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Abstract

Automatic Speech Recognition (ASR) is gaining a lot of importance in everyday life. ASR has

become a core component of human computer interaction. It is a key part of many applications

involving virtual assistants, voice assistants, gaming, robotics, natural language understanding,

education, communication-pronunciation tutoring, call routing, interactive media entertainment,

etc. The growth of such applications and their adaptations in everyday scenarios, points to the

ASR becoming an ubiquitous part of our daily life in the foreseeable, near future. This has become

partly possible due to high performance achieved by state-of-the-art speech recognition systems.

However, the errors resulting from ASR can often have a negative impact towards the downstream

applications. In this work, we focus on modeling the errors of the ASR with the hypothesis that

an accurate modeling of such errors can be used to recover from the ASR errors and alleviate the

negative consequences towards its downstream applications.

We model the ASR as a phrase-based noisy transformation channel and propose an error

correction system that can learn from the aggregate errors of all the independent modules consti-

tuting the ASR and attempt to invert those. The proposed system can exploit long-term context

and can re-introduce previously pruned or unseen phrases in addition to better choosing between

existing ASR output possibilities. We show that the system can provide improvements over a

range of di�erent ASR conditions without degrading any accurate transcription. We also show

that the proposed system provides consistent improvements even on out-of-domain tasks as well

as over highly optimized ASR models re-scored by recurrent neural language models. Further,

we propose sequence-to-sequence neural network for modeling the ASR errors by incorporating

much longer contextual information. We propose di�erent optimal architectures and feature rep-

resentations, in terms of subwords, and demonstrate improvements over the phrase-based noisy

channel model.

Additionally, we propose a novel word vector representation, Confusion2Vec, motivated from

the human speech production and perception that encodes representational ambiguity. The rep-

resentational ambiguity of acoustics, which manifests itself in word confusions, is often resolved

by both humans and machines through contextual cues. We present several techniques to train an
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acoustic perceptual similarity representation ambiguity and learn on unsupervised-generated data

from ASR confusion networks or lattice-like structures. Appropriate evaluations are formulated

for gauging acoustic similarity in addition to semantic-syntactic and word similarity evaluations.

The Confusion2Vec is able to model word confusions e�ciently without compromising on the

semantic-syntactic word relations, thus e�ectively enriching the word vector space with extra task

relevant ambiguity information. The proposed Confusion2Vec can also contribute and extend

to a range of representational ambiguities that emerge in various domains further to acoustic

perception, such as morphological transformations, word segmentation, paraphrasing for natural

language processing tasks like machine translation, and visual perceptual similarity for image

processing tasks like image summarization, optical character recognition etc.

This work also contributes towards e�cient coupling of ASR with various downstream algo-

rithms operating on ASR outputs. We prove the e�cacy of the Confusion2Vec by proposing a

recurrent neural network based spoken language intent detection to achieve state-of-the-art results

under noisy ASR conditions. We demonstrate through experiments and our proposed model that

ASR often makes errors relating to acoustically similar words and the confusion2vec with inherent

model of acoustic relationships between words is able to compensate for the errors. Improvements

are also demonstrated when training the intent detection models on noisy ASR transcripts. This

work opens new possible opportunities in incorporating the confusion2vec embeddings to a whole

range of full-�edged applications.

Further, we extend the previously proposed confusion2vec by encoding each word in confu-

sion2vec vector space by its constituent subword character n-grams. We show the subword en-

coding helps better represent the acoustic perceptual ambiguities in human spoken language via

information modeled on lattice structured ASR output. The e�cacy of the subword-confusion2vec

is evaluated using semantic, syntactic and acoustic analogy and word similarity tasks. We demon-

strate the bene�ts of subword modeling for acoustic ambiguity representation on the task of spoken

language intent detection. The results signi�cantly outperform existing word vector representa-

tions as well as the non-subword confusion2vec word embeddings when evaluated on erroneous

ASR outputs. We demonstrate confusion2vec subword modeling eliminates the need for retrain-

ing/adapting the natural language understanding models on ASR transcripts.
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Chapter 1

Introduction

Spoken communication is the most natural way of interaction for humans. This makes spoken

language communication arguably the most preferred means of human computer interaction. The

spoken natural language understanding (SLU) typically comprises of two fundamental compo-

nents (i) speech processing & recognition, and (ii) natural language processing & understanding.

However, errors can arise throughout the system due to various inconsistencies in human speech

and language, operating environments as well as intricate interconnects of machine processing

and learning algorithms. In this work, we �rst identify the sources of errors and attempt to ad-

dress potential bottlenecks present in each of the stages of the spoken language understanding

framework.

1.1 Error Sources

1.1.1 Input speech signal

Several errors are induced into the SLU systems due to the complexity of speech signals. Chal-

lenges in speech signal modeling is largely attributed to the vast amount of variability present in

the signal. The variability can be largely categorized into three types: (i) acoustic variability, (ii)

pronunciation variability, and (iii) language variability.

One of the primary sources of acoustic variability is due to the wide range of inter-speaker

variability. Speaker variability in acoustics manifests in terms of speaker age, vocal tract struc-

tures, speech articulation and expressions. For example, kids spectral characteristics is found to

be vastly di�erent to that of adults [129, 94, 53]. Children's speech is associated with shifted

spectral content and formant frequencies, high within-subject and inter-subject variabilities at-

tributed to developmental changes in vocal tract. Children's ASR were found to be 2 to 5 times

worse than adults [129]. Acoustic variability can also result due to speaker's health conditions.
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Speech disabilities including dysarthria, stroke, tongue cancer etc., can have adverse e�ects on

speech modeling. Moreover paralinguistic phenomenon like emotion, sentiment also pose chal-

lenges and induce additional errors. Other than speaker related variability, speaker background

and environment induced acoustic variability is a major source of speech modeling errors. Vary-

ing amount of noise present in speaking environment can have complex interaction with speech

signals, often resulting in heightened errors. Spectral characteristics of noise can generate varying

error conditions. For example, spoken noise such as overlapped speech generates errors that are

vastly di�erent to the ones generated due to a power line noise. Channel characteristics such as

reverberation and the inherent spectral signature of the speech recording/capturing devices is an

additional source of error resulting from speech signals.

Pronunciation variability refers to the di�erences in phonological process involved in pronunci-

ation among di�erent speakers, which is also a prime source for errors. Pronunciation variability

manifests in terms of di�erent dialects, accents, non-native speakers and speaker's linguistic knowl-

edge. Non-native speakers often project phonological processes and pronunciation rules from their

native language to the target non-native language. For example, native arabic speakers often con-

fuse phoneme �ih� with �eh� leading to potential confusion and errors between words �sit� and

�set�. Developing linguistic knowledge in children can result in highly varying pronunciations

resulting in increased errors during speech recognition.

The use of language can vary from person to person depending on speaker's nativity, origin

and general linguistic knowledge. New learners can induce errors resulting from the mismatch be-

tween speaker's language constructs and the statistical language models. Developmental stages in

linguistic knowledge, especially found in children, can pose serious challenges in speech modeling.

On the other hand, extensive speaker vocabulary can also prove challenging.

Addressing these errors have been the main focus of researchers in the ASR community. Some

of the existing ASR technologies and the research in acoustic, pronunciation and language mod-

eling are presented in section 2.1. Prior work in error correction and their e�ectiveness in terms

of error reduction are discussed under section 2.1.1.

1.1.2 Machine Processing and Learning Limitations

Another source of errors is the practical limitations imposed by the machine processing and

learning algorithms. Two main sources of limitations are computation complexity and memory

constraints. For instance, in an ASR, a decoding beam is adopted to prevent memory explosion

during generation of decoding graphs. The implications are that the ASR output can itself be non-

optimal due to the potential dropping o� of a better hypothesis during lattice pruning. Moreover,
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ASR systems often make unrecoverable errors due to subsystem pruning (acoustic, language and

pronunciation models). For example, pruning words due to acoustics, prior to re-scoring with

pronunciation and language model. This can lead to aggregation of errors through each module.

Further, the three modules of the ASR (acoustic, language and pronunciation) typically operate

with a local view on varying contextual information. Acoustic models typically make decisions

using short-term context, prior to re-scoring with longer term context based on pronunciation and

language. The varying context can induce unrecoverable errors, for instance sub-optimal decisions

based on short term context may not be recovered at a later stage. Finally, the ASR and the NLU

operate fairly independent of each other with bottlenecks associated with the �ow of information

between the two modules with potential for more errors.

1.1.3 Limitations of human-evolved language encoding

Human language is complex because of the vast information encoded and certain ambiguities

associated with them. One such ambiguity relating to human spoken language is due to the

lack of correlation of language semantics and the acoustics. For example, words such as �right�

& �write� and �see� & �sea� sound identical but can have di�erent meanings associated between

them. On the contrary, words such as �blue� & �cyan� and �king� & �queen� are semantically

close but have vastly di�erent acoustic characteristics. For such reasons, for lack of correlation

between semantics and acoustics, human language encoding is not optimal. The non-optimality

is a potential source for errors during spoken language processing and understanding.

Prior and existing works in representation of human language for machine processing and

learning is discussed under section 2.2. Some of the challenges and e�ects of non optimal human

language encoding in application to the task of spoken language intent detection is presented in

section 2.3.

1.2 Our Contribution: Error Modeling

Our study focuses on building systems that addresses the challenges in alleviating the e�ects of

errors under each of the three categories: (i) input speech signal induced errors, (ii) machine

processing and learning limitation induced errors, and (iii) errors induced due to limitations in

human-evolved language encoding.

In this work we model ASR as a phrase-based noisy transformation channel and propose an

error correction system that can learn from the aggregate errors of all the independent modules

constituting the ASR and attempt to invert those. The proposed system can not only recover
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speech signal induced errors (discussed in section 1.1.1) but also overcome the limitations imposed

by machine processing and learning algorithms (discussed in section 1.1.2). Our approach is

elaborated and presented in chapter 3.

On the aspect of human language encoding, in this work, we propose a novel word vector rep-

resentation, Confusion2Vec, motivated from the human speech production and perception that

encodes representational ambiguity. Humans employ both acoustic similarity cues and contextual

cues to decode information and we focus on a model that incorporates both sources of information.

We present several techniques to train an acoustic perceptual similarity representation ambiguity

and learn on unsupervised-generated data from Automatic Speech Recognition confusion net-

works or lattice-like structures. The proposed language encoding, Confusion2Vec, is presented in

chapter 4.

Next, we demonstrate the superiority of the newly proposed human language encoding on the

task of spoken language intent detection under noisy conditions imposed by automatic speech

recognition (ASR) systems. We demonstrate the capabilities of the proposed language encoding

to compensate for the errors made by ASR and to increase the robustness of the SLU system.

We hypothesize that ASR often makes errors relating to acoustically similar words, and the

confusion2vec with inherent model of acoustic relationships between words is able to compensate

for the errors. The study is presented in chapter 5.

Further enhancements to Confusion2vec is explored by encoding each word in confusion2vec

vector space by its constituent subword character n-grams. We show the subword encoding helps

better represent the acoustic perceptual ambiguities as well as in capturing language semantics

and syntax by evaluating using semantic, syntactic and acoustic analogy and word similarity

tasks. We demonstrate the bene�ts of subword modeling for acoustic ambiguity representation in

application to spoken language intent detection operating on the speech recognition output. The

subword modeling for Confusion2Vec and its e�cacy towards spoken language intent detection is

presented in chapter 6.
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Chapter 2

Prior and Existing Work

2.1 Automatic Speech Recognition

Due to the complexity of human language and quality of speech signals, improving performance of

automatic speech recognition (ASR) is still a challenging task. The traditional ASR comprises of

three conceptually distinct modules: acoustic modeling, dictionary and language modeling. Three

modules are fairly independent of each other in research and operation.

In terms of acoustic modeling, Gaussian Mixture Model (GMM) based Hidden Markov Model

(HMM) systems [134, 133] were a standard for ASR for a long time and are still used in some of

the current ASR systems. Lately, advances in Deep Neural Network (DNN) led to the advent of

Deep Belief Networks (DBN) and Hybrid DNN-HMM [71, 34], which basically replaced the GMM

with a DNN and employed a HMM for alignments. Deep Recurrent Neural Networks (RNN),

particularly Long Short Term Memory (LSTM) Networks replaced the traditional DNN and DBN

systems [60]. Connectionist Temporal Classi�cation (CTC) [59] proved to be e�ective with the

ability to compute the alignments implicitly under the DNN architecture, thereby eliminating the

need of GMM-HMM systems for computing alignments.

The research e�orts for developing e�cient dictionaries or lexicons have been mainly in terms

of pronunciation modeling. Pronunciation modeling was introduced to handle the intra-speaker

variations [160, 176], non-native accent variations [160, 176], speaking rate variations found in

conversational speech [176] and increased pronunciation variations found in children's speech [150].

Various linguistic knowledge and data-derived phonological rules were incorporated to augment

the lexicon.

Research e�orts in language modeling share those of the Natural Language Processing (NLP)

community. By estimating the distribution of words, statistical language modeling (SLM), such

as n-gram, decision tree models [8], linguistically motivated models [117] amount to calculating
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the probability distribution of di�erent linguistic units, such as words, phrases [88], sentences,

and whole documents [137]. Recently, Deep Neural Network based language models [5, 112, 163]

have also shown success in terms of both perplexity and word error rate.

Very recently, state-of-the-art ASR systems are employing end-to-end neural network models,

such as sequence-to-sequence [165] in an encoder-decoder architecture. The systems are trained

end-to-end from acoustic features as input to predict the phonemes or characters [7, 23]. Such

systems can be viewed as an integration of acoustic and lexicon pronunciation models. The state-

of-the-art performance can be attributed towards the joint training (optimization) between the

acoustic model and the lexicon models (end-to-end) enabling them to overcome the short-comings

of the former independently trained models.

2.1.1 Error Correction for ASR

Several research e�orts were carried out for error correction using post-processing techniques.

Much of the e�ort involves user input used as a feedback mechanism to learn the error patterns

[2, 121]. Other work employs multi-modal signals to correct the ASR errors [162, 121]. Word

co-occurrence information based error correction systems have proven quite successful [142]. In

[135], a word-based error correction technique was proposed. The technique demonstrated the

ability to model the ASR as a noisy channel. In [77], similar technique was applied to a syllable-

to-syllable channel model along with maximum entropy based language modeling. In [39], a

phrase-based machine translation system was used to adapt a generic ASR to a domain speci�c

grammar and vocabulary. The system trained on words and phonemes, was used to re-rank the

n-best hypotheses of the ASR. In [33], a phrase based machine translation system was used to

adapt the models to the domain-speci�c data obtained by manual user-corrected transcriptions.

In [167], an RNN was trained on various text-based features to exploit long-term context for error

correction. Confusion networks from the ASR have also been used for error correction. In [191], a

bi-directional LSTM based language model was used to re-score the confusion network. In [118], a

two step process for error correction was proposed in which words in the confusion network are re-

ranked. Errors present in the confusion network are detected by conditional random �elds (CRF)

trained on n-gram features and subsequently long-distance context scores are used to model the

long contextual information and re-rank the words in the confusion network. [21, 52] also makes

use of confusion networks along with semantic similarity information for training CRFs for error

correction.
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2.2 Natural Language Processing

Decoding human language is challenging for machines. It involves estimation of e�cient, mean-

ingful representation of words. Machines represent the words in the form of real vectors and the

language as a vector space. Vector space representations of language have applications spanning

natural language processing (NLP) and human computer interaction (HCI) �elds. More specif-

ically, word embeddings can act as features for Machine Translation, Automatic Speech Recog-

nition, Document Topic Classi�cation, Information Retrieval, Sentiment Classi�cation, Emotion

Recognition, Behavior Recognition, Question Answering etc.

Early work employed words as the fundamental unit of feature representation. This could

be thought of as each word representing an orthogonal vector in a n-dimensional vector space of

language with n-words (often referred to as one-hot representation). Such a representation, due

to the inherent orthogonality, lacks crucial information regarding inter-word relationships such

as similarity. Several techniques found using co-occurrence information of words to be a better

feature representation (Ex: n-gram Language Modeling).

Subsequent studies introduced few matrix factorization based techniques to estimate a more

e�cient, reduced dimensional vector space based on word co-occurrence information. Latent Se-

mantic Analysis (LSA) assumes an underlying vector space spanned by orthogonal set of latent

variables closely associated with the semantics/meanings of the particular language. The dimen-

sion of this vector space is much smaller than the one-hot representation [35]. LSA was proposed

initially for information retrieval and indexing, but soon gained popularity for other NLP tasks.

[73] proposed Probabilistic LSA replacing the co-occurrence information by a statistical class

based model leading to better vector space representations.

Another popular matrix factorization method, the Latent Dirichlet Allocation (LDA) assumes

a generative statistical model where the documents are characterized as a mixture of latent vari-

ables representing topics which are described by word distributions [16].

Recently neural networks gained popularity. They often outperform the N-gram models

[11, 112] and enable estimation of more complex models incorporating much larger data than

before. Various neural network based vector space estimation of words were proposed. [11] pro-

posed feed-forward neural network based language models which jointly learned the distributed

word representation along with the probability distribution associated with the representation.

Estimating a reduced dimension continuous word representation allows for e�cient probability

modeling, thereby resulting in much lower perplexity compared to an n-gram model. Recurrent

neural network based language models, with inherent memory, allowed for the exploitation of
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much longer context, providing further improvements compared to feed forward neural networks

[112].

[113] proposes a new technique of estimating vector representation (popularly termed word2vec)

which showed promising results in preserving the semantic and syntactic relationships between

words. Two novel architectures based on simple log-linear modeling (i) continuous skip-gram and

(ii) continuous bag-of-words are introduced. Both the models are trained to model local context of

word occurrences. The continuous skip-gram model predicts surrounding words given the current

word. Whereas, the continuous bag-of-words model predicts the current word given its context.

The task evaluation is based on answering various analogy questions testing semantic and syntac-

tic word relationships. Several training optimizations and tips were proposed to further improve

estimation of the vector space by [115, 116]. Such e�cient representation of words directly in�u-

ences the performance of NLP tasks like sentiment classi�cation [83], part-of-speech tagging [99],

text classi�cation [98, 79], document categorization [180] and many more.

Subsequent research e�orts on extending word2vec involve expanding the word representation

to phrases [115], sentences and documents [93]. Similarly, training for contexts derived from syn-

tactic dependencies of a word is shown to produce useful representations [96]. Using morphemes for

word representations can enrich the vector space and provide gains especially for unknown, rarely

occurring, complex words and morphologically rich languages [104, 18, 131, 32, 155]. Likewise,

incorporating sub-word representations of words for the estimation of vector space is bene�cial

[17]. Similar studies using characters of words have also been tried [26]. [187] explored ensemble

techniques for exploiting complementary information over multiple word vector spaces. Studies

by [114, 47] demonstrate that vector space representations are extremely useful in extending the

model from one language to another (or multi-lingual extensions) since the semantic relations

between words are invariant across languages.

Some have tried to combine the advantages from both matrix factorization based techniques

and local-context word2vec models. [127] proposes global log-bilinear model for modeling global

statistical information as in the case of global matrix factorization techniques along with the local

context information as in the case of word2vec.

2.3 Spoken Language Understanding

Spoken Language Understanding (SLU) systems aim at extracting semantic information from

human spoken utterances. Such systems play a signi�cant role in practical applications like

personal AI voice assistants (e.g. Alexa, Siri, etc.), phone-call routing, booking system and
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so on. A SLU system is typically modeled as two separate components: an ASR front-end,

which translates acoustic signal into text, followed by a Natural Language Understanding (NLU)

module that performs inference for downstream tasks. Typical tasks include Domain classi�cation,

Intent Detection and Slot �lling. In this work, we focus on the SLU system that performs Intent

Detection, a task identifying speaker's intent from speech. Such task is usually treated as an

utterance classi�cation problem [186].

In the light of success of Deep Learning techniques, applying Deep Neural Networks on in-

tent detection has been shown to be e�ective, often outperforming conventional classi�ers, such

as Support Vector Machines [63]. In recent years, the NLU community have applied various

techniques to improve intent detection performance on manual transcripts. [183, 61, 189] jointly

model intent detection with slot �lling, simplifying the NLU task by a uni�ed model. [65, 84]

extend the joint modeling with domain knowledge, which enables information from multiple tasks

to bene�t the individual tasks and allow the NLU model to be applied to multiple-domain tasks.

Going one step further, [101, 188] involve adapting domain-speci�c language model (LM) while

performing intent detection and slot �lling, improving the performance on both LM and language

understanding task. [100] explores strategies in joint modeling intent classi�cation and slot �lling

using explicit alignment information provided by slot �lling using attention-based encoder-decoder

structure. On the basis of attention-based model, [58] connects context information from intent

detection with slot �lling using a gate mechanism. [97] employs a similar intent-augmented gating

mechanism to guide the learning of the slot �lling task. It further incorporates character-level

embedding along with word-level embedding achieving state-of-the-art results in intent detection.

However, su�ering from ASR front-end errors, such as mis-recognized words, insertions and

deletions, the performance of such systems degrades signi�cantly, as shown in [69, 36, 111] and

is still the bottleneck in SLU systems. On one hand, in order to make system more ASR-robust,

ASR hypotheses can be incorporated into the model's training corpus. [90, 171, 107] exploit Word

Confusion Networks to e�ciently connect NLU models with ASR hypotheses. [154] simulated ASR

errors by randomly substituting words with their linguistically and acoustically similar candidates.

On the other hand, there have been works that aim to jointly perform NLU tasks and ASR error

adaption. [146, 192] employ Recurrent Neural Network (RNN) based Encoder-Decoder structure

to reconstruct correct utterances from ASR hypotheses while performing intent detection and slot

�lling. [158] makes richer feature representations by adding acoustic pitch accent �ags into word

embedding.
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Chapter 3

Learning from Past Mistakes: Improving Automatic Speech

Recognition output via Noisy-Clean Phrase Context

Modeling

3.1 Introduction

Several research e�orts were carried out for error correction using post-processing techniques.

Much of the e�ort involves user input used as a feedback mechanism to learn the error patterns

[2, 121]. Other work employs multi-modal signals to correct the ASR errors [162, 121]. Word

co-occurrence information based error correction systems have proven quite successful [142]. In

[135], a word-based error correction technique was proposed. The technique demonstrated the

ability to model the ASR as a noisy channel. In [77], similar technique was applied to a syllable-

to-syllable channel model along with maximum entropy based language modeling. In [39], a

phrase-based machine translation system was used to adapt a generic ASR to a domain speci�c

grammar and vocabulary. The system trained on words and phonemes, was used to re-rank the

n-best hypotheses of the ASR. In [33], a phrase based machine translation system was used to

adapt the models to the domain-speci�c data obtained by manual user-corrected transcriptions.

In [167], an RNN was trained on various text-based features to exploit long-term context for error

correction. Confusion networks from the ASR have also been used for error correction. In [191], a

bi-directional LSTM based language model was used to re-score the confusion network. In [118], a

two step process for error correction was proposed in which words in the confusion network are re-

ranked. Errors present in the confusion network are detected by conditional random �elds (CRF)

trained on n-gram features and subsequently long-distance context scores are used to model the

long contextual information and re-rank the words in the confusion network. [21, 52] also makes
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use of confusion networks along with semantic similarity information for training CRFs for error

correction.

The scope of this chapter is to evaluate whether subsequent transcription corrections can take

place, on top of a highly optimized ASR. We hypothesize that our system can correct the errors

by (i) re-scoring lattices, (ii) recovering pruned lattices, (iii) recovering unseen phrases, (iv) pro-

viding better recovery during poor recognitions, (v) providing improvements under all acoustic

conditions, (vi) handling mismatched train-test conditions, (vii) exploiting longer contextual in-

formation and (viii) text regularization. We target to satisfy the above hypotheses by proposing

a Noisy-Clean Phrase Context Model (NCPCM). We introduce context of past errors of an ASR

system, that consider all the automated system noisy transformations. These errors may come

from any of the ASR modules or even from the noise characteristics of the signal. Using these

errors we learn a noisy channel model, and apply it for error correction of the ASR output.

Compared to the above e�orts, our work di�ers in the following aspects:

� Error corrections take place on the output of a state-of-the-art Large Vocabulary Continuous

Speech Recognition (LVCSR) system trained on matched data. This di�ers from adapting to

constrained domains (e.g. [33, 39]) that exploit domain mismatch. This provides additional

challenges both due to the larger error-correcting space (spanning larger vocabulary) and

the already highly optimized ASR output.

� We evaluate on a standard LVCSR task thus establishing the e�ectiveness, reproducibility

and generalizability of the proposed correction system. This di�ers from past work where

speech recognition was on a large-vocabulary task but subsequent error corrections were

evaluated on a much smaller vocabulary.

� We analyze and evaluate multiple type of error corrections (including but not restricted to

Out-Of-Vocabulary (OOV) words). Most prior work is directed towards recovery of OOV

words.

� In addition to evaluating a large-vocabulary correction system on in-domain (Fisher, 42k

words) we evaluate on an out-of-domain, larger vocabulary task (TED-LIUM, 150k words),

thus assessing the e�ectiveness of our system on challenging scenarios. In this case the

adaptation is to an even bigger vocabulary, a much more challenging task to past work that

only considered adaptation from large to small vocabulary tasks.

� We employ multiple hypotheses of ASR to train our noisy channel model.
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� We employ state-of-the-art neural network based language models under the noisy-channel

modeling framework which enable exploitation of longer context.

Additionally, our proposed system comes with several advantages: (1) the system could po-

tentially be trained without an ASR by creating a phonetic model of corruption and emulating

an ASR decoder on generic text corpora, (2) the system can rapidly adapt to new linguistic pat-

terns, e.g., can adapt to unseen words during training via contextual transformations of erroneous

LVCSR outputs.

Further, our work is di�erent from discriminative training of acoustic [177] models and dis-

criminative language models (DLM) [136], which are trained directly to optimize the word error

rate using the reference transcripts. DLMs in particular involve optimizing, tuning, the weights of

the language model with respect to the reference transcripts and are often utilized in re-ranking

n-best ASR hypotheses [136, 141, 184, 15, 22]. The main distinction and advantage with our

method is the NCPCM can potentially re-introduce unseen or pruned-out phrases. Our method

can also operate when there is no access to lattices or n-best lists. The NCPCM can also operate

on the output of a DLM system.

The rest of the paper is organized as follows: Section 3.2 presents various hypotheses and

discusses the di�erent types of errors we expect to model. Section 3.3 elaborates on the proposed

technique and Section 3.4 describes the experimental setup and the databases employed in this

work. Results and discussion are presented in Section 3.5 and we �nally conclude and present

future research directions in Section 6.7.

