly and time-consuming

process, and the annotated behavior codes often suffer from the variability of the subjective biases
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of the annotation experts. Having an automatic behavior quantification framework can greatly en-

hance the objective assessments of patients, the quality of treatment, and more importantly, it can

inform and help the domain experts.

Given the importance of understanding human behaviors, the computational study of human

behaviors has attracted interest from a wide variety of disciplines, including psychology, social

science, health care, and engineering. Automatic computational approaches that support measure-

ment, analysis, and modeling of human behavior and interactions have been investigated over the

last few years. The emerging research field, known as Behavioral Signal Processing (BSP) [105],

integrates domain-specific knowledge, machine learning and signal processing methods, and em-

ploys acoustic[14, 157], lexical[28, 50], and visual information[97, 158] to model and analyze

multimodal human behaviors. Great advances have been made in assessing human state through

the technical way in areas such as couples therapy [14, 108], depression [59, 106, 142] and suicide

risk assessment [31, 39, 107, 109, 151]. Though promising advances have been achieved, much

of the existing research focuses on a standard two-step learning process: Designed acoustic fea-

tures or lexical features are firstly extracted and then followed by a simple classification process,

with models such as Support Vector Machines (SVM) [62] and Hidden Markov Models (HMM)

[115]. However, the real human behavioral understanding process is highly complex and non-

linear. It is challenging to design one specific algorithm to simulate complex human annotation

processes. Those knowledge-based features or pre-defined machine learning frameworks often

limit the learning of underlying representation of complex human behaviors, and many intrinsic

behavior properties cannot be derived from data through those learning processes.

Recently, deep learning techniques [58] have been employed and shown promising results in

many related areas related to human affective computing such as speech emotion recognition and

sentiment analysis [24]. The success of deep learning can be attributed to two main properties: first,

the Deep Neural Networks (DNN) can approximate any continuous smoother functions [160], and

second, it can learn functions based on large amounts of data. This data-driven learning frame-

work might alleviate the difficulty of the design of effective behavior representations and specific
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algorithms to simulate the complex human behavior annotation process. The underlying represen-

tations that the DNN identifies might advance the research in the BSP domain.

This dissertation aims to advance the computational human behaviors quantification and un-

derstanding, focusing primarily on addressing problems arising from the utilization of large-scale

data-driven deep learning techniques under certain constraints in the BSP domain. Our goals are

to explore the possibilities of employing deep learning modules in the BSP domain applications,

to develop computational methodologies of human behavior modeling, to further facilitate the un-

derstanding of different human affect related behaviors from data itself and finally to facilitate the

human experts’ assessment in the psychotherapy.

1.2 Challenges and Constrained Conditions

Automated affect-related human behavior annotation is a complex task. Even for trained human

annotators, rating behaviors is a costly and time-consuming process, and the subjective biases in

annotated ratings of behavior codes are inevitable. This subjectivity is mainly induced by the

complexity property of human communication and interaction itself. For example, human affect

can be easily shaped by many factors, such as context, linguistic content and acoustic spectral and

prosodic information.

In addition, human behaviors are often manifested over long time periods, they are complex,

domain-specific and multimodal. In real scenarios, a range of behavioral cues, from explicit and

overt linguistic constructs to implicit paralanguage and nonverbal communication, are encoded in

multiple resolutions, time scales, and with different levels of complexity. All these factors make

human behavioral integration a highly complex and non-linear process. Thus, it is challenging

to design algorithms to simulate such a human annotation process. Regardless of the complex-

ity of human behaviors, compared with other machine learning domains, there are also specific

constrained conditions and challenges in the field of BSP.
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1. Limited data resources

In BSP, rich behavior signals are usually collected in real scenarios from real patients. One

of the biggest challenges is that representative samples of behavior are extremely limited due

to the cost of data collection and annotation. Moreover, this data sparsity issue is exacerbated

by the difficulty of obtaining data due to privacy constraints [93, 105]. In addition, the large

imbalanced data in different behavior codes also exacerbates the issue of limited resources.

2. Low-resolution low agreement labels

When annotators manually annotate interaction sessions, they usually require training in

order to give ratings in a consistent manner, unbiased by personal influences. However,

because of the inherent complexity of human behavior, disagreement in human annotations

is still inevitable [95]. Thus, challenges with subjectivity, low inter-annotator agreement

and coarse annotations (both attributed to cost and human contextualization of short-term

information) especially in micro and macro annotation, complicate the learning task.

3. Errors from pre-processing procedures

The data collected in real scenarios usually requires a lot of pre-data processing steps before

they are ready to use. The typical processing procedures for audio recordings can include

denoising for low signal to noise ratio (SNR) sessions, voice activity detection (VAD) for

selection of human speech regions, speaker diarization [103] for segmentation of speech

regions belonging to each speaker and automated speech recognition for the obtainment of

speech transcripts. Errors from all these processing steps can be accumulated and potentially

further impact the machine learning performance on automated behavior recognition.

In this dissertation, we mainly take the first two challenges described above as constrained

conditions to explore direct and indirect approaches on building computational human behavior

modeling from speech signals via deep learning techniques and employ the out-of-domain data to

facilitate the domain behavior training.

4



1.3 Dissertation Overview

This proposed work mainly focuses on building a computational behavior quantification system

on acoustic modality from speech signals, which is unobtrusively obtainable and known to offer

rich behavioral information [108]. Specifically, we mainly utilize the Distressed Couple Therapy

Behavior [34] quantification as a case study to probe into the computational approaches for mod-

eling human behaviors under constrained conditions. To facilitate the automated domain behavior

recognition, a range of techniques are employed to deal with limited domain-specific data and the

entanglement information from speech signals. We show that our proposed models not only im-

prove existing automated human behavior quantification systems, but more importantly, provide

an insightful understanding of behaviors from real data.

Here are the main statement and contribution of this dissertation:

Even in a low-resource scenario, with an appropriate designed model structure or the utilization

of related out-of-domain resources, data-driven deep learning techniques could demonstrate the

outstanding capability of representation formulation in behavior understanding and quantification.

The overview of this dissertation can be briefly summarized as follows: First, we explore

the feasibility of directly using feed-forward neural networks on knowledge-based affect related

acoustic features. However, due to the data sparsity and variability property of human behaviors,

the fully connected DNN system cannot converge well. Even though we reduce the number of

neural networks’ parameters, add the dropout [137] to prevent overfitting, it is still overfitting to the

training data rather than learning behavior related information. Inspired by the dropout technique,

we propose a neural network framework which allows for full connectivity while limiting the

number of parameters trained at any time and allows for the probability of convergence even with

limited data (see Chapter 2).

Then, we study the indirect approaches towards deep behavior analysis and quantification.

Since emotions are psychologically known to be linked to behaviors, we link basic emotions to

complex behaviors through deep transfer learning, in which we employ short-term emotions as

primitives towards complex behavior understanding and investigate the inferential capacity and
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contextual importance between emotions and behaviors (see Chapter 3). Once we verify the ef-

fectiveness of using emotion related representation for behavior quantification, in Chapter 4, we

further focus on the robust affect representation learning from speech. Specifically, we regard the

speaker information as one type of domain knowledge, and propose a max-entropy adversarial net-

work to obtain speaker-invariant affective representation. In Chapter 5, the slow varying properties

of human behaviors are exploited, and we propose a triplet enhanced contextual encoder-decoder

structure to connect context and derive the behavioral manifold in an unsupervised manner.

Finally, in Chapter 6, we summarize this dissertation and provide several potential research

directions for future study.
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Chapter 2

Sparsely Connected and Disjointly Trained Deep Neural

Networks for Behavior Classification

2.1 Introduction

Observational practice, such as in the field of psychology, relies heavily on analysis of human

behaviors based on observable interaction cues. In Couples’ Therapy, one fundamental task is to

observe, evaluate and identify domain-specific behaviors during couples’ interactions. Based on

behavioral analyses, psychologists can provide effective and specific treatment.

Rating behaviors by human annotators is a costly and time consuming process. Great ad-

vances have been made during last decade on assessing human state through technical way. For

example, speech emotion recognition works [45, 127, 153] have shown effectiveness of extracting

emotional content from human speech signals. In addition, Deep Neural Networks (DNN) have

been employed for many related speech tasks [68, 123, 139]. Han et al.[60] and Le et al.[82]

both utilized DNN to extract high level representative features to improve emotion classification

accuracy.

Human emotions can change quickly and frequently in a short time period, thus emotion recog-

nition mainly focuses on very short speech segments (e.g., less than 2s) [104]. Affect recognition

models basic emotions and is not domain-specific. For mental health applications, though, experts

are more interested in very specific and complex behaviors exhibited over longer time scales. Over
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the last few years Behavioral Signal Processing (BSP) [51, 105] has examined the analysis of such

complex, domain specific behaviors. Based on machine learning techniques, BSP employed lexi-

cal [50], acoustic [14], and visual [97, 158] information to analyze and model multimodal human

behaviors. For instance, in couples’ therapy domain, Black et al.[14] built an automatic human be-

havioral coding system for couples’ interaction by using acoustic features. In [28, 157] the authors

employed a top layer HMM to take dynamic behavior state transitions into consideration and thus

achieved higher accuracy on session-level behavioral classification.

Despite these efforts, behavior estimation is still a complex task. Session level models combine

information at different timescales to estimate a session level rating. In doing so, they ignore non-

linear information integration models which are often employed by human raters, such as recency

and primacy models. For one thing, how human interpret and integrate behavior information is

still not well understood since the process is not a simple linear system; Further, and one of the

biggest challenges, is that representative samples of behavior are extremely limited due to privacy

constraints, cost of annotation, subjective ground truth, and coarse annotations (both attributed to

cost and human contextualization of short-term information).

Deep Neural Networks have shown promise in a wide range of machine learning tasks, es-

pecially for their ability to extract high level descriptions from raw data. However, in BSP, due

to the limited quantity of data, DNN deployment is difficult. Because of limited data, high-

dimensionality acoustic features, high signal variability, and the complication that the same acous-

tic signal encodes a range of additional information, training DNN systems on such data fails to

converge to optimal operating conditions.

To address this problem, we propose a Sparsely-Connected and Disjointly-Trained Deep Neural

Networks (SD-DNN) and demonstrate its use for behavioral recognition in Couples’ Therapy.

The rest of chapter is organized as follows: Section 2.2 describes the proposed SD-DNN be-

havior learning system in detail. Section 2.3 provides a brief description of the database used in
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experiments. Section 2.4 describes audio pre-processing steps and feature extraction methods em-

ployed in our work, after which we design multiple experiments and discuss our results in Section

2.5 and 2.6. Finally, we present our conclusions in Section 2.7.

2.2 Methodology

Human experts integrate a range of cues over a wide time interval and significant context to arrive

at session-level behavior descriptors. For example, a therapist can observe a couple interacting

for an hour and derive an assessment that one of the partners is negative while the other shows

acceptance. This, unfortunately, means that we are often left without an instantaneous ground-

truth. More often than not, this results in either building session level systems by employing all

available data e.g., [14], averaging of local decisions towards session level ratings [50], or creating

models of interaction as in [28, 157].

In this work, we will build a system that is able to estimate behaviors over short time frames

towards implementing a live behavioral estimation framework. We propose a Sparsely-Connected

and Disjointly-Trained Deep Neural Network (SD-DNN), that aims to tackle the data sparsity

issues in behavioral analysis.

Due to the lack of ground truth at short time intervals, we will employ session level ratings

for training and evaluation. For training, we will assume that every frame in a session shares the

same rating as the session level gestalt rating as shown on Fig. 2.1. For evaluation, we will use the

average of the macro-coding to estimate session level coding. Finally, we will demonstrate how

the system is able to track behavioral trajectories.

2.2.1 DNN Training

Employing the usual way of training a DNN system requires significant amounts of data. In our

analysis, and with a feature size of 168, this approach always lead to failure during training: DNN
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green row of ρ . During testing the mean rating is assigned as the estimated session-level rating ρ ′.

training immediately identifies a local minimum even for small neural networks; while the objec-

tive function decreases on the training set, it does not on the development set. Behavioral recogni-

tion results during testing are mostly unchanging, and hence uninformative in providing behavioral

trajectories. Likely the system converges to different minima relating to other dimensions, such as

for instance speaker characteristics.

To minimize overfitting we can add a dropout layer[137] at the input. This feature reduction

avoids overfitting to a certain degree, however we still do not obtain the gains we expected from

employing a DNN framework.

2.2.2 Reduced Feature Dimensionality DNN

One way to avoid overfitting issues is to use a reduced dimensionality input feature set. We can do

that through selecting a subset of features and training DNN on those, which means we use these

sub-feature-sets to train multiple behavior recognition systems. For each of these systems, the

feature dimension is reduced by a significant factor compared to the full feature set, thus number

of parameters in the resulting DNN is also decreased. Using same amount of training data, we can

obtain a robustly trained DNN. The process of this stage is shown in Figure 2.2.
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As we expect, this does not perform above baseline systems either since we do not employ all

informative features in to consideration. Subsequent output fusion is also challenging and does not

improve performance.

hidden 
layers

Feature 
Subset 0

output

hidden 
layers

output

hidden 
layers

output

…

Feature 
Subset 1

Feature 
Subset n

Figure 2.2: Basic behavior recognition system based on sub feature set
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Figure 2.3: Sparsely-Connected and Disjointly-Trained DNN

2.2.3 Sparsely-Connected and Disjointly-Trained DNN

To gain both the advantages of small feature sets, which converge to avoid overfitting issues, and

to still exploit the redundancy among feature streams, we propose the Sparsely-Connected and

Disjointly-Trained DNN (SD-DNN) training framework. In this framework, depicted in Fig. 2.3,

we select a sparse feature set, train (as in the Reduced feature dimensionality DNN’s) individual

DNN systems. Then we fix the parameters of these DNN systems, remove the output layer, connect

the top hidden layers together, and add new hidden layers as fusion layers. This framework allows

for both Sparse Connectivity at the bottom layers (not all features are connected to all hidden layers
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above) and Disjointly Training the various layers of the DNN thus reducing the degrees of freedom

and achieving convergence.

2.2.4 Joint Optimization of Sparsely-Connected DNN

The system presented in the previous section and shown in Fig. 2.3 disjointly optimizes the sparse

lower layers and top fusion layers. Without increasing the parameter dimensionality of the SD-

DNN, we can initialize training from the disjoint optimization point and jointly optimize the sys-

tem. We will denote this Sparse, Jointly optimized system by SJ-DNN.

2.2.5 Local to Session mappings

As mentioned earlier, we have only session-level ratings for the couple therapy corpus. This is not

unusual in mental health applications given the cost and subjectivity of annotations.

Due to subjectivity and inter-annotator agreement issues we use a binarized subset of the dataset

that lies at the top and bottom 20% of the dataset as in [14] for our training. We assign score 1

for high presence and 0 for low presence of one certain behavior. Frame-level training samples are

given the same reference as the session level reference as shown on Figure 2.1.

At test time, the output of the DNN system provides a score of the presence of behavior (as in

Figure 2.4), but doesn’t provide a global rating. While a range of methods exist for fusing decisions

(e.g., [28, 83, 157]), in this work we will use the simplest one: Average posteriors. We can treat

the output of DNN, qk
i as a proxy to the posterior probability of the behavior given the frame i for

session k, and Lk is the number of frames in session k. We then average qk
i to derive the session

level confidence score Qk. Mathematically:

Qk = exp(
1
Lk

∑
i

logqk
i ) (2.1)

For comparison with the reference session level label, we threshold and binarize Qk. The threshold,

Tk, is selected by optimization to give the minimum classification error rate on the training data.
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2.3 Couple Therapy Corpus
The database used in this chapter is provided by UCLA/UW Couple Therapy Research Project

[34], in which 134 couples participated in video-taped problem-solving interactions. During each

discussion, a relationship-related topic (e.g.“why can’t you leave my stuff alone?”) was selected.

Each participant’s behaviors was rated separately by human annotators for a set of 33 behav-

ioral codes (e.g. “Blame”, “Acceptance” etc.) based on the Couples Interaction Rating System

(CIRS) [63] and the Social Support Interaction Rating System (SSIRS) [77]. Every human anno-

tator provided a subjective rating scale from 1 to 9, where 1 refers absence of the behavior and 9

indicates a strong presence. For more information about this dataset, please refer to [14, 34].

2.4 Acoustic Feature Extraction

2.4.1 Audio Preprocessing

In any acoustic behavior classification task, we first need to identify contiguous regions of speech

by the interlocutors. This requires a range of pre-processing steps: Voice Activity Detection (VAD)

to identify spoken regions, Speaker Diarization to identify same-speaker regions. Following this,

we perform the feature extraction from speech regions. In our work we employ the preprocessing

steps described in [14]. In short: We employ all available interactions with a SNR above 5dB, and

perform VAD and Diarization. Then we ignore speech segments that are shorter than 1.5 seconds.

Speech segments from each session for the same speaker are then used to analyze behaviors.

