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Abstract

We introduce a new class of fuzzy logic systems (FLS), type-2 fuzzy logic systems, which make use
of type-2 fuzzy sets for representing linguistic and/or numerical uncertainty. Type-2 fuzzy sets are
fuzzy sets having fuzzy membership functions, i.e., the membership grade of each element of such
a set is an ordinary (type-1) fuzzy set in [0, 1]. Type-2 sets are useful in circumstances where it is
difficult to define the exact membership function for a fuzzy set.

Since the results in the existing type-2 fuzzy logic literature are not sufficient for our work,
we start with the very basic operations of unions, intersections and complements of type-2 sets,
and develop the results that we need in order to implement a type-2 FLS. In the process of this
development, we study, in detail, set theoretic and algebraic operations for type-2 sets, properties of
membership grades of type-2 sets, and type-2 relations and their compositions. We also examine,
in great detail, the operations of “type-reduction” and defuzzification in a type-2 FLS. Type-
reduction is a term that we have coined for “extended” versions of type-1 defuzzification methods.
We provide results that considerably simplify the implementation of Gaussian and interval type-2
fuzzy logic systems. Whenever actual results are difficult to implement or generalize, we provide
practical approximations.

We demonstrate the use of a type-2 FLS with the help of two examples : managing rules
collected by means of a survey, and time-series prediction. In the survey example, we show how
the linguistic uncertainty about membership functions of the FLS, as well as rule uncertainty from
multiple experts, each of whom may give different answers to the same question, can be handled
in the type-2 framework. In the time-series example, we show how information about the noise in
the training data can be incorporated in a type-2 FLS to obtain bounds on the output and also
better predictions.

Finally, we present our conclusions and some directions for future research.
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Chapter 1

Introduction

Fuzzy logic systems are, as is well known, comprised of rules. Quite often, the knowledge that is
used to construct these rules is uncertain. Such uncertainty leads to rules whose antecedents or
consequents are uncertain, which translates into uncertain antecedent or consequent membership
functions. Type-1 Fuzzy Logic Systems (FLS), whose membership functions are type-1 fuzzy sets,
are unable to directly handle such rule uncertainties. We introduce a new class of fuzzy logic systems
— type-2 fuzzy logic systems — in which the antecedent or consequent membership functions are
type-2 fuzzy sets. Such sets are fuzzy sets whose membership grades themselves are type-1 fuzzy
sets; they are very useful in circumstances where it is difficult to determine an exact membership
function for a fuzzy set; hence, they are useful for incorporating uncertainties.

There is no prior work that we have been able to find on type-2 FLS’s; hence, this work moves
the world of fuzzy logic in a fundamentally new and important direction. What is this important
direction and why is it important 7 To make the answers as clear as possible, let us briefly digress
to review some things that are, no doubt, familiar to the reader.

Probability theory is used to model random uncertainty, and within that theory we begin with
a pdf, which embodies total information about random uncertainties. In most practical real-world
applications, it is impossible to know or determine the pdf; so, we fall back on using the fact that a
pdf is completely characterized by all of its moments. If the pdf is Gaussian, then, as is well known,
two moments — the mean and variance — suffice to completely specify this pdf. For most pdfs, an
infinite number of moments are required. Of course, it is not possible, in practice, to determine an
infinite number of moments; so, instead, we compute as many moments as we believe are necessary
to extract as much information as possible from the data. At the very least, we use two moments
— the mean and variance; and, in some cases, we even use higher-than-second-order moments.

To just use the first-order moments would not be very useful, because random uncertainty
requires an understanding of dispersion about the mean, and this information is provided by the
variance. So, our accepted probabilistic modeling of random uncertainty focuses to a large extent
on methods that use at least the first two moments of a pdf. This is, for example, why designs
based on minimizing mean-squared errors are so popular.

Should we expect any less of a FLS for rule uncertainties ? To-date, we may view the output of
a type-1 FLS, as analogous to the mean of a pdf. We may view computing the defuzzified output
of a type-1 FLS as analogous to computing the mean of a pdf. Just as variance provides a measure
of dispersion about the mean, and is almost always used to capture more about probabilistic
uncertainty in practical statistical-based designs , FLS’s also need some measure of dispersion to
capture more about rule uncertainties than just a single number, Type-2 FL provides this measure
of dispersion, and seems to be as fundamental to the design of systems that include linguistic
and/or numerical uncertainties, that translate into rule uncertainties, as variance is to the mean.

Let us now familiarize ourselves with the concept of a type-2 fuzzy set.




1.1 The Concept of a Type-2 Fuzzy Set

The concept of a type-2 fuzzy set was introduced by Zadeh [30] as an extension of the concept of
an ordinary fuzzy set (henceforth called a type-1 fuzzy set). A type-2 fuzzy set is characterized by
a fuzzy membership function, i.e., the membership value (or membership grade) for each element
of this set is a fuzzy set in [0, 1], unlike a type-1 set where the membership grade is a crisp number
in [0,1]. Such sets can be used in situations where there is uncertainty about the membership
grades themselves, e.g., an uncertainty in the shape of the membership function or in some of its
parameters. Consider the transition from ordinary sets to fuzzy sets. When we cannot determine
the membership of an element in a set as 0 or 1, we use fuzzy sets of type-1. Similarly, when the
circumstances are so fuzzy that we have trouble determining the membership grade even as a crisp
number in [0, 1], we use fuzzy sets of type-2.

This does not mean that we need to have extraordinarily fuzzy circumstances to use type-2
sets. We can look at the situation from a different perspective. When something is uncertain (e.g.,
a measurement), we have trouble determining its exact value, and in this case, using type-1 sets,
of course, makes more sense than using crisp sets. But then, even in the type-1 sets, we specify
the membership functions exactly, which seems counter-intuitive. If we can not determine the
exact value of an uncertain quantity, how can we determine its exact membership grade in a fuzzy
set 7 Of course, this criticism applies to type-2 sets as well, because even though the membership
grade is fuzzy, we specify the membership function of the membership grade exactly, which again
seems counter-intuitive. If we continue thinking along these lines, we can say that no finite-type
fuzzy set can represent uncertainty “completely”. So, ideally, we need to use a type-oo fuzzy set
to “completely” represent uncertainty ! Of course, we can not do this in practice, so we have to
use some finite-type sets. So, type-1 fuzzy sets can be thought of as a first-order approzimation
to the uncertainty in real life. Our work with type-2 fuzzy sets tries to get at a second-order
approzimation. One may look at higher types too; but, as we go on to higher types, the complexity
of the system increases rapidly. So, in this work we deal just with type-2 sets.

1.2 Examples of Type-2 Fuzzy Sets

Example 1.1 Consider the case of a fuzzy set characterized by a Gaussian membership function
with mean m and a standard deviation that can take values in [0y, 03], i.e.,

p(z) = e AT

o € [01,09] (1.1)

Corresponding to each value of o, we will get a different membership curve (see Fig. 1.1). So, the
membership grade of any particular = (except for & = m) can take any of a number of possible
values depending upon the value of o, i.c., the membership grade is not a crisp number, it is a
fuzzy set. Figure 1.1 shows the domain of the fuzzy set associated with z = 0.65; however, the
membership function associated with this fuzzy set is not shown in the figure. We return to this
point in Section 1.4. O

Example 1.2 Consider the case of a fuzzy set with a Gaussian membership function having a fixed
standard deviation o, but an uncertain mean, taking values in [m;, ms], i.e.,

plz)=e” 3=y

; m € [my,ma] (1.2)
Again, p(z) is a fuzzy set. Figure 1.2 shows an example of such a set. As in Fig. 1.1, it is not
possible to deduce the membership function associated with the fuzzy membership of any x from
Fig. 1.2. O



1 T T r
0.9
oap
07r
06
=
ED.S“
e
0.4r Hrra iy
:.ﬂuu.r:'p"'; !
Saangiiili!
+ rr il
0.3 Vit !
et
ozr
o
Z :

(=]

Figure 1.1: A type-2 fuzzy set representing a type-1 fuzzy set with uncertain standard deviation.
The standard deviation is uncertain in the interval [0.1,0.2]. The figure also shows the domain
of the type-1 fuzzy set corresponding to x = 0.65; however, the membership grades in this type-1
fuzzy set are not shown.
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Figure 1.2: A type-2 fuzzy set representing a type-1 fuzzy set with uncertain mean. The mean
is uncertain in the interval [0.4,0.6). The figure also shows the domain of the type-1 fuzzy set
corresponding to x = 0.65; however, the membership grades in this type-1 fuzzy set are not shown.



In Examples 1.1 and 1.2, we considered fuzzy sets with Gaussian membership functions which
had their standard deviations or means uncertain. Such sets can be used in situations where we
want to use Gaussian fuzzy sets, but are not certain about their center or spread locations. If the
situation is such, however, that we are uncertain even about the shape of the membership function
(Gaussian / triangular / any other arbitrary shape), we can use a Gaussian type-2 fuzzy set defined
as in Example 1.3.

Example 1.3 Consider a type-1 fuzzy set characterized by a Gaussian membership function (mean
M and standard deviation o), which gives one crisp membership m(z) for each input z € X, where

m(z) = e 3R (1.3)

This is depicted in Fig. 1.3. Now, imagine that this membership of & is a fuzzy set. Let us
call the domain-elements of this set primary memberships of x (denoted by ) and membership
grades of these primary memberships secondary memberships of x [denoted by pa(w,p1)]. So,
for a fixed o, we get a type-1 fuzzy set whose domain-elements are primary memberships of z
and whose corresponding membership grades are secondary memberships of x. If we assume that
the secondary memberships follow a Gaussian with mean m(z) and standard deviation o, as in
Fig. 1.3, we can describe the secondary membership function for each x as

—miz)
pa(z, ) = e~ HEEEE) (1.4)
where 1 € [0,1] and m is as in (1.3). Equations (1.3) and (1.4) can be combined as
o =AM .2
- up—e Tz
pa(, ) = e3¢ om ?; (1.5)

where y; € [0,1]. Equation (1.5) stresses the fact that the secondary membership function can
be viewed as a real function of two variables, © and ;. The membership grade for each z, p(x),
which represents all the primary memberships and their corresponding secondary memberships
taken together, can be written as

wz) = [ oz )/ ; veX (1.6)
Nle[ovll

where pia(x, pp) is as in (1.5).

Observe that Example 1.3 is different than Examples 1.1 and 1.2 in that in Example 1.3 we are
explicitly stating the secondary membership function. Actual values of the secondary membership
grades were not defined in Examples 1.1 and 1.2. We return to Example 1.3 in Section 1.4. O

Now, let’s see a situation in real life which needs to be described using type-2 fuzzy sets.

Example 1.4 Consider classes of people with below average, average and above average earnings.
These sets, of course, are fuzzy. Now, if we ask someone what memberships s/he would have in
these three fuzzy sets, most likely we are going to get an answer of the form “a high membership
in above average earnings and low in others”, rather than crisp numbers as memberships. This
means that the membership grade is a fuzzy set or in other words, the aforementioned three fuzzy
sets are of type-2 ! Observe that in this example, the person who is asked the question, knows
her/his own income exactly, but the uncertainty in the membership grade arises due to the fact
that s/he doesn’t know the exact parameters of the membership functions for these 3 sets. (If
Gaussian membership functions are used, this is analogous to ambiguity in mean and/or variance.)

In this example, “a high membership in above average” cannot be rephrased as “highly above
average”. In “highly above average”, “highly” is a hedge on “above average”, but after the appli-
cation of this hedge, all we get is another type-1 fuzzy set, “highly above average”. Now, if the

4
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Figure 1.3: Figure for Example 1.3. The Gaussian m(z) and membership grade corresponding to
2 = z; are shown. The membership grade is a Gaussian type-1 fuzzy set contained in [0, 1] with
mean m(z;).

same person were asked what would be her/his membership in the set “highly above average”, s/he
would probably say medium, which means the membership is again fuzzy and the set is still best
described as a type-2 fuzzy set. If the person could not give a crisp membership for the “above
average” set, the person would definitely not be able to give a crisp membership for the “highly
above average” set [this new set is just a (possibly) non-linear transformation of the original one].
a

Let us contrast this example with that of a non-singleton fuzzy logic system [19]. Let’s say
we fix all the parameters of the membership functions characterizing the above 3 fuzzy sets and
then ask someone how much membership a rich person would have in these three sets. Again, we
are most probably going to get a fuzzy answer, but now the fuzziness is due to the uncertainty in
the data (a rich person) and it can be modelled by using non-singleton systems. A Non-Singleton
system deals with the uncertainty in the input, whereas a type-2 system deals with the uncertainty
in our knowledge about the system. Hence, type-2 systems should be robust to rule uncertainties,
whereas a non-singleton system is robust to measurement uncertainties.

From now on, we will use the membership terminology introduced in Example 1.3. Membership
grade is a synonym for “degree of membership”, which is a crisp number for type-1 sets, a type-1
set for type-2 sets, and in general, a type-k set for type-(k -+ 1) sets. In the case of type-2 sets,
primary memberships are the domain-elements of a membership grade and secondary memberships
are membership grades of primary memberships. For example, in (1.5) and (1.6), p; indicates the
primary memberships; po(z, ity ) indicates the secondary memberships; and p(z), which represents
all the primary and secondary memberships taken together, indicates the membership grade of
x € X. Thus, for a type-1 set, u(z) is short for gy (z) and po(z, 1) = 1; and, for a type-2 set, pu(x)
indicates the type-1 set fm pa(zy gy ) /1y -

A type-2 fuzzy set can also be thought of as a fuzzy valued function, which assigns to every
x € X, a type-1 fuzzy membership grade. In this sense, we will call X the domain of the type-2
fuzzy set.

1.3 Some Useful Type-2 Sets

Here we formally define three kinds of type-2 sets that we will talk about often in this report :



1. A Gaussian type-2 set is one in which the membership grade of every domain point is a Gaussian
type-1 set contained in [0, 1].

Example 1.3 shows an example of a Gaussian type-2 set. Note that it is not necessary for the
principal membership function of a Gaussian type-2 set to also be a Gaussian, as is the case in
Example 1.3. Figure 1.9 shows an example of a Gaussian type-2 set having a triangular principal
membership function, using the 2-D pictorial representation described in Section 1.4.

2. An interval type-2 set is one in which the membership grade of every domain point is a crisp
set whose domain is some interval contained in [0, 1].

In Example 1.1, if we attach equal degree of uncertainty to every value of ¢ in [0y,02], i.e., if
we let the standard deviation o be a crisp set with domain [0y, 2], we can set all the secondary
memberships of the resulting type-2 set equal to 1. The membership grade corresponding to every
x in this type-2 set, now, becomes a crisp set, and the type-2 set becomes an interval type-2 set
(see Section 1.4).

Note that, although every membership grade of an interval type-2 set is a crisp set, the set
itself is type-2, because the memberships are sets rather than crisp numbers. Interval type-2 sets
are the simplest kind of type-2 sets to deal with, since all the secondary memberships are unity;
and, we will often discuss them. We will refer to the membership grades of an interval type-2 set
as “interval type-1 sets”.

3. A triangular type-2 set is one in which the membership grade of every domain point is a
triangular type-1 set contained in [0, 1].

Unless otherwise specified, a “triangle” will always mean a “symmetrical triangle” in our work.

The results for triangular type-2 sets are collected in [8].

1.4 Pictorial Representation

Now, let’s try to represent a type-2 membership function pictorially. Observe that our earlier
pictorial representations using 2-D plots (Figs. 1.1 and 1.2) did not indicate the numerical values
of secondary memberships. All that one can see from those diagrams is just the set of primary
memberships corresponding to each x. So, these representations do not contain all the information
that we have. Recall the example of the Gaussian fuzzy set with uncertain mean. The 2-D diagram
in Fig. 1.2 does not depend on the actual shape of the membership function for the fuzzy mean. It
will remain the same as long as the support of the fuzzy set for the mean is [m;, ms], which shows
that these diagrams are not unique, i.e., we can get the same diagrammatic representation for two
or more distinct situations. For example, Fig. 1.2 would remain unchanged if the fuzzy set for
the mean followed a Gaussian membership curve or a triangular membership curve as long as the
support is [m;, ms]. This indicates that the earlier pictorial representations are not “complete”.
A type-2 membership function can be viewed as a function of two variables. For each input z
and a primary membership y;, we get a secondary membership, which is a crisp number. Let’s call
this secondary membership po. So, the membership function of a type-2 set can be represented as

oz, ) + X x[0,1] = [0,1] (1.7)

where X is the space of all inputs @. Pictorially, we can display this function as a 3-D diagram
with = and p, as independent variables and p» as the dependent variable.

Recall Example 1.1 . Suppose that the degree of uncertainty that we attach to each value of ¢ in
the range [0, 2] is the same; in other words, let the standard deviation o be a crisp set with domain
[01,02). Since, each value of standard deviation is equally uncertain, we set all the secondary
memberships of the resulting type-2 set equal to 1, i.e., the membership grade corresponding to
each z is an interval in [0,1] (the resulting type-2 set is an interval type-2 set). Figure 1.4 (a)
shows a 3-D representation of this type-2 set, assuming oy = 0.1 and o2 = 0.2, and Fig. 1.4 (b)
shows the membership grade for « = 0.65; the domain of this membership grade is indicated in



Fig. 1.1. Figure 1.5 (a) shows the 3-D diagram for Example 1.2, drawn by assuming that the mean
m is a crisp set with domain [m;,m»] = [0.4,0.6]. Figure 1.5 (b) shows the membership grade
corresponding to = 0.65 in this interval type-2 set. See Appendix A for examples which let the
standard deviation of the Gaussian in Example 1.1 and the mean of the Gaussian in Example 1.2
be Gaussian type-1 sets.
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Figure 1.4: (a) Three dimensional representation of the type-2 set in Example 1.1, assuming that
the standard deviation is a crisp set with domain [o},02] = [0.1,0.2]. The membership grade for
each z is a crisp set. (b) The membership grade corresponding to = = 0.65.
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Figure 1.5: (a) Three dimensional representation of the type-2 set in Example 1.2, assuming that
the mean is a crisp set with domain [m;,ms] = [0.4,0.6]. The membership grade for each z is a
crisp set. (b) The membership grade corresponding to & = 0.65.

Figure 1.6 (a) depicts a 3-D representation of (1.5) and Fig. 1.6 (b) depicts the fuzzy type-1
set pu(x) for an arbitrary value of z (obtained by taking a cross-section of Fig. 1.6 parallel to the
jt1 — ptp axes). u(z) is a Gaussian, because we constructed it that way. Observe the similarity with
a type-1 pictorial representation, where we display the membership function of a type-1 set as a
2-D picture (function of one variable, ).
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Figure 1.6: (a) Three dimensional representation of a Gaussian type-2 fuzzy set, having a Gaussian
principal membership function. The membership grade for each x is Gaussian by construction. All
these Gaussians have the same standard deviation. (b) The membership grade corresponding to
z = 6.5.

Although the 3-D representation of a type-2 set conveys all the information that we have about
the set, it is not very helpful to use these 3-D diagrams when we have to show more than one set
on the same axes. Additionally, they can be quite complicated to construct. So, in spite of the
aforementioned “incompleteness” of 2-D representations, we continue to use them in our analyses
of type-2 sets. If there is a need to show the secondary membership functions explicitly, we will
use a 3-D representation.

Figure 1.7 shows a 2-D representation of the Gaussian type-2 set depicted in Fig. 1.6 (a). We
call the set of primary memberships that have secondary membership grades equal to 1, the princi-
pal membership function of the type-2 set (shown with a bold line in Fig. 1.7). From (1.4), we can
see that m(x) in (1.3) is the principal membership function. Since we are using Gaussian secondary
membership functions for each input, only one primary membership has a secondary membership
equal to 1. This seems reasonable, because the secondary membership function indicates the un-
certainty in determining the membership grade for a particular input. We will often use secondary
membership functions like Gaussians or triangles, which assign unity membership to only one point
in their domain. Observe that this is not true for the crisp secondary membership functions shown
in Figs. 1.4 and 1.5.

The concept of a principal membership function also illustrates the fact that a type-1 fuzzy set
can be thought of as a special case of a type-2 fuzzy set. We can think of a type-1 fuzzy set as a type-
2 fuzzy set whose membership grades are type-1 fuzzy singletons, having secondary membership
equal to unity for only one primary membership and zero for all others, i.e., we can think of the
principal membership function of a type-2 set as an embedded type-1 set. Our fundamental design
requirement in this work is that our type-2 system results reduce to type-1 results when we replace
all the type-2 sets by their principal membership functions.

Figure 1.8 (a) shows a 3-D representation of a Gaussian type-2 set having a triangular principal
membership function, and Fig. 1.8 (b) shows the membership grade for z = 6.5. The 2-D repre-
sentation of this set is depicted in Fig. 1.9. The difference between the two Gaussian type-2 sets,
in Figs. 1.6 (a) and 1.8 (a), is seen more clearly in the 2-D representation.

The secondary membership functions for the Gaussian type-2 sets depicted in Figs. 1.6 and
1.8 have constant standard deviations, implying that the uncertainty in the membership grades
remains constant for all . Intuitively, however, it seems more appropriate that membership values



Figure 1.7: Two-dimensional representation of the Gaussian type-2 set depicted in Fig. 1.6 (a). The
standard deviations of the secondary Gaussians are constant. The principal membership function,
i.e., the set of primary memberships having secondary membership equal to 1, is indicated with
a thick line. This principal membership function is a Gaussian because of the way the set is
constructed. Intensity of the shading is approximately proportional to secondary membership
grades. Darker areas indicate higher secondary memberships. The flat portion near the center and
near the two ends, appears because primary memberships cannot be less than 0 or greater than 1
and so the Gaussians have to be “clipped”.
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Figure 1.8: (a) Three dimensional representation of a Gaussian type-2 fuzzy set, having a triangular
principal membership function. The membership grade for each « is Gaussian by construction. All
these Gaussians have the same standard deviation. (b) The membership grade corresponding to
x = 6.5,



Figure 1.9: Two-dimensional representation of the Gaussian type-2 set depicted in Fig. 1.8 (a). The
principal membership function is triangular. The standard deviations of the secondary Gaussians
are constant.

near zero should have less uncertainty associated with them than membership values near 1. In
other words, it seems more appropriate that the uncertainty in a membership value be expressible
as some percentage of it. Such a type-2 set (Gaussian type-2 with Gaussian principal membership
function) is depicted in Fig. 1.10. The secondary membership functions of this set have decreasing
standard deviations, implying that the uncertainty in the membership grades decreases as x moves
away from the mean of the principal membership function.

Figure 1.10: Two-dimensional representation of a Gaussian type-2 set, where standard deviations
of the secondary Gaussians decrease by design, as  moves away from the mean of the principal
membership function.
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1.5 Applications of Type-2 Fuzzy Sets

Type-1 FLSs have been successfully used in widely different applications (see, for example, [5],
[10], [11], [12], [13], [15], [19], [24], [25], [28], [16] and references therein). In this section, we give
examples of some applications of fuzzy logic systems, which can be better modelled by type-2 sets.

Type-2 sets can be used to convey the uncertainties in membership functions of type-1 sets,
due to the dependence of the membership functions on available linguistic and numerical informa-
tion. Linguistic information (e.g., rules from experts), in general, does not give any information
about the shapes of the membership functions. When membership functions are determined or
tuned based on numerical data, the uncertainty in the numerical data, e.g., noise, translates into
uncertainty in the membership functions. In all such cases, any available information about the
linguistic/numerical uncertainty can be incorporated in the type-2 framework. Here, we describe
three possible applications :

e When rules are collected by surveying experts, if we first determine the locations and spreads
of fuzzy sets, associated with antecedent and consequent terms, based on the information
gathered from surveys, it is very likely that we will get different answers from each survey.
This leads to statistical uncertainties about locations and spreads of antecedent and conse-
quent fuzzy sets. Such uncertainties can be incorporated into the descriptions of these sets
using type-2 membership functions. In addition, usually, different experts give different an-
swers to the same rule-question, which results in rules that have the same antecedents but
different consequents. In such a case, it is also possible to represent the output of the FLS
built from these rules as a fuzzy set rather than a crisp number. This can be achieved within
the type-2 framework. We examine this application in Chapter 6.

e A fuzzy logic modulation classifier described in [28] centers type-1 Gaussian membership
functions at constellation points in the in-phase/quadrature plane. In practice, the constel-
lation points drift. This is analogous to the situation described in Fig. 1.2 [Gaussian with
uncertain mean]; so, a type-2 formulation can capture this drift.

e All previous applications of FL to forecasting do not account for the noise in training data. In
forecasting, since antecedents and consequents are the same variable, the uncertainty during
training exists on both the antecedents and consequents. If we have information about the
level of uncertainty, it can be used when we model antecedents and consequents as type-2
sets. We also examine this application in Chapter 6.

1.6 Existing Literature on Type-2 Sets

Here, we give a brief overview of the work on type-2 sets that has already been done by others.
Zadeh [30] introduced the concept of a type-2 fuzzy set; however, the first paper that we have found
that describes set theoretic operations on type-2 sets and properties of membership grades of type-2
sets, is by Mizumoto and Tanaka [17]. They examine type-2 fuzzy sets under the operations of
algebraic product and algebraic sum in [18]. Nieminen [20] provides more detail about algebraic
structure of type-2 sets.

The join and meet operations between fuzzy numbers under minimum #-norm have been dis-
cussed in the fuzzy arithmetic literature, under titles like “minimum and maximum of fuzzy num-
bers” or “fuzzification of minimum and maximum operations” (see, for example [5, 10]).

Dubois and Prade [4, 5] discuss fuzzy-valued logic and give a formula (without proof) for the
composition of type-2 relations as an extension of the type-1 sup-star composition. This formula is
the same as our extended sup-star composition of type-2 relations in Chapter 4. All of their work
makes use of the minimum #-norm.

Literature on the applications of type-2 sets is scarce. Some examples are [1] and [29] for
decision making, and [27] for solving fuzzy relational equations.

11



Interval type-2 sets are generally referred to as “interval valued fuzzy sets” [12, 30] in the
literature. Some examples of the literature about interval valued fuzzy sets are (7, 23].

1.7 Outline

As is apparent from Section 1.6, not much work has been done in almost any area related to type-2
sets. So, in Chapter 2, we go back to the basics and discuss the set theoretic operations of unions,
intersections and complements of type-2 sets and also algebraic operations on the membership
grades of type-2 sets. We also introduce the concept of the centroid of a type-2 set in Chapter 2.
In Chapter 3, we discuss properties of membership grades of type-2 sets in detail, and in Chapter 4,
we describe type-2 fuzzy relations and operations between them. In Chapter 5, we discuss the im-
plementation of type-2 FLS’s; and, in Chapter 6, we present two examples (surveys and forecasting)
that illustrate the use of a type-2 FLS. Finally, in Chapter 7, we present our conclusions.

12



Chapter 2

Operations on Type-2 Sets

In this chapter, we examine set theoretic operations on type-2 sets. We use the following notation.
A type-1 fuzzy set P is denoted as P. A type-2 fuzzy set A is denoted as A. Consequently, if zg

is an element of A, the membership grade of z in A is denoted as fz (z0). Recall that ,&E(Iu) is
itself a type-1 fuzzy set whose elements and their memberships are, respectively, the primary and
secondary memberships of zg.

2.1 Set Theoretic Operations

To begin, we recall some facts about type-1 sets. A fuzzy subset A of aset X is represented as
follows :

A

Il

pi (@) /@ + pg(@)/z2 + o + px(@n) /20
= Zug(wi)/tf, ri€ X (2.1)

where the sum represents union. If the support of A is a continuum, we write
A= /Y i (@) (2.2)

Suppose, we have 2 type-1 fuzzy sets F, and F, characterized by membership functions #; and
4, as follows :

Fy

Z 01(yi) /yi (2.3)

F,

Z 02(y:) /i (2.4)

Using maz t-conorm and min t-norm, the membership functions of the union, intersection and
complement of these sets are given as [12] :

pior, W) = max {601 (y:), 02(vi) } Vi (2.5)
e e, (i) = min {1(y0),O2(u)} Vi (2.)
pg (i) = 1-61(y:) Vi (2.7)
pe yi) = 1= 02(y:) Vi (2.8)
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Since F, and F, are fuzzy sets of type-1, their membership grades 6;(y;) and 6.(y;) are crisp
numbers and therefore, for each y;, we can perform all the operations on the RHSs of Eqs. (2.5) -
(2.8) in one step.

Now, suppose that F, and f‘z are type-2 fuzzy sets, so that the membership grades 8, (y;) and
02 (y;) are type-1 fuzzy sets. In order to compute the union, intersection and complement of I,

and F,, we need to extend the binary operations of min and maz, and the unary operation of
negation to fuzzy sets. We use Zadeh's Extension Principle for this purpose, which we state here
for reference purposes.

The Extension Principle [5, 30] : Let X be a Cartesian product of universes, X = X} x Xy x
<oox X, and f\l, As,...,A, be fuzzy sets in Xy, Xo, ...,X,, respectively. Let f be a mapping from
X to a universe Y such that y = f(zy,...,z,) € Y. Zadeh’s Extension Principle allows us to induce
from the r fuzzy sets A a fuzzy set BonY, through f, such that

sup min {p3 (1), p5_(2r)} (2.9)

T1yeen@r Y=F(T1500025)

paly) = 0if f7'(y) =0

Hi(y)

where f~!(y) is the inverse image of y under f. (]

Equation (2.9) makes use of the maz t-conorm. If for any primary membership in the union, we
get more than one choice of secondary memberships, the effective secondary membership is taken
to be the maximum of all these choices.

Equation (2.9) assumes that x;,...,z, are non-interactive or that there is no joint constraint
on Ti,...,&,. For more discussion about this, see Appendix B.

Zadeh defined the Extension Principle using min t-norm and maz t-conorm. The use of these
operations is implicit in (2.10) and (2.9). There have been attempts to use other t-norms and
t-conorms in place of min and maz, respectively, e.g. [17], [5]. We will work mostly with min or
product t-norm and maz t-conorm.

The Extension Principle can be viewed as a composition of fuzzy relations [5]. Let R be the
Cartesian product A, x --- x A, defined as [5]

Ay x---xA, = / min {p3 (€1), - pz, (@r) }/ (@1, 00 Tr) (2.10)
XixooxXn

and let S be the ordinary relation defined by pus(zi,...,z.,y) = 1 iff y = f(zy,...,2,). Then, we
have B = f(_&l - f&,.) = Ro S, ie., the Extension Principle appears as a particular case of the
composition of fuzzy relations.

Finally, when we replace min in (2.9) by another t-norm, we are replacing the sup-min compo-
sition by the more general sup-x composition. O

Consider two fuzzy sets of type-2, A € X and B € X. Let ﬁi(x) and fzé(:r] be two fuzzy grades
(fuzzy sets in J C [0,1]) of these two sets, represented, for each & € X, as

ﬂ,}:\[.’]"] = f:(ul}/ul + fz(ug)/uz + ...+ fr(“m)/um
= Zfz(u,-)/u;, i uwi €J (2.11)
i 1:3(3:) = gm(tﬂl)/‘tm + gz(wz)/‘wz + ot gw(wﬂ)/“"n

= Zg_,,(wj)/mj, i wi;eJ (2.12)
J

Observe that in (2.11) and (2.12), u; and w; are just dummy variables used to differentiate between

the different primary memberships of x in A and B, respectively.
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Using (2.9), a real binary operation * can be extended to the fuzzy grades, i3 (z) and ,&é(:r:),

iz (2) * i (2) = 3 ( fols) A gm(wj)) /(i *w;) (2.13)

ij

as

where A indicates min. Note that, if we use a t-norm other than min, we replace the A in (2.13)
with the chosen t-norm [see (B.5)].

Using the Extension Principle, the membership grades for union, intersection and negation of
type-2 fuzzy sets A and B can be defined as follows [17] :

Union

=8
C
=
13
=i
&
Il

(@) Ujiz(z) 5 z€X
(3 felwidfus) 1 (3 o) /)
i j
= Z (fx(u,-) A g:(w_,-))/(ui V wj) (2.14)

iJ

Il

Intersection
ANnB &z s(r) = fiz (x) Nig(z) ; z€X
= (X fetwu) 0 (3 s (wi)/ws)
i J
=3 (f,(u,-) Agz(wj})/(u,- Aw;) (2.15)

£.F

Complement

=S
¢
=i
5
Il

"ﬁ‘i(i‘f) : zeEX
PIFACOICERTD) (2.16)

wein

Il

where V and A represent maz and min respectively. As in [17], in the sequel, we refer to the
operations U, N and — as join, meet and negation, respectively. In the continuous case, we use a
notation similar to that in (2.2) and get expressions similar to those in (2.14), (2.15) and (2.16).

In order to compute the union (or intersection) of A and B, we perform the join (or meet)

operation between the membership grades of A and B at every domain point x € X; and, in order
to compute the complement of A (or B), we perform the negation operation on the membership

grade of A (or B) at every z € X.

