
 
 

 
 

 

 
 

USC–SIPI REPORT #458 
 

PISCO Software Version 1.0 
 

by 
 

Rodrigo A. Lobos, Chin-Cheng Chan, Justin P. Haldar 
 

March 2023 

Signal and Image Processing Institute 
UNIVERSITY OF SOUTHERN CALIFORNIA 

USC Viterbi School of Engineering 
Department of Electrical and Computer Engineering 

3740 McClintock Avenue, Suite 400 
Los Angeles, CA 90089-2564 U.S.A. 



PISCO Software Version 1.0

Rodrigo A. Lobos, Chin-Cheng Chan, Justin P. Haldar

Signal and Image Processing Institute,
Ming Hsieh Department of Electrical and Computer Engineering,

University of Southern California

1 Introduction

The estimation of sensitivity maps from k-space calibration data is a common task in many mul-
tichannel MRI applications1. In the last decade, subspace-based estimation methods have gained
popularity within the MRI community, where ESPIRiT [3] has emerged as the method of choice
by many researchers. Even though these methods possess great estimation accuracy and robust-
ness, they can be computationally demanding, and their underlying theoretical principles can be
nontrivial to understand. In view of these limitations, we have proposed in [1,2] a novel theoretical
framework for subspace-based sensitivity map estimation. This new framework relies on theoreti-
cal concepts from the literature on linear predictability and structured low-rank modeling, and we
expect it might be more intuitive an easier to understand for some readers. Based on these novel
theoretical concepts, we have proposed a nullspace-based algorithm for sensitivity map estimation
which is theoretically equivalent to ESPIRiT. In addition, we have also introduced in [1,2] a set of
computational techniques — which we collectively call PISCO (Power iteration over simultaneous
patches, Interpolation, ellipSoidal kernels, and FFT-based COnvolution) — that, remarkably, can
enable substantial improvements in computation time (up to a 100×-fold improvement in the cases
we have tried) when integrated to subspace-based methods as shown in [1, 2].

1.1 Software Availability

In order to provide the broader community with easy access to the theoretical and computational
approaches in [1,2], we have released an open-source MATLAB software that implements the pro-
posed nullspace-based algorithm for sensitivity map estimation using the PISCO computational
techniques. The software is available at

http://mr.usc.edu/download/pisco/

The purpose of this report is to provide documentation for this software.

1We refer interested readers to [1, 2] for a detailed mathematical description of the sensitivity map estimation
problem. Comprehensive bibliography on sensitivity map estimation can be found in [1, 2] as well.

1

http://mr.usc.edu/download/pisco/


2 Software Overview

The supplementary MATLAB code contains one main function called PISCO senseMaps estimation.m

which implements the nullspace-based sensitivity map estimation algorithm presented in [1,2, Sect.
III.D] using the PISCO computational techniques [1,2, Sect. IV]. The current implementation only
covers sensitivity map estimation in the 2D case2.

2.1 Quickstart

The simplest way to use the PISCO senseMaps estimation.m function is to call it with three argu-
ments: a rectangular array of k-space calibration data kCal, and the desired size of the sensitivity
maps [N1, N2]. This will run the nullspace-based algorithm using the PISCO techniques from [1,2]
using default parameters, and is expected to work well in many cases of interest. However, the
function also has a number of optional inputs that can be used to turn off some of the PISCO op-
tions (since, as described in [1,2], not every PISCO option is always computationally beneficial for
every dataset) or to change PISCO parameter settings for cases where the defaults are suboptimal
(note that the default values were designed based on the datasets considered in [1, 2] – for best
performance, parameters should be adjusted for each new dataset).

2.2 Additional Inputs

In the following we explain the rest of the inputs of PISCO senseMaps estimation.m besides the
aforementioned necessary inputs kCal and [N1, N2].

• tau: Parameter (in Nyquist units) that determines the size of the k-space kernels used in
the construction of the matrix C. For a rectangular kernel the associated neighborhood has
size equal to (2*tau+1) * (2*tau+1). For an ellipsoidal kernel the associated neighborhood
has radius equal to tau, and can be seen as a rectangular neighborhood which corners were
removed. In both cases increasing the value of tau can improve estimation quality, how-
ever, computational complexity would also increase. In addition, large values of tau can be
detrimental in the presence of noise, and moderate sizes are recommended in order to avoid
overfitting [4]. The default value corresponds to tau = 3 if not specified, which for the ex-
amples shown in [1,2] offered a good trade-off between estimation quality and computational
complexity.