2.4.2 Acoustic Feature Extraction

We extract acoustic features characterizing speech prosody (pitch and intensity), spectral envelope

characteristics (MFCCs, MFBs), and voice quality (jitter and shimmer). All these Low-Level-

Descriptors (LLDs) are extracted every 10 ms with a 25 ms Hamming window through openS-

MILE[47] and PRAAT[15]. We perform session level feature normalization for each of the speak-

ers as in [14] to reduce the impact of recording conditions and physical characteristics of different

speakers.
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Unlike [14] we are interested in building a fine-resolution behavioral estimation, rather than

session-level classification-only system, and as such we employ features with a sliding frame1.

Within each frame, we calculate a number of functionals: Min (1st percentile), Max (99th per-

centile), Range (99th percentile – 1st percentile), Mean, Median, and Standard Deviation.

2.5 Experiment Setup

We use leave-one-couple-out cross-validation to separate training and test data. We can thus ensure

a fair evaluation where same couple is not seen in the test set. For each behavior code and each

gender we use 70 sessions on one extreme of the code (e.g., high blame) and 70 sessions at the

other extreme (e.g., low blame)2. This is to achieve higher inter-annotator agreement and provide

training data with binary class labels.

Temporal variation in behavior is slower than basic emotions’ and thus a longer frame win-

dow size of speech segment is needed for its analysis. An earlier work[157] compared behavior

classification performance on various frame sizes and showed that a 20 s frame was sufficient to

estimate meaningful behavioral metrics while maintaining high resolution, we thus choose to use

a 20 s window with 1 s shift.

In our experiments we employ 3 of behavioral codes available to us: Acceptance, Negativity,

Blame. We evaluate using a baseline SVM system and compare with the above proposed DNN

based systems.

In summary: We use 168 features as discussed in section 2.4.2; classify 3 behavioral codes: Ac-

ceptance, Negativity, Blame; train a 1s-slide, 20s-length rating system; accumulate beliefs towards

binary classification evaluation; and qualitatively evaluate the behavioral trajectories resulting from

the proposed system.

1Note: arguably this could be converted into an online system if the normalization was done with a slower-varying
sliding window, akin to the CMV normalization of ASR systems.

2These do not necessarily correspond to matched partners due to the selection of the extreme sessions.
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2.6 Experiment Results and Discussion

Baseline SVM:

The baseline SVM model was built similar to the Static Behavioral Model discussed in [157].

Fully Connected DNN:

The fully connected DNN system described in section 2.2.1 did not converge and always kept the

first epoch values as the final states. To reduce this issue we had to introduce significant dropout

at the input layer. We also had to keep the overall network very small with only one hidden layer

of 15 units. We used a mini-batch adaptive gradient optimizer with a mean square error objective

function. As seen from Table 2.2, the fully connected DNN gains were modest.

Reduced dimensionality DNN:

To create smaller DNNs that may converge easier, we divided features into 5 parts: (a) knowledge-

based split by feature type: pitch, MFCCs, MFBs, jitter and shimmer, intensity. (b) Randomly.

Then for each feature subset we train a DNN with the same configuration as in the fully connected

DNN, i.e., one hidden layer with 15 units.

With these reduced and shallow neural nets we immediately observe good training characteris-

tics and convergence. Further from the results of Table 2.1 we can observe that even the reduced

feature size can often outperform the baseline SVM, which suggests potential gains from employ-

ing DNNs for behavior recognition. We also note that even the random split can perform quite

well in fusion compared to the baseline. Due to the randomness in this feature selection, differ-

ent splits may even be able to improve, however due to the lack of a development set we decided

not to perform such an optimization. The knowledge-based feature selection has a less uniform

classification accuracy due to the feature-size imbalance as expected, but we obtain better perfor-

mance on SD-DNN fusion described next, so we use knowledge-based feature split in all following

experiments.
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One random feature split instantiation

SVM Subset Subset Subset Subset Subset Fusion SD-DNN
(Baseline) 0 1 2 3 4

68.57 70.36 72.85 72.14 67.50 67.50 70.00 75.00

Knowledge-based feature split

SVM Pitch MFCCs MFBs Intensity Jitter & Fusion SD-DNN
(Baseline) Shimmer

68.57 66.07 71.07 66.78 61.43 61.79 72.14 75.36

Table 2.1: Classification accuracy (%) for the two different feature splits: One random instantiation
and one knowledge based

SD-DNN:

We thus proceed to construct our SD-DNN system by fixing the parameters of the reduced dimen-

sionality DNN systems and connecting their hidden layers (15×5) to another layer of DNN. In our

experiment, we utilize additional two hidden layers with 30 and 10 units respectively, and use the

same optimizer and objective function as before. As we can see from the last column of Table2.1

the performance of the SD-DNN is significantly better than that of the fusion of the individual

reduced dimensionality DNN’s.

SJ-DNN:

To relax the disjoint optimization constraint we also train jointly reduced feature DNNs at the front

layers and the top fusion DNNs of the above model. The parameter space of the model is identical

to the SD-DNN except all parameters are initialized on SD-DNN values but jointly trained. Table

2.2 shows that despite the two models being identical, the joint optimization of a larger set of

parameters reduces the performance of the SJ-DNN model versus the SD-DNN.

Fully Connected DNN, SD-DNN Initialized (DNNSD-init):

After achieving a better performing system, we attempt once again to reduce sparseness, and hence

increase the parameter space of the model, by fully connecting all inputs/hidden layers. We employ
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the SD-DNN model as initialization instead of using random initialization on DNN. This model is

initialized with the weights of the SD-DNN, or zero if the connection did not exist before.

All results of experiments are shown in Table 2.2, in general, the SD-DNN system has higher

accuracy rate than SVM baseline and plain DNN system. We obtain the greatest improvement

for Acceptance behavior from 68.57% to 75.36%, which shows benefits in employing DNN and

reducing connectivity of DNN because of sparse data.

Behavior
Code SVM

Fully
connected

DNN
SD-DNN SJ-DNN DNNSD-init

Acceptance 68.57 71.79 75.36 73.57 71.43

Negativity 73.21 74.64 77.14 75.36 74.29

Blame 73.21 73.93 75.71 74.29 73.93

Table 2.2: Classification accuracy (%) with all behavioral recognition systems

In summary we can observe that both reduction of the total number of parameters via sparseness

but also reduction of the trainable parameters at any time via disjoint training can help in dealing

with limited data. Specifically by observing the fully connected DNN and DNNSD-init results,

for most behavioral codes, we can see that any increase in the system’s number of parameters

(reduction of sparseness) results in reduction of the performance, even if the initialization point is

a good one. We can also see that increasing the number of simultaneously and jointly trainable

parameters, as visible by comparing SD- and SJ-DNN’s, also damages performance.

Online Behavioral Trajectories:

One of the advantages of moving to an estimation, rather than classification framework, is that we

can now provide domain experts with behavioral trajectories. These are becoming increasingly

necessary, especially in new behavioral analysis paradigms where patients are instrumented con-

tinuously in-lab, at-home, and in-situ. The resulting datasets are vast, even though training data

is limited, and behavioral trajectories can help identify specific behaviors over time. One sample
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behavior dynamic change trajectories is shown in Fig. 2.4. From this figure, we can see behavior

Negativity and Blame are highly correlated, and have opposite trend with Acceptance, which is in

agreement with our intuition and previous research work[14].
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Figure 2.4: Output of SD-DNN for one sample test session with three behavior codes

Overall, results suggest that a Sparsely-Connected, Disjointly-Trained DNN framework pro-

vides the most promise in employing DNNs into the limited data BSP domain.

2.7 Conclusion

Compared to other DNN based machine learning tasks, data sparsity is a critical issue in BSP

domain due to its costly and complicated data generating process. Through Sparsely Connected

and Disjoint Training we can train more complex architecture DNN systems with limited dataset,

achieve increased session-level performance, and importantly obtain continuous in time and rating

annotations of our data. For future work, we can tune the SD-DNN architecture and parameters.

For instance, different reduced dimensionality DNN learning system can use different DNN archi-

tecture.
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At the same time, we notice that the low resource constrained condition limits the use of large-

scale data-driven machine learning in BSP domain. Thus, in the next chapter, we plan explore the

“indirect” approaches to employ mutual or shared information between different behavior codes.

Also, we utilize the link between basic emotion and complex behaviors into behavioral analysis..
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Chapter 3

Linking Emotions to Behaviors through Deep Transfer

Learning

3.1 Introduction

Human communication includes a range of cues from lexical, acoustic and prosodic, turn tak-

ing and emotions to complex behaviors. Behaviors encode many domain-specific aspects of the

internal user state, from highly complex interaction dynamics to expressed emotions. These are en-

coded at multiple resolutions, time scales, and with different levels of complexity. For example, a

short speech signal or a single uttered word can convey basic emotions [43, 44]. More complex be-

haviors require domain specific knowledge and longer observation windows for recognition. This

is especially true in task specific behaviors of interest in observational treatment for psychother-

apy such as in couples’ therapy [34] and suicide risk assessment [39]. Behaviors encompass a

rich set of information that includes the dynamics of interlocutors and their emotional states, and

can often be domain specific. The evaluation and identification of domain specific behaviors (e.g.

blame, suicide ideation) can facilitate effective and specific treatments by psychologists. During

the observational treatment, annotation of human behavior is a time consuming and complex task.

Thus, there have been efforts on automatically recognizing human emotion and behavior states,

which resulted in vibrant research topics such as affective computing [113, 118, 144], social signal

processing [152], and behavioral signal processing (BSP) [50, 105]. In the task of speech emotion
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recognition (SER), researchers are combining machine learning techniques to build reliable and

accurate affect recognition systems [129]. In the BSP domain, through domain-specific focus on

areas such as human communication, mental health and psychology, research targets advances of

understanding of higher complexity constructs and helps psychologists to observe and evaluate

domain-specific behaviors.

However, despite these efforts on automatic emotion and behavior recognition (see section3.3),

there has been less work on examining the relationship between these two. In fact, many domain

specific annotation manuals and instruments [63, 66, 77] have clear descriptions that state specific

basic emotions can be indicators of certain behaviors. Such descriptions are also congruent with

how humans process information. For example, when domain experts attempt to quantify complex

behaviors, they often employ affective information within the context of the interaction at varying

timescales to estimate behaviors of interest [105, 148].

Moreover, the relationship between behavior and emotion provides an opportunity for (i) trans-

fer learning by employing emotion data, that is easier to obtain, annotate, and less subjective, as

the initial modeling task; and (ii) employing emotional information as building blocks, or primitive

features, that can describe behavior.

The purpose of this work is to explore the relationship between emotion and behavior through

deep neural networks, and further the employ emotion-related information towards behavior quan-

tification. There are many notions of what an “emotion” is. For the purpose of this paper and most

research in the field [45, 129], the focus is on basic emotions, which are defined as cross-culturally

recognizable. One commonly used discrete categorization is by Ekman [43, 44], in which six ba-

sic emotions are identified as anger, disgust, fear, happiness, sadness, and surprise. According to

theories [119, 120], emotions are states of feeling that result in physical and psychological changes

that influence our behaviors.

Behavior, on the other hand, encodes many more layers of complexity: the dynamics of the

interlocutors, their perception, appraisal, and expression of emotion, their thinking and problem-

solving intents, skills and creativity, the context and knowledge of interlocutors, and their abilities
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towards emotion regulation [8, 9]. Behaviors are also domain dependent. In addiction [6], for

example, a therapist will mostly be interested in the language which reflects changes of addictive

habits. In suicide prevention [39], reasons for living and emotional bond are more relevant. In

doctor-patient interactions, empathy or bedside manners are more applicable.

In this paper, we will first address the task of basic emotion recognition from speech. Thus

we will discuss literature on the notion of emotion (see section 3.2) and prior work on emotion

recognition (see section 3.3). We will then, as our first scientific contribution, describe a system

that can label emotional speech (see section 3.4.1).

The focus of this paper however is to address the more complex task of behavior analysis.

Given behavior is very related to the dynamics, perception, and expression of emotions [119], we

believe a study is overdue in establishing the degree to which emotions can predict behavior. We

will therefore introduce more analytically the notion of behavior (see section 3.2) and describe

prior work in behavior recognition (see section 3.3), mainly from speech signals. The second

task of this paper will be in establishing a model that can predict behaviors from basic emotions.

We will investigate the emotion-to-behavior aspects in two ways: we will first assume that the

discrete emotional labels directly affect behavior (see section 3.4.2). We will further investigate if

an embedding from the emotion system, representing behaviors but encompassing a wider range

of information, can better encode behaviorally meaningful information (see section 3.4.2).

In addition, the notion that behavior is highly dependent on emotional expression also raises

the question of how important the sequence of emotional content is in defining behavior. We will

investigate this through progressively removing the context from the sequence of emotions in the

emotion-to-behavior system (see. section 3.4.2) and study how this affects the automatic behavior

classification performance.
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3.2 Background

Emotions: There is no consensus in the literature on a specific definition of emotion. An “emo-

tion” is often taken for granted in itself and, most often, is defined with reference to a list of descrip-

tors such as anger, disgust, happiness, and sadness etc.[23]. Oatley and Jenkins [111] distinguish

emotion from mood or preference by the duration of each kind of state. Two emotion represen-

tation models are commonly employed in practice [129]. One is based on the discrete emotion

theory, where six basic emotions are isolated from each other, and researchers assume that any

emotion can be represented as a mixture of the basic emotions [38]. The other model defines emo-

tions via continuous values corresponding to different dimensions which assumes emotions change

in a continuous manner and have strong internal connections but blurred boundaries between each

other. The two most common dimensions are arousal and valence [121].

In our work, following related literature, we will refer to basic emotions as emotions that are

expressed and perceived through a short observation window. Annotations of such emotions take

place without context to ensure that time-scales, back-and-forth interaction dynamics, and domain-

specificity is not captured.

Behavior: Behavior is the output of information and signals including but not limited to those: (i)

manifested in both overt and covert multimodal cues (“expressions”); and (ii) processed and used

by humans explicitly or implicitly (“experience” and “judgment”) [9, 105]. Behaviors encompass

significant degrees of emotional perception, facilitation, thinking, understanding and regulation,

and are functions of dynamic interactions [8]. Further, such complex behaviors are increasingly

domain specific and subjective.

Link between emotions and behavior: Emotions can change frequently and quickly in a short

time period [44, 104]. They are internal states that we perceive or express (e.g., through voice

or gesture) but are not interactive and actionable. Behaviors, on the other hand, include highly
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complex dynamics, information from explicit and implicit aspects, are exhibited over longer time

scales, and are highly domain specific.

For instance, “happiness”, as one of the emotional states, is brought about by generally positive

feelings. While within couples therapy domain, behavior “positivity” is defined in [63, 77] as

“Overtly expresses warmth, support, acceptance, affection, positive negotiation”.
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Figure 3.1: Illustration of task complexity or age of acquisition for machines and humans.

Those differences apply to both human cognition and machine learning aspects of speech cap-

ture, emotion recognition and behavior understanding as shown in Figure 3.1 [69, 133]. The in-

creased complexity and contextualization of behavior can be seen both in humans as well as ma-

chines. For example, babies start to develop basic emotion perception at the age of seven months

[133]. However, it takes emotionally mature and emotionally intelligent humans and often trained

domain experts to perceive domain-specific behaviors. In Figure 3.1, we illustrate the complexity

for machine processing along with the 340 age-of-acquisition for humans. We see a parallel in the

increase in demands of identifying behavior in both cases.

Motivations and goals of this work: The relationship between emotion and behavior is usually

implicit and highly nonlinear. Investigating explicit and quantitative associations between behavior

and emotions is thus challenging.
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In this work, based on the deep neural networks’ (DNNs) underlying representative capability

[11, 12], we try to analyze and interpret the relationship between emotion and behavior infor-

mation through data-driven methods. We investigate the possibility of using transfer learning by

employing emotion data as emotional related building blocks, or primitive features, that can de-

scribe behavior. Further, we design a deep learning framework that employs a hybrid network

structure containing context dependent and reduced contextualization causality models to quanti-

tatively analyze the relationship between basic emotions and complex behaviors.

3.3 Related Work

Researchers are combining machine learning techniques to build reliable and accurate emotion

and behavior recognition systems. Speech emotion recognition (SER) systems, of importance in

human-computer interactions, enable agents and dialogue systems to act in a more human-like

manner as conversational partners [129]. On the other hand, in the domain of behavior signal

processing (BSP), efforts have been made in quantitatively understanding and modeling typical,

atypical, and distressed human behavior with a specific focus on verbal and non-verbal commu-

nicative, affective, and social behaviors [105]. We will briefly review the related work in the

following aspects.