It can be easily shown that these extended operations reduce to the original ones when we deal
with type-1 sets. In case of type-1 sets, f.(u;) [9-(w;)] will have a value equal to 1 for only one
of the indices, say iy (ji); the rest of f;(u;)s and g.(w;)s will all be zero (since the membership
grades are not fuzzy). Consider the join operation. When we find the minima between all the
f2(ui)s and g, (w;)s, the only pair that will give a non-zero answer is { fz(ui,), g-(w;,)}, and their
minimum value will be equal to 1. All other minima will be 0. So, the union of the two sets will
consist of only one element u;, V wj, or max{u;,,w;, }, which is what we would expect. The same
applies to the meet operation. The negation is even easier to see. If u;, has a membership of 1 in
i (xz) (the rest of the memberships being zero), 1 — u;, will have a membership of 1 in ﬁi(x).
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Example 2.1 Consider two type-2 sets A and B, and, for a particular element z, let the membership

grades in these two sets be given as

ﬂf\(r) = 0.5/0+0.7/0.1
ﬁé(:c) = 0.3/0.4+0.9/0.8
Then, from (2.14), we have
iz (@) = iz(e)Upg(e)

= (0.5/0+0.7/0.1)u (0.3/0.4 + 0.9/0.8)
0.5A03  05A09 0.7A03 0.7A09

0v04 " 0v0s T01vod T 01v0R
0.3/0.4 + 0.5/0.8 + 0.3/0.4 + 0.7/0.8

= max{0.3,0.3}/0.4 + max{0.5,0.7}/0.8
= 0.3/0.4+0.7/0.8

Additionally, from (2.15), we have

zag®) = iz(e)Npg(r)
= (0.5/0+0.7/0.1)N(0.3/0.4 + 0.9/0.8)
0.5A0.3 i 0.5A0.9 " 0.7A0.3 3 0.7A0.9
0A0.4 0A08  01A04 0.1A08
= 0.3/0+4+0.5/0+0.3/0.14+0.7/0.1
= max{0.3,0.5}/0+ max{0.3,0.7}/0.1
= 0.5/0+0.7/0.1

Finally, from (2.16), we have

piz(z) = —pz(@)
= 0.5/(1-0)+0.7/(1-0.1)
= 0.5/1+0.7/0.9

a

Algebraic product is another popular t-norm operation, especially in engineering applications
[15]. The union and intersection of type-2 fuzzy sets under product t-norm and maz t-conorm can

be defined as follows :

Union
AUB& iz g@) = pz@)Upg(e)
= (fo(u,v)/u,;) u (Zgz('!ﬂj}/'ﬂlj)
i i
= Y (foluidga(w)))/(us v wy)
i,]
Intersection
AnB o fizqp@) = ig(e)Nig(e)

(2.17)
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(3 fetwidfus) 0 (32 geaws) ;)
i J
Z (fm(u;)g,,(wj))/(u;wj) (2.18)

i,J

Observe that, we use the same symbols for jein and meet operations, as we used in case of the
min t-norm. The definition of complement does not change.

Next, we take a closer look at the operations of join, meet and negation, under both min and
product t-norms.

2.2 A Closer Look at Type-2 Set Theoretic Operations

From Section 2.1, we see that the membership grade of any point in the union or intersection
of two type-2 fuzzy sets is obtained by the join or meet of the membership grades of that point,
respectively. Now, we look more closely at these two operations. Most of the discussion below
concerns the join or meet of two sets at a time; however, we also state generalized versions of our
results when more than two sets are involved in the join or meet operations.

We will generally deal with real fuzzy sets, i.e., fuzzy subsets of the real line, which are convez
and normal. Such sets are also known as fuzzy numbers [5, 10]; therefore, sometimes we will use
the terms fuzzy sets and fuzzy numbers interchangeably.

2.2.1 Join and Meet under Minimum {-norm

As Theorem 2.1 below illustrates, join and meet operations with min t-norm give particularly
simple results, if the participating type-1 sets are convex and normal. N

In part (a) of Theorem 2.1, we talk about type-1 fuzzy sets F and G having membership
functions f and g. To connect this with our earlier discussion, we can think of two type-2 fuzzy
sets A and B as in (2.11) and (2.12). Then, for an arbitrary input zg, if we rename ,ﬁf\[:no) as F
and fiz (zo) as G, and also drop the subscript 2o on the membership functions f., and g.,, we can
apply Theorem 2.1 to compute ;";:\Ué(a:g) and fiz_=(z9). Part (b) of Theorem 2.1 generalizes the

ANB
results in part (a) to the join/meet of more than two sets.

Theorem 2.1 (a) Suppose that we have two conves, normal, type-1 real fuzzy sets F and G char-
acterized by membership functions f and g, respectively. Let vg € R and vy € R be such that
vg < vy and f(ve) = g(v1) = 1. Then the membership functions of the join and meet of F and G,
using max t-conorm and min t-norm, can be expressed as

f(@)Ag(O) 3 8<wo
neui(0) = 9(0) ; <8<y (2.19)
fO)vgd) ; 0>u

and
t fO)vg) ; 8<wo
HinG(9) = f(6) ; <0< (2.20)
f@)Agd) 5 8>u0

(b) Suppose that we have n convex, normal, type-1 real fuzzy sets Fl....,f"n characterized by
membership functions fy,..., fn, respectively. Let vy,va, ..., v, be real numbers such that v, <
vy < oo < wy, and fi(v) = falve) = -+ = falvn) = 1. Then, using maz t-conorm and min
t-norm,
Ny fi(0) 5 0<u
pon #.0) =S A fil®) 5 w<O<vn ; 1<k<n-1 (2:21)
v:l-_—-l fs(g) ;o 0>,
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and
Vie, fil®) 5 0<u
b 5@ =4 AL A6 3 w<8<um 5 1<k<n—1 (2:22)
o A:]_—_l fl(ﬂ) ; 8> Un
(]

See Appendix C.1 for the proof of Theorem 2.1.

NOTE : Dubois and Prade present the same result given in part (a) of Theorem 2.1 in a different
context and a different manner in [3]. They present it in the context of fuzzification of maz and min
operations. Though their method of proof is very similar to ours, they prove the result for a special
case, where f and g have at most three points of intersection and one needs to keep track of the
points of intersection of f and g to use their theorem. We reprove this theorem in a general setting
in Appendix C.1. We believe that our statements of pp & (f) and ppqa(6) are more amenable to
computer implementations than those of Dubois and Prade. Generalization to more than two sets
[part (b) of Theorem 2.1] is also difficult in case of Dubois and Prade’s result.

1
il ]
05k Join ]
0
0 v v, 1
w O
1.
ot Meet
o \\'
0 10
\I'n W, {c) (1]

Figure 2.1: An example of two general membership functions, f and g, that satisfy the requirements
of Theorem 2.1, part (a). Observe that for set F, any of the points at which f attains its maximum
value of unity may be chosen as vg. We arbitrarily chose vp = 1.8. (a) The three possibilities :
0 < vg, vg < 0> < vy, 03 > v;. (b) Result of the join operation. (c¢) Result of the meet operation.
The t-norm used is min.

Figures 2.1 and 2.2 show examples of application of Theorem 2.1. As a consequence of Theo-
rem 2.1, we have the following important result :

Corollary 2.1 (a) If f(#) is the membership function of a convex, normal type-1 real fuzzy set F,
and if G is another type-1 set with membership function f(0 — k), where k is a positive constant,
then, FuUG=Gand FNG=F. ) ~

(b) If we have n convez, normal, type-1 fuzzy sets Fy, ..., F, characterized by membership functions
fiy--o, fn, respectively, such that fi(8) = L0 —k;), and 0 =k < ko--- < kyp; then U F;, = F,
and M, F, = F,. O

See Appendix C.3 for the proof of this corollary. Figures 2.3 and 2.4 illustrate Corollary 2.1.

It can be observed, by applying Theorem 2.1, that, if two type-1 fuzzy sets are such that
their membership functions do not touch, then Corollary 2.1 also holds true, i.e., FUG = G
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Figure 2.2: An illustration of Theorem 2.1, part (b), for Gaussians. (a) Participating Gaussians;
(b) jein; and (c) meet.
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Figure 2.3: An illustration of Corollary 2.1. (a) Convex type-1 sets *1'7 andh(-?:. The membership
functions of F and G are shifted versions of each other. (b) FUG =G. (¢c) FNG =F.
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Figure 2.4: An illustration of Corollary 2.1 for the Gaussian case. (a) Participating Gaussians; (b)
join is the Gaussian with larger mean; and (c) meet is the Gaussian with smaller mean.

and FN G = F. In the case of membership functions which extend infinitely (e.g., Gaussians),
if the two membership functions (their centers) are far away from each other, then Corollary 2.1
approximately holds true, i.e., FUG ~ G and FN G ~ F. Examples of this can be observed while
working out the union and intersection of the Gaussian type-2 sets depicted in Figs. 2.7 (a), as
explained later in this section.

Kaufmann and Gupta [10] give a result that is a bit more general than Corollary 2.1. They
give this result in terms of a-cuts as follows : Consider two fuzzy numbers A and B, such that
[}, a5]

Ay = and

B, = [b(lﬂ)vb‘(_’a)]
where a-cuts, A, and B, are crisp sets

Ay = {z|pz(z) > a}, a€[0,1]
Bo = {z|pg(z) > 2}, a€(0,1]

If Va € [0,1], a!® < 5{* and o < 05", then A < B.

In our work, we frequently deal with normalized Gaussian membership functions. Corollary 2.1
takes a particularly simple form when the sets involved are Gaussians. For two Gaussians having
the same standard deviation, the result of the join operation between them is the Gaussian with the
larger mean, and the result of the meet operation is the Gaussian with the smaller mean. Gaussians
having different standard deviations cannot be expressed as shifted versions of each other and hence
Corollary 2.1 does not apply to them. Theorem 2.1 can, of course, be used in this case. Figures 2.2
and 2.5 show examples of the join and meet operations between Gaussians having different standard
deviations, under the min t-norm.

Similar results hold for triangular, trapezoidal, or, for that matter, any other convex membership
function.

From the definition of the negation operation, it follows that :

Theorem 2.2 If a type-1 fuzzy set I has a membership function f(0) (8 € R), ~F has a member-
ship function f(1—8) (@ € R). )
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Figure 2.5: Join and meet operations between Gaussians under min t-norm. (a) Participating
Gaussians; (b) jein; and (c) meet.

See Appendix C.4 for the proof. Figure 2.6 shows an example of the negation operation.
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Figure 2.6: An illustration of the negation operation. (a) Type-1 fuzzy set G, (b) —G.

So, we perform join, meet and negation operations on membership grades of type-2 sets while
finding unions, intersections and complements of type-2 sets. Having seen how the results of these
individual operations look, let’s see how the overall type-2 set looks as a result of these operations.
Figures 2.7 and 2.8 show examples of union, intersection and complement of Gaussian fuzzy sets
using the 2-D representation introduced in Section 1.4 (see Fig. 1.10). In Fig. 2.7 (a), if we draw
a vertical line at any z, we get the membership grades of = in the two participating Gaussian
type-2 sets. These membership grades are, of course, themselves Gaussian fuzzy sets confined to
the interval [0,1]. To these two type-1 sets, we apply Theorem 2.1 and get the results for union
and intersection depicted in Figs. (b) and (c) respectively. Of course, while applying the theorem,
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we should be careful to see that F and G do satisfy all its requirements. Similarly, in Fig. 2.8 (a),
we project upwards from x to obtain it’s membership grade and then apply Theorem 2.2 to it.
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(c)

Figure 2.7: Union and Intersection of Gaussian type-2 fuzzy sets using the 2-D pictorial represen-
tation introduced in Fig. 1.10. (a) Participating sets; (b) union ; and (c) intersection.
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Figure 2.8: Complement of a Gaussian type-2 fuzzy set using the 2-D pictorial representation
introduced in Fig. 1.10. (a) Gaussian type-2 set; (b)complement.

Observe that, in Figs. 2.7 and 2.8, if we look just at the principal membership functions, we
can see that the principal membership function of the result of an operation (union, intersection or
complement) can be obtained by performing that operation on the principal membership functions
of the participating type-2 sets. So, if we replace all the type-2 sets by type-1 sets, which have
the principal membership functions of the type-2 sets as their type-1 membership functions, all
our results remain valid. This demonstrates the fact that all our type-2 operations collapse to the
correct type-1 operations.
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Theorem 2.1 considers the join and meet operations under min t-norm. Now, we examine these
operations under the product t-norm, the t-conorm being maz. This case was not considered by
Dubois and Prade in [3].

2.2.2 Join under Product {-norm

The join operation with product t-norm gives a result very similar to that in Theorem 2.1. Consider
the two convex normal type-1 fuzzy sets F' and G used in Theorem 2.1. The membership function
of the join of F and G using the maz t-conorm and product t-norm, can be expressed as

f(g)g(e) ; <y
Hiuc(0) = 9(0) 7 <0<y (2.23)
f@)vg@) ; 0>un

Figure 2.9 (b) shows an example of this operation. Comparing Figs. 2.9 (b) and 2.1 (b), we see
that results of the two join operations (with min as well as product t-norm are exactly the same.
This can be explained as follows. From (2.19) and (2.23), we see that the two results can differ
only for f < vy. In this range, the min t-norm gives f(6) A g(6) and product t-norm gives f(8)g(8).
In the example we have chosen, f(#) = 1 for 8 < vy; therefore, for our example, these two results
turn out the same. Generalization to more than two sets is also very similar to that in (2.21). It
can be obtained by replacing the minima in (2.21) with products as follows :

[Te, fi(®) ; 6<w
pup 7, 0) = Tlick4s fi(0) 3 e <O<Swpn § 1<k<n-—1 (2.24)
o v?:l fi(g) 3 0> vy,

Join

(0)

Figure 2.9: Join and meet operations under product t-norm. (a) Participating type-1 fuzzy sets;
(b) join ; (c) meet : the actual result is shown with the thin solid line and the approximation in
(2.41) with the thick dashed line.

23



Observe that (2.23) is very similar to (2.19). In fact, the information in both these pairs of
equations can be conveyed as follows : For two type-1 sets F and G described in part (a) of
Theorem 2.1,

f(@8)xg(0) ; 6<wo
tiuc () = 9(0) ; w0 (2.25)
fO)vg®) ;5 0>wn

where * denotes the t-norm operation, which corresponds to min in (2.19) and product in (2.23).
Similarly comparing (2.21) and (2.24), for n type-1 sets F,,...,F, described in part (b) of
Theorem 2.1,

TE fi0) 5 0<wm
Hun 5 (0) = T fi0) 3 e <O0<wvep 5 1<k<n-1 (2.26)
o Vi, fi(®) 5 6>,

where 7 indicates the t-norm used, min or product.
We state this result formally as :

Theorem 2.3 (a) Suppose that we have two convex, normal, type-1 real fuzzy sets F and G char-
acterized by membership functions f and g, respectively. Let vgp € R and vy € R be such that
vo < vy and f(vg) = g(v1) = 1. Then the membership functions of the join of F and G, using maz
t-conorm, can be expressed as

f(@)*g(0) ; 6<wv
g (0) = g(0) ; v <0< 0 (2.27)
f@)vg®) ; 6>u

where « denotes the t-norm operation used, min or product.

(b) Suppose that we have n convez, normal, type-1 real fuzzy sets Fl,...,f’n characterized by
membership functions fi,..., fn, respectively. Let vi,vs,...,v, be real numbers such that v, <
vy < oo < vy and fi(v1) = fa(va) = -+ = fulvn) = 1. Then, the membership function of UL, F,
ustng maz t-conorm, can be expressed as

TZfi0) 5 0<u

pun 7, 0) =9 T2 fil0) 5 <0< 5 1<k<n-1 (2.28)
V:;l ft(g) } 0> vy
where T indicates the t-norm used, min or product. O

Figures 2.10, 2.11 (b) and 2.12 (b) show results of join operations on Gaussians under product
t-norm. Note that Corollary 2.1 is not valid under product t-norm.

Example 2.2 In this example, we illustrate the use of Theorem 2.3, when Fy,..., F, are interval
type-1 sets. (We drop the tilde, since the sets are crisp.) Let the domains of Fy,..., F, be the
intervals [ly,r], ..., [ln,7a), respectively. The membership functions for these interval sets can be
expressed as

1 ; B¢ [lg,?",‘]
’”F.-w) - { 0 ; otherwise

Without loss of generality, let us also assume that {; < --- < l,. Since all the memberships in
interval type-1 sets are unity, for each F; (i = 1,...,n), any domain point can be chosen as v; (see
Theorem 2.3). Let us choose v; =1; for i = 1,...,n. To use (2.28), observe, from (2.29), that

1. fi(8) =0 for 6 < vy, =1;
2. when 0 € [vg,ve41), fi(d) =0fori=Fk+1,...,n;

(2.29)
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Figure 2.10: An illustration of (2.24) for the Gaussian case. (a) Participating Gaussians; (b) join
under product t-norm.

1 T
0.5+ i
OB rr:1 m2 1
]
(a)
1 - -
ol / \ |
00 mi m2 o 1
(b}
1
05 4
0
[t] 1

Figure 2.11: Join and meet operations between Gaussians under product t-norm. (a) Participating
Gaussians; (b) join; and (c) meet : the thin solid line depicts the actual result and the thick dashed
line shows the approximation in (2.46). Compare these results with those in Fig. 2.5 obtained using
the min t-norm.
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Figure 2.12: Join and meet operations between Gaussians, having the same standard deviation,
under product t-norm. (a) Participating Gaussians; (b) join; and (c) meet : the thin solid line
depicts the actual result and the thick dashed line shows the approximation in (2.46).

3. forv, =1, <0 <Vi,r, V&L, fi(#) =1; and,

4. for 6 > ViLyri, VI, fi(0) = 0.

Using these observations with (2.28), we can see that the U ,F; is an interval type-1 set with
domain [l,, V™ ,r;]. More generally, UL, F; is an interval type-1 set with domain [VIL,[;, Vil 7]
(recall that we assumed that [} <--- <lI,).

Note that the result in this example is true for any t-norm, since the membership grades in
interval type-1 sets are just 0 or 1. O

2.2.3 Meet under Product t-norm

The meet operation between F and G (convex, normal, type-1 fuzzy sets used in Theorem 2.1),
under the product t-norm can be represented as

FnG= / . f @/ (2:30)

Observe that this equation involves the product of primary memberships v and w rather than a min
or maz operation between them; hence, the analysis of the meet operation under product t-norm is
quite different than that of join or meet operations previously discussed.

Equation (2.30) simplifies considerably when F and G are interval type-1 sets, as we show with
an example next. (Recall, from Chapter 1, that interval type-1 sets are crisp sets whose domains
are intervals on the real line.)

Example 2.3 Let F and G be two interval type-1 sets with domains [z, 7] and [ly, r,], respectively.
Using (2.30), the meet between F and G, under product t-norm, can be obtained as

FNG = /.,.e;- fweau s 13 las) (2.31)

Observe, from (2.31), that
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e cach term in F'TG is equal to the product vw for some v € F and w € G, the smallest term
being l;l, and the largest ry7,; and,

e since both F and G have continuous domains, F' M G also has a continuous domain;

consequently, F'T1 G is an interval type-1 set with domain [Ifl,,7sr,], i.e.,
FAG= f 1/v (2.32)
vE[lplg,ryry]

In a similar manner, the meet, M., F;, of n interval type-1 sets Fi,...,F,, having domains
[ty,71];- -+, [ln,7n], respectively, is an interval set with domain [ [T\, L, [T, ri]-

[10] gives a similar result while discussing multiplication of fuzzy numbers (see Section 2.4 for
algebraic operations on fuzzy sets). ]

If the sets involved in the meet operation are not interval type-1 sets, generally a direct appli-
cation of (2.30) does not give such a nice result. We, then, analyze this operation as follows. If § is
an element of F 1 G, then the membership grade of # can be found by finding all the pairs {v, w}
such that v € F, w € G and vw = #; multiplying the membership grades of v and w in each pair;
and then finding the maximum of these products of membership grades. The possible admissible
{v,w} pairs whose product is 8 are {v,0/v} (v € R, v # 0) for § # 0 and {v,0} or {0,w}, where
v,w € R for # = 0. We find the products of membership grades of v and w from each such pair
and take the maximum of all these products as the membership grade of 8, i.e.,

f
ping(®) = UES‘J;EE'):#G f(v)g(;) ;0eR, 0£0
Bing(0) = [sup f(v)g(0)] V [sup f(0)g(w)] (2.33)
vER weR

Observe that

sup f(v)g(0) = g(0)sup f(v)
veR

vER
= g(0)x1
= 4(0) (2.34)
and similarly,
s:g?f([))y(w) = f(0); (2.35)

therefore, summarizing the above discussion, we have that for two convex, normal, type-1 fuzzy
sets F and G (satisfying conditions of Theorem 2.1), the membership function of the meet under
product t-norm can be expressed as

2}
mine(0) = vei;fi.-);éof (0)9(5) ; 0#£0
ning(0) = f(0)Vvg(0) (2.36)

If we substitute #/v = w in (2.36), we get a similar expression in terms of f(f/w)g(w). Since
the meet operation is commutative (see Chapter 3), we get the same result whether we substitute
f/w=wvorflv=uw.

As is apparent from (2.36), the result is very much dependent on functions f and g and does
not easily generalize like the join and meet operations considered earlier, and generally, it is very
difficult to obtain a closed form expression for the result of the meet operation [which is why we have
not stated (2.36) as a theorem]. Even if both the fuzzy sets involved have Gaussian membership
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functions, it is difficult to obtain a nice closed form expression for the result of the meet operation.
See Appendix C.6 for more discussion about meet between Gaussians under product t-norm.

Figure 2.9 (c) shows an example of this operation. To determine the membership of a particular
point 6 in F MG, we find all the pairs {v,w} such that v € ®, w € R and vw = ¢; and multiply the
memberships of each pair. The membership grade of # is given by the supremum of the set of all
these products. For example, if 8 = 20, all the pairs {v,w} that give 20 as their product are v and
2 (v € R,v # 0). So, the membership grade of 20 is given by the supremum of the set of all the
products f(?;)g(%) (v € R,v # 0). Figure 2.13 shows how f(u)g(%) looks for F and G depicted
in Fig. 2.9 (a). Clearly, it is no easy matter to represent (2.36) visually.

e om

Figure 2.13: An example showing how f(v)g(%2) looks for the curves we considered in the proof
of Theorem 2.1. (a) The membership functions f and g of type-1 sets F and G, respectively. (b)
f(v), which is the same as that in Fig. (a) and q(iv'l) (c¢) The product f(v)g(“:—?).

One situation when the result of the meet operation in (2.36) simplifies considerably is when
either one of F or G is a fuzzy singleton. For example, assume that Fisa fuzzy singleton, such
that f(uvp) =1 and f(v) = 0 for v # vy. Now, f(v]g(%) is non-zero only at v = vg, implying that
Mg (0) = g(;f';). Similarly, if G is a fuzzy singleton, such that g(v;) = 1 and g(w) = 0 for w # vy,
f(v]g(-?—r) is non-zero only at % =y, i.e., only when v = %, implying that ppna(0) = f(%).

Because the meet under product t-norm will be heavily used by us in the sequel, we seek
approximations to it that will make it practical.

2.3 Approximations for Meet under Product {-norm

The meet operation (analogous to the ¢-norm in the type-1 case) is the most heavily used operation
in a type-2 fuzzy logic system (FLS) [see Chapter 5]. Consequently, saving computational effort
in the meet operation means making the overall type-2 FLS operation considerably faster. In this
section, we discuss some approximations to the meet under product t-norm that will help us make
the meet calculations more efficient. Subsection 2.3.1 discusses an ad hoc approximation that can
be used with any normal membership functions. Subsection 2.3.2 discusses a Gaussian approxima-
tion for Gaussian membership functions. A triangular approximation for symmetrical triangular
membership functions is discussed in [8]. Both the Gaussian and the triangular approximations
have the following two very desirable properties : 1) they can be computed very easily from the
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membership functions of the type-1 sets involved in the meet operation; and 2) they are easily
generalizable to the meet of more than two fuzzy sets.

2.3.1 First Approximation

As explained earlier, if one of the two fuzzy sets is a fuzzy singleton, the meet operation simplifies
a lot, e.g., if F is a singleton, having membership equal to 1 at vy and zero at all other points, as
explained at the end of Section 2.2.3, the result of the meet operation is (assuming vg # 0)

pne(0) = q(%) HER (2.37)

fuv=0F= 1/0. Then, from (2.30), we have

NG

[ uogw)/o
weR

[ stwyo
weR
[Slt:_.p g(w)]/0

= 1/0 (2.38)

where we have made use of the facts that the integrals in (2.30) denote union, the ¢-conorm used
is maximum, and G is normal.

Similarly, if Gisa singleton, having membership equal to 1 at v; and zero at all other points,
the result of the meet operation is (assuming v; # 0)

pena®) = F(2) 0 (2.39)

"

This motivates the following ad hoec approximation for meet under product t-norm,
0 8
ning(0) ~ f(—) v g(—) ifeR (2.40)
L Yo

This expression does not take into account the possibility that F or G may have more than one
point with membership grade equal to 1 in their support (an example of such a fuzzy set is F' in
Fig. 2.1). To account for this case, we generalize (2.40) as follows :

Hing(0) = A:_v f(g) Vv jwewy(%) (2.41)

where V is the crisp (non-fuzzy) set of all points having a membership grade equal to 1 in F and
W is the crisp set of all points having a membership grade equal to 1 in G. Figure 2.9 (c) shows
the above approximation along with the actual result. We do not claim that this approximation is
optimal in any sense; however, it looks intuitively reasonable and is much easier to compute than
the actual result [particularly because, as mentioned earlier, we often deal with type-1 fuzzy sets
(membership grades of type-2 sets) that have only one point at which the secondary membership
reaches 1, so that we can use Eq. (2.40)]. Additionally, as we show next, it collapses to the
correct type-1 result if fuzzy memberships are replaced by appropriate crisp memberships, i.e., if
we replace the type-2 sets by appropriate type-1 sets, the results remain valid. (Given a type-2
set, an “appropriate” type-1 set is one which has a membership function equal to the principal
membership function of the type-2 set.)
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Recall, that
fz 5 (o) = fiz (o) M fig (o) (2.42)

In our analysis, we denote i f\(;t:o) and fiz (zo) by F and G, respectively. We have assumed that

the membership functions of F and G, namely f and g, are such that f (vo) = g(v1) = 1. If all
the type-2 sets are replaced by the appropriate type-1 sets, F and G reduce to singletons 1/vg and
1/vy, respectively; so that F NG = 1/(vov1) = vous.

Now let’s see how the approximation in (2.40) reduces to this result.

1 = {07 oo

; otherwise
=10 = {0 ] s i
and
9(6) = {{1] 1 oglz*\igse
gl = 45 | S P

From (2.40), (2.43) and (2.44), we can see that when both F and G are singletons, the result of
the first approximation is equal to vovy, which is the true result of the meet.

In Theorem 2.1 and our discussion about the product t-norm, we have considered join and meet
operations between general fuzzy sets, which have the real line as their support; however, when
dealing with type-2 sets, we use these operations between fuzzy membership grades, which are
type-1 fuzzy sets supported in [0, 1]; hence, results of all the join and meet operations, for both
min as well as product t-norms are again type-1 fuzzy sets supported in [0, 1]. Additionally we will
frequently be interested in Gaussian membership functions.

Example 2.4 Let’s see how the above approximation for meet looks in the case of Gaussian fuzzy
sets. Since Gaussians reach unity height at only a single point, we can use (2.40). If f and g
are Gaussians with means my and my, and standard deviations oy and o, respectively, then from
(2.40), we have

ﬁl(ﬂ)ﬂ _J.(;‘L_m'“’)2
pina®) =~ e "\ 7 Ve *\ % ;0 €[0,1]
_%(E—ntanlg)-z _%(9_"‘[‘“9)2
= e\ ) e % | spels,d) (2.45)

On the RHS of (2.45), we are comparing two Gaussians with equal means. Obviously, their maxi-
mum will equal the Gaussian with the larger value of myo; or myo,; therefore,

f=—mgemg

fing (0) = e"i(m“"""f"g-'“s"ﬂ) ;0 €[0,1] (2.46)

So, the approzimation of meet between two Gaussians is a Gaussian, whose mean is equal to the
product of the means of the two participating Gaussians. Figure 2.11 (c) depicts an example of
meet (approximation with the actual result) of Gaussians under product t-norm and maz ¢-conorm.
Figure 2.12 (c¢) depicts a similar result for Gaussians with equal standard deviations.

Let’s see how this generalizes to more than two Gaussians at a time. Consider the meet
between three Gaussians Fy, Fo, Fy with means my, ma, ma and standard deviations o1, o,
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a3. Since the meet operation is associative under product t-norm and maz t-conorm (as we show
later on in Chapter 3), we can first find the meet between F; and F» and then find the meet
of the resulting function with F3. Using (2.46), we see that the approximation of Fy M Fyis a
Gaussian, say Fy, with mean m;y = m;ms and standard deviation 012 = max{m 0., m20,}.
Using (2.46) again, we see that the approximation of Fio NFy is again a Gaussian, say o3 with
mean Imjeg = My2s = mymems and standard deviation

0123 = max{mi203, my012} = max{myms0o3, mymzo2, mamszo; } (2.47)

_ The generalization of this result is straightforward. If there are n Gaussian fuzzy sets
Fi,Fa,---,F, with means my,ms,---,m, and standard deviations o;,03,---,0,, respectively,
then repeated application of (2.40) yields

_% (Guml I:'i"'mn ):
e nign..ni, (0) ~ e

(2.48)

where
5’="1ilx{01 H mi, 02 H My, 0j H Mi,=*+,0n H m.-}; i=1,2,---,n (2.49)
£35:8£1 i 172 i j fiEn

Figure 2.14 shows examples of meet of more than two Gaussians and compares the actual results
with the approximations.

T

means =[0.3,04,0.7]
stddevs =[ 0.1, 0.12,0.05) R

means =[0.3,05,06,08]
std devs = [ 0.1, 0.15,0.11,0.04 ) 4

(il
(b)
1 T T T T T T
i ]
. means =[0.2,04,06,08,09)
osH | std devs = [ 0.08, 0.11, 0.1, 0.06,0.03 ]
1
! 1
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4] 0.1 0.2 0.3 04 05 P 0.6 0.7 0.8 0.9 1
(©)

Figure 2.14: Examples of meet of more than two Gaussians at a time for product t-norm. The
approximation in (2.48) is shown with the thick dashed line. The thin solid line shows the actual
result, which was calculated numerically.

Note that the Gaussians are contained in [0,1] and may, therefore, be clipped (see Ap-
pendix C.8.2). In this example, we did not consider effects of clipping; however, we consider
them in Appendix C.8.3 while calculating a lower bound for the Gaussian approximation derived
in Section 2.3.2. The process of finding a lower bound on the Gaussian approximation is very
similar to computing our first approximation to the meet between Gaussians. O
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2.3.2 A Gaussian Approximation

The approximation in (2.46) was motivated by a general membership function, not necessarily
Gaussian [see (2.40) and (2.41)]. If we focus on Gaussian fuzzy sets, we can come up with a
better approximation for meet under the product f-norm. Observe that the meet operation is
performed between membership grades of type-2 sets; therefore in the following, we require that
the secondary membership functions of the type-2 sets involved be Gaussians. Their principal
membership functions, however, can have any shape (e.g., triangular, Gaussian, trapezoidal).

Consider the case when f(v) and g(w) are Gaussians with support [0, 1] with means my, m,
and standard deviations o, g,, respectively. Then,

FI‘IG://ed%(%‘ﬁ)ge—%(%&)z/(viu) (2.50)

Recall that the integral in the above equation denotes union in the continuum. If # is an element
of FN G, then the membership grade of # can be found by : finding all the pairs {v,w} such that
v € F, w e G and vw = #; multiplying the membership grades of v and w in each pair; and then
finding the maximum of these products of membership grades. That is,

1

_ (U‘_"‘ )2 _%(“l-f'lﬂ) . - -
Ping(0) = sup {e N e @/ sow=60veFwe G} (2.51)

Given any v (assuming v # 0), the constraint vw = 6 gives us w = 8/v. Further, since w € [0,1], it
follows that 8/v < 1 or v > #. So, given any 6 € (0,1], the acceptable {v, w} pairs that can give
as the result of the product operation are {(v, %);U < 6 € v < 1}; therefore, from (2.51), we have

veal®) = = e_é[(%“):*(%;—:‘i)g] ,B#0
veld,1]

= sup e—%[(%)g+(%g)2] ,0#0 (2.52)

veld, 1]

When 8 = 0, either v = 0 and w is any number in [0, 1], or w = 0 and v is any number in [0, 1];
therefore, from (2.51), we have

A A, A )
Ming(0) = sup e E - V sup e f 7 e e
wel0,1] veEl0,1]
A3 i)
= e "\ Ve a (2.53)

Solving the optimization problem in (2.52), in general, is quite complicated and does not lead to a
closed-form expression (see Appendix C.6). Also, since the final result is non-Gaussian, it can not
be easily generalized to the case of the meet of more than two Gaussians at a time; therefore, we
now try to find a Gaussian approximation to this result.

The supremum in (2.52) can be obtained by minimizing the exponent on the RHS of (2.52).
Let us call the exponent J(v). So, we want to minimize

J(v) = (”_'”f)2+(9_”"“”)2,9¢0 (2.54)

ag Tav
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with the constraint v € [6, 1]. Since the second term on the RHS of (2.54) has v in its denominator,
.J is non-convex and is difficult to minimize. The actual function resulting from the minimization
of J is non-Gaussian. In order to find a Gaussian approximation for FG, we simplify the problem
a bit.

Equation (2.50) can be interpreted as follows. Each element v of set F multiplies every element
w of set G, and, at the same time, the membership grade of v in F multiplies the membership grade
of win G. So, given a particular element v, of F, what we get as a result of these multiplications is a
scaled version of the membership function of G (scaled along both the axes : along the independent
)2

l ‘l‘l m
axis by v; and along the dependent axis by e —2(7; ). This process is repeated for every element
of F and finally, the meet of F and G is given by the envelope of all the above scaled Gaussians.
The expression for the membership of an element 8 in F N G is given by (2.52) and (2.53).

In order to simplify the problem, we replace the v in the denominator of the second term on
the RHS of (2.54) by a constant k. By solving this simplified optimization problem, we get an
approximation to F M G. Let’s call it E, so that

( 2 z 2
() ()
up® = sup e T\ T ) g HUT
veld,1]

= i L‘%[(;TL)2+(L_‘_L)] (2.55)

veld,1]

Observe that the only difference between (2.55) and (2.52) is that the standard deviation of the
second Gaussian in (2.55) is a constant (ko,), whereas that in (2.52) is proportional to v (vay).
To see the dependence of p(0) on k, let

i 0 =TRENE f—myu\2 ”
H(v.k) = - ) + (—kag ) . ke (0,1] (2.56)
Obviously,
H(v,€) > H(v, k) > H(v,1) ; 0<e<k<1
= infuepa H(v,e) > infuepa H(v,k) 2 infugpnH(v,1) ; 0<e<k<1 (957
= mO| < 115, (6) < mp®)|_ 5 0<esk<1

Observe that as € = 0, H(v,€) = oo and pi(6) — 0. Since k in (2.55) replaces v in the actual
problem (which varies between 0 and 1), it is apparent from (2.57), that limy_,o p;(0) gives a lower
bound on ppa(0) and ;:E(9)|k_l gives an upper bound on pza(6).