3.2 Hypotheses

In this section we analytically present cases that we hypothesize the proposed system could help

with. In all of these the errors of the ASR may stem from realistic constraints of the decoding

system and pruning structure, while the proposed system could exploit very long context to

improve the ASR output.

Note that the vocabulary of an ASR doesn't always match the one of the error correction

system. Lets consider for example, an ASR that does not have lexicon entries for �Prashanth� or

�Shivakumar� but it has the entries �Shiva� and �Kumar�. Lets also assume that this ASR consis-

tently makes the error �Pression� when it hears �Prashanth�. Given training data for the NCPCM,

it will learn the transformation �Pression Shiva Kumar� into �Prashanth Shivakumar�, thus it will

have a larger vocabulary than the ASR and learn to recover such errors. This demonstrates the

ability to learn out-of-vocabulary entries and to rapidly adapt to new domains.
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3.2.1 Re-scoring Lattices

1. �I was born in nineteen ninety three in Iraq�

2. �I was born in nineteen ninety three in eye rack�

3. �I was born in nineteen ninety three in I rack�

Phonetic Transcription: �ay . w aa z . b ao r n . ih n .

n ay n t iy n . n ay n t iy . th r iy . ih n . ay . r ae k�

Example 1

In Example Example 1, all the three samples have the same phonetic transcription. Let us

assume sample 1 is the correct transcription. Since all the three examples have the same phonetic

transcription, this makes them indistinguishable by the acoustic model. The language model is

likely to down-score the sample 3. It is possible that sample 2 will score higher than sample 1 by

a short context LM (e.g. bi-gram or 3-gram) i.e., �in� might be followed by �eye� more frequently

than �Iraq� in the training corpora. This will likely result in an ASR error. Thus, although the

oracle WER can be zero, the output WER is likely going to be higher due to LM choices.

Hypothesis A: An ideal error correction system can select correct options from the

existing lattice.

3.2.2 Recovering Pruned Lattices

A more severe case of Example Example 1 would be that the word �Iraq� was pruned out of the

output lattice during decoding. This is often the case when there are memory and complexity

constraints in decoding large acoustic and language models, where the decoding beam is a re-

stricting parameter. In such cases, the word never ends up in the output lattice. Since the ASR

is constrained to pick over the only existing possible paths through the decoding lattice, an error

is inevitable in the �nal output.

Hypothesis B: An ideal error correction system can generate words or phrases that were

erroneously pruned during the decoding process.
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3.2.3 Recovery of Unseen Phrases

On the other hand, an extreme case of Example Example 1 would be that the word �Iraq� was

never seen in the training data (or is out-of-vocabulary), thereby not appearing in the ASR

lattice. This would mean the ASR is forced to select among the other hypotheses even with a

low con�dence (or output an unknown, < unk >, symbol) resulting in a similar error as before.

This is often the case due to the constant evolution of human language or in the case of a new

domain. For example, names such as �Al Qaeda� or �ISIS� were non-existent in our vocabularies

a few years ago.

Hypothesis C: An ideal error correction system can generate words or phrases that are

out of vocabulary (OOV) and thus not in the ASR output.

3.2.4 Better Recovery during Poor Recognitions

An ideal error correction system would provide more improvements for poor recognitions from an

ASR. Such a system could potentially o�set for the ASR's low performance providing consistent

performance over varying audio and recognition conditions. In real-life conditions, the ASR

often has to deal with varying level of �mismatched train-test� conditions, where relatively poor

recognition results are commonplace.

Hypothesis D: An ideal error correction system can provide more corrections when the

ASR performs poorly, thereby o�setting ASR's performance drop (e.g. during mismatched

train-test conditions).

3.2.5 Improvements under all Acoustic Conditions

An error correction system which performs well during tough recognition conditions, as per Hy-

pothesis 3.2.4 is no good if it degrades good recognizer output. Thus, in addition to our Hypothe-

sis 3.2.4, an ideal system would cause no degradation on good ASR output. Such a system can be

hypothesized to consistently improve upon and provide bene�ts over any ASR system including

state-of-the-art recognition systems. An ideal system would provide improvements over the entire

spectrum of ASR performance (WER).

Hypothesis E: An ideal error correction system can not only provide improvements

during poor recognitions, but also preserves good speech recognition.
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3.2.6 Adaptation

We hypothesize that the proposed system would help in adaptation over mismatched conditions.

The mismatch could manifest in terms of acoustic conditions and lexical constructs. The adap-

tation can be seen as a consequence of Hypothesis 3.2.4 & 3.2.5. In addition, the proposed model

is capable of capturing patterns of language use manifesting in speci�c speaker(s) and domain(s).

Such a system could eliminate the need of retraining the ASR model for mismatched environments.

Hypothesis F: An ideal error correction system can aid in mismatched train-test condi-

tions.

3.2.7 Exploit Longer Context

� �Eyes melted, when he placed his hand on her shoulders.�

� �Ice melted, when he placed it on the table.�

Example 2

The complex construct of human language and understanding enables recovery of lost or cor-

rupted information over di�erent temporal resolutions. For instance, in the above Example Ex-

ample 2, both the phrases, �Eyes melted, when he placed� and �Ice melted, when he placed� are

valid when viewed within its shorter context and have identical phonetic transcriptions. The

succeeding phrases, underlined, help in discerning whether the �rst word is �Eyes� or �Ice�. We

hypothesize that an error correction model capable of utilizing such longer contexts is bene�cial.

As new models for phrase based mapping, such as sequence to sequence models [165], become

applicable this becomes even more possible and desirable.

Hypothesis G: An ideal error correction system can exploit longer context than the ASR

for better corrections.
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3.2.8 Regularization

1. � �I guess 'cause I went on a I went on a ...�

� �I guess because I went on a I went on a ...�

2. � �i was born in nineteen ninety two�

� �i was born in 1992�

3. � �i was born on nineteen twelve�

� �i was born on 19/12�

Example 3

As per the 3 cases shown in Example Example 3, although both the hypotheses for each of them

are correct, there are some irregularities present in the language syntax. Normalization of such

surface form representation can increase readability and usability of output. Unlike traditional

ASR, where there is a need to explicitly program such regularizations, our system is expected to

learn, given appropriate training data, and incorporate regularization into the model.

Hypothesis H: An ideal error correction system can be deployed as an automated text

regularizer.

3.3 Methodology

The overview of the proposed model is shown in Figure 3.1. In our paper, the ASR is viewed as a

noisy channel (with transfer function H), and we learn a model of this channel, Ĥ−1 (estimate of

inverse transfer functionH−1) by using the corrupted ASR outputs (equivalent to signal corrupted

by H) and their reference transcripts. Later on, we use this model to correct the errors of the

ASR.

The noisy channel modeling mainly can be divided into word-based and phrase-based channel

modeling. We will �rst introduce previous related work, and then our proposed NCPCM.

3.3.1 Previous related work

3.3.1.1 Word-based Noisy Channel Modeling

In [135], the authors adopt word-based noisy channel model borrowing ideas from a word-based

statistical machine translation developed by IBM [19]. It is used as a post-processor module to
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Figure 3.1: Overview of NCPCM

correct the mistakes made by the ASR. The word-based noisy channel modeling can be presented

as:

Ŵ = arg max
Wclean

P (Wclean|Wnoisy)

= arg max
Wclean

P (Wnoisy|Wclean)PLM(Wclean)

where Ŵ is the corrected output word sequence, P (Wclean|Wnoisy) is the posterior probability,

P (Wnoisy|Wclean) is the channel model and PLM(Wclean) is the language model. In [135], au-

thors hypothesized that introducing many-to-one and one-to-many word-based channel modeling

(referred to as fertility model) could be more e�ective, but was not implemented in their work.

3.3.1.2 Phrase-based Noisy Channel Modeling

Phrase-based systems were introduced in application to phrase-based statistical translation system

[85] and were shown to be superior to the word-based systems. Phrase based transformations are

similar to word-based models with the exception that the fundamental unit of observation and

transformation is a phrase (one or more words). It can be viewed as a super-set of the word-based

[19] and the fertility [135] modeling systems.

3.3.2 Noisy-Clean Phrase Context Modeling

We extend the ideas by proposing a complete phrase-based channel modeling for error correction

which incorporates the many-to-one and one-to-many as well as many-to-many words (phrase)
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channel modeling for error-correction. This also allows the model to better capture errors of

varying resolutions made by the ASR. As an extension, it uses a distortion modeling to capture

any re-ordering of phrases during error-correction. Even though we do not expect big bene�ts

from the distortion model (i.e., the order of the ASR output is usually in agreement with the

audio representation), we include it in our study for examination. It also uses a word penalty to

control the length of the output. The phrase-based noisy channel modeling can be represented as:

p̂ = argmax
pclean

P (pclean|pnoisy) (3.1)

= argmax
pclean

P (pnoisy|pclean)PLM(pclean)wlength(pclean)

where p̂ is the corrected sentence, pclean and pnoisy are the reference and noisy sentence respectively.

wlength(pclean) is the output word sequence length penalty, used to control the output sentence

length, and P (pnoisy|pclean) is decomposed into:

P (pInoisy|pIclean) =

I∏
i=1

φ(pinoisy|piclean)D(starti − endi−1) (3.2)

where φ(pinoisy|piclean) is the phrase channel model or phrase translation table, pInoisy and pIclean

are the sequences of I phrases in noisy and reference sentences respectively and i refers to the ith

phrase in the sequence. D(starti − endi−1) is the distortion model. starti is the start position of

the noisy phrase that was corrected to the ith clean phrase, and endi−1 is the end position of the

noisy phrase corrected to be the i− 1th clean phrase.

3.3.3 Our Other Enhancements

In order to e�ectively demonstrate our idea, we employ (i) neural language models, to introduce

long term context and justify that the longer contextual information is bene�cial for error cor-

rections; (ii) minimum error rate training (MERT) to tune and optimize the model parameters

using development data.

3.3.3.1 Neural Language Models

Neural network based language models have been shown to be able to model higher order n-grams

more e�ciently [5, 112, 163]. In [77], a more e�cient language modeling using maximum entropy

was shown to help in noisy-channel modeling of a syllable-based ASR error correction system.
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Incorporating such language models would aid the error-correction by exploiting the longer

context information. Hence, we adopt two types of neural network language models in this work.

(i) Feed-forward neural network which is trained using a sequence of one-hot word representation

along with the speci�ed context [172]. (ii) Neural network joint model (NNJM) language model

[37]. This is trained in a similar way as in (i), but the context is augmented with noisy ASR

observations with a speci�ed context window. Both the models employed are feed-forward neural

networks since they can be incorporated directly into the noisy channel modeling. The recurrent

neural network LM could potentially be used during phrase-based decoding by employing certain

caching and approximation tricks [3]. Noise Contrastive Estimation was used to handle the large

vocabulary size output.

3.3.3.2 Minimum Error Rate Training (MERT)

One of the downsides of the noisy channel modeling is that the model is trained to maximize

the likelihood of the seen data and there is no direct optimization to the end criteria of WER.

MERT optimizes the model parameters (in our case weights for language, phrase, length and

distortion models) with respect to the desired end evaluation criterion. MERT was �rst introduced

in application to statistical machine translation providing signi�cantly better results [122]. We

apply MERT to tune the model on a small set of development data.

3.4 Experimental Setup

3.4.1 Database

For training, development, and evaluation, we employ Fisher English Training Part 1, Speech

(LDC2004S13) and Fisher English Training Part 2, Speech (LDC2005S13) corpora [29]. The

Fisher English Training Part 1, is a collection of conversation telephone speech with 5850 speech

samples of up to 10 minutes, approximately 900 hours of speech data. The Fisher English Training

Part 2, contains an addition of 5849 speech samples, approximately 900 hours of telephone con-

versational speech. The corpora is split into training, development and test sets for experimental

purposes as shown in Table 3.1. The splits of the data-sets are consistent over both the ASR and

Database
Train Development Test

Hours Utterances Words Hours Utterances Words Hours Utterances Words
Fisher English 1,890.5 1,833,088 20,724,957 4.7 4906 50,245 4.7 4914 51,230
TED-LIUM - - - 1.6 507 17,792 2.6 1155 27,512

Table 3.1: Database split and statistics
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the subsequent noisy-clean phrase context model. The development dataset was used for tuning

the phrase-based system using MERT.

We also test the system under mismatched training-usage conditions on TED-LIUM. TED-

LIUM is a dedicated ASR corpus consisting of 207 hours of TED talks [140]. The data-set

was chosen as it is signi�cantly di�erent to Fisher Corpus. Mismatch conditions include: (i)

variations in channel characteristics, Fisher, being a telephone conversations corpus, is sampled

at 8kHz where-as the TED-LIUM is originally 16kHz, (ii) noise conditions, the Fisher recordings

are signi�cantly noisier, (iii) utterance lengths, TED-LIUM has longer conversations since they

are extracted from TED talks, (iv) lexicon sizes, vocabulary size of TED-LIUM is much larger

with 150,000 words where-as Fisher has 42,150 unique words, (v) speaking intonation, Fisher being

telephone conversations is spontaneous speech, whereas the TED talks are more organized and well

articulated. Factors (i) and (ii) mostly a�ect the performance of ASR due to acoustic di�erences

while (iii) and (iv) a�ect the language aspects, (v) a�ects both the acoustic and linguistic aspects

of the ASR.

3.4.2 System Setup

3.4.2.1 Automatic Speech Recognition System

We used the Kaldi Speech Recognition Toolkit [130] to train the ASR system. In this paper,

the acoustic model was trained as a DNN-HMM hybrid system. A tri-gram maximum likelihood

estimation (MLE) language model was trained on the transcripts of the training dataset. The

CMU pronunciation dictionary [175] was adopted as the lexicon. The resulting ASR is state-of-

the-art both in architecture and performance and as such additional gains on top of this ASR are

challenging.

3.4.2.2 Pre-processing

The reference outputs of ASR corpus contain non-verbal signs, such as [laughter], [noise] etc. These

event signs might corrupt the phrase context model since there is little contextual information

between them. Thus, in this paper, we cleaned our data by removing all these non-verbal signs

from dataset. The text data is subjected to traditional tokenization to handle special symbols.

Also, to prevent data sparsity issues, we restricted all of the sample sequences to a maximum

length of 100 tokens (given that the database consisted of only 3 sentences having more than the

limit). The NCPCM has two distinct vocabularies, one associated with the ASR transcripts and

the other one pertaining to the ground-truth transcripts. The ASR dictionary is often smaller than
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the ground-truth transcript mainly because of not having a pronunciation-phonetic transcriptions

for certain words, which usually is the case for names, proper-nouns, out-of-language words, broken

words etc.

3.4.2.3 NCPCM

We use the Moses toolkit [86] for phrase based noisy channel modeling and MERT optimization.

The �rst step in the training process of NCPCM is the estimation of the word alignments. IBM

models are used to obtain the word alignments in both the directions (reference-ASR and ASR-

reference). The �nal alignments are obtained using heuristics (starting with the intersection

of the two alignments and then adding the additional alignment points from the union of two

alignments). For computing the alignments �mgiza�, a multi-threaded version of GIZA++ toolkit

[123] was employed. Once the alignments are obtained, the lexical translation table is estimated in

the maximum likelihood sense. Then on, all the possible phrases along with their word alignments

are generated . A max phrase length of 7 was set for this work. The generated phrases are scored

to obtain a phrase translation table with estimates of phrase translation probabilities. Along

with the phrase translation probabilities, word penalty scores (to control the translation length)

and re-ordering/distortion costs (to account for possible re-ordering) are estimated. Finally, the

NCPCM model is obtained as in the equation 3.2. During decoding equation 3.1 is utilized.

For training the MLE n-gram models, SRILM toolkit [159] was adopted. Further we employ

the Neural Probabilistic Language Model Toolkit [172] to train the neural language models. The

neural network was trained for 10 epochs with an input embedding dimension of 150 and output

embedding dimension of 750, with a single hidden layer. The weighted average of all input

embeddings was computed for padding the lower-order estimates as suggested in [172].

The NCPCM is an ensemble of phrase translation model, language model, translation length

penalty, re-ordering models. Thus the tuning of the weights associated with each model is crucial

in the case of proposed phrase based model. We adopt the line-search based method of MERT

[13]. We try two optimization criteria with MERT, i.e., using BLEU(B) and WER(W).

3.4.3 Baseline Systems

We adopt four di�erent baseline systems because of their relevance to this work:

Baseline-1: ASR Output : The raw performance of the ASR system, because of its relevance to

the application of the proposed model.

Baseline-2: Re-scoring lattices using RNN-LM : In order to evaluate the performance of the
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system with more recent re-scoring techniques, we train a recurrent-neural network with an em-

bedding dimension of 400 and sigmoid activation units. Noise contrastive estimation is used for

training the network and is optimized on the development data set which is used as a stop criterion.

Faster-RNNLM 1 toolkit is used to train the recurrent-neural network. For re-scoring, 1000-best

ASR hypotheses are decoded and the old LM (MLE) scores are removed. The RNN-LM scores

are computed from the trained model and interpolated with the old LM. Finally, the 1000-best

hypotheses are re-constructed into lattices, scored with new interpolated LM and decoded to get

the new best path hypothesis.

Baseline-3: Word-based noisy channel model : In order to compare to a prior work described in

Section 3.3.1.1 which is based on [135]. The word-based noisy channel model is created in a similar

way as the NCPCM model with three speci�c exceptions: (i) the max-phrase length is set to 1,

which essentially converts the phrase based model into word based, (ii) a bi-gram LM is used in-

stead of a tri-gram or neural language model, as suggested in [135], (iii) no re-ordering/distortion

model and word penalties are used.

Baseline-4: Discriminative Language Modeling (DLM): Similar to the proposed work, DLM

makes use of the reference transcripts to tune language model weights based on speci�ed feature

sets in order to re-rank the n-best hypothesis. Speci�cally, we employ the perceptron algorithm

[136] for training DLMs. The baseline system is trained using unigrams, bigrams and trigrams (as

in [15, 184, 141]) for a fair comparison with the proposed NCPCM model. We also provide results

with an extended feature set comprising of rank-based features and ASR LM and AM scores. Refr

(Reranker framework) is used for training the DLMs [14] following most recommendations from

[15]. 100-best ASR hypotheses are used for training and re-ranking purposes.

3.4.4 Evaluation Criteria

The �nal goal of our work is to show improvements in terms of the transcription accuracy of

the overall system. Thus, we provide word error rate as it is a standard in the ASR community.

Moreover, Bilingual Evaluation Understudy (BLEU) score [126] is used for evaluating our work,

since our model can be also treated as a transfer-function (�translation�) system from ASR output

to NCPCM output.

1https://github.com/yandex/faster-rnnlm
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1.
REF: oysters clams and mushrooms i think

ASR: wasters clams and mushrooms they think

ORACLE: wasters clams and mushrooms i think

NCPCM: oysters clams and mushrooms they think
Example of hypotheses B

2.
REF: yeah we had this awful month this winter where it was like a good day if it got up to thirty it was ridiculously

cold
ASR: yeah we had this awful month uh this winter where it was like a good day if i got up to thirty was ridiculous lee

cold
ORACLE: yeah we had this awful month this winter where it was like a good day if it got up to thirty it was ridiculous

the cold
NCPCM: yeah we had this awful month uh this winter where it was like a good day if i got up to thirty it was ridiculously

cold
Example of hypotheses A, B, G

3.
REF: oh well it depends on whether you agree that al qaeda came right out of afghanistan

ASR: oh well it depends on whether you agree that al <unk> to came right out of afghanistan

ORACLE: oh well it depends on whether you agree that al <unk> to came right out of afghanistan

NCPCM: oh well it depends on whether you agree that al qaeda to came right out of afghanistan
Example of hypotheses C

4.
REF: they laugh because everybody else is laughing and not because it's really funny

ASR: they laughed because everybody else is laughing and not because it's really funny

ORACLE: they laugh because everybody else is laughing and not because it's really funny

NCPCM: they laugh because everybody else is laughing and not because it's really funny
Example of hypotheses A, G

5.
REF: yeah especially like if you go out for ice cream or something

ASR: yeah it specially like if you go out for ice cream or something

ORACLE: yeah it's especially like if you go out for ice cream or something

NCPCM: yeah especially like if you go out for ice cream or something
Example of hypotheses A

6.
REF: we don't have a lot of that around we kind of live in a nicer area

ASR: we don't have a lot of that around we kinda live in a nicer area

ORACLE: we don't have a lot of that around we kind of live in a nicer area

NCPCM: we don't have a lot of that around we kind of live in a nicer area
Example of hypotheses A, H

Table 3.2: Analysis of selected sentences.
REF: Reference ground-truth transcripts; ASR: Output ASR transcriptions;

ORACLE: Best path through output lattice given the ground-truth transcript; NCPCM: Transcripts
after NCPCM error-correction

Green color highlights correct phrases. Orange color highlights incorrect phrases.
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3.5 Results and Discussion

In this section we demonstrate the ability of our proposed NCPCM in validating our hypotheses A-

H from Section 3.2 along with the experimental results. The experimental results are presented in

three di�erent tasks: (i) overall WER experiments, highlighting the improvements of the proposed

system, presented in Tables 6.1, 3.4 & 3.5, (ii) detailed analysis of WERs over subsets of data,

presented in Figures 3.3 & 3.2, and (iii) analysis of the error corrections, presented in Table 3.2.

The assessment and discussions of each task is structured similar to Section 3.2 to support their

respective claims.

3.5.1 Re-scoring Lattices

Table 3.2 shows selected samples through the process of the proposed error correction system. In

addition to the reference, ASR output and the proposed system output, we provide the ORACLE

transcripts to assess the presence of the correct phrase in the lattice. Cases 4-6 from Table 3.2

have the correct phrase in the lattice, but get down-scored in the ASR �nal output which is then

recovered by our system as hypothesized in Hypothesis 3.2.1.

3.5.2 Recovering Pruned Lattices

In the cases 1 and 2 from Table 3.2, we see the correct phrases are not present in the ASR

lattice, although they were seen in the training and are present in the vocabulary. However, the

proposed system manages to recover the phrases as discussed in Hypothesis 3.2.2. Moreover, Case

2 also demonstrates an instance where the confusion occurs due to same phonetic transcriptions

(�ridiculously� versus �ridiculous lee�) again supporting Hypothesis 3.2.1.

3.5.3 Recovery of Unseen Phrases

Case 3 of Table 3.2, demonstrates an instance where the word �qaeda� is absent from the ASR

lexicon (vocabulary) and hence absent in the decoding lattice. This forces the ASR to output

an unknown-word token (< unk >). We see that the system recovers an out-of-vocabulary word

�qaeda� successfully as claimed in Hypothesis 3.2.3.

3.5.4 Better Recovery during Poor Recognitions

To justify the claim that our system can o�set for the performance de�cit of the ASR at tougher

conditions (as per Hypothesis 3.2.4), we formulate a sub-problem as follows:
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Figure 3.2: Top-Good, Bottom-Bad WER Splits. As we can see the WER for top-good is often
0%, which leaves no margin for improvement. We will see the impact of this later, as in Fig. 3.3

Problem Formulation: We divide equally, per sentence length, our development and test

datasets into good recognition results (top-good) and poor recognition results (bottom-bad) sub-

sets based on the WER of the ASR and analyze the improvements and any degradation caused

by our system.

Figure 3.3 shows the plots of the above mentioned analysis for di�erent systems as captioned.

The blue lines are representative of the improvements provided by our system for top-good subset

over di�erent utterance lengths, i.e., it indicates the di�erence between our system and the original

WER of the ASR (negative values indicate improvement and positive values indicate degradation

resulting from our system). The green lines indicate the same for bottom-bad subset of the

database. The red indicates the di�erence between the bottom-bad WERs and the top-good

WERs, i.e., negative values of red indicate that the system provides more improvements to the

bottom-bad subset relative to the top-good subset. The solid lines represent their respective

trends which is obtained by a simple linear regression (line-�tting).

For poor recognitions, we are concerned about the bottom-bad subset, i.e., the green lines in

Figure 3.3. Firstly, we see that the solid green line is always below zero, which indicates there is

always improvements for bottom-bad i.e., poor recognition results. Second, we observe that the

solid red line usually stays below zero, indicating that the performance gains made by the system

add more for the bottom-bad poor recognition results compared to the top-good subset (good

recognitions). Further, more justi�cations are provided later in the context of out-of-domain task

(Section 3.5 3.5.6) where high mismatch results in tougher recognition task are discussed.
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(a) Dev: NCPCM + MERT(W)
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(b) Test: NCPCM + MERT(W)
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(c) Dev: NCPCM + 5gram NNLM + MERT(W)
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(d) Test: NCPCM + 5gram NNLM +
MERT(W)
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(e) Out-of-Domain Dev: NCPCM + generic LM
+ MERT(W)
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(f) Out-of-Domain Test: NCPCM + generic LM
+ MERT(W)

Figure 3.3: Length of ASR hypotheses vs. absolute WER change (NCPCM).
Blue & Green lines represent di�erence between WER of our system and the baseline ASR, for top-good and
bottom-bad hypotheses, respectively. In an ideal scenario, all these lines would be below 0, thus all providing a
change in WER towards improving the system. However we see in some cases that the WER increases, especially
when the hypotheses length is short and when the performance is good. This is as expected since from Fig. 3.2

some cases are at 0% WER due to the already highly-optimized nature of our ASR.
The red line represents the aggregate error over all data for each word length and as we can see in all cases the

trend is one of improving the WER, justifying Hypotheses D, E, F, G. 26



In domain testing on Fisher Data

Method
Dev Test

WER BLEU WER BLEU
ASR output (Baseline-1) 15.46% 75.71 17.41% 72.99

ASR + RNNLM re-scoring (Baseline-2) 16.17% 74.39 18.39% 71.24
Word based + bigram LM (Baseline-3) 16.23% 74.28 18.10% 71.76
Word based + bigram LM + MERT(B) 15.46% 75.70 17.40% 72.99
Word based + bigram LM + MERT(W) 15.39% 75.65 17.40% 72.77
Word based + trigram LM + MERT(B) 15.48% 75.59 17.47% 72.81
Word based + trigram LM + MERT(W) 15.46% 75.46 17.52% 72.46

DLM (Baseline-4) 23.65% 63.35 25.36% 61.19
DLM w/ extended feats 24.48% 62.92 26.12% 60.98

Proposed NCPCM 20.33% 66.70 22.32% 63.81
NCPCM + MERT(B) 15.11% 76.06 17.18% 73.00
NCPCM + MERT(W) 15.10% 76.08 17.15% 73.05

NCPCM + MERT(B) w/o re-ordering 15.27% 76.02 17.11% 73.33
NCPCM + MERT(W) w/o re-ordering 15.19% 75.90 17.18% 73.04

NCPCM + 10best + MERT(B) 15.19% 76.12 17.17% 73.22
NCPCM + 10best + MERT(W) 15.16% 75.91 17.21% 73.03

Table 3.3: Noisy-Clean Phrase Context Model (NCPCM) results (uses exactly same LM as ASR)

3.5.5 Improvements under all Acoustic Conditions

To justify the claim that our system can consistently provide bene�ts over any ASR system (Hy-

pothesis 3.2.5), we need to show that the proposed system: (i) does not degrade the performance

of the good recognition, (ii) provides improvements to poor recognition instances, of the ASR.