Emotion quantification from speech A dominant modality for emotion expression is speech

cowie2003describing. Significant efforts [10, 45, 127] have focused on automatic speech emo-

tion recognition. Traditional emotion recognition systems usually rely on a two-stage approach,

in which the feature extraction and classifier training are conducted separately. Recently, deep

learning has demonstrated promise in emotion classification tasks [60, 82]. Convolutional neural

networks (CNNs) have been shown to be particularly effective in learning affective representations

directly from speech spectral features [2, 5, 73, 94, 166]. Mao et al. [94] proposed to learn CNN

filters on spectrally whitened spectrograms by an auto-encoder through unsupervised manners.
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Aldeneh and Provost [2] showed that CNNs can be directly applied to temporal low-level acous-

tic features to identify emotionally salient regions. Anand and Verma [5] and Huang et al. [73]

compared multiple kinds of convolutional kernel operations, and showed that the full-spectrum

temporal convolution is more favorable for speech emotion recognition tasks. In addition, models

with hidden Markov model (HMM) [124], recurrent neural networks (RNNs) [85, 98, 155] and the

hybrid neural network combining CNNs and RNNs [72, 91] have also been employed to model

emotion affect.

Behavior quantification from speech Behavioral signal processing (BSP) [51, 105] can play

a central role in informing human assessment and decision making, especially in assisting do-

main specialists to observe, evaluate and identify domain-specific human behaviors exhibited over

longer time scales. For example, in couples therapy [14, 108], depression [59, 106, 138, 142]

and suicide risk assessment [39, 107, 109, 151], behavior analysis systems help psychologists ob-

serve and evaluate domain-specific behaviors during interactions. Li et al. [86] proposed sparsely

connected and disjointly trained deep neural networks to deal with the low-resource data issue in

behavior understanding. Unsupervised [87] and out-of-domain transfer learning [149] have also

been employed on behavior understanding tasks. Despite these important and encouraging steps

towards behavior quantification, obstacles still remain. Due to the end-to-end nature of recent ef-

forts, low-resource data becomes a dominant limitation [37, 67, 86, 134]. This is exacerbated in

BSP scenario by the difficulty of obtaining data due to privacy constraints [93, 105]. Challenges

with subjectivity and low interannotator agreement [20, 148], especially in micro and macro an-

notation complicate the learning task. Further, and importantly such end-to-end systems reduce

interpretability generalizability and domain transfer [130].

Linking emotion and behavior quantification As mentioned before, domain experts employ

information within the context of the interaction at varying timescales to estimate the behaviors

of interest [105, 148]. Specific short-term affect, e.g., certain basic emotions, can be indicators

of some complex long-term behaviors during manual annotation process [63, 66, 77]. These vary
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according to the behavior; for example, negativity is often associated with localized cues [25],

demand and withdrawal require more context [64], and coercion requires a much longer context

beyond a single interaction [48]. Chakravarthula et al. [30] analyzed behaviors, such as “anger”

and “satisfaction”, and found that negative behaviors could be quantified using short observation

length whereas positive and problem solving behaviors required much longer observation.

In addition, Baumeister et al. [8, 9] discussed two kinds of theories: the direct causality model

and inner feedback model. Both models emphasize the existence of a relationship between basic

emotion and complex behavior. Literature from psychology [19, 42] and social science [136] also

showed that emotion can have impacts and further shape certain complex human behaviors. To

connect basic emotion with more complex affective states, Carrillo et al. [26] identified a relation-

ship between emotional intensity and mood through lexical modality. Khorram et al. [79] verified

the significant correlation between predicted emotion and mood state for individuals with bipo-

lar disorder on acoustic modality. All these indicate that the aggregation and link between basic

emotions and complex behaviors is of interest and should be examined.

3.4 Proposed Work: Behavioral Primitives

Our work consists of three studies for estimation of behavior through emotion information as

follows:

1. Context-dependent behavior from emotion labels: Basic emotion affect labels are directly

used to predict long-term behavior labels through a recurrent neural network. This model is

used to investigate whether the basic emotion states can be sufficient to infer behaviors.

2. Context-dependent behavior from emotion-informed embeddings: Instead of directly

using the basic emotion affect labels, we utilize emotion-informed embeddings towards the

prediction of behaviors.
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3. Reduced context-dependent behavior from emotion-informed embeddings: Similar to

(2) above, we employ emotion-informed embeddings. In this case, however, we investi-

gate the importance of context, by progressively reducing the context provided to the neural

network in predicting behavior.

For all three methods, we utilize a hybrid model of convolution and recurrent neural networks that

we will describe in more detail below.

Through our work, both emotion labels and emotionally informed embeddings will be regarded

as a type of behavior primitive, that we call Basic Affect Behavioral Primitive Information (or

Behavioral Primitives for short, BP).

An important step in obtaining the above BP is the underlying emotion recognition system. We

thus first propose and train a robust Multi-Emotion Regression Network (ER) using convolutional

neural network (CNN), which is described in detail in the following subsection.

3.4.1 Emotion Recognition

In order to extract emotionally informed embeddings and labels, we propose a CNN based Multi-

Emotion Regression Network (ER). The ER model has a similar architecture as [2], except that we

use one-dimensional (1D) CNN kernels and train the network through a regression task. The CNN

kernel filter should include entire spectrum information per scan, and shift along the temporal axis,

which performs better than other kernel structures according to Huang et al. [73].

Our model has three components: (1) stacked 1D convolutional layers; (2) an adaptive max

pooling layer; (3) stacked dense layers. The input acoustic features are first processed by multiple

stacked 1D convolution layers. Filters with different weights are employed to extract different

information from the same input sample. Then, one adaptive max pooling layer is employed to

further propagate 1D CNN outputs with the largest value. This is further processed through dense

layers to generate the emotional ratings at short-term segment level. The adaptive max pooling

layer over time is one of the key components of this and all following models: First, it can cope with

variable length signals and produce fixed size embeddings for subsequent dense layers; Second, it
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only returns the maximum feature within the sample to ensure only the more relevant emotionally

salient information is propagated through training.

We train this model as one regression model which predicts the annotation ratings of all emo-

tions jointly. Analogous to the continuous emotion representation model [121], this multi-emotion

joint training framework can utilize strong bonds but blurred boundaries within emotions to learn

the embeddings. Through this joint training process, the model can integrate the relationship across

different emotions, and hopefully obtain an affective-rich embedding.

In addition, to evaluate the performance of proposed ER, we also build multiple binary, single-

emotion, classification models (Single-Emotion Classification Network (EC)). The EC model is

modified based on pre-trained ER by replacing the last linear layer with new fully connected layers

to classify each single emotion independently. During training, the back propagation only updates

the newly added linear layers without changing the weights of pre-trained ER model. In this case,

the loss from different emotions is not entangled and the weights will be optimized towards each

emotion separately. More details of experiments and results comparison are described in 3.7.
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As mentioned before, we employ two kinds of behavioral primitives in order to investigate

the relationship between emotions and behaviors, and the selection of these two kinds of BP arises

through the discrete, EC, and continuous, ER, emotion representation models. The two kinds of BP

are: (1) The discrete vector representation of predicted emotion labels, denoted as B-BP k, from

the Single-Emotion Classification Network (EC), where k means kth basic emotion; and (2) The

output embeddings of the CNN layers, denoted as E-BP l, from the Multi-Emotion Regression

Network (ER) system, where l represents the output from lth CNN layer. All these are illustrated

in Figure 3.2.

3.4.2 Behavior Recognition through Emotion-based Behavior Primitives

We now describe three architectures for estimating behavior through Basic Affect Behavioral

Primitive Information (or Behavioral Primitives for short, BP). The three methods employ full

context of the emotion labels from the Single-Emotion Classification Network (EC), the full con-

text from the embeddings of the Multi-Emotion Regression Network (ER) system, and increas-

ingly reduced context from the Multi-Emotion Regression Network (ER) system.

Context-dependent behavior recognition from emotion labels

In this approach, the binarized predicted labels from the EC system are employed to predict long-

term behaviors via sequential models in order to investigate relationships between emotions and

behaviors. Such a design can inform the degree to which short-term emotion can influence behav-

iors. It can also provide some interpretability of the employed information for decision making,

over end-to-end systems that generate predictions directly from the audio features.

We utilize the Single-Emotion Classification Network (EC) described in the previous sec-

tion to obtain the predicted Binarized Emotion-Vector Behavior Primitives (B-BP) on shorter

speech segment windows as behavioral primitives. These are extracted from the longer signals

that describe the behavioral corpus and are utilized, preserving sequence, hence context, within
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a recurrent neural network for predicting the behavior labels. Figure 3.3 illustrates the network

architecture and B-BP * means the concatenation of all B-BP k, where k ranges from 1 to 6.
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EC EC EC EC

GRU GRU GRU GRU

Speech

Pretrained…

…

Trainable
BehaviorsFC 

layers

B-BP_* B-BP_* B-BP_* B-BP_*

Figure 3.3: B-BP based context-dependent behavior recognition model

In short, the B-BP vectors are fed into a stack of gated recurrent units (GRUs), followed by

a densely connected layer which maps the last hidden state of the top recurrent layer to behavior

label outputs. GRUs were introduced by Chung et al. [35] as one attempt to alleviate the issue

of vanishing gradient in standard vanilla recurrent neural networks and to reduce the number of

parameters over long short-term memory (LSTM) neurons. GRUs have a linear shortcut through

timesteps which avoids the decay and thus promotes gradient flow. In this model, only the sequen-

tial GRU components and subsequent dense layers are trainable, while the EC networks remain

fixed.

Context-dependent behavior recognition from emotion-embeddings

It is widely understood that information closer to the output layer is more tied to the output labels

while closer to the input layer information is less constrained and contains more information about

the input signals. In our ER network, the closer we are to the output, the more raw information

included in the signal is removed and the more we are constrained to the basic emotions. Given

that we are not directly interested in the emotion labels, but in employing such relevant information

for behavior, it makes sense to employ layers below the last output layer to capture more behavior-

relevant information closer to its raw form. Thus, instead of using the binary values representing
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the absence or existence of the basic emotions, we can instead employ Emotion-Embedding Be-

havior Primitives (E-BP) as the input representation.
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Figure 3.4: E-BP based context-dependent behavior recognition model. E-BP l is the output from
lth pretrained CNN layer. In practice multiple E-BP l can be employed at the same time through
concatenation. In this work we only employ the output of a single layer at a time.

The structure of the system is illustrated in Figure 3.4. After pretraining the ER, we keep some

layers of that system fixed, and employ their embeddings as the Emotion-Embedding Behavior

Primitives (E-BP). We will discuss the number of fixed layers in the experiments section. This

E-BP serves as the input of the subsequent, trainable, convolutional and recurrent networks.

The overall system is trained to predict the longer-term behavior states. By varying the number

of layers that remain unchanged in the ER system and using different embeddings from different

layers for the behavior recognition task we can identify the best embeddings under the same overall

number of parameters and network architecture.

The motivation of the above is that the fixed ER encoding module is focusing on learning emo-

tional affect information, which can be related but not directly linked with behaviors. By not using

the final layer, we are employing a more raw form of the emotion-related information, without

extreme information reduction, that allows for more flexibility in learning by the subsequent be-

havior recognition network. This allows for transfer learning [146] from one domain (emotions) to

another related domain (behaviors). Thus, this model investigates the possibility of using transfer

learning by employing emotional information as “building blocks” to describe behavior.
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Reduced context-dependent behavior recognition from emotion-informed embeddings

In the above work, we assume that the sequence of the behavior indicators (embeddings or emo-

tions) is important. To verify the need for such an assumption, in this section, we propose varying

the degree of employed context. Through quantification, we analyze the time-scales at which the

amount of sequential context affects the estimation of the underlying behavioral states.

In this proposed model, we design a network that can only preserve local context. The overall

order of the embeddings extracted from the different local segments is purposefully ignored so we

can better identify the impact of de-contextualizing information as shown in Figure 3.5.

Speech a. dio sequence

Context aware
within the local

window
Context reduced

globally

E-BPs

Figure 3.5: Illustration of local context awareness and global context reduction. In previous sec-
tions, the E-BPs (and B-BPs) are passed to a GRU that preserves their sequences. Here they are
processed through pooling and context is removed.

In practice, this reduced-context model is built upon the existing CNN layers as in the E-BP

case. We will create this reduced context system by employing only the E-BP embeddings. The

E-BP embeddings are extracted from the same emotion system as before. In this case, however,

instead of being fed to a recursive layer with full-session view, we eliminate the recursive layer

and incorporate a variable number of CNN layers and local average pooling functions in between

to adjust context view. Since the final max-pooling layer ignores the order of the input, the largest

context is determined by the receptive field view of the last layer before this max-pooling. We can

thus investigate the impact of context by varying the length of the CNN receptive field.
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Figure 3.6: E-BP reduced context-dependent behavior recognition model. Model (A) has a smaller
receptive field while model (B) has a larger receptive field because of the added local average
pooling layers.

Figure 3.6 illustrates the model architecture. We extract the optimal E-BP based on the results

of previous model, and then employ more CNN layers with different receptive field sizes to extract

high-dimensional representation embeddings, and finally input them to the adaptive max-pooling

along the time axis to eliminate the sequential information. Within each CNN receptive field,

shown as red triangles in the figure, the model still has access to the full receptive field context.

The max pooling layer removes context across the different receptive windows.

Furthermore, the receptive field can be large enough to enable the model to capture behav-

ioral information encoded over longer timescales. In contrast a very small receptive area, e.g., at

timescale of phoneme or word, sensing behaviors should be extremely difficult [9] and can even be

challenging to detect emotions [104]. The size of the receptive field is decided by the number of

CNN layers, corresponding stride size, and the number of local average pooling layers in between.

In our model, we adjust the size of the receptive field by setting different number of local average

pooling layers under which the overall number of network parameters is unchanged.
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3.5 Datasets

3.5.1 Emotion Dataset: CMU-MOSEI Dataset

The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) [162] contains

video files carefully chosen from YouTube. Each sample is a monologue with verified quality

video and transcript. This database includes 1000 distinct speakers with 1000 kinds of topics,

and are gender balanced with an average length of 7.28 seconds. Speech segments are already

filtered during the data collection process, thus all speech segments are monologues of verified

audio quality.

For each speech segment, six emotions (Happiness, Sadness, Anger, Fear, Disgust, Surprise)

are annotated on a [0,3] Likert scale for the presence of each emotion. (0: no evidence; 1: weak

evidence; 2: evidence; and 3: high evidence of emotion). This, after averaging ratings from 3

annotators, results in a 6-dimensional emotional rating vector per speech segment. CMU-MOSEI

ratings can also be binarized for each emotion: if a rating is greater than 0 it is considered that

there is some presence of emotion, hence it is given a true presence label, while a zero results in a

false presence of the emotion.

The original dataset has 23,453 speech segments and each speech segment may contain more

than one emotion presence label. Through our experiments, we use the segments with available

emotion annotations and standard speaker independent split from dataset SDK [161]: Overall we

have true presence in 12465 segments for happiness, 5998 for sadness, 4997 for anger, 2320 for

surprise, 4097 for disgust and 1913 for fear. Due to the imbalance, accurate estimation of some

emotions will be challenging. The training set consists of 16331 speech segments, while the vali-

dation set and test set consist of 1871 and 4662 sentences respectively.

3.5.2 Behavior Dataset: Couples Therapy Corpus

The Couples Therapy dataset is employed to evaluate complex human behaviors. The corpus was

collected by researchers from the University of California, Los Angeles and the University of
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Washington for the Couple Therapy Research Project [34]. It includes a longitudinal study of 2

years of 134 real distressed couples. Each couple has been recorded at multiple instances over

the 2 years. At the beginning of each session, a relationship-related topic (e.g. “why can’t you

leave my stuff alone?”) was selected and the couple interacted about this topic for 10 minutes.

Each participant’s behaviors were rated by multiple well-trained human annotators based on the

Couples Interaction [63] and Social Support Interaction [77] Rating Systems. 31 behavioral codes

were rated on a Likert scale of 1 to 9, where 1 refers absence of the given behavior and 9 indicates a

strong presence. Most of the sessions have 3 to 4 annotators, and annotator ratings were averaged to

obtain the final 33-dimensional behavioral rating vector. The employed part of the dataset includes

569 coded sessions, totaling 95.8 hours of data across 117 unique couples.

3.6 Audio Processing and Feature Extraction

3.6.1 Behavioral Dataset Pre-processing

For preprocessing the couples therapy corpus we employ the procedure described in [14]. The

main steps are Speech Activity Detection (SAD) and diarization. Since we only focus on acoustic

features extracted for speech regions, we extract the speech parts using the SAD system described

in [53], and only keep sessions with an average SNR greater than 5 dB (72.9% of original dataset).

Since labels of behavior are provided per-speaker, accurate diarization is important in this task.

Thus, for diarization we employ the manually-transcribed sessions and a forced aligner in order to

achieve high quality interlocutor-to-audio alignment. This is done using the recursive ASR-based

procedure of alignment of the transcripts with audio by SailAlign [78].

Speech segments from each session for the same speaker are then used to analyze behaviors.

During testing phase, a leave-test-couples-out process is employed to ensure separation of speaker,

dyad, and interaction topics. More details of the preprocessing steps can be found in [14].