Recall that our earlier approximation in (2.46), which was a Gaussian with standard deviation
equal to max{myso,,m,os} , was motivated by considering the case where one of the Gaussians
was a singleton, i.e., one of the Gaussians has a zero standard deviation, which is analogous to
assuming that k& = 0 in (2.55). Therefore, from the discussion above, it is clear that this earlier
approximation acts as a lower bound on pgqa (). [Figure 2.15 (f) depicts a result that seems
to contradict this statement; however, it is obtained because only half of one of the participating
Gaussians is contained in [0, 1]. See the discussion at the end of this Section.]

From this discussion, it seems conceivable that choosing some i (€) between the upper and
the lower bounds, i.e., substituting some value of k € (0,1) into (2.55), should enable us to obtain
a good approximation to ptze(8). Our criterion for choosing k is that the approximation should
be commutative (i.e., if we switch F and G, we should still get the same result), because the true
result is commutative. Considering both these factors, we choose k = my. Refer to Appendix C.6
for details of the solution of (2.55) and the choice of k. We state the result here.
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If F and G are two Gaussian type-1 fuzzy sets in [0, 1] having means my and m, and standard
deviations o and o, then the membership function for the meet of F' and G can be approximated

as 5
S ( f—mgemg )
2 .“2‘,2_'_,"202
heng(0) = e " fare (2.58)
Generalization to the case of more than two Gaussians is straightforward. Assume that L is a

Gaussian fuzzy set with mean my and standard deviation o;. Using the associative property, we
have FN G N L = (FNG)NL; hence, using (2.58), we have

I‘f»‘né(@“e_%( 4 )2 (2.59)

] e [ — L) ] H =4 g 5
where my, = mym, and o5y = \/mio; + mjo;. Using (2.58) again, we have
2
b
-H )
m a +m o-

Winani(0) =~ e fe

2
_%( E—rn!mgm, )
= \//m'zm2c|'2-in-mzm2 e24m2mio?

= B (R o it T Bty i of (2.60)

If there are n Gaussian fuzzy sets Fy,Fa, -+ -, F, with means m;, ms,- -+, m, and standard devia-
tions oy, 09, - -+, 0y, respectively, then repeated application of (2.58) yields

2
1 B—mlmq---m,.
2 &

“F‘ﬂ"lﬁ‘gl"!ml'lﬁ'n (9) ~e (261)

where

:\/a'f H m? + o3 H m; + -+ 0} Hm s a3 H mig; 1=12,uh  [(2:62)

gyl 13132 EHE i;is£n

Comparing (2.61) with (2.48), we see that the two approximations have the same mean. Only
the standard deviations are different. All the results and approximations that we have developed
will finally be used for operations between membership grades of type-2 sets.

Recall that we require that all our results remain valid if we replace all the type-2 sets by
corresponding type-1 sets (i.e., type-1 sets having the principal membership functions of the type-
2 sets as their membership functions). In case of Gaussian type-2 sets, replacing type-2 sets by
corresponding type-1 sets is analogous to reducing the standard deviations of all the secondary
membership functions to zero. [Observe that a Gaussian with a zero standard deviation is like an
impulse function. As we reduce the standard deviation of a Gaussian, keeping its mean constant,
it grows narrower and narrower. The height of the Gaussian at the mean remains unchanged
though. In the limit, as the standard deviation reduces to zero, only the mean of the Gaussian
has a non-zero mcmbelship, which is oqual to 1. Mathematically, if we have a Gaussian with
mean m and standard devi m) — 00 if 8 # m and lim,_,o(= —2) =0if § = m.
So, in the limit exp{—§(=2)? } is equal to 1 if # = m and is equal to 0 otherwise.] All that
remains of a membership grade after doing this is a crisp number in [0,1] equal to the center of
the Gaussian in the type-2 case; and the meet operation reduces to the product of all these crisp
numbers. The actual type-2 result for the meet between Gaussians (Appendix C.6) as well as both
our approximations [(2.61) and (2.48)] obey the same result. If we reduce the standard deviations
of all the Gaussians involved to zero, the result of the meet operation is equal to that in the type-1
case.
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Figures 2.15 (a) - (f) show some examples of this approximation. In general, if the Gaussians
have +2 (or more) standard deviations contained within [0, 1], the results look quite good. In
Fig. 2.15 (f), one of the Gaussians is centered at 1, so only half of this Gaussian (the part lying
to the left of the mean) is contained in [0,1]. Consequently, the result of the meet is much more
“non-Gaussian” than earlier cases, i.e., the difference between our Gaussian approximation and the
actual curve is larger than that in the other examples. Also, observe that the first approximation
in (2.48) does not act as a lower bound on the result of the meet in this case.

Appendix C.6 derives bounds on the error between the Gaussian approximation and the result of
the actual meetoperation, by finding upper and lower bounds which contain both the approximation
as well as the actual function.

2.3.3 A Triangular Approximation

See [8] for a triangular meet approximation similar to the Gaussian approximation derived in
Section 2.3.2.

2.4 Algebraic Operations on Fuzzy Numbers

As already mentioned, convex and normal type-1 fuzzy subsets of the real line are also known
as fuzzy numbers [5, 10]. Algebraic operations like addition and multiplication between fuzzy
numbers can be defined using the Extension Principle, just as we defined the ¢-norm and ¢-conorm
(i.e., meet and join) operations (see, for example, [5, 10]). The two operations of most interest to
us are multiplication and addition. We will use the results of this section in Chapter 5.

2.4.1 Multiplication of Type-1 Fuzzy Numbers

The product of two fuzzy numbers F = J f(v)/v and G= J 9(w)/w is defined as

FxG= / f [f(v) * g(w)]/[v x w] (2.63)

where « indicates the t-norm used.

Observe, from (2.30) and (2.63), that under product {-norm, the product of F and G is the
same as the meet of F and G, i.e., FxG=Fn G; so, all our earlier discussion about meet
under product t-norm applies to multiplication of fuzzy numbers under product ¢-norm. We do not
discuss multiplication under minimum ¢-norm, rather we focus on the addition of fuzzy numbers.

2.4.2 Addition of Type-1 Fuzzy Numbers

The addition of two fuzzy numbers F = [ f(v)/v and G = [ g(w)/w is defined as

F+G= /[[f(u)*g(-m)]/[u+zu] (2.64)

When F andG are interval type-1 sets, (2.64) simplifies considerably, as we show next.
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Figure 2.15: Actual and approximate results of the meet operation between Gaussians under prod-
uct t-norm. The thin solid line shows the actual result computed numerically. The thin dash-dotted
line shows the first approximation in (2.48). The approximation in (2.61) is shown by the thick
dashed line. Means and standard deviations of the Gaussians are as indicated in the figure. In
Figs. (d) and (e), the two Gaussians are coincident (the same curve). The first approximation does
very poorly in this case. In Fig. (f), observe the difference between the approximation and the
actual curve on the RHS of the mean. This is due to the fact that one of the Gaussians is centered
at 1, i.e., only half of it lies in [0, 1]. This clipping effect is discussed in Appendix C.8.2.
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2.4.2.1 Addition of Interval Type-1 Numbers

Let F and G be two interval type-1 sets with domains [l,7/] and [ly, ry], respectively. Using (2.64),
the algebraic sum of F' and G, can be obtained as

F+G :/HEF/weG(l*l)/(U+m) (2.65)

Observe, from (2.65), that

e cach term in F + G is equal to the sum (v + w) for some v € F' and w € G, the smallest term
being (I + ;) and the largest (ry +r,); and,

e since both F and GG have continuous domains, F' + G also has a continuous domain;

consequently, F' + G is an interval type-1 set with domain [lf + I,, 77 + 1], i.e.,

F+G= 1/v (2.66)
vElly+lg,ry+rg]
Similarly, the algebraic sum of n interval type-1 numbers Fj,...,F,, having domains
[lh,71],- -+, [ln,Tn], respectively, is an interval type-1 set with domain [Z:;[ i,—,Z?___l r;]. See [10]
for a similar result.
See Theorem D.1 for an expression for an affine combination of interval type-1 sets.

NOTE : Observe, from (2.65) that while performing algebraic operations on interval type-1 sets,
the choice of t-norm does not matter, since all the memberships involved are unity.

2.4.2.2 Addition of Gaussian Type-1 Numbers

Theorem 2.4 Given n type-1 Gaussian fuzzy numbers Fl, oy Fy, with means my, ma, ...,
my, and standard deviations oy, o2, ..., 0y, their affine combination Z:l:] aixb,- + 3, where a;
(i=1,...,n) and (3 are crisp constants, is also a Gaussian fuzzy number with mean Y., a;mi+p,
and standard deviation ', where

5 — { VAN a?s? ,  if product t-norm is used (2.67)

Yo leioi| , if minimum t-norm is used

See Appendix C.9 for the proof of Theorem 2.4.

2.4.2.3 Addition of Triangular Type-1 Numbers

For comparable results about triangular fuzzy numbers, see [8].

2.5 Centroid of a Type-2 Set

In this section, we extend the concept of the centroid of a fuzzy set from type-1 to type-2. We will
use the results of this section in Chapter 5, when we introduce the new operation of type-reduction.

The centroid of a type-1 set A whose domain is discrete with N points or is discretized into N
points, is given as
N
oy Tipg (@
Ci = Z;_Nl ilta (i) (2.68)
zi:l HA (H:t')

37



Similarly, the centroid of a type-2 set .J:k, whose domain is discretized into N points (see Chapter 1
for the definition of the domain of a type-2 set), can be defined using the Extension Principle [see
Appendix B, especially (B.13)] as follows. If we let D; = fiz (z;), then

= ., xi0;
G = ] / iy, (61) %% 1p,_(6n) 1/2' 1 (2.69)
th
where 6; € f),-.

Equation (2.69) can be described in words as follows. Each point z; of A has a type-1 fuzzy
membership grade, D; = a3 (i;), associated with it. To find the centroid, we consider every possible
combination {#y,...,0x} such that 6; € ]-31-. For every such combination, we perform the type-1
centroid calculation in (2.68) by using 6;’s in place of jiz (#)’s; and, to each point in the centroid,
we assign a membership grade equal to the £-norm of the membership grades of the 8;s in the Ij,-s.
If more than one combination of 8;'s gives us the same point in the centroid, we keep the one with

the largest membership grade. If we let Zi’__l .'r,-ﬂ,-/ Z:\Ll #; = z, then (2.69) can also be written
as

C‘:\ =[ sup  [pp (01) *---* '(G,V)]/z: (2.70)
& {01,",,0,\(} 1 N
where {#),....6x} are such that Zf\;l :1:,-9,-/ Zf\;l 0; = x. We will illustrate the calculation of éf\
below, in Example 2.5. First, however, we provide some general insights into (2.69).
A type-2 set A can be thought of as a collection of type-1 sets, which we call type-1 sets

embedded in f& =
Definition : A type-1 set A emb('dded in a type-2 set JL is a type-1 set for which: (1) z € A &

z €A, and (2) pj(z) € jiz(x) Vo € A
In the 2-D representation of a type-2 set, an embedded type-1 set is one whose membership
function lies inside the shaded region. Figure 2.16 shows an example of a type-1 set embedded in

a type-2 set. For the type-2 set A in (2.69), every combination {f;,...,0x} such that 6; € D;,
corresponds to the membership function of an embedded type-1 set. The centroid of f&, Cx, can
be thought of as a type-1 set whose elements are the centroids of all the embedded type-1 sets in
A. The membership grade of an embedded set centroid in C z is calculated as the t-norm of all the
secondary memberships corresponding to {61,...,8x} that make up that embedded set. When _i
collapses to an embedded type-1 set A, which corresponds to the combination {6},...,0y}, each
D; reduces to a fuzzy singleton, such that ‘uf’.- (#)) =1 and 1p, (8;) = 0if 8; # 6!; therefore, we get
T 1p, (01) = 1, and for all other {6y,...,0n} combinations 7;2’1;:,,3; (8;) = 0. Consequently, C_'f\
reduces to the crisp number Cy, the ceuuold of A.

Observe that if the domain of A and/or i3 (z) (z € A) is continuous, the domain of C~ is

also continuous. The number of all the embedded type-1 sets in A_. in this case, is uncountable;
therefore, the domains of A and each I (z) (z € A) have to be discretized for the calculation
of C'i' Observe, from (2.69), that if the domain of each 13! is discretized into M points, the
number of possible {f,...,0x} combinations is M*, which can be very large even for small M
and N. If, however, the membership functions of 13, 's have a regular structure (e.g., Gaussian,
triangular, interval), we can approximate the centroid without having to do all the calculations.
See Example 2.5, Sections 2.5.2.1 and 2.5.2.2, and [8] for more details. In the case of an interval
type-2 set, even the actual centroid can be obtained relatively easily by using the computational
procedure described in Appendix D.

38



0.8

(&g

08

-0.4 -0.2 a 02 0.4 08 o8 1 1.2 14

Figure 2.16: Example of a type-1 set, shown with the thick dashed line, embedded in a type-2 set.

Example 2.5 In this example, we show the centroid calculation for a type-2 set that results from
a type-1 set with only location uncertainty, e.g., see Example 1.2. We focus on the special case of
Gaussian membership functions with uncertain means, such that every value of the mean is equally
uncertain. In this case, we set all the secondary memberships equal to 1, to indicate that the level
of uncertainty associated with every primary membership is the same, so that the resulting set is
an interval type-2 set.

Figure 2.17 (a) shows a type-2 set A resulting from a Gaussian type-1 set with mean uniformly
uncertain in the interval [my,m»]. In the figure, my = 0.45, m, = 0.55 and the standard deviation,
o = 0.2. All the secondary memberships are equal to 1.

Observe, from (2.69), that :

1. all the secondary memberships are equal to 1, so the membership of each point in the centroid
is also equal to 1, i.e., 1o, (1) %--- *pp (fx5) = 1; hence, the centroid is a crisp set;

2. the mean varies on a continuous domain [my,ms], so the crisp set corresponding to the
centroid will also have a continuous domain; and,

3. each Gaussian centered at m € [-ml,mg] is an embedded set in A, so the centroid of each

such Gaussian ( i.e., each m € [ml,mg]) will be an element of the centroid.

From these three observations, we see that the centroid of A is some interval, [et, ¢r), which contains
[r,m2). Now, we have to find the end-points of this interval. To do this, we show how to compute
the left end-point, ¢;. Since the set is symmetrical, the calculation of ¢, will be similar.

It is easy to verify that the left end-point ¢ is the centroid of the embedded type-1 set which
assigns the highest possible memberships to all the points to the left of its centroid and lowest
possible memberships to all the points to the right of its centroid (see the computational procedure
in Appendix D.1 for more discussion). Any change in this membership function will always cause
its centroid to move towards the right, implying that the centroid of this embedded type-1 set is
equal to ¢;. An example of such an embedded type-1 set is shown by the thick dashed line in
Fig. 2.17 (b).

Though we do not know the exact value of ¢;, we can make an estimate by considering the
embedded type-1 set shown in Fig. 2.17 (¢). This type-1 set is formed by assigning the highest
possible memberships to the points to the left of m; and the lowest possible memberships to the
points to the right of m;. The membership function of this set looks like a Gaussian with a small
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¢, = 0.44992
(c)

Figure 2.17: Figures for Example 2.5. (a) An interval type-2 set A resulting from a Gaussian
type-1 set with standard deviation equal to 0.2 and mean uniformly uncertain in the interval
[m1,m2] = [0.45,0.55]. The thick line shows an embedded Gaussian type-1 set. (b) The embedded
type-1 set whose centroid equals ¢; is shown with a thick dashed line. (c) The type-1 set formed
by assigning highest possible memberships to the points to the left of m; and lowest possible
memberships to the points to the right of ms. The centroid of this set is ¢; = 0.44992 ~ ¢;. (d)

The centroid of A is the interval [er, e0] = [e1,c2] = [my, ma).

portion missing, and its centroid (which was calculated numerically) is equal to ¢; = 0.44992, which
is a little bit to the left of m,. The fact that ¢; is just slightly less than m; shows that the area
to the left of m; in the type-1 set in Fig. 2.17 (c) is just slightly more than the area to its right;
therefore, ¢; will also be just slightly less than m;.

Similarly, the embedded type-1 set constructed by assigning highest possible memberships to
all the points to the right of m», and lowest possible memberships to the points to the left of mo,
has a centroid ¢; = 0.55008, which is slightly larger than ms; hence, we conclude that ¢, will be
just a little bit larger than ms. We can, therefore, say that ¢; = ¢; and ¢, = ¢2. Figure 2.17 (d)
shows A with its centroid , which is a crisp set with domain [, er] = [e1, 2] & [my, m2].

It can be shown that, if (ms —m,) is small compared to the standard deviation (o) of .:X, then
[e1, ¢7] & [my, ms] (see Appendix C.10 for the proof).

If we increase (ma — my), keeping o the same, the difference between the approximation and
the true centroid (computed using the computational procedure in Appendix D.1) increases, e.g.,
for ¢ = 0.2, if {m;,m2} = {0.4,0.5}, {c1,¢2} = {0.39855,0.60145}, and, if {m;,m2} = {0.3.0.7},
{e1,e2} = {0.28146,0.71854}. We, therefore, recommend using the computational procedure de-
scribed in Appendix D.1 to obtain the centroid, if (m2 —m,) is not small compared to o. O

See Appendix D for a computational procedure to compute the centroid of a general interval
type-2 set. We next describe a problem that arises when one attempts to compute the centroid of
a type-2 set having a continuous domain using product t-norm.

2.5.1 Centroid Calculation Using the Product {-norm

Calculation of the centroid, using product ¢-norm, of a type-2 set which has a continuous domain
and not all of whose secondary memberships are unity, gives us an unexpected result. In this
section, we concentrate on type-2 sets having a continuous domain whose secondary membership
functions are such that, for any domain point, only one primary membership has a secondary
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membership equal to one, e.g., Gaussian or triangular type-2 sets. We first describe the problem
and then discuss its cause and remedy.

Problem

In the discussion associated with (2.69), we assumed that the domain of A is discretized into N
points. The true centroid of A (assuming A has a continuous domain) is the limit of Cﬁ. in (2.69)
as N — 0o. When we use the product, t-norm limy o 7Y, gy (6;) = limy—o0 H:’il np (6).

Let B be an embedded type-1 set in A. The centroid of B is computed as

O = Zic Tift(:) (2.71)

3
Z.‘t; ng(xi)
and the membership of Cj in C'i [denoted as pa(Cy)] is

N
ne(C) = [ 1, 6:) (2.72)

i=1

where {6y,...,0x} are the primary memberships that make up the type-1 set B.

Let A denote the principal membership function of A. Obviously, ug(C) = 1.
Consider the case where the secondary membership functions are like Gaussians or triangles
(having only one point with unity membership). We make two observations :

1. limy— oo #e:(C) is non-zero only if B differs from A in at most a finite number of points. For
all other embedded sets B, the product of an infinite number of quantities less than one will
cause j1&(Cy) to go to zero as N — oo.

2. For any embedded set B, whose membership function differs from that of A in only a finite
number of points (i.e., when pug(x) # uz (), for only a finite number of points z), Cy = Cj.
This can be explained as follows :

The (true) centroid of B is defined as

[, zpg (x)de

Cy =
[ wy(z)dz

(2.73)

where z € B. Since A and B share the same domain (both are embedded sets in fk), zelAe
x € B; and since p; () and pg(x) differ only in a finite number of points, [, zpg(z)dr =
[ zpj(z)de and [, pp(z)de = [, pz(z)de; therefore, Cy = C;.

From these two observations, we can see that the only point having non-zero membership in G %
is equal to C; and its membership grade is equal to the supremum of the membership grades of
all the embedded type-1 sets which have the same centroid, which is equal to 1 [since pa(Cz) = 1.

In other words, C‘f\ = 1/Cx = C;, i.e., the centroid of A will be equal to a crisp number ..... the
centroid of its principal membership function !

Cause

The above problem occurs because, under the product t-norm, limy_e 7;2{1’"'5,- (6;) =

- ' . . .
Hmy 00 Hf\zl pp (6;) = 0, unless only a finite number of pup (6;)’s are less than 1. The mini-
mum ¢-norm does not cause such a problem.
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Remedy

One obvious way to deal with the problem explained above is to not use product ¢-norm for centroid
calculation. From now on, we will always use the minimum t-norm to calculate the centroid of a
type-2 set having a continuous demain.

2.5.2 Approximations to Centroids of Certain Type-2 Sets

In this section we develop approximations to the Centroids of Gaussian and interval type-2 sets.

2.5.2.1 Centroid of a Gaussian Type-2 Set

We first prove a general result and then use it to find the centroid of a Gaussian type-2 set.
Weighted Average of Gaussian Type-1 Sets : Consider the weighted average

M
= Zi=y Wz (2.74)
Zf:l wy

where z; € R and w; € [0,1] for | = 1,...,M._If each z is replaced by a type-1 fuzzy set Z, cR
and each wy is replaced by a type-1 fuzzy set W, C [0, 1], then the extension of (2.74) gives

?(211-“vZM:\irla"'!‘vf-f) = f / f / ??iflfl'zl(zf)*’Hiit”\i"x(wf)/
1 Iar Y un LY

M
w2
—zﬁ; i (2.75)
ZI:I Wi

where 7 and % both indicate the t-norm used ... product or minimum, w;, € W, and z; € Z: for
E=1 00 M

?}(Z],...,ZM,TU;,-.-,WM)

Theorem 2.5 If each Z: is a Gaussian type-1 set, with mean my and standard deviation oy, and
if each W, is also a Gaussian type-1 set with mean h; and standard deviation A;, then Y is
approzimately a Gaussian type-1 set, with mean M and standard deviation ¥, where

M
h
= —ijl{ i, (2.76)
=1 h’t

and

VI, [non>+imi-mpaf]
M

, if product t-norm is used

= o Dt (2.77)
Zuzl{("“"i:":”"‘wm] , if minimum t-norm is used
I=1 !
provided that
EY
LAy (2.78)

E;‘il hy
where k is the number of standard deviations of @ Gaussian considered significant (generally, k =2
or 3). The Gaussian approzimation improves as k( ;.i; A;/ZL’I h;) grows smaller, and the
result is exact when Zf‘il A =0, ie, when Ay =0forl=1,..., M. 0O
_ See Appendix C.11 for the proof. A sufficient condition that satisfies (2.78) is that the Gaussian
W,’s are narrow, i.e., kA;/h; & 1forl=1,...,M. Observe, however, that there is no condition on
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the standard deviations of the Z,s; consequently, when all the W,’s are crisp numbers, the theorem
gives an exact result. See the comments at the end of Appendix C.11 for bounds on the domain of
¥

Recall that we will use only minimum ¢-norm for the centroid calculation of a type-2 set with
a continuous domain. (If the domain is discrete, however, product t-norm may be used.) From
Theorem 2.5, we get the following result for the centroid of a Gaussian type-2 set.

Corollary 2.2 The centroid of a Gaussian type-2 set /zi_is approzimately a Gaussian type-1 set with
mean M(C3) [Eq. (2.79)] and standard deviation E(Cx) [Eq. (2.80)], if the standard deviations
of the secondary memberships are small compared to their means, i.e., if (2.81) is satisfied.

Proof : Observe that the x;'s in (2.69), which are crisp numbers, correspond to the z;’s in (2.75),
the D;’s in (2.69) [D; = ﬂi(x,-)] correspond to the W,’s in (2.75), and the sum in (2.69) goes from
1 to N instead of from 1 to M. If we denote the mean and the standard deviation of fz :\(3:.,-) as
m(z;) and o(x;), respectively, then using Theorem 2.5, C‘:\ is approximately a Gaussian type-1 set

with mean M(C’;) and standard deviation E(éi)‘ where

N s
M(éi) — Z_%i}ﬂn_('t‘_) (2.79)
imy M)
and 5 _
. 2 iz | — M(C3)|o(xi)
=(C;) = | - i (2.80)
iz ()
provided that N
&—E;\,i%)— <1 (2.81)
Zf:l ?R(Il‘)
where k has the same meaning as in Theorem 2.5. Equation (2.81) is satisfied if standard deviations
of the secondary membership functions are small compared to their means. O

Comment 1 : See Fig. 1.10 for an example of a type-2 set, which can be made to satisfy condition
(2.81) easily. In this set the standard deviation of every membership grade is proportional to its
mean. If we set the constant of proportionality to a small value, (2.81) can be satisfied. See
Example 2.8 for an expression for the centroid of such a type-2 set.

Comment 2 : Because the membership grade of each z € A is a Gaussian type-1 set, the primary
membership which has a secondary membership equal to unity is m(x); and, since the principal
membership function is the set of those primary memberships for which the secondary memberships
are equal to 1, m(x) for « € A is the same as the principal membership function of A. Observe,
therefore, from (2.79), that the mean of the approximate centroid, M(C' i)’ corresponds to the

centroid of the principal membership function of A,

Example 2.6 Consider the centroid calculation of a type-2 set [see (2.69)]. If the type-2 set is
discretized into N points (z1,...,zx) and if the membership grade of every z; is discretized into
M points, the total number of possible {#,...,0x} combinations is M~. This number can be
very large even for modest values of M and N, e.g., if N = 10 and M = 5, the number of possible
combinations is 9,765,625, i.e., about 10 million ! And for each of these combinations, we have
to compute the weighted average Z:\;l :r,,-!?,-/ Y ;—y Bi. On the other hand, if (2.81) is satisfied,
all we have to do to compute the centroid is compute two weighted averages, one for the mean of
the centroid [(2.79)] and one for its standard deviation [(2.80)]. This example demonstrates the
significance of our Gaussian approximation results. O
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Example 2.7 Now, we demonstrate the use of Corollary 2.2 with an example. Consider a Gaussian
type-2 set with a discrete domain consisting of only 3 points, &y = 1, z2 = 3 and x5 = b [see Fig. 2.18
(a)]. Suppose that m(z;) = 0.1, m(x2) = 0.8 and m(x3) = 0.6. We consider three cases :

1. If o(z;) = 0.05m(z;) for i = 1,2,3, the membership grades of x1, x» and z3 are shown in
Fig. 2.18 (b), (c) and (d), respectively; and, the true centroid and the approximation in Corol-
lary 2.2 are as shown in Fig. 2.19 (a). In this case, when k = 2, k[zia(x‘-)]/[zi m(:::;)] =
0.1.

2. If o(xy) = 0.3m(x,), o(z2) = 0.1m(z2) and o(z3) = 0.2m(z3), the membership grades of z;,
x5 and z3 are shown in Fig. 2.18 (e), (f) and (g), respectively; and, the true centroid and
the approximation in Corollary 2.2 are as shown in Fig. 2.19 (b). In this case, when k = 2,

k[zia(zi)]/[zim(a:;)] — 0.3066.

3. If o(x;) = 0.5m(x;) for i = 1,2,3, the membership grades of z;, 22 and x3 are shown in
Fig. 2.18 (h), (i) and (j), respectively; and, the true centroid and the approximation in Corol-

lary 2.2 are as shown in Fig. 2.19 (c). In this case, when k = 2, k[ Y O’(.‘I‘,‘)] / [ D m(;r,v)] = 1.

When computing the true centroids, only primary membership values between m(x;) +20(x;) were
considered. Observe that though the domain of the type-2 set is discrete, that of its centroid is
continuous, because the membership grades of x,, z» and z3 have continuous domains.

1
05+
c| | :(‘ ‘? ’3
05 1 15 2 25 3 as 4 45 5 55
(a)
1 1 1
05 05 05
0 0 0
0 05 10 05 10 05 1
(b} (e (d)
1 1 \ 1
05 05 05
0 0 0
0 [ 10 05 10 05 1
(e) ] (g
1 1 1
05 05 05 / \
0 0 0
o 05 1 a 05 1 [+] 05 1
(] U] (0]

Figure 2.18: Figures for Example 2.7. The domain of the discrete Gaussian type-2 set having 3
points, #; = 1, x» = 3 and x3 = 5, is depicted in (a). The membership grades of z;, z2 and 3 for
case 1 are depicted in (b), (¢) and (d), respectively ; the membership grades for case 2 are depicted
in (e), (f) and (g); and, those for case 3 are depicted in (h), (i) and (j). Each of the figures (b) to
(j) show plots of primary versus secondary memberships. In each case, m(x;) = 0.1, m(z2) = 0.8
and m(zy) = 0.6. For case 1, o(z;) = 0.05m(z;) for i = 1,2,3; for case 2, o(z1) = 0.3m(zy),
a(xs) = 0.1m(z2) and o(z3) = 0.2m(z3); and, for case 3, o(x;) = 0.5m(x;) for i = 1,2,3.

Observe that the approximation in the first two cases is much closer to the true centroid than
that in the third case; however, though a smaller value for [Z. rr(:c,-)]/[z‘. m[;r,—)] will generally
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Figure 2.19: Figures for Example 2.7. Centroids of the Gaussian type-2 set depicted in Fig. 2.18 for
the three choices of o(z;) (i = 1,2,3). (a) o(x;) = 0.05m(x;) for i =1,2,3. (b) o(z1) = 0.3m(zy),
a(z2) = 0.1m(z2) and o(x3) = 0.2m(z3). (¢) o(x;) = 0.5m(z;) for i = 1,2,3. When computing
the true centroids only primary membership values between m(z;) = 20(z;) are considered.

give a better approximation, it is not at all easy to predict how close the actual centroid of a given
Gaussian type-2 set will be to its approximation. The same can be said about the approximation
in Theorem 2.5, which allows the domain points z;’s to be replaced by fuzzy sets. O

Example 2.8 Consider a Gaussian type-2 set A C X. Let the principal membership function of A
be a Gaussian type-1 set with mean M and~ standard deviation 3; and, let the standard deviation
of each secondary membership function of A be proportional to the mean of that secondary mem-
bership function. Figure 1.10 shows an example of such a Gaussian type-2 set. In this example,
we obtain an expression for the centroid of A, using Corollary 2.2.

Recall, from comment 2 at the end of Corollary 2.2, that m(z) for x € X is the same as the
principal membership function of A. The membership grade of every € X in A can, therefore,
be described as

ﬁf\(x) =G (m(z),o(z)) ; z€X (2.82)
where _At\2
m(z) = e~ #(*T) (2.83)
and
o(z) = em(z) (2.84)

where G(m, o) indicates a Gaussian with mean m and standard deviation ¢; and, ¢ is a constant,
which is generally in (0, 1).
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Let us now find an expression for C'f, the centroid of A, in terms of M, ¥ and ¢. From
Corollary 2.2, we know that C':\ is approximately a Gaussian type-1 set with mean M(C_';i) and

standard deviation E(C;), where

5\ _ T mm(z:) :
.M(C‘t-\) = Z?le(xi) (2.85)
" S fo = MEQ)lo(a)
5y _ 2ist i —J 2oz
W Yy, mz:) ey
provided that 5
km)_ <1 (2.87)

N
i=1 m(x;)
where k is the number of standard deviations considered significant, 2 or 3, and the domain of A

is assumed to be discretized into N points.
I

Since m(x) for # € X is the principal membership function of A, we see, from (2.85), that
.M(C:\) is the same as the centroid of the principal membership function, which is equal to M, i.e.,

M(C;)=M (2.88)

To find E(C'f\), let us assume that X is not discretized (i.e., it is continous), so that (2.86) can
be rewritten as (using the fact that .M(l’:'f\) = M)

. Leex |z — Mlo(z)dz

Z(CR) = ooy m@)dz (2:59)

The fuzzy sets we deal with are generally subsets of the real line, so that X = R. Observe, from
(2.83) and (2.89), that the denominator of (2.89) is the area under a Gaussian with mean M and
standard deviation ¥. Recall from probability theory that the area under a probability density
function is unity; therefore,

/ m(z)dr = V27X (2.90)
reR
Let the numerator of (2.89) be equal to I. It can be computed as follows.
I=hL+1 (291)
where
I =f (M — z)o(x)dzx (2.92)
<M
and
I, = [ (x — M)o(x)dz (2.93)
r>M

Substituting (2.83), (2.84) and 3[(z — M)/Z]* = t into (2.92) and (2.93), it is easy to see that

o0
L =I,=cx? / e~tdt = cx? (2.94)
]
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Using (2.90), (2.91) and (2.94) in (2.89), we find that

£(C:) = 25 | (2.95)

AT oms Vo ’
From (2.88) and (2.95), we see that éf\ is approximately a Gaussian type-1 set with mean M

and standard deviation \/2/w¢cE. The condition (2.87) requires that ¢ < 1/k [since o(z) = em(z)].
Observe that, if we set ¢ = 0, o(z) = 0 for all € X, implying that A collapses to its principal

membership. Now, from (2.95) , we get E{C_?E\) = 0, which means that the centroid of A collapses to
a single point, equal to M. This is consistent with the fact that M is the centroid of the principal

membership function of A. O

2.5.2.2 Centroid of an Interval Type-2 Set

Appendix D.1 describes a computational procedure to compute the exact result of a weighted
average of interval type-1 sets. This procedure can be used to compute the centroid of an interval
type-2 set. Appendix D.2 also gives a result similar to Theorem 2.5.