• threshold: Specifies how small a singular value needs to be (relative to the maximum singular
value) before its associated singular vector is considered to be in the nullspace of the matrix
C. If this value is chosen to be too small or too big, then the nullspace of the matrix C
might not be estimated correctly, which would negatively affect sensitivity map estimation.
Heuristically, this value can be chosen as the point where the singular-values curve of the
matrix C starts to flatten out. The default value corresponds to 0.05 if not specified.

• kernel shape: Binary variable which indicates the shape adopted for the kernels that is
used in the sensitivity map estimation process. This variable can be interpreted as a flag
that “turns-on” the PISCO technique indicated in [1, 2, Sect. IV.B]. If equal to 0, then
a rectangular shape is adopted for the kernels. If equal to 1, then an ellipsoidal shape is

2Extensions to the 3D case will be considered in future releases of this software.



adopted for the kernels. As indicated in [1, 2, Sect. IV.B], using ellipsoidal kernels allows
substantial improvements in computational complexity with negligible effects on sensitivity
estimation quality in comparison to using rectangular kernels. The default value of this
variable corresponds to 1 if not specified.

• FFT nullspace C calculation: Binary variable that indicates how the matrix CHC is cal-
culated before calculating its nullspace (which corresponds to step (2) in the nullspace based
algorithm proposed in [1, 2, Sect. III.D]). This variable can be interpreted as a flag that
“turns-on” the PISCO technique indicated in [1, 2, Sect. IV.C]. If equal to 0, then CHC is
calculated by calculating C first. If equal to 1, then CHC is calculated directly using FFT-
based convolutions. It should be noted that turning on the PISCO technique associated to
this variable can improve computation time and memory usage substantially, however, there
are cases where this technique might not be beneficial as indicated in [1, 2].

• PowerIteration G nullspace vectors: Binary variable that indicates how the last nullspace
vector (i.e., the one associated to the smallest eigenvalue) of each matrix G(x) is calculated
for each spatial location x. This variable can be interpreted as a flag that “turns-on” the
PISCO technique indicated in [1,2, Sect. IV.E]. If equal to 0, then the last nullspace vector of
each matrix G(x) is calculated individually using SVD. If equal to 1, the last nullspace vectors
of all the G(x) matrices are calculated jointly using a PowerIteration-based method. Turning
on this PISCO technique usually allows substantial improvements in computation time in
comparison to the SVD-based conventional approach. However, it should be noted that the
fast convergence of power iteration is observed in cases where there is a big gap between
the last two eigenvalues of G(x) [5], as in the cases studied in [1, 2]. In these cases a small
number of iterations is needed, as shown in [1, 2], where only 10 iterations were considered.
Nevertheless, there might be cases where the last two eigenvalues of G(x) are similar, which
would negatively affect the convergence speed of power iteration. These cases are typically
observed at locations where there exists aliasing, which correspond to cases where more than
one sensitivity map is needed for an accurate description [1–3]. In these cases we could “turn-
off” the PowerIteration-based technique by setting PowerIteration G nullspace vectors

= 0. The default value of this variable corresponds to 1 if not specified.

• M: Corresponds to the number of iterations used if the PowerIteration-based method is used to
calculate the nullspace vectors of the G(x) matrices (i.e., when PowerIteration G nullspace vectors

= 1). As indicated in the previous point, a small number of iteration is needed for power
iteration in cases where there is a big gap between the last two eigenvalues of G(x), and a big
number of iteration is needed in cases where the last two eigenvalues are close to each other
(e.g., when there exists aliasing in some spatial locations). The default value of this variable
corresponds to 20 if not specified.