After the processing procedure above, the resulting corpus has a total of 48.5 hours of audio

data across 103 unique couples and a total of 366 sessions.
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3.6.2 Feature Extraction

In this work, we focus only on the acoustic features of speech. We utilize Log-Mel filterbank

energies (Log-MFBs) and MFCCs as spectrogram features. Further, we employ pitch and energy.

These have been shown in past work to be the most important features in emotion and behavior

related tasks. These features are extracted using Kaldi [114] toolkit with a 25 ms analysis window

and a window shift of 10 ms. The number of Mel-frequency filterbanks and MFCCS are both

set to 40. For pitch, we use the extraction method in [52], in which 3 features, normalized cross

correlation function (NCCF), pitch ( f0), the delta of pitch, are included for each frame.

After feature extraction, we obtain an 84-dimensional feature per frame (40 log-MFB’s, 40

MFCC’s, energy, f0, delta of f0, and NCFF).

3.7 Experiments and Results Discussion

3.7.1 General Settings

For emotion-related tasks, we utilize the CMU-MOSEI dataset with the given standard train, vali-

dation, test data split from [161].

For the behavior related tasks, we employ the couple therapy corpus and use leave-4-couples-

out cross-validation. Note that this results in 26 distinct neural-network training-evaluation cycles

for each experiment. During each fold training, we randomly split 10 couples out as a validation

dataset to guide the selection of the best trained model and prevent overfitting. All these settings

ensure that the behavior model is speaker independent and will not be biased by speaker charac-

teristics or recording and channel conditions.

In our experiments, we employ five behavioral codes: Acceptance, Blame, Positivity, Negativity

and Sadness, each describing a single interlocutor in each interaction of the couples therapy corpus.

Table 3.1 lists a brief description1 of these behaviors from the annotation manuals [63, 77] .

1Full definitions are too long to insert in this manuscript and reader is encouraged to look into [63, 77]
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Behavior Description
Acceptance Indicates understanding, acceptance, respect for partner’s views, feelings and behaviors

Blame Blames, accuses, criticizes partner and uses critical sarcasm and character assassinations
Positivity Overtly expresses warmth, support, acceptance, affection, positive negotiation
Negativity Overtly expresses rejection, defensiveness, blaming, and anger
Sadness Cries, sighs, speaks in a soft or low tone, expresses unhappiness and disappointment

Table 3.1: Description of behaviors

Following the same setting of [13] to reduce effects of interannotator disagreement, we model

the task as a binary classification task of low- and high- presence of each behavior. This also

enables balancing for each behavior resulting in equal-sized classes. This is especially useful as

some of the classes, e.g., Sadness, have an extremely skewed distribution towards low ratings.

More information on the distribution of the data and impact on classification can be found in [50].

Thus, for each behavior code and each gender, we filter out 70 sessions on one extreme of the code

(e.g., high blame) and 70 sessions at the other extreme (e.g., low blame).

Since due to the data cleaning process, some sessions may be missing some of the behavior

codes, we use a mask and train only for the available behaviors. Moreover, the models are trained

to predict the binary behavior labels for all behaviors together. The loss is calculated by averaging

5 behavioral classification loss with masked labels. Thus, this loss is not optimizing for any specific

behavior but it is focusing on the general, latent, link between emotions and behaviors.

3.7.2 ER and EC for Emotion Recognition

Both the Multi-Emotion Regression Network (ER) and the Single-Emotion Classification Net-

work (EC) are trained using the CMU-MOSEI dataset.

The Multi-Emotion Regression Network (ER) system consists of 4 layers of 1D CNN layers,

adaptive max-pooling layer and followed by 3 fully connected layers with ReLU activation func-

tion. During the training, we randomly choose a segment from each utterance and represent the

label of the segment using the utterance label. In our work, we employ a segment length of 1

second.
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The model is trained jointly with all six emotions by optimizing the mean square error (MSE)

regression loss for all emotions ratings together using Adam optimizer [80].

In a stand-alone emotion regression task, a separate network that can optimize per-emotion

may be needed (through higher-level disconnected network branches), however in our work, as

hypothesized above, this is not necessary. Our goal is to extract as much information as possible

from the signal relating to any and all available emotions. We will, however, investigate optimizing

per emotion in the EC case.

Further to the ER system, we can optimize per emotion through the Single-Emotion Classi-

fication Network (EC). This is trained for each emotion separately by replacing the pre-trained

ER’s last linear layer with three emotion-specific fully connected layers. We use the same bi-

nary labeling setting as described in [162]: Within each emotion, for samples with original rating

value larger than zero, we assign the label 1 by considering the presence of that emotion; for sam-

ples with rating 0, we assign label 0. During training, we randomly choose 1-second segments

as before. During evaluation, we segment each utterance into one-second segments and the final

utterance emotion label is obtained via majority voting. In addition, the CMU-MOSEI dataset has

a significant data imbalance issue: the true label in each emotion is highly under-represented. To

alleviate this, during training, we balance the two classes by subsampling the 0 label esence class

in every batch.

Emotions Anger Disgust Fear Happy Sad Surprise
Methods in CMU-MOSEI

[162] 56.4 60.9 62.7 61.5 62.0 54.3
Proposed EC 61.2 64.9 57.0 63.1 62.5 56.2

Table 3.2: Weighted classification accuracy (WA) in percentage for emotion recognition on the
CMU-MOSEI dataset. Bold numbers represent the best performing system.

In our experiments, in order to correctly classify most of the relevant samples, the model is

optimized and selected based on average weighted accuracy (WA) as used in [162]. WA is defined

in [145]: Weighted Accuracy = (T P×N/P+T N)/2N, where T P (resp. T N) is true positive (resp.

true negative) predictions, and P (resp. N) is the total number of positive (resp. negative) examples.
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As shown in Table 3.2, we present WA of each EC system and compare them with the state-of-art

results from [162].

Compared with [162], our proposed 1D CNN based emotion recognition system achieves com-

parable results and thus the predicted binary emotion labels can be considered satisfactory for

further experiments. More importantly, our results indicate that the pre-trained ER embedding

captures sufficient emotion related information and can thus be employed as a behavior primitive.

3.7.3 Context-dependent Behavior Recognition

The main purpose of the experiments in this subsection is to verify the relationship between

emotion-related primitives and behavioral constructs. We employ both B-BP and E-BP as de-

scribed below. Before that, we first use examples to illustrate the importance of context information

in behavior understanding.

Importance of context information in behavior understanding

Prior to presenting the behavior classification results, we use two sessions from couple therapy

corpus to illustrate the importance of context information in behavior understanding. Once the

Single-Emotion Classification Network (EC) systems are trained, a sequence of emotion label

vectors can be generated by applying the EC systems on each speech session. We choose two ses-

sions and plot those sequences of emotion presence vectors of the first 100 seconds as an example

in Figure 3.7, in which each dot represents the emotion presence (i.e., predicted label equals to

1) at the corresponding time. For each emotion, the percentage of emotion presence segments is

calculated by dividing the number of emotion presence segments by the total number of segments.

These two sessions are selected as an example since they have similar audio stream length

and percentage of emotion presence segments but different behavior labels: the red represents one

session with “strong presence of negativity” while blue represents another session with “absence

of negativity”. This example reveals the fact that, as we expected, the behaviors are determined

not only by the percentage of affective constructs but also the contextual information. As shown in
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the left Figure 3.7 (A-F), the emotion presence vectors exhibit different sequential patterns within

two sessions, even though no significant distribution difference can be observed in Figure 3.7 (G).
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Figure 3.7: Sessions with similar percentage of emotions presence but different behavior label

B-BP based context-dependent behavior recognition

Binarized Emotion-Vector Behavior Primitives (B-BP) are generated by applying the Single-

Emotion Classification Network (EC) systems on the couple therapy data: For each session, a

sequence of emotion label vectors is generated as E = [e1,e2, ...,eT], where each element ei is the

6 dimensional B-BP binary label vector at time i. That means that ei j represents the presence,

through a binary label 0 or 1, of emotion j at time i. Such B-BP are the input of the context-

dependent behavior recognition model that has two layers of GRUs followed by two linear layers

as illustrated in Fig. 3.3.

Average Acceptance Blame Positivity Negativity Sadness
60.43 61.07 63.21 59.64 59.29 58.93

Table 3.3: Behavior binary classification accuracy in percentage for context-dependent behavior
recognition model from emotion labels
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As shown in Table 3.3, the average binary classification accuracy of these five behaviors is

60.43%. Considering that the classification accuracy can reach up to 50% by chance with balanced

data, our results show that behavioral states can be weakly inferred from the emotion label vector

sequences. Further, we perform the McNemar test, and the results above and throughout the paper

are statistically significant with p< 0.01. Despite the low accuracy of the behavior positivity, these

results suggest a relationship between emotions and behaviors that we investigate further below.

E-BP based context-dependent behavior recognition

The simple binary emotion vectors (as B-BP) indeed link emotions and behaviors. However, they

also demonstrate that the binarized form of B-BP limits the provided information bandwidth to

higher layers in the network, and as such limits the ability to predict the much more complex

behaviors. These are reflected in the low accuracies in Table 3.3 .

This further motivates the use of the Emotion-Embedding Behavior Primitives (E-BP). As

described in Figure 3.4, we construct input of the E-BP context-dependent behavior recognition

system using the pretrained Multi-Emotion Regression Network (ER). These E-BP embeddings

capture more information than just the binary emotion labels. They potentially capture a higher ab-

straction of emotional content, richer paralinguistic information, conveyed through a non-binarized

version that doesn’t limit the information bandwidth, and may further capture other information

such as speaker characteristics or even channel information.

We employ embeddings from different layers of the ER network. The layers before the em-

ployed embedding are in each case frozen and only the subsequent layers are trained as denoted

in Figure 3.4. The trainable part of the network includes several CNN layers with max pooling

and subsequent GRU networks. The GRU part of the network is identical to the ones used by the

context-dependent behavior recognition from E-BP.

The use of different depth embeddings can help identify where information loss becomes too

specific to the ER loss objective versus where there is too much unrelated information to the be-

havior task.
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Average Acceptance Blame Positivity Negativity Sadness
None-E-BP model

(Baseline) 58.86 62.86 62.50 57.86 60.00 51.07

E-BP 1 model 59.79 64.29 62.86 60.00 61.07 50.71
E-BP 2 model 60.79 61.79 63.93 62.86 63.57 51.79
E-BP 3 model 65.00 66.07 69.29 65.36 69.29 55.00
E-BP 4 model 69.00 72.50 71.79 65.36 76.07 59.29

Table 3.4: Behavior binary classification accuracy in percentage for context-dependent behavior
recognition model from emotion-embeddings. Bold numbers represent the best performing system.

In Table 3.4, the none-E-BP model, as the baseline, means all parameters are trained from

random initialization instead of using the pretrained E-BP input. While E-BP l model means the

first l layers of the pretrained ER network are fixed and their output is used as the embedding E-BP

for the subsequent system. As seen in the second column of the table, all of E-BP based models

perform significantly better than the B-BP based model, which achieves an improvement of 8.57%

on average and up to 16.78% for Negativity.

These results, further support the use of basic emotions as constructs of behavior. In general,

for all behaviors, the higher-level E-BP s, which are closer to the ER loss function, can cap-

ture affective information and obtain better performance in behavior quantification compared with

lower-level embeddings. From the description in Table 3.1, some behaviors are closely related to

emotions. For example, negativity is defined in part as ”Overtly expresses rejection, defensiveness,

blaming, and anger”, and sadness2 is defined in part as ”expresses unhappiness and disappoint-

ment”. This shows that these behaviors are very related to emotions such as anger and sad, thus

it’s expected that an embedding closer to the ER loss function will behave better. Note that these

are not at all the same though: a negative behavior may mean that somewhere within the 10 min

interaction or through unlocalized gestalt information the expert annotators perceived negativity;

in contrast a negative emotion has short-term information (on average 7s segment) that is negative.

2Which isn’t necessarily perfectly aligning with the basic emotion ”sad” but follows the SSIRS manual
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An interesting experiment is what happens if we use a lower-ratio of emotion (out-of-domain)

vs. behavior (couples-in-domain) data. To perform this experiment we use only half of the CMU-

MOSEI data3 to train another ER system, and use this less robust ER system and corresponding

E-BP representations to reproduce the behavior quantification as in Table 3.4. What we observe

is that the reduced learning taking place on emotional data requires the in-domain system to have

prefer embeddings closer to the feature. Specifically Negativity performs equally well with layers

3 or 4 at 71.43%. Positivity performs best with layer 3 at 64.64%, Blame and Acceptance perform

best with layer 2 at 71.07% and 72.86% respectively while Sadness performs best through layer 1

at 56.07%.

In the reduced data case we observe that best performing layer is not consistently layer 4.

Employing the full dataset as in Table 3.4 provides better performance than using less data and in

that case layer 4 (E-BP 4) is always the best performing layer, thus showing that more emotion

data provides better ability of transfer learning.

3.7.4 Reduced Context-dependent Behavior Recognition

In the previous two sections we demonstrate that there is a benefit to transfer emotion-related

knowledge to behavior tasks. We show that the wider bandwidth information transfer through an

embedding E-BP is beneficial to a binarized B-BP representation. We also show that depending

on the degree of relationship of the desired behavior to the signal or to the basic emotion, different

layers that are closer to the input signal or closer to the output loss, may be more or less appropriate.

However, in all the above cases we assume that the sequence and contextualization of the extracted

emotion information was needed. That is captured and encoded through the recursive GRU layers.

We conduct an alternative investigation into how much contextual information is needed. As

discussed in section 3.4.2 and shown on Figure 3.6 we can reduce context through changing the

receptive field of our network prior to removing sequential information via max pooling.

311875 samples from commit:
https://github.com/A2Zadeh/CMU-MultimodalSDK/commit/f0159144f528380898df8093381c8d83fd7cc475
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In this section we select the best E-BP based on average results in Table 3.4, i.e., E-BP-4, as

the input of the reduced context-dependent behavior recognition model. Based on E-BP-4 em-

beddings, the reduced context-dependent model employs 4 more CNN layers with optional local

average pooling layers in between, and is followed by an adaptive max pooling layer and three

fully connected layers to predict the session level label directly without sequential modules.

Since the number of parameters of this model is largely increased, dropout [137] layers are

also utilized to prevent overfitting. Local average pooling layers with kernel size 2 and stride 2 are

optionally added between newly added CNN layers to adjust the final size of the receptive field:

The more average pooling layers we use, the larger temporal receptive field can be obtained for the

same number of network parameters. We endure that the overall number of trainable parameters is

the same for the different receptive field settings, which provides a fair comparison of the resulting

systems. The output of these CNN/local pooling layers is passed to an adaptive max pooling before

the fully connected layers as in Figure 3.6.

Average Acceptance Blame Positivity Negativity Sadness
Receptive field 4s 63.43 65.00 70.00 58.92 67.50 55.71
Receptive field 8s 62.71 65.00 69.64 56.79 66.07 56.07

Receptive field 16s 63.36 63.57 69.64 60.71 66.42 56.43
Receptive field 32s 66.36 68.21 73.21 63.21 71.43 55.71
Receptive field 64s 65.57 66.43 72.86 62.50 71.79 54.29

Table 3.5: Behavior binary classification accuracy in percentage for reduced context-dependent
behavior recognition from emotion-informed embeddings. Bold numbers represent the best per-
forming system.

In Table 3.5, each model has a different temporal receptive window ranging from 4 seconds to 1

minute. For most behaviors, we observe a better classification as the receptive field size increases,

especially in the range from 4 seconds to 32 seconds, demonstrating a need for longer observations

for behaviors.

Furthermore, the results suggest different behaviors require different observation window length

to be quantified, which is also observed by Chakravarthula et al. [30] using lexical analysis. By

comparing results with different receptive window sizes, we can indirectly obtain the appropri-

ate behavior analysis window size for each behavior code. As shown in Table 3.5, sadness has a
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smaller optimal receptive field size than behaviors such as acceptance, positivity and blame. This

is in good agreement with the behavior descriptions. For example, behaviors of acceptance, posi-

tivity and blame often require relatively longer observations since they relate to understanding and

respect for partner’s views, positive negotiation, and accusation respectively, which often require

multiple turns in a dialog and context to be captured. On the other hand, sadness which can be

expressed via emitting a long, deep, audible breath, and is also related to short-term expression of

unhappy affect, can be captured with shorter windows.

Moreover, we find the classification of negativity reaches high accuracy when using a large

receptive field. This might be contributed by the fact that the negative behavior in the couple

therapy domain is complex, which is not only revealed by short term negative affect but also

related to context based negotiation and hostility, and is captured through gestalt perception of the

interaction.

In addition, the conclusion that most of the behaviors do not benefit much from longer than

30 seconds4 windows matched existing literature on thin slices [3], which refer to excerpts of an

interaction that can be used to arrive at a similar judgment of behavior to as if the entire interaction

had been used.