2.5.2.3 Centroid of a Triangular Type-2 Set

For a result similar to Theorem 2.5 for triangular type-2 sets, see [8].
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Chapter 3

Properties of Membership Grades

Mizumoto and Tanaka discuss the properties of membership grades of type-2 fuzzy sets in great
detail in [17]. They examine the following properties which are satisfied by membership grades of
type-1 fuzzy sets : (A, B and C are type-1 fuzzy subsets of a set X'; and V and A represent max

and min respectively.)
Reflezive law
Antisymmetric law
Transitive law
Idempotent laws
Commutative laws
Associative laws

Absorption laws

Distributive laws

Involution law

De Morgan’s laws

Identity laws

Failure of complement laws

MR S MR
MR S Hps g S PR = UR = UG
Hi S BBy B S e = PR S Mg
AV HR =13
BRABR = I3
HAV By = Hg VIR
HAABg = p A pg
(B V) Vg =px V(eg Vne)
(mx Apg) Apg = pz A(pg A pe)
pa A (B3 YV pE) = B3
pa V(i Apg) = pg
Hi A (g V pe)

= (na Apg) V(13 A pg)
ta V(s A pe)

= (px Vi) ARV ie)
K== HA
BAV B = px A g
HA Npg = pg Vg
PAVO=pz,p3 N1 =py
paV1I=1Lpuz A0O=0
A Vux #1
A AP #0

(3.1)
(3:2)
(3.3)
(3.4)
(3.5)

(3.6)

(3.7)

(3.8)
(3.9)

(3.10)
(3.11)

(3.12)

For type-2 fuzzy sets, membership grades are type-1 fuzzy sets supported in [0, 1]. Mizumoto
and Tanaka show that normal convez type-1 fuzzy grades satisfy all the aforementioned laws for
min t-norm and maz t-conorm. (Non-normal and non-convex grades do satisfy some laws. See
[17] for details.) We focus on the product t-norm and examine which of the above properties are
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satisfied by the type-1 fuzzy grades (membership grades of type-2 sets). We consider only convez,
normal fuzzy grades in our work. The results are summarized in Table 3.1.

Table 3.1: This table summarizes the results of Chapter 3. In the type-2 case, we assume convez,
normal membership grades. Additionally, for reflezive, antisymmetric and transitive laws, fuzzy set
inclusion is defined as in (3.26). For product t-norm, the laws that are satisfied in the type-1 case,
but not in the type-2 case, are highlighted. Results for the minimum ¢-norm are taken from [17].

St Phusretis Liws Minimum #norm | Product {-norm
Type-1 | Type-2 | Type-1 | Type-2
Reflexive i < pi Yes Yes Yes Yes
Anti- Ba < s M5 < A Yes Yes Yes Yes
symmetric = B3 = Up
Transitive Ba < s By < 1 Yes Yes Yes Yes
= 1tz < pe
Idempotent LV PR = 1R Yes Yes Yes No
I Sl Yes Yes No No
Commutative | pz Vg =pp Vg Yes Yes Yes Yes
LR * AR = Mk R Yes Yes Yes Yes
Associative (i V pg) Vope Yes Yes Yes Yes
=pi V(e Vv pe)
(i * pug) * e Yes Yes Yes Yes
= px * (ug * pe)
Absorption | pz *(puz Vpug) = pi Yes Yes No No
px V(A * i) = 14 Yes Yes Yes No
Distributive sy * (g V)= Yes Yes Yes No
(g * py) V (1a * 1es)
iV (pg *pe) = Yes Yes No No
(a V) * (k3 V pe)
Involution b = By Yes Yes Yes Yes
De Morgan’s PRV R = TR g Yes Yes No No
Laws Ba * g = ps Vs Yes Yes No No
Identity ui V0= pz Yes Yes Yes Yes
i * 1=y Yes Yes Yes Yes
pzvl=1 Yes Yes Yes Yes
pz x0=0 Yes Yes Yes Yes
Complement paVps#1 Yes Yes Yes Yes
(Failure) pig *px # 0 Yes Yes Yes Yes

Before going to type-2 sets, we review which of the above properties are satisfied by membership
grades of type-1 sets for product t-norm and maz t-conorm. Again consider type-1 fuzzy subsets,
A, B, C, of set X, as above.

Reflexive, antisymmeiric and transitive laws do not make use of the {-norm at all and hence
are satisfied for product t-norm and max f-conorm. Commutative and associative laws are also
satisfied, since both, max and product operations are commutative and associative, i.e.,

HAVREg = pgVpi (3.13)
HAKG = iR (3.14)
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(maVug)Viee = B V(egVee) (3.15)
(narp)ne ma(ngpe) (3.16)

The second part of absorption laws is satisfied, i.e., pg V (pzps) = pg; the first part of
distributive laws is satisfied, i.e., product is distributive over maximum; and the first part of
idempotent laws is also satisfied, i.e., pg V pz = 3.

The involution law is satisfied, since we define complement in the same way as before, Hx =
1 — p;. Additionally, identity laws are satisfied, i.e.,

uiVO=pz , pzx1l=p3
paVv1l=1 , puzx0=0 (3.17)
None of the other laws are satisfied under product t-norm. We list the reasons for failure of

these laws as follows :

Idempotent laws (second part) : pipz # M3 (3.18)

Absorption laws (first part) : p; > pg =
Ba(a V g) = BAMUR 7# PR (3.19)

Distributive laws (second part) : pz > pg, g > pe =
ki V (Hphe) = By

# (g V ep)(pa v ne) = 13 (3.20)
De Morgan’s laws @ pz Vg =1— (g Vng)
# g = (1 - pg)(d - pg) (3.21)
Fifg = 1= pipg
# B Vo=
= max{(1 - pz),(1 - pg)} (3.22)

Complement laws fail in both the cases, for minimum [17] as well as product t-norms.

From our discussion so far, we see that the {max, product} t-conorm / t-norm pair, for type-1
sets, does not satisfy complement laws, De Morgan’s laws and parts of idempotent, absorption and
distributive laws (our discussion is summarized in Table 3.1). Note that this has in no way deterred
users from developing and applying type-1 fuzzy logic systems using the {max, product} ¢-conorm
/ t-norm pair, because, for the most part, we don’t make use of these laws in our fuzzy logic
systems. If, however, the designer of a type-1 FLS did use these laws, then the design would be in
error, since the laws do not apply.

Now, let’s turn to type-2 sets. We use join and meet operations in place of the #-conorm and
t-norms respectively, in the above definitions. The underlying t-conorm and ¢-norm are maximum
and product, respectively.

Recall that all our operations on type-2 sets collapse to their type-1 counterparts, i.e., if we
replace all the type-1 fuzzy grades by the primary memberships at which the secondary mem-
berships are equal to 1 the results remain valid. We assume, for simplicity, that the secondary
membership functions reach the value 1 at only one point. This means that we can think of type-1
fuzzy sets as special cases of type-2 fuzzy sets, where only one value of the primary memberships
has a non-zero secondary membership (and this secondary membership is equal to 1); therefore, if
there are any set theoretic laws that are not satisfied by type-1 fuzzy sets, we can safely say that
type-2 sets will not satisfy those laws either; however, the converse of this statement may not be
true. If any condition is satisfied by type-1 sets, it may or may not be satisfied by type-2 sets. So,
next we examine only those aforementioned properties that are satisfied in the type-1 case.



Consider three type-2 fuzzy subsets, P, Q, R, of a set X, with membership grades as follows :

iz = ./ue[o;] flu)/u (3.23)
By = /::e{u,l] g(v)/v (3.24)
iy = fwe[o,lj h(w)/w (3.25)

We define fuzzy set inclusion as follows [12] :
PC Q& i) < fig(z) Vo € X (3.26)

The following generalized versions of reflezive, antisymmetric and transitive laws are satisfied.
Observe that these laws do not make use of the ¢-norm or t-conorm.

Reflezive law @ [y C iz (3.27)
Antisymmetric law : jiz C ﬁé , fé Chag=jig= ;'6 (3.28)
Transitive law  :  fig C fig s Fig C g = iy € g (3.29)
where fiz = *&C‘e & f(u) = g(u)Vu € [0,1] [see Eqs. (3.28), (3.23) and (3.24)].
Commutative laws are satisfied for max t-conorm and product t-norm, because :
fpuig = Uf swmulf owr
= [ [ swa@/@vv)
= [ [swswiwvu
= ([ swelul s/
= fig U3 (3.30)
A very similar proof can be presented for fiz M ﬁ‘é = ;15 M.
Associative laws are satisfied for max f-conorm and product ¢-norm, because :
i gy = U swpantf [ g/l
= [ ][ swls@ha)/uew)
= / j/[f{u)g(v)]h(w)/(uv)w
= [/ _f(u),r;(v)/uv]rl[/ hw)/w)
(Ag M fg) Mg (3.31)

A similar proof can be presented for iz U (,&é Ugaz) = (agu ﬁé] U jiz . The proofs of (3.30) and
(3.31) are very similar to those in [17].
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The proof for the involution law, given in [17], remains unchanged because we do not change
the definition of negation when we change from min ¢-norm to product é-norm, i.e., ;'g =i,

Before proving the identity laws we explain the concepts of 0 and 1 membership grades in case
of type-2 sets [17]. In type-2 sets, 0 and 1 memberships are represented as 1/0 and 1 /1 respectively.
This is in accordance with our earlier discussion about type-1 sets being a special case of type-2
sets. Zero membership in type-2 sets is equivalent to having a “zero” fuzzy set of type-1 (since the
membership grade is a fuzzy set of type-1), i.e., an element is said to have a zero membership in a
type-2 set if it has a secondary membership equal to 1 corresponding to the primary membership
of 0, and if it has all other secondary memberships equal to 0. Similarly, an element is said to
have a membership grade equal to 1 in a type-2 set, if it has a secondary membership equal to 1
corresponding to the primary membership of 1, and if all other secondary memberships are zero.
Now, we proceed to prove the identity laws.

Identity laws are satisfied for product f-norm and max t-conorm, if we use only normalized
membership grades, because :

Apu0 = 1 Jfw/du1/
= /f(u)xl/(u\/(])

= f f(w)/u

= i (3.32)
fignl = [[ﬁ fw)/uln1/1

= f J(w) x 1/(u x 1)

- f f(u)/

= (3.33)
Ul = f fw)/ulu1/1

= [swx1/@v

= f fw)/1

= [Sl;pf(u)]/l
= 1/l
1 (3.34)

geno = [ f@/dn1/o
= ff(u) x 1/(ux0)

- ] F(w)/0

= sup f(w)]/0
= 1/[]
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= 0

(3.35)

We have made use of the fact that the secondary membership functions are normalized only in
(3.34) and (3.35). We do not need to use this fact in the proofs of (3.32) and (3.33), which means
that (3.32) and (3.33) hold even in the case of non-normalized secondary membership functions.
Next we show, by means of an example, that the first parts of the idempotent and distributive
laws, and the second part of the absorption law, which are satisfied in the type-1 case, may not be

satisfied for product t-norm and max t-conorm in the type-2 case.

Example 3.1 Consider the following three normalized, convex, type-1 fuzzy grades :

Il

0.5/0.1+1/0.7
0.6/0.3+1/0.7
0.4/0.2 +1/0.8

Gu

-—
=t =

Il

=]

= On

Failure of the first part of the idempotent law :

fisUf; = (0.5/0.1+1/0.7)U(0.5/0.1+1/0.7)
= 0.25/0.1+0.5/0.7+0.5/0.7 +1/0.7
= 0.25/0.1+1/0.7
£ 1

Failure of the first part of the distributive law :

jiz Uiz = (0.6/0.3+ 1/0.7)U (0.4/0.2+ 1/0.8)
= 0.24/0.3+ 0.6/0.8 + 0.4/0.7+1/0.8
= 0.24/0.3+0.4/0.7+1/0.8
fig N (fig Uig) = (0.5/0.1+1/0.7) N (0.24/0.3+0.4/0.7 + 1/0.8)
= 0.12/0.03 + 0.2/0.07 + 0.5/0.08

+0.24/0.21 + 0.4/0.49 + 1/0.56
figNiig = (0.5/0141/0.7)N(0.6/03+1/0.7)
= 0.3/0.03+ 0.5/0.07 + 0.6/0.21 + 1/0.49
fiz Nz = (0.5/0.1+1/0.7)1(0.4/0.2+ 1/0.8)
= 0.2/0.02+ 0.5/0.08 + 0.4/0.14 + 1/0.56
(fig M itg) U (i Mig) = (0:3/0.03+0.5/0.07 +0.6/0.21 +1/0.49)

1(0.2/0.02 + 0.5/0.08 + 0.4/0.14 + 1/0.56)

= (0.3/0.03) U (0.2/0.02 + 0.5/0.08 + 0.4/0.14 + 1/0.56)
+(0.5/0.07) U (0.2/0.02 + 0.5/0.08 + 0.4/0.14 + 1/0.56)
+(0.6/0.21) U (0.2/0.02 + 0.5/0.08 + 0.4/0.14 + 1/0.56)
+(1/0.49) U (0.2/0.02 + 0.5/0.08 + 0.4/0.14 + 1/0.56)

= 0.06/0.03 + 0.15/0.08 + 0.12/0.14 + 0.3/0.56
+0.1/0.07 + 0.25/0.08 + 0.2/0.14 + 0.5/0.56
+0.12/0.21 + 0.3/0.21 + 0.24/0.21 + 0.6/0.56
+0.2/0.49 + 0.5/0.49 + 0.4/0.49 + 1/0.56

= 0.06/0.03 + 0.1/0.07 + 0.25/0.08 + 0.2/0.14

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

53



+0.3/0.21 + 0.5/0.49 + 1/0.56
# i N (g Uig) (3.41)
This shows that under the product t-norm, even with convex, normal sets, meet is not distribu-

tive over join, i.e.,
g N (g U ) # (B Mg ) U (g M jag) (3.42)

Failure of the second part of the absorption law : Using (3.39),

(0.5/0.1 + 1/0.7) U (0.3/0.03 + 0.5/0.07 + 0.6/0.21 + 1/0.49)

= 0.15/0.1+0.25/0.1+ 0.3/0.21 + 0.5/0.49
+0.3/0.7 + 0.5/0.7 + 0.6/0.7 + 1/0.7
= 0.25/0.1+0.3/0.21+ 0.5/0.49 + 1/0.7
£ i (3.43)

fig U (g N ig)

O

Observe that both of the distributive and absorption laws do not hold. So, under product
t-norm, meet for type-2 case is totally non-distributive and non-absorptive, and is only partially
distributive and absorptive for the type-1 case.

If the membership grades are crisp sets, i.e., if the secondary memberships can be only ones or
zeros, then the first idempotent law, which fails in the general type-2 case, is satisfied. To see this,
consider jiz = S, 1/u;, which is an interval set; then

i=1

pgugy = (5o lliai)u(zll/u;)
J:

n n

= ZZ L/(u;i V uy)

i=1 j=1

L

= Y 1/(wivu)+ > 1/(ui V uj)

i=1 iz.i J:I
i#]

n

= ZI/’!H-F ZZ} 1/(ui V uj) (3.44)

i1 i=1 j=
i#j

Observe that in the second term on the RHS of line 4 above, for each pair {7,j} with i,j =
1,2,---,n, the result of u; V u; is equal to either u; or uj, where 7,5 = 1,2,...,n and i # j. Let
u' = u; V u;. Now, since the first term contains all the u;’s, with ¢ = 1,2,---,n, u' is contained in
it too. Also, since both the secondary memberships of ', in the first term as well as in the second
term, are 1, the effective secondary membership of v/ in ,&l:, u,&]g is again 1. So, essentially, i Llﬂf,
contains all the u;’s (i = 1,2,---,n), each with a secondary membership equal to 1, i.e.,

n
fig Uiy =Y 1/u; = jig (3.45)
i=1
Observe that the set considered above, where membership grades are crisp sets in [0, 1], is still a
type-2 set (i.e., it is not a type-1 set); however since the first idempotent law is not satisfied for the
general type-2 case, we say that it is not satisfied in the type-2 case.



As we have already seen, the second part of the absorption law and the first part of the dis-
tributive law, which fail in the general type-2 case are satisfied in case of type-1 sets, i.e., to satisfy
these laws, we need the membership grades of type-2 sets to be type-1 singletons, i.e., they must
consist of only one primary membership having secondary membership equal to 1 and all other
secondary memberships must equal 0.

We have seen that the {max, product} t-conorm / t-norm pair, for type-2 sets, does not satisfy
idempotent, absorption, distributive, De Morgan’s and complement laws; hence, if the design of a
type-2 fuzzy logic system involves the use of these laws, it will be in error. Observe also that some
laws that are satisfied in the type-1 case under {max, product} #-conorm / t-norm pair are not
satisfied in the type-2 case (see Table 3.1).
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Chapter 4

Relations and Compositions

In this chapter, we examine type-2 fuzzy relations and their compositions. They play an important
role in a type-2 fuzzy logic system, which is the subject of Chapter 5.

4.1 Introduction

A relation among crisp sets X, X, ..., X, is a subset of the Cartesian product X; x Xa x ... x X,.
Just as a type-1 fuzzy relation is a type-1 fuzzy subset of the product space, a type-2 fuzzy relation
is a type-2 fuzzy set [12], i.e., every element of the product space has a membership grade which
is a fuzzy set of type-1 supported in [0,1]. All the previously discussed type-2 operations like join,
meet and negation can be used with type-2 relations.

Example 4.1 Consider the example in [15] of a type-1 fuzzy relation between real numbers, “u
is close to v". In [15], the membership function chosen for this example was p~ (| u—v |) =
max{(5— | u — v |)/5,0}. This membership function is shown in Fig. 4.1 (a).

If one is not sure of the exact nature of the membership function, one could, for example, define
the following type-2 relation : for 0 <| u—wv |< 2.5, the membership grade EZI: (|u—wv|)is a type-1

close
fuzzy set with support [1-0.3 |u—v|,1-0.1|u—wv []; and, for 2.5 <| u—v |< 5, the membership
grade fi— (| u —v |) is a type-1 fuzzy set with support [0.5—-0.1 |u—v |,1.5—-0.3 | u —v |]. This
close

memberéliip function is depicted in Fig. 4.1 (b). The secondary membership functions have been
chosen so that when | © —v |= 0, there is no additional fuzziness about “close”, and similarly, when
| w — v |= 5, this is so far from | u — v |= 0 that, again, there is no additional fuzziness about it.
When | u—v |= 2.5, the secondary membership reaches unity when the primary membership value
equals 0.5 and the support of the secondary membership function is [0.25, 0.75]. Figure 4.1 (c) shows
an example of a triangular secondary membership function corresponding to | u — v |= 2.5. Other
choices are possible for both the support and the shape of the secondary membership function.
O

4.2 Relations on the Same Product Space

Consider two universes of discourse, U and V.. If R(w, v) and S(u, v) are two type-2 fuzzy relations on
the same product space, the membership grades of their union and intersection can be represented
as

fgg(u,v) = g (u,0) Ujfig(u,v) (4.1)
iz z(wv) = fig (u,0) 0 fig(u,v) (4.2)
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Figure 4.1: Examples of membership functions for (a) type-1, and (b) type-2 fuzzy relations. In
(b), the thick dark line shows the primary memberships which have secondary membership equal
to 1. The intensity of color in the grey area is approximately proportional to the value of the
secondary membership grades. Darker color represents higher secondary membership. The domain
of the type-1 fuzzy set corresponding to |u — v| = 2.5 is also indicated in the figure. Figure (c)
shows the secondary membership function corresponding to |u — v| = 2.5.
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Example 4.2 Consider the two somewhat contradictory fuzzy relations “u is close to v” and *

is smaller than v”. Both are on the same product space U x V. For simplicity, let us assume that
U = {u,us} = {2,12} and V = {v1,v2,v3} = {1,7,13}. To begin with, we assume that both the
relations are type-1 and calculate the membership grades for their union and intersection. Then,
we will “extend” this example to the type-2 case. Let the membership grades for the type-1 case

be
vy V2 U3
mmwo) = w01 04 03) 43
UL Uz U3
Mammy) = o (3 . 0113) (4.4)

The membership grades for the union and intersection of these relations (assuming min ¢-norm and
max t-conorm) can be found as

’ut;l‘t‘)-ﬁ;!Usn:::lﬁ(:r(ui’ Uj) Llnse(u“ UJ) ¥ ”‘ﬂllﬂllcl‘( biy vj) (45)
H(fl_‘;;; nmﬁer(ui’ Uj) Iosc(u"vﬂ'] A“snrl-;;ﬁer(u"’vj) (46)
where i = 1,2 and j = 1,2, 3. Using (4.5) and (4.6), we have
v V2 U3
_ g 09 06 1
“!Tmtzu.‘,lmcr(u’v) - Uy ( 01 04 0.9 ) (47}
M V2 Uz
_ . uy 0 04 0.1
p{mﬁsrﬁ-ﬁer(u’ U) - g ( 0 0 0.3 ) (48)

is much more sensible

(u,v)

From (4.7) and (4.8), we see that “u is close to v” or “"u is smaller than v”
than “u is close to v” and “u is smaller than v”, because membership values in p——
are fairly large, whereas those in p—— il a1 (u,v) are mostly very small.

Now, let’s consider a type-2 version of the above relations, i.e., let us assume that there is
some uncertainty in the membership grades. Let the membership grades for the type-2 case be as
follows :

close U smailcr

51 U2 Uy
y w ey o ?,L/i/ 09 0.7{:][.)?1?01.40.4 0.5/0+1/0.1
Es = Wiy 0.7/03+1/0.4  0.3/0.8+1/0.9 (4.9)
sy 0.5/0+1/0.1 o jos o



) U U
1/0+0.9/0.1 0.8/0.3+0.8/0.4

. 0.9/0.9+1/1
R Uy +0.4/0. : .
i< (uv) = 1ot Pmy  TONOSEIOG  g/0.4 ) (4.10)
smalle o 01/{]2 1/0 -+ 03/01 +04/(}5

Observe that we have collected the type-2 membership grades also in a matrix, just like the
type-1 case. The only difference in the type-2 case is that each element of the membership matrix
is a type-1 fuzzy set rather than a crisp number. Observe, also, that the numbers to the right of the
slash represent primary memberships and the ones to the left represent corresponding secondary
memberships. We show only those primary memberships which have non-zero secondary member-
ships. We have purposely chosen the grades so that the primary memberships which correspond
to the membership grades in the type-1 case have unity secondary memberships. This can be in-
terpreted as “perturbing” the membership matrices in (4.7) and (4.8) a little bit. We have chosen
normal membership grades in this example, just to stress the fact these type-2 grades are related
to the type-1 grades in (4.7) and (4.8). Observe, also, that pairs having the same membership in
the type-1 case need not necessarily have the same membership in the type-2 case.

The membership grades for the union and intersection of these relations can be found as follows :

p~ =~ (w,v) = j=(u,v;)Ug = (u;,v;) (4.11)
close U smaller close smaller
b= = (u,v) = j==(u;v;) N = (u;,v;) (4.12)
close Nsmaller close smaller

wherei = 1,2 and j = 1,2,3. Using (4.11) and (4.12), we get (using min t-norm and maz t-conorm)

fi— =~ (u,v) = (0.3/0.8+1/0.9+0.7/1)U(1/0+ 0.9/0.1+ 0.4/0.5)

close Usmaller
= 0.3/0.8+0.3/0.8+ 0.3/0.8+ 1/0.9+0.9/0.9 + 0.4/0.9
+0.7/140.7/1+ 0.4/1
= 0.3/0.8+1/0.9+0.7/1
fi— — (w,v12) = (0.7/0.3+1/0.4+ 0.1/0.5)

close Usmaller
U(0.8/0.3 + 0.8/0.4 + 0.9/0.5 + 1/0.6)
= 0.7/0.3+0.7/0.4+0.7/0.5 + 0.7/0.6 + 0.8/0.4 + 0.8/0.4
+0.9/0.5+1/0.6 + 0.1/0.5+0.1/0.5 4+ 0.1/0.5 + 0.1/0.6
= 0.7/0.3+0.8/0.4+0.9/0.5+1/0.6

close Usmaller
= 0.5/0.9+0.5/1+0.9/0.9+1/1
= 0.9/09+1/1
i~ =~ (us,v;) = (0.5/0+1/0.1)U(1/0+ 0.1/0.1+0.1/0.2)

close Usmaller

= 0.5/0+0.1/0.1+0.1/0.2 + 1/0.1 +0.1/0.1 + 0.1/0.2
= 0.5/0+1/0.1+0.1/0.2
,(]__I_'-"-_;_: s :‘_ﬁ-_l, (un,v0) = (07/03 + 1/0’1 + 01/05} u (1/0 + 03/01)
close Usmaller
= 0.7/0.3+0.3/0.3+1/0.4+0.3/0.4+0.1/0.5 + 0.1/0.5
= 0.7/0.3+1/0.4+0.1/0.5
e —— (us,vs) = (0.3/0.8+1/0.9+0.7/1)L(1/0.3+0.9/0.4+0.4/0.5)

close Usmaller



and

e = (11,91)
close Nsmaller

i —=— (u1,12)
close Nsmaller

jl— = (u1,v3)
close Nsmaller

ji— = (u2,v1)
close N smaller

fi— = (u2,v2)
close Msmaller

Belose rismaller (u‘.’: U3)

0.3/0.8+0.3/0.8+0.3/0.8 + 1/0.9 + 0.9/0.9 + 0.4/0.9
+0.7/14+0.7/1+0.4/1
0.3/0.8+1/0.9+0.7/1

(0.3/0.8+ 1/0.9+ 0.7/1) M (1/0 + 0.9/0.1 + 0.4/0.5)

0.3/0 4+ 0.3/0.1 +0.3/0.5+ 1/0+ 0.9/0.1 4+ 0.4/0.5
+0.7/0 4+ 0.7/0.1 + 0.4/0.5

1/0+0.9/0.1 +0.4/0.5

(0.7/0.3+1/0.4+ 0.1/0.5)

M1(0.8/0.3 + 0.8/0.4 + 0.9/0.5 + 1/0.6)

0.7/0.3 + 0.7/0.3 + 0.7/0.3 + 0.7/0.3 + 0.8/0.3 + 0.8/0.4
0.9/0.4 +1/0.4 +0.1/0.3 +0.1/0.4 + 0.1/0.5 + 0.1/0.5
0.8/0.3+1/0.4 +0.1/0.5

(0.5/0 +1/0.1) 11 (0.9/0.9 + 1/1)

0.5/0 +0.5/0 +0.9/0.1 +1/0.1
0.5/0 +1/0.1
(0.5/0+1/0.1) 1 (1/0 +0.1/0.1 + 0.1/0.2)

0.5/0 +0.1/0 + 0.1/0 + 1/0 + 0.1/0.1 + 0.1/0.1
1/0+ 0.1/0.1
(0.7/0.3 + 1/0.4 + 0.1/0.5) 1 (1/0 + 0.3/0.1)

0.7/0+0.3/0.1+1/0+0.3/0.1+ 0.1/0+ 0.1/0.1
1/0 + 0.3/0.1

(0.3/0.8 +1/0.9+0.7/1)N(1/0.3 4 0.9/0.4 + 0.4/0.5)
0.3/0.3 +0.3/0.4 +0.3/0.5 + 1/0.3 + 0.9/0.4 + 0.4/0.5
+0.7/0.3+0.7/0.4 + 0.4/0.5

1/0.3+0.9/0.4+0.4/0.5

Collecting the above results in matrices, we have

= = (u,v) =
close Usmaller
(41 V2 vy
0.3/0.841/0.9 0.7/0.3 4 0.8/0.4
u /+0.?/1/ +0./9 0.5+ 1/0.6 0.9/0.9+1/1 (4.13)
i 0.5/0+1/0.1 0.7/0.3+1/0.4 0.3/0.8+4+1/0.9
. +0.1/0.2 +0.1/0.5 +0.7/1

= = (u,v)=

close Msmaller

60



" U2 U3

1/0+09/01  0.8/0.3+1/0.4 ]
w +0.4/0.5 +0.1/0.5 0.5/0+41/0.1 Lo
1/0.3 +0.9/0.4
Uz 1/0+0.1/0.1 1/0+0.3/0.1 +0.4/0.5

Comparing the above results with those in the type-1 case, we observe the following. Since we
chose type-2 membership grades in such a way that the primary memberships corresponding to
the membership grades in the type-1 case have unity secondary memberships, the memberships
of union and intersection also exhibit a similar structure, i.e., primary membership grades for the
union (intersection) which correspond to the membership grades for the union (intersection) in the
type-1 case, have unity secondary memberships. For example, ;.zdoscmma”er( uy,v2) = 0.4 and it’s
type-2 counterpart is i— —— (u1,v2) =0.8/0.3 +1/0.4 +0.1/0.5.

close Nsmaller . i .
Observe that the membership grades for the union are, in general, higher than those for the

intersection, i.e., the values of primary memberships of the union that have non-zero secondary
memberships are, in general, higher than those of the intersection, again indicating that the in-
tersection (“close” and “smaller”) of the above two relations is treated with a higher degree of
disbelief than their union (“close” or “smaller™). O

4.3 Relations on Different Product Spaces

Consider two different product spaces, U x V and V x W, that share a common set and let R(U, V)
and S(V, W) be two crisp relations on these spaces. The composition of these relations is defined
[15] as “a subset T'(U, W) of U x W such that (u,w) € T' if and only if (u,v) € R and (v,w) € S”.
This can be expressed as a max-min, max-product or in general, a sup-star composition as follows
(where x indicates any suitable t-norm operation) :

Hios(u, w) = supug(u,v) * ps(v, w)) (4.15)
veV

The validity of the sup-star composition for crisp sets is shown in [25]. If R and S are two crisp
relations on U x V' and V' x W respectively, then the membership for any pair (u,w), v € U and
w € W, is 1if and only if there exists at least one v € V' such that pr(u,v) =1 and pg(v,w) = 1.
In [25], it is shown that this condition is equivalent to having the sup-star composition equal to 1.

When we enter the fuzzy domain, set memberships belong to the interval [0, 1] rather than
just being 0 or 1. So, now we can think of an element as belonging to a set if it has a non-
zero membership in that set. In this respect, the aforementioned condition on the composition of
relations can be rephrased as follows :

If R and S are two type-1 fuzzy relations on U x V and V' x W respectively, then the
membership for any pair (u,w), v € U and w € W, is non-zero if and only if there
exists at least one v € V' such that pg(u,v) # 0 and pg(v,w) # 0.

It can be easily shown that this condition is equivalent to the sup-star composition,
Pios(u, w) = 5:1%>[gtﬁ(u, v) * pg(v, w)) (4.16)
veV

In the proof of this, given next, we use the following method. Let A be the statement
“Uio.a(u,w) # 07, and B be the statement “there exists at least one v € V such that ug(u,v) #0
and ,uq{n w) # 07. We prove that “A iff B” by first proving that B = A (which is equivalent to
proving A = B, i.e., necessity of B) and then proving that A = B (which is equivalent to proving
B = A, i.e., sufficiency of B).
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Proof: Necessity If there exists no v € V such that pg(u,v) # 0 and pg(v,w) # 0, then this
means that for every v € V, either pug (u,v) or pg(v,w) is equal to zero (or both are zero), which in
turn implies that pg (u, v) * pg(v, w) = 0 for every v € V, i.e., the supremum of pg(u,v) * pg(v, w)
over v € V' is zero.

Sufficiency If the sup-star composition is zero, then it must be true that ug (u,v) * pg(v,w) =0
for every v € V, which means that for every v € V, either g (u,v) or pg(v,w) (or both) is zero.
This means that there is no v € V' such that g (u,v) # 0 and pg(v,w) # 0. ]

This shows that the sup-star composition is valid for type-1 sets. Of course, this argument
does not let us decide whether the actual numerical value arrived at by the sup-star composition is
correct in some sense. Also, there might be other expressions involving pj (u,v) and pg(v,w) that
might prove to be equivalent to the condition on the composition of relations.

Now, we show that an equation similar to (4.16) holds for the composition of type-2 fuzzy
relations (provided all the secondary membership functions are normalized). The same condition
on the composition of relations that we used for the type-1 case can be used for the type-2 case,
i.e.,

If R and S are two type-2 fuzzy relations on U x V and V x W respectively, then the
membership for any pair (u,w), u € U and w € W, is non-zero if and only if there
exists at least one v € 1" such that ﬂﬁ(u,v) # 0 and ﬁg(u, w) # 0.

Recall the concept of 0 and 1 memberships in type-2 sets, discussed carlier. We will also make
use of identity laws (which hold for minimum and product ¢t-norm as shown in Chapter 3) in the
proof of the sup-star composition. i N

Consider two type-2 fuzzy relations, RandS,onUxV and V x W, respectively. We next show
that their composition is equivalent to the following “extended” version of the sup-star composition.

fig z(u,w) = I_lvev[;; (u,v) M jig(v, w)] (4.17)

The method of proof is very similar to that in the type-1 case.

Proof: Necessity If there exists no v € 1V such that ;lﬁ(u,v) # 0 and ﬁé(v, w) # 0, then this
means that either fis (u,v) =0or ﬁ-(u w) = 0 (or both are zero) for every v € V. So, from (3.35),
we have that iz (u, 'U') N jig(v,w) = 0 for every v € V. From (3.32), we see that 0 U 0 = 0, which
implies that the RHS of (4 17) is equal to 0.

Sufficiency If the extended sup-star composition is zero, then, from (4.17),

Upev [ﬁﬁ(u, v) N fiz (v, w)] =0 (4.18)

Observe, from (2.14), that for two normal membership grades, pp = [ f(u)/u and By =
Jy9@)/v, .
ppUpg =0 < f ] [f(u) *g(v)]/(uVv) =1/0 (4.19)

which implies that v = v = 0, ie., pp = pg = 1/0; therefore, from (4.18), it must be true
that ,un(u v) M fig (v,w) = 0 for every v € V, which means that for every v € V, either ,un(u v)
or ;: (v,w) (or hoth) is zero. This means that there is no v € V such that ,u (u,v) # 0 and
,us(u w)#0. O

Since we generally use normalized membership functions, we can use (4.17) for the composition
of type-2 relations. Also, since (3.32) and (3.35) hold for minimum as well as product #-norm,
(4.17) will hold for both the choices.

Observe that the proofs of the sup-star composition for type-1 and type-2 cases are very similar.
In fact, the only difference in the two is that in the type-2 case we use the more general meet
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operation in place of the x operation that is used in the type-1 case, and, the concept of 0 and 1
in case of type-2 sets is more general than that in case of type-1 sets.

Dubois and Prade [4, 5] give a formula for the composition of type-2 relations under minimum
t-norm as an extension of the type-1 sup-min composition (without proof). This formula is the
same as (4.17).