• FFT interpolation: Binary variable that indicates if FFT-based periodic sinc interpolation
is used in the sensitivity map estimation process. This variable can be interpreted as a flag
that “turns-on” the PISCO technique indicated in [1, 2, Sect. IV.D]. Using this technique
sensitivity maps are first estimated in a low-resoluton grid and then interpolated to a grid
with nominal spatial resolution. This allows massive improvements in computation time
and memory usage. In order for the FFT-based periodic sinc interpolation technique to be
successful, there is the underlying assumption that sensitivity maps should be smooth. Given



that sensitivity maps are complex, smoothness properties require sensitivity maps to have
smooth magnitude and smooth phase (as in the examples studied in [1, 2]). Even though
smooth magnitude is usually encountered, non-smooth phase patterns might be observed in
sensitivity maps. For example, non-smooth phase patterns might be observed in cases where
the original coil-array information has been preprocessed using coil-compression techniques
[6]. This might affect the performance of the FFT-based periodic sinc interpolation technique,
producing undesired discontinuities in the estimated sensitivity maps. In this case we can
“turn-off” the FFT-based periodic sinc interpolation technique by setting FFT interpolation

= 0. The default value of this variable corresponds to 1 if not specified.

• interp zp: Amount of zero-padding employed to create the low-resolution grid needed when
the FFT-based periodic sinc interpolation technique is used in the sensitivity map estima-
tion process (i.e., when FFT interpolation = 1). If [N1 cal, N2 cal] correspond to the
dimensions of the calibration data, then the low-resolution grid has dimensions [N1 cal +

interp zp, N2 cal + interp zp]. Increasing the zero-padding improves sensitivity map es-
timation quality at the expense of increasing the computation time. The default value for
this variable corresponds to 24 if not specified, which for the examples shown in [1,2] offered
a good trade-off between estimation quality and computational complexity.

• gauss win param: Parameter related to the Gaussian apodizing window that is used to ob-
tain the smooth-phase low-resolution reconstruction needed in the FFT-based periodic sinc
interpolation technique. This variable corresponds to the reciprocal value of the standard de-
viation of the Gaussian window. An incorrect choice of this parameter might produce a low-
resolution reconstruction with nonsmooth-phase characteristics, which subsequently might
cause the presence of undesired discontinuities in the estimated sensitivity maps. The default
value for this variable corresponds to 100, which for the examples shown in [1, 2] allowed
obtaining high-quality sensitivity maps when using the FFT-based periodic sinc interpolation
technique.

2.3 Outputs

In the following we describe the outputs of PISCO senseMaps estimation.m.

• senseMaps: The estimated sensitivity maps. This variable corresponds to an array with
dimensions N1 ×N2 ×Nc, where N1, N2 determine the size of the sensitivity maps, and Nc is
the number of channels.

• eigenValues: Spatial maps for the eigenvalues of the G(x) matrices3. This variable cor-
responds to an array with dimensions N1 × N2 × Nc, where N1, N2 determine the number
of spatial locations, and Nc is the number of eigenvalues (which is equal to the number of
channels) of each matrix. Specifically, the entry eigenValues(i,j,k) would correspond to
the k-th eigenvalue of the G(x) matrix where x = (i, j).

If PowerIteration G nullspace vectors = 1, only the last eigenvalue of the matrices G(x)
is returned. In this case the dimensions of eigenValues are N1 ×N2 × 1.

3These matrices have been normalized by the kernel size in order to have eigenvalues between 0 and 1 as indicated
in [1, 2].



If FFT interpolation = 1, then approximations of the eigenvalues of the matrices G(x) are
returned.

As explained in the following section, eigenValues can be used to construct a mask for the
support of the image in case the user wants to mask the estimated sensitivity maps. This
is an optional step in the nullspace-based sensitivity map estimation algorithm as indicated
in [1, 2, Sect. III.D].

3 Examples and Usage Recommendations

PISCO provides different options for sensitivity map estimation, that depend on which compu-
tational techniques are selected by the user. In the following we show two cases as examples:
selecting all the PISCO computational techniques, and selecting none of the PISCO computational
techniques4. These examples show that using the PISCO techniques allows massive improvements
in computation time without sacrificing estimation quality. In the following experiments we used the
256×256×32 Brain MPRAGE dataset described in [1,2, Sect. III.C] (images for 16 of the 32 chan-
nels are shown in Fig. 1), and we estimated sensitivity maps using the nullspace-based algorithm
presented in [1,2, Sect. III.D]. In both cases sensitivity maps were estimated from Nyquist-sampled
calibration k-space data of size 32×32 located in the center; a 7×7 FIR filter support Λ (which
corresponds to selecting tau = 3 as one of the inputs of PISCO senseMaps estimation.m); and a
singular value threshold equal to 0.08 when calculating the nullspace of the matrix C. We performed
all computations on a MacBook Pro laptop computer with a 3.1 GHz Intel Core i7 processor and
16GB RAM. All of the following results can be easily replicated by running the script example.m

provided with the software package.