3.7.5 Analysis on Behavior Prediction Uncertainty Reduction

Besides the verification of the improvement from B-BP based model to E-BP based models, in this

section, we further analyze the importance of context information for each behavior by compar-

ing results between E-BP based context-dependent and reduced context-dependent models. This

analysis calls into question that which behavior is more context involved and to what degree.

Classification accuracy is used as the evaluation criterion in previous experiments. More gen-

erally, this number can be regarded as a probability of correct classification when a new session

4Note that this does not make any claims on interlocutor dynamics, talk time, turn-taking etc., but just single person
acoustics
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comes to measure. Inspired by entropy from information theory, we define one metric named Pre-

diction Uncertainty Reduction (PUR) and use it to indicate the relative behavior prediction and

interpretation improvement among different models for each behavior.

Suppose pm(x) ∈ [0,1] is the probability of correct classification for behavior x with model m.

We define the uncertainty of behavior prediction as:

Im(x) =−pm(x)log2(pm(x))− (1− pm(x))log2(1− pm(x))

if pm(x) is equal to 1, Im(x) = 0 there is no improvement possibility; if pm(x) is equal to 0.5, same

as random prediction accuracy, the uncertainty is the largest. We further define the Prediction

Uncertainty Reduction (PUR) value of behavior x from model m to model n as:

Rm→n(x) = Im(x)− In(x)

We use this value to indicate improvements between different models.

We use PUR to sense the relative improvement from E-BP based context-dependent and E-

BP based reduced context-dependent models respectively, to the baseline B-BP based context-

dependent model. The larger value of PUR suggests the clear improvement of behavior predic-

tion. For each behavior, for each E-BP based model, we choose the best performance model (the

bold number from Table 3.4 and Table 3.5) to calculate PUR value from baseline B-BP context-

dependent model.

In Figure 3.8, as expected, for most behaviors the positive PUR values verify the improvement

from using informative E-BP to simple binary B-BP. In addition, the results support the hypothesis

that the sequential order of affective states is one non-negligible factor of behavior analysis since

the PRU of context-dependent (blue color) model is better than that of reduced context one (red

color) for most behaviors.

More interestingly, for each behavior, the difference between two bars (i.e., PUR difference)

can imply the necessity and importance of the sequential and contextual factor of quantifying that
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Figure 3.8: PUR optimal value of E-BP based context-dependent and reduced context-dependent
models across behaviors

behavior. We notice that for “positive” or more “complex problem solving” related behaviors

(e.g., Acceptance, Positivity), the context based model can achieve better performance than the

reduced context model. While the PUR differences from “negative” related behaviors (e.g., Blame,

Negativity) varies from different behaviors. For example, the behavior of acceptance, with a large

PUR difference, it is more related to “understanding, respect for partner’s views, feelings and

behaviors”, which could involve more turns in a dialog and context information. In addition,

positivity requires the monitoring of consistent positive behavior, since a single negative instance

within a long positive time interval would still reduce positivity to a very low rating.

In contrast, we see that although blame can still benefit from a larger contextual window, there

is no benefit to employing the full context. This may infer that blame expression is more localized.

Furthermore, our findings are also congruent with many domain annotation processes: Some

behaviors are potentially dominated by salient information with short range, and one short duration

appearance can have a significant impact on the whole behavior rating, while some behaviors need

longer context to analyze [63, 77].

However, among all behaviors, “sadness” is always the hardest one to predict with high accu-

racy, and there is little improvement after introducing different BPs. This could be resulting from

48



the extremely skewed distribution towards low ratings as mentioned in above and [14, 50], which

leads to a very blurred binary classification boundary compared to other behaviors.

3.8 Conclusion and Future Work

In this work, we explored the relationship between emotion and behavior states, and further em-

ployed emotions as behavioral primitives in behavior classification. In our designed systems, we

first verified the existing connection between basic emotions and behaviors, then further verified

the effectiveness of utilizing emotions as behavior primitive embeddings for behavior quantifica-

tion through transfer learning. Moreover, we designed a reduced context model to investigate the

importance of context information in behavior quantification.

Through our models, we additionally investigated the empirical analysis window size for speech

behavior understanding, and verified the hypothesis that the order of affective states is an impor-

tant factor for behavior analysis. We provided experimental evidence and systematic analyses for

behavior understanding via emotion information.

To summarized, we investigated three questions and we concluded:

1. Can the basic emotion states infer behaviors?

The answer is yes. Behavioral states can be weakly inferred from emotions states. However

behavior requires richer information than just binary emotions.

2. Can emotion-informed embeddings be employed in the prediction of behaviors?

The answer is yes. The rich emotion involved embedding representation helps the predic-

tion of behaviors. They also do so much better than the information-bottlenecked binary

emotions.

3. Is the contextual (sequential) information important in defining behaviors?

The answer is yes. We verify the importance of context of behavior indicators for all be-

haviors. Some behaviors benefit from incorporating the full interaction (10 minutes) length
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while others require as little as 16 seconds of information, but all perform best when given

contextual information.

Moreover, the proposed neural network systems are not limited to the datasets and domains of

this work, but potentially provides a path for investigating a range of problems, such as local ver-

sus global, sequential versus non-sequential comparisons in many related areas. In addition to the

relationship of emotions to behaviors, a range of other cues can also be incorporated towards be-

havior quantification. Moreover, many other aspects of behavior, such as entrainment, turn-taking

duration, pauses, non-verbal vocalizations, and influence between interlocutors, can be incorpo-

rated. Many such additional features can be similarly developed on different data and employed as

primitives; for example entrainment measures can be trained through unlabeled data [109].

Furthermore, we expect that the results of behavior classification accuracy maybe be further

improved through improved architectures, parameter tuning, and data engineering for each behav-

ior of interest. In addition, behavior primitives, e.g., from emotions, can also be employed via the

lexical and visual modalities.
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Chapter 4

Speaker-invariant Affective Representation Learning via

Adversarial Training

4.1 Introduction

Human speech signals contain rich linguistic and paralinguistic information. Linguistic informa-

tion is encoded at different temporal scales ranging from phoneme to sentence and discourse levels.

More importantly, speech signal encodes speaker characteristics and affective information. All in-

formation above is jointly modulated and intertwined in the human-produced speech acoustics and

it is difficult to dissociate these various components simply from features, such as those from the

time waveform or its transformed representations e.g., Mel filterbank energies.

Representation learning of speech [36, 87, 112], i.e., the transformation from low-level acoustic

descriptors to higher-level representations, has received significant attention recently. Traditional

methods focus on using supervised learning, specifically multi-task learning [27] to extract special-

ized representations of particular targets. However, target representations are easily contaminated

by undesired factors, such as noise, channel or source (speaker) variability. These are difficult to

eliminate due to the complexity and entanglement of information sources in the speech signal.

Emotion recognition systems are further greatly affected by source variability, be that speaker,

ambient acoustic conditions, language, or socio-cultural context [129]. Limited domain data and

labeling costs have resulted in many systems that are only evaluated within domain and are not
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robust to such variability. For example mismatch between training and evaluation sets, such as

speaker variations [164] and domain condition incongruity [49], make it challenging to obtain

robust emotion representations across different speakers and domains.

In this work, we propose an adversarial training framework to learn robust speech emotion

representations. We specifically aim to remove speaker information from the representation, as

that is one of the most challenging and confounding issues in speech emotion recognition (SER).

Note that many SER systems have addressed this issue through normalization of features, but these

ad-hoc solutions lack generalization within complex learning frameworks [22, 131].

In our work, inspired by the domain adversarial training (DAT) [49], we propose a neural net-

work model and an adversarial training framework with an entropy-based speaker loss function to

relieve speaker variability influences. Considering the adversarial training strategy and entropy-

based objective function, we name our model Max-Entropy Adversarial Network (MEnAN). We

demonstrate the effectiveness of the proposed framework in SER within- and across-corpora. We

show that MEnAN can successfully remove the speaker-information from extracted emotion repre-

sentations, and this disentanglement can further effectively improve speech emotion classification

on both the IEMOCAP and CMU-MOSEI datasets.

4.2 Related Work

Robust representations of emotions in speech signals have been investigated via pre-trained denois-

ing autoencoders [54], end-to-end learning from raw audio [147], unsupervised contextual learning

[87], and multi-task learning [165] etc. In a different way, we apply GANs based adversarial train-

ing to generate robust representations across domains (speaker to be specific) for speech emotion

recognition. Among previous work on SER, GANs are mainly utilized to learn discriminative rep-

resentations [32] and conduct data augmentation [116]. Our method is different in that we aim to

disentangle speaker information and learn speaker-invariant representations for SER.
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Recently, within speech applications, domain adversarial training (DAT) techniques have been

applied on cross-corpus speaker recognition [154], automatic speech recognition [96, 132, 140]

and SER [1, 150] to deal with the domain mismatch problems. Compared to the two most related

studies [1, 150], our proposed MEnAN is different from DAT: 1) we argue that simple gradient

reversal layer in DAT may not guarantee domain-invariant representation: simply flipping the do-

main labels can also fool the domain classifier however the learned representation is not necessary

to be domain invariant. 2) we propose a new entropy-based loss function for domain classifier to

induce representations that maximize the entropy of the domain classifier output, and we show the

learned representation is better than DAT for speech emotion recognition.

4.3 Methodology

Our goal is to obtain an embedding from a given speech utterance, in which emotion-related in-

formation is maximized while minimizing the information relevant to speaker identities. This is

achieved by our proposed adversarial training procedure with designed loss functions which will

be introduced in this section.

4.3.1 Model Structure

Our proposed model is built based on a multi-task setting with three modules: the representation

encoder (ENC), the emotion category classification module (EC) and the speaker identity classifi-

cation module (SC). The structure of our model is illustrated in Figure 4.1.

The ENC module has three components: (1) stacked 1D convolutional layers; (2) recurrent

neural layers and (3) statistical pooling layers. The sequence of acoustic spectral features is first

input to multiple 1D CNN layers. The CNN kernel filters shift along the temporal axis and include

the entire spectrum information per scan, which is proven to have better performance than other

kernel structure settings by [73]. CNN filters with different weights are utilized to extract different

information from same input features and followed by recurrent layers to capture context and
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Figure 4.1: Model structure with loss propagating flow

dynamic information within each speech segment. Then, we add the statistical pooling functions,

including maximum, mean and standard deviation in our model, to map a variable speech segment

into an embedding with a fixed dimension.

This fixed dimension representation embedding, as the output of ENC, is further connected

with two sub-task modules: the emotion classifier (EC) and speaker classifier (SC), which are both

built with stacked fully connected layers.

With normal training settings, our model can be regard as a multi-task learning framework.

Moreover, our model can be regarded as a speech emotion recognition system if we only keep the

EC and ENC components.

4.3.2 Difference with Prior Work

In domain adversarial training [1, 49, 150], one gradient reversal layer is usually added to the

domain classifier (SC in our case) to reverse the gradient flow in order to generate the domain-

invariant (speaker-invariant) features. The usage of the gradient reversal layer ensures the (desired)

lower performance of domain classifier (SC in our case), however, it often fails to guarantee the
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domain (speaker) information has been fully removed [92]. For instance, in this approach, it is

highly likely that even a lower performance of SC will only map a particular speaker to other

target speakers with similar sounds instead of properly removing the speaker identity information,

likely picking up the second-best speaker match.

Our proposed training method is different from the existing strategy as it attempts to completely

remove all speaker information.

4.3.3 Emotion Representation Adversarial Training

We now describe the adversarial training strategy and the designed loss function in detail. Our

training dataset D = {(x1,e1,k1), ...,(xN ,eN ,kN)} contains N pairs of (xi,ei,ki) ∈ (X ,E ,K ), in

which speech segment xi is produced by the speaker ki with emotion ei. X , E and K are the sets

of whole speech utterances, emotion labels and all speakers respectively.

Our training strategy is similar to generative adversarial networks (GANs) [57]. The system

has two output paths. On one path (left Fig.4.1), we attempt to accurately estimate the speaker

information (loss LD Spk). On the other path (right Fig.4.1), we attempt to estimate the emotion

label (loss LD Emo) and remove speaker information (loss LH Spk). Both estimators (SC and EC)

employ the same representation encoder (ENC) but that is only updated from the right-side loss

back propagation.

The output of ENC, denoted as v, is the speaker-invariant emotion representation we try to

obtain. We have v = enc(x).

4.3.3.1 Training of SC

The speaker classifier (SC) can be regarded as a discriminator which is trained to distinguish

speaker identities based on a given encoder output v and has no influence in the training of v.

The SC is trained by minimizing LD Spk, the cross entropy function as in (4.1):

LD Spk = ∑
(xi,ei,ki)∈D

−logP(ki|enc(xi)) (4.1)
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In this training step, weights of ENC and EC are frozen. Only parameters of SC are optimized to

achieve higher speaker classification accuracy from a given representation v.

4.3.3.2 Training of ENC and EC

Under adversarial training we need to ensure the ENC output contains emotion-related information,

while it is also optimized to confuse and make it difficult for SC to distinguish speaker identities.

Thus, we need to optimize ENC to increase the uncertainty or randomness of SC’s outputs.

Mathematically, we want to maximize the entropy value of SC’s output. The entropy of SC’s

output, denoted as LH Spk, is defined as

LH Spk = ∑
(xi,ei,ki)∈D

∑
k j∈K

−P(k j)logP(k j|env(xi)) (4.2)

Maximizing entropy would promote equal likelihood for all speakers:

P(k j|env(xi)) = P(kq|env(xi)) ∀k j,kq ∈K (4.3)

This differs, as mentioned above, from simply picking up a different speaker, since that may lead

into selecting a “second-best” similar sounding speaker. Our proposed loss function removes all

(correct or wrong) speaker information.

In addition, the performance of emotion classifier is optimized by minimizing the cross entropy

loss LD Emo from EC’s output:

LD Emo = ∑
(xi,ei,ki)∈D

−logP(ei|env(xi)) (4.4)

To combine these two objective functions above together, we flip the sign of LH Spk to do a gradient

reversal and minimize the weighted overall loss sums. The final objective loss function is written

as:

L(θENC,θEC) = λLD Emo− (1−λ )LH Spk (4.5)
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where λ ∈ (0,1) is a parameter adjusting the weighting between two types of loss functions.

In this training step, weights of SC are frozen. Only parameters of ENC and EC are optimized.

Modules with corresponding loss back propagation flows are shown in Fig.4.1. With this itera-

tive training scheme, we expect the proposed model can ultimately relieve the impact of speaker

variability thus improve the SER performance.

4.4 Dateset

Two datasets are employed to evaluate the proposed MEnAN based emotion representation learn-

ing in our work:

The IEMOCAP dataset [21] consists of five sessions of speech segments with categorical

emotion annotation, and there are two different speakers (one female and one male) in each session.

In our work, we use both improvised and scripted speech recordings and merge excitement with

happy to achieve a more balanced label distribution, a common experiment setting in many studies

such as [54, 55, 110]. Finally, we obtain 5,531 utterances selected from four emotion classes (1,103

angry, 1,636 happy, 1,708 neutral and 1,084 sad).

The CMU-MOSEI dataset [162] contains 23,453 single-speaker video segments carefully cho-

sen from YouTube. This database includes 1000 distinct speakers, and are gender balanced with

an average length of 7.28 seconds. Each sample has been manually annotated with a [0,3] Likert

scale on the six basic emotion categories: happiness, sadness, anger, fear, disgust, and surprise.

The original ratings are also binarized for emotion classification: for each emotion, if a rating is

greater than zero, it is considered that there is presence of that emotion, while a zero results in a

false presence of that emotion. Thus, each segment can have multiple emotion presence labels.

IEMOCAP provides a relatively large number of samples within each combination across dif-

ferent speakers and emotions, making it feasible to train our speaker-invariant emotion represen-

tation. We mainly use CMU-MOSEI for evaluation purposes, since it includes variable speaker

identities, and to establish cross-domain transferability of MEnAN.
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4.5 Experiment Setup

Feature extraction: In this work we utilize 40 dimensional Log-Mel Filterbank energies (Log-

MFBs), pitch and energy. All these features are extracted with a 40 ms analysis window with a

shift of 10 ms. For pitch, we employ the extraction method in [52], in which the normalized cross

correlation function (NCCF) and pitch (f0) are included for each frame. We do not perform any

per-speaker/sample normalization.

Data augmentation: To enrich the dataset, we perform data augmentation on IEMOCAP. Similar

to [143], we create multiple data samples for training by slightly modifying the speaking rate with

four different speed ratios, namely 0.8, 0.9, 1.1 and 1.2.

General settings: To obtain a reliable evaluation of our model, we need to ensure unseen speakers

for both validation and testing. Thus, we conduct 10 fold leave-one-speaker out cross-validation

scheme. More specifically, we use 8 speakers as the training set, and for the remaining session (two

speakers), we select one speaker for validation and one for testing. We then repeat the experiment

with the two speakers switched.