Example 4.3 Consider the type-1 relation “u is close to v” on U x V, where U = {u;,us} and
V = {vy,v2,v3} are as given in Example 4.2. We restate them here for convenience : U = {2,12},
V ={1,7,13} and

vy V2 Uz

(1 ) Uy 0.9 04 0.1
(|(IHC e = U 0.1 04 0.9

Now consider another type-1 fuzzy relation “v is bigger than w” on V x W where W = {w;, w2} =
{4,8}, with the following membership function :

wy; W
M 0 0
7 hlggcr(v w) = s 06 0 (4.20)
Vg 1 0.7

The statement “u is close to v and v is bigger than w” indicates the composition of these two
relations, which can be found by using (4.16) and the minimum ¢-norm, as follows :

Hirome o bimger (Ui Wi) [z (wis v1) A s (01, w;)]
Vg (i v2) A py— (v v, w;)]
V[p-—~— o (i, v3) A pr—~ ger{13,wj)] (4.21)
where i = 1,2 and j = 1,2,3. Using (4.21), we have
”(:.I_n‘)‘;;oblg.,g(r( up,wy) = [p ,m(ul,%‘l) /\!lmgger(ifl,?ﬂl)]
Vipg— (u1,v2) A~ (12,11:1)]
Vs (w1, v3) A 'u'blggcr(u']"wl)]

= [0.9A0]V[0.4A0.6]V[0.1A1]
0V0.4V0.1
= 04

Doing all the calculations in a similar manner, we get

wy  wa

o 04 0.1 ‘
!L(:I_(-)‘_sﬂeoh‘i-gé:rr(u"w) = Un ( 0.9 0.7 ) (122)
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Now, just as in Example 4.2

, let us consider the type-2 relation “v is bigger than w” which is

obtained by adding some uncertainty to the type-1 relation in (4.20). Let the membership grades

be as follows :

—

bigger

=~ (v,w) =

The composition of the type-2
using (4.17) as follows :

(15} wo
v 1/0 + 0.6/0.1 1/0 +0.1/0.1
0.4/0.5+1/0.6 1/0 4 0.8/0.1
va 0.9/0.7 0.2/0.2 (4.23)
5/0.6 + 1/0.
vg o091y OHOEE 0T

relations “u is close to v and v is bigger than w” can be found by

i = (ujpw;) = [i==(w,n)Ni= (v1,w;)]
close o bigger close bigger
U= (ui,v2) N i = (v2,w;)]
close bigger
U[ﬁ.: {u,-, Ug) r ﬁ et (Ug, w_,—)] (424)
close bigger

where i = 1,2 and j = 1,2. Using (4.24), (4.23) and (4.9), we have (using min ¢{-norm and max

t-conorm)

| A (Ul,le
close o bigger

=

1l

Il

Il

— = (uy,ws)
close o bigger

H=—=

[(0.3/0.8 + 1/0.9+ 0.7/1) 11 (1/0 + 0.6/0.1)]

U[(0.7/0.3 + 1/0.4 + 0.1/0.5) M (0.4/0.5 + 1/0.6 + 0.9/0.7)]
L[(0.5/0 + 1/0.1) N (0.7/0.9 + 1/1)]

[0.3/0+ 0.3/0.1+ 1/0 + 0.6/0.1+ 0.7/0 + 0.6/0.1]
U[0.4/0.3 + 0.7/0.3 + 0.7/0.3 + 0.4/0.4 + 1/0.4 + 0.9/0.4]
U[0.5/0 + 0.5/0 + 0.7/0.1 + 1/0.1]

(1/0+ 0.6/0.1) U (0.7/0.3 + 1/0.4) U (0.5/0 + 1/0.1)
0.7/0.3 + 1/0.4 + 0.6/0.3 + 0.6/0.4] U (0.5/0 + 1/0.1)
(0.7/0.3 + 1/0.4) U (0.5/0 + 1/0.1)
0.5/0.3+0.7/0.3+0.5/0.4+ 1/0.4

0.7/0.3+ 1/0.4

[(0.3/0.8 + 1/0.9+ 0.7/1) 1 (1/0 + 0.1/0.1)]

U[(0.7/0.3+1/0.4 + 0.1/0.5)

n(1/0+0.8/0.1+ 0.2/0.2)]

U[(0.5/0 +1/0.1) M (0.5/0.6 + 1/0.7 + 0.7/0.8)]
[0.3/0+0.1/0.1+1/0+0.1/0.1 +0.7/0 4 0.1/0.1]
U[0.7/0 4 0.7/0.1+ 0.2/0.2+ 1/0+ 0.8/0.1 + 0.2/0.2
+0.1/0+0.1/0.1+0.1/0.2]

U[0.5/0+0.5/0+ 0.5/0+ 0.5/0.1 + 1/0.1 + 0.7/0.1]
(1/040.1/0.1) U (1/0 + 0.8/0.1 + 0.2/0.2)
u(0.5/0+1/0.1)
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jl—=— —— (u271”l)
close o bigger

i~ —~— (u2,ws)
close o bigger

Il

(1/0 + 0.8/0.1+0.2/0.2 + 0.1/0.1 + 0.1/0.1 + 0.1/0.2]
U(0.5/0 + 1/0.1)

(1/0 + 0.8/0.1+0.2/0.2) U (0.5/0 + 1/0.1)

0.5/0 4 1/0.1 + 0.5/0.1 + 0.8/0.1 + 0.2/0.2 + 0.2/0.2
0.5/0+ 1/0.1+0.2/0.2

[(0.5/0 + 1/0.1) N (1/0 + 0.6/0.1)]

U[(0.7/0.3 + 1/0.4 +0.1/0.5)

1(0.4/0.5 + 1/0.6 + 0.9/0.7)]
U[(0.3/0.8 +1/0.9 4+ 0.7/1) N (0.7/0.9 + 1/1)]
[0.5/0+0.5/0+1/0+0.6/0.1]
U[0.4/0.3 +0.7/0.3 4 0.7/0.3 + 0.4/0.4 + 1/0.4 + 0.9/0.4
+0.1/0.5+ 0.1/0.5 4+ 0.1/0.5]
U[0.3/0.8 + 0.3/0.8 + 0.7/0.9 4+ 1/0.9 + 0.7/0.9 + 0.7/1]
(1/0 4 0.6/0.1) U (0.7/0.3 + 1/0.4 + 0.1/0.5)
M(0.3/0.8 +1/0.9+0.7/1)
[0.7/0.3+1/0.4+0.1/0.5 + 0.6/0.3 + 0.6/0.4 + 0.1/0.5]
n(0.3/0.8+1/0.9+0.7/1)
(0.7/0.3 +1/0.4 +0.1/0.5) N (0.3/0.8 4+ 1/0.9 + 0.7/1)
0.3/0.8 4 0.7/0.94 0.7/1+ 0.3/0.8 + 1/0.9 + 0.7/1
+0.1/0.8+0.1/0.9 + 0.1/1
0.3/0.8 + 1/0.9 +0.7/1
[(0.5/0+1/0.1) N (1/0 +0.1/0.1)]

U[(0.7/0.3 4 1/0.4 4+ 0.1/0.5) 1 (1/0 + 0.8/0.1 + 0.2/0.2)]
U[(0.3/0.8 + 1/0.9 4 0.7/1) N (0.5/0.6 + 1/0.7 + 0.7/0.8)]
[0.5/0+0.1/0 + 1/0 + 0.1/0.1]

U[0.7/0 4+ 0.7/0.1+ 0.2/0.2 + 1/0 + 0.8/0.1 + 0.2/0.2
+0.1/0 +0.1/0.1+ 0.1/0.2]

U[0.3/0.6 + 0.3/0.7 + 0.3/0.8 + 0.5/0.6 + 1/0.7 + 0.7/0.8
+0.5/0.6 + 1/0.7 4 0.7/0.8]

(1/0+0.1/0.1) LU (1/0 + 0.8/0.1 + 0.2/0.2)

U(0.5/0.6 + 1/0.7 4 0.7/0.8)

[1/0+0.8/0.1+0.2/0.2+ 0.1/0.1+ 0.1/0.1 + 0.1/0.2]
U(0.5/0.6 +1/0.7+ 0.7/0.8)

(1/0+0.8/0.1+0.2/0.2) LU (0.5/0.6 + 1/0.7 + 0.7/0.8)
0.5/0.6 + 1/0.7+ 0.7/0.8 + 0.5/0.6 + 0.8/0.7 + 0.7/0.8
+0.2/0.6 + 0.2/0.7 + 0.2/0.8

0.5/0.6 4+ 1/0.7+0.7/0.8



Collecting the results in a matrix, we have

wy w2
5/0+1/0.1
] - 0.7/0.3 +1/0.4 " 4!0.;/0./1? 1.95
pﬁwﬁr(u,w) = 0.3/0.841/0.9 0.5/0.6+1/0.7 (%)
88 Uz +0.7/1 +0.7/0.8

Comparing (4.25) and (4.22), we observe that the results are indeed quite similar to the results of
the type-1 sup-star composition, i.e., in the type-2 results, primary memberships corresponding to
the memberships in the type-1 results, have unity secondary memberships. O

4.3.1 Composition of a Set with a Relation

Consider the case where one of the relations involved in the composition is just a fuzzy set. The
composition of the type-1 set R € U and type-1 fuzzy relation S(U, V') is given as [15]

Hios(v) = Sgg[ﬂa(ﬂ) * g (u, 0)] (4.26)
which is a type-1 fuzzy set on V. Sjnﬁlarly, in the type-2 case, the composition of a type-2 fuzzy
set in R € U and a type-2 relation S(U, V) is given by

fiz 3 (v) = Uueuliig (u) M fig(u,v)] (4.27)

Equation (4.27) is used in Chapter 5 for the inference mechanism of a rule of a type-2 fuzzy logic
systemn.

Example 4.4 Consider again the type-1 relation “u is close to v” on U x V' in Example 4.2, where
U=1{2,12} and V = {1,7,13}. We restate it here

v U2 U3

o il ) = uy 09 04 0.1
close Uy - Ua 0.1 04 09

Also consider the type-1 fuzzy set small on U, defined as small = 0.9/2 +0.1/12. small can be
written as a vector

I

Uy U2

p—~(u)= (09 0.1) (4.28)

—_
small

The composition of the two statements “u is small and w is close to v” can, now, be obtained by
using (4.26) as follows :

—  —(v;) = [, (u1) A p—— (1, ;)] V [p— (u2) A p——(u2,v;)] (4.29)

L
small o close small close small close

where j = 1,2,3. Using (4.29), we have

B o= (v) = [09A0.9]V[0.1A0.1]
= 0.9V0.1
= 09
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Doing similar calculations for vo and vs, we get

v U2 U3
p—~ —~(@)= (09 04 0.1) (4.30)

small o close

Now, consider the type-2 fuzzy relation “u is close to v” on U x V, given in Example 4.2. We
restate its membership function here for convenience

p—(u,v) =
close
U] vz U3
0.3/0.8+1/0.9 0.7/0.3+1/0.4
"1 +0.7/1 +0.1/0.5 0.5/0+1/0.1 (4.31)
0.7/0.341/0.4 0.3/0.841/0.9
i 05/0+ /0.1 +0.1/0.5 +0.7/1

Also consider type-2 fuzzy set small on U, whose membership function is obtained by adding
some uncertainty to the membership function of small as follows :

i~ (w) = 0.5/0.7+1/0.9 (4.32)

small
fi =~ (us) 1/0.1+0.3/0.4 (4.33)

small

— ——

The composition of the type-2 set small and type-2 relation cTcEe, which stands for the statement
“u is small and u is close to v” can now be obtained using (4.27) as follows :

=~ — () == (u1)N g;w(ul,v_,)] U [t = (u2) N fi=(u2,v;)] (4.34)

small oclnst_ small close small close
where j = 1,2,3. Using (4.34), we obtain
i~ =) = [(0.5/0.7+1/0.9)M (0.3/0.8+1/0.9+0.7/1)]

small o close
U[(1/0.1 +0.3/0.4) 1 (0.5/0 + 1/0.1)]
= [0.3/0.7+40.5/0.7 4+ 0.5/0.7 + 0.3/0.8 + 1/0.9 + 0.7/0.9]
U[0.5/0+ 1/0.1 +0.3/0 + 0.3/0.1]
= [0.5/0.7+0.3/0.841/0.9] U [0.5/0 + 1/0.1]
0.5/0.7+0.5/0.7 + 0.3/0.8 4+ 0.3/0.8 + 0.5/0.9 + 1/0.9
0.5/0.7+0.3/0.8+1/0.9 (4.35)
j—=— ——(v2) [(0.5/0.7+1/0.9) N (0.7/0.3 + 1/0.4 + 0.1/0.5)]

small o close
U[(1/0.1 + 0.3/0.4) 11 (0.7/0.3 + 1/0.4 + 0.1/0.5))
= [0.5/0.3+0.5/0.4+ 0.1/0.5 + 0.7/0.3 + 1/0.4 + 0.1/0.5]
U[0.7/0.1 + 1/0.1 + 0.1/0.1 + 0.3/0.3 + 0.3/0.4 + 0.1/0.4]
= [0.7/0.3+ 1/0.4+0.1/0.5] U [1/0.1 + 0.3/0.3 + 0.3/0.4]
= 0.7/0.3+0.3/0.3 4 0.3/0.4 + 1/0.4 + 0.3/0.4 + 0.3/0.4
+0.1/0.5+ 0.1/0.5 + 0.1/0.5
= 0.7/0.3+1/0.4+0.1/0.5 (4.36)
i~ ——(vs) = [(0.5/0.7+1/0.9)N(0.5/0+1/0.1))

small o close

Il
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U[(1/0.1+ 0.3/0.4) 11 (0.3/0.8 + 1/0.9 + 0.7/1)]
= [0.5/0+0.5/0.1+0.5/0+ 1/0.1]
U[0.3/0.1 + 1/0.1+0.7/0.1 + 0.3/0.4 + 0.3/0.4 + 0.3/0.4]
= [0.5/0+ 1/0.1]U [1/0.1 + 0.3/0.4]
= 0.5/0.1+0.3/0.4+1/0.1+ 0.3/0.4
= 1/0.1+0.3/0.4 (4.37)

Collecting the results in a vector, we have

Ul Ua Vg
- _ (05/07+03/08  0.7/03+1/04  1/0.1+0.3/0.4
s 2al0) = ( +1/0.9 +0.1/0.5 ) (4.38)

Comparing (4.30) and (4.38), we observe that the type-1 and type-2 results are quite similar. In
the type-2 results, primary memberships corresponding to the memberships in the type-1 results,
have unity secondary memberships. ]

4.4 Cartesian Product of Membership Functions

If U and V are domains of type-1 fuzzy sets F and G, respectively, characterized by certain
membership functions, then the Cartesian product of these membership functions will be supported
over U x V, and each point {(u,v);u € U,v € V} in this plane will have a membership grade (a
crisp number in [0, 1]) which could be the result of a ¢-norm operation between the membership
grade of u in F and the membership gr ade of v in G.

\Tow consider the case of type-2 sets F and G The membership grades of every element in

F and G are now type-1 fuzzy sets. So, now the t-norm operation in the type-1 case has to be
replaced by the meet operation; therefore, when we find the Cartesian product, it is still supported
over U x V" as in the type-1 case; but now each point (z,v) € U x V' will have a membership grade
which is again a type-1 fuzzy set (result of a meet operation between membership grades of u and

v).

Example 4.5 Consider two universes of discourse, U and V, where U = {uj,us,uz} and V" =

{v1,v2}. Let F bea type-2 fuzzy set on U with membership function

fiz(w) = 0.9/0.2+0.9/0.8+0.4/1
fiz(u2) = 0.1/04+1/0.7+1/1
fiz(us) = 0.6/0+08/02 (4.39)

and let G be a type-2 fuzzy set on V with membership function

fiz(n) = 0.4/0.5+0.3/0.6
fig(v2) = 0.7/0.6+0.6/0.8+0.1/0.9 (4.40)

The membership function for the Cartesian product of these two membership functions can be
obtained as

B & (i v5) = Bz (wi) 0 fig (vy) (4.41)
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where i = 1,2,3 and j = 1,2. Using (4.41), we get (using min ¢-norm and max t-conorm)

Bz &, 0)

Az & (un,v2)

T (u2,v1)

Az, & (u2,v2)

iz, & (us,v1)

iz, & (us, v2)

3

(0.9/0.2 +0.9/0.8 + 0.4/1)

0.4/0.2 + 0.3/0.2 + 0.4/0.5 + 0.3/0.6 + 0.4/0.5 + 0.3/0.6

0.4/0.2 + 0.4/0.5 + 0.3/0.6

(0.9/0.2 + 0.9/0.8 + 0.4/1) 1 (0.7/0.6 + 0.6/0.8 + 0.1/0.9)

0.7/0.2 + 0.6/0.2 + 0.1/0.2

M (0.4/0.5 + 0.3/0.6)

+0.7/0.6 + 0.6/0.8

+0.1/0.8+ 0.4/0.6 + 0.4/0.8 4+ 0.1/0.9

0.7/0.2 + 0.7/0.6 + 0.6/0.8

+0.1/0.9

(0.1/0.4 + 1/0.7 + 1/1) 1 (0.4/0.5 + 0.3/0.6)

0.1/0.4 + 0.1/0.4 + 0.4/0.5 + 0.3/0.6 + 0.4/0.5 + 0.3/0.6

0.1/0.4 + 0.4/0.5 + 0.3/0.6

(0.1/0.4+ 1/0.7 + 1/1) 1 (0.7/0.6 + 0.6/0.8 + 0.1/0.9)

0.1/0.4 + 0.1/0.4 +0.1/0.4

+0.7/0.6 + 0.6/0.7

+0.1/0.7 + 0.7/0.6 + 0.6/0.8 + 0.1/0.9

0.1/0.4 + 0.7/0.6 + 0.6/0.7

+0.6/0.8+0.1/0.9

(0.6/0 + 0.8/0.2) 1 (0.4/0.5 + 0.3/0.6)
0.4/0 + 0.3/0 + 0.4/0.2 + 0.3/0.2

0.4/0 + 0.4/0.2

(0.6/0 + 0.8/0.2) 1 (0.7/0.6 + 0.6/0.8 + 0.1/0.9)
0.6/0+ 0.6/0 + 0.1/0 + 0.7/0.2 + 0.6/0.2 + 0.1/0.2

0.6/0 +0.7/0.2

Summarizing the calculations in a matrix form, we have

Uy
i &(wv) = uy

Uz

(5]
0.4/0.2 +0.4/0.5
+0.3/0.6
0.1/0.4+ 0.4/0.5
+0.3/0.6

0.4/0+0.4/0.2

U2
0.7/0.2 4 0.7/0.6 + 0.6 /0.8
+0.1/0.9
0.1/0.4 4 0.7/0.6 + 0.6/0.7
+0.6/0.8+0.1/0.9

0.6/0 + 0.7/0.2

(4.42)
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Chapter 5

Fuzzy Logic Systems

5.1 Fuzzy Logic

The tenets of fuzzy logic do not change from type-1 to type-2 fuzzy sets, and in general, will not
change for any type-n. A higher-type number just indicates a higher degree of fuzziness. Since a
higher type changes the nature of the membership functions, the operations that depend on the
membership functions change; however, the basic principles of fuzzy logic are independent of the
nature of membership functions and hence, do not change. Rules of inference like Generalized
Modus Ponens or Generalized Modus Tollens continue to apply.

5.1.1 Engineering Membership Functions for Implication

Traditional membership functions for implication, when used for engineering problems, may give
counter-intuitive results. For example [15], consider the IF-THEN statement “IF z is A, THEN
y is B” having a membership function pz_ g(x,y). If we use any of the traditional membership
functions for pz_,;(x,y) [e.g., Lukasiewicz impli{:atnion : i (@, y) = min{l, 1 —px(2) + pg ()},
then for any (z,y) pair such that z ¢ A and y € B, p3_,5(z,y) = 1, which does not make much
sense from an engineering perspective, where cause should lead to effect and noncause should not
lead to anything. Also, even if the consequent B in the above rule is associated with a fuzzy set
of finite support, as a result of firing the rule, we may get a fuzzy set with infinite support, which
again is not an intuitive result.

As we have already seen in Section 2.1, a type-2 membership function can be visualized as a
collection of many different type-1 membership functions. Hence, we can see that the difficulties
caused by traditional membership functions for implication in the type-1 case, are caused in the
type-2 case too. To avoid these difficulties, we may again use minimum or product inference as in
the type-1 case, i.e., we may use the meet operation for implication with minimum (i.e., Mamdani)
or product (i.e., Larsen) t-norm. This is the approach that we take.

5.2 Type-2 Fuzzy Logic Systems

This section discusses the structure of a type-2 fuzzy logic system (FLS) in detail. Knowledge about
the structure of a type-1 FLS is assumed. Figure 5.1 shows the structure of a type-1 FLS (see [15]
for more details) and Figure 5.2 shows that of a type-2 FLS. We assume that both antecedent
and consequent sets are type-2; however, this need not necessarily be the case in practice. All the
results remain valid even if any or all of the fuzzy sets are type-1.
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Figure 5.1: The structure of a type-1 FLS [15].
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Figure 5.2: The structure of a type-2 FLS. The structure of the output processing block is shown
in Fig. (b). In order to emphasize the importance of the type-reduced set, we have shown two
outputs for the FLS, the type-reduced set and the crisp defuzzified value.

71



5.2.1 Fuzzification

In this report, we will consider only singleton fuzzification, i.e., in the input fuzzy set, a single
point will have a non-zero membership grade and this membership grade will be equal to 1. The
extension of our work to non-singleton type-2 FLSs is left as future work.

5.2.2 Rules

In the type-1 case, we ;,e,nera_lly have “IF-THEN” rules, where the Ith rule has the form “R' : IF
xy is F! and @3 is I, and --- and Ty is F THEN y is G!” ,where x;s are inputs; Ftb are antecedent

sets (i = 1,...,p); y is the output; and G s are consequent sets.

The distinction between type-1 and type-2 is associated with the nature of the membership
function, which is not important while forming rules; hence, the structure of the rules remains
exactly the same in the type-2 case, the only difference being that now some or all of the sets
involved are of type-2; 50, the Ith rule in a type-2 FLS has the form “R! : IF z; is ﬁﬁ and a9

is F‘ and --- and z, is Fp, THEN y is G™. Tt is not necessary that all the antecedents and the
consequent h(: type-2 fuzzy sets. As long as one antecedent or the consequent set is type-2, we will
have a type-2 FLS.

5.2.3 Inference Engine

In general, the rules we use will have multiple antecedents connected by and’s. Just as in the type-1
case, we can connect these multiple antecedents by the meet operation (corresponding to t-norm in
the type-1 case). The input membership grade can be combined with the antecedent membership
grades by the type-2 version of the sup-star composition, described in Chapter 4. Different rules
can be combined using the join operation (corresponding to t-conorm in the type-1 case), or during
defuzzification.

The output of the inference engine consists of the fired consequent fuzzy sets, each one of which
is modified from a consequent fuzzy set by a degree of firing. This degree of firing is obtained, in
general, as a result of {-norm (meet) and t-conorm (join) operations on membership grades of the
inputs.

Consider a type-2 FLS having p inputs, x; € Xy, € X3,...,2, € X, and one output y € Y.
Let us suppose that it has M rules, where the ith rule has the form

R': IF =, is l::"'l and 2 is f“:; and ... and z, is lE':,, THEN y is (:}I.

This rule represents a type-2 fuzzy relation between the input space, X; x Xz x «++ x X, and
the output space, Y, of the FLS. Let’s denote the membership function of this type-2 relation

as fiz & (X, y), where F’ - X F‘I denotes the Cartesian product of FI,F._,, % ,FL, and

Flx. xF! L=
x= {.'1?1, L2y '.!IP}‘
-1
When an input x’ is applied, the composition of the fuzzy set X , to which x’ belongs and the
rule R' is found by using the extended sup-star composition [see (4.27)]

N (O U [ CO L A ) (5.1)

=t
Since we use singleton fuzzification, the fuzzy set X is such that it has a membership grade 1
corresponding to x = x’' and has zero membership grades for all other inputs; therefore, (5.1)
reduces to
ff{ [= Bl (y) = ﬁf;!l x_._xf?:’_*f;l(x"y} (5.2)



. - - -
We denote X o Fox - x F‘i, — G! as B, the output set corresponding to the /th rule. The
RHS of (5.2) is computed using the implication membership functions (see Section 5.1.1). Since we
generally use product or minimum implication (corresponding to the meet operation with product
or minimum #-norm in the type-2 case), (5.2) can be rewritten as

P () = gy ofin (x") M fig, () (5.3)

where lf“"l X cee X l::‘:, denotes the Cartesian product of f"*l,f’{;,...,ﬁ‘i,. Using (4.41), (5.3) can be
rewritten as

Ag(y) = By (w0) Mgy (02) M- N iy (29) 0 g (1)
= g )N [Ny iy )] (5.4)

where M denotes the meet operation based on the t-norm used (assuming that we are using the
same operation for the t-norm and the inference ... product or minimum) and we have used the
fact that type-2 membership functions commute for minimum or product t-norms (see Table 3.1).

Example 5.1 Figure 5.3 shows an example of product and minimum inference for an arbitrary
single-input single-output type-2 FLS, using Gaussian type-2 sets. The product inference function
in Fig. 5.3 (c) was obtained by finding the meet under product t-norm of the membership grade
of # = 4 with the membership grade of every point of the consequent function in Fig. 5.3 (b).
Let the membership grade at z = 4 in the antecedent function be a Gaussian with mean p and
standard deviation A, and let the membership grade of every domain point y of the consequent
curve be a Gaussian with mean m(y) and standard deviation o(y). The Gaussians are contained
in [0,1] and may, therefore, be clipped. We ignore the effect of this clipping for simplicity. Using
the Gaussian approximation in (2.48), the inferred output set is Gaussian type-2, in which the
membership grade of every domain point y is a Gaussian with mean pm(y) and standard deviation
VAZ2m(y)? + p2o(y)?. Similarly, the minimum inference function in Fig. 5.3 (d) was obtained by
finding the meet under minimum ¢-norm of the membership grade of @ = 4 with the membership
grade of every point of the consequent function. We used Theorem 2.1 for this. Observe that, in
both cases, the result of the inference is a type-2 set [Figs. 5.3 (c¢) and (d)]. We can interpret the
banded behavior about the output’s principal membership function as an indication of combined
antecedent and consequent uncertainties. O

5.2.4 Type-Reduction

Observe, from Figs. 5.1 and 5.2, that the defuzzifier block in the type-1 FLS is replaced by two
blocks : type-reducer and defuzzifier. We consider type-reduction in this subsection.

In a type-1 FLS, where the output sets are type-1 fuzzy sets, we perform defuzzification in order
to get a number which is in some sense a crisp (type-0) representative of the combined output sets.
In the type-2 case, the output sets are type-2; so we have to use “extended versions” [using the
Extension Principle (see Chapter 2)] of type-1 defuzzification methods. Since type-1 defuzzification
gives a crisp number at the output of the FLS, the extended defuzzification operation in the type-2
case gives a type-1 fuzzy set at the output. Since this operation takes us from the type-2 output
sets of the FLS to a type-1 set, we call this operation “type-reduction” and call the type-1 set
so obtained a “type-reduced set”. The type-reduced fuzzy set may then be defuzzified to obtain a
single crisp number; however, in many applications, the type reduced set may be more important
than a single crisp number. Output processing is depicted pictorially in Fig. 5.4. Type-reduction
is treated, quite extensively, in Sections 5.3 and 5.4.
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(c) (d)

Figure 5.3: Illustrations of product and minimum inference in the type-2 case. (a) A Gaussian
type-2 antecedent set for a single input system. The membership of a certain input = 4 in the
principal membership function is also shown, equal to p. (b) The consequent set corresponding to
the antecedent set shown in (a). (¢) The scaled consequent set, for z = 4, using product inference.
Observe that the secondary membership functions of the consequent set also change depending
upon the standard deviation of the membership grade of z. (d) The clipped consequent set, for
z = 4, using minimum inference.
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Figure 5.4: A pictorial representation of the output processing in a type-2 FLS. For an applied
input x, the type-reducer first combines the individual rule output sets in some manner to obtain
a combined output set B [Fig. (a)], and then, from B, creates a type-1 set, Y [Fig. (b)], which we
call the type-reduced set. Finally, the defuzzifier produces a crisp output, yo [Fig. (c)], from the
type-reduced set.

74



5.2.5 Defuzzification

To obtain a crisp output from the type-2 FLS, we can defuzzifiy the type-reduced set. The most
natural way of doing this seems to be by finding the centroid of the type-reduced set; however,
there exist other possibilities, like choosing the unity membership point in the type-reduced set.
Defuzzification is treated in Section 5.5.

5.3 Type-Reduction

In a type-1 FLS, the output corresponding to each fired rule is a type-1 set in the output space.
The defuzzifier combines the output sets corresponding to all the fired rules in some way to obtain
a single output set and then finds a crisp number that is representative of this combined output
set, e.g., the centroid defuzzifier finds the union of all the output sets and uses the centroid of the
union as the crisp output. In all the defuzzifiers of interest to us, the crisp number is obtained as
the centroid of some combined output set.

The output set corresponding to each rule of the type-2 FLS is a type-2 set. The type-reducer
combines all these output sets in some way (just like a type-1 defuzzifier combines the type-1 rule
output sets) and then performs a centroid calculation on this type-2 set, which leads to a type-1
set that we call the “type-reduced” set. See Section 2.5 for discussion about the concept of the
centroid of a type-2 set. As explained in Section 2.5.1, we will always use minimum ¢-norm for
calculating the centroid of a type-2 set with a continuous domain, even though we use product
t-norm everywhere else.

We now discuss some commonly used type-1 defuzzification methods and their associated type-
reduction methods. In each case, we consider a p-input single-output FLS that uses singleton
fuzzification and product or minimum inference and has M rules of the form

R IF z; is E”l and - is IE“2 and - and =, is I:“;J, THEN y is e

where z; € X; andy € Y.
Though we have shown all the antecedent and consequent sets to be type-2, all our discussions
are valid even when some or all of the sets are type-1. In the latter case, the type-2 system reduces

to a type-1 system.

In this section, the FLS is assumed to be type-1 (i.e., all the antecedent and consequent sets
are assumed type-1) when we discuss type-1 defuzzification methods; and it is assumed to be type-
2 (i.e., some or all of the antecedent and consequent sets are assumed type-2) when we discuss
type-reduction methods.

5.3.1 Centroid Type-Reduction

The centroid defuzzifier [12] combines the output type-1 sets using a t-conorm (e.g., the maximum
t-conorm) and then finds the centroid of this set. If we denote the composite output fuzzy set as
B, the centroid defuzzifier is given as

N
Zi:1 yiﬂﬁ(?}i)
R (5:5)
Zi:l HE (vi)
where the output set B is discretized into N points.

The centroid type-reducer combines all the output type-2 sets by finding their union. The
membership grade of y € Y is given as

Ye(x) =

it () = Ui, g, (v) (5.6)
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where ﬁﬁ,[y) is as defined in (5.4). The centroid type-reducer then calculates the centroid of B.

The expression for the centroid type-reduced set is an extended version of (5.5), i.e.,

V.(x) = [ / (g, (B1) -+~ * g (9@]/%—1&& (5.7)
. 0 On l i i=1 0;
where D; = ;11:3(_1;,-) and #; € ,&é(yg) (i=1,...,N). Equation (5.7) can be rewritten as
V)= [ s [ (00) %o wip (0n)) /9 (5.8)
y{01,....0n}

where {#,,...,0x} are such that Z:\;I 3;,-9,-/ Z;l 6i=1y.
The sequence of computations needed to obtain Y. (x) is as follows :

1. Compute the combined output set using (5.6). This is possible, because we know j
(l=1,...,M) for all y € Y. Theorem 2.3 is used to do this step.

5 W

2. Discretize the output space Y into N points, y1,...,yn.

3. Discretize the domain of each ﬁ]:}(y‘-) (i = 1,...,n) into a suitable number of points. Figure 5.5
shows a type-2 output set of an arbitrary FLS discretized for type-reduction purposes.

4. Enumerate all the embedded sets (see Section 2.5 for the definition of an embedded type-1
set). For example, if each ;16(3;) is discretized into M points, there will be M”" embedded
type-1 sets or, if .ﬂ.é(yg) is discretized into M; points, there will be I‘[;‘;1 M; embedded sets.

5. Compute the centroid type-reduced set using (5.7), i.e., compute the centroid of cach enumer-
ated set and assign it a membership grade equal to the t-norm of the secondary memberships

corresponding to the enumerated set. We must use the minimum ¢-norm here as explained
in Section 2.5.1.
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Figure 5.5: An arbitrary type-2 output set B discretized for type-reduction purposes. The indepen-
dent axis (y) is discretized into N points and the domains of the membership grades corresponding

to each y are also discretized. The vertical axis shows primary memberships of y in B.
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In step 5, the centroid and membership computation has to be repeated H_?;l M; times and so,
in general, will involve an enormous amount of computation. These computations lend themselves
to parallel processing. Some approximations that reduce the amount of computation tremendously
are described in Sections 5.7, 5.9, and in [8]. If the output set is an interval type-2 set, the centroid
can also be computed exactly using the computational procedure described in Appendix D. This
procedure requires much less computation than the one described above.

5.3.2 Center-of-Sums Type-Reduction

The center-of-sums defuzzifier [2] combines the output type-1 sets by adding them and then finds
the centroid of this set. The center-of-sums defuzzifier can be expressed as

M
1=1 Ot A

M
=1 A[’;*

Ya(X) = (5.9)

where, Cﬁa denotes the centroid of the Ith output set and Az, denotes the area of the /th output

set. The subscript a on y indicates “additive” combining. If we use product inference, (since the
output sets are scaled versions of the consequent sets) Cj, equals the centroid of the Ith consequent
set and Ay equals the area of the Ith consequent set multiplied by the degree of firing of the {th

consequent set, T2, ppi (x;); therefore, (5.9) can be expressed as

12y Sl T i (@)

5.10
Zf:fl 017?;],{1{::_ (2‘.‘,‘) ( )

Ya(x) =

where T indicates the chosen t-norm, and, ¢! is the centroid and a' is the area of the /th consequent
set.