The latter has been discussed and con�rmed in the previous Section 3.5 3.5.4. For the former,

we provide evaluations from two point of views: (1) assessment of WER trends of top-good and

bottom-bad subsets (as in the previous Section 3.5 3.5.4), and (2) overall absolute WER of the

proposed systems.

Firstly, examining Figure 3.3, we are mainly concerned about the top-good subset pertaining

to degradation/improvement of good recognition instances. We observe that the solid blue line is

close to zero in all the cases, which implies that the degradation of good recognition is extremely

minimal. Moreover, we observe that the slope of the line is almost zero in all the cases, which

indicates that the degradation is minimal and mostly consistent over di�erent utterance lengths.

Moreover, assessing the degradation from the absolute WER perspective, Figure 3.2a shows the

WER over utterance lengths for the top-good and bottom-bad subsets for the in-domain case.

The top-good WER is small, at times even 0% (perfect recognition) thereby allowing very small
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margin for improvement. In such a case, we see minimal degradation. Although we lose a bit

on very good recognitions which is extremely minimal, we gain signi�cantly in the case of `bad'

recognitions. Thus to summarize, the damage that this system can make, under the best ASR

conditions, is minimal and o�set by the potential signi�cant gains present when the ASR hits

some tough recognition conditions.

WER experiments:

Secondly, examining the overall WER, Table 6.1 gives the results of the baseline systems and

the proposed technique. Note that we use the same language model as the ASR. This helps us eval-

uate a system that does not include additional information. We provide the performance measures

on both the development and held out test data. The development data is used for MERT tuning.

Baseline results: The output of the ASR (Baseline-1) suggests that the development data is

less complex compared to the held out test set. In our case, the RNN-LM based lattice re-

scoring (Baseline-2) doesn't help. This results shows that even with a higher order context,

the RNN-LM is unable to recover the errors present in the lattice, suggesting that the errors

stem from pruning during decoding. We note that the word-based system (Baseline-3) doesn't

provide any improvements. Even when we increase context (trigram LM) and use MERT opti-

mization, the performance is just on par with the original ASR output. Further, DLM re-ranking

(Baseline-4) fails to provide any improvements in our case. This result is in conjunction with

the �nding in [15], where the DLM provides improvements only when used in combination with

ASR baseline scores. However, we believe introduction of ASR scores into NCPCM can be ben-

e�cial as would be in the case of DLMs. Thus, to demonstrate the independent contribution

of NCPCM vs DLM's, rather than investigate fusion methods, we don't utilize baseline ASR

scores for either of the two methods. We plan to investigate the bene�ts of multi-method fu-

sion in our future work. When using the extended feature set for training the DLM, we don't

observe improvements. With our setup, none of the baseline systems provide noticeable signif-

icant improvements over the ASR output. We believe this is due to the highly optimized ASR

setup, and the nature of the database itself being noisy telephone conversational speech. Overall,

the results of baseline highlights: (i) the di�culty of the problem for our setup, (ii) re-scoring

is insu�cient and emphasizes the need for recovering pruned out words in the output lattice.

NCPCM results: The NCPCM is an ensemble of phrase translation model, language model,

word penalty model and re-ordering models. Thus the tuning of the weights associated with each

model is crucial in the case of the phrase based models [119]. The NCPCM without tuning,

i.e., assigning random weights to the various models, performs very poorly as expected. The
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Cross domain testing on TED-LIUM Data

Method
Dev Test

WER BLEU WER ∆1 ∆2 BLEU
Baseline-1 (ASR) 26.92% 62.00 23.04% 0% -10.9% 65.71

ASR + RNNLM re-scoring (Baseline-2) 24.05% 64.74 20.78% 9.8% 0% 67.93
Baseline-3 (Word-based) 29.86% 57.55 25.51% -10.7% -22.8% 61.79

Baseline-4 (DLM) 33.34% 53.12 28.02% -21.6% -34.8% 58.50
DLM w/ extended feats 30.51% 57.14 29.33% -27.3% -41.1% 57.60
NCPCM + MERT(B) 26.06% 63.30 22.51% 2.3% -8.3% 66.67
NCPCM + MERT(W) 26.15% 63.10 22.74% 1.3% -9.4% 66.36

NCPCM + generic LM + MERT(B) 25.57% 63.98 22.38% 2.9% -7.7% 66.97
NCPCM + generic LM + MERT(W) 25.56% 63.83 22.33% 3.1% -7.5% 66.96

RNNLM re-scoring + NCPCM + MERT(B) 23.36% 65.88 20.40% 11.5% 1.8% 68.39
RNNLM re-scoring + NCPCM + MERT(W) 23.32% 65.76 20.57 10.7% 1% 68.07

RNNLM re-scoring + NCPCM + generic LM + MERT(B) 23.00% 66.48 20.31% 11.8% 2.3% 68.52
RNNLM re-scoring + NCPCM + generic LM + MERT(W) 22.80% 66.19 20.23% 12.2% 2.6% 68.49

Table 3.4: Results for out-of-domain adaptation using Noisy-Clean Phrase Context Models
(NCPCM)

∆1:Relative % improvement w.r.t baseline-1; ∆2:Relative % improvement w.r.t baseline-2;

word-based model lacks re-ordering/distortion modeling and word penalty models and hence are

less sensitive to weight tuning. Thus it is unfair to compare the un-tuned phrase based models

with the baseline or word-based counterpart. Hence, for all our subsequent experiments, we only

include results with MERT. When employing MERT, all of the proposed NCPCM systems signif-

icantly outperform the baseline (statistically signi�cant with p < 0.001 for both word error and

sentence error rates [57] with 51,230 word tokens and 4,914 sentences as part of the test data).

We �nd that MERT optimized for WER consistently outperforms that with optimization criteria

of BLEU score. We also perform trials by disabling the distortion modeling and see that results

remain relatively unchanged. This is as expected since the ASR preserves the sequence of words

with respect to the audio and there is no reordering e�ect over the errors. The phrase based

context modeling provides a relative improvement of 1.72% (See Table 6.1) over the baseline-3

and the ASR output. Using multiple hypotheses (10-best) from the ASR, we hope to capture

more relevant error patterns of the ASR model, thereby enriching the noisy channel modeling

capabilities. However, we �nd that the 10-best gives about the same performance as the 1-best.

In this case we considered 10 best as 10 separate training pairs for training the system. In the

future we want to exploit the inter-dependency of this ambiguity (the fact that all the 10-best

hypotheses represent a single utterance) for training and error correction at test time.

3.5.6 Adaptation

WER experiments:

To assess the adaptation capabilities, we evaluate the performance of the proposed noisy-clean

phrase context model on an out-of-domain task, TED-LIUM data-base, shown in Table 3.4.
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Baseline Results: The baseline-1 (ASR performance) con�rms of the heightened mismatched

conditions between the training Fisher Corpus and the TED-LIUM data-base. Unlike in matched

in-domain evaluation, the RNNLM re-scoring provides drastic improvements (9.8% relative im-

provement with WER) when tuned with out-of-domain development data set. The mismatch in

cross domain evaluation re�ects in considerably worse performance for the word-based and DLM

baselines (compared to matched conditions).

NCPCM Results: However, we see that the phrase context modeling provides modest improve-

ments over the baseline-1 of approximately 2.3% (See Table 3.4) relative on the held-out test set.

We note that the improvements are consistent compared to the earlier in-domain experiments

in Table 6.1. Moreover, since the previous LM was trained on Fisher Corpus, we adopt a more

generic English LM which provides further improvements of up to 3.1% (See Table 3.4).

We also experiment with NCPCM over the re-scored RNNLM output. We �nd the NCPCM

to always yield consistent improvements over the RNNLM output (See ∆1 & ∆2 in Table 3.4). An

overall gains of 2.6% relative is obtained over the RNNLM re-scored output (baseline-2) i.e., 12.2%

over ASR (baseline-1) is observed. This con�rms that the NCPCM is able to provide improvements

parallel, in conjunction to the RNNLM or any other system that may improve ASR performance

and therefore supports the Hypothesis 3.2.5 in yielding improvements in the highly optimized ASR

environments. This also con�rms the robustness of the proposed approach and its application to

the out-of-domain data. More importantly, the result con�rms Hypothesis 3.2.6, i.e., our claim of

rapid adaptability of the system to varying mismatched acoustic and linguistic conditions. The

extreme mismatched conditions involved in our experiments supports the possibility of going one

step further and training our system on arti�cially generated data of noisy transformations of

phrases as in [168, 141, 22, 89, 40, 184]. Thus possibly eliminating the need for an ASR for

training purposes.

Further, comparing the WER trends from the in-domain task (Figure 3.3b) to the out-of-

domain task (Figure 3.3f), we �rstly �nd that the improvements in the out-of-domain task are

obtained for both top-good (good recognition) and bottom-bad (bad recognition), i.e., both the

solid blue line and the solid green line are always below zero. Secondly, we observe that the

improvements are more consistent throughout all the utterance lengths, i.e., all the lines have

near zero slopes compared to the in-domain task results. Third, comparing Figure 3.2a with

Figure 3.2b, we observe more room for improvement, both for top-good portion as well as the

bottom-bad WER subset of data set. The three �ndings are fairly meaningful considering the

high mismatch of the out-of-domain data.
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In domain testing on Fisher Data

Method
Dev Test

WER BLEU WER BLEU
Baseline-1 (ASR output) 15.46% 75.71 17.41% 72.99

Baseline-2 (ASR + RNNLM re-scoring) 16.17% 74.39 18.39% 71.24
Baseline-3 (Word based + 5gram NNLM) 15.47% 75.63 17.41% 72.92
Word based + 5gram NNLM + MERT(B) 15.46% 75.69 17.40% 72.99
Word based + 5gram NNLM + MERT(W) 15.42% 75.58 17.38% 72.75
NCPCM + 3gram NNLM + MERT(B) 15.46% 75.91 17.37% 73.24
NCPCM + 3gram NNLM + MERT(W) 15.28% 75.94 17.11% 73.31
NCPCM + 5gram NNLM + MERT(B) 15.35% 75.99 17.20% 73.34
NCPCM + 5gram NNLM + MERT(W) 15.20% 75.96 17.08% 73.25
NCPCM + NNJM-LM (5,4) + MERT(B) 15.29% 75.93 17.13% 73.26
NCPCM + NNJM-LM (5,4) + MERT(W) 15.28% 75.94 17.13% 73.29

Table 3.5: Results for Noisy-Clean Phrase Context Models (NCPCM) with Neural Network Lan-
guage Models (NNLM) and Neural Network Joint Models (NNJM)

3.5.7 Exploit Longer Context

Firstly, inspecting the error correction results from Table 3.2, cases 2 and 4 hint at the ability of

the system to select appropriate word-su�xes using long term context information.

Second, from detailed WER analysis in Figure 3.3, we see that the bottom-bad (solid green

line) improvements decrease with increase in length in most cases, hinting at potential improve-

ments to be found by using higher contextual information for error correction system as future

research directions. Moreover, closer inspection across di�erent models, comparing the trigram

MLE model (Figure 3.3b) with the 5gram NNLM (Figure 3.3d), we �nd that the NNLM provides

minimal degradation and better improvements especially for longer utterances by exploiting more

context (the blue solid line for NNLM has smaller intercept value as well as higher negative slope).

We also �nd that for the bottom-bad poor recognition results (green solid-line), the NNLM gives

consistent (smaller positive slope) and better improvements especially for the higher length utter-

ances (smaller intercept value). Thus emphasizing the gains provided by higher context NNLM.

WER experiments: Third, Table 3.5 shows the results obtained using a neural network language

model of higher orders (also trained only on the in-domain data). For a fair comparison, we adopt

a higher order (5gram) NNLM for the baseline-3 word based noise channel modeling system.

Even with a higher order NNLM, the baseline-3 fails to improve upon the ASR. We don't include

the baseline-4 results under this section, since DLM doesn't include a neural network model.

Comparing results from Table 6.1 with Table 3.5, we note the bene�ts of higher order LMs, with
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the 5-gram neural network language model giving the best results (a relative improvement of 1.9%

over the baseline-1), outperforming the earlier MLE n-gram models as per Hypothesis 3.2.7.

Moreover, experimental comparisons with baseline-3 (word-based) and NCPCM models, both

incorporating identical 5-gram neural network language models con�rms the advantages of NCPCM

(a relative improvement of 1.7%). However, the neural network joint model LM with target con-

text of 5 and source context of 4 did not show signi�cant improvements over the traditional neural

LMs. We expect the neural network models to provide further improvements with more training

data.

3.5.8 Regularization

Finally, the last case in Table 3.2 is of text regularization as described in Section 3.2, Hypoth-

esis 3.2.8. Overall, in our experiments, we found that approximately 20% were cases of text

regularization and the rest were a case of the former hypotheses.

3.6 Conclusions & Future Work

In this work, we proposed a noisy channel model for error correction based on phrases. The system

post-processes the output of an automated speech recognition system and as such any contribu-

tions in improving ASR are in conjunction of NCPCM. We presented and validated a range of

hypotheses. Later on, we supported our claims with apt problem formulation and their respective

results. We showed that our system can improve the performance of the ASR by (i) re-scoring the

lattices (Hypothesis 3.2.1), (ii) recovering words pruned from the lattices (Hypothesis 3.2.2), (iii)

recovering words never seen in the vocabulary and training data (Hypothesis 3.2.3), (iv) exploit-

ing longer context information (Hypothesis 3.2.7), and (v) by regularization of language syntax

(Hypothesis 3.2.8). Moreover, we also claimed and justi�ed that our system can provide more

improvement in low-performing ASR cases (Hypothesis 3.2.4), while keeping the degradation to

minimum in cases when the ASR performs well (Hypothesis 3.2.5). In doing so, our system could

e�ectively adapt (Hypothesis 3.2.6) to changing recognition environments and provide improve-

ments over any ASR systems.

In our future work, the output of the noisy-clean phrase context model will be fused with

the ASR beliefs to obtain a new hypothesis. We also intend to introduce ASR con�dence scores

and signal SNR estimates, to improve the channel model. We are investigating introducing the

probabilistic ambiguity of the ASR in the form of lattice or confusion networks as inputs to the

channel-inversion model.
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Further, we will utilize sequence-to-sequence (Seq2seq) translation modeling [165] to map ASR

outputs to reference transcripts. The Seq2seq model has been shown to have bene�ts especially

in cases where training sequences are of variable length [27]. We intend to employ Seq2seq model

to encode ASR output to a �xed-size embedding and decode this embedding to generate the

corrected transcripts.
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Chapter 4

Confusion2Vec: Towards Enriching Vector Space Word

Representations with Representational Ambiguities

4.1 Introduction

The goal of this study is to come up with a new vector space representation for words which

incorporates the uncertainty information in the form of word confusions present in lattice like

structures (e.g. confusion networks). Here, the word confusions are any word level ambiguities

resultant of any algorithms such as machine translation, ASR etc., or can be knowledge-based like

word segmentation information or data driven. For example, acoustic confusable words in ASR

lattices: "two" and "to" (see Figure 4.1). A word lattice is a compact representation (directed

acyclic weighted graphs) of di�erent word sequences that are likely possible. A confusion network

is a special type of lattice, where each word sequence is made to pass through each node of the

graph. The lattices and confusion networks embed word confusion information. The study takes

motivation from human perception, i.e., the ability of humans to decode information based on

two fairly independent information streams (see Section 4.2.1 for examples): (i) linguistic context

(modeled by word2vec like word vector representations), and (ii) acoustic confusability (relating to

phonology). However, the present word vector representations like word2vec only incorporate the

contextual confusability during modeling. Hence, in order to handle confusability and to decode

human language/speech successfully, there is a need to model both the dimensions. Although,

primarily, the motivation is derived from human speech and perception, the confusions are not

constrained to acoustics and can be extended to any confusions parallel to the linguistic contexts,

for example, confusions present in lattices. Most of the machine learning algorithms output

predictions as a probability measure. This uncertainty information stream can be expressed in

the form of a lattice or a confusion network temporally, and is often found to contain useful
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information for subsequent processing and analysis. The scope of this work is to introduce a

complementary (ideally orthogonal) subspace in addition to the underlying word vector space

representation captured by word2vec. This new subspace captures the word confusions orthogonal

to the syntactic and semantics of the language. We propose Confusion2Vec vector space operating

on lattice like structures, speci�cally word confusion networks. We introduce several training

con�gurations and evaluate their e�ectiveness. We also formulate appropriate evaluation criterion

to assess the performance of each orthogonal subspaces, �rst independently and then jointly.

Analysis of the proposed word vector space representation is carried out.

The rest of the paper is organized as follows. Motivation for Confusion2vec, i.e., the need

to model word-confusions for word embeddings, is provided through means of human speech &

perception, machine learning, and through potential applications in section 4.2. A particular

case study is chosen and the problem is formulated in section 4.3. In section 4.4, di�erent train-

ing con�gurations for e�cient estimation of word embeddings are proposed. Additional tuning

schemes for the proposed Confusion2vec models are presented in section 4.5. Evaluation criterion

formulation and evaluation database creation is presented in section 4.6. Experimental setup and

baseline system is described in section 4.7. Results are tabulated and discussed in section 6.5.

Word vector space analysis is performed and �ndings are presented in section 4.9. Section 4.10

discusses with the help of few toy examples, the bene�ts of the Confusion2vec embeddings for the

task of ASR error correction. Section 6.7 draws the conclusion of the study and �nally the future

research directions are discussed in Section 6.8.

4.2 Motivation

One e�cient way to represent words as vectors is to represent them in a space that preserves

the semantic and syntactic relations between the words in the language. Word2vec describes a

technique to achieve such a representation by trying to predict the current word from its local

context (or vice-versa) over a large text corpora. The estimated word vectors are shown to encode

e�cient syntactic-semantic language information. In this work we propose a new vector space for

word representation which incorporates various forms of word confusion information in addition

to the semantic & syntactic information. The new vector space is inspired and motivated from

the following factors from human speech production & perception and machine learning.
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4.2.1 Human speech production, perception and hearing

In our every day interactions, confusability can often result in the need for context to decode the

underlying words.

“Please a seat.′′ (Example 1)

In Example 1, the missing word could be guessed from its context and narrowed down to either

�have� or �take�. This context information is modeled through language models. More complex

models such as word2vec also use the contextual information to model word vector representations.

On the other hand, confusability can also originate from other sources such as acoustic repre-

sentations.

“I want to seat′′ (Example 2)

In Example 2, the underlined word is mispronounced/misheard, and grammatically incorrect. In

this case, considering the context there exists a lot of possible correct substitutions for the word

�seat� and hence the context is less useful. The acoustic construct of the word �seat� can present

additional information in terms of acoustic alternatives/similarity, such as �sit� and �seed�.

“I want to s�′′ (Example 3)

Similarly in Example 3, the underlined word is incomplete. The acoustic confusability information

can be useful in the above case of broken words. Thus, since the confusability is acoustic, purely

lexical vector representations like word2vec fail to encode or capture it. In this work, we propose

to additionally encode the word (acoustic) confusability information to learn a better word em-

bedding. Although the motivation is speci�c to acoustics in this case, it could be extended to

other inherent sources of word-confusions spanning various machine learning applications.

4.2.2 Machine Learning Algorithms

Most of the machine learning algorithms output hypothesis as a probability measure. Such a

hypothesis could be represented in the form of a lattice, confusion network or n-best lists. It is

often useful to consider the uncertainty associated with the hypothesis for subsequent processing

and analysis (see Section 4.11 for potential applications). The uncertainty information is often,

orthogonal to the contextual dimension and is speci�c to the task attempted by the machine

learning algorithms.

Along this direction, recently, there have been several e�orts concentrated on introducing lat-

tice information into the neural network architecture. Initially, Tree-LSTM was proposed enabling
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Figure 4.1: An example confusion network for ground-truth utterance �I want to sit.�

tree-structured network topologies to be inputted to the RNNs [166], which could be adapted and

applied to lattices [156]. LatticeRNN was proposed for processing word level lattices for ASR [91].

Lattice based Gated Recurrent Units (GRUs) [161] and lattice-to-sequence models [169] were pro-

posed for reading word lattice as input, speci�cally a lattice with tokenization alternatives for

machine translation models. LatticeLSTM was adopted for lattice-to-sequence model incorporat-

ing lattice scores for the task of speech translation by [156]. [20] proposed Neural lattice language

models which enables to incorporate many possible meanings for words and phrases (paraphrase

alternatives).

Thus, a vector space representation capable of embedding relevant uncertainty information in

the form of word confusions present in lattice-like structures or confusion networks along with the

Semantic & Syntactic can be potentially superior to word2vec space.

4.3 Case Study: Application to Automatic Speech Recognition

In this work, we consider the ASR task as a case study to demonstrate the e�ectiveness of the

proposed Confusion2vec model in modeling acoustic word-confusability. However, the technique

can be adopted for a lattice or confusion network output from potentially any algorithm to cap-

ture various patterns as discussed in section 4.11, in which case the confusion-subspace (vertical

ambiguity in �gure 4.1), is no longer constrained to acoustic word-confusions.

An ASR lattice contains multiple paths over acoustically similar words. A lattice could be

transformed and represented as a linear graph forcing every path to pass through all the nodes

[185, 105]. Such a linear graph is referred to as a confusion network. Figure 4.1 shows a sample

confusion network output by ASR for the ground truth �I want to sit�. The confusion network

could be viewed along two fundamental dimensions of information (see �gure 4.1): (i) Contextual
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axis - sequential structure of a sentence, (ii) Acoustic axis - similarly sounding word alternatives.

Traditional word vector representations such as word2vec only model the contextual information

(the horizontal (red) direction in Figure 4.1). The word confusions, for example, the acoustic

contextualization as in Figure 4.1 (the vertical (green) direction in Figure 4.1) is not encoded. We

propose to additionally capture the co-occurrence information along the acoustic axis orthogonal to

the word2vec. This is the main focus of our work, i.e., to jointly learn the vertical, word-confusion

context and the horizontal, semantic and syntactic context. In other words, we hypothesize to

derive relationships between the semantics and syntaxes of language and the word-confusions

(acoustic-confusion).

4.3.1 Related Work

[10] trained a continuous word embedding of acoustically alike words (using n-gram feature rep-

resentation of words) to replace the state space models (HMMs), decision trees and lexicons of

an ASR. Through the use of such an embedding and lattice re-scoring technique demonstrated

improvements in word error rates of ASR. The embeddings are also shown to be useful in appli-

cation to the task of ASR error detection by [56]. A few evaluation strategies are also devised

to evaluate phonetic and orthographic similarity of words. Additionally, there have been studies

concentrating on estimating word embeddings from acoustics [80, 28, 95, 68] with evaluations

based on acoustic similarity measures. Parallely, word2vec like word embeddings have been used

successfully to improve ASR Error detection performance [54, 55]. We believe the proposed ex-

ploitation of both information sources, i.e., acoustic relations and linguistic relations (semantics

and syntaxes) will be bene�cial in ASR and error detection, correction tasks. The proposed con-

fusion2vec operates on the lattice output of the ASR in contrast to the work on acoustic word

embeddings [80, 28, 95, 68] which is directly trained on audio. The proposed Confusion2vec di�ers

to the works by [10] and [56], which also utilizes audio data with the hypothesis that the layer

right below softmax layer of a deep end-to-end ASR contains acoustic similarity information of

words. Confusion2vec can also be potentially trained without an ASR, on arti�cially generated

data, emulating an ASR [168, 141, 22, 89, 40, 184]. Thus, Confusion2vec can potentially be trained

in a completely unsupervised manner and with appropriate model parameterization incorporate

various degrees of acoustic confusability, e.g. stemming from noise or speaker conditions.

Further, in contrast to the prior works on lattice encoding RNNs [166, 156, 91, 161, 169, 20],

which concentrate on incorporating the uncertainty information embedded in the word lattices

by modifying the input architecture for recurrent neural network, we propose to introduce the

ambiguity information from the lattices to the word embedding explicitly. We expect similar
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Figure 4.2: Baseline Word2Vec Training scheme for Confusion networks.
c(t) is a unit word confusion in the confusion network at a time-stamp t, i.e., c(t) represents a set of arcs

between two adjacent nodes of a confusion network, representing a set of confusable words.
wt,i is the ith most probable word in the confusion c(t).

Word confusions are sorted in decreasing order of their posterior probability:
P (wt,1) > P (wt,2) > P (wt,3)...

advantages as with lattice encoding RNNs in using the pre-trained confusion2vec embedding

towards various tasks like ASR, Machine translation etc. Moreover, our architecture doesn't

require memory which has signi�cant advantages in terms of training complexity. We propose

to train the embedding in a similar way to word2vec models [113]. All the well studied previous

e�orts towards optimization of training such models [115, 116], should apply to our proposed

model.

4.4 Proposed Models

4.4.1 Baseline Word2Vec Model

The popular word2vec work [113] proposed log-linear models, i.e., neural network consisting of a

single linear layer (projection matrix) without non-linearity. These models have signi�cant advan-

tages in training complexity. [113] found the skip-gram model to be superior to the bag-of-word

model in a semantic-syntactic analogy task. Hence, we only employ the skip-gram con�guration

in this work. Appropriately, the skip-gram word2vec model is also adopted as the baseline for

this work. However, we strongly believe the proposed concept (introducing word ambiguity infor-

mation) is independent of the modeling technique itself and should translate to relatively newer

techniques like GloVe [127] and fastText [17].
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Figure 4.3: Proposed Intra-Confusion Training Scheme for Confusion networks.
c(t) is a unit word confusion in the confusion network at a time-stamp t, i.e., c(t) represents a set of arcs

between two adjacent nodes of a confusion network, representing a set of confusable words.
wt,i is the ith most probable word in the confusion c(t).

Word confusions are sorted in decreasing order of their posterior probability:
P (wt,1) > P (wt,2) > P (wt,3)...

The dotted curved lines denote that the self-mapping is disallowed.