In addition, considering the variable length of utterances, we only extract the middle 14s to

calculate acoustic features for utterance whose duration is longer than 14s (2.07% of the total

dataset) [40], since important dynamic emotional information is usually located in the middle part

and lengthy inputs would have negative effect on emotion prediction [74]. For utterances shorter

than 14s, we use the cycle repeat mode [74] to repeat the whole utterance to the target duration. The

idea of this cycle repeat mode is to make emotional dynamic cyclic and longer, which facilitates

the training process of utterances of variable duration.

4.5.1 Model Configurations

The detailed model parameters and training configurations are shown in Table 4.1.
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Training
details:

Adam optimizer (lr=0.001) + polynomial learning rate decay ;
batch size=16; epochs=300; λ=0.5

ENC

Conv1D(in ch=43,out ch=32, kernel size=10, stride=2, padding=0), PReLU
Conv1D(in ch=32,out ch=32, kernel size=5,stride=2, padding=0), PReLU
GRU(in size=32, hidden size=32, num layers=1)
Linear(in=32, out=32), PReLU
Statistical Pooling[Mean, Std, Max]

EC
Linear(in=32, out=32) PReLU
Linear(in=32, out=10) PReLU
Linear(in=10, out=4 )

SC
Linear(in=32, out=32) PReLU
Linear(in=32, out=10) PReLU
Linear(in=10, out=8)

Table 4.1: Model structure and training configuration details

4.6 Results and Discussion

4.6.1 Evaluation on IEMOCAP

For comparison purposes, we also train the EC only model, multi-task learning model and DAT

model [150] with regular cross entropy loss under the same configuration. Both the weighted accu-

racy (WA, the number of the correctly classified samples divided by the total number of samples)

and the unweighted accuracy (UA, the mean value of the recall for each class) are reported. The

Table 4.2 shows the emotion classification accuracy (%) on both validation and testing, and we

also include their differences (∆).

WA UA
Val Test ∆ Val Test ∆

EC only model 58.50 55.92 -2.56 59.94 57.45 -2.49
Multi-task model 59.24 55.90 -3.34 60.52 57.28 -3.24

DAT model 58.28 56.68 -1.60 60.16 58.48 -1.68
Proposed MEnAN 58.85 58.62 -0.23 60.24 59.91 -0.33

Table 4.2: Classification accuracy (%) comparison on IEMOCAP

First, we observe that our model achieves the best classification accuracy in the test case among

all models. To the best of our knowledge, the best results from the literature on IEMOCAP with
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similar settings are generally around 60% [110, 156]. We achieve a UA of 59.91% which is com-

parable with the state of the art results. However, strict comparisons remain difficult because

there are no standardized data selection rules or train/test splits. For example, some did not use

speaker independent split [110] or only used improvised utterances. Some did not clearly specify

which speaker in each session was used for validation and testing respectively [85] or performed

per-speaker normalization in advance [22, 117].

Second, we notice that there is a large difference of ∆ value among all four models. Compared

with others, we find that the multi-task learning model can achieve a better performance on the val-

idation set. However, the extra gain from speaker information can also lead a significant mismatch

during the evaluation of unseen speakers, as indicated by the large value of ∆. Compared with DAT

model, our MEnAN model gains better classification accuracy with smaller ∆. This supports our

claim of the MEnAN’s advantage over DAT. The small ∆ in our model suggests our embedding

has better generalization ability and is more robust to unseen speakers. To illustrate this, we plot

t-SNE of emotion representation, i.e., enc(x), on two unseen speakers.

As shown in Fig.4.2, in the multi-task learning setting, it is obvious that the speaker’s character-

istics and emotion information are entangled with each other, which makes this representation less

generic on unseen speakers. For our proposed MEnAN, the speaker representations of different

speakers on the 2D space are well mixed and independent of speaker labels; while different emo-

tion segments are more separable in the embedding manifold. These results further demonstrates

the effectiveness and robustness of proposed model.

Evaluation on CMU-MOSEI

In addition, we test our system on the CMU-MOSEI dataset (cross-corpus setting). As men-

tioned before, the CMU-MOSEI has a large variability in speaker identities, which is a suitable

corpus to evaluate our model’s generalization ability on unseen speakers. It also introduces a

challenge stemming from the different annotation methodology and the inherent effect on the in-

terpretation of labels.

60



(a) Multi-task learning model

(b) MEnAN model

Figure 4.2: t-SNE plot of emotion embedding with both 4 emotion labels (left) and 2 speaker labels
(right) for multi-task model and our proposed MEnAN model.

To match emotion labels of IEMOCAP, we only consider samples with positive ratings in the

categories of “happiness”, “sadness” and “anger”. Samples with zero ratings of all six emotion

categories are also included with the label “Neutral”. Finally, 22,323 samples are selected and four-

class emotion classification evaluation are performed. The prediction is considered to be correct

if the rating of that predicted emotion originally has a positive value. In Table 4.3, we report

the mean, minimum and maximum of the classification accuracy (%) evaluated on the pretrained

model of each fold from the 10-fold cross validation of IEMOCAP.

We observe that MEnAN model has the best performance among all three models, and it

achieves better classification accuracy with 1.89% improvement on the mean value and with 4.89%
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mean min max
EC only model 31.35 27.14 34.96

DAT model 32.34 25.91 37.85
Proposed MEnAN 33.24 28.84 39.85

Table 4.3: Emotion classification accuracy (%) on CMU-MOSEI

on the best model compared with the EC only model. Considering that all speakers of these evalu-

ation samples are not seen during the training, these results suggest our adversarial training frame-

work can provide more robust emotion representation with better speaker-invariant property and

achieve improved performance in the emotion recognition task.

4.7 Conclusion

Compared with other representation learning tasks, the extraction of speech emotion representation

is challenging considering the complex hierarchical information structures within the speech, as

well as the practical low-resource (labeled) data issue. In our work, we use an adversarial training

strategy to generate speech emotion representations while being robust to unseen speakers. Our

proposed framework MEnAN, however, is not limited to the emotion recognition task, and it can

be easily applied to other domains with similar settings e.g., cross-lingual speaker recognition.

For further work, we plan to combine the domain adaption techniques with our proposed model

to employ training samples from different corpora. For example, we can utilize speech utterances

from speaker verification tasks to obtain more robust speaker information.
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Chapter 5

Unsupervised Speech Representation Learning for Behavior

Modeling using Triplet Enhanced Contextualized Networks

5.1 Introduction

Understanding human behaviors [105] through observational study has been one of the core themes

in fields such as psychology and sociology. Human behaviors encompass rich information: from

emotional expression, processing, and regulation to the intricate dynamics of interactions including

the context and knowledge of interlocutors and their thinking and problem-solving intent [88].

Furthermore, the behavioral constructs of interest are often dependent on the domain of interaction

[105]. Hence characterization of human behavior usually requires domain-specific knowledge and

adequate windows of observation. Notably, across psychological health science and practice [16]

such as couple therapy [34], suicide cognition evaluation [18] and addiction counseling [159], this

is exemplified in the definition and derivation of a variety of domain-specific behavior constructs

(e.g., blame and affect patterns exhibited by partners, suicidal ideation of an individual at risk, and

empathy expressed by a therapist) to support specific subsequent plan of action.

Human speech offers rich information about the mental state and traits of the talkers. Vocal

cues, including speech and spoken language as well as nonverbal vocalizations and disfluency

patterns, have been shown to be informationally relevant in the context of human behavior (e.g., in

marital interaction [7], in motivational interviewing [4, 75, 102]). Many automatic computational
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approaches that support measurement, analysis, and modeling of human behaviors from speech

have been investigated in affective computing [84], social signal processing [152] and behavioral

signal processing (BSP) [105].

Automated behavior modeling from speech however remains a challenging domain. Behavior

annotations used for (supervised) modeling are usually obtained from well-trained human annota-

tors, in a process that is both complex and expensive. Moreover, the prevalence of many specific

behaviors of interest in a given interaction inherently tend to be low. As a result, the amount of

annotated training data available for supervised behavior modeling are relatively small compared

to other speech related training tasks.

In addition, behavior analyses tend to be guided by target domain needs. For example, in

looking for markers of behavior change in addiction, therapists look for language which reflects

changes of addictive habits [6]. In suicide prevention [39], behavioral patterns related to reasons

for living and emotional bonds are deemed relevant. Thus, behavior models built with domain-

specific constructs and data may not be directly and easily adaptable across domains.

Recently, unsupervised and self-supervised learning [33, 81] have shown the benefits of using

large amounts of unlabelled data to extract informative representations. Given the low availability

of annotated behavioral data sets, representation learning through unsupervised ways can provide

a promising avenue for behavioral modeling. This becomes especially relevant where unlabelled

or weakly-labelled speech is often the only available resource.

In unsupervised representation learning, context information has been used for a range of appli-

cations [41, 56]. For example, in Natural Language Processing (NLP), word and sentence embed-

ding methods attempt to compress the shared structural information between neighboring words,

phrases or sentences. Such compressed structural information, referred as the context, resides at a

longer scale than either of just two neighboring isolated words, phrases or sentences. In behavior

analysis, context information is important: When domain experts attempt to evaluate behaviors, a

large observation window is often employed to observe the context e.g., a full interaction session.

Within the frame of observation, the target behavior is assumed to remain constant.
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In this paper, we describe unsupervised methods to extract behavior related representations

from speech under the behavioral stationarity assumption. In addition, we also employ metric

learning techniques to improve representation learning directly in the behavior related manifold

space. We investigate whether out-of-domain data corpora can be employed for behavior repre-

sentation learning and, for quantification and analysis of target behavioral constructs. Moreover,

we show the proposed unsupervised model can provide domain experts with dynamic behavior

change trajectories, which is helpful to facilitate the annotation process and indicate salient behav-

ior regions. To evaluate our proposed methods, we use a couple therapy dataset comprising audio

recordings of problem solving interactions as well as speech files from a variety of application

domains such as talk shows to show the similarity in the learned behavior manifolds.

5.2 Related Work and Motivation

The human speech audio includes information about the state and trait of the talkers ranging at

varying levels of linguistic scales, e.g., phonemic, prosodic, and discourse, to the level of the larger

socio-emotional communication context.

Traditional supervised behavior recognition systems mainly depend on two aspects: one is

the representative feature of the target behavior and, the other is the choice of the classifica-

tion model. To capture the vocal cues for behavior recognition, traditional computational ap-

proaches [14, 86, 108, 126, 157] use a range of hand-crafted low-level descriptors (LLDs) (e.g.,

f0, intensity, MFCCs (Mel-Frequency Cepstral Coefficients) etc.) with statistical functionals (e.g.,

mean, median, standard deviation, etc.) to represent segment- or utterance-level features. Based

on these raw acoustic LLDs and their functionals, classifiers such as Support Vector Machines

(SVM), k-Nearest Neighbors (kNN) and Hidden Markov Models (HMM) etc. have been employed

[45, 71, 125, 157, 163].
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Over the last few years, many affect and behavior recognition systems have employed Deep

Neural Network (DNN) models to extract intermediate representations [60, 86, 90]. Further, se-

quential models [85, 88] have been used to account for the context effect. However, the success of

DNN models heavily relies on the availability of large-scale datasets. A large amount of training

data with annotated labels are usually unavailable in the human behavioral related domain, which

largely inhibits the use of DNN based supervised frameworks in behavioral modeling tasks [86].

Different from supervised approaches, in this paper, we focus on context-rich techniques for

extracting behavior representations in an unsupervised manner. Contextual information has played

a significant role in unsupervised representation learning for a range of applications. For exam-

ple, in NLP, contextual information is employed to generate general word or sentence embeddings

(e.g., Word2Vec [56, 99, 100], BERT [41] etc.) for downstream tasks. In speech representation

learning [81], unsupervised techniques such as autoregressive modeling [36] and self-supervised

modeling [101, 112, 141] employ temporal context information for extracting speech representa-

tion. In our prior behavior modeling work, an unsupervised representative learning framework was

proposed [87], which showed the promise of learning behavior representations based on the behav-

ior stationarity hypothesis that nearby segments of speech share the same behavioral context. A

similar framing was used by [109] to evaluate interpersonal entrainment through an unsupervised

turn-level distance measure .

In addition, metric learning is often employed to directly learn representations with an appro-

priate distance metric. For instance, siamese networks [17] and triplet networks [70] are neural

networks suitable for direct representation learning by minimizing the contrastive loss or triplet

loss calculated in the latent embedding space. These techniques have shown promising results in

face verification and identification [122] as well as in speech tasks such as speaker diarization and

verification [76, 135].

The goal of this work is to identify, in an unsupervised manner, a latent manifold in which

behavior characteristics are retained while other unrelated information are minimized. We believe
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the unsupervised representation learning under the behavioral stationarity assumption can take

advantage of diverse out-of-domain datasets for improving behavioral modeling.

5.3 Unsupervised Speech Representation Learning for Human

Behavior Modeling

We present two frameworks for unsupervised behavior modeling. The first one is the Deep Con-

textualized Network (DCN) initially introduced by [87], and the second is a new hybrid approach

enhanced by a triplet loss, referred to as Triplet Enhanced Deep Contextualized Network (TE-

DCN). The overarching goal is to build a function that can map behavior related information from

raw acoustic features into the behavioral manifold, where similar behaviors can be clustered closer

than they are in the original acoustic feature space, while distinct behavior types can maintain

larger distances between one another.

5.3.1 Behavioral Stationarity Assumption

Toward designing the unsupervised modeling, we wish to invoke some domain knowledge about

human behaviors. An important observation is that complex human behaviors often manifest over

longer time scales, and remain relatively constant within a sufficiently long temporal window,

and in fact need a sufficiently long observation time for human annotation of target behavioral

constructs (e.g., ranging from 30 seconds to 10 minutes [63, 66]). For example, in couples therapy

interaction behaviors associated with constructs such as sadness and blame can last over several

conversational exchanges.

Based on these observations, we make the behavior stationarity assumption: Human behaviors

are deemed to remain constant within a sufficiently long window (i.e., behavior stationary region).

This means that by observing target behaviors within a long observation window (e.g., 30 seconds),

it is likely that the same or similar behavioral states are observed.
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5.3.2 Deep Contextualized Network

The Deep Contextualized Network (DCN) has an encoder-decoder structure, similar to an autoen-

coder. But in contrast, rather than just training to reconstruct the input itself, the proposed DCN

model is trained to reconstruct neighboring frames sharing the same behavioral context. The over-

all framework is shown in Figure 5.1.

For the ith frame of acoustic feature xi, the reconstruction frame x j is selected from i-k to i+k

excluding the ith frame, where k is the maximum sampling shift size within the behavior stationary

region, in which we assume the behavioral context to remain constant. During the training, we

optimize the network to minimize the reconstruction loss:

LDCN(xi,x j) = ∑
(xi,x j)∈D

∥∥ fDCN(xi)− x j
∥∥2

2

= ∑
(xi,x j)∈D

∥∥x̂i− x j
∥∥2

2

(5.1)

where the training dataset D consists of input tuples (xi,x j), and x̂i is the output of DCN. After

training, the hidden bottleneck layer’s output is used as the behavior representation for evaluation.

The representation from the hidden layers of DCN compresses the shared information between

input and output. Once we input behavior-relevant acoustic features into the DCN, the trained

encoder can be regarded as a feature extractor for obtaining the shared information between input

and output. The choice of features and the model’s structure can promote behavior as common

information. Assuming the adequacy of the behavioral stationarity assumption and the behavioral

information contained in the input features, the model will ensure bottleneck embedding features

that are relevant to the relatively constant factors, i.e., the behavior related features.

5.3.3 Triplet Enhanced Deep Contextualized Network

In this section, we introduce the Triplet Enhanced Deep Contextualized Network (TE-DCN), in

which we use metric learning techniques to improve the performance of DCN.
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Figure 5.1: Behavior representation learning framework via the DCN model. During training, the
model encodes neighboring frames with a DCN. The choice of features promotes the behavior
information as the extracted common information in the behavior manifold. During evaluation,
similarity comparison is made by calculating distance within the behavior manifold.

Metric learning aims to find an input-output mapping function over a vector space and is ex-

plicitly trained to build distance metrics among vectors. Triplet loss enables neural networks to

keep the embeddings belonging to the same class close to each other, while moving embeddings

with different classes far apart. It is used for representation learning by direct optimizing in the

latent embedding space. Suppose the training dataset D consists of input tuples (xa,xp,xn): one

anchor xa, one positive sample xp which belongs to the same class as the anchor and one negative

sample xn from a different class. The corresponding embedding (ea,ep,en) is generated by neural

networks, and the model is trained to minimize the following loss function:

Ltriplet(xa,xp,xn) = ∑
(xa,xp,xn)∈D

max[0,m+D(ea,ep)−D(ea,en)] (5.2)
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where D(·, ·) denotes the distance metric and m is the parameter of margin value. This objective

function targets to ensure that in the embedding space, the anchor sample is closer to the positive

sample than it is to the negative sample by at least a margin m.
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Figure 5.2: Behavior representation learning framework via the TE-DCN model. The model has
a triplet structure with shared weights. Audio 1 and 2 can be two temporally-distant regions or
two different files. During training, the model is optimized to minimize both reconstruction loss
and triplet loss. During evaluation, representation similarity comparison is performed within the
behavior manifold.