Closely related to the center-of-sums defuzzifier is Kosko’s Standard Additive Model (SAM) [13],
which uses a weighted additive combining of the output sets and product inference. The output of
this system for an input x is

A
ZI‘;I widd' T, Kt (i)
ysam(x) = —3;

, (5.11)
=1 wrﬂ;ﬂ:lﬂﬁ: (Ii)

Observe that (5.11) is the same as (5.10) except for weights w;. Observe, also, that since wja'
always appears as a product, one really does not have 2 degrees of freedom. The weights can be
absorbed into the areas or vice-versa. So, without loss of generality, we can set wy = 1 for all [, in
which case ysaar(x) = yo(x).

The center-of-sums type-reducer combines the type-2 output sets by adding them and then
finds the centroid of the resulting type-2 set, which corresponds to the center-of-sums type-reduced
set Y,(x). In the type-1 case, since the center-of-sums defuzzifier can be expressed in terms of
the centroids and areas of each individual output set [see (5.9)], calculations are simplified (as
compared to the centroid defuzzifier). In the type-2 case, however, no such simplification occurs.
We demonstrate this by means of an example.



Example 5.2 Consider a type-2 set 4 = A1 + A Let us suppose that the domam of A is

discretized into N points, x1,...,xy, and that zy,...,zy5, € Al and TN, 41 ...,2ZN € A If we let
D = jiz (i), Df = i3, (;) and D} = jiz (i), the centroid of A is [(2.69)]
2
- : zi0;
Op = / f Tt 0 )/Z ~

/al fﬁ/ fa [T”iﬂn-ﬂ)} [T i, (60)] /

(st ,m)(z”*e}ﬂu( ‘T‘N*f:;,f")( Y e 00

(ZNl 6‘ l-—N1+I 93)

Lof L) T”mr,-(eg]*[”Mnf);(e.-)]/

c1ay + caas
 + as

(5.12)

where {¢;,a;} and {ca,as} are the centroids and areas of those embedded type-1 sets in A! and A2,
which are determined by the primary memberships {6, ...,0xy,} and {fx,+1,...,0x}, respectively.

Equation (5.12) can not be simplified any further. Even though, (5.12) gives the centroid of A
in terms of centroids and areas of embedded type-1 sets in A, and A,, this does not serve any great
purpose from a computational point of view. If we want to use (5.12), we still have to consider all
the possible combinations of type-1 embedded sets in A, and A,. For each such combination, we
have to calculate the centroid and area for each type-1 set to get one point ([¢ja; + czaz]/[a; + az])
in C 1; and, then calc ulate the membership grade of this point by finding the t-norm of all the
s“ocondary memberships of {#;,...,0x} that make up the embedded curves. This procedure is no
simpler than a straightforward (,cntroid calculation as in the centroid type-reducer. O

The most straightforward way of computing the center-of-sums type-reduced set seems to be
by finding the centroid of the sum of the output sets, just as the centroid type-reducer finds the

centroid of the union of output sets. Equations (5.7) or (5.8) can be used for this purpose with B
indicating the sum of output sets, i.e.,

’::i

pB y) Z i (y); yeY (5.13)

See Section 2.4 for more discussion about addition of fuzzy numbers. The SAM type-reducer would

also use (5.7) or (5.8) with B denoting the weighted addition of output sets instead of their union.

The sequence of computations (as well as the intense computational load) needed to obtain
Y, (x) is exactly the same as we just described for Y,(x), except that in step 1, we compute the
combined output set using (5.13).
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5.3.3 Height Type-Reduction

The height defuzzifier [2] replaces each rule output set by a singleton at the point having maximum
membership in that output set, and then calculates the centroid of the type-1 set comprised of
these singletons. The output of a height defuzzifier is given as

M - i
Y= g (@)

5.14
S @) )

yn(x) =

where : §' is the point having maximum membership in the [th output set (if there is more than
one such point, their average can be taken as #'); and, its membership grade in the [th output set,
pe(§'), is given as [15)

pi (1) = rea (') % Ty g (@) 5 (5.15)
where » and T indicate the chosen t-norm (assuming the inference uses the same operation as the
t-norm ... product or minimum).

The height type-reducer replaces each output set by a type-2 singleton, i.e., by a fuzzy set
whose domain consists of a single point, the membership of which is a type-1 set in [0,1]. The
Ith output set is replaced by a singleton situated at §', where §' can be chosen to be the point
having the highest membership in the principal membership function of output set BL. If B is such
that a principal membership function cannot be defined (for an example of such a type-2 set, see
Fig. 1.2), one may choose ' as the point having the highest primary membership with a secondary
membership equal to 1, or as a point satisfying some similar criterion (in Fig. 1.2, we can choose
g = 0.5, the mid-point of the interval of uncertainty of the mean). The membership grade of 7' in
the type-2 case is obtained from (5.4) as follows :

fis, (') = g, () N [Py fig (20)] (5.16)
If we let D = fiz,(7'), the expression for the type-reduced set is obtained as an extension of
(5.14), as

. M I_;g
000 = [ [ [l 0 -5 O] Zz_f,féf (5.17)

where 6; € D! for [ = 1,..., M. If we let 37 3}‘9;/ M 6 =y, then (5.17) can also be written
as

‘Ir.';(x) :/{a SUI; }[;u[‘)1(91)*---*,-'sf)u(ﬁ‘m}]/y (5.18)
W AV1yenaling

where {6);,...,60} are such that Zfil 5'9;/ Z}L{l 0 =y.
The sequence of computations needed to obtain \-"h(x) is as follows :
1. Choose 7' for each output set, | = 1,2,..., M.

2. Discretize the domain of each fig, (#') into a suitable number of points. The discretization

is carried out in a manner similar to that for centroid or center-of-sums type-reduction (see
Fig. 5.5), the only difference is that the number of points on the horizontal axis is now M
instead of N.

3. Enumerate all the possible combinations {#;,...,8}, such that 6; € ,&éf (7). For example,

if iz, (7') is discretized into N; points, there will be H_':il N; combinations.
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4. Compute the height type-reduced set using (5.17). Since the domain of the combined out-
put set is discrete, we can now use product or minimum #-norm in (5.17), as explained in
Section 2.5.

In step 4, the weighted sum dll(l membership computations in (5.17) have to be repeated
]—[::_'il N; times; but, generally, H et N H . Nj (where N is the number of discrete y-points
in case of centroid or ccnter—of—sums type- ledut,txon) so computing the height type-reduced set
involves much fewer computations than computing the centroid or center-of-sums type-reduced
set. Again, parallel processing is possible, and, some approximations that reduce the amount of
computation tremendously are described in Sections 5.7, 5.9, and in [8]. If the FLS uses interval
type-2 sets, the type-reduced can also be computed exactly using the computational procedure
described in Appendix D. This procedure requires much less computation than the one described

above.

5.3.4 Modified Height Type-Reduction

The modified height defuzzifier [15] is very similar to the height defuzzifier, the only difference
being that the modified height defuzzifier scales each g, (7") by the inverse of the spread (or some
measure of the spread) of the Ith consequent set. Its output can be expressed as

Y tag i)/0°
bl = T (5.19)
D=1 m(§)/0

where &' is some measure of the spread of the lth consequent set, and §' and Pit (7') have the same

meanings as in (5.14).
When all the (,onsoquenh sets are normal, convex and symmetric, and we use product inference,
then pg (7') = lpl-i(r ) and §' = ¢!, the centroid of the /th consequent set. Now, observe by

comparmg {a 19) with (5.10) and (5.11), that : (1) if 1/5‘2 = a', then Y1 (x) = ya(x); and (2) if

1/5I = wa', then Ymh(X) = ysam(x).
The only difference between the modified height type-reducer and the height type-reducer 1s

that each output set membership, iz, (#'), in the modified height type-reducer is scaled by 1/?5I

where &' is some measure of the spread of the Ith consequent set (§' can, for example, be taken as
the spread of the principal membership function of the [th consequent set). The expression for the
type-reduced set is given as

on) = [ [ oo [ lapa@) % xg Zic, 7161/6" g
Vs = [ [ [ 00w wmon 0a0) | SRR (5.20)

where all symbols have the same meaning as in (5.17).
The sequence of computations needed to obtain Y, (x) is as follows :

1. Choose §' and §' for each output set, [ = 1,2,..., M.

2. Discretize the domain of each ;?ﬁi(g}f] into a suitable number of points.

3. Enumerate all the possible combinations {6, ...,8}, such that §; € I7ee (4'). For example,

if B (7') is discretized into N; points, there will be ]'[_‘:il N; combinations.

4. Compute the modified height type-reduced set using (5.20). Since the domain of the combined
output set is discrete, we can now use product or minimum t-norm in (5.20), as explained in
Section 2.5.
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Our discussions at the end of Section 5.3.3, about computational complexity, apply here as well.

5.3.5 Center-of-Sets Type-Reduction

For reasons that will be explained in Section 5.3.6, we introduce a new center-of-sets defuzzification
method, in which we replace each rule consequent set by a singleton situated at its centroid and
then find the centroid of the type-1 set comprised of these singletons. The expression for the output

is given as A
Z::! f—"ﬂ—_lﬂi‘r{ (=)
Yeos(X) = =3 : (5.21)
=1 7?:1#1’?} (i)

where T indicates the chosen t-norm, and, ¢’ is the centroid of the {th consequent set. Observe that
if each consequent set is symmetric, normal and convex, ¢! = § and pgi(7') = 1 for I =1,..., M;
consequently, yeos(x) = yr(x). Observe, also, that (5.21) is similar to the expression for the center-
of-sums defuzzifier using product inference [Eq. (5.10)], except that in (5.21) we do not consider
areas of the individual output sets.

The center-of-sets type-reducer replaces each consequent set by its centroid (which itself is a
type-1 set, if the consequent set is type-2), and finds a weighted average of these centroids, where
the weight associated with the Ith centroid is the degree of firing corresponding to the Ith rule,
namely ”;—:!‘ ,(.c ). The expression for the type-reduced set is the following extension of (5.21),

- d
c{m / / / / 7;—1-”‘(,‘ (df) * 7;'-1-”']3 (8;) Zl Ml' an (522}
dy dar 1=1¢

where : 7 and * indicate the chosen t-norm; d; € f}, =C

the centroid of the /th consequent set

Gv
(we have used d; as the variable name instead of ¢; to avoid confusion later on in Appendix D)' and,
e € Et =T —1h l('1:,) the degree of firing associated with the Ith consequent set, for i =1,..., M.

The sequence of computations needed to obtain Y ,,(x) is as follows :

1. Discretize the output space Y into a suitable number of points, and compute the centroid
C, of each consequent set on the discretized output space using (2.69). This is possible,
because we know ﬁé,(-y) (l=1,2,...,M) for all y € Y. These consequent centroid sets can

be computed ahead of time and stored for future use.

2. Compute the degree of firing, Et = ﬂﬁ’___lﬁ]f.,_ (x;), associated with the Ith consequent set, using

the results in Chapter 2 (Theorem 2.1 for minimum ¢-norm, the approximation in Section 2.3
for product t-norm, or results in Appendix D for interval sets).

3. Discretize the domain of each Ct (C, is the centroid of the Ith consequent set) into a suitable
number of points, say M; (I = 1,2,...,M).

4. Discretize the domain of each }3, into a suitable number of points, say N; (I = 1,2,...,M).

5. Enumerate all the possible combinations {di,...,da,e1,...,ear} such that d; € Ct and
e1 € E,. The total number of combinations will be HM M;N;.

6. Compute the center-of-sums type-reduced set using (5.22).

In step 6, the weighted sum and ¢-norm operations in (5.22) have to be repeated ]‘[;’il M;N;
times. Observe, from Sections 5.3.1 and 5.3.3, that this number is, in general, larger than that
required for a height (or modified height) type-reducer, but is less than that required for a centroid

81



(or center-of-sums) type-reducer. Parallel processing is possible, and, some approximations that
reduce the amount of computation tremendously are described in Sections 5.7, 5.9, and in [8]. If
the FLS uses interval type-2 sets, the center-of-sets type-reduced set can also be computed exactly
using the computational procedure described in Appendix D. This procedure requires much less
computation than the one described above.

Figure 5.6 (a) shows the centroids of consequent sets, C,, C, and Cs, for an arbitrary type-2
FLS and Fig. 5.6 (b), (c) and (d) show their corresponding degrees of firing, E,, E, and E,, for
some applied input. Both, the centroids and their degrees of firing are discretized for type-reduction
purposes. In this example, M, = 15, M, = 16, M3 = 14, N; = 8, N, =7 and N3 = 11, so that
step 5 will involve 2,069, 760 combinations.
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Figure 5.6: (a) The centroids of consequent sets for an arbitrary type-2 FLS. The corresponding
degrees of firing, for some applied input, are shown in (b), (c) and (d), respectively [each of (b),
(c) and (d) shows the plot of secondary versus primary memberships]. All the centroids and the
degrees of firing are discretized for center-of-sets type-reduction.

Next, we describe a situation when computation of (5.22) is simplified considerably. Observe
that (5.22) can also be written as

Youlx) = [ / 7;_“.1}‘ (e;)/z L Cier
= /;l ---/m 7151}1[:;!(6:)/\".”(61,...,eM) (5.23)

where, for every combination of {e1,...,ear}, the quantity to the left of the slash [T;% 1M, (er)], is

t-normed with the membership grade of every point in Y (ei,...,enr); and, Y .0s(X) is given by
the union of all these scaled (or clipped if the t-norm used is minimum) Y (e1,...,ear)’s. When
the consequent centroids (C, ’s) are Gaussian or interval sets, Theorems 2.4 or D.1 can be used to
compute Y (e1,...,exr). This reduces the number of computations required to compute 'i’ms(x)
considerably. We demonstrate the use of Eq. (5.23) with an example.

Example 5.3 Consider a hypothetical situation, where for a certain input, [see (5.22) and (5 23)]
M=2C, =1/[1,2, C, =1/[4,5], E; = 0.5/0.6 + 1/0.8, and E, = 1/0.4. Observe that C, and
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C‘z are interval type-1 sets, and E2 is crisp. Using (5.23) and product t-norm, the type-reduced set
is computed as follows :

?cus (x)

eIC +E-_;C
IPITACHETAC / “giFer

€1 €z
0.6C; + 0.4C, 0.8C, +0.4C, )
lo.s / 0.6+ 0.4 ] N [1 / 0.8+0.4 l (24

where the “4” signs indicate algebraic sum, and “U” indicates union. Using Theorem D.1, we get

rod = 2232 (5.25)
and & %
0.8C, +0.4C,
08104 = (2,3] (5.26)
Using (5.25) and (5.26) in (5.24), we get
Y...(x) =Y, u¥, (5.27)
where )
Y, =0.5/[2.2,3.2] (5.28)
and _
Y, =1/[2,3] (5.29)

Y,, Y, and Y,,,(x) are depicted in Fig. 5.7 (a).
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Figure 5.7: The type-reduced set, ‘I’m&[x), for Example 5.3 computed using Eq. (5.23) [Fig. (a)]
and Eq. (5.22) [Fig. (b)]. In Fig. (a), Y.0s(x) (thick dashed line) is obtained as the union of two
type-1 sets (thin solid lines); and, in Fig. (b), it is obtained as the union of many fuzzy singletons.

If we use (5.22) to compute Y,,,(x), it discretizes C, and C,, and follows the center-of-sets
computational procedure described earlier in this section. This procedure computes Y oos (%) point
by point, and the same type-reduced set, given by (5.27), is obtained as a union of many fuzzy
singletons [see Fig. 5.7 (b)], where by a “fuzzy singleton”, we mean a fuzzy set consisting of a single
point. The exact number of fuzzy singletons depends upon the number of points in the discretized
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centroids, C, and C,. Obviously, in this case, (5.23) computes Y ... (x) much more efficiently than
(5.22). o

If only the consequents are type-2, i.e., if all the degrees of firing are crisp [E, = 7:{),1#;' (z:)],
(5.23) reduces to

M A
s TR e (7:)
=1 ™1 "i=1FF!
x) = i : (5.30)
=1 L‘:lﬂ}‘r: ()

where 7T indicates the chosen t-norm and both the summations indicate algebraic sum. If the
Ct’s are interval sets or Gaussians, \_"cos(x), in this case, can be computed by one application of
Theorem D.1 or 2.4. See Example 5.7 for an example of this case.

As mentioned earlier, if, in (5.22), the E,’s and C‘.’s both are interval type-1 sets, the com-
putational procedure described in Appendix D can be used to compute the type-reduced set. In
Example 5.3, E1 is not an interval type-1 set, which is why we used (5.23) to compute the type-
reduced set.

5.3.6 A Comparison of Height and Center-of-Sets Type-Reducers

In a type-1 FLS, height defuzzification is computationally inexpensive and gives satisfactory results
(see, for example, [2, 24]). In a type-2 FLS, however, height type-reduction may not perform so
well. The center-of-sets type-reduction does a better job. Here we explain why this is so.

For expressions for the height and center-of-sets type-reduced sets see (5.17) and (5.22), respec-
tively.

When only one rule is fired, corresponding to I = I, the height type-reduced set is

= I
-~ y 91!
Vi) = / o (0r) | 5
!I’

= ’UD" 9!')/

= [sup piye (00)] /7"

= 1/3}
= g (5.31)

The next to the last step assumes that all the involved membership grades are normal, which is
usually the case. Equation (5.31) shows that when a single rule is fired, the height type-reduced
set collapses to a single point ! This is certainly undesirable, because it means that when the input
is such that only one rule is fired, no uncertainty is associated with the output, which is generally
not true.

We invented the center-of-sets type-reducer to avoid this problem. It is easy to see that, even
when only a single rule is fired, ?m,(x) is a type-1 fuzzy set, which equals the centroid of the
type-2 output set corresponding to the fired rule, i.e.,

dp ey
x dJ = ]
/é : ]; ) pe, (dr)pg  (er) / o
/ / Hc‘:,(dv)ﬂé,(eﬁ)/dt’
dp‘ e ! J

1l

Y-—co:a (X)

Il
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/d n“'(, (df’)/ #E (ej! /dj't
A
dyr ! r,.-
= / #(’:,(di')/dr

d:f !

= C;i (5.32)

where we have again assumed that the degree of firing associated with the /'th consequent is

normal. (If each Ty (z;) is normal, I:’q = I'Ii-’=l_ul;.‘{ (x;) will also be normal. See Chapter 2 for a

detailed discussion of the meet operation.)

5.3.7 Center-of-Sets Method and TSK Systems

The most popular form of a TSK fuzzy logic system [21, 22] uses rules of the form :
R': IF z, is F} and z, is F and --- and @, is F,, THEN y' = ¢} + clz) + -+ + ¢y

Given an input x, the output is inferred as

lM
U = U\ T
e Z.' 1 II]!'FI.( ) (5.33)

where M is the total number of rules. Observe that, if we set ¢t = 0 for i = 1,...,p, then (5.33)
reduces to M
=1 0T i *(It}
Y= M (5.34)
=1 ::11‘1*-'5 (@)

which is the same as the output of a type-1 Mamdani FLS using center-of-sets defuzzification [see
(5.21)], with c}’s replacing the centroids of the consequent sets. We can, therefore, think of a type-1
Mamdani FLS using center-of-sets defuzzification as a TSK system in its simplest form. Note, from
(5.14), (5.15) and (5.34), that the TSK defuzzifier is structurally different from a height defuzzifier,
because of the factor pg: (7'), which appears in the height defuzzifier.

Now imagine a type-2 version of the TSK FLS in (5.34), which uses type-1 fuzzy sets C'f,'s in
place of the crisp numbers c})’s, everything else being the same as in (5.34). We show, next, that
this type-2 TSK FLS, again, has the same structure as a Mamdani type-2 FLS using center-of-sets
type-reduction, when only the consequent sets are type-2.

The [th rule of the type-2 TSK FLS is of the form :

: IF z; is F} and a, is F} and --- and z,, is F,, THEN y' = C};
SK P P 0

and, given an input x, the output is inferred as

M ~
= i=1 Ci) tifl HEL (i)
YTS'K = M M y {535}
i1=1 ‘I=1 -u‘l-"ll. (xi)




The expression for Y,,,(x), when only the consequents are type-2 is given by (5.30). We
reproduce it here for convenience.

M
=1 Ctﬁ;l#i‘g (z:)

Y., (x) =
M )
. 1=1 7?:1#13‘5 (i)

(5.36)

where T indicates the chosen t-norm and both the summations indicate algebraic sum.

From (5.35) and (5.36), it is clear that the type-2 TSK FLS which has type-1 fuzzy sets as
consequents (see the rule RY.g, above) has the same structure as a Mamdani type-2 FLS using
center-of-sets type-reduction, when only the consequent sets are type-2.

Since the contribution from the antecedents (i.e., the degree of firing of each consequent) is also
computed in exactly the same manner in the type-2 TSK and Mamdani FLS’s, both the systems
will still have the same form when the antecedent sets are also type-2. In short, a type-2 Mamdani

FLS using center-of-sets type-reduction, having rules of the form “IF ---, THEN y is G'”, is the
same as the type-2 TSK FLS, whose rules have the same “IF” part as the Mamdani FLS and whose

rule consequents are of the form “THEN y = C'”, provided that C'’s are centroids of the sets G's.

The TSK method is much more direct than the center-of-sets method. Rather than going
through the exercise of creating a consequent fuzzy set, finding its centroid, and then using the
centroid to represent it, we can just start with the centroid (i.e., a crisp number in the type-1 case
and a type-1 set in the type-2 case) in the TSK method. This also gives us more flexibility in the
sense that it may be difficult to create a fuzzy set having a particular centroid for the center-of-sets
method; but in the TSK method, we don’t have to worry about creating the complete consequent
set; all we need is just the centroid.

5.3.8 Some Examples that Illustrate Type-Reduction Methods

Example 5.4 [9] Consider a type-1 FLS having consequent fuzzy sets as shown in Fig. 5.8 (a).
Suppose that for some particular input x the fired outputs are as shown in Fig. 5.8 (b) (assuming
product inference). The numbers 0.9, 0.8 and 0.2 indicate the degree of firing of each of the
consequent sets. The outputs of the aforementioned defuzzifiers for this example are listed on this
figure. For the modified height defuzzifier, §' was set equal to the standard deviation of the Ith
consequent set. The standard deviations for the three fired consequent sets are equal to 0.4, 0.2
and 0.2, respectively. Observe that for the consequent set centered at 5, 7' = 5, but ¢/ = 4.8436;
thercfore, the outputs of the height and center-of-sets defuzzifiers for this example are slightly
different. O

Example 5.5 [9] Now, suppose that we have a type-2 version of the problem considered in Ex-
ample 5.4, where the antecedent sets are type-2 and consequent sets are type-1 and are the same
as those shown in Fig. 5.8 (a) [shown again in Fig. 5.9 (a)]. The fired output sets for some input
x are shown in Fig. 5.9 (b). The degrees of firing [MY_, ppi ()] of the three fired consequents are
1/0.9+0.5/0.8,1/0.84-0.8/0.6 and 1/0.240.4/0.1, respect:ively. We assume product inference and

product t-norm. The output sets shown in Fig. 5.9 (b) are computed using (5.4). We show the
b

calculation for B! here. Let G(y;m,0) = exp { - %(*"’—_E)-}, then,

a

s (W) = pei(y)N(1/0.9+0.5/0.8)

l/G(y; 2,0.4) M (1/0.9 + 0.5/0.8)

1 / [0.9G(y:2,0.4)] + 0.5 / [0.8G(x;2,0.4)] (5.37)
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Figure 5.8: (a) Consequent sets for Example 5.4. (b) Fired consequent sets for some input x.
Outputs of different defuzzifiers are listed : centroid (y.), center-of-sums (y,), height (), modified
height (yun) and center-of-sets (Yeos)-

Each point y in the domain of ]:3l has two primary memberships, one equal to 0.9G(y;2,0.4)
and the other equal to 0.8G(y;2,0.4). The corresponding secondary memberships are 1 and 0.5,

respectively. Output sets B2 and B? are computed in a similar manner. The primary and secondary
memberships in each case are shown in Fig. 5.9 (b). Observe the difference between Fig. 5.9 (b)
and Fig. 5.8 (b), where, in the latter figure, each output set has a fixed height.

We now discuss in detail how each of the aforementioned type-reducers computes the type-

reduced set.

1. Centroid type-reducer : To use a centroid type-reducer, we begin by finding a composite
output fuzzy set which equals the union of the individual output sets. At every point y in
the range of the type-2 FLS, we find the join between the membership grades of y in all three
fired rule sets. See Fig. 5.10 (a).

While finding the union of all these sets, since B® does not overlap with any of the other two

sets, it will remain exactly as it is. Let’s see how to compute the union of B! and B2. For some
point y (along the horizontal axis), let jig, (y) = 0.5/a1 + 1/as and ﬂéz(y) =0.8/by + 1/bs,
where the sum indicates logical union. Then, from (2.17),

g, (y)U Az (y) = (0.5/a1 +1/az2) U (0.8/by +1/b2)
(0.5 x 0.8) /(a1 V by) + (0.5 x 1)/(ay V by)
+(1 x 0.8)/(az V by) + (1 x 1)/(az V by) (5.38)

Observe that, to the left of the two dashed lines in Fig. 5.10 (a), each of a; and ay is greater
than either b; or by, respectively; consequently, in this region, (5.38) gives

figy WUz (y) = 04/a;+0.5/ar + 0.8/as + 1/as

0.5/a; + 1/a2
= i) (5:39)
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Figure 5.9: (a) Consequent sets for Example 5.5 (which are the same as the consequent sets for
Example 5.4). (b) Fired consequent sets for some input x. The fired consequent sets are type-2,
since the degrees of firing associated with each of the consequent sets are assumed to be type-1 sets.
The vertical axis shows primary memberships of y in the output sets. Secondary memberships are
indicated on the figure.

1 15 2 25 3 35 4 45 5
®) y -+

Figure 5.10: (a) The fired consequent sets for Example 5.5. The dashed lines show the region
within which a point may have more than two primary memberships. (b) Approximate output
set for the centroid type-reducer, found by taking the union of all the fired consequent sets. In
both (a) and (b), the vertical axis shows primary memberships of y in the output sets. Secondary
memberships are indicated on the figure.
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Similarly, to the right of the two dashed lines, each of b; and bs is greater than either a; or
as, respectively; consequently,

fig, (y) U fig, (y) = fig, (v) (5.40)

In between the two dashed lines, the union will, in general, be different from either fsﬁ1 (y) or
T (y). In this region, a point may have more than two primary memberships [as given by

(5.38)]; however, since this region is very small compared to the range of the FLS, we assume,
for simplicity, that even in between the two dashed lines, every point has only two primary

memberships [shown in Fig. 5.10 (b)] and that the composite output set B is as depicted in
Fig. 5.10 (b).

Now, for the purpose of centroid calculation, we discretize B into 10 points [see Fig. 5.11
(a)]. Each of these points has 2 primary memberships; consequently, the total number of
combinations that will need to be calculated (i.e., number of points in the type-reduced set)
will be equal to 2%, which is more than one thousand ! This shows how computationally
intensive the centroid type-reducer can become. Figure 5.11 (b) shows the centroid type-
reduced set for this example. Each point in this set is calculated by choosing one value of
primary membership for each of the 10 points on the horizontal axis and finding the centroid
of the resulting curve. The membership of this point is set equal to the minimum of all the
secondary memberships corresponding to the chosen primary memberships (recall that we use
the minimum ¢-norm for calculating the centroid of a type-2 set having a continuous domain
- see Section 2.5.1). For a sample calculation, see the height type-reducer (item 3) below.
[The differences in the calculations for centroid and height type-reducers are : the height
type-reducer considers only three points on the horizontal axis (analogous to discretizing the
entire set into only three points), whereas the centroid type-reducer considers 10 points on the
horizontal axis; and, the {-norm operation between the secondary memberships in case of the
centroid type-reducer is minimum instead of product.] The point having unity membership
in the type-reduced set, 2.4729, corresponds to the centroid of the principal membership
function of the combined output set (which corresponds to the upper curve in this case),
which equals the centroid defuzzified value in Example 5.4. The slight difference in these two
values is due to a slight difference in discretization of the domain.

. Center-of-sums type-reducer : The center-of-sums type-reducer combines the output sets
by summing them and then finds the centroid of this combined output set. The type-reduced
set is, then, computed using (5.7). Figure 5.12 (a) shows the combined output set found
by summing the individual sets (see Section 2.4 for more discussion on addition of fuzzy
quantities). Its centroid is found by discretizing it in the same manner as in the case of the
centroid type-reducer. The type-reduced set is depicted in Fig. 5.12 (b). The point having
unity membership in the type-reduced set, 2.4172, corresponds to the centroid of the principal
membership function of the combined output set, which equals the center-of-sums defuzzified
value in Example 5.4. The slight difference in these two values is due to a slight difference in
discretization of the domain.

. Height type-reducer : The height type-reducer replaces each fired rule output set by a
singleton at the point having maximum membership in that output set. In this example, there
are 3 §'’s corresponding to the three fired output sets, each #' having two possible primary
memberships. The height type-reducer considers each of the eight possible combinations and
performs height, defuzzification on them using (5.17) to get points in the type-reduced set.
The membership of each point in the type-reduced set is calculated by performing the t-norm
(product, in this example) between the corresponding secondary membership values.
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Figure 5.11: (a) The discretized combined output set, and (b) corresponding centroid type-reduced
set for Example 5.5. The point having unity membership in the type-reduced set is equal to 2.4729
and the centroid of the type-reduced set is equal to 2.4321. In (a), the vertical axis shows primary

memberships of y in the combined output set B: and in (b), the vertical axis shows memberships
of y in the centroid type-reduced set.
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Figure 5.12: (a) The discretized combined output set, and (b) corresponding center-of-sums type-
reduced set for Example 5.5. The point having unity membership in the type-reduced set is equal
t0 2.4172 and the centroid of the type-reduced set is equal to 2.3856. In (a), the vertical axis shows
primary memberships of ¥ in the combined output set B! + B2 + B3; and in (b), the vertical axis
shows memberships of ¥ in the center-of-sums type-reduced set.

90



We show the calculations for two points here. First, consider the situation where the first,
second and third consequent sets have heights equal to 0.9, 0.6, and 0.2, respectively. The
corresponding point in the type-reduced set is calculated, using (5.17) and Fig. 5.13 (a), as

(1 x 0.8 x 1)/(29x240.0x340.2x5) — (.8/2.7059. Next, observe that the point having maxi-

0.0--0.6+0.2
mum membership in the type-reduced set is calculated as (1 x 1 x 1) /(22XZE3IXIE02XD) —

1/2.7368, which agrees with the height defuzzified value for Example 5.4. The complete type-
reduced set is depicted in Fig. 5.13 (b). Note that it ranges from 2.5625 to 2.7778, and is not
centered at 2.7368.
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Figure 5.13: (a) The §'’s, and their output set memberships; (b) the height type-reduced set; and,
(c) the modified height type-reduced set for Example 5.5. The point having unity membership in the
height type-reduced set is equal to 2.7368 and its centroid is equal to 2.6985. The corresponding
values for the modified height type-reduced set are 3.1429 and 3.1125, respectively. In (a), the
vertical axis shows primary memberships of y in the output sets; and, in (b) and (c), the vertical
axis shows memberships of y in the height type-reduced set.

4. Modified height type-reducer : The procedure for computing the modified height type-
reduced set is exactly the same as that for computing the height type-reduced set, the only
difference being that the modified height type-reducer also scales the output set membership
of each §' by 1/5’2, where &' in this example is set equal to the standard deviation of the
Gaussian with secondary membership equal to 1 for each of the output sets. For the sets
centered at 2, 3 and 5, §' is equal to 0.4, 0.2 and 0.2, respectively. Figure 5.13 (c) shows the
modified height type-reduced set.

5. Center-of-sets type-reducer : The center-of-sets type-reducer computes the centroid of
each consequent set using (2.69), just like the centroid type-reducer computes the centroid
of the combined output set. The type-reduced set is calculated using the centroids and the
degrees of firing of each of the consequent sets, MY, uﬁf:-n (zi). The centroids of the three

i
consequent sets are 2, 3 and 4.8436 [the centroids are crisp because the consequent sets are
type-1 : see Fig. 5.9 (a)]; and, their corresponding degrees of firing are 1/0.9 + 0.5/0.8,
1/0.8 + 0.8/0.6 and 1/0.2 + 0.4/0.1, respectively. Figure 5.14 (b) shows the center-of-sets
type-reduced set. The unity membership point in this set is equal to 2.7204. The slight
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difference between this value and the center-of-sets defuzzified value in Example 5.4 is due
to a slight difference in the discretization of the domain while computing the centroids of
the consequent sets. The center-of-sets type-reduced set differs slightly from the height type-
reduced set, because the centroid of the consequent set centered at 5 is different from its
unity membership point [this set is not symmetric - see Fig. 5.9 (a)].
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Figure 5.14: (a) The ¢!’s (which are crisp in this case, because the consequent sets are assumed to
be type-1), and their output set memberships; and (b) corresponding center-of-sets type-reduced
set. for Example 5.5. The point having unity membership in the type-reduced set is equal to 2.7204
and the centroid of the type-reduced set is equal to 2.6832. In (a), the vertical axis shows primary
memberships of y in the output sets; and in (b), the vertical axis shows memberships of y in the
center-of-sets type-reduced set.

Table 5.1 summarizes the results of this example. Just as different defuzzification methods
provide different results, different type-reduction methods also provide different results. Which
type-reduction method to choose is an open issue, as is which defuzzification method to choose.

O

Table 5.1: Results of Example 5.5.