In the second and third rows of Fig. 1 we show estimated sensitivity maps for 16 representative
coils when all the PISCO techniques are used (Nullspace + PISCO), and when none of the PISCO
techniques are used (Nullspace - PISCO). We can observe that both methods produced similar
sensitivity maps, with no noticeable visual differences within the support of the image. It should
be remembered that sensitivity maps are unidentifiable outside the support of the image [1,2, Sect.
II], therefore, differences between the two configurations outside the support of the image should
not be relevant. Remarkably, using all the PISCO techniques allowed estimating sensitivity maps
in ∼ 2.3 secs, which is considerably faster than the ∼ 34.8 secs needed when none of the PISCO
techniques were used.

For better visualization we also provide a masked version of these sets of sensitivity maps using
a mask for the support of the image. We can see in the fourth and fifth rows of Fig. 1 that
both methods obtained sensitivity maps with no noticeable differences after masking. It should
be highlighted that masking of the sensitivity maps has been indicated as an optional step in the
nullspace-based algorithm proposed in [1,2, Sect. III.D, step (6)]. This step is optional because the
masked sensitivity maps are equivalent to the unmasked sensitivity maps from a data-consistency
perspective. We have masked the sensitivity maps analogously to what is done in [3]. Specifically,
we have zeroed-out entries where the last eigenvalue of the G(x) matrix is higher than a threshold
close to zero (0.05 was selected for the cases shown in Fig. 1).

4In this case all the PISCO techniques are deactivated except by the PISCO technique which calculates the G(x)
matrices directly [1, 2, Sect. IV.C], which is always activated in our implementation.



Multichannel
data

Nullspace +
PISCO

Sens. maps

Nullspace -
PISCO

Sens. maps

Nullspace +
PISCO

Sens. maps
(masked)
Nullspace -
PISCO

Sens. maps
(masked)

Figure 1: Multichannel data used in our experiments (first row) and sensitivity maps estimated
using the nullspace-based algorithm with and without the PISCO computational techniques. Es-
timated sensitivity maps are shown before and after applying a mask based on the support of the
underlying image.

References

[1] R. A. Lobos, C.-C. Chan, and J. P. Haldar, “New theory and faster computations for subspace-
based sensitivity map estimation in multichannel MRI,” Submitted.

[2] R. A. Lobos, C.-C. Chan, and J. P. Haldar, “Extended version of ‘New theory and faster
computations for subspace-based sensitivity map estimation in multichannel MRI’,” 2023,
arXiv:2302.13431.

[3] M. Uecker, P. Lai, M. J. Murphy, P. Virtue, M. Elad, J. M. Pauly, S. S. Vasanawala, and
M. Lustig, “ESPIRiT – an eigenvalue approach to autocalibrating parallel MRI: Where SENSE
meets GRAPPA,” Magn. Reson. Med., vol. 71, pp. 990–1001, 2014.

[4] R. A. Lobos and J. P. Haldar, “On the shape of convolution kernels in MRI reconstruction:
Rectangles versus ellipsoids,” Magn. Reson. Med., vol. 87, pp. 2989–2996, 2022.

[5] G. Golub and C. van Loan, Matrix Computations, 3rd ed. London: The Johns Hopkins
University Press, 1996.

[6] D. Kim, S. F. Cauley, K. S. Nayak, R. M. Leahy, and J. P. Haldar, “Region-optimized virtual
(ROVir) coils: Localization and/or suppression of spatial regions using sensor-domain beam-
forming,” Magn. Reson. Med., vol. 86, pp. 197–212, 2021.


	Introduction
	Software Availability

	Software Overview
	Quickstart
	Additional Inputs
	Outputs

	Examples and Usage Recommendations