The architecture of the proposed TE-DCN is shown in Figure 5.2. The added triplet loss is

motivated by a similar idea, in which we want to keep shared behavioral information between

neighboring frames while disregarding other nuisance factors (with respect to the target behavioral

construct), such as speaker and channel information. The DCN is only trained by frames with

behavioral similarity in the stationary region, while the triplet loss requires frames from difference

regions, which likely have different behaviors as well as distinct acoustic and speaker information.
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The model takes tuples of four elements (xa,xp,xn,xn p) for training, where (xa,xp) are two

frames within a behavioral observation window (assuming stationarity within it). Let (xn,xn p)

be another frame pair selected from a temporally-distant region, and is potentially more likely to

contain a different target behavior. Given this tuple, we have the input-output pair for our TE-

DCN model: (xa,xp,xn) and (xp,xa,xn p). Each branch of the model can be regarded as a DCN

framework with shared parameters to reconstruct context frames. Note the model also employs

triplet loss on the intermediate embedding in the behavior manifold space.

We simultaneously optimize two objective functions (5.1) and (5.2) jointly. Thus, the overall

loss function is:

Ltotal(xa,xp,xn,xn p) = LT E-DCN(xa,xp,xn,xn p)

+Ltriplet(xa,xp,xn)+λ ‖ω‖2
2

(5.3)

where the reconstruction loss LT E-DCN in Equation (5.3) is defined as:

LT E-DCN(xa,xp,xn,xn p) = LDCN(xa,xp)+LDCN(xp,xa)

+LDCN(xn,xn p)

(5.4)

Since the model can take advantage of practically available (potentially) unlimited amount of

unlabelled corpora, to prevent ovefitting in the training domain, as shown in Equation (5.3), we

amend the objective function with an L2 regularization term.

The encoder of the model tries to map the frame’s acoustic features to a “behavioral manifold”.

On the one hand, the neighboring frames are trained to cluster together while on the other, frames

from different regions are trained to be farther away in the representation space.

We propose the TE-DCN model to provide improvement to the DCN model in the following

aspects:

1. Introduce discriminative information.

The metric learning is employed in the TE-DCN, which enables the model not only cap-

ture the behavioral contextual information within neighboring frames but also preserve the
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discriminative information by imposing triplet constraints. By adding the triplet loss, the

model not only reconstructs the frames pairs within behavioral stationary regions, but also

uses “negative” frames to reduce nuisance factor effects, such as speaker characteristics and

channel information, in the behavior manifold construction.

2. Select the behavioral embedding layer explicitly.

In DCN, the smallest bottleneck layer’s output embedding is used as the behavior represen-

tation for evaluation. However, it is not guaranteed that this is the optimal choice among all

the hidden layers. In TE-DCN, though we choose the same smallest bottleneck embedding,

we add specific constraints and optimization on that selected layer, and can ensure that it

preserves more targeted information compared to other embeddings.

3. Uniformize the distance metric for training and evaluation.

After learning from unlabelled data, during testing, we use distance metrics to evaluate the

similarity within the behavioral manifold. However, the choice of distance measures is not

specified within the DCN model. For example, either Cosine distance or Euclidean distance

can be selected. While in TE-DCN, an explicit distance metric is used during training, which

makes it easy to use for testing.

5.4 Datasets

For the unsupervised training process, the training data should be easily acquired, and should

include rich behavioral content and diverse set of conversations as much as possible. In this work,

we collected around 400 hours of audio from 225 movies1. Many of the selected movies include

rich and diverse affective content reflecting a range of behaviors. This training corpus is treated at

the generic data set outside the target behavioral modeling domains. In previous behavior modeling

corpora [29, 31, 88], there are at most 90 hours of original recording speech. Thus, compared to

1The list of collected movies can be found at github.com/haoqi/beh2vec
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in-domain supervised behavior modeling tasks, we have a significantly larger amount of training

data. We will use it to show the feasibility of proposed model within cross-domain behavioral

modeling.

5.4.1 Evaluation Datasets

The proposed model is first tested using a clinical behavioral dataset from psychotherapy, in which

conversations are characterized with clinically-relevant behavioral descriptors. Second, to evaluate

the model’s generalizability and domain robustness, we also test on curated corpus of several out-

of-domain speech files, which contains diverse sources of speech from different scenarios such as

comedy shows and debates.

Behavior
Code Brief description

Acceptance
Indicates understanding, acceptance,
respect for partner’s views, feelings and behaviors

Blame
Blames, accuses, criticizes partner,
and uses critical sarcasm and character assassinations

Humor
Includes jokingly making fun of self, lightly teasing the
spouse, or making a reference to a mutually shared joke.

Negativity
Overtly expresses rejection, defensiveness,
blaming, and anger

Positivity
Overtly expresses warmth, support, acceptance,
affection, positive negotiation

Table 5.1: Description of behavior codes in Couples Therapy Corpus

Couple therapy dataset

The first dataset we employ is the couples therapy corpus collected by the researchers in the

UCLA/UW Couple Therapy Research Project [34], in which 134 real couples were involved in

a longitudinal study of 2 years for the evaluation of complex human behaviors related to mari-

tal therapy. In each session, a relationship-related topic (e.g., “Why cannot you leave my stuff

alone?”) was initiated and the couple had a conversation about this topic for 10 minutes.

For evaluation purposes, we employ the annotation labels. In this couple therapy corpus, each

participant’s behaviors were evaluated based on the Couples Interaction [63] and Social Support
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Category ID Brief description

Comedy show
1 George Carlin
2 Steve Hofstetter

Political debate
3 Final Republican Presidential Debate, 2015
4 Vice Presidential Debate 2012

TED Talk
5 TEDtalk: Kevin Slavin
6 TEDtalk: Christopher Steiner

Eulogy
7 Eulogy for a Son (youtube)

8
Mr. Li Hongyi’s Eulogy for the late
Mr. Lee Kuan Yew

Table 5.2: Description of evaluation data in Diverse Speech Behavior corpora

Rating Systems [77]. The original 31 behavior codes were rated on a scale of 1-9, where 1 indicates

the absence of the given behavior and 9 refers a strong presence. Similar to a previous study [14],

we utilize five of the behaviors by binarizing the top and bottom 20% of the original rating scores.

A brief description of the behavior codes used in this work is listed in Table 5.1.

Curated speech data from different scenarios

To further test the domain robustness of unsupervised behavior modeling method, we collected au-

dio files representing a variety of other human spoken interaction domains. We manually collected

audio files from two distinct speakers from four different scenarios: stand-up comedy routines,

political debates, TED talks and eulogies. The audio names are listed in Table 5.2 and the duration

of each audio is around 10 minutes.

5.5 Experimental Setup

5.5.1 Audio Data Preparation

For the training data, the audio files are directly extracted from movie video and combined into

one single audio channel. We do not perform any pre-processing procedures (e.g., VAD and di-

arization) on the training data. Thus, the audio frames of movie can include conversations, silence,

background music, and changing of speaker regions.
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For couples therapy data, since each session consists of a dyadic conversation and the behavior

ratings are provided for each spouse individually, we need to diarize the interactions to obtain the

speech regions for each person. We employ the pre-processing procedures described in the work

[14]. In short, we select sessions with an Signal-to-noise ratio (SNR) above 5dB, and conduct

Voice Activity Detection (VAD) and Speaker diarization. Speech regions from each session for the

same speaker are used to analyze behaviors. The corpus has around 48 hours of audio data after

these processing procedures. More details of the data processing steps can be found in [14].

5.5.2 Feature Extraction

We extract acoustic features, including speech prosody (pitch, intensity and their derivatives), spec-

tral envelope characteristics (MFCCs, MFBs, LPCs and their derivatives), and voice quality (jitter,

shimmer and their derivatives). These Low-Level Descriptors (LLDs) are extracted using a 25ms

Hamming window with 10 ms shift. Within each analysis frame, we compute functionals of these

acoustic features including Min (1st percentile), Max (99th percentile), Range (99th percentile –

1st percentile), Mean, Median, and Standard Deviation using openSMILE toolkit [46]. These fea-

tures are widely used and have shown effectiveness in many affect related tasks such as speech

emotion recognition [129].

The size of analysis frame for target behaviors herein are larger than other shorter duration

affective states (e.g., of expressed emotions which can be reliably observed within a few seconds

[128], one sentence [162] or a speaker turn [21]). Previous behavioral annotation manuals [63, 66]

and computational analysis [88] report that the length of observation window for target behaviors

is generally around 30 seconds or even longer. Based on these studies, in this work, the analysis

frame size is set to 20 seconds, the same as in previous works [86, 87, 157]. Under the feature

configuration described above, for each frame window, we have a feature dimension of 420.
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5.5.3 Model Configurations and Parameter Settings

The training pairs are from movie audio, within stationary region, the maximum sampling shift size

k is set to 6. For each frame xa, we randomly select 4 context frames from neighboring segments as

reconstruction frames xp. While the frame pair (xn,xn p) is randomly selected from one stationary

neighboring window in a different movie.

In our experiment, the encoder-decoder structure of DCN and TE-DCN contains six hidden

layers connected by PReLU [61] activation function. The dimension of the hidden layers are 300,

200, 64, 200, 300 respectively. The output of bottleneck embedding layer with 64 dimensions is

regarded as behavior related representation that we are interested in. We use the Euclidean distance

as the distance metric D(·, ·) in Equation (5.2). The model is trained with the Adam optimizer [80]

using a learning rate of 0.001 and a decay of 0.1 every 10 epochs. The triplet loss is optimized

with a margin of m=2 and regularization weight of λ=0.01. We utilize different movie pairs as the

validation set to terminate training with early stopping.

5.5.4 Evaluation Method

5.5.4.1 Evaluation Method for In-domain Couples Therapy Corpus

Considering the inter-annotator agreement, we binarize the original behavior ratings to model the

evaluation task as a binary classification task of low- and high- presence of each behavior as in [14].

For each behavior code and each gender, we selected 70 sessions on one extreme of the code (e.g.,

high blame) and 70 sessions at the other extreme (e.g., low blame). This also enables balancing for

each behavior resulting in classes of equal size. As mentioned in section 5.4, the couples therapy

corpus only has session-level behavior code ratings. With these session-level labels, we evaluate

the model in a supervised manner, though the behavior representation is trained in an unsupervised

way with an out-of-domain movie corpus.
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For each frame, once we obtain the latent behavioral manifold representation, we use the k-

nearest neighbors algorithm to find a “reference label”. In our case we choose k=1 and use Eu-

clidean distance to find the nearest frame among all remaining labeled frames from different ses-

sions. In addition, we also ensure that speaker characteristics information is not involved during

testing by using leave-one-couple-out cross validation. Finally, majority voting is employed to

generate session-level binary labels from multiple frame-level labels.

5.5.4.2 Evaluation Method for Diverse Speech Behavior Corpora

This evaluation is targeted to reflect different behavior or scenario styles. For example, as listed

in Table 5.2, the behavioral style from a stand-up comedy show is expected to be similar across

performers, but expected to be different from those in a speech during a eulogy. Instead of focusing

on scenario classification of whole speech regions, we are interested in the level of similarity across

different scenarios. With this expectation, we calculate the results obtained by frame clustering

with nearest neighbor, i.e., which frame is close to which, as a percentage. This percentage score

can be regarded as an indicator of style similarity among audio frames.

5.6 Experimental Results and Discussions

5.6.1 Experiment Results of Couple Therapy Corpus

The performance of couples’ behavior classification results across different models is shown in

Table 5.3. Besides the DCN and TE-DCN models, we further compare the results with four other

models.

Baseline Model

For each behavior code, the number of behavior presence and absence sessions are balanced. Thus,

a weak baseline of classification accuracy is 50%. In this work, we use a better baseline model,

which is built through the nearest neighbor classification in the original acoustic feature space.
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Behavior Baseline DCN
Triplet

network TE-auto-encoder TE-DCN
Supervised training

in [88]
Acceptance 57.14 66.43 60.71 65.71 68.21 72.50

Blame 55.00 61.07 63.21 61.43 64.64 71.79
Humor 54.29 55.00 56.79 60.36 60.36 -

Negativity 63.92 63.93 61.79 60.71 66.43 76.07
Positivity 50.71 65.00 58.57 61.43 65.35 65.36
Average 56.212 62.286 60.214 61.928 64.998 71.43

Table 5.3: Classification accuracy (%) of behavior codes in Couple Therapy Corpus

Similarly, the session-level label is obtained by majority voting. The average classification accu-

racy of five behavior codes is 56.212%, which is slightly better than the weak baseline (random

guess). These results indicate that further representation learning process is necessary to extract

behavior information from high dimensional acoustic features [87].

DCN Model

In Table 5.3, for all behavior codes, the DCN model outperforms the the baseline and achieves an

average classification accuracy of 62.29%. With the McNemaar test, compared with the baseline,

the results are statistically significant with p < 0.01. Further details of the DCN model can be

found in our previous work [87]. These preliminary results verify the possibility of using out-

of-domain data for low-resource domain behavior modeling. Through it is not guaranteed that

the extracted representations remove all other nuisance factors and only contain target behavior

information, the results from the DCN model show that affect related information are captured in

the proposed manifold space.

Triplet Network Model

As a comparison, we also perform the experiment with the triplet network model. Different from

reconstruction of neighboring frames in DCN model, the triplet model only uses discriminative

distance metric to directly optimize the representations within behavioral manifold. Compared
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with the TE-DCN, the model does not contain the decoder parts. Thus, the contextual reconstruc-

tion loss from the decoder is not considered during the training and we only optimize the triplet

loss from the outputs of encoders.

The experiment is conducted with similar settings as before, and we observe that the triplet

model outperforms the baseline with average classification accuracy of 60.21%. We notice that,

for most behaviors, the DCN model achieves slightly better performance than this triplet model. In

addition, we also tried negative sampling strategies [65, 122] in the selection of triplet pair during

training, however, we find that there is no improvement in terms of the domain data classification

accuracy.

Considering the complexity of the training data, one reasonable explanation of the lower av-

erage performance of the triplet model might be the importance of the “generative” property of

decoder. The representation of the behavioral manifold is trained to have the ability of encom-

passing and reconstructing the acoustic features of its neighbor frames, which are highly related to

affect related information. The triplet network is only trained to discriminate samples with distance

metric. Such a model might be failing to ensure that the optimized embeddings are highly rele-

vant to capturing behavioral information, resulting a lower performance on the behavior modeling

tasks.

TE-autoencoder Model

Further, we test the TE-autoencoder model, a variant of the TE-DCN model. In TE-autoencoder

model, we replace the TE-DCN’s contextual encoder-decoder structure with an autoencoder. Thus,

once we have the training input pair (xa,xp,xn), the corresponding reconstruction pair is (xa,xp,xn)

rather than previous context-based (xp,xa,xn p). The autoencoder is used to compress the original

acoustic features and obtain representations with a same reduced dimension. Under this setting, the

model can preserve the property of feature compression while ignoring the contextual information.

Similarly, this behavioral representation is optimized through both reconstruction loss and triplet

loss in the target manifold. We find that the results of the average performance of TE-autoencoder
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is worse than TE-DCN’s. This further supports the importance of contextual information, and also

validates the behavior stationarity assumption.

TE-DCN Model

The TE-DCN is built upon DCN, and the extracted behavior representation is enhanced by the

discriminative metric under the behavior stationarity assumption. From the classification results,

we can observe that there is an improvement, from the 56.21% of baseline to 64.99% of TE-DCN

model in terms of the averaged classification accuracy. Under the McNemar test, these results

of proposed TE-DCN are statistically significant with p < 0.01. The TE-DCN model shows best

performance across all models. In addition, compared with both DCN and triplet models, for all

five behavior codes, a consistent improvement is obtained.

Moreover, we notice the complementary nature of DCN and triplet models in behavior model-

ing. By combining these two, TE-DCN shows that both metric learning and context information

can contribute to the overall unsupervised behavior modeling performance. These results are en-

couraging considering only unsupervised approaches are utilized with unlabeled, out-of-domain

data in TE-DCN.

Supervised Training Method

The last column of the table indicates the classification results generated from a context-aware

model via utilizing emotion related representation as behavioral primitives to facilitate the behavior

quantification. Details of this supervised training approach can be found in [88].

These supervised classification results can be regarded as an upper bound performance of the

supervised versus the unsupervised methods. Moreover, it is necessary to mention that due to the

complexity of human behavior and the subjectivity in annotation process, even for human anno-

tators, the inter-annotator agreement can only reach about Krippendorff’s α = 0.8 [148]. Thus,
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although worse than the supervised method, the TE-DCN’s performance is encouraging consid-

ering the fact that classification is obtained by a completely unsupervised method with simple

majority vote.