Type-reduced set Leftl'nost Rjght'most Width | Unity .height Cantroid
point point point
Centroid 2.3403 2.5114 0.1711 2.4729 2.4321
Center-of-sums 2.3167 2.4511 0.1344 2.4172 2.3856
Height 2.5625 2.7778 0.2153 2.7368 2.6985
Modified height 2.9730 3.2000 0.2270 3.1429 3.1125
Center-of-sets 2.5527 2.7604 0.2077 2.7204 2.6832
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5.4 Significance of the Type-Reduced Set

Here we take a closer look at the output of a type-reducer, the type-reduced set. Consider, again, a
p-input single-output type-2 FLS , that uses singleton fuzzification, product or minimum inference,
and has M rules of the form

R': IF 2y is F! and oy is I:"ﬂ and --- and z, is 117‘:,, THEN y is G'.

where z; € X; and y € Y.

The type-reduced set of this FLS is a type-1 fuzzy subset of Y. Assuming centroid type-
reduction [Eq. (5.7)], the type-reduced set is the centroid of the output type-2 set of the type-2
FLS; consequently, as explained in Section 2.5, each element of the type-reduced set is the centroid
of some type-1 set embedded in the output set of the type-2 FLS. Each of these embedded sets can
be thought of as an output set of some type-1 FLS, and, correspondingly, the type-2 FLS can be
thought of as a collection of many different type-1 FLS’s. Each of these type-1 FLS’s is embedded
in the type-2 FLS (just as their output sets are embedded in the output set of the type-2 FLS);
so, the type-reduced set is a collection of the outputs of all the type-1 FLS’s embedded in the type-2
FLS (see Fig. 5.15). In the continuous case, just as the number of embedded type-1 sets in a type-2
set is not countable, the number of embedded type-1 FLS’s in a type-2 FLS is also not countable.
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Figure 5.15: A type-2 FLS can be thought of as a collection of a large number of type-1 FLS’s.
The type-reduced set, Y is a collection of the outputs of all these embedded type-1 FLS’s. When
the antecedent and consequent membership grades in the type-2 FLS have a continuous domain,
the number of embedded type-1 FLS’s is uncountable. This figure is drawn assuming that the
membership grades have discrete (or discretized) domains. The memberships in the type-reduced
set represent the level of uncertainty associated with each embedded type-1 FLS. A crisp output
can be obtained by aggregating the outputs of all the embedded type-1 FLS’s by, for example,
finding the centroid of the type-reduced set (see Section 5.5).

Though we just discussed, and continue to discuss, the type-reduced set for a centroid type-
reducer, these discussions are valid for any other kind of type-reducer. The type-reduced set for
any type-2 FLS represents a collection of outputs of all the type-1 FLS’s embedded in the type-2
FLS. It lets us represent the output of the type-2 FLS as a fuzzy set rather than as a crisp number,
something that can not be achieved with a type-1 FLS.

The membership grade of a point 3 € Y in the type-reduced set indicates the level of un-
certainty associated with the type-1 FLS whose output is equal to y;. This level of uncertainty
is calculated from the secondary memberships associated with the specific type-1 set embedded
in the type-2 output set. If more than one embedded type-1 FLS gives the same output, yi, the
membership corresponding to that point is taken to be the supremum of the levels of uncertainty
associated with all the concerned embedded FLS's.

Observe, from (5.4), that if all the antecedent and consequent membership grades of the type-2
FLS are normal, and have only one point having unity secondary membership, then the output set
membership grade of every y € ¥ will also be normal and will have only one point having unity
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secondary membership. Consequently, the type-reduced set [see (5.7)] will also be normal and will
have only one point having unity membership. This point will correspond to the centroid of the
principal membership function of the type-2 output set.

If all the type-2 uncertainties in the FLS were to collapse to type-1 uncertainties, i.e., if all the
type-2 membership functions in the FLS were to collapse to their principal membership functions,
the antecedent and consequent membership grades of each point would collapse to their unity
membership points. This would cause the output type-2 set to collapse to its principal membership
function, and the type-reduced set to collapse to a single point. This point would correspond to
the centroid of the principal membership function of the output set. This shows that all our results
are valid when all the type-2 uncertainties collapse to type-1 uncertainties.

We can think of a type-2 FLS as a “perturbed” version of a type-1 FLS, due to uncertainties
in the membership functions. For example, when using Gaussian type-2 sets, we can think of the
type-2 FLS as a perturbed form of a type-1 FLS whose membership functions are the principal
membership functions of the type-2 FLS. The type-reduced set of the type-2 FLS can then be
thought of as representing the uncertainty in the crisp output due to uncertainties in the member-
ship functions. Some measure of the spread of the type-reduced set may then be taken to indicate
the possible variation in the crisp output due to variations in the membership function parameters.
This is analogous to using confidence intervals in a stochastic-uncertainty situation; however, what
we have developed is for linguistic uncertainties.

One may argue that, in a type-1 FLS, the output set before defuzzification can be used in place
of the type-reduced set, so we don’t need type-2 FLS’s; but, to do so is incorrect. The output
set of a type-1 FLS just represents a combination of all the rule outputs of a single type-1 FLS,
whereas the type-reduced set for a type-2 FLS represents a collection of outputs of a large number
of type-1 FLS’s, each having a level of uncertainty associated with it, equal to the membership in
the type-reduced set.

5.5 Defuzzification

We defuzzify the type-reduced set to get a crisp output from the type-2 FLS. The most natural
way of doing this seems to be by finding the centroid of the type-reduced set. Finding the centroid
is equivalent to finding a weighted average of the outputs of all the type-1 FLS’s embedded in
the type-2 FLS, where the weights correspond to the memberships in the type-reduced set (see
Fig. 5.15).

If the type-reduced set has only one point having unity membership, and if we wish to reduce
computational complexity, we may think that a more straightforward choice for the defuzzified
value is the unity membership point in the type-reduced set. Choosing the unity membership
point, however, means that we are doing away with all the type-2 analysis, and are choosing the
output corresponding to only the principal membership function type-1 FLS that is embedded in
the type-2 FLS. Since it conveys no information about membership function uncertainties, it does
not make sense to use the unity height point as the crisp output; unless, of course, the type-reduced
set is convex and symmetric, in which case the unity height point is the same as the centroid.

Here we indicate the type-reduced set for an input x as Y(x). It can be obtained by any of our
type-reduction methods. If Y(x) is discrete (or if we discretize it), the expression for the centroid
of this set can be written as N

C‘-{(x) - Zkir] yk#v(yk) (5.41)
Zk:l J'J?(yk)

where y; is a point of the type-reduced set and the total number of points in the (discretized)
type-reduced set is N. Since the type-reduced set Y is a function of x, its centroid, Cy, is also
a function of x. Figure 5.16 shows an example of an arbitrary type-reduced set discretized for
centroid calculation. In general, for arbitrary membership functions, the type-reduced set is not
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Figure 5.16: An arbitrary type-reduced set discretized to find the centroid. The centroid is indicated
by point ¢ in the figure.

symmetrical and the centroid location is different from the location of the unity height point, as
demonstrated next, in :

Example 5.6 Consider the type-reduced sets for Example 5.5 shown in Figs. 5.11 - 5.14. A crisp
output for each of these cases may be obtained by calculating the centroid of their type-reduced
set. The crisp outputs for centroid, center-of-sums, height, modified height and center-of-sets type-
reducers are listed in Table 5.1. Observe that these points are different than the points having
unity membership in the type-reduced set; so, antecedent and consequent uncertainties change the
value of the defuzzified output of a type-2 FLS from that of a type-1 FLS, and the type-reduced set
establishes a band of values about the crisp value in much the same way that a confidence interval
establishes a band about a point estimate. This band of values can be found in Table 5.1, under
the column called “width”. O

5.6 A Function Approximation Example of a Type-2 FLS

In this section, we present a function approximation example of a type-2 FLS which uses center-
of-sets type-reduction. For simplicity, only the consequent sets are assumed to be type-2.

Example 5.7 The function to be approximated is y = 100 — z* for z € [-10,10]. Given are 10
realizations, each with 9 (x,y) pairs. Each of these pairs include values of y corrupted by additive
noise which is uniformly distributed in [-10,10]. For each applied input (1 =1,...,9), we
find the minimum (3, ;) and the maximum (y},,.) of the 10 y values. The 9 (z',[y},ins Utnaz))
pairs are : (2!, [yl ins Uhae]) = (—10,[=7.79,6.49]), (22, [¥2in:¥2ael) = (—7.5,[34.72,52.93)),
(Isi [y?nin' y?rmz]) = (_57 [6612' 841])! (x‘l! Iy;!m'nl y;‘rmz]} = ('2'5! [84'93! 10175])!
(Ia! {yrsnin' y?na.r]) = (0‘ [93091 109'95})' (Iﬁl [y?nin! y?nnz]) = (2'5' [88029 103'53])9 (3"7! [y::in! y;?rluz])
= (5! [6537! 8432])' {Igr [yranin? yﬂmz]) = {75! [34'14! 5085])! (39! [y?nin! y?ﬂu.r]) = (10' [_9'62! 962])
The FLS forms one rule from each pair. The rules are of the form,

IF z is A, THEN y is B.

Observe that only the y;’s are uncertain in the given input-output pairs; therefore, we choose the
antecedent sets as type-1 and the consequent sets as type-2. The antecedent sets are chosen to
be type-1 Gaussian and the type-2 consequent sets are described as type-1 Gaussian fuzzy sets
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with uncertain means (as in Fig. 1.2). The FLS uses singleton fuzzification, maz t-conorm, product
t-norm, product inference and center-of-sets type-reduction.

The antecedent and consequent sets are depicted in Figs. 5.17 (a) and (b), respectively. Each
antecedent set membership function is assigned a standard deviation equal to 1.25. Each conse-
quent set membership function is obtained by perturbing the mean of a type-1 Gaussian fuzzy set.
Every value of the mean is assumed to be equally uncertain and correspondingly, all the secondary
memberships are set equal to 1, so that each consequent set is an interval type-2 set. For the [th
rule, the mean of the consequent Gaussian is perturbed in the range [y!,;,, ¥%42)- In Example 2.5,
we showed that the centroid of this type-2 set is a erisp set with domain approximately equal to
[ ins Uhiaz)s When (¥,02 — Yhain) is small compared to the standard deviation of the perturbed
type-1 Gaussian set. In order to satisfy this condition, we have chosen this standard deviation
equal to 40 [for this example, max;(Yl oz — Yhnin) = 19.24].

0.6 0.6 0.6
0.4 0.4 0.4
02 0.2 0.2
0
0 1] 50 100 0 100 200 ¢ 0 50 100 150
v ¥ © Y7 @ Y

Figure 5.17: (a) Antecedent fuzzy sets for Example 5.7. Each antecedent set has the same principal
membership standard deviation, equal to 1.25. Figures (b), (c) and (d) show the 1st, 4th and 7th
consequent sets. All the consequent sets are interval type-2 sets and are obtained from type-1
Gaussian sets by letting the mean take values in an interval. Since the shaded regions of adjacent
sets may overlap, it is not possible to show all the consequent sets on the same figure; therefore,
we have arbitrarily shown three of them. The thick dark line, in each case, shows the Gaussian
centered at ¢ = (y!,in + Yhaz)/2- In (a), the position of a particular input point, z = 5.5, is also
shown.

Figure 5.17 (a) shows the antecedent (type-1) membership grades for a particular input =’ = 5.5.
#' has non-zero memberships in three antecedent sets, 0.056135 in the set centered at 2.5 (x%),
0.92312 in the set centered at 5 (x7) and 0.27804 in the set centered at 7.5 (a®); consequently,
three rules are fired.

The center-of-sets type-reducer replaces each consequent set by its centroid and scales it (prod-
uct inference) by the appropriate degree of firing. In this case, the centroids of the three fired
consequents (associated with antecedent sets centered at z%, =7, and 28, respectively) are crisp
sets having domains [88.02,103.53], [65.37,84.32] and [34.14, 50.85] respectively. The centroids and
their corresponding degrees of firing are shown in Fig. 5.18 (a).

Calculations are simplified in this case because each C'! is an interval type-1 set and the an-
tecedent sets are type-1, so that the degrees of firing of each of the consequents are crisp. The
center-of-sets type-reduced set depicted in Fig. 5.18 (b) is calculated using Theorem D.1. The
type-reduced set is an interval type-1 set with domain [59.39,77.7]. We can use the midpoint of
this interval as the crisp output of the FLS. This value is equal to 68.55 and is shown with a dashed
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Figure 5.18: The input 2 = 5.5 has non-zero memberships in three antecedent sets. Corresponding
to these three sets, three rules are fired. Figure (a) shows the centroids of the three fired sets
and their corresponding degrees of firing. Figure (b) shows the corresponding center-of-sets type-
reduced set and the crisp output value (shown by a dashed line).

line Fig. 5.18 (b). The actual function value at =’ = 5.5 is 69.75. The two end-points of the domain
of the type-reduced set indicate the lower and upper bounds on the crisp output value.

Figure 5.19 compares the true function value with the crisp output of the type-2 FLS and also

shows the upper and lower bounds. For each value of z, these bounds correspond to the type-
reduced set; they give a measure of the uncertainty in the approximation caused by noisy training
values. ]
Comment 1 : Next, we explain something that we observed in this example : the output of the
type-1 FLS, which uses the same antecedent sets as our type-2 FLS, type-1 consequent sets having
centroids ¢! = (i + Vhwae)/2, and center-of-sets defuzzification, is the same as the crisp output
of our type-2 FLS. _

Observe, from (5.30), that when only the consequents are type-2, Y, (x) can be expressed as

Lk 7?;11”-5‘5_ () %

Yeoa(X) = (5.42)
:; ity T i ()
where both the summations denoﬂh{e algebraic sum.
Let ¢'(z) = [TZ e (2)] /(X =1 T2 1 1455 ()], then
- Af -
Veosl@) =Y ¢'(@)C, (5.43)

=1

Since Cf = [yfninlyiuﬂz]? (ﬁ!(:ﬂ)cl e [Q"t(m)y:uimqs! (x)yirmz] (see Section 2‘4-1)) and, ?cos(:}!’.‘) is
given as [see (2.64))

M M
Yeos(@) = [ D 0" @)0hnins D ¢ (2)¥hnaz (5.44)
=1 =1

Since each C, is a crisp set, Y, () is also a crisp set.
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Figure 5.19: The solid line shows the crisp output of the type-2 FLS and the dashed lines indicate
the upper and lower bounds. The true function value is shown by the thick dash-dotted line.
The output of the type-1 FLS, which uses center-of-sets defuzzification and consequent sets having
centroids ¢ = (y!,in + Yhuar)/2, equals the crisp output of our type-2 FLS.

Using the fact that the centroid of an interval is its midpoint, the centroid of Y,,,(z) can be
expressed as

S
I

M M
cos [Z él(m)ySniﬂ + Z d)t(x)yfﬂﬂzl /2

=1 =1

M yi‘ ; +yf
— erf(:r} min 5 mnz] (545)
i=1

which is the same as the output of a type-1 FLS that uses center-of-sets defuzzification and con-
sequent sets having centroids ¢! = (y!,;,, + ¥lnez)/2. Observe that we did not have to use the fact
that the number of antecedents, p, is equal to 1 in order to derive (5.45), which implies that this
comment is applicable to multiple antecedent systems also. ]

Comment 2 : Here we show that, for Example 5.7, the center-of-sets type-reducer is computa-
tionally more efficient than the height type-reducer.

Observe, from (5.44), that when using the center-of-sets type-reducer, \-"m,(m] is an interval
type-1 set; therefore, to obtain Y (), the center-of-sets defuzzification calculation needs to be
performed only twice, once for each end point of the interval.

For the height type-reduced set, the output set membership of each ' is given as [(5.16)]

iz, (1) = pg (@) N g, (7)) (5.46)

Since the consequent set memberships of the §'’s [the ji & (#')’s] are crisp sets, each s (7') is also a
crisp set. Consequently, the expression for the height type-reduced set (5.17), in this case, becomes

M
W= [ ] S 340
0y Jo2 O ZI=1 0
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where each 6; belongs to some interval in [0, 1], and we have made use of the fact that 7,2, up: () =
1, because each D! = ,ﬁfﬁ(;}’) is a crisp set. Observe that the only simplification in (5.47) from

(5.17) is that now we know that ?h(x) is a crisp set. The domain points still have to be calcu-
lated. The computational procedure described in Appendix D.1 needs to be used for this purpose;
consequently, calculation of the height type-reduced set in this example involves more computation
than the center-of-sets type-reduced set. If, however, the intervals containing 6;’s are narrow, an
approximate expression for (5.47) can be obtained (see Appendix D.2).

Observe that the number of antecedents need not necessarily be equal to 1 for this simplifi-
cation; what is required is that all the antecedents be type-1. If the number of antecedents p is
greater than 1, pg, () is replaced by T2, i (). Everything else remains the same. Observe, also,
that in this example, the center-of-sets __corﬁputation is simplified because we could approximate
the centroid of each consequent set as C' = [y ;.. y!...]. If the conditions required for such an
approximation are not satisfied, we have to compute the consequent centroids using the computa-
tional procedure deseribed in Appendix D.1; and, then, the center-of-sets method may turn out to
be computationally more expensive than the height method. a

5.7 Type-Reduction for Gaussian Type-2 Fuzzy Logic
Systems

In this section, we focus on type-2 FLS’s whose antecedent and consequent membership functions
are all Gaussian type-2 sets (recall that a Gaussian type-2 set is one whose secondary membership
functions are all Gaussians). We refer to such FLS’s as “Gaussian type-2 FLS’s”.

All the type-1 defuzzification methods described in Section 5.3 involve some kind of a weighted
summation. In this section, we make use of Theorem 2.5 to find an approximate expression for the
extension of a weighted summation to the case where all the quantities involved are type-1 Gaussian
fuzzy numbers. This lets us find an approximate expression for the type-reduced set when certain
conditions are satisfied, without having to perform the otherwise computationally intensive type-
reduction calculations. In all the following cases, we assume that the condition (2.78) is satisfied;
however, even if it is not satisfied, we will continue to use Theorem 2.5 to obtain an approximate
expression for the type-reduced set because of the tremendous savings in computation that it offers.
Whenever we need to compute the centroid of a Gaussian type-2 set having a continuous domain,
we will assume that the ¢-norm used is minimum and use Corollary 2.2.

Consider a p-input single-output type-2 FLS , that uses singleton fuzzification, product ¢-norm
and product inference, and has M rules of the form

R': TF x is F} and z, is F} and --- and 2, is F,, THEN y is G'.
where z; € X;, y € Y, and each f", and G (forl=1,...,M and i = 1,...,n) is a Gaussian type-2
set.

Let the mean and standard deviation of jiz, (z:) be mh(z;) and of(z;) forz; € X; (I =1,..., M
and i = 1,...,n), and let the mean and standard deviation of fiz, (y) be m&,(y) and ok (y) for each
yeY (I=1,...,M). Then, from (5.4) and (2.61), we see that the output set for every rule is also
approximately a Gaussian type-2 set.

Under minimum ¢-norm, the degree of firing [‘Ile,&lg, ,(x;) may not remain a Gaussian; therefore,
we consider only product -norm here. Note that, if per‘chancc the output set of a type-2 FLS using
minimum t-norm is a Gaussian type-2 set, then Theorem 2.5 may be used.

1. Centroid type-reduction : The centroid type-reducer combines output sets for different
rules by finding their union, so that the membership function of the combined output set,
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B, is as given in (5.6). Observe, from Theorem 2.3, that under maximum ¢-conorm, the join
between two Gaussian type-1 sets may not remain a Gaussian. Consequently, the combined

output set, B, may not remain a Gaussian type-2 set; however, since the output set is al-
ways discretized for the centroid calculation, if all of the secondary membership functions
in the discretized output set are Gaussian (i.e., if the points at which secondary member-
ship functions are non-Gaussian, are not considered for centroid calculation), we can apply
Corollary 2.2 to get an approximate expression for the centroid. It should be kept in mind
though that, since we are excluding some points from the centroid calculation, at which the
secondary membership functions are non-Gaussian, in some cases, the approximation may be
poor.

If the combined output set is discretized into N points, 1, ..., yn, and if m(y;) and o(y;)
are the mean and standard deviation of the output set membership of y;, (2.79) and (2.80)
can be used to find an approximate expression for the type-reduced set. We repeat these
equations here for convenience :

- SN yim(yi) ”
M(C= = == e 48
il T, myi) A
- hi i—M C- i
2G) = = |y§ ’-\il m((:-'}?)”o(y ) )

. Center-of-sums type-reduction : The center-of-sums type-reducer combines output sets
for different rules by summing them, so that the membership function of the combined output

set, B, is as given in (5.13). From Theorem 2.4 (Chapter 2), we know that the sum of Gaussian
fuzzy numbers is also a Gaussian fuzzy number. Since each fig, (y) is a Gaussian type-1 set,

each fig (y) is also a Gaussian type-1 set and consequently the output set, B, is a Gaussian
type-2 set.

Once the combined output set B is obtained, the procedure for finding the centroid (which
is approximately a Gaussian type-1 set - see Corollary 2.2) is exactly the same as in the case
of the centroid type-reducer. The centroid is a type-1 Gaussian with mean and standard
deviation as given in (5.48) and (5.49), respectively.

Observe that, in this case, unlike the centroid type-reducer, there is no need of any fur-
ther approximation, such as excluding the points with non-Gaussian secondary membership
functions.

. Height type-reduction : The expression for the height type-reduced set [from (5.17)] is

given as
M
v Yo ; ZI 1yc91
Yh( ) a /Eh /82 -/G:M E”DI (91)/ (550)

where §; € D! = i (7) = fig, () M Ei e ,L;:FI (2:)] forl =1,.

Using the Gaussian meet approximation in (2.61), we see that D! is approximately a
Gaussian type-1 set with mean M(D!) and standard deviation $(D), where

M(D') = mé(g') ] mi(wi) (5.51)

i=1

100



and

S0 = [lob@)P [Jimi@)? + ol @)PmeE? [] mi@)] +
i i;i#1l

i
—e [cr:,(:cp)]g[m'c;(gjf)]"“ ]:[ [mi(x,—)]ﬂ] (5.52)

iiFEp

Using Theorem 2.5, we see that Y, (x) is also approximately a Gaussian type-1 set with
mean My (x) and standard deviation £ (x), where

> MDY

Mp(x) =
n(x IIM{D!)

(5.53)

and

VEM [ —M,,( )2 52(Dt)

W= T M(D)

The sequence of computations for height type-reduction is as follows : For given values
of #1,...,z,, we determine the mean, mk(z;), and standard deviation, aﬁ(z,;), of each given
antecedent membership grade, Ty (z:), 0 = 1,2,...,M and i = 1,2,...,p). We are also

given the mean, mb(7'), and standard deviation, of;(j7'), of the consequent membership
grade, jig, (#"), for each §'. Then,
(a) For each I (I = 1,2,..., M), calculate the mean and standard deviation of jiz, using
(5.51) and (5.52); and,
(b) Compute the mean and standard deviation of the type-reduced set using (5.53) and
(5.54).

. Modified height type-reduction : The expression for the modified height type-reduced
set [from (5.20)] is given as

= M=t 12
Yn(x) = fﬂ /8 / H e (6) i ?} < 99;55 i (5.55)
1 5 1

O 1=1
where &' is some measure of spread (e.g., the standard deviation of the principal membership
function) of the Ith consequent set and all other symbols have the same meaning as in (5.50).

Proceeding as in case of the height type-reducer, we find that ‘I"mh (x) is approximately a
Gaussian type-1 set with mean M,,;(x) and standard deviation X.,5(x), where

z:;‘”l giM(DY) /6
M M(DY)/6

VM [7 = Mun(0]2S2(DY /o1
o, M(DY) /6

Mnn(x) (5.56)

1l

Eomn(x) ; (5.57)

and M(D') and £(D') are computed using (5.51) and (5.52), respectively.
The sequence of computations to be performed is the same as in the case of height type-

reduction.
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5. Center-of-sets type-reduction : The center-of-sets type-reduced set is given as [from

(5.22)]
quldﬂ’f -
Vo= [ o [ [ [ Tlag@Tlmg 0 /Eate o

where d; € C, = C‘é, is the centroid of the Ith consequent set, and ¢; € E; = nf:J‘f.-x_ (z;) is
the degree of firing for the Ith consequent set, for [ =1,..., M.

From Corollary 2.2, we know that Cc* is approximately a Gaussian type-1 set. Let its
mean and standard deviation be .M(Cé,) [see (2.79)] and E(C'é,) [see (2.80)], respectively.
Using the Gaussian meet approximation in (2.61), we also have that the degree of firing E, is
approximately a Gaussian type-1 set with mean M(E,) and standard deviation ¥(E,), where

P
M(E) = ] mi(z:) (5.59)

i=1

and
S(Ey) = [lot @) [T ekl + -+ + b)) T] k(@] y (5.60)

ii#El iiFEp

Then, using Theorem 2.5, we have that Y, ,(x) is approximately a Gaussian type-1 set
with mean M ,4(x) and standard deviation X..4(x), where

T Z;’il M(@é;)M(E;) (5.61)
Meos\X) = " y
Z;"L -M(Et)
and
\/Zm" [M (E E2 & l) _|.. [_,«\/[ Mcos(x)]zxz(ﬁl)]
ECOR(X) = (5.62)
t=1 M(EI}

The sequence of computations that needs to be performed for center-of-sets type-reduction
is as follows : For given values of zy,...,z,, we determine the mean, mﬁ(zi), and standard
deviation, o!(x;), of each given antecedent membership grade, g (z;), 1 =1,2,...,M and

i =1,2,...,p). We are also given the mean, m%,(y), and standard deviation, of;(y), of the
consequent membership grade, Ré (y), for each y € Y. Then,

(a) For each consequent set, compute M(C‘é,) and Z(Cc::,) using (2.79) and (2.80), respec-
tively;

(b) For the degree of firing [E, =T fiz,(zi)] corresponding to each consequent set, com-
pute .M{E,) and E(E,) using (5.59) alnd (5.60), respectively; and,

(¢) Calculate the mean and standard deviation of the type-reduced set using (5.61) and
(5.62), respectively.

Example 5.8 In this example, we illustrate the use of the just-described type-reduction approxi-
mation methods for Gaussian type-2 FLS’s. We consider a single input - single output type-2 FLS
using product t-norm and product inference, which has rules of the form :

R': IF « is F!, THEN y is G'.
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where z,y € [0,10].

Figures 5.20 (a) and (b) show the antecedent and consequent sets. Each of these sets is Gaussian
type-2 with a Gaussian principal membership function. The principal membership functions of the
antecedent sets, F!, F2 and F3, are centered at 2, 5 and 8, and have standard deviations 1.2, 1.1
and 1, respectively. The standard deviations of secondary membership functions are proportional
to the means of the secondary membership functions; the constant of proportionality for each of

F“ F2 and F3 is 0.2. The principal membership functions of the consequent sets, G?, G? and G3
are centered at 6, 2 and 9, and have standard deviations 1, 1.2 and 1, respectively. The standard
deviations of secondary membership functions are again proportional to the means of the secondary

membership functions; the constant of proportionality for each of G!, G* and G? is 0.3.

1
08
08l 7
0.4

(b) y=

Figure 5.20: (a) Antecedent sets (the vertical axis shows the primary memberships of = in the
antecedent sets) and (b) consequent sets (the vertical axis shows the primary memberships of y in
the consequent sets) for Example 5.8. The applied input (x = 4) is shown in Fig. (a).

The applied input is z = 4 [shown in Fig. 5.20 (a)]. It has non-zero memberships in two
antecedents F‘l and f*"z. Figures 5.21 and 5.22 depict the output sets and approximate type-
reduced sets [obtained using (5.48) and (5.49)] for the centroid and center-of-sums type-reducers,
respectively. Figure 5.23 depicts the §'’s, their Gaussian-approximated output set memberships
(i, (3 y’s - computed using (5.51) and (5 52)] and the approximate type-reduced sets (obtained

using the procedure described above in paragraph 3) for the height and modified height type-
reducers. For the modified height type-reducer, the §'’s were set equal to standard deviations
of the principal membership functions of the consequent sets : &' = 1, 6 = 1.2 and §° = 1.
Figure 5.24 depicts the centroids of the consequent sets, their degrees of firing and the approximate
type-reduced set (using the procedure described above in paragraph 5) for the center-of-sets type-
reducer.

Observe that since the approximation to the type-reduced set in each case is a Gaussian type-1
set, it’s centroid is equal to its mean which is also the unity height point in the set. As explained
in Section 5.4, this point corresponds to the output of a type-1 FLS which uses the principal
membership functions of this Gaussian type-2 FLS. Since all the principal membership functions
for the consequent sets in this example are normal, convex and symmetric, the outputs of the height
and center-of-sets defuzzifiers for the “principal” type-1 FLS are, as explained in Section 5.3.5, the
same; therefore, the means of the height and center-of-sets type-reduced sets are also the same.
Their spreads, however, are different, as can be seen from Eqs. (5.54) and (5.62).
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Std dev = 0.5884

037 10
(v) ¥

Figure 5.21: (a) The combined output set for the centroid type-reducer (the vertical axis shows
the primary memberships of y in the combined output set) and (b) the approximate centroid
type-reduced set [obtained using (5.48) and (5.49)] for Example 5.8.
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Figure 5.22: (a) The combined output set for the center-of-sums type-reducer (the vertical axis
shows the primary memberships of y in the combined output set) and (b) the approximate center-
of-sums type-reduced set [obtained using (5.48) and (5.49)] for Example 5.8.
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Figure 5.23: (a) The §'’s, and their output set memberships : (b) ﬂﬁl(_ﬁ‘), (c) iz, (7%), and (d)
Figa (#*); and, (e) the approximate height (solid line) and modified height (dashed line) type-reduced
sets [obtained using (5.53), (5.54), (5.56) and (5.57)] for Example 5.8. Figures (b), (c) and (d)
show plots of primary memberships (horizontal axis) versus secondary memberships (vertical axis).
Figure (d) is empty, because fiz, (7°) is zero (1/0). The means of the type-reduced sets are 3.097

(height) and 3.41 (modified height); and their standard deviations are 0.4056 (height) and 0.4651
(modified height). For the modified height type-reducer, §* =1, §* = 1.2 and §% = 1.

1 ¢’ &'
) I
] I
0.5t ! '
] )
] ]
0 i L 1
0 1 4 5 6 7 8 9 10
(a) y=
1 1 1
0.5 0.5 05
0 0
% 0.5 10 0.5 1 0 05 1
{b) (c) (d)
1 b
|
|
05F : Std dev = 0.3031
|
G L
o 3.087 10
(e) ¥=

Figure 5.24: The centroids of consequent sets, Cl’s, are depicted in Fig. (a) and their respective
degrees of firing, ,&lg, (z)’s, for I = 1, 2 and 3 are depicted in Figs. (b), (c), and (d), respectively.

Figure (e) shows the approximate center-of-sets type-reduced set [obtained using (5.61) and (5.62)]
for Example 5.8. Figures (b), (¢) and (d) show plots of primary memberships (horizontal axis)
versus secondary memberships (vertical axis). Figure (d) is empty, because jiz, (z) is zero (1/0).
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Table 5.2 summarizes the results of this example. The table also shows centroids of the true type-
reduced set in each case, found by computing the centroid of the type-2 output set numerically, as
discussed in Sections 5.3.1 - 5.3.5. We did, however, make use of the Gaussian meet approximation
while obtaining the type-2 output set in all the cases [see, for example, (5.51) and (5.52)].

The number of computations required to compute the centroid of a type-2 set having a contin-
uous domain is astronomical; therefore, even the computational results for centroid, center-of-sums
and center-of-sets type-reducers are only approximate. Not more than 10 domain points were con-
sidered while computing the centroid of any type-2 set with a continuous domain. Also, as men-
tioned in Example 2.7, it is not easy to predict the nature of the true type-reduced set; therefore,
though the mean of the Gaussian approximation for the center-of-sets, centroid and center-of-sums
type-reducers appears to be much closer to the true centroid of the type-reduced set, at present
we cannot make any general statements about the approrimation error between a particular type-
reduced set and its Gaussian approzimation. Appendix C.11 demonstrates how to find bounds on
the domain of the type-reduced set. These bounds may be used to bound the difference between the
centroids of the true and the approximate type-reduced sets (see the comments towards the end of
the Appendix). It may be possible to obtain tighter bounds, or an expression for the approximation
error, but we leave this for future research.

Table 5.2: Results of Example 5.8.

Type-reduced set | Mean | Standard deviation Centroid of the true
type-reduced set
Centroid 3.037 0.5884 3.072
Center-of-sums | 3.083 0.5768 3.113
Height 3.097 0.4056 3.268
Modified height 3.41 0.4651 3.530
Center-of-sets 3.097 0.3031 3.090

O

5.8 Limitation of the Gaussian Approximations

We wish to emphasize the fact that the results in Section 5.7 are only approximate (see Corollary 2.2
which was used to obtain these results). If the type-2 uncertainty on the antecedent and consequent
sets is small, the approximation is close to the true answer and then the centroid of the approximate
type-reduced set is close to the centroid of the actual type-reduced set; but, if the type-2 uncertainty
on the antecedents and the consequents is not small enough, the approximation may not be very
close to the true answer and the true crisp output of the type-2 FLS may differ significantly from
the approximate crisp output.

Note also that when we use this approximation, the centroid of the type-reduced set is the same
as the unity height point of that set [e.g., see Figs. 5.21 (b) - 5.24 (b)]. As explained in Section 5.4,
this point is equal to the output of the type-1 FLS which uses the principal membership functions
of the type-2 FLS (we henceforth call this type-1 FLS the “principal” type-1 FLS). If one is only
interested in using the crisp defuzzified output of the type-2 FLS, using the Gaussian approximation,
therefore, does not serve any great purpose. In this case, we recommend actually computing the
type-reduced set using the methods described in Section 5.3 and then finding its centroid, though
this process can be computationally very very expensive. Doing this will give the centroid of the
true type-reduced set (see Table 5.2). The approximation introduced in Section 5.7 is useful if
one wants to estimate the spread of the type-reduced set quickly without going through all the
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computations. The same can be said about the approximations for triangular and interval type-2
FLS’s.