We adapt the word2vec contextual modeling to operate on the confusion network (in our

case confusion network of an ASR). Figure 4.2 shows the training con�guration of the skip-

gram word2vec model on the confusion network. The baseline model (traditional skip-gram) only

considers the context of the top hypothesis of the confusion network (single path) for training.

The words wt−2,1, wt−1,1, wt+1,1 and wt+2,1 (i.e., the most probable words in the confusions

C(t − 2), C(t − 1), C(t + 1) and C(t + 2) respectively) are predicted from wt,1 (i.e., the most

probable word in C(t)) for a skip-window of 2 as depicted in Figure 4.2.

4.4.2 Intra-Confusion Training

Next, we explore the direct adaptation of the skip-gram modeling but on the confusion dimension

(i.e., considering word confusions as contexts) rather than the traditional sequential context.

Figure 4.3 shows the training con�guration over a confusion network. In short every word is linked

with every other alternate word in the confusion dimension (i.e., between set of confusable words)

through the desired network (as opposed to the temporal context dimension in the word2vec

training). Note, we disallow any word being predicted from itself (this constrain is indicated

with curved dotted lines in the �gure). As depicted in the Figure 4.3, the word wt,i (confusion
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Figure 4.4: Proposed Inter-Confusion Training Scheme for Confusion networks.
c(t) is a unit word confusion in the confusion network at a time-stamp t, i.e., c(t) represents a set of arcs

between two adjacent nodes of a confusion network, representing a set of confusable words.
wt,i is the ith most probable word in the confusion c(t).

Word confusions are sorted in decreasing order of their posterior probability:
P (wt,1) > P (wt,2) > P (wt,3)...

context) is predicted from wt,j (current word), where i = 1, 2, 3 . . . length(C(t)) and j 6= i, for

each j = 1, 2, 3 . . . length(C(t)) for confusion C(t) ∀t. We expect such a model to capture inherent

relations over the di�erent word confusions. In the context of an ASR lattice, we expect it to

capture intrinsic relations between similarly sounding words (acoustically similar). However, the

model would fail to capture any semantic and syntactic relations associated with the language.

The embedding obtained from this con�guration can be fused (concatenated) with the traditional

skip-gram word2vec embedding to form a new subspace representing both the independently

trained subspaces. The number of training samples generated with this con�guration is:

#Samples =

n∑
i=1

Di × (Di − 1) (4.1)

where n is the number of time steps, Di is the number of confusions at the i
th time step.

4.4.3 Inter-Confusion Training

In this con�guration, we propose to model both the linguistic contexts and the word confusion

contexts simultaneously. Figure 4.4 illustrates the training con�guration. Each word in the

current confusion is predicted from each word from the succeeding and preceding confusions over

a prede�ned local context. To elaborate, the words wt−t′,i (context) are predicted from wt,j

(current word) for i = 1, 2, 3 . . . length(C(t − t′)), j = 1, 2, 3 . . . length(C(t)), t′ ∈ 1, 2,−1,−2 for

skip-window of 2 for current confusion C(t)∀t as per Figure 4.4. Since we assume the acoustic
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Figure 4.5: Proposed Hybrid-Confusion Training Scheme for Confusion networks.
c(t) is a unit word confusion in the confusion network at a time-stamp t, i.e., c(t) represents a set of arcs

between two adjacent nodes of a confusion network, representing a set of confusable words.
wt,i is the ith most probable word in the confusion c(t).

Word confusions are sorted in decreasing order of their posterior probability:
P (wt,1) > P (wt,2) > P (wt,3)...

The dotted curved lines denote that the self-mapping is disallowed.

similarities for a word to be co-occurring, we expect to jointly model the co-occurrence of both the

context and confusions. This also has the additional bene�t of generating more training samples

than the intra-confusion training. The number of training samples generated is given by:

#Samples =

n∑
i=1

i+Sw∑
j=i−Sw

j 6=i

Di ×Dj (4.2)

where n is the total number of time steps, Di is the number of word confusions at the ith time

step, Sw is the skip-window size (i.e., sample Sw words from history and Sw words from the future

context of current word).

4.4.4 Hybrid Intra-Inter Confusion Training

Finally, we merge both the intra-confusion and inter-confusion training. This can be seen as

a super-set of word2vec, inter-confusion and intra-confusion training con�gurations. Figure 4.5

illustrates the training con�guration. The words wt−t′,i (context) are predicted from wt,j (current

word) for i = 1, 2, 3 . . . length(C(t − t′)), j = 1, 2, 3 . . . length(C(t)), t′ ∈ 1, 2, 0,−1,−2 such that

if t′ = 0 then i 6= j; for skip-window of 2 for current confusion C(t)∀t as depicted in Figure 4.5.

We simply add the combination of training samples from the above two proposed techniques (i.e.,

the number of samples is the sum of equation 4.1 and equation 4.2).
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Figure 4.6: Flowcharts for proposed training schemes

4.5 Training Schemes

4.5.1 Model Initialization/Pre-training

Very often, it has been found that better model initializations lead to better model convergence

[46]. This is more signi�cant in the case of under-represented words. Moreover, for training

the word confusion mappings, it would bene�t to build upon the contextual word embeddings,

since our �nal goal is in conjunction with both contextual and confusion information. Hence,

we experiment initializing all our models with the original Google's word2vec model1 trained on

Google News dataset with 100 billion words as described by [115]. Pre-training rules are explained

in the �owchart in Figure 4.6(a). For the words present in the Google's word2vec vocabulary, we

directly initialize the embeddings with word2vec. The embeddings for rest of the words are

randomly initialized following uniform distribution.

4.5.2 Model Concatenation

The hypothesis with model concatenation is that the two subspaces, one representing the contex-

tual subspace (word2vec), and the other capturing the confusion subspace can be both trained

independently and concatenated to give a new vector space which manifests both the information

and hence a potentially useful vector word representation. Flowchart for model concatenation is

shown in Figure 4.6(b). The model concatenation can be mathematically represented as:

NEWn×e1+e2 =
[
W2Vn×e1 C2Vn×e2

]
(4.3)

1https://code.google.com/archive/p/word2vec/
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where NEW is the new concatenated vector space of dimensions n×e1+e2, n is the vocabulary

size, e1 and e2 are the embedding sizes of W2V and C2V subspaces respectively.

4.5.3 Joint Optimization

Further to the model concatenation scheme, one could �ne-tune the new vector space represen-

tation to better optimize to the task criterion (�ne-tuning involves re-training end-to-end with a

relatively lower learning rate than usual). This could be viewed as a case of relaxing the strict

independence between two subspaces as in the case of model concatenation. The �ne-tuning itself

could be either of the aforementioned proposed techniques. We speci�cally try two con�gurations

of joint optimization:

4.5.3.1 Unrestricted

In this con�guration, we optimize both the subspaces, i.e., the contextual (word2vec) and the

confusion subspaces. The hypothesis is the �ne-tuning allows the two subspaces to interact to

achieve the best possible representation. The �owchart for the unrestricted joint optimization is

displayed in Figure 4.6(c).

4.5.3.2 Fixed Word2Vec

In this con�guration, we �x the contextual (word2vec) subspace and �ne-tune only the confusion

subspace. Since the word2vec already provides robust contextual representation, any �ne-tuning

on contextual space could possibly lead to sub-optimal state. Keeping the word2vec subspace

�xed also allows the model to concentrate more speci�cally towards the confusion since the �xed

subspace compensates for all the contextual mappings during training. This allows us to constrain

the updatable parameters during joint optimization. It also allows for the possibility to directly

use available word2vec models without modi�cations. The �owchart for the �xed Word2Vec joint

optimization is displayed in Figure 4.6(c).

4.6 Evaluation Methods

Prior literature suggests, there are two prominent ways for evaluating the vector space represen-

tation of words. One is based on Semantic&Syntactic analogy task as introduced by [113]. The

other common approach has been to assess the word similarities by computing the rank-correlation

(Spearman's correlation) on human annotated word similarity databases [143] like WordSim-353

[49]. Although, the two evaluations can judge the vector representations of words e�ciently for
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Word Pair 1 Word Pair 2
i'd eyed phi �e

seedar cedar rued rude
air aire spade spayed
scent cent vile vial
cirrus cirrous sold soled
curser cursor pendant pendent
sensor censor straight strait

Table 4.1: Few examples from Acoustic Analogy Task Test-set

semantics and syntax of a language, we need to device an evaluation criteria for the word confu-

sions, speci�cally for our case scenario - the acoustic confusions of words. For this, we formulate

evaluations for acoustic confusions parallel to the analogy task and the word similarity task.

4.6.1 Analogy Tasks

4.6.1.1 Semantic&Syntactic Analogy Task

[113] introduced an analogy task for evaluating the vector space representation of words. The

task was based on the intuition that the words, say �king� is similar to �man� in the same sense

as the �queen� is to �woman� and thus relies on answering questions relating to such analogies by

performing algebraic operations on word representations. For example, the analogy is correct if

the vector(�woman�) is most similar to vector(�king�)-vector(�man�)+vector(�queen�). The anal-

ogy question test set is designed to test both syntactic and semantic word relationships. The test

set contains �ve types of semantic questions (8869 questions) and nine types of syntactic ques-

tions (10675 questions). Finally, the e�ciency of the vector representation is measured using the

accuracy achieved on the analogy test set. We employ this for testing the Semantic & Syntactic

(contextual axis as in terms of Figure 4.1) relationship inherent in the vector space.

4.6.1.2 Acoustic Analogy Task

The primary purpose of the acoustic analogy task is to independently gauge the acoustic similarity

information captured by the embedding model irrespective of the inherent Semantic and Syntactic

linguistic information. Adopting similar idea and extending the same for evaluation of word

confusions, we formulate the acoustic confusion analogy task (vertical context test as in terms

of Figure 4.1) as follows. For similar sounding word pairs, �see� & �sea� and �red� & �read�,

the word vector �see� is similar to �sea� in the same sense as the word �red� is to �read�. We

set up an acoustic analogy question set on acoustically similar sounding words, more speci�cally
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homophones. Table 4.1 lists a few examples from our data set. Detailed description of the creation

of dataset is presented in section 4.7.3.1.

4.6.1.3 Semantic&Syntactic-Acoustic Analogy Task

Further, rather than evaluating the Semantic-Syntactic tasks and the acoustic analogy tasks in-

dependently, we could test for both together. Intuitively, the word vectors in each of the two

subspaces should interact together. We would expect for an analogy, �see�-�saw�:�take�-�took�, the

word �see� has a homophone alternative in �sea�, thus there is a possibility of the word �see� being

confused with �sea� in the new vector space. Thus an algebraic operation such as vector(“see”)−

vector(“saw”) + vector(“take”) should be similar to vector(“took”) as before. Moreover the

vector(“sea”) − vector(“saw”) + vector(“take”) should also be similar to vector(“took”). This

is because we expect the vector(“sea”) to be similar to vector(“see”) under the acoustic sub-

space. We also take into account the more challenging possibility of more than one homophone

word substitution. For example, vector(“see”) − vector(“saw”) + vector(“allow”) is similar to

vector(“allowed”), vector(“aloud”) and vector(“sea”) − vector(“saw”) + vector(“allow”). The

hypothesis is that to come up with such a representation the system should jointly model both the

language semantic-syntactic relations and the acoustic word similarity relations between words.

The task is designed to test Semantic-Acoustic relations and the Syntactic-Acoustic relationships.

In other words, in terms of Figure 4.1, the task evaluates both the horizontal & vertical context

Type of Relationship Word Pair 1 Word Pair 2

Currency
India Rupee Korea One (Won)
Canada Dollar Denmark Krona (Krone)
Japan Yen Sweden Krone (Krona)

Family
Buoy (Boy) Girl Brother Sister

Boy Girl King Quean (Queen)
Boy Girl Sun (Son) Daughter

Adjective-to-Adverb Calm Calmly Sloe (Slow) Slowly
Opposite Aware Unaware Possible Impassible (Impossible)

Comparative Bad Worse High Hire (Higher)
Superlative Bad Worst Grate (Great) Greatest

Present Participle Dance Dancing Rite (Write) Writing
Past Tense Dancing Danced Flying Flu (Flew)
Plural Banana Bananas Burred (Bird) Birds

Plural Verbs Decrease Decreases Fined (Find) Finds

Multiple Homophone Substitutions
Wright (Write) Writes Sea (See) Sees
Rowed (Road) Roads I (Eye) Ayes (Eyes)

Si (See) Seize (Sees) Right (Write) Writes

Table 4.2: Few examples from Semantic & Syntactic - Acoustic Analogy Task Test
Set

The words in the parenthesis are the original ones as in the analogy test set [113] which have been
replaced by their homophone alternatives.
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Word1 Word2 Acoustic Rating WordSim353
I Eye 1.0 -

Adolescence Adolescents 0.9 -
Allusion Illusion 0.83 -
Sewer Sower 0.66 -

Fighting Defeating 0.57 7.41
Day Dawn 0.33 7.53

Weather Forecast 0.0 8.34

Table 4.3: Examples of Acoustic Similarity Ratings
Acoustic Rating: 1.0 = Identically sounding, 0.0 = Highly acoustically dissimilar

WordSim353: 10.0 = High word similarity, 0.0 = Low word similarity
Word pairs not present in WordSim353 is denoted by '-'

together. A few examples of this task is listed in Table 4.2. Section 4.7.3.2 details the creation of

the database.

4.6.2 Similarity Ratings

4.6.2.1 Word Similarity Ratings

Along with the analogy task the word similarity task [49] has been popular to evaluate the quality

of word vector representations in the NLP community [127, 104, 76, 143]. In this work we employ

the WordSim-353 dataset [49] for the word similarity task. The dataset has a set of 353 word pairs

with diverse range of human annotated scores relating to the similarity/dissimilarity of the two

words. The rank-order correlation (Spearman correlation) between the human annotated scores

and the cosine similarity of word vectors is computed. Higher correlation corresponds to better

preservation of word similarity order represented by the word vectors, and hence better quality of

the embedding vector space.

4.6.2.2 Acoustic Similarity Ratings

Employing a similar analogous idea to word similarity ratings and extending it to re�ect the

quality of word confusions, we formulate an acoustic word similarity task. The attempt is to

have word pairs scored similar to as in WordSim-353 database, but with the scores re�ecting the

acoustic similarity. Table 4.3 lists a few randomly picked examples from our dataset. The dataset

generation is described in section 4.7.3.3.
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4.7 Data & Experimental Setup

4.7.1 Database

We employ Fisher English Training Part 1, Speech (LDC2004S13) and Fisher English Training

Part 2, Speech (LDC2005S13) corpora [29] for training the ASR. The corpora consists of approx-

imately 1915 hours of telephone conversational speech data sampled at 8kHz. A total of 11972

speakers were involved in the recordings. The speech corpora is split into three speaker disjoint

subsets for training, development and testing for ASR modeling purposes. A subset of the speech

data containing approximately 1905 hours were segmented into 1871731 utterances to train the

ASR. Both the development set and the test set consists of 5000 utterance worth 5 hours of speech

data each. The transcripts contain approximately 20.8 million word tokens with 42150 unique

entries.

4.7.2 Experimental Setup

4.7.2.1 Automatic Speech Recognition

KALDI toolkit is employed for training the ASR [130]. A hybrid DNN-HMM based acoustic model

is trained on high resolution (40 dimensional) Mel Frequency Cepstral Coe�cients (MFCC) along

with i-vector features to provide speaker and channel information for robust modeling. The CMU

pronunciation dictionary [175] is pruned to corpora's vocabulary and is used as a lexicon for the

ASR. A trigram language model is trained on the transcripts of the training subset data. The

ASR system achieves a word error rates (WER) of 16.57% on the development and 18.12% on

the test datasets. The decoded lattice is used to generate confusion network based on minimum

bayes risk criterion [182]. The ASR output transcriptions resulted in a vocabulary size of 41274

unique word tokens.

4.7.2.2 Confusion2Vec

For training the Confusion2Vec, the training subset of the Fisher corpora is used. The total

number of tokens resulting from the multiple paths over the confusion network is approximately

69.5 million words, i.e., an average of 3.34 alternative word confusions present for each word in

the confusion network. A minimum frequency threshold of 5 is set to prune the rarely occurring

tokens from the vocabulary, which resulted in the reduction of the vocabulary size from 41274

to 32848. Further, we also subsample the word tokens as suggested by [115] which was shown

to be helpful. Both the frequency thresholding and the downsampling resulted in a reduction of
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Task Total Samples Retained
Semantic&Syntactic Analogy 19544 11409

Acoustic Analogy 20000 2678
Semantic&Syntactic-Acoustic Analogy 7534 3860

WordSim-353 353 330
Acoustic Confusion Ratings 1372 943

Table 4.4: Statistics of Evaluation Datasets

word tokens from 69.5 million words to approximately 33.9 million words. The Confusion2Vec

and Word2Vec are trained using the Tensor�ow toolkit [1]. Negative Sampling objective is used

for training as suggested for better e�ciency [115]. For the skip-gram training, the batch-size

of 256 was chosen and 64 negative samples were used for computing the negative sampling loss.

The skip-window was set to 4 and was trained for a total of 15 epochs, since it provided optimal

performance with traditional word2vec embeddings, evaluating for word analogy task, for the size

of our database. During �ne-tuning, the model was trained with a reduced learning rate and

with other parameters unchanged. All the above parameters were �xed for consistent and fair

comparison.

4.7.3 Creation of Evaluation Datasets

4.7.3.1 Acoustic Analogy Task

We collected a list of homophones in English 2, and created all possible combinations of pairs

of acoustic confusion analogies. For homophones with more than 2 words, we list all possible

confusion pairs. Few examples from the dataset are listed in Table 4.1. We emphasize that the

consideration of only homophones in the creation of the dataset is a strict and a di�cult task to

solve, since the ASR lattice contains more relaxed word confusions.

4.7.3.2 Semantic&Syntactic-Acoustic Analogy Task

We construct an analogy question test set by substituting the words in the original analogy ques-

tion test set from [113] with their respective homophones. Considering all the 5 types of semantic

questions and 9 types of syntactic questions, for any words in the analogies with homophone al-

ternatives, we swap with the homophone. We prune all the original analogy questions having no

words with homophone alternatives. For analogies having more than one words with homophone

alternatives, we list all permutations. We found that the number of questions generating by the

2http://homophonelist.com/homophones-list/ (Accessed: 2018-04-30)
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above method, being exhaustive, was large and hence we randomly sample from the list to retain

948 semantic questions and 6586 syntactic questions. Table 4.2 lists a few examples with single

and multiple homophone substitutions for Semantic&Syntactic-Acoustic Analogy Task from our

data set.

4.7.3.3 Acoustic Similarity Task

To create a set of word pairs scored by their acoustic similarity, we add all the homophone word

pairs with an acoustic similarity score of 1.0. To get a more diverse range of acoustic similarity

scores, we also utilize all the 353 word pairs from the WordSim-353 dataset and compute the

normalized phone edit distance using the CMU Pronunciation Dictionary [175]. The normalized

phone edit distance is of the range between 0 and 1. The edit distance of 1 refers to the word

pair having almost 0 overlap between their respective phonetic transcriptions and thus being

completely acoustically dissimilar and vice-versa. We use 1− phone-edit-distance as the acoustic

similarity score between the word pair. Thus a score of 1.0 signi�es that the two words are

identically sounding, whereas as 0 refers to words sounding drastically dissimilar. In the case

of a word having more than one phonetic transcriptions (pronunciation alternatives), we use the

minimum normalized edit distance. Table 4.3 shows a few randomly picked examples from the

generated dataset.

Finally, for evaluation the respective corpora are pruned to match the in-domain training dataset

vocabulary. Table 4.4 lists the samples in each evaluation dataset before and after pruning.

4.7.4 Performance Evaluation Criterion

In the original work by [113], the e�ciency of the vector representation is measured using the

accuracy achieved on the analogy test set. But, in our case, note that the Semantic&Syntactic

analogy task and the Semantic&Syntactic-Acoustic analogy task are mutually exclusive of each

other. In other words, the model can get only one, either one of the analogies correct, meaning

any increments with one task will result in decrements over the other task. Moreover, while jointly

modeling two orthogonal information streams (i) contextual co-occurrences, and (ii) acoustic word

confusions, �nding the nearest word vector nearest to the speci�c analogy is no longer an optimal

evaluation strategy. This is because the word vector nearest to the analogy operation can either be

along the contextual axis or the confusion axis, i.e., each analogy could possibly have two correct

answers. For example, the analogy �write�-�wrote� : �read� can be right when the nearest word

vector is either �read� (contextual dimension) or �red� (confusion dimension). To incorporate this,
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Model
Analogy Tasks Similarity Tasks

S&S Acoustic S&S-Acoustic Average Accuracy Word Similarity Acoustic Similarity
Google Word2Vec 61.42% 0.9% 16.99% 26.44% 0.6893 -0.3489

Word2Vec GroundTruth 35.15% 0.3% 7.86% 14.44% 0.5794 -0.2444
Baseline Word2Vec 34.27% 0.7% 11.27% 15.41% 0.4992 0.1944
Intra-Confusion 22.03% 52.58% 14.61% 29.74% 0.105∗ 0.8138
Inter-Confusion 36.15% 60.57% 20.44% 39.05% 0.2937 0.8055

Hybrid Intra-Inter 30.53% 53.55% 29.35% 37.81% 0.0963∗ 0.7858

Table 4.5: Results: Di�erent proposed models
For the analogy tasks: the accuracies of baseline word2vec models are for top-1 evaluations, whereas of
the other models are for top-2 evaluations (as discussed in Section 4.6.1). Detailed semantic analogy and
syntactic analogy accuracies, the top-1 evaluations and top-2 evaluations for all the models are available

under Appendix in Table A.1.
For the similarity tasks: all the correlations (Spearman's) are statistically signi�cant with p < 0.001
except the ones with the asterisks. Detailed p− values for the correlations are presented under

Appendix in Table A.2.
S&S: Semantic & Syntactic Analogy.

we provide the accuracy over top-2 nearest vectors, i.e., we count the analogy question as correct

if any of the top-2 nearest vector satis�es the analogy. This also holds for the acoustic confusion

analogy tasks, especially for relations involving triplet homophones. For example, the analogy

�write� - �right� : �road� can be right when the nearest word vector is either �rode� or �rowed� (for

triplet homophones �road�/�rode�/�rowed�). Thus, we present evaluations by comparing the top-1

(nearest vector) evaluation with baseline word2vec against the top-2 evaluation for the proposed

confusion2vec models. To maintain consistency, we also provide the top-2 evaluations for the

baseline word2vec models in the appendix.

Moreover, since we have 3 di�erent analogy tasks, we provide the average accuracy among the

3 tasks in order to have an easy assessment of the performance of various proposed models.

4.8 Results

Table 6.1 lists the results for various models. We provide evaluations on three di�erent analogy

tasks and two similarity tasks as discussed in Section 4.6. Further, more thorough results with the

Semantic and Syntactic accuracy splits are provided under the appendix to gain deeper insights.

4.8.1 Baseline Word2Vec Model

We consider 3 variations of Word2Vec baseline model. First, we provide results with the Google's

Word2Vec model 3 which is trained with orders more training data, and is thus a high upper

bound on the Semantic&Syntactic task. The Google's Word2Vec model was pruned to match

3https://code.google.com/archive/p/word2vec
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the vocabulary of our corpora to make the evaluation comparable. Second, we consider the

Word2Vec model trained on the in-domain ground truth transcripts. Third, for a more fair

comparison with the other proposed models, we provide evaluations on Word2Vec model trained

on the noisy ASR output transcripts. All the three baseline models result in good performance

on Semantic&Syntactic analogy tasks and word similarity task as expected. The Google's model

achieves an accuracy of 61.42% on the Semantic&Syntactic analogy task. We note that the

Syntactic accuracy (70.79%) is much higher than the Semantic accuracy (28.98%) (see Appendix

Table A.1). This could be due to our pruned evaluation test set (see Table 4.4). Both the in-

domain models improve on the Semantic accuracy while losing on the syntactic accuracy over the

Google model (see Appendix Table A.1). The shortcomings of the in-domain models compared

to the Google Word2Vec on the Semantic&Syntactic analogy task can be attributed towards the

amount of training data and its extensive vocabulary. The in-domain models are trained on

20.8 million words versus the 100 billion of Google's News dataset. Moreover the vocabulary

of in-domain models are approximately 42,150 versus the 3 million of Google [115] and thus

unfair to compare with rest of the models. Comparing the two in-domain models, we observe

the model trained on clean data performs better than the one trained on ASR transcripts as

expected. However, the performance di�erence is minimal which is encouraging. We see the

noisy transcripts negatively a�ect the semantic accuracies while the syntactic accuracy remains

identical which makes sense. Further, evaluating the Acoustic analogy and Semantic&Syntactic-

Acoustic analogy tasks, all the three baseline models perform poorly. An unusual thing we note

is that the Google W2V model performs better comparatively to the other baseline models in

the Semantic&Syntactic-Acoustic analogy task. A deeper examination revealed that the model

compensates well for homophone substitutions on Semantic&Syntactic analogies which have very

similar spellings. This suggests that the typographical errors present in the training data of the

Google model results in a small peak in performance for the Semantic&Syntactic-Acoustic analogy

task.

On the evaluations of similarity tasks, all the baseline models perform well on the word simi-

larity tasks as expected. However, they exhibit poor results on the acoustic similarity task. One

interesting observation is Google Word2Vec and the in-domain Word2Vec model trained on clean

transcript show negative correlation, whereas the model trained on noisy transcript shows a small

positive correlation. One of the possible reasons behind this is due to the in�uence of the ASR

language model on the word confusions in the lattice which enforces contextual constraints during

ASR decoding and hence results in a positive correlation.
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Overall, the results indicate that the baseline models are largely inept of capturing any rela-

tionships over the acoustic word confusions present in a confusion network or a lattice. In our

speci�c case, the baseline models are poor in capturing relationships between acoustically similar

words.

4.8.2 Intra-Confusion

With intra-confusion training, we expect the model to capture acoustically similar word rela-

tionships, while completely ignoring any contextual relations. Hence, we expect the model to

perform well on acoustic analogies and acoustic similarity tasks and to perform poorly on Se-

mantic&Syntactic analogies and word similarity tasks. The Table 6.1 lists the results obtained

using intra-confusion training. The results are in conjunction with our expectations. The model

gives the worst results in Semantic&Syntactic analogy task. However, we observe that the syn-

tactic analogy accuracy to be a fair amount higher than the semantic accuracy (see Appendix

Table A.1). We think this is mainly because of syntactically similar words appearing along the

word confusion dimension in the confusion networks, resultant of the constraints enforced on the

confusion network by the (ASR) language model - which are known to perform better for syntactic

tasks [113]. The model also gives the highest correlation on the acoustic similarity task, while

performing poorly on the word similarity task.