5.6.2 Behavioral Trajectory Analysis

In scenarios such as psychotherapy, instead of obtaining session-level classification labels, domain

experts might be more interested in dynamic behavior change trajectories. These trajectories can

help the psychologists quickly locate the most salient regions and potentially reduce the workload

of manual annotation. In this subsection, we use the couple therapy corpus as an example to

illustrate that our unsupervised behavior modeling method can potentially provide such behavioral

trajectories.

Suppose we use the labeled frame samples as reference, and select the top N nearest samples in

the behavior manifold space. Among the top N reference frames, we can calculate the percentage

of samples labeled with the presence of a certain behavior code label (samples with label 1 in

our case). For each test frame, the percentage value can indirectly imply the behavior ratings at

some level. Figure 5.3 shows an example with one sample session’s behavior dynamic change

trajectories among five behaviors, and we set N = 60 in this case. In Table 5.4, we provide the

original averaged human annotation ratings and the automatically assigned behavior classification

labels of this session.

Behavior
Binarized label

(0:absence; 1: presence)
Manual rating

(ranging from 1-9)
Acceptance 0 2.33

Blame 1 7.66
Humor 0 1.0

Negativity 1 6.25
Positivity 0 1.5

Table 5.4: Original annotation ratings and binarized classification labels for each behavior code

Although the corpus does not provide utterance- or frame- level annotations, from this figure,

we can notice the correlations among different predicted behavior code ratings. We observe that
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Figure 5.3: One sample session with five behavior score trajectories

behaviors Blame and Negativity are highly correlated, and behavior Positivity, Acceptance and

Humor tend to have a similar trend. In addition, “positive” related and “negative” related behaviors

have the opposite trend, which is in agreement with our intuition and previous supervised modeling

research work [14, 86]. From the plot, we can also observe this session shows more presence

of “negative” behaviors (with higher scores) and less degree of “positive” behaviors (with lower

scores), which is in agreement with the human ratings listed in Table 5.4.

In real world scenarios, it is often the case that the amount of annotated data might not be ade-

quate to train a supervised behavior recognition system well. Through our unsupervised behavior

modeling approach, if we need to annotate a newly collected session, this behavioral trajectory

can quickly indicate salient behavior regions and help domain experts to locate and annotate the

corresponding regions efficiently.

5.6.3 Experiment Results on Diverse Speech Behavior Corpora

In this subsection, we use collected out-of-BSP domain data to evaluate the generalizability of

TE-DCN model. As listed in Table 5.2, We collect two audio files from different speakers for each
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category. The results of similarity evaluation among different scenarios is shown in Figure 5.4. As

described in Section 5.5.4, in this table, each entry is calculated by dividing the number of nearest

frames in each selected file by the total number of frames in the input audio. This normalized

percentage value is used to evaluate the behavior similarity.

Selected Comedy Debate Ted talk Eulogy

Input 1 2 3 4 5 6 7 8

Comedy 1 0.00 0.52 0.06 0.06 0.06 0.24 0.04 0.02

2 0.40 0.00 0.07 0.08 0.16 0.12 0.10 0.07

Debate 3 0.24 0.08 0.00 0.10 0.33 0.10 0.12 0.04
4 0.08 0.10 0.06 0.00 0.27 0.18 0.24 0.06

Ted talk 5 0.06 0.11 0.17 0.11 0.00 0.32 0.01 0.09
6 0.12 0.12 0.08 0.12 0.34 0.00 0.15 0.07

Eulogy 7 0.07 0.13 0.13 0.10 0.17 0.19 0.00 0.22
8 0.05 0.13 0.02 0.08 0.18 0.21 0.32 0.00

Figure 5.4: Confusion matrix of behavior scenario similarity evaluation

From the similarity confusion matrix, we observe that for comedy, TED talk and eulogy cate-

gories, audio files exhibit high similarity scores within same category, and have lower scores for

less related scenarios, as we expected. However, for the debate files, they are mostly confused with

the ted talk files while also showing large similarity values with other scenarios. The reason for this

might be the fact that during the debate, different politicians employed different kinds of debate

skills and behaviors vary among different situations and topics. In general, we find eight out of ten

files are classified correctly based on the majority vote on frame-level clustering. Moreover, from

the results table, we also can observe the similarity under different degrees among the different

scenarios considered. These promising results underscore the domain robustness and applications

of the proposed unsupervised behavior modeling.
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5.6.4 Nuisance Factors and Selection of Features

The TE-DCN model tends to preserve the shared behavioral information between the input frame

and its neighboring frames. We acknowledge that the design of the model combined with the

behavioral stationarity assumption may have a potential complication: the neighboring frames

could also encode speaker characteristics as well as acoustic conditions such as of the environment

and channel conditions.

To minimize the effect of these nuisance factors, the choice of input feature is critical in our

proposed model. In addition to the triplet loss, the input features are designed to ensure that the

unsupervised behavior modeling focuses more on affect related aspects rather than only employing

the contextual information itself. As described in section 5.5.2, we directly use affect related hand-

crafted features as input rather than extracting intermediate representations from raw spectrum

features (e.g., MFCC or MFB coefficients). We further replace the encoder-decoder structure of

TE-DCN with CNN layers to input lower level raw spectrum features directly. Based on the exper-

iments, we find it is still challenging to extract behavioral representation exclusively, if inputs are

lower level raw spectrum features, which largely contain other acoustically encoded information.

5.7 Conclusion

The availability of adequate labelled data has been a critical bottleneck for supervised behavior

modeling. Obtaining relevant behavioral data for such modeling often suffers from not only ex-

pensive data collection but varied and low human inter-annotation agreements. These constraints

not only impact the modeling performance, but also limit the generalizability of the obtained be-

havioral models across domains.

In this work, we explore unsupervised learning for computational behavior modeling. We pro-

pose the TE-DCN model to extract behavioral representations in an unsupervised way. The results

suggest that the reconstruction with context information and metric learning are complementary
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methods within unsupervised behavior modeling. As a case study of unsupervised behavior mod-

eling from speech using couples therapy data, our framework is shown to extract target behaviors

from audio signals and achieves promising behavioral quantification results. Although there is

scope for improvement compared with the supervised method, our work provides possible solu-

tions for the computational human behavior modeling: transfer information from out-of-domain

data which are easily obtainable, and then adapt the model to specific domain applications. We

also note that information encoded in the speech unrelated to the target behaviors being modeled

can cause negative effects in the representation learning.

In the future, we plan to further computationally disentangle and reduce the speaker charac-

teristics and other complex acoustic nuisance factors in the behavior representation. We plan to

consider adversarial training to obtain more speaker-invariant and environment-robust behavior

representations [89]. Moreover, we also plan to investigate the feasibility of representation adap-

tation for downstream tasks by adding additional domain-specific supervised tuning.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Research

This dissertation explored the computational approaches of human behavior quantification via

emerging deep learning techniques under certain constraints. Meanwhile, we tried to capture dy-

namics and relevant important behavioral representations directly from speech signals.

Through our work, first, we presented a neural network model on the binary classification

of behaviors from distressed couples in therapy using acoustic features. The proposed SD-DNN

framework employs the multi-stage training and limits the number of training parameters at all

stages to prevent overfitting and achieves well convergences. As shown in Chapter 2, this method

shows the promising benefits of introducing DNN into the behavior signal processing domain. The

results achieved better in behavior classification when compared to traditional machine learning

approaches, such as SVM. Even though our model did not specifically optimize the dynamic be-

havior changes within the session, it provided behavioral trajectories within the session, and the

classification results are better than existing HMM dynamic models.

Meanwhile, we noticed the limitation of data resources in the utilization of large-scale data-

driven machine learning approaches on BSP applications. Thus, in the second part of the research,

we investigated the possibility of employment of out-of-domain data to facilitate the domain be-

havior understanding.

86



In Chapter 3, we analyzed the link between emotions and behaviors through transfer learning.

Through this, we experimentally verified the existing relationship and used emotional informa-

tion as constructs of behavioral understanding. The importance of temporal dynamics and the

context information of short-term affect states in shaping behaviors was also addressed in our ex-

periment results. The results suggested different behaviors require different observation window

length to be quantified. Moreover, we found different behavior exhibits different characters. Some

are more closely related to emotions, while some are more related to speech signals or lexical

descriptions. Most importantly, most of our experimental findings are congruent with existing re-

search work [25, 63, 77] from psychology or social science. The importance of emotion involved

behavior primitive motived the working of investigating more robust emotion representations. Hu-

man speech signals encompass rich information such as linguistic features, speaker characteristics,

and affective states. In Chapter 4, we explored the disentanglement of affective information from

speech representations using adversarial training. Specifically, we eliminated speaker-related in-

formation and obtain a speaker-invariant affect embedding from speech. In Chapter 5, we further

reduced restrictions of out of domain data utilization. We exploited the slow varying properties

of human behavior and proposed a deep contextualized encoder-decoder structure to connect be-

havioral context and derived the behavioral manifold in an unsupervised manner. By introducing

the idea of metric learning into our model, we proposed the triplet enhanced contextualized net-

works. The results are extremely encouraging and promise improved behavioral quantification in

an unsupervised manner.

6.2 Future Work

There are several potential research directions with emerging challenges in the study of behavior

quantification and understanding. As the well-being of mental health is gradually attracting consid-

erable interest, the application of BSP is extending from the assistance of treatment in psychother-

apy to the facilitation of well-being of people in daily life. Recently, many wearable commercial
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products, such as Apple Watch and Amazon Halo, make it easier to collect more behavior signals

(e.g. speech or heart rate signals) with fewer efforts. The evolution of hardware and emphasis

on mental health potentially produce many opportunities in BSP areas. However, data collected

in real-life scenarios is usually much more complex than data collected under well-designed ex-

perimental settings. For example, it may include conversations ranging from different topics and

speech from multiple speakers. Thus, how to adapt the existing BSP techniques to complex daily

life scenarios usage can be an interesting and challenging research topic to further investigate. In

addition, since human behavioral information is encoded in multiple modalities, the relationship

and link across different modalities, the interpretation of dynamic changes of behavior trajectories

can be explored.
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Appendices

A Detailed Network Architecture and Training Parameters of

Chapter 3

Multi-Emotion Regression Network (ER) framework (Input: 84 * 100 ; Output:6)
Training details: Adam optimizer(lr = 1e-05), batch size 16, MSELoss
Conv1d(in ch=84, out ch=96, kernel size=10, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=128, kernel size=3, stride=2, padding=0) ReLU
AdaptiveMaxPool1d(1)
Linear(in =128, out =128) ReLU
Linear(in =128, out =128) ReLU
Linear(in =128, out =6)

Table 6.1: Network architecture of ER

Single-Emotion Classification Network (EC) framework (Input: 84 * 100 ; Output: 2)
Training details: Adam optimizer(lr = 1e-05), CrossEntropyLoss, batch size: 32; 64; 128
Conv1d(in ch=84, out ch=96, kernel size=10, stride=2, padding=0) ReLU

Pretrained

Conv1d(in ch=96, out ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=128, kernel size=3, stride=2, padding=0) ReLU
AdaptiveMaxPool1d(1)
Linear(in =128, out =128) ReLU
Linear(in =128, out =128) ReLU
Linear(in =128, out =64) PReLU

TrainableLinear(in =64, out =64) PReLU
Linear(in =64, out =2)

Table 6.2: Network architecture of EC
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B-BP based context-dependent behavior recognition model (Input: seq len*6; Output: 5)
Training details: Adam optimizer(lr = 1e-04) + Polynomial learning rate decay,
Masked BCEWithLogitsLoss, batch size: 1
Emotion recognition framework Pretrained
GRU(in size =6, hidden size = 128, num layers=2)

TrainableLinear(in =128, out =64) ReLU
Linear(in =64, out =5)

Table 6.3: B-BP based context-dependent behavior recognition model framework
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E-BP based context-dependent behavior recognition model (Input: seq len * 84 * 100 ; Output: 5)
Training details: Adam optimizer(lr = 1e-05) + Polynomial learning rate decay,
Masked BCEWithLogitsLoss, batch size: 1, epochs=300
Conv1d(in ch=84, out ch=96, kernel size=10, stride=2, padding=0) ReLU

Partly pretrained
Partly trainable

Conv1d(in ch=96, out ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=128, kernel size=3, stride=2, padding=0) ReLU
AdaptiveMaxPool1d(1)
GRU(in size =128, hidden size = 128, num layers=2)

TrainableLinear(in =128, out =64) ReLU
Linear(in =64, out =5)

Table 6.4: E-BP based context-dependent behavior recognition model framework
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E-BP based reduced context-dependent behavior recognition model
(Input: 84 * seq len ; Output: 5)
Training details: Adam optimizer(lr = 1e-04) + Polynomial learning rate decay,
Masked BCEWithLogitsLoss, batch size: 48, epochs=350
Conv1d(in ch=84, out ch=96, kernel size=10, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=96, kernel size=5, stride=2, padding=0) ReLU
Conv1d(in ch=96, out ch=128, kernel size=3, stride=2, padding=0) ReLU

Behavior primitive embedding
(Pretrained)

Conv1d(in ch=128, out ch=96, kernel size=3, stride=2, padding=0)
AvgPool1d(kernel size=2, stride=2) ReLU
Dropout(prob=0.4)
Conv1d(in ch=96, out ch=96, kernel size=3, stride=2, padding=0)
AvgPool1d(kernel size=2, stride=2) ReLU
Dropout(prob=0.4)
Conv1d(in ch=96, out ch=96, kernel size=3, stride=1, padding=0)
AvgPool1d(kernel size=2, stride=2) ReLU
Dropout(prob=0.4)
Conv1d(in ch=96, out ch=128, kernel size=3, stride=1, padding=0)
AvgPool1d(kernel size=2, stride=2) ReLU
Dropout(prob=0.5)
AdaptiveMaxPool1d(1)
Linear(in =128, out =128) ReLU
Linear(in =128, out =64) ReLU
Linear(in =64, out =5)

Trainable

Table 6.5: E-BP based reduced context-dependent behavior recognition model framework. Those
AvgPool1d layers are optional to adjust temporal receptive field size.

106


	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Chapter Introduction
	Motivation
	Challenges and Constrained Conditions
	Dissertation Overview

	Chapter Sparsely Connected and Disjointly Trained Deep Neural Networks for Behavior Classification
	Introduction
	Methodology
	DNN Training
	Reduced Feature Dimensionality DNN
	Sparsely-Connected and Disjointly-Trained DNN
	Joint Optimization of Sparsely-Connected DNN
	Local to Session mappings

	Couple Therapy Corpus
	Acoustic Feature Extraction
	Audio Preprocessing
	Acoustic Feature Extraction

	Experiment Setup
	Experiment Results and Discussion
	Conclusion

	Chapter Linking Emotions to Behaviors through Deep Transfer Learning
	Introduction
	Background
	Related Work
	Proposed Work: Behavioral Primitives
	Emotion Recognition
	Behavior Recognition through Emotion-based Behavior Primitives

	Datasets
	Emotion Dataset: CMU-MOSEI Dataset
	Behavior Dataset: Couples Therapy Corpus

	Audio Processing and Feature Extraction
	Behavioral Dataset Pre-processing
	Feature Extraction

	Experiments and Results Discussion
	General Settings
	ER and EC for Emotion Recognition
	Context-dependent Behavior Recognition
	Reduced Context-dependent Behavior Recognition
	Analysis on Behavior Prediction Uncertainty Reduction

	Conclusion and Future Work

	Chapter Speaker-invariant Affective Representation Learning via Adversarial Training
	Introduction
	Related Work
	Methodology
	Model Structure
	Difference with Prior Work
	Emotion Representation Adversarial Training
	Training of SC
	Training of ENC and EC


	Dateset
	Experiment Setup
	Model Configurations

	Results and Discussion
	Evaluation on IEMOCAP

	Conclusion

	Chapter Unsupervised Speech Representation Learning for Behavior Modeling using Triplet Enhanced Contextualized Networks
	Introduction
	Related Work and Motivation
	Unsupervised Speech Representation Learning for Human Behavior Modeling
	Behavioral Stationarity Assumption
	Deep Contextualized Network
	Triplet Enhanced Deep Contextualized Network

	Datasets
	Evaluation Datasets

	Experimental Setup
	Audio Data Preparation
	Feature Extraction
	Model Configurations and Parameter Settings
	Evaluation Method
	Evaluation Method for In-domain Couples Therapy Corpus
	Evaluation Method for Diverse Speech Behavior Corpora


	Experimental Results and Discussions
	Experiment Results of Couple Therapy Corpus
	Behavioral Trajectory Analysis
	Experiment Results on Diverse Speech Behavior Corpora
	Nuisance Factors and Selection of Features

	Conclusion

	Chapter Conclusion and Future Work
	Summary of Research
	Future Work

	Bibliography
	Appendices
	Detailed Network Architecture and Training Parameters of Chapter 3