4.8.3 Inter-Confusion

With inter-confusion training, we hypothesized that the model is capable of jointly modeling both

the contextual statistics as well as the word confusion statistics. Hence, we expect the model to

perform well on both the Semantic&Syntactic analogy and Acoustic analogy tasks and in doing

so result in better performance with Semantic&Syntactic-Acoustic analogy task. We also expect

the model to give high correlations for both word similarity and acoustic similarity tasks. From

Table 6.1, we observe that as hypothesized the inter-confusion training shows improvements in the

Semantic&Syntactic analogy task. Quite surprisingly, the inter-confusion training shows better

performance than the intra-confusion training for the Acoustic analogy task, hinting that having

good contextual representation could mutually be bene�cial for the confusion representation.

However, we don't observe any improvements in the Semantic&Syntactic-Acoustic analogy task.

Evaluating on the similarity tasks, the results support the observations drawn from analogy tasks,

i.e., the model fares relatively well in both word similarity and acoustic similarity.
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Model
Analogy Tasks Similarity Tasks

S&S Acoustic S&S-Acoustic Average Accuracy Word Similarity Acoustic Similarity
Baseline Word2Vec 61.13% 0.9% 16.66% 26.23% 0.6036 -0.4327
Intra-Confusion 63.97% 16.92% 43.34% 41.41% 0.5228 0.62
Inter-Confusion 65.45% 27.33% 38.29% 43.69% 0.5798 0.5825

Hybrid Intra-Inter 65.19% 20.35% 42.18% 42.57% 0.5341 0.6237

Table 4.6: Results with pre-training/initialization
For the analogy tasks: the accuracies of baseline word2vec models are for top-1 evaluations, whereas of
the other models are for top-2 evaluations (as discussed in Section 4.6.1). Detailed semantic analogy and
syntactic analogy accuracies, the top-1 evaluations and top-2 evaluations for all the models are available

under Appendix in Table A.3.
For the similarity tasks: all the correlations (Spearman's) are statistically signi�cant. Detailed

p− values for the correlations are presented under Appendix in Table A.4.
S&S: Semantic & Syntactic Analogy.

4.8.4 Hybrid Intra-Inter Confusion

The hybrid intra-inter confusion training shows comparable performance in jointly modeling on

both the Semantic&Syntactic and Acoustic analogy tasks. One crucial observation is that it gives

signi�cantly better performance with the Semantic&Syntactic-Acoustic analogy task. This sug-

gests that jointly modeling both the intra-confusion and inter-confusion word mappings are useful.

However, it achieves better results by compromising on the semantic analogy (see Appendix Ta-

ble A.1) accuracy and hence also negatively a�ecting the word similarity task. The model achieves

good correlation on the acoustic similarity task.

Overall, our proposed Confusion2Vec models capture signi�cantly more useful information

compared to the baseline models judging by the average accuracy over the analogy tasks. One

particular observation we see across all the proposed models is that the performance remains fairly

poor for the Semantic&Syntactic-Acoustic analogy task. This suggests that the Semantic&Syntactic-

Acoustic analogy task is inherently hard to solve. We believe that to achieve better results with

Semantic&Syntactic-Acoustic analogies, it is necessary to have robust performance on one of

the tasks (Semantic&Syntactic analogies or Acoustic analogies) to begin with, i.e., better model

initialization could help. Next, we experiment with model initializations/pre-training.

4.8.5 Model Initialization/Pre-training

Table 4.6 lists the results with model initialization/pre-training. The baseline model is initialized

from the Google Word2Vec model. Rest of the models are initialized from the baseline word2vec

model (i.e., the baseline model initialized from Google Word2Vec), since this would enable full
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compatibility with the vocabulary. Since the Google Word2Vec model is 300 dimensional, this

forces all the pre-trained models (in Table 4.6) to be 300, opposed to 256 dimensions (in Table 6.1).

Pre-training the baseline model provides improvements with Semantic&Syntactic analogy re-

sults to be close and comparable to that of the Google's Word2Vec model. For intra-confusion

model, the pre-training provides drastic improvements on Semantic&Syntactic analogy task at

the expense of the Acoustic analogy task. Even-though the accuracy of Acoustic analogy task

decreases comparatively to without pre-training, it remains signi�cantly better than the base-

line model. More importantly, the Semantic&Syntactic-Acoustic analogy task accuracy doubles.

Inter-Confusion model does not compromise on the Semantic&Syntactic analogy tasks, in doing

so gives comparable performances to the baseline model. Additionally it also does well on the

Acoustic and Semantic&Syntactic-Acoustic analogy task as was the case without pre-training. In

the case of hybrid intra-inter confusion model, similar trends are observed as was with no pre-

training, but with considerable improvements in accuracies. Pre-training also helps in boosting

the correlations for the word similarity tasks for all the models. Overall, we �nd the pre-training

to be extremely useful.

4.8.6 Model Concatenation

The �rst 4 rows of Table 4.7 show the results with model concatenation. We concatenate each

of the three proposed models (from Table 6.1) with the pre-trained baseline word2vec. Thus the

resulting vector space is 556 dimensional (300 (pre-trained baseline word2vec) + 256 (proposed

models from Table 6.1) = 556). In our case, we believe the dimension expansion of the vector

space is insigni�cant in terms of performance considering the relatively low amount of training

data compared to Google's word2vec model. To be completely fair in judgment, we create a new

baseline model with 556 dimensional embedding space for comparison. To train the new base-

line model, the 556 dimension embedding was initialized with 300 dimensional Google's word2vec

embedding and the rest of the dimensions as zeros (null space). Comparing the 556 dimension

baseline from Table 4.7 with the previous 300 dimensional baseline from Table 4.6, the results are

almost identical which con�rms the dimension expansion is insigni�cant with respect to perfor-

mance.

With model concatenation, we see slightly better results (average analogy accuracy) comparing

with the pre-trained models from Table 4.6, an absolute increase of up-to approximately 5% among

the best results. The correlations with similarity tasks are similar and comparable with the earlier

results with the pre-trained models.

55



Model
Fine-tuning Analogy Tasks Similarity Tasks
Scheme S&S Acoustic S&S-Acoustic Average Word Acoustic

1 Baseline Word2Vec (556 dim.) - 61.13% 0.93% 16.53% 26.2% 0.5973 -0.4341
Model Concatenation

2 Word2Vec (F) + Intra-Confusion (F) - 67.03% 25.43% 40.36% 44.27% 0.5102 0.7231
3 Word2Vec (F) + Inter-Confusion (F) - 70.84% 35.25% 35.18% 47.09% 0.5609 0.6345
4 Word2Vec (F) + Hybrid Intra-Inter (F) - 68.08% 11.39% 41.3% 40.26% 0.4142 0.5285

Fixed Word2Vec Joint Optimization
5 Word2Vec (F) + Intra-Confusion (L) inter 71.65% 20.54% 33.76% 41.98% 0.5676 0.4437
6 Word2Vec (F) + Intra-Confusion (L) intra 67.37% 28.64% 39.09% 45.03% 0.5211 0.6967
7 Word2Vec (F) + Intra-Confusion (L) hybrid 70.02% 25.84% 37.18% 44.35% 0.5384 0.6287
8 Word2Vec (F) + Inter-Confusion (L) inter 72.01% 35.25% 33.58% 46.95% 0.5266 0.5818
9 Word2Vec (F) + Inter-Confusion (L) intra 69.7% 39.32% 39.07% 49.36% 0.5156 0.7021
10 Word2Vec (F) + Inter-Confusion (L) hybrid 72.38% 37.75% 37.95% 49.36% 0.5220 0.6674
11 Word2Vec (F) + Hybrid Intra-Inter (L) inter 71.36% 8.55% 33.21% 37.71% 0.5587 0.302
12 Word2Vec (F) + Hybrid Intra-Inter (L) intra 66.85% 13.33% 40.1% 40.09% 0.4996 0.5691
13 Word2Vec (F) + Hybrid Intra-Inter (L) hybrid 68.32% 11.61% 38.19% 39.37% 0.5254 0.4945

Unrestricted Joint Optimization
14 Word2Vec (L) + Intra-Confusion (L) inter 62.12% 46.42% 36.4% 48.31% 0.5513 0.7926
15 Word2Vec (L) + Intra-Confusion (L) intra 64.85% 40.55% 42.38% 49.26% 0.5033 0.7949
16 Word2Vec (L) + Intra-Confusion (L) hybrid 31.65% 61.91% 23.55% 39.04% 0.1067∗ 0.8309
17 Word2Vec (L) + Inter-Confusion (L) inter 64.98% 52.99% 34.79% 50.92% 0.5763 0.7725
18 Word2Vec (L) + Inter-Confusion (L) intra 65.88% 49.4% 41.51% 52.26% 0.5379 0.7717
19 Word2Vec (L) + Inter-Confusion (L) hybrid 37.86% 67.21% 25.96% 43.68% 0.2295 0.8294
20 Word2Vec (L) + Hybrid Intra-Inter (L) inter 65.54% 27.97% 36.87% 43.46% 0.5338 0.6953
21 Word2Vec (L) + Hybrid Intra-Inter (L) intra 64.42% 20.05% 42.56% 42.34% 0.4920 0.6942
22 Word2Vec (L) + Hybrid Intra-Inter (L) hybrid 65.79% 22.63% 41.3% 43.24% 0.4967 0.6986

Table 4.7: Model concatenation and joint optimization results
Acronyms: (F):Fixed embedding, (L):Learn embedding during joint training, S&S: Semantic &

Syntactic Analogy.
For the analogy tasks: the accuracies of baseline word2vec models are for top-1 evaluations, whereas of
the other models are for top-2 evaluations (as discussed in Section 4.6.1). Detailed semantic analogy and
syntactic analogy accuracies, the top-1 evaluations and top-2 evaluations for all the models are available

under Appendix in Table A.5.
For the similarity tasks: all the correlations (Spearman's) are statistically signi�cant with p < 0.001
except the ones with the asterisks. Detailed p− values for the correlations are presented under

Appendix in Table A.6.

4.8.7 Joint Optimization

4.8.7.1 Fixed Word2Vec

Rows 5-13 of Table 4.7 display the results of joint optimization with concatenated, �xed Word2Vec

embeddings and learn-able confusion2vec embeddings. As hypothesized with �xed Word2Vec

subspace, the results indicate better accuracies for the Semantic&Syntactic analogy task. Thereby,

the improvements also re�ect on the overall average accuracy of the analogy tasks. This also

con�rms the need for joint optimization which boosts the average accuracy up-to approximately

2% absolute over the unoptimized concatenated model.
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4.8.7.2 Unrestricted Optimization

The last 9 rows of Table 4.7 display the results obtained by jointly optimizing the concatenated

models without constraints. Both the subspaces are �ne tuned to convergence with various pro-

posed training criteria. We consistently observe improvements with the unrestricted optimization

over the unoptimized model concatenations. In terms of average accuracy we observe a increase

in average accuracy by up-to 5% absolute approximate over the unoptimized concatenated mod-

els. Moreover, we obtain improvements over the Fixed Word2Vec joint-optimized models, up-to

2-3% (absolute) in average accuracies. The best overall model in terms of average accuracies

is obtained by unrestricted joint optimization on the concatenated baseline word2vec and inter-

confusion models by �ne-tuning with the intra-confusion training scheme.

4.8.8 Results Summary

Firstly, comparing among the di�erent training schemes (see Table 6.1), the inter-confusion train-

ing consistently gives the best Acoustic analogy accuracies, whereas the hybrid training scheme

often gives the best Semantic&Syntactic-Acoustic analogy accuracies. As far as the Seman-

tic&Syntactic analogy task is concerned, the intra-confusion is often found to give preference to

syntactic relations, while the inter-confusion boosts the semantic relations and the hybrid scheme

balances both relations (see Appendix Table A.1). Next, pre-training/initializing the model gives

drastic improvements in overall average accuracy of analogy tasks. Concatenating the baseline

word2vec with the confusion2vec model gives slightly better results. More optimizations and

�ne-tuning over the concatenated model gives considerably the best results.

Overall, the best results are obtained with unrestricted joint optimization of baseline word2vec

and inter-confusion model, i.e., �ne-tuning using intra-confusion training mode. In terms of

average analogy accuracies the confusion2vec model outperforms the baseline by an absolute

26.06%. The best performing confusion2vec model outperforms the word2vec model even on the

Semantic&Syntactic analogy tasks (by a relative 7.8%). Moreover, even the comparison between

the top-2 evaluations of both the word2vec and confusion2vec suggests very similar performance

on Semantic&Syntactic-analogy tasks (see Appendix Table A.5). This con�rms and emphasizes

that the confusion2vec doesn't compromise on the information captured by word2vec but succeeds

in augmenting the space with word confusions. Another highlight observation is that modeling

the word confusions boost the semantic and syntactic scores of the Semantic&Syntactic analogy

task (compared to word2vec), suggesting inherent information in word confusions which could be

exploited for better semantic-syntactic word relation modeling.
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4.9 Vector Space Analysis

In this section, we compare the vector space plots of the typical word2vec space and the proposed

confusion2vec vector space for speci�cally chosen set of words. We choose a subset of words

representing three categories to re�ect semantic relationships, syntactic relationships and acoustic

relationships. The vector space representations of the words are then subjected to dimension

reduction using principle component analysis (PCA) to obtain 2D vectors which are used for

plotting.

4.9.1 Semantic Relationships

For analyzing the semantic relationships, we compile random word pairs (constrained by the

availability of these in our training data) representing Country-Cities relationships. The 2D plot

for baseline pre-trained word2vec model is shown in Figure 4.9 and for the proposed confusion2vec

model, speci�cally for the randomly selected, jointly-optimized word2vec + intra-confusion model

(corresponding to row 6 in Table 4.7) is displayed in Figure 4.10. The following observations can

be made comparing the two PCA plots:

� Examining the baseline word2vec model, we �nd the Cities are clustered over the upper half

of the plot (highlighted with blue hue in Figure 4.9) and Countries are clustered together

at the bottom half (highlighted with red hue in Figure 4.9).

� Similar trends are observed with the proposed confusion2vec model, where the cities are

clustered together over the right half of the plot (highlighted with blue hue in Figure 4.10)

and the countries are grouped together towards the left half (highlighted with red hue in

Figure 4.10).

� In the Word2Vec space, the vectors of Country-City word pairs are roughly parallel, pointing

north-east (i.e., vectors are approximately similar).

� Similar to the word2vec space, with the Confusion2Vec, we observe the vectors of Country-

City word pairs are fairly parallel and point to the east (i.e., vectors are highly similar).

The four observations indicate that the Confusion2Vec preserves the Semantic relationships be-

tween the words (similar to the Word2Vec space).
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4.9.2 Syntactic Relationships

To analyze the syntactic relationships, we create 30 pairs of words composed of Adjective-Adverb,

Opposites, Comparative, Superlative, Present-Participle, Past-tense, Plurals. The PCA 2D plots

for baseline pre-trained word2vec model and the proposed confusion2vec model are illustrated

in Figure 4.11 and Figure 4.12 respectively. The following inferences can be made from the two

plots:

� Inspecting the baseline word2vec model, we observe that the word pairs depicting syntactic

relations occur often close-by (highlighted with red ellipses in Figure 4.11).

� Few semantic relations are also apparent and are highlighted with blue ellipses in Figure 4.11.

For example, animals are clustered together.

� Similarly, with the Confusion2Vec model, we observe syntactic clusters of words highlighted

with red ellipses in Figure 4.12.

� Semantic relations apparent in the case of word2vec is also evident with the Confusion2Vec,

which are highlighted with blue ellipses in Figure 4.12.

� Additionally with the Confusion2Vec model, we �nd clusters of acoustically similar words

(with similar phonetic transcriptions). These are highlighted using a green ellipse in Fig-

ure 4.12.

The above �ndings con�rm that the confusion2vec models preserve the syntactic relationships

similar to word2vec models, supporting our hypothesis.

4.9.3 Acoustic Relationships

In order to analyze the relationships of similarly sounding words in the word vector spaces under

consideration, we compose 20 pairs of acoustically similar sounding words, with similar phonetic

transcriptions. The 2D plot obtained after PCA for the baseline word2vec model is shown in

Figure 4.13 and the proposed confusion2vec model is shown in Figure 4.14. We make the following

observations from the two �gures:

� Observing the baseline Word2vec model, no apparent trends are found between the acous-

tically similar words. For example, there is no trivial relationships apparent from the plot

in Figure 4.13 between the word �no� and �know�, �try� and �tri� etc.
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Example Ground-truth ASR output W2V Similarity C2V Similarity
1.1 �yes right answer� �yes [right/write] answer� 0.96190 0.96218
1.2 �yes right answer� �yes write answer� 0.93122 0.93194
1.3 �yes write answer� �yes [right/write] answer� 0.99538 0.99548
1.4 �yes rite answer� �yes [right/write] answer� 0.84216 0.88206
1.5 �yes rite answer� �yes right answer� 0.86003 0.87085
1.6 �yes rite answer� �yes write answer� 0.82073 0.87034
2.1 �she likes sea� �[she/shea] likes [see/sea]� 0.91086 0.92130
2.2 �she likes sea� �shea likes see� 0.73295 0.77137
2.3 �shea likes see� �[she/shea] likes [see/sea]� 0.94807 0.95787
2.4 �shea likes see� �[she/shea] likes [see/rocket]� 0.93560 0.93080
2.5 �she likes sea� �[she/shea] likes [see/rocket]� 0.85853 0.85757

Table 4.8: Cosine Similarity between the ASR Ground-truth and ASR output in
application to ASR error correction for baseline pre-trained word2vec and the
proposed confusion2vec: jointly optimized intra-confusion + baseline word2vec

models
Example 1.1-1.6 inherits structure as in Figure 4.7a, i.e., �yes [right/write] answer� assigns weight of 1.0

to yes and answer, 0.75 to right, 0.25 to write. Similarly Example 2.1-2.5 inherits structure as in
Figure 4.7b

0 1yes:yes/1 2write:write/0.75
right:right/0.25

3answer:answer/1

(a) Example 1

0 1she:she/0.4
shea:shea/0.6

2likes:likes/1 3sea:sea/0.45
see:see/0.55

(b) Example 2

Figure 4.7: Confusion Network Examples

� However, inspecting the proposed confusion2vec model, there is an obvious trend apparent,

the acoustically similar words are grouped together in pairs and occur roughly in similar

distances. The word pairs are highlighted with blue ellipses in Figure 4.14.

� Additionally, in the Figure 4.14, as highlighted in green ellipse, we observe the 4 words

�no�, �not�, �knot� and �know� occur in close proximity. The word pair �no� and �not�

portray Semantic/Syntactic relation whereas the pairs �knot� & �not� and �no� & �know�

are acoustically related.

The above �ndings suggest that the word2vec baseline model fails to capture any acoustic rela-

tionships whereas the proposed confusion2vec successfully models the confusions present in the

lattices, in our speci�c case the acoustic confusions from the ASR lattices.

4.10 Discussion

In this section, we demonstrate why the proposed embedding space is superior for modeling word

lattices with the support of toy examples. Lets consider a simple task of ASR error correction.
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As shown by [4, 124, 151], often, the information needed to correct the errors are embedded in

the lattices. The toy examples in Figure 4.7a & 4.7b depict the real scenarios encountered in

ASR. The lattice feature representation is a weighted vector sum of all words in the confusion

and its context present in the lattice (see Figure 4.8). We compare the proposed confusion2vec

embeddings with the popular word2vec using cosine similarity as the evaluation measure. Table 4.8

lists the evaluation for the following cases: (i) ASR output is correct, (ii) ASR output is wrong

and the correct candidate is present in the lattice, (iii) ASR output is wrong and the correct

candidate is absent from the lattice, and (iv) ASR output is wrong and with no lattice available.

The following observations are drawn from the results:

1. Confusion2vec shows higher similarity with the correct answers when the ASR output is

correct (see Table 4.8 example 1.1, 2.1).

2. Confusion2vec exhibits higher similarity with the correct answers when the ASR output is

wrong - meaning the representation is closer to the correct candidate and therefore more

likely to correct the errors (see Table 4.8 example 1.2, 2.2, 1.3, 2.3).

3. Confusion2vec yields high similarity even when the correct word candidate is not present

in the lattice - meaning confusion2vec leverages inherent word representation knowledge

to aid re-introduction of pruned or unseen words during error correction (see Table 4.8

example 1.4, 1.5, 1.6).

4. The confusion2vec shows low similarity in the case of fake lattices with highly unlikely word

alternatives (see Table 4.8 example 2.4, 2.5).

All the above observations are supportive of the proposed confusion2vec word representation and

is in line with the expectations for the task of ASR error correction.

wt,1 wt,2 wt,3

C(t)

P(wt,1) P(wt,2) P(wt,3)

wt-1,1 wt-1,2 wt-1,3

C(t-1)

P(wt-1,1) P(wt-1,2)P(wt-1,3)

wt+1,1 wt+1,2 wt+1,3

C(t+1)

P(wt+1,1)P(wt+1,2) P(wt+1,3)

Sum

Feature Vector

Figure 4.8: Computation of lattice feature vector.
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4.11 Potential Applications

In addition to the above discussed ASR error correction task, other potential application include:

Machine Translation: In Machine Translation, word lattices are used to provide multiple

sources for generating a single translation [144, 44]. Word lattices derived from reordered hy-

potheses [31, 120, 66], morphological transformations [43, 66], word segmentations [41], para-

phrases [125] are used to introduce ambiguity and alternatives for training machine translation

systems [178, 42, 44]. Source language alternatives can also be exploited by introducing ambigu-

ity derived from the combination of multiple machine translation systems [110, 139, 138]. In the

case of Machine Translation, the word-confusion subspace is associated with morphological trans-

formations, word segmentations, paraphrases, part-of-speech information, etc., or a combination

of them. Although the word-confusion subspace is not orthogonal, the explicit modeling of such

ambiguity relationships is bene�cial.

NLP: Other NLP based applications like paraphrase generation [132], word segmentation [87],

part-of-speech tagging [87] also operate on lattices. As discussed in section 4.2.2, confusion2vec

can exploit the ambiguity present in the lattices for betterment of the tasks.

ASR: In ASR systems, word lattices and confusion networks are often re-scored using various

algorithms to improve their performances by exploiting ambiguity [164, 105, 181, 102]. In the

case of ASR, the word-confusion subspace is associated with acoustic similarity of words which

is often orthogonal to the semantic-syntactic subspace as discussed in section 4.2.1. Example

1, Example 2 and Example 3 are prime cases supporting the need for jointly modeling acoustic

word confusions and semantic-syntactic subspace.

Spoken Language Understanding: Similarly, as in the case of ASR, Confusion2Vec could

exploit the inherent acoustic word-confusion information for keyword spotting [105], con�dence

score estimation [105, 147, 81, 78], domain adaptation [151], lattice compression [105], spoken

content retrieval [24, 74], system combinations [105, 72] and other spoken language understanding

tasks [64, 170, 106] which operate on lattices.

Speech Translation: In speech translation systems, incorporating the word lattices and con-

fusion networks (instead of the single top hypothesis) is bene�cial in better integrating speech

recognition system to the machine translation systems [12, 108, 109, 145]. Similarly, exploiting

uncertainty information between the �ASR - Machine Translation - Speech synthesis� systems for

Speech-to-speech translation is useful [92, 174]. Since speech translation involves combination

of ASR and the Machine Translation systems, the word-confusion subspace is associated with a
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combination of acoustic word-similarity (for ASR) and morphological-segmentation-paraphrases

ambiguities (for Machine Translation).

“See son winter is here′′ −→ “voir �ls hiver est ici′′ (Example 4)

“Season winter is here′′ −→ “saison hiver est ici′′ (Example 5)

Example 4 and Example 5 demonstrate a case of speech translation of identically sounding

English phrases to French. Words �See son� and �Season� demonstrate ambiguity in terms of

word segmentation. Whereas the phrases �See son� and �Season� also exhibit ambiguity in terms

of acoustic similarity. By modeling both word-segmentation and acoustic-confusion through word

vector representations, the confusion2vec can provide crucial information that the french words

�voir� and �saison� are confusable under speech translation framework.

Optical Character Recognition: In optical character recognition (OCR) systems, the confu-

sion axis is related to pictorial structures of the characters/words. For example, say the characters

�a� and �o� are easily confusable thus leading to similar character vectors in the embedding space.

In the case of word level confusions leading to words �ward� and �word� being similar with con-

fusion2vec (word2vec would have the words �word� and �ward� fairly dissimilar). Having this

crucial optical confusion information is useful during OCR decoding on sequence of words when

used in conjunction with the linguistic contextual information.

Image/Video Scene Summarization: The task of scene summarization involves generating

descriptive text summarizing the content in one or more images. Intuitively, the task would bene�t

from linguistic contextual knowledge during the text generation. However, with the confusion2vec,

one can model and expect to capture two additional information streams (i) pictorial confusion

of image/object recognizer, and (ii) pictorial context, i.e., modeling objects occurring together

(e.g. we can expect oven to often appear nearby a stove or other kitchen based appliances). The

additional streams of valuable information embedded in the lattices can contribute for better

decoding. In other words, for example, word2vec can exhibit high dissimilarity between the words

�lifebuoy� and �donuts�, however the confusion2vec can capture their pictorial similarity in a better

word space representation and thus aiding in their end application of scene summarization.

4.12 Conclusion

In this work, we proposed a new word vector representation motivated from human speech &

perception and aspects of machine learning for incorporating word confusions from lattice like
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structures. The proposed confusion2vec model is meant to capture additional word-confusion in-

formation and improve upon the popular word2vec models without compromising the inherent in-

formation captured by the word2vec models. Although the word confusions could be domain/task

speci�c, we present a case study on ASR lattices where the confusions are based on acoustic sim-

ilarity of words. Speci�cally, with respect to ASR related applications, the aim is to capture the

contextual statistics, as with word2vec, and additionally also capture the acoustic word confusion

statistics. Several training con�gurations are proposed for confusion2vec model, each di�ering in

the utilization of the embedded information present in the lattice or confusion network for model-

ing the word vector space. Further, techniques like pre-training/initializations, model concatena-

tion and joint optimization are proposed and evaluated for the confusion2vec models. Appropriate

evaluation schemes are formulated for the domain speci�c application. The evaluation schemes

are inspired from the popular analogy based question test set and word similarity tasks. A new

analogy task and word similarity tasks are designed for the acoustic confusion/similarity scenario.

A detailed tabulation of results are presented for the confusion2vec model and compared to the

baseline word2vec models.

The results show that the confusion2vec can augment additional task-speci�c word confusion

information without compromising on the semantic and syntactic relationships captured by the

word2vec models. Next, detailed analysis is conducted on the confusion2vec vector space through

PCA reduced 2-dimensional plots for three independent word relations: (i) Semantic relations, (ii)

Syntactic relations, and (iii) Acoustic relations. The analysis further supports our aforementioned

experimental inferences. Few toy examples are presented towards the task of ASR error correction

to support the adequacy of the Confusion2vec over the word2vec word representations. The study

validates through various hypotheses and test results, the potential bene�ts of the confusion2vec

model.

4.13 Future Work

In future, we plan to work on improving the confusion2vec model by incorporating the sub-word

and phonemic transcription of words during training. Sub-words and character transcription

information is shown to improve the word vector representation [17, 26]. We believe the sub-words

and phoneme transcriptions of words are even more relevant to confusion2vec than characters.

In addition to the improvements expected towards the semantic and syntactic representations

(word2vec), since the sub-words and phoneme transcriptions of acoustically similar words are

similar, it should help in modeling the confusion2vec to a much greater extent.
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Apart from concentrating on improving the confusion2vec model, this work opens new possi-

ble opportunities in incorporating the confusion2vec embeddings to a whole range of full-�edged

applications such as ASR error correction, Speech translation tasks, Machine translation, Dis-

criminative language models, Optical character recognition, Image/Video scene summarization

etc.
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Word2vec

Relationships of countries-cities

Figure 4.9: 2D plot after PCA of word vector representation on baseline pre-trained
word2vec

Demonstration of Semantic Relationship on Randomly chosen pairs of Countries
and Cities

Country-City vectors are almost parallel/similar. Countries are clustered together on the bottom half
(highlighted with red hue) and the cities on upper half (highlighted with blue hue).
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Confusion2Vec (Joint training)

Relationships of countries-cities

Figure 4.10: 2D plot after PCA of word vector representation on jointly optimized
pre-trained word2vec + intra-confusion models

Demonstration of Semantic Relationship on Randomly chosen pairs of Countries
and Cities

Observe the semantic relationships are preserved as in the case of word2vec model: Country-City
vectors are almost parallel/similar. Countries are clustered together on the left half (highlighted with

red hue) and the cities on right half (highlighted with blue hue).
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Word2vec

Semantic/Syntactic illustration via PCA

Figure 4.11: 2D plot after PCA of word vector representation on baseline pre-trained
word2vec

Demonstration of Syntactic Relationship on Randomly chosen 30 pairs of
Adjective-Adverb, Opposites, Comparative, Superlative, Present-Participle,

Past-tense, Plurals
Observe the clustering of syntactically related words (Ex: highlighted with red ellipses). Few

semantically related words are highlighted with blue ellipses (Ex: animals)
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Confusion2Vec (Joint training)

Semantic/Syntactic illustration via PCASemantic/Syntactic illustration via PCA

Acoustic and 
Syntactic/

Semantic Cluster

Figure 4.12: 2D plot after PCA of word vector representation on jointly optimized
pre-trained word2vec + intra-confusion models

Demonstration of Syntactic Relationship on Randomly chosen 30 pairs of
Adjective-Adverb, Opposites, Comparative, Superlative, Present-Participle,

Past-tense, Plurals
Syntactic clustering is preserved by Confusion2Vec similar to Word2Vec. Red ellipses highlight few

examples of syntactically related words. Similar to Word2Vec, semantically related words (Ex: animals),
highlighted with blue ellipses, are also clustered together. Additionally Confusion2Vec clusters

acoustically similar words together (indicated with green ellipse).
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Word2vec

Acoustic siimilarity illustration via PCA - No obvious clustering

Figure 4.13: 2D plot after PCA of word vector representation on baseline pre-trained
word2vec

Demonstration of Vector Relationship on Randomly chosen 20 pairs of Acoustically
Similar Sounding Words

No apparent relations between acoustically similar words are evident.
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Confusion2Vec (Joint training)

Acoustic siimilarity illustration via PCA - Clear clustering

Acoustic and 
Syntactic Cluster

Figure 4.14: 2D plot after PCA of word vector representation on jointly optimized
pre-trained word2vec + intra-confusion models

Demonstration of Vector Relationship on Randomly chosen 20 pairs of Acoustically
Similar Sounding Words

Confusion2Vec clusters acoustically similar words together (highlighted with blue ellipses). Additionally,
inter-relations between syntactically related words and acoustically related words are also evident

(highlighted with green ellipse).
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Chapter 5

Spoken Language Intent Detection using Confusion2Vec

5.1 Introduction

In this chapter, we speci�cally target the task of spoken language intent detection on noisy ASR

transcripts. In contrast to the majority of the works which mostly deal with the innovation

of classi�cation models [101, 100, 58, 97], in our study, we concentrate on robust word feature

representations. We propose to employ the confusion2vec [149] word vector representation to

compensate for the errors made by an ASR and to provide enhanced and robust performance

for the task of spoken language intent detection. Confusion2vec captures acoustic similarity

information of words in addition to the semantic-syntactic relations and is trained in a completely

unsupervised manner on ASR lattices decoded on an out-of-domain corpora. Moreover, unlike

the studies which adapt the ASR to the target datasets and tasks [146, 101], we treat the ASR

as a generic independent module, but contribute towards bridging the gap between the ASR and

the NLU model. We demonstrate with our experiments, on the benchmark ATIS dataset [70], the

vital role of the confusion2vec to the robustness of the intent classi�cation.

The rest of the chapter is structured as follows. In section 5.2, we present the proposed method-

ology, provide brief description of the confusion2vec word embedding and the intent classi�cation

model. Section 5.3 describes the databases employed, our experimental setup and the baseline

systems. In section 5.4, we present and discuss the experimental results. Finally, section 5.5

concludes the study and discusses the future work.
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(a) Word2vec Space (b) Confusion2vec Space

Figure 5.1: 2D Vector space illustration after PCA dimension reduction for Word2vec and
Confusion2vec

The blue ellipses indicate syntactic word relations. The red ellipses indicate acoustic similarity relations.
The blue arrows illustrate the semantic relationships. The red arrows illustrate the interaction of acoustic

similarity with semantic relationships.
The word2vec space is rich in semantic and syntactic word relations, however no trivial acoustic similarity is

evident.
The confusion2vec space preserves the semantic and syntactic word relations, moreover captures additional

acoustic similarity information.

5.2 Proposed Technique

In this section, we �rst describe the confusion2vec word vector representation for the task of spoken

language intent detection and then introduce the recurrent neural network intent classi�cation

model.

5.2.1 Confusion2vec Word Embedding

The role of word vector representations is crucial for NLP [30]. E�cient and information rich

word embeddings like word2vec [115], glove [127] are shown to capture semantics and syntactics

of the language. Using such e�cient word representations have proven to be bene�cial in the

NLU tasks like named entity detection [153], intent detection [67]. The SLU tasks like intent

detection [82, 103, 51, 9], slot-�lling [50], spoken dialogue systems [48] have also bene�ted from

using information rich word embeddings. However, they are less than optimal in the cases of

erroneous transcriptions, for example ASR transcriptions [146, 101], since the errors corrupt the

semantic-syntactic space over local context of occurrence and thereby introduce noise in the model.
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In this work, we propose to employ recently proposed confusion2vec word vector representation

[149] for the task of intent detection to counter for errors present in the spoken transcriptions.

Motivated from human speech production and perception, the confusion2vec models the acoustic

relations of words in addition to the semantic and syntactic relationships of words [149]. The con-

fusion2vec uses unsupervised training techniques similar to skip-gram of word2vec, but operates

on lattice-like structures or confusion networks output by the ASR. Since the confusion networks

of a typical ASR exhibits confusions between words on two principle axes (i) contextual, and (ii)

acoustic similarity, the confusion2vec is devised to operate on both the axes, thereby modeling

local context information (like word2vec) as well as acoustic similarity information. Figure 5.1

illustrates the 2-dimensional word vector space for word2vec and confusion2vec after dimension

reduction using principal component analysis (PCA). From the �gure (and from extensive anal-

ysis done in [149]), it is evident that confusion2vec space captures acoustic similarity between

words without compromising the information captured by the word2vec. Complex meaningful,

useful interactions between the acoustic subspace and the semantic-syntactic subspaces are also

observed. For more information we would like to point the interested readers towards [149], which

in detail describes and analyzes the confusion2vec embedding.

In application to the spoken language intent detection task, the nature of ASR errors are often

acoustically related. Confusion2vec incorporates real, unsupervised, ASR output as its training

corpus, thus the feature representation incorporates confusions (errors) nearby in its embedding

space. In other words, we hypothesize that the embedded acoustic similarity information in

confusion2vec limits the impact of errors made by the ASR, and thus allows subsequent NLP

tasks to be minimally a�ected. We expect the following with respect to the intent detection task:

� We expect our model to be less a�ected from ASR errors and thus achieve better performance

in the case of noisy ASR transcriptions.

� We expect our model to be at-least on par with word2vec under clean conditions.

5.2.2 Intent Classi�cation Model

Since the contribution of this work is towards word feature representations, we employ a fairly

simple recurrent neural network model for the classi�cation task. However, we believe the con-

tributions on feature representations are orthogonal to the classi�cation model and thus expect

even better performance for more complex models like in [101, 100, 58, 97]. In this work, we

use Bi-directional Long Short-Term Memory (LSTM) units, as shown in Figure 5.2. Given an
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intent label

find

LSTM LSTM LSTM LSTM LSTM

Confusion2Vec Embedding

flight from phoenix to

LSTM LSTM LSTM LSTM LSTM

concat

Softmax

Linear

Figure 5.2: Intent Classi�cation RNN Model

input utterance w0, w1, ..., wT , each word in the input sequence is mapped to its word vector

representation x0, x1, ..., xT by embedding look up. We formulate the model outputs as

−→
ht =

−−−−→
LSTM(

−−→
ht−1, xt;

−→
Θ)

←−
ht =

←−−−−
LSTM(

←−−
ht+1, xt;

←−
Θ) (5.1)

P̂intent = Softmax(W [
−→
hT ,
←−
h0] + b) (5.2)

where ht is the LSTM output of each direction at each time step t, Θ is the parameter of the

LSTM. We feed the concatenation of two directional LSTM outputs at the last time step into

the linear output layer (with weights W and bias b) which projects it into the intent label space.

Finally, the intent label is predicted from the Softmax-normalized probability distribution over

all intent classes.

5.3 Database & Experimental Setup

5.3.1 Database

The ASR is trained on the Fisher English Training (LDC2004S13 and LDC2005S13) Speech

corpora [29]. The confusion2vec is trained on the output of the ASR, i.e., the confusion networks

generated via Fisher English Corpora. The database setup for the ASR and confusion2vec is

identical and explained in detail in [149].
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We trained the intent detection model on ATIS (Airline Travel Information Systems) dataset

[70], which comes with audio recordings and corresponding manual transcripts about humans

asking for �ight information. Following [65, 58], we apply the same train, development, test

split setup. The setup contains 4478, 500 and 893 intent-labeled reference utterances in train,

development and test set respectively. In order to evaluate our model's robustness to ASR outputs,

we also construct our ASR output set by decoding the corresponding audio recording for each of

the data splits using the ASR. In cases where an utterance is labeled with multiple intent labels,

the top intent was selected as the true label, yielding 18 intents in total.

5.3.2 Experimental Setup

The training setup for the ASR and the confusion2vec is identical to our previous work [149].

For decoding the ATIS dataset, through our ASR, the audio samples were down-sampled from

16kHz to 8kHz. The ASR achieves a WER rate of 18.54% on the ATIS test set. We choose the

confusion2vec model yielding the best performance in [149], i.e., independently trained C2V-1

and C2V-c models are concatenated and jointly optimized with intra-Confusion2vec scheme (556

dimensions).

For intent detection, we train models on the 4478 utterances in training set, and tune hyper-

parameters based on the classi�cation accuracy on the 500 reference utterances in development

set. The model with the best performance on the development set is chosen and evaluated on

both reference test set and ASR test set. The hyper-parameter space we experimented with is

as follows: Batch size is set to 1, i.e. each sentence is viewed as an independent sample. Hidden

dimension of LSTM unit is tuned over {256, 128, 64, 32}, and dropout is tuned over {0.1, 0.2, 0.25}.

We select Adam optimizer, with learning rate set to be among {0.001, 0.0005}. The maximum

number of epochs is set to 50 with early-stopping strategy.

5.3.3 Baseline Systems

The �rst set of baselines compare di�erent conventional word embeddings. They include: (i)

random initialization (556 dimensions) sampled from a uniform distribution, (ii) vanilla GloVe1

(300 dimensions) as in [127], and (iii) skip-gram Word2Vec2 (556 dimensions) �ne-tuned on Fisher

English corpus reference transcripts (for fair comparison with confusion2vec). We also tried the

vanilla Google word2vec2. However, the performance was found to be consistently lower than the

1https://nlp.stanford.edu/projects/glove/
2https://code.google.com/archive/p/word2vec
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�ne-tuned version, thus, we don't include it in the comparisons. Note, only the randomly initial-

ized word embedding is trainable, while all other embeddings are �xed throughout the training.

All the above baselines use identical RNN architecture for intent classi�cation as described in

section 5.2.2.

The second set of baselines compare our proposed model with the recent state-of-the-art mod-

els, including: (i) a joint intent detection, slot �lling & LM model [101], (ii) an attention-based

joint model that incorporates alignment information provided by slot �lling task [100], and (iii)

an intent-augmented gating mechanism based model which further incorporates character-level

embedding along with word-level embedding [97]. The baselines are trained under our experiment

setup using the same hyper-parameters reported in their original papers. We also reproduce the

result of each model under their original experiment settings3, and report the obtained scores in

parentheses for reference. For the adapted model trained on ASR, we consider a joint intent slot

�lling and intent detection model which performs sentence reconstruction from ASR hypotheses

[146] as the baseline, and report the scores on ASR outputs and corresponding ASR WER from

original paper.

5.4 Results and Discussion

5.4.1 Training on Reference Clean Transcripts

Table 5.1 and Figure 5.3 illustrate the results obtained training on clean transcripts. First, we

compare the results between di�erent word feature embedding (refer to upper half of Table 5.1).

On clean reference transcripts, GloVe embeddings provides the best performance (as found in

[51]). Both word2vec and random initialization provide identical results. The proposed confu-

sion2vec gives considerably lower CER compared to the Word2Vec and random initialization.

Although GloVe outperforms confusion2vec, we believe the comparison of confusion2vec is more

fair with that of word2vec, since both use skip-gram modeling. With the proposed Confusion2vec

system, we don't expect improvements on clean reference transcripts, since the acoustic simi-

larity/confusion is less relevant. As expected, we observe no degradation in performance with

confusion2vec and is on par with the popular, leading word vector representations for the task of

intent detection on clean transcriptions.

On noisy ASR transcripts, we see an increase in CER with all models. Although, random ini-

tialization performed identical to Word2Vec on clean transcriptions, we see Word2Vec performs

relatively better on ASR transcriptions. This observation con�rms that better word feature repre-

sentations exhibit higher robustness to errors. Similar trend is apparent with GloVe embeddings in
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Model Reference ASR ∆di�

Random 2.69 10.75 8.06
GloVe [127] 1.90 8.17 6.27

Word2Vec [115] 2.69 8.06 6.16
C2V (proposed) 2.46 6.38 3.92

Liu and Lane [101] 1.90 (1.57) 9.41 (8.29)4 7.51 (6.72)
Liu and Lane [100] 1.79 (1.90) 8.06 (8.40) 6.27 (6.50)

Li et al. [97] 2.02 (1.34) 9.18 (9.07) 7.16 (7.73)

Table 5.1: Results with Training on Reference: Classi�cation Error Rates (CER) for Reference
and ASR Transcripts.

∆di� is the absolute degradation of model from clean to ASR.
The numbers inside parenthesis indicate CER obtained reproducing the result of each model under their original

experiment settings3.

comparison with random initialization, although we observe slightly higher CER and degradation

(between clean and noisy transcripts) compared to word2vec. The proposed confusion2vec gives

the least CER among all the models (a relative improvement of 20.84% over word2vec, 21.9% over

GloVe and 40.65% over random initialization). Moreover, C2V displays higher robustness going

from clean to noisy ASR transcriptions (degradation, ∆di�, is minimal). A relative improvement

in robustness of 37.48%, 36.36% and 51.36% compared to GloVe, Word2vec and random initial-

ization respectively is observed with C2V (in terms of ∆di�). The confusion2vec word feature

representation is able to use the embedded acoustic similarity information to recover from errors

resulting from acoustically confusable words in the ASR output transcriptions.

Further, we compare our proposed system with the recent state-of-the-art works on SLU (see

bottom part of Table 5.1). Note, the recent works employ much more complex modeling techniques

compared to ours. Thus, as expected the recent works outperform our simple RNN architecture

testing on clean transcriptions. However, on noisy ASR transcriptions, even with a much simpler

model, the proposed confusion2vec achieves signi�cantly lower CER (a relative improvement of

at-least 20.84%) compared to state-of-the-art models. Moreover, again, the degradation with

confusion2vec is the least among all the models, a relative 37.48% lesser degradation compared to

the recent works. The results highlight the potent robustness of the confusion2vec word feature

representation. In addition, we believe that the gains from the complex classi�cation modeling

are orthogonal to gains from confusion2vec word feature representations and thus should result

in additional gains incorporating more complex models with confusion2vec.

3Original settings of [101, 100, 97], make use of train + dev data for training. They pre-process data by
substituting the digits with a token.
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Model WER % CER %

Random 18.54 5.15
GloVe [127] 18.54 6.94

Word2Vec [115] 18.54 5.49
C2V (proposed) 18.54 4.70

Schumann and Angkititrakul [146] 10.55 5.044

Table 5.2: Results with Training and Testing on ASR transcripts.

5.4.2 Training on ASR

Further, we also perform additional experiments by training the intent classi�cation models on

noisy ASR transcripts. A more robust feature representation should theoretically help in reducing

the noise in the model translating to better performance. From Table 5.2, it is evident that all the

models improve with the matched noisy train and test conditions. The proposed confusion2vec

2.69

10.75

8.06

5.15

1.9

8.17

6.27
6.94

2.69

8.06

5.37 5.49

1.9

9.41

7.51

1.79

8.06

6.27

2.02

9.18

7.16

2.46

6.38

3.92
4.75.04

Cl
as

si
fic

at
io

n 
Er

ro
r R

at
e

0

2

4

6

8

10

12

Train: Reference / Test: Reference Train: Reference / Test: ASR Train: Reference / Degradation Train: ASR / Test: ASR

Random Init. Glove Word2Vec Liu and Lane 2016 [8] Liu and Lane 2016 [10] Li et. al 2018 C2V (Proposed) Schumman et.al 2018

Figure 5.3: Comparison of CER for di�erent systems

based model gives the least CER among all the models. The confusion2vec feature representation

is better able to explain the (acoustic) errors and doing so reduces confusion and noise in the intent

classi�cation model, thereby resulting in a better and robust performance. Moreover, comparing it

with the recent study by Schumann and Angkititrakul [146], although the results are not directly

comparable due to di�erences in the WER of the ASRs, our proposed method achieves a lower

CER in-spite of much worse WER conditions4. This suggests that explicitly modeling in-domain

ASR errors as in [146] is of lesser e�ect compared to modeling the general acoustic signatures

between words in a language as in the case with confusion2vec.

4We don't domain-constrain, optimize or rescore our ASR, as in [146, 101]. We treat ASR as an independent
module for fair comparison with other models and for domain-generalization and portability of our system and
conclusions.
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Finally, comparing the results from Table 5.1 and Table 5.2, it is encouraging to see that the

proposed confusion2vec model trained on clean transcripts is able to inherit enough robustness to

achieve lower CER (than GloVe) and comparable CER to the models (word2vec) trained on ASR

output, possibly reducing the need for adaptation on ASR and allowing for more generalizable

systems.

5.5 Conclusion and Future Work

In this paper, we proposed an intent detection model based on confusion2vec word vector rep-

resentation targeting noisy ASR transcriptions. The proposed word embeddings signi�cantly

outperform the popular leading word vector representations like word2vec and GloVe in the cases

of noisy ASR output. Comparisons are made with various recent state-of-the-art studies, and

we �nd the proposed method improves over them by a considerable margin despite using rela-

tively simple RNN architectures for classi�cation. The robustness of confusion2vec also extends

to models trained on noisy ASR, achieving the least CER among the conventional word embed-

ding as well as the recent studies. Encouraging results suggest confusion2vec robustness to errors

eliminates the need for adapting the intent classi�cation models on noisy ASR outputs.

In future, we plan to apply and evaluate the proposed confusion2vec on additional SLU tasks

like slot-�lling, domain classi�cation and named entity recognition. We believe the proposed

model should provide similar advantages, especially under noisy conditions. Addressing multiple

SLU tasks also allows us to use more complex joint-modelling systems with confusion2vec. The

better, more complex, models should provide improvements orthogonal to confusion2vec feature

representations, and we thus expect to see further improvements. We also plan to conduct more in-

depth analysis on how the signal conditions and ASR performance a�ect each model; we expect

confusion2vec to provide more gains as the ASR performance deteriorates. Representation of

multiple path outputs from the ASR with confusion2vec instead of only the best path is also a

possible future direction.
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Chapter 6

Confusion2Vec 2.0: Enriching Ambiguity Representations

with Subwords

6.1 Introduction

Decoding human language is a core component for spoken language understanding. Although

it comes very naturally to humans, it is a challenging task for machines. Human language is

a complex construct involving multiple dimensions of information involving semantics, syntax

and often contain ambiguities which make it di�cult for machine inference. Several word vector

representations have been proposed for e�ectively describing the human language in the natural

language processing community. The neural networks have been proven to be an e�ective tool

for estimation of such encoding. Contextual modeling techniques like language modeling, i.e.,

predicting the next word in the sentence given a window of preceding context have been shown

to model meaningful word representations [11, 112]. Bag-of-word based contextual modeling,

where the current word is predicted given both its left and right (local) contexts has shown to

capture language semantics and syntax [113]. Similarly, predicting local context from the current

word, referred to as skip-gram modeling, is shown to better represent semantic and syntactic

distances between words [115]. In [127] log bi-linear models combining global word co-occurrence

information and local context information, termed as global vectors (GloVe), is shown to produce

meaningful structured vector space. Bi-directional language models is proposed in [128], where

internal states of deep neural networks are combined to model complex characteristics of word use

and its variance over linguistic contexts. The advantages of bi-directional modeling are further

exploited along with self-attention using transformer networks [173] to estimate a representation,

termed as BERT (Bidirectional Encoder Representations from Transformers), that has proved

its e�cacy on a multitude of natural language understanding tasks [38]. Models such as BERT,
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ELMo estimate word representations that vary depending on the context, whereas the context-

free representations including GloVe and Word2Vec generate a single representation irrespective

of the context.

However, most of the word vector representations infer the knowledge through contextual

modeling and many of the ambiguities present in human language is often unrecognized or ignored.

For instance, from the perspective of spoken language, the ambiguities can be associated with how

similar the words sound, i.e., for example, the words �see� and �sea� sound acoustically identical

but have di�erent meanings. The ambiguities can also be associated with the underlying speech

signal itself due to wide range of acoustic environments involving noise, overlapped speech and

channel, room characteristics. These ambiguities often project themselves as errors through ASR

systems. Most of the existing word vector representations such as word2vec [115, 113], fasttext

[17], GloVe [127], BERT [38], ELMo [128] don't account for the ambiguities present in speech

signals and thus degrade while processing on top of ASR transcripts.

Confusion2vec was recently proposed to handle ambiguity information present in human lan-

guage from the aspects of human speech production and perception [148]. Application to domain

of speech and acoustics, confusion2vec is estimated by unsupervised skip-gram training on the ASR

output lattices and confusion networks. The analysis of inherent acoustic ambiguity information

of the embeddings displayed meaningful interactions between the semantic-syntactic subspace and

acoustic similarity subspaces. In [152], the e�cacy of the confusion2vec is con�rmed on the task

of spoken language intent detection. The confusion2vec signi�cantly outperformed typical word

embeddings including word2vec, GloVe when evaluated on top of ASR transcripts by reducing

the classi�cation error rate by approximately 20% relative.

Although, there have been few attempts in leveraging information present in word lattices

and word confusion networks for several tasks [166, 91, 169, 179, 157, 75], the main downside

with these works is that the word representation estimated by such techniques are task dependent

and are restricted to a particular domain and dataset. Moreover, availability of most of the task

speci�c datasets are limited and task speci�c speech data is expensive to collect. The advantage

with the Confusion2Vec is that it estimates a task independent word vector representations by

unsupervised learning on lattices or confusion networks generated by an ASR on random speech

conversations.

In this chapter, we incorporate subwords to represent each word for modeling both the acoustic

ambiguity information and the contextual information. Each word is modeled as a sum of con-

stituent n-gram characters. Our motivation behind the use of subwords are the following: (i) it

incorporates morphological information of the words by encoding internal structure of words [17],
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Figure 6.1: Example Confusion Network Output by ASR

(ii) the bag of character n-grams often have a high overlap between acoustically ambiguous words,

(iii) subwords help model under-represented words more e�ciently, thereby leading to more robust

estimation with limited available data, which is the case since training Confusion2Vec is restricted

to ASR lattice outputs, (iv) subwords enable representations for out-of-vocabulary words which

are common-place with end-to-end ASR systems outputting characters.

The rest of the chapter is organized as follows: Confusion2vec is reviewed in Section 6.2. The

proposed subword modeling is presented in Section 6.3. Section 6.4 gives details of the datasets

employed, the experimentation setup and the evaluation methodology. The results are presented

in section 6.5. Section 6.6 demonstrates the e�cacy of the proposed word embedding model to

the application of spoken language intent detection task. Finally, the chapter is concluded in

section 6.7 and future work discussed in section 6.8.

6.2 Confusion2Vec

In the �eld of psycho-acoustics, it is established that humans also relate words with how they

sound [6] in addition to semantics and syntax. Inspired by psycho-acoustics, human speech and

perception, we previously proposed confusion2vec [148]. The core idea is to estimate a hyper-

space that not only captures the semantics and syntax of human language, but also augments the

vector space with acoustic ambiguity information, i.e., word acoustic similarity information. In

other words, word2vec, GloVe can be viewed as a subspace of the confusion2vec vector space.

Several di�erent methodologies are proposed for capturing the ambiguity information. The

methodologies are an adaptation of the skip-gram modeling for word confusion networks or lattice-

like structures. The word lattices are directed acyclic weighted graphs of all the word sequences

that are likely possible. A confusion network is a speci�c type of lattice with constraints that each

word sequence passes through each node of graph. Such lattice-like structures can be derived from

machine learning algorithms that output probability measures, for example, an ASR. Figure 6.1,
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illustrates a confusion network that can possibly result from a speech recognition system. Unlike

typical sentences, which are used for training word embeddings like word2vec, GloVe, BERT,

ELMo etc., the information in the confusion network can be viewed along two dimensions: (i)

contextual dimension, and (ii) acoustic ambiguity dimension.

More speci�cally, 4 con�guration of skip-gram modeling algorithms are proposed in our recent

work [148], namely: (i) top-confusion, (ii) intra-confusion, (iii) inter-confusion, and (iv) hybrid

model. The top-confusion version considers only the most-probable path of the ASR confusion

network and applies the typical skip-gram model on it. The intra-confusion version applies the

skip-gram modeling on the acoustic ambiguity dimension of the confusion network and ignores

the contextual information, i.e., each ambiguous word alternative is predicted by the other over

a pre-de�ned local context. The inter-confusion version applies the skip-gram modeling on the

contextual dimension but over each of the acoustic ambiguous words. The hybrid model is a

combination of both the intra and inter-confusion con�gurations. More information on the training

con�guration is available in [148].

6.3 Confusion2Vec 2.0 subword model

Subword encoding of words have been popular in modeling semantics and syntax of language

using word vector representations [17, 38, 128]. The use of subwords are mainly motivated by the

fact that the subwords incorporate morphological information which can be helpful, for example,

in relating the pre�xes, su�xes and the word root. In this work, we apply subword representation

for encoding the word ambiguity information in the human language. We believe we have a much

stronger case for the use of subwords for representing the acoustic similarities (ambiguities) be-

tween the words in the language since more similarly sounding words often have highly overlapping

subword representations. This helps model ascertain the level of overlap and in doing so estimate

the magnitude of acoustic similarity robustly. Moreover, use of subword should help in e�cient

encoding of under-represented words in the language. This is crucial in the case of confusion2vec

because we are restricted to ASR lattices for training data limiting word-word co-occurrence in

contrast to typical word vector representation which can be trained on large amounts of easily

available plain text data. Another important aspect is the ability to represent out-of-vocabulary

words which are common place occurrence with end-to-end ASR systems outputting character

sequences.
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In the proposed model, each word w is represented as a sum of its constituent n-gram character

subwords. This enables the model to infer the internal structure of each word. For example, a

word �want� is represented with the vector sum of the following subwords:

<wa, wan, ant, nt>, <wan, want, ant>, <want, want>, <want>

Symbols < and > are used to represent the beginning and end of the word. The n-grams are

generated for n=3 upto n=6. It is apparent that an acoustically ambiguous, similar sounding

word �wand� has a high degree of overlap with the set of n-gram characters.

In this chapter, we consider two modeling variations: (i) inter-confusion, and (ii) intra-

confusion versions of confusion2vec with the subword encoding.

6.3.1 Intra-Confusion Model

The goal of the intra-confusion model is to estimate the inter-word relations between the acousti-

cally ambiguous words that appear in the ASR lattices. For this, we perform skip-gram modeling

over the acoustic similarity dimension (see Figure 6.1) and ignore the contextual dimension of the

utterance. The objective of the intra-confusion model is to maximize the following log-likelihood:

T∑
t=1

∑
â∈Ât

∑
a∈At

log p(wt,a|wt,â) (6.1)

where T is the length of the utterance (confusion network) in terms of number of words, wi,j is

the word in the confusion network output by the ASR at time-step i and j is the index of the word

among the ambiguous alternatives. Ât is the set of indices of all ambiguous words at time-step

t, â is the index of the current word along the acoustic ambiguity dimension, At ⊆ Ât − â is the

subset of ambiguous words barring â at the current word t, i.e., for example from Figure 6.1, for

the current word, wt,â, �want�, At ⊆ {wand, won't, what}. Additionally, for subword encoding,

each word input is represented as:

wi,j =
∑
s∈Sw

xs (6.2)

where Sw is the set of all character n-grams ranging from n=3 to n=6 and the word itself and xs

is the vector representation for n-gram subword s. Few training samples (input, target) generated

for this con�guration pertaining to input confusion network in Figure 6.1 are (I, eye), (eye, I),

(want, wand), (want, won't), (won't, what), (wand, what) etc.
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6.3.2 Inter-Confusion Model

The aim of the inter-confusion model is to jointly model the contextual co-occurrence information

and the acoustic ambiguity co-occurrence information along both the axis depicted in the confusion

network. Here, the skip-gram modeling is performed over time context and over all the possible

acoustic ambiguities. The objective of the inter-confusion model is to maximize the following

log-likelihood:
T∑

t=1

∑
â∈Ât

∑
c∈Ct

∑
a∈Ac

log p(wc,a|wt,â) (6.3)

where Ct corresponds to set of indices of nodes of confusion network, i.e., words around the cur-

rent word t along the time-axis and c is the current context index. Ac is the set of indices of

acoustically ambiguous words at a context c. For example, for the current word, wt,â, �want� in

Figure 6.1, Ac ⊆ {I, eye, two, tees, to, seat, sit, seed, eat} and At ⊆ {wand, won't, what,

want}. Note, each word input is subword encoded as in equation 6.2. Few training samples (input,

target) generated for this con�guration are (want, I), (want, eye), (want, two), (want, to),

(want, tees), (what, I), (what, eye), (what, to), (what, tees), (what, two), (won't, eye) etc.

6.3.3 Training Loss and Objective

Negative sampling is employed for training the embedding model. Negative sampling was �rst in-

troduced for training word2vec representation [115]. It is a simpli�cation of the Noise Contrastive

Estimation objective [62]. The negative sampling for training the embedding can be posed as a

set of binary classi�cation problems which operates on two classes: presence of signal or absence

(noise). In the context of word embeddings the presence of the context words are treated as

positive class and the negative class is randomly sampled from the unigram distribution of the

vocabulary. The negative sampling for subword model can be expressed using binary logistic loss

as:

log σ(
∑

s∈Swi

xTs owt
) +

K∑
k=1

Ewk∼Pn(w)log σ(−
∑

s∈Swi

xTs owk
) (6.4)

where σ(x) = 1
1+e−x , wi is the input word, wt is the output word, Swi

is the set of n-gram character

subwords for the word wi, xs is the vector representation for the character n-gram subword s and

owt
is the output vector representation of target word wt. K is the number of negative samples

to be drawn from the negative sample, noise distribution Pn(w). The noise distribution Pn(w)

is chosen to be the unigram distribution of words in the vocabulary raised to the 3/4th power

86



as suggested in [115]. Note, for confusion2vec the input word wi and target word wt are derived

according to equations 6.1 and 6.3 for implementing the respective training con�gurations

6.4 Data and Experimental Setup

6.4.1 Database

Fisher English Training Part 1, Speech (LDC2004S13) and Fisher English Training Part 2, Speech

(LDC2005S13) corpora [29] are used for both training the ASR and the confusion2vec 2.0 em-

beddings. The choice of database is based on [148] for direct comparison purposes. The corpus

consists of spontaneous telephonic conversations between 11,972 native English speakers. The

speech data amounts to approximately 1,915 hours sampled at 8 kHz. The corpus is divided into

3 parts for training (1,905 hours, 1,871,731 utterances), development (5 hours, 5000 utterances)

and test (5 hours, 5000 utterances). Overall, the transcripts contain approximately 20.8 million

word tokens and vocabulary size of 42,150.

6.4.2 Experimental Setup

The experimental setup is maintained identical to [148] for direct comparison. Brief detail of the

setup is as follows:

6.4.2.1 Automatic speech recognition

A hybrid HMM-DNN based acoustic model is trained on the train subset of the speech corpus using

the KALDI speech recognition toolkit [130]. 40 dimensional mel frequency cepstral coe�cients

(MFCC) features are extracted along with the i-vector features for training the acoustic model.

The i-vector features are used to provide speaker and channel characteristics to aid acoustic

modeling. The acoustic model, DNN, comprises of 7 layers with P-norm non-linearity (p=2)

each with 350 units [190]. The DNN is trained using 5 MFCC frame splices with left and right

context of 2 to classify among 7979 Gaussian mixtures with stochastic gradient descent optimizer.

CMU pronunciation dictionary [175] is utilized as the word-pronunciation transcription lexicon.

Tri-gram language model is trained on the training subset of the Fisher English Speech Corpus.

The ASR yields word error rates (WER) of 16.57% and 18.12% on the development and the test

datasets. Lattices are derived during the ASR decoding with a decoding beam size of 11 and

lattice beam size of 6. The lattices are converted to confusion networks with the minimum Bayes

risk criterion [182] for training the confusion2vec embeddings. The resulting confusion networks
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have a vocabulary size of 41,274 and 69.5 million words, with an average of 3.34 alternative

(ambiguous) words for each edge in the graph.

6.4.2.2 Confusion2Vec 2.0

In order to train the embedding, most frequent words are sub-sampled as suggested in [115], with

the rejection threshold set to 10−4. Also, a minimum frequency threshold of 5 is set and the rarely

occurring words are pruned from the vocabulary. The context window size for both the acoustic

ambiguity and contextual dimensions are uniformly sampled between 1 and 5. The dimension of

the word vectors are set to 300. The number of negative samples for negative sampling is chosen

to be 64. The learning rate is set to 0.01 and trained for a total of 15 epochs using stochastic

gradient descent. All the hyper-parameters are empirically chosen for optimal performance. We

implemented the confusion2vec 2.0 by modifying the source code from fastText1 [17]. We make

our source code and trained models available.

6.4.3 Evaluation Metrics

For evaluating the inherent semantic and syntactic knowledge of the word embeddings, we employ

two tasks: (i) semantic-syntactic analogy task, and (ii) word similarity task. The word analogy

task was �rst proposed in [113] which comprises of word pair analogy questions of the form W1

is to W2 as W3 is to W4. The analogy is answered correct if vec(W1) − vec(W2) + vec(W3) is

most similar to vec(W4). Another prominent approach is the word similarity task, where rank-

correlation between cosine similarity of set of pair of word vectors and human annotated word

similarity scores are assessed [143]. For word similarity task, we use the WordSim-353 database

[49] consisting of 353 pairs of words annotated over a score of 1 to 10 depending on the magnitude

of word similarity as perceived by humans.

For assessing the word acoustic ambiguity (similarity) information, we conduct the acoustic

analogy task, Semantic&syntactic�acoustic analogy task and Acoustic similarity tasks proposed

in [148]. Acoustic analogy task comprises of word pair analogies compiled using homophones

which answer questions of the form: W1 sounds similar to W2 as W3 sounds similar to W4.

The acoustic analogy task is designed to assess the ambiguity information embedded in the word

vector space [148]. The semantic&syntactic-acoustic analogy task is designed to assess both

semantic, syntactic and acoustic ambiguity information simultaneously. The analogies are formed

by replacing certain words by their homophone alternatives in the original semantic and syntactic

analogy task [148]. The acoustic word similarity task is analogous to the word similarity task,

1https://github.com/facebookresearch/fastText
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Model
Analogy Tasks Similarity Tasks

S&S Acoustic S&S-Acoustic Average Accuracy Word Similarity Acoustic Similarity

Google W2V [115] 61.42% 0.9% 16.99% 26.44% 0.6893 -0.3489
In-domain W2V 59.17% 0.6% 8.15% 22.64% 0.4417 -0.4377
fastText [17] 75.93% 0.46% 17.40% 31.26% 0.7361 -0.3659

Confusion2Vec 1.0
(word) [148]

C2V-a 63.97% 16.92% 43.34% 41.41% 0.5228 0.6200
C2V-c 65.45% 27.33% 38.29% 43.69% 0.5798 0.5825

Confusion2Vec 2.0 C2V-a 56.74% 50.79% 44.67% 50.73% 0.3181 0.8108
(subword) C2V-c 56.87% 51.00% 44.98% 50.95% 0.2893 0.8106

Table 6.1: Results: Di�erent proposed models
C2V-a: Intra-Confusion, C2V-c: Inter-Confusion, S&S: Semantic & Syntactic Analogy.

For the analogy tasks: the accuracies of baseline word2vec models are for top-1 evaluations, whereas of
the other models are for top-2 evaluations (as discussed in [148]). For the similarity tasks: all the

correlations (Spearman's) are statistically signi�cant with p < 0.001.

i.e., it contains of word pairs which are rated on their acoustic similarity based on the normalized

phone edit distances. A value of 1.0 refers to two words sounding identical and 0.0 refers to the

word pairs being acoustically dissimilar. More details regarding the evaluation methodologies are

available in [148]. The evaluation datasets are made available.

6.5 Results

Table 6.1 lists the results in terms of accuracies for analogy tasks and rank-correlations for sim-

ilarity tasks. The �rst two rows correspond to results with the original word2vec. Google W2V

model is the open source model released by Google2, trained on 100 billion word Google News

dataset. We also train an in-domain version of original word2vec on the Fisher English corpus for

fair comparison with the confusion2vec models, referred to as �In-domain W2V� in Table 6.1. The

fastText model employed is the open source model trained on Wikipedia dumps with a vocabulary

size of more than 2.5 million words released by Facebook3. The middle two rows of the table cor-

respond to confusion2vec embeddings without subword encoding and they are taken directly from

[148]. The bottom two rows correspond to the results obtained with subword encoding. Note, the

confusion2vec 1.0 is initialized on the Google word2vec model for better convergence. The con-

fusion2vec 2.0 model is initialized on the fastText model to maintain compatibility with subword

encodings. We normalize the vocabulary for all the experiments, meaning the same vocabulary is

used to evaluate the analogy and similarity tasks to allow for fair comparisons.

Comparing the baseline word2vec and fastText embeddings to the confusion2vec, we observe

the baseline embeddings perform well on the semantic&syntactic analogy task and provide good

2https://code.google.com/archive/p/word2vec/
3https://fasttext.cc/docs/en/pretrained-vectors.html
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Model
Analogy Tasks Similarity Tasks

S&S Acoustic S&S-Acoustic Average Accuracy Word Similarity Acoustic Similarity

Google W2V [115] 61.42% 0.9% 16.99% 26.44% 0.6893 -0.3489
In-domain W2V 59.17% 0.6% 8.15% 22.64% 0.4417 -0.4377
fastText [17] 75.93% 0.46% 17.40% 31.26% 0.7361 -0.3659

Confusion2Vec 1.0
(word) [148]

C2V-1 + C2V-a 67.03% 25.43% 40.36% 44.27% 0.5102 0.7231
C2V-1 + C2V-c 70.84% 35.25% 35.18% 47.09% 0.5609 0.6345

C2V-1 + C2V-c (JT) 65.88% 49.4% 41.51% 52.26% 0.5379 0.7717

Confusion2Vec 2.0 fastText + C2V-a 76.10% 22.67% 49.15% 49.31% 0.5744 0.7577
(subword) fastText + C2V-c 76.16% 22.56% 49.12% 49.12% 0.5732 0.7573

Table 6.2: Results: Di�erent proposed models
C2V-a: Intra-Confusion, C2V-c: Inter-Confusion, S&S: Semantic & Syntactic Analogy.

For the analogy tasks: the accuracies of baseline word2vec models are for top-1 evaluations, whereas of
the other models are for top-2 evaluations (as discussed in [148]). For the similarity tasks: all the

correlations (Spearman's) are statistically signi�cant with p < 0.001.

positive correlation on the word similarity task as expected. However, they perform poorly on

the acoustic analogy task, semantic&syntactic-acoustic analogy task and give small negative cor-

relation on the acoustic analogy task. All the confusion2vec models perform relatively good on

semantic&syntactic analogy task and word similarity task, but more importantly give high accu-

racies on acoustic analogy task and semantic&syntactic-acoustic analogy tasks and provide high

positive correlation with the acoustic similarity task.

Speci�cally with Confusion2Vec 2.0, among the analogy tasks, we observe the subword en-

coding enhances the acoustic ambiguity modeling. For the acoustic analogy task we �nd rel-

ative improvement of upto 46.41% over its non-subword counterpart. Moreover, even for the

semantic&syntactic-acoustic analogy task, we observe improvements with subword encoding.

However, we �nd a small reduction in performance for the original semantic and syntactic analogy

task. Regardless of the small dip in the performance, the accuracies remain acceptable in com-

parison to the in-domain word2vec model. Overall, taking the average accuracy of all the analogy

tasks, we obtain an increase of approximately 16.62% relative over the non-subword confusion2vec

models.

Investigating the results for the similarity tasks, we �nd signi�cant and high correlation of 0.81

for acoustic similarity task with the subword encoding. Again, a small degradation is observed

with the word similarity task obtaining a correlation of 0.3181 against the 0.4417 of the in-domain

baseline word2vec model. Overall, the results of the analogy and the similarity tasks suggest the

subword encoding greatly enhances the ambiguity modeling of confusion2vec.
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6.5.1 Model Concatenation

Further, the confusion2vec model can be concatenated with the other word embedding models

to produce a new word vector space that can result in better representations as seen in [148].

Table 6.2 lists the results of the concatenated models. For the previous, non-subword version of

the confusion2vec, the vector models are concatenated with the word2vec model trained on the

ASR output transcripts (C2V-1). The choice of using the C2V-1 instead of the Google W2V for

concatenation was based on empirical �ndings. Where as to maintain compatibility of subword

encoding, the confusion2vec 2.0 models are concatenated with fastText models.

First, comparisons between the non-concatenated versions in Table 6.1 and the concatenated

version in Table 6.2, of the non-subword models, we observe a decent improvement of approxi-

mately 7.22% relative in average analogy accuracy after concatenation. We don't observe signif-

icant improvement with subword based models after concatenation in terms of average analogy

accuracy. However, we observe di�erent dynamics between the acoustic ambiguity and the seman-

tic and syntactic subspaces. Concatenation results in improved semantic and syntactic evaluations

with the expense of drop in accuracies of acoustic analogy task. We also note improvements (9.27%

relative) in semantic&syntactic-acoustic analogy task after concatenation con�rming meaningful

existence of both ambiguity and semantic-syntactic relations. Moreover, the word similarity task

also yields better correlation after concatenation.

Next, comparisons of the confusion2vec 1.0 (non-subword) and the subword version, we ob-

serve signi�cant improvements in semantic&symantic analogy task (7.51% relative) as well as

the semantic&syntactic-acoustic analogy tasks (21.78% relative). Moreover, the subword models

outperform the non-subword version in both of the similarity tasks. The subword models slightly

under-perform in the acoustic analogy task, but more crucially outperform the Google W2V and

FastText baselines signi�cantly.

Further, the concatenated models can be �ne-tuned and optimized to exploit additional gains

as found in [148]. The row corresponding to Confusion2Vec 1.0 - C2V + C2V-c (JT) is the

best result obtained in [148] which involves 2-passes. The Confusion2Vec 2.0 with the subword

modeling with a single pass training gives comparable performance to the 2-pass approach. Thus

we skip the 2-pass approach with the subword model in favor of ease of training and reproducibility.
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6.6 Spoken Language Intent Detection with Confusion2Vec

2.0

In this section, we apply the proposed word vector embedding to the task of spoken language intent

detection to assess the practicality in application to real word scenarios. Spoken language intent

detection is the process of decoding the speaker's intent in contexts involving voice commands,

call routing and any human computer interactions. Most of the spoken language technologies

comprises of an ASR to convert the speech signal to text. This process introduces errors into the

pipeline via ASR conditioned on the varying speaker and noise environments. However, popular

approaches to spoken intent detection in the natural language processing community assume clean

text as input to the intent classi�cation systems. The erroneous ASR outputs result in degradation

of the intent detection classi�cation process. Few e�orts have focused on handling the errors of

the ASR to make the subsequent intent detection process more robust to errors. These e�orts

often involve training the intent classi�cation systems on noisy ASR transcripts. The downsides

of training the intent classi�ers on the ASR is that the systems are limited with the amount

of speech data available. Moreover, varying speech signal conditions and use of di�erent ASR

models make such classi�ers non-optimal and less practical. In many scenarios, speech data is not

available to enable adaptation on ASR transcripts.

In our previous work [152], we applied the non-subword version of the confusion2vec to the

task of spoken language intent detection. We demonstrated the confusion2vec is able to perform

as e�ciently as the popular word embeddings like word2vec and GloVe on clean manual tran-

scripts giving comparable classi�cation error rates. More importantly, we were able to illustrate

the robustness of the confusion2vec embeddings when evaluated on the noisy ASR transcripts.

The confusion2vec gives signi�cantly better accuracies (upto relative 20% improvements) when

evaluated on ASR transcripts compared to the word2vec, GloVe embeddings and state-of-the-art

models involving more complex neural network intent classi�cation architectures. Moreover, we

also illustrated the confusion2vec undergoes the least degradation between the clean and ASR

transcripts. We also found that the confusion2vec consistently provides the least classi�cation

error rates even when the intent classi�er is trained on ASR transcripts. The experiments in-

dicated that the di�erence in accuracies between training the intent classi�er on clean versus

the ASR transcripts is reduced to 0.89% from 2.57% absolute. Overall, the results illustrate the

confusion2vec has inherent knowledge of the acoustic ambiguity (similarity) word relations which

correlates with the ASR errors using which the classi�er is able to recover from certain errors

more e�ciently.
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In this chapter, we incorporate the confusion2vec 2.0 embeddings with inherent knowledge

of acoustic ambiguity to allow robust intent classi�cation. The enhanced e�ects of the subword

modeling in capturing acoustic ambiguity, veri�ed by the previous evaluations, we believe the

proposed model could further improve the spoken utterance classi�cation. In doing so, we aim to

eliminate the need for re-training the classi�ers on the ASR outputs.

6.6.1 Intent classi�cation

For intent classi�cation we adopt a simple RNN architecture identical to [152] for direct compar-

ison. The architecture of the neural network is intentionally kept simple for e�ective inference of

the e�cacy of the proposed embedding word features. The classi�er comprises of an embedding

layer followed by a single layer of bi-directional recurrent neural network (RNN) with long short-

term memory (LSTM) units which is followed by a linear dense layer with softmax function to

output a probability distribution across all the intent categories. The embedding layer is �xed

throughout the training except for the randomly initialized embeddings where the embedding is

estimated on the in-domain data speci�c to the task of intent detection.

6.6.2 Database and Experimental Setup

6.6.2.1 Database

We conduct experiments on the Airline Travel Information Systems (ATIS) benchmark dataset

[70]. The dataset comprises of humans making �ight related inquiries with an automated answer-

ing machine with audio recorded and its transcripts manually annotated. ATIS consists of 18

intent categories. The dataset is divided into train (4478 samples), development (500 samples)

and test (893 samples) consistent with previous works [152, 65, 58]. For ASR evaluations, the

audio recordings are down-sampled from 16kHz to 8kHz and then decoded using the ASR setup

described in section 6.4.2.1 using the audio mappings4. The ASR achieves a WER of 18.54% on

the ATIS test set.

6.6.2.2 Experimental Setup

The intent classi�cation models are trained on the 4478 samples of training subset and the hyper-

parameters are tuned on the development set. We choose the best set of hyper-parameters yielding

the best results on the development set and then apply it on the unseen held-out test subset of

both the manual clean transcripts and the ASR transcripts and report the results. For training

4https://github.com/pgurunath/slu_confusion2vec
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we treat each utterance as a single sample (batch size = 1). The hyper-parameter space we

experiment are as follows: the hidden dimension size of the LSTM is tuned over {32, 64, 128, 256},

the learning rate over {0.0005, 0.001}, the dropout is tuned over {0.1, 0.15, 0.2, 0.25}. The Adam

optimizer is employed for optimization and trained for a total of 50 epochs with early stopping

when the loss on the development set doesn't improve for 5 consecutive epochs.

6.6.2.3 Baselines

We include results from several baseline systems for providing comparisons of Confusion2Vec 2.0

with the popular context-free word embeddings, contextual embeddings, popular established NLU

systems and the current state-of-the-art.

1. Context-Free Embeddings: GloVe5 [127], skip-gram word2vec6 [115] and fastText7 [17]

word representations are employed. They are referred to as context-free embeddings since

the word representations are static irrespective of the context.

2. ELMo: Peters et al. [128] proposed deep contextualized word representation based on

character based deep bidirectional language model trained on large text corpus. The models

e�ectively model syntax and semantics of the language along varying linguistic contexts.

Unlike context-free embeddings, ELMo embeddings have varying representations for each

word depending on the word's context. We employ the original model trained on 1 Billion

Word Benchmark with 93.6 million parameters8. For intent-classi�cation we add a single

bi-directional LSTM layer with attention for multi-task joint intent and slot predictions.

3. BERT: Devlin et al. [38] introduced BERT bidirectional contextual word representations

based on self attention mechanism of Transformer models. BERTmodels make use of masked

language modeling and next sentence prediction to model language. Similar to ELMo, the

word embeddings are contextual, i.e., vary according to the context. We employ �bert-base-

uncased� model9 with 12 layers of 768 dimensions each trained on BookCorpus and English

Wikipedia corpus. For intent-classi�cation we add a single bi-directional LSTM layer with

attention for multi-task joint intent and slot predictions.

4. Joint SLU-LM: Liu and Lane [101] employed joint modeling of the next word prediction

along with intent and slot labeling. The unidirectional RNN model updates intent states

for each word input and uses it as context for slot labeling and language modeling.

5https://nlp.stanford.edu/projects/glove/
6https://code.google.com/archive/p/word2vec/
7https://fasttext.cc/docs/en/pretrained-vectors.html
8https://allennlp.org/elmo
9https://github.com/google-research/bert

94



5. Attn. RNN Joint SLU: Liu and Lane [100] proposed attention based encoder-decoder

bidirectional RNN model in a multi-task model for joint intent and slot-�lling tasks. A

weighted average of the encoder bidirectional LSTM hidden states provides information

from parts of the input word sequence which is used together with time aligned encoder

hidden state for the decoder to predict the slot labels and intent.

6. Slot-Gated Attn.: Goo et al. [58] introduced a slot-gated mechanism which introduces ad-

ditional gate to improve slot and intent prediction performance by leveraging intent context

vector for slot �lling task.

7. Self Attn. SLU: Li et al. [97] proposed self-attention model with gate mechanism for joint

learning of intent classi�cation and slot �lling by utilizing the semantic correlation between

slots and intents. The model estimates embeddings augmented with intent information using

self attention mechanism which is utilized as a gate for slot �lling task.

8. Joint BERT: Chen et al. [25] proposed to use BERT embeddings for joint modeling of

intent and slot-�lling. The pre-trained BERT embeddings are �ne tuned for (i) sentence

prediction task - intent detection, and (ii) sequence prediction task - slot �lling. The Joint

BERT model lacks the bi-directional LSTM layer in comparison to the earlier baseline BERT

based model.

9. SF-ID Network: E et al. [45] introduced a bi-directional interrelated model for joint

modeling of intent detection and slot-�lling. An iteration mechanism is proposed where the

SF subnet introduces the intent information to slot-�lling task while the ID-subnet applies

the slot information to intent detection task. For the task of slot-�lling a conditional random

�eld layer is used to derive the �nal output.

10. ASR Robust ELMo: Huang and Chen [75] proposed ASR robust contextualized em-

beddings for intent detection. ELMo embeddings are �ne-tuned with a novel loss function

which minimizes the cosine distance between the acoustically confused words found in ASR

confusion networks. Two techniques based on supervised and unsupervised extraction of

word confusions are explored. The �ne-tuned contextualized embeddings are then utilized

for spoken language intent detection.

6.6.3 Results

Table 6.3 lists the results of the intent detection in terms of classi�cation error rates (CER).

The �Reference� column corresponds to results on manually annotated transcripts of ATIS and
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Model Reference ASR ∆di�

Random 2.69 10.75 8.06
GloVe [127] 1.90 8.17 6.27
Word2Vec [115] 2.69 8.06 5.37
fastText [17] 1.90 8.40 6.50
ELMo [128] †∗ 1.46 7.05 5.59
BERT [38] †∗ 1.12 6.16 5.04
Joint SLU-LM [101] † 1.90 9.41 7.51
Attn. RNN Joint SLU [100] † 1.79 8.06 6.27
Slot-Gated Attn. [58] † 3.92 10.64 6.72
Self Attn. SLU [97] † 2.02 9.18 7.16
Joint BERT [25] †∗ 2.46 7.73 5.27
SF-ID Network [45] † 3.14 10.53 7.39
ASR Robust ELMo (unsup.) [75] ∗ 3.24 5.26 2.02
ASR Robust ELMo (sup.) [75] ∗ 3.46 5.03 1.57
C2V 1.0 [148] 2.46 6.38 3.92

C2V-c 2.0 3.36 5.82 2.46
C2V-a 2.0 2.46 4.37 1.91
fastText + C2V-c 2.0 1.79 4.70 2.91
fastText + C2V-a 2.0 1.90 5.04 3.14

Table 6.3: Results: Model trained on clean Reference: Classi�cation Error Rates (CER) for
Reference and ASR Transcripts
∆di� is the absolute degradation of model from clean to ASR. C2V 1.0 corresponds to C2V-1 + C2V-c
(JT) in Table 6.1 and 6.2.
† indicates joint modeling of intent and slot-�lling.
∗ indicates contextual embeddings.

the �ASR� corresponds to the evaluations on the noisy speech recognition transcripts. Firstly,

evaluating on the Reference clean transcripts, we observe the confusion2vec 2.0 with subword

encoding is able to achieve similar performance to the popular word embedding models and the

state-of-the-art. The best performing confusion2vec 2.0 achieves a CER of 1.79%. Among the

di�erent versions of the proposed subword based confusion2vec, we �nd that the concatenated

versions are slightly better. We believe this is because the concatenated models exhibit better

semantic and syntactic relations (see Table 6.1 and 6.2) compared to the non-concatenated ones.

Among the baseline models, the contextual embedding like BERT and ELMo gives the best CER.

Note, the proposed confusion2vec embeddings are context-free and is able to outperform other

context-free embedding models such as GloVe, word2vec and fastText.

Secondly, evaluating the performance on the erroneous ASR transcripts, we �nd that all the

subword based confusion2vec 2.0 models outperform the popular word vector embeddings by a big

margin. The subword-confusion2vec gives drastic improvement of approximately 45.78% relative

to the best performing context-free word embeddings. The proposed embeddings also improve
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Model WER % CER %

Random 18.54 5.15
GloVe [127] 18.54 6.94
Word2Vec [115] 18.54 5.49
Schumann and Angkititrakul [146] 10.55 5.0410

C2V 1.0 18.54 4.70

C2V-c 2.0 18.54 4.82
C2V-a 2.0 18.54 4.26
fastText + C2V-c 2.0 18.54 3.70
fastText + C2V-a 2.0 18.54 4.26

Table 6.4: Results: Model trained and evaluated on ASR transcripts.
C2V 1.0 corresponds to C2V-1 + C2V-c (JT) in Table 6.1 and 6.2

over the contextual embeddings including BERT and ELMo (relative improvements of 29.06%).

Moreover, the results are also a good improvement over the non-subword confusion2vec word

vectors (31.50% improvement). This con�rms our initial hypothesis that the subword encoding is

better able to represent the acoustic ambiguities in the human language. Comparisons between

the di�erent versions of the proposed confusion2vec, the intra-confusion con�guration yields the

least CER. Inspecting the degradation, ∆diff (drop in performance between the clean and ASR

evaluations), we �nd that all the confusion2vec 2.0 with subword information undergo the least

degradation, thereby re-a�rming the robustness to the noise in the transcripts.

Table 6.4 presents the results obtained by training models on the ASR transcripts and evalu-

ated on the ASR transcripts. Here we omit all the joint intent-slot �lling baseline models, since

training on ASR transcripts need aligned set of slot labels due to insertion, substitution and

deletion errors which is out-of-scope of this study. We note that the confusion2vec models give

signi�cantly lower CER. The subword based confusion2vec models also provide improvements

over the non-subword based confusion2vec model (21.28% improvement). Comparing the results

in Table 6.3 and Table 6.4, we would like to highlight the subword-confusion2vec model gives a

minimum CER of 4.37% on model trained on clean transcripts which is much better than the

CER obtained by popular word embeddings like word2vec, GloVe, fastText even when trained on

the ASR transcripts (15.15% better relatively). These results prove the subword-confusion2vec

models can eliminate the need for re-training any natural language understanding and processing

algorithms on ASR transcripts for robust performance.
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6.7 Conclusion

In this chapter, we propose to use subword encoding for modeling the acoustic ambiguity infor-

mation into the word vector representations along with the semantic and syntax of the language.

Each word in the language is represented as a sum of its constituent character n-gram subwords.

The advantages of the subwords are con�rmed by evaluating the proposed models on various

word analogy tasks and word similarity tasks designed to assess the e�ective acoustic ambiguity,

semantic and syntactic knowledge inherent in the models. Finally, the proposed subword models

are applied to the task of spoken language intent detection system. The results of intent classi�ca-

tion system suggest the proposed subword confusion2vec models greatly enhance the classi�cation

performance when evaluated on the noisy ASR transcripts. The highlight of the results is that

the subword-confusion2vec models totally eliminate the need for re-training the classi�er on the

ASR transcripts.

6.8 Future Work

In the future, we plan to model ambiguity information using deep contextual modeling techniques

such as BERT. We believe bidirectional information modeling with attention can further enhance

ambiguity modeling. On the application side, we plan to implement and assess the e�ect of

using confusion2vec models for a wide range of natural language understanding and processing

applications such as speech translation, dialogue tracking etc. On the analysis front, we would

like to apply the proposed embeddings and evaluate the e�ects of WER on the performance of

spoken language understanding task and the improvements provided by confusion2vec. Assessing

the bene�ts of confusion2vec over wide range of underlying speech signal environments including

type of noise, amount of noise, transferability over di�erent ASR systems can be very useful for

the domain of spoken language understanding.
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Conclusion

The thesis addresses an important problem of handling speech recognition errors for robust speech

processing and spoken language understanding. The problem is tackled from the perspective of

three basic underlying error sources which eventually results in speech recognition errors: (i) vari-

ations in underlying speech signal, (ii) limitations of several machine learning algorithms, and

(iii) ambiguities present in human language. In this thesis, we proposed a noisy channel model

for error correction based on phrases termed �Noisy-Clean Phrase Context Modeling�. The sys-

tem post-processes the output of an automated speech recognition system e�ective in correcting

and recovering from several di�erent types of speech recognition errors. The NCPCM is able

to provide improvements over wide range of underlying input signal variations, and wide spec-

trum of ASR word error rates. The NCPCM is also able to adapt over certain limitations and

restrictions induced to maintain computational complexity and memory tractable. The NCPCM

system is shown to improve the speech recognition even over a highly optimized ASR. Further,

we introduced a new human language encoding in the form of word vector representation, termed

�Confusion2Vec�, that takes into account several ambiguity associated in human spoken language,

more speci�cally, we model the acoustic ambiguity (similarity) in human language. The acoustic

ambiguity is introduced into the word vector representation by unsupervised modeling of con-

fusions present in the speech recognition output lattices. The acoustic ambiguity is shown to

co-exist with the semantics and syntax of human language and in doing results in a robust word

vector representation that is robust to ASR errors. The e�cacy of the word vector representation

is con�rmed on the task of spoken language intent classi�cation. The Confusion2Vec achieves

signi�cantly lower classi�cation error rates when evaluated on noisy ASR transcripts compared

to popular word vector representations. Confusion2Vec with the inherent knowledge of acoustic

confusable words which correlates with the ASR error is able to recover from them. Finally, to

enhance the ambiguity modeling capacity of the Confusion2Vec, we propose to encode each word

by their constituent character n-grams. This results in an increased ability of the model to capture

the acoustic ambiguity information, which re�ects in the improved performance on the acoustic,
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semantic and syntactic analogy tasks and word similarity tasks. The enhancements with the sub-

word modeling is ensured with spoken language intent classi�cation, which results in improved

classi�cation error rates compared with the non-subword version of Confusion2Vec. The subword

Confusion2Vec model completely eliminates the need for retraining spoken utterancce classi�er

on ASR transcripts.
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Appendix A

Confusion2Vec

Model
Analogy Tasks

Semantic&Syntactic Analogy
Acoustic Analogy

Semantic&Syntactic-Acoustic Analogy
Average Accuracy

Semantic Syntactic Semantic&Syntactic Semantic-Acoustic Syntactic-Acoustic Semantic&Syntactic-Acoustic
Google Word2Vec 28.98% (35.75%) 70.79% (78.74%) 61.42% (69.1%) 0.9% (1.42%) 6.54% (14.38%) 17.9% (27.46%) 16.99% (26.42%) 26.44% (32.31%)

Word2Vec GroundTruth 42.39% (51.57%) 33.14% (43.14%) 35.15% (44.98%) 0.3% (0.6%) 5.17% (10.69%) 8.13% (11.93%) 7.86% (11.82%) 14.44% (19.13%)
Baseline Word2Vec 38.33% (46.7%) 33.1% (42.36%) 34.27% (43.33%) 0.7% (1.16%) 11.76% (14.38%) 11.23% (15.11%) 11.27% (15.05%) 15.41% (19.85%)
Intra-Confusion 0.51% (0.78%) 18.59% (28.17%) 14.54% (22.03%) 41.93% (52.58%) 0.98% (2.29%) 9.62% (15.67%) 8.94% (14.61%) 21.8% (29.74%)
Inter-Confusion 16.15% (23.7%) 26.14% (39.74%) 23.9% (36.15%) 48.58% (60.57%) 3.27% (6.86%) 12.13% (21.61%) 11.42% (20.44%) 27.97% (39.05%)

Hybrid Intra-Inter 2.07% (2.58%) 28.91% (38.6%) 22.89% (30.53%) 40.78% (53.55%) 1.96% (2.94%) 20.99% (31.63%) 19.48% (29.35%) 27.72% (37.81%)

Table A.1: Analogy Task Results with Semantic & Syntactic splits: Di�erent
proposed models

Numbers inside parenthesis indicate top-2 evaluation accuracy;
Numbers outside parenthesis represent top-1 evaluation accuracy.

Google Word2Vec, Word2Vec Groundtruth (trained on in-domain) and Baseline Word2Vec (trained on
ASR transcriptions) perform better with the Semantic&Syntactic tasks, but fares poorly with Acoustic

analogy task.
Intra-Confusion performs well on Acoustic analogy task while compromising on Semantic&Syntactic

task.
Inter-Confusion performs well on both the Acoustic analogy and Semantic&Syntactic tasks.
Hybrid Intra-Inter training performs fairly well on all the three analogy tasks (Acoustic,

Semantic&Syntactic and Semantic&Syntactic-Acoustic).
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Model
Similarity Tasks

Word Similarity Acoustic Similarity
Google Word2Vec 0.6893 (7.9e-48) -0.3489 (2.2e-28)

Word2Vec GroundTruth 0.5794 (4.2e-29) -0.2444 (1e-10)
Baseline Word2Vec 0.4992 (3.3e-22) 0.1944 (1.7e-9)
Intra-Confusion 0.105 (0.056) 0.8138 (5.1e-224)
Inter-Confusion 0.2937 (5.4e-8) 0.8055 (5.1e-216)

Hybrid Intra-Inter 0.0963 (0.08) 0.7858 (1.5e-198)

Table A.2: Similarity Task Results: Di�erent proposed models
Similarity in terms of Spearman's correlation.

Numbers inside parenthesis indicate correlation p− value for similarity tasks
Google Word2Vec, Baseline Word2Vec and Word2Vec Groundtruth, all show high correlations with

word similarity, while showing poor correlations on acoustic similarity. Google Word2Vec and Word2Vec
Groundtruth models trained on clean data exhibit negative acoustic similarity correlation. Baseline

Word2Vec trained on noisy ASR shows a small positive acoustic similarity correlation.
Intra-Confusion, Inter-Confusion and Hybrid Intra-Inter training show higher correlations on Acoustic

similarity.

Model
Analogy Tasks

Semantic&Syntactic Analogy
Acoustic Analogy

Semantic&Syntactic-Acoustic Analogy
Average Accuracy

Semantic Syntactic Semantic&Syntactic Semantic-Acoustic Syntactic-Acoustic Semantic&Syntactic-Acoustic
Baseline Word2Vec 34.92% (41.96%) 68.7% (78.82%) 61.13% (70.56%) 0.9% (1.46%) 14.38% (19.28%) 16.85% (24.25%) 16.66% (23.86%) 26.23% (31.96%)
Intra-Confusion 11.5% (15.53%) 67.56% (77.96%) 54.99% (63.97%) 9.04% (16.92%) 7.84% (10.46%) 36.92% (46.17%) 34.61% (43.34%) 32.88% (41.41%)
Inter-Confusion 25.77% (33.12%) 60.1% (74.79%) 52.4% (65.45%) 16.54% (27.33%) 10.78% (14.05%) 28.9% (40.38%) 27.46% (38.29%) 32.13% (43.69%)

Hybrid Intra-Inter 15.64% (21.94%) 66.73% (77.68%) 55.28% (65.19%) 10.49% (20.35%) 6.86% (11.11%) 35.4% (44.85%) 33.13% (42.18%) 36.27% (42.57%)

Table A.3: Analogy Task Results with Semantic & Syntactic splits: Model
pre-training/initialization

Numbers inside parenthesis indicate top-2 evaluation accuracy;
Numbers outside parenthesis represent top-1 evaluation accuracy.

Pre-training is helpful in all the cases. Pre-training boosts the Semantic&Syntactic Analogy accuracy
for all.

For Intra-Confusion, Inter-Confusion and Hybrid Intra-Inter models, pre-training boosts the
Semantic&Syntactic-Acoustic Analogy accuracies. A small dip in Acoustic Analogy accuracies is

observed. However, overall average accuracy is improved.

Model
Similarity Tasks

Word Similarity Acoustic Similarity
Baseline Word2Vec 0.6036 (3.8e-34) -0.4327 (2.5e-44)
Intra-Confusion 0.5228 (1.4e-24) 0.62 (2.95e-101)
Inter-Confusion 0.5798 (4.9e-31) 0.5825 (9.1e-87)

Hybrid Intra-Inter 0.5341 (9.8e-26) 0.6237 (8.8e-103)

Table A.4: Similarity Task Results: Model pre-training/initialization
Similarity in terms of Spearman's correlation.

Numbers inside parenthesis indicate correlation p− value for similarity tasks.
Pre-training boosts the Word Similarity correlation for all the models. The correlation is improved
considerably in the case of Intra-Confusion, Inter-Confusion and Hybrid Intra-Inter models while

maintaining good correlation on acoustic similarity.
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Model Fine-tuning
Analogy Tasks

Semantic&Syntactic Analogy
Acoustic Analogy

Semantic&Syntactic-Acoustic Analogy
Average Accuracy

Scheme Semantic Syntactic Semantic&Syntactic Semantic-Acoustic Syntactic-Acoustic Semantic&Syntactic-Acoustic
Baseline Word2Vec (556 dim.) - 34.49% (41.53%) 68.7% (78.82%) 61.13% (70.25%) 0.93% (1.46%) 15.36% (19.93%) 16.63% (23.89%) 16.53% (23.57%) 26.2% (31.76%)

Model Concatenation
Word2Vec (F) + Intra-Confusion (F) - 6.22% (9.5%) 71.03% (83.65%) 56.51% (67.03%) 13.59% (25.43%) 6.54% (11.76%) 33.91% (42.82%) 31.74% (40.36%) 33.95% (44.27%)
Word2Vec (F) + Inter-Confusion (F) - 36.53% (47.01%) 57.94% (77.72%) 53.14% (70.84%) 20.99% (35.25%) 10.46% (16.01%) 26.31% (36.83%) 25.05% (35.18%) 33.06% (47.09%)

Word2Vec (F) + Hybrid Intra-Inter (F) - 11.85% (17.32%) 71.85% (82.74%) 58.4% (68.08%) 6.35% (11.39%) 7.84% (12.18%) 34.38% (43.78%) 32.28% (41.3%) 32.34% (40.26%)
Fixed Word2Vec Joint Optimization

Word2Vec (F) + Intra-Confusion (L) inter 22.96% (32.42%) 66.19% (82.98%) 56.5% (71.65%) 12.73% (20.54%) 13.4% (18.3%) 26.22% (35.09%) 25.21% (33.76%) 31.48% (41.98%)
Word2Vec (F) + Intra-Confusion (L) intra 6.69% (11.58%) 69.79% (83.48%) 55.65% (67.37%) 17.03% (28.64%) 8.17% (13.73%) 31.85% (47.64%) 29.97% (39.09%) 34.22% (45.03%)
Word2Vec (F) + Intra-Confusion (L) hybrid 11.69% (19.79%) 69.31% (84.53%) 56.39% (70.02%) 14.86% (25.84%) 9.8% (16.67%) 30.02% (38.94%) 28.42% (37.18%) 33.22% (44.35%)
Word2Vec (F) + Inter-Confusion (L) inter 39.19% (50.57%) 58.35% (78.21%) 54.05% (72.01%) 23.33% (35.25%) 12.42% (18.3%) 24.45% (34.89%) 23.5% (33.58%) 33.63% (46.95%)
Word2Vec (F) + Inter-Confusion (L) intra 22.76% (32.85%) 62.07% (80.34%) 53.26% (69.7%) 24.76% (39.32%) 7.52% (11.11%) 29.97% (41.47%) 28.19% (39.07%) 35.40% (49.36%)
Word2Vec (F) + Inter-Confusion (L) hybrid 30.54% (43.21%) 61.56% (80.81%) 54.61% (72.38%) 23.6% (37.75%) 8.5% (14.71%) 28.25% (39.95%) 26.68% (37.95%) 34.96% (49.36%)

Word2Vec (F) + Hybrid Intra-Inter (L) inter 27.02% (35.9%) 67.52% (81.6%) 58.45% (71.36%) 5.04% (8.55%) 11.76% (16.67%) 26.28% (34.64%) 25.13% (33.21%) 29.54% (37.71%)
Word2Vec (F) + Hybrid Intra-Inter (L) intra 10.48% (15.84%) 70.44% (81.57%) 57.00% (66.85%) 7.21% (13.33%) 6.21% (12.09%) 34.07% (42.52%) 31.87% (40.1%) 32.03% (40.09)
Word2Vec (F) + Hybrid Intra-Inter (L) hybrid 15.41% (23.31%) 70.56% (82.61%) 58.2% (68.32%) 6.39% (11.61%) 8.17% (12.09%) 32.36% (40.43%) 30.44% (38.19%) 31.68% (39.37%)

Unrestricted Joint Optimization
Word2Vec (L) + Intra-Confusion (L) inter 8.6% (14.74%) 57.96% (75.8%) 46.9% (62.12%) 30.73% (46.42%) 5.88% (12.75%) 26.79% (38.44%) 25.13% (36.4%) 34.25% (48.31%)
Word2Vec (L) + Intra-Confusion (L) intra 4.97% (7.9%) 69.27% (81.30%) 54.86% (64.85%) 23.86% (40.55%) 7.84% (11.44%) 34.92% (45.02%) 32.77% (42.38%) 37.16% (49.26%)
Word2Vec (L) + Intra-Confusion (L) hybrid 1.1% (1.64%) 26.54% (40.32%) 20.83% (31.65%) 49.25% (61.91%) 2.29% (3.92%) 15.05% (25.24%) 14.04% (23.55%) 28.12% (39.04%)
Word2Vec (L) + Inter-Confusion (L) inter 33.01% (43.72%) 50.81% (71.13%) 46.82% (64.98%) 37.15% (52.99%) 9.48% (16.01%) 23.16% (36.41%) 22.07% (34.79%) 35.35% (50.92%)
Word2Vec (L) + Inter-Confusion (L) intra 21.9% (30.43%) 58.99% (76.12%) 50.68% (65.88%) 33.05% (49.4%) 7.52% (10.46%) 31.23% (44.12%) 29.35% (41.51%) 37.69% (52.26%)
Word2Vec (L) + Inter-Confusion (L) hybrid 10.48% (15.72%) 30.0% (44.25%) 25.63% (37.86%) 52.73% (67.21%) 3.27% (4.9%) 16.09% (27.77%) 15.08% (25.96%) 31.15% (43.68%)

Word2Vec (L) + Hybrid Intra-Inter (L) inter 19.24% (26.59%) 61.57% (76.8%) 52.08% (65.54%) 17.85% (27.97%) 7.52% (12.75%) 28.81% (38.94%) 27.12% (36.87%) 32.35% (43.46%)
Word2Vec (L) + Hybrid Intra-Inter (L) intra 10.09% (13.77%) 68.76% (79.06%) 55.61% (64.42%) 10.34% (20.05%) 5.88% (9.48%) 36.13% (45.41%) 33.73% (42.56%) 33.23% (42.34%)
Word2Vec (L) + Hybrid Intra-Inter (L) hybrid 12.98% (17.91%) 68.26% (79.62%) 55.87% (65.79%) 11.73% (22.63%) 5.88% (10.46%) 35.28% (43.92%) 32.95% (41.3%) 33.52% (43.24%)

Table A.5: Analogy Task Results: Model concatenation and joint optimization
Numbers inside parenthesis indicate top-2 evaluation accuracy;
Numbers outside parenthesis represent top-1 evaluation accuracy.

Acronyms: (F):Fixed embedding, (L):Learn embedding during joint training
Model Concatenation provides gains in Acoustic-Analogy Task and thereby resulting in gains in average

accuracy compared to results in Table A.3 for Intra-Confusion and Inter-Confusion models.
Fixed Word2Vec and Unrestricted Joint Optimizations further improves results over model
concatenation. Best results in terms of average accuracy is obtained with unrestricted joint

optimizations, an absolute improvement of 10%.
Confusion2Vec models surpass Word2Vec even for Semantic&Syntactic analogy task (top-2 evaluation

accuracy).
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Model
Fine-tuning Similarity Tasks
Scheme Word Similarity Acoustic Similarity

Baseline Word2Vec (556 dim.) - 0.5973 (2.8e-33) -0.4341 (1.3e-44)
Model Concatenation

Word2Vec (F) + Intra-Confusion (F) - 0.5102 (2.9e-23) 0.7231 (2.2e-153)
Word2Vec (F) + Inter-Confusion (F) - 0.5609 (9.8e-29) 0.6345 (2.3e-107)

Word2Vec (F) + Hybrid Intra-Inter (F) - 0.4142 (4.1e-15) 0.5285 (5.6e-69)
Fixed Word2Vec Joint Optimization

Word2Vec (F) + Intra-Confusion (L) inter 0.5676 (1.6e-29) 0.4437 (9.1e-47)
Word2Vec (F) + Intra-Confusion (L) intra 0.5211 (2.3e-24) 0.6967 (6.5e-138)
Word2Vec (F) + Intra-Confusion (L) hybrid 0.5384 (3.4e-26) 0.6287 (6.7e-105)
Word2Vec (F) + Inter-Confusion (L) inter 0.5266 (6.1e-25) 0.5818 (1.6e-86)
Word2Vec (F) + Inter-Confusion (L) intra 0.5156 (8.3e-24) 0.7021 (6.3e-141)
Word2Vec (F) + Inter-Confusion (L) hybrid 0.5220 (1.8e-24) 0.6674 (1.4e-122)

Word2Vec (F) + Hybrid Intra-Inter (L) inter 0.5587 (1.7e-28) 0.302 (2.5e-21)
Word2Vec (F) + Hybrid Intra-Inter (L) intra 0.4996 (3.1e-22) 0.5691 (4.7e-82)
Word2Vec (F) + Hybrid Intra-Inter (L) hybrid 0.5254 (8.2e-25) 0.4945 (2.6e-59)

Unrestricted Joint Optimization
Word2Vec (L) + Intra-Confusion (L) inter 0.5513 (1.3e-27) 0.7926 (2.4e-204)
Word2Vec (L) + Intra-Confusion (L) intra 0.5033 (1.4e-22) 0.7949 (2e-206)
Word2Vec (L) + Intra-Confusion (L) hybrid 0.1067 (0.0528) 0.8309 (8.5e-242)
Word2Vec (L) + Inter-Confusion (L) inter 0.5763 (1.3e-30) 0.7725 (8.2e-188)
Word2Vec (L) + Inter-Confusion (L) intra 0.5379 (3.8e-26) 0.7717 (3.5e-187)
Word2Vec (L) + Inter-Confusion (L) hybrid 0.2295 (2.6e-5) 0.8294 (3.6e-240)

Word2Vec (L) + Hybrid Intra-Inter (L) inter 0.5338 (1e-25) 0.6953 (3.7e-137)
Word2Vec (L) + Hybrid Intra-Inter (L) intra 0.4920 (1.6e-21) 0.6942 (1.5e-136)
Word2Vec (L) + Hybrid Intra-Inter (L) hybrid 0.4967 (5.8e-22) 0.6986 (5.9e-139)

Table A.6: Similarity Task Results: Model concatenation and joint optimization
Similarity in terms of Spearman's correlation.

Numbers inside parenthesis indicate correlation p− value for similarity tasks.
Good correlations are observed for both the word similarity and acoustic similarity with model

concatenation with and without joint optimization. All the correlations are found to be statistically
signi�cant.
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