5.9 Interval Type-2 Fuzzy Logic Systems

Comparable results for interval type-2 FLS’s, i.e., for FLS’s using interval type-2 sets, can be
developed by using the results given in Chapter 2 and Appendix D. Even the actual type-reduced
set for interval type-2 FLS’s can be obtained relatively easily by following the computational
procedure described in Appendix D.1.

5.10 Triangular Type-2 Fuzzy Logic Systems

Triangular type-2 FLS’s are FLS’s which use triangular type-2 sets. Type-reduction results for
these FLS’s can be developed in a manner very very similar to that in Section 5.7 by using the
results in [8].

5.11 Fuzzy Basis Functions in a Type-2 FLS

In a type-1 FLS using height or modified height defuzzification, the defuzzified output can be
expressed as a fuzzy basis function (fbf) expansion [15)

M
y(x) =) i'¢'(x) (5.63)
=1

where ¢! (x) = [Tp

P (x) ]/[ZM T 1p5 (x)], provided that the consequent sets are normal. A
center-of-sets defuzzified output [see (5.21)] can also be expressed in this form with the consequent

set centroids, ¢’s, replacing §'’s, without requiring the consequent sets to be normal.

Observe that these type-1 fbf expansions are weighted sums of the form

wyzy
y(zI':'-'}z;'-f)wl'!"'iwﬂf)_Zfﬂ} (5'64]
1=1 Wt

where the weights w; [e.g., 7,2, ppi (xi)] depend only on the antecedent memberships and the

parameters z; (e.g., ') depend only on the consequents. In this section we attempt to see if there
is a parallel to the fbf expansion in the type-2 case.
The extension of (5.64) to the type-2 case allows each wy to be replaced by a type-1 set W, and

each z; by a type-1 set Z,. According to our convention, this extension is

U B Waso s W) = [ oo [ [ o] 'Hi’l#z,(z'z)*ﬂi’ntw,(‘ws)/
1 M wy war

M
ZZ' 1“;’;"* (5.65)
1=1 %l

where 7 and = both indicate the t-norm used ... product or minimum, w; € W, and z; € Z, for
I=1,...,M. )

In a height [(5.17)] or modified height [(5.20)] type-reducer, the W'’s are the output set mem-
berships of the §'’s, namely the iy (7')'s. Since g, (7') depends on both the antecedent and the
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consequent set memberships of the §'’s [see (5.16)], it is not possible to write the term to the
right of the slash in (5.65) as a weighted sum in which the weights depend only on the antecedent
memberships and the parameters z; depend only on the consequents.

In the case of a center-of-sets type-reducer [(5.22)], however, each term to the right of the slash
in (5.65) can be interpreted as a valid fbf expansion, because the W's now correspond to the
degrees of firing, Nf_, I7ey (z;)’s, which depend solely on the antecedents and the Z"’s are centroids

of the consequent sets (\\'rhich, of course, depend solely on the consequents). So, every point in the
domain of a center-of-sets type-reduced set [the term to the right of the slash in (5.65)] can be
expressed as a fbf expansion similar to the one in (5.63) [see (5.64) - a restatement of (5.63)]. If we
view the type-reduced set as a collection of a large number of type-1 FLS’s (see Fig. 5.15), when
using center-of-sets type-reduction, the output of each embedded type-1 FLS can be expressed as
a fbf expansion. This is another reason to use center-of-sets type-reduction.

When all the type-2 uncertainties collapse to type-1 uncertainties, the type-reduced set collapses
to a single point (see Section 5.4), which corresponds to the correct type-1 fbf expansion for the
resulting type-1 FLS.

The expression in (5.65), in its most general form, can not be expressed as a weighted sum of
type-1 sets. If, however, only the z;’s are fuzzy and all the w;’s are crisp (this corresponds to the
case where all the antecedent sets are type-1in a center-of-sets type-reducer, as in our function
approximation example, in Section 5.6), Y can be written as

M 5
. i 2= W7
Y(Zys-o s Zpypywryee ey wi) IMI'

=1 wy

Il

M _
= Y 4 (5.66)
=1

In a center-of-sets type-reducer, wy = []%_, p (z;) and 2, is the centroid of the Ith consequent

set, so that the basis functions ¢; in (5.66) depend solely on the antecedent memberships and :2, 's
depend solely on the consequents.

If the type-reduced set, Y, of a type-2 FLS is discretized into N points, y1,...,y~, the centroid
of the type-reduced set is given as

o YN ving (i) (5:67)

Y N
2 iz My (yi)

where each y; itself can be expressed as a weighted sum [see the term to the right of the slash
in (5.65)]. Y can be obtained from any of the type-reduction methods discussed earlier (see Sec-
tions 5.3.1 - 5.3.5 for the expressions for specific type-reduced sets).

Note that though (5.67) is a weighted average, it is not a fbf expansion, because each y; and
5 (yi) depend on both the antecedent memberships and the consequents. When all the type-2
uncertainties collapse to type-1 uncertainties, however, the type-reduced set collapses to a single
point, say y', so that ¢ (y') = 1 and py(y) = 0 for y # y'. In this case, Cy = y' and y' corresponds
to the correct fbf expansion of the form (5.64) in the type-1 case for height, modified height and
center-of-sets defuzzifiers (assuming that the height and modified height defuzzifiers use normal
consequent sets).
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Chapter 6

Examples of Type-2 Fuzzy Logic Systems

In this chapter, we describe two examples of type-2 FLS’s that will give the reader an idea of the
circumstances under which a type-2 FLS can be used and the kind of output one can expect from a
type-2 FLS. Applications for type-2 FLS’s are by no means limited just to the situations described
here and will continue to be a topic of future research.

In Section 6.1, we consider the problem of designing a FLS from rules collected by surveying
multiple experts. We show how linguistic uncertainty about membership functions of the FLS, as
well as rule uncertainty from multiple experts, each of whom may give different answers to the same
question, can be handled in the type-2 framework. In Section 6.2, we demonstrate how information
associated with numerical uncertainty in the training data for a type-1 FLS can be interpreted in
a type-2 framework, so as to obtain bounds on the type-1 FLS output. We do this for the problem
of forecasting the Mackey-Glass chaotic time series [14].

6.1 Collecting Rules by Means of a Survey

In this example, we consider the problem of designing a FLS based on rules collected from multiple
experts. Let us suppose that we are designing a FLS to approximate a mapping f : [0, 10]x [0, 10] —
0,10], and that the domain of each input as well as output are divided into three fuzzy sets Ft,
F? and F3. To form the rule-base, surveys are collected from several experts. The surveys ask
questions of the form :

IF z; is F! and 2, is I/, THEN what is y ?

where i,j = 1,2, 3. Each question gives one rule, and there are 9 such rules.

Different experts may answer the same question differently. Table 6.1 shows the information
collected from (hypothetical) surveys. For each rule, the numbers under Fi (i = 1,2,3) show the
fraction of experts who answered “y is F'” to that particular question.

Note that, in this example, each of the antecedents as well as the consequent use the same three
fuzzy sets; therefore, any linguistic uncertainty in the membership functions of these sets appears
in the antecedents as well as the consequents.

We consider two cases : 1) there is no uncertainty associated with the membership functions of
the three fuzzy sets (i.e., the three sets are type-1); and 2) the membership functions are uncertain
(ie., the three sets are type-2). In each case, we consider two different approaches to handling the
uncertainty introduced in the rules due to the different responses from different experts.

6.1.1 Type-1 Membership Functions

Figure 6.1 (a) shows the membership functions for the three sets F!, 2 and F3, which are Gaussian
type-1 sets. Now, we consider two ways of handling the uncertainty due to multiple responses.
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Table 6.1: Information collected from (hypothetical) surveys. The integer values for z; and z»
are the indices for sets F' (i = 1,2,3). For each rule, the numbers under F* (i = 1,2, 3) show the
fraction of experts who answered “y is I''” to that particular question. We use these numbers as

; !
the weights wj.

Rule no. | z | o2 ] f?z e
1 1 1 08 | 0.2 0
2 1 2 0.25 | 0.7 | 0.05
3 1| 31005025 0.7
4 2 |1 0.3 | 0.6 | 0.1
5 221015 0.8 | 0.05
6 271 3 0 |0.25]0.75
7 31 0.2 | 0.5 | 0.3
8 3| 2 0 0.1 | 09
9 3| 3 0 0 1

5
1G]

Figure 6.1: Membership functions for the survey example :
case 1; (b) type-2 membership functions - case 2; (c) centroids of the type-2 membership functions
in Fig. (b). The centroids of F!, F? and F? in (a) are ¢! = 1.3213, ¢ = 5 and ¢* = 8.6787,

respectively.

(a) type-1 membership functions -
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6.1.1.1 First Approach : Keeping One Response

In our first approach to forming a rule base, we choose a single consequent for each rule. We
accomplish this in two different ways : (1) by keeping the response with the largest weight; and,
(2) by averaging the centroids of all the responses for each rule and using this average in place of
the rule consequent centroid.

Method 1 : Keeping the Response with the Largest Weight

In this approach to forming a rule-base, we choose the set for each rule that has the largest number
of experts in favor of it, in which case the rule-base is as shown in Table 6.2 and the FLS is type-1.
For this system, we use center-of-sets defuzzification. A plot of y..s versus (zi,zs) is shown in
Fig. 6.2.

Figure 6.2: The plot of ., versus (z1,x2) for the type-1 FLS using rules from Table 6.2.

So that the reader can understand how we obtained these results, we next show the calculation
of the output corresponding to (z1,z2) = (1,3). The memberships of ; = 1 in F!, 2 and F are
[see the dashed line in Fig. 6.1 (a)] 0.8341, 0.0548 and 0.00, respectively; and those of z; = 3 are
0.1953, 0.4839 and 0.00, respectively. For these values of z; and w2, four rules (rule numbers 1, 2, 4
and 5, with consequents F!, F2, F2, and F?, respectively) are fired; and the corresponding degrees
of firing are 0.1629 (e.g., 0.8341 x 0.1953), 0.4036, 0.0107 and 0.0265, respectively. The centroids
of the fired consequent sets, F! and F2, are 1.3213 and 5, respectively [see Fig. 6.1 (a)]; and the
output is [see (5.21)]

0.1629 x 1.3213 + (0.4036 + 0.0107 + 0.0265) x 5
0.1629 + 0.4036 + 0.0107 + 0.0265
4.0084 (6.1)

y(:OS (11 3) —

Il

Method 2 : Averaging the Responses

In this approach to forming a rule-base, we find a weighted average of the rule consequents for each
rule, where the weights used are obtained from the responses of the experts (see Table 6.1); and,
then we use this average in place of the rule consequent centroid, i.e., we treat the FLS as a type-1
TSK FLS (see Section 5.3.7), having rules of the form

R! : IF z, is F' and @, is F/, THEN y = Ehug
where

o whiel +whe? + whe?
avg —

c (6.2)

wh + wh + wh
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Table 6.2: Keeping the response with the largest weight

[Ruleno. [z [z || y |
i W

CalCol | b b b2 =] =] =

O 0o =1 | U | W] b
Lol b = Lo
t

in which w! is the weight associated with the ith consequent for the lth rule (i = 1,2,3;1 = 1,...,9);
and, ¢' is the centroid of the ith consequent set (i = 1,2,3). The centroids of the three sets are
el = 1.3213, ¢ = 5 and ¢® = 8.6787 (see Fig. 6.1). The complete rule-base is shown in Table 6.3.
A plot of i, versus (zy,x2) is shown in Fig. 6.3.

Figure 6.3: The plot of y,s versus (z1,z2) for the type-1 FLS using rules from Table 6.3.

We show a sample calculation for the output corresponding to (zy,z2) = (1,3). The member-
ships of #; and x5 as well as the degrees of firing of the four rules (rule numbers 1, 2, 4 and 5) are
the same as computed in Method 1. In this case, however, the consequents of all the four rules are
different (see Table 6.3). The output, therefore, is [see (5.34)]

(1,3) = 01620 % 20570+ 04036 x 42643 + 0.0107 x 4.2643 + 0.0265 x 4.6321
Yhak\ ol = 0.1629 + 0.4036 + 0.0107 + 0.0265
= 3.6856 (6.3)

6.1.1.2 Second Approach : Preserving All the Responses

In our second approach to forming a rule base, we seek to preserve the distribution of the expert-
responses for each rule. Observe, from Table 6.1, that each possible response to every question can
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Table 6.3: Averaging the responses, when the membership functions are type-1. For each rule,
cfwy‘s are weighted averages of consequent centroids, ¢', ¢ and ¢*, where the weights are obtained

from Table 6.1.

[Ruleno. (I) [ @ [ @ || chyy |

1 2.0570
4.2643
7.3911
4.2643
4.6321
7.7590
5.3679
8.3108
8.6787

(%1 I W I O ) ) O

ol Lol Lol B3| B3| I =] =]

D) Co| =1 S| Ot =] Lol b

L]

be considered to form one rule of a FLS; and, since one rule in a FLS can have only one consequent,
different responses to the same question can be considered as rules from different FLS’s. So, all the
expert-responses taken together can be viewed as a collection of many different type-1 FLS’s, each
corresponding to one combination of expert-responses. For the results shown in Table 6.1, there
are 3? possible type-1 FLS’s. Each possible consequent for every rule can be assigned a wcight
that is equal to the percentage of experts who voted in favor of it; hence, each rule in every one of
the 3% FLS’s can be assigned the weight of its consequent; and, each FLS can be assigned a weight
equal to the t-norm of the weights of its 9 rules (in this example, we will use only product ¢-norm).
So, one survey can be represented as a collection of many different type-1 FLS’s, each having this
weight associated with it.

Next, we demonstrate that for every applied input, the output of this system can be represented
as a fuzzy set, whose elements are the outputs of all these different type-1 FLS’s, and whose mem-
berships are the weights associated with the different FLS’s. In our example, each rule can have
three possible consequents, corresponding to three different possible responses to a question (Fl
F? or F?); hence, we shall consider every possible combination of rules, in which any of the rules
can have any of the three consequents. Let wﬁ: be the weight and “{‘: be the consequent centroid
associated with the Ith rule, if its consequent is F# (I =1,...,9 and i; = 1,2, 3). Absum(, that the
weights are normalized, so that the maximum weight for deh rule is 1, i.e., max;, w = 1. Also,
let ¢'(x), #*(x),...,¢"(x) be the fuzzy basis functions associated with the 9 rule.s for some applied
input x. Though each rule has different consequents in different FLS’s, it has the same antecedents;
therefore, each of the 3% type-1 FLS’s possesses the same basis functions, ¢'(x), ¢*(x),...,¢°(x).
Assuming that each of these type-1 FLS’s uses center-of-sets defuzzification [see (5.21)], the fuzzy
set consisting of the outputs of all 3° different FLS’s (as discussed in the previous paragraph) can

be represented as
3 3 3
V=272~ Z [ ? wh, / qu (x)c.,] (6.4)
i1=1i2=1 o=1

where the summations outside the square bracket indicate logical union and the one inside indicates
algebraic sum. 7 indicates the chosen t-norm. In this example, we will use only the product ¢-norm.
Next, we show that (6.4) can also be represented as

9
x) =3 ¢'(x) [wh/ch +wh/ch +wh/ch] (6.5)

=1
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where the summation outside the square brackets indicates algebraic sum and those inside indicate
logical union. To do this, observe that Eq. (6.5) can be rewritten as [see (2.63); remember, also,
that ¢!(x) can be represented as 1/¢'(x)]

Y(x) = [wl /th{x)cl + wq/qﬁf(x)c + w\,/cﬁ’(x)c’]

[Z wl, / ¢‘(x)a§-.]
! ir=1
= S ul / ¢ (x)cl, + Z w?, / BR)CE + - + Z w! /¢,9 (6.6)

i1=1 ia=1 ip=1

Me IM-

1

mII

where all the summations indicate logical union and the “+” signs indicate algebraic sum. Equa-
tion (6.6) indicates that Y(x) is the algebraic sum of 9 type-1 fuzzy sets, each of which has 3 terms
in it. Let

3
f&,(x):Zwﬁ‘/QﬁI(x)c{vl C o 1=1,2,...,9 (6.7)

=1

where the summation denotes logical union. Using (2.64), we can add A, (x) and A, (x) algebraically
as follows :

Ax)+A,(x) = Z ”/szl c”+Zw /qﬁ (x)c;,

l]—l ia=1

Z Z{w,l *111,2)/[(;5 (x)ci, + ¢*(x)c; ]

11=1i2=1

Z Z [Tf*lwn / Z@ (x)c,,] (6.8)

11‘-1 12_

Adding A,(x) to (6.8), we have [using (2.64) again]

i(w * Wi, /[rﬁ (x)e, + q‘Jz(x)c,z] Z w}, /(;53

a=1 Is 1

Mm

A (%) + Ay (x) + Ay(x)

-
Il
—
-

i1

Mw

3 3
Z Z:(w11 * w7 *TU:G)/[be(X)LH + ¢* (x)ci, +¢3(x)cm]

Z Z [7?“‘1% / Z¢‘ x)r,,] (6.9)

Continuing in this fashion, it is easy to see that the RHS of (6.6) is equal to (6.4).

Next, we show that i’(x) in (6.5) can be interpreted as the type-reduced set of a certain
type-2 FLS when center-of-sets type-reduction is used. Observe, from (5.43), that when only the
consequent sets in a FLS are type-2, the center-of-sets type-reduced set can be expressed as

=
Il
—
o
A
o
i

3:

Il
nMw

M
Yeos(®) =) ¢'(0)Cy (6.10)
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where C, is the centroid of the lth consequent set and ¢'(z) = [T.L,pz(z)] / [z‘” TE, pgi ().
Comparing (6.10) and (6.5), we see that (6.5) is the same as the ezpression for a center-of-sets
type-reduced set of a 9 rule type-2 FLS, when all antecedents are type-1 and the consequent centroid
for the lth rule is equal to (w}/c} +wh/ch +wh/ch).

In Section 5.4 we saw that the type-reduced set of a type-2 FLS represents a collection of all
the outputs of all the type-1 FLS’s embedded in that type-2 FLS. In this example, we followed the
reverse path, i.e., we started with a collection of many different type-1 FLS’s and showed that they
can be represented as embedded FLS’s in a single type-2 FLS.

The number of these possible embedded type-1 FLS’s can be computed as follows : each rule can
have three different consequents, corresponding to three different possible responses to a question
(F', T? or F‘s), and, there are 9 such rules; so, the total number of possible combinations is
3x3x--(9 times) = 37 | [Remember that (6.5) is another way to represent (6.4), and the 3° terms
are clearly present in (6.4).] This is a large number; however, actual computations are simplified by
the fact that every input fires only a small number of rules (i.e., the degree of firing for every rule,
computed by multiplying the antecedent memberships of z, is non-zero for only a small number of
rules), and every consequent centroid consists of only 3 points, i.e., (w} /¢ +wh/ch + wh/c}).

Note that our type-2 representation does not depend on the number of inputs or on the number
of antecedent sets. All that is required is that the antecedents be type-1 and that every FLS in
the collection have the same number of rules and exactly the same antecedent structure for the
rules. Note also that, since there exist no physical consequent sets with the centroids of the form
(wh /) +wh/ch 4+ wh/ch), it is better to think of this type-2 FLS as a type-2 TSK FLS which uses
type-1 fuzzy numbers of the form (w}/c} + w}/ch + wh/c}) in the consequent for the Ith rule (see
Section 5.3.7 for a comparison between a Mamdani FLS using center-of-sets type-reduction and a
type-2 TSK FLS).

In Theorem 6.1 given next, equivalence between the collection of type-1 FLS’s and a type-2
TSK FLS means that, for any given input, the elements of the type-reduced set of the type-2
TSK FLS are the outputs of all the possible type-1 FLS’s, and their memberships are the weights
associated with each of the type-1 FLS’s. These weights are computed by multiplying the weights
of individual rule consequents in each FLS. If more than one type-1 FLS gives the same output,
say 1/, the membership for y' is taken as the maximum of the weights of all the type-1 FLS’s giving
output equal to y'.

Theorem 6.1 Suppose that M rules for a FLS are collected by surveying multiple experts. If the
survey has M questions and each question has N possible answers (corresponding to N possible
consequents @‘1, @*2, - C‘IN, for the lth rule), the data collected from the survey, in general, rep-
resents a collection of NM possible type-1 FLS’s. Assume further that weights are assigned to the
responses from experts, such that w! € [0,1] is the weight associated with the consequent G.. Then
representing the survey as a collection of these NM type-1 FLS’s using center-of-sets defuzzifica-
tion, is equivalent to modeling the survey as a type-2 TSK FLS that has the same number of rules
and the same antecedent structure as the survey, but whose lth consequent is a type-1 fuzzy set
equal to 2\ , wt/ck, where the sum indicates logical union, and ¢ is the centroid of G

Proof : The proof uses the same argument presented above when we showed the equivalence
between the type-1 and the type-2 systems [see (6.4) - (6.10)]. O
Comment : Though normalization of the weights (i.e., max;w! = 1 for I = 1,..., M) is not
required to achieve equivalence between the collection of type-1 FLS’s and the type-2 TSK FLS
described in Theorem 6.1, it is highly recommended for the reasons explained next.

The expression for the type-reduced set of the type-2 TSK FLS can be written as [see (6.5))

M

N
Vrsx(x Z () (Do wi/eh) (6.11)
=1



where the summation outside the large parentheses indicates algebraic sum and the one inside
indicates logical union. To show the contribution of the kth rule, (6.11) can be rewritten as

N

M N
Yrsk(x) = Z ¢£(x)(ZW5/c§) + qb’”'(x)(wa-/ci-)
i=1 i=1

f:l‘
= 2 (X wlsd) + [ wl /6 )] (6.12)
f;}\_ i=1 i=1

Now suppose that, for a particular input x’, ¢*(x') = 0, i. e., the kth rule has not fired. The
contribution of the kth term in (6.11), then, is equal to zero, and one would expect the type-reduced
set to be equal to [see (6.12)]

i M N
Yrsg(x') = Z 'f’r(x)(
=1

1£k

wﬁ/cﬂ) (6.13)
1

=

Equation (6.12), however, gives us (assuming maximum ¢-conorm)

M N N
Tron(x) = 2 4L wlred) + [Xul/]
=1 i=1 i=1
: (S wte) + (mpet)/
= ¢ (x) wa-/ci -+ m:jlxwﬂ 0 (6.14)
f;i i=1

Note that if max; w! # 1, (6.13) and (6.14) are, in general, not equal. This can be explained as
follows. )
Consider a type-1 set F = [ f(v)/v. Adding 0 = 1/0 to this set gives us

Fe1/0= [ s@p+1/0= [F0)*1)/w+0 = [ f0)jv=F; (6.15)
whereas, adding w/0, for some w € (0,1), gives us
F 4 w/0 = f f(0)fo+w/0 = /[f(v) w0+ 0) = /[f(v) st i (6.16)

which shows that, in general, F 4+ 1/0 # F + w/0.

The above analysis shows that if the weights are not normalized, we cannot compute the type-
reduced set, Ypgx(x'), using (6.13), and, instead we have to use (6.14) to include the effect of
the kth rule, even though it did not fire. This certainly does not seem intuitive; but, the way to
avoid this problem is to normalize all the weights, so that max; wi=1forl=1,...,M. A similar
argument can be presented for the case when more than one ¢'(x) are zero. O

Using Theorem 6.1, we can now treat the FLS obtained from the survey as a type-2 TSK FLS,
whose rules are of the form (see Section 5.3.7)

R': IF z, is F' and a5 is F7, then y = K'.
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where elements of the fuzzy set K' consist of the centroids of the three consequent sets F!, F?
and F*? (we now denote the centroids as ¢*, ¢® and ¢® for convenience); and their memberships are
assigned in proportion to the number of experts who voted in favor of them. We normalize the
memberships for each rule by dividing by the maximum weight, e.g., the three memberships for
the first rule are found as 0.8/0.8 = 1, 0.2/0.8 = 0.25 and 0/0.8 = 0, respectively. The rule-base,
in this case, is shown in Table 6.4. For each rule, due to normalization, the number having unity
membership in the consequent is the same as the centroid of the consequent set of the corresponding
rule in Table 6.2.

Table 6.4: Preserving all the responses. ¢ (i = 1,2,3) indicates the centroid of F? - see Fig. 6.1
(a). The memberships for each K' are normalized by dividing by the largest weight (see Table 6.1).

[Ruleno. () [z [ 22 | K! |

1 1|1 1/ct +0.25/c*

2 1| 2 [[0.3571/ct +1/c% +0.0714/¢°
3 1| 3 ] 0.0714/c" +0.3571/c* +1/¢*
4 211 0.5/ct + 1/c® +0.1667/¢°
5 2 | 2 || 0.1875/c! +1/c* + 0.0625/¢°
6 213 0.3333/c* + 1/

7 3|1 0.4/c"+ 1/ + 0.6/

8 3] 2 0.1111/2 + 1/c

9 3[3 1/

The output of the system is computed, as [see (6.10) and also Section 5.3.7]

9 = (o )i (x
T =Y g‘u‘""( De (@) gy (6.17)
1= =1 Mg (@) s (2)
where the summations denote algebraic sum.

It is difficult to depict the type-reduced set of this FLS as a plot of Y versus (z1,22), because
there is more than one possible output for each input. We show the outputs (i.e., the type-reduced
sets) for 5 different mputs (0,0), (1,3), (5,5), (7,7.5) and (10,10) in Fig. 6.4.

Observe that each K!' in Table 6.4 has only one point having unity membership; and, since
the memberships of the K"s are normalized by dividing the weights in Table 6.1 by the largest
weight for each rule, the unity membership point of each K!' (I = 1,...,M) corresponds to the
centroid of the consequent set having the largest weight for each tule (compare Tables 6.2 and
6.4). The type-reduced set computed using (6.17), therefore, also has only one point having unity
membership (see Section 2.4 for more discussion about algebraic operations on type-1 sets), and
this unity membership point is the same as ycos(X), where y.,5(x) is the output of the type-1 FLS
in the first approach - Method 1.

In order to explain how the results in Fig. 6.4 were obtained, we show the calculation of the type-
reduced set for (z1,22) = (1,3). The antecedent memberships and degrees of firing are the same
as those described at the end of Section 6.1.1.1. The 4 consequents, however, are now type-1 fuzzy
numbers K! = 1/¢'40.25/¢%, K? = 0. 3571/( +1/¢*+0. ()'i’l-'—l/(*j K* = 0.5/c' 4+1/¢*+0.1667/c® and
K® = 0.1875/c' + 1/c* +0.0625/¢®, where ¢' = 1.3213, ¢ =5 and ¢! = 8.6787. The type-reduced
set is obtained as [see (6.17) and also Section 2.4]

0.1629 x K! + 0.4036 x K2 + 0.0107 x K* + 0.0265 x K°
0.1629 + 0.4036 + 0.0107 + 0.0265

‘;—Ts.!((ls:}) =

117



1k
0.5 T
Al ? . .
[ 1 2 3 4 5 6 7 a8 9 10
(a)
1
05
2 | G ¥ oo
o 1 2 3 4 5 6 7 ] 9 10
)
1
05F T
3 ) ; ; 2
0 1 2 3 4 5 6 7 8 ] 10
(e}
1
05r
0 s Qa4 $ Gy L 0
0 1 2 a 4 5 6 7 a ] 10
(d)
1
a5 T
o € = L 1 L
4] 1 2 3 4 5 6 7 8 9 10

Figure 6.4: Five outputs of the type-2 TSK FLS using rules from Table 6.4 (when the membership
functions are all assumed type-1) for the inputs : (a) (0,0), (b) (1,3), (c) (5,5), (d) (7,7.5), and (e)
(10,10). In Fig. (d), two domain-points of the type-reduced set are very close to each other (near
y = 6); therefore, it appears as if the two circles (indicating membership grades in the type-reduced
set) are at the same domain-point.

= 0.2698 x K! +0.6685 x K2 +0.0177 x K* 4 0.0439 x K°®
= 0.2698 x [1/c' + 0.25/¢*] 4 0.6685 x [0.3571/c" + 1/¢* + 0.0714/c”]
+0.0177 x [0.5/¢" + 1/¢* + 0.1667/c°]
+0.0439 x [0.1875/c' + 1/¢* + 0.0625/c”]
= [1/(0.2698 x c') +0.25/(0.2698 x ¢?)]
+[0.3571/(0.6685 x ¢') + 1/(0.6685 x c*) + 0.0714/(0.6685 x ¢*)]
+[0.5/(0.0177 x ') + 1/(0.0177 x c*) + 0.1667/(0.0177 x ¢*)]
+[0.1875/(0.0439 x c') +1/(0.0439 x ¢*) + 0.0625/(0.0439 x ¢*)]
= [1/0.3565 + 0.25/1.349]
+[0.3571/0.8833 + 1/3.3425 + 0.0714/5.802)
+[0.5/0.0234 + 1/0.0885 + 0.1667/0.1536)
+[0.1875/0.0580 + 1/0.2195 + 0.0625/0.3810] (6.18)

where summations inside the square brackets indicate logical union and those outside indicate
algebraic sum. The RHS of (6.18) is an algebraic sum of 4 type-1 sets. To simplify it, we need to
use (2.64). The resulting type-1 set has 2 x 3 x 3 x 3 = 54 terms. If more than one of these 54 terms
give the same domain point [the quantity to the right of the slash in (6.18)] in the resulting type-1
set, we choose the maximum membership grade [the quantity to the left of the slash in (6.18)] for
that domain point. We performed this addition on a computer. Neglecting terms with very small
memberships, the result obtained is

Yors(1,3) ~ 0.3571/1.3213 + 0.0893/2.3792+ 1/3.9421 + 0.25/5
+0.0714/6.5630 + 0.0179/7.6208 (6.19)

118



The output is depicted in Fig. 6.4 (b). The unity membership point does not appear to be exactly
equal to the output of the type-1 FLS in Section 6.1.1.1 - Method 1, because the computer program
for the present case ignores all the degrees of firing less than 0.05, in order to speed up computations.

Figure 6.5: The plot of the crisp output of the type-2 FLS versus (x1, z2) using rules from Table 6.4.

Figure 6.5 shows a plot of the crisp output of this type-2 FLS versus (x1,z2). The crisp output
is obtained by finding the centroid of the type-reduced set in each case (see Section 5.5 for more
discussion on defuzzification).

6.1.1.3 A Comparison of the Two Approaches

The first approach (Section 6.1.1.1) only showed the output of the type-1 FLS associated with
either the largest number of experts (Method 1) or the averaged responses (Method 2); whereas,
the second approach (Section 6.1.1.2) showed the outputs of all the possible type-1 FLS’s that
could be designed from the given data (along with the appropriate weights of the FLS’s). The
crisp output in the second approach is the average of the outputs of all the type-1 FLS’s embedded
in the type-2 TSK FLS (see Section 5.4).

Note that the second approach first computes the outputs of all the embedded FLS’s and then
computes their average, whereas Method 2 in the first approach first averages the responses and
then computes the output of the resulting type-1 FLS.

Figure 6.6 shows the difference between the crisp output in the second approach and the crisp
output in the first approach when only the response with the largest weight is preserved. The
MSE between the two crisp outputs is 0.3544 [the MSE is found by squaring all the € values, i.e.,
values on the independent axis, in Fig. 6.6, summing them, and dividing the sum by the total
number of (z;,z2) pairs]. The difference between these two crisp outputs is larger when there is a
substantial disagreement among the experts, i.e., when the histogram of responses is more spread
out. Observe, for example, from Table 6.1, that the histogram of responses for rule number 3
(when x, is close to zero and xy is close to 10) is more spread out than the histogram of responses
for rule number 8 (when x; is close to 10 and z» is close to 5); and correspondingly, in Fig. 6.6,
the error near (z,x2) = (0, 10) is much larger than that near (z,,z2) = (10,5). Figure 6.7 shows
the difference between the crisp output in the second approach and the erisp output in the first
approach when the responses are averaged. The MSE in this case is 0.0159. The differences in this
case are much smaller than those in Fig. 6.6.

If we just consider the crisp outputs, the second method in the first approach (where the
responses are averaged) is in some sense closer to the second approach. This observation suggests
that if one’s aim is to obtain only the crisp outputs from all the collected surveys, the second method
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Figure 6.6: The plot of the difference between the crisp outputs for the two approaches versus
(x1,x2) : keeping the response with the largest weight and preserving all the responses, in the
type-1 case.

Figure 6.7: The plot of the difference between the crisp outputs for the two approaches versus
(z1,9) : averaging the responses and preserving all the responses, in the type-1 case.
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in the first approach is the better method to choose. The first method in the first approach ignores
all but the responses having a maximum weight. The computational complexity of the second
approach is much greater than that for either of the methods in the first approach. The second
approach, however, provides us with some information that neither of the two methods in the first
approach does, namely, for every input, it gives us the outputs of all the possible FLS’s that can
be designed from the survey, along with their appropriate weights. If one desires to make use of
this information in some way (e.g., during a decision-making process), the second approach should
be adopted. L }

If a linguistic output, i.e., the name of the set to which the output belongs (F!, F? or F?), is
desired from the type-2 FLS, it can be given as the set in which the crisp output has its maximum
membership.

6.1.2 Type-2 Membership Functions

In Section 6.1.1, we fixed the parameters of the antecedent and consequent membership functions
(means and standard deviations of the Gaussians). If we were to obtain these parameters by
surveying experts, most likely we would obtain different answers from them; hence, in this case, we
should also let the membership functions be uncertain. We do this by letting both the means and

the standard deviations be uncertain, with the following values : the means of F!, F2, and F3 are
assumed to vary in [0,1], [4.5,5.5] and [9.5, 10], respectively, and, the standard deviation of each
Gaussian is assumed to be uncertain in [1.5,1.7]. All these values are assumed to be uniformly
uncertain, which means that the resulting type-2 sets are interval type-2 sets. Although we have
chosen these values arbitrarily, they would usually be obtained by a survey as mentioned above.
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Figure 6.8: Figures depicting the procedure to obtain a type-2 set which is generated by a Gaussian
with both uncertain mean and standard deviation. If the mean is uncertain in [m;,ms], we draw
the uncertain standard deviation curve centered at every point in interval [m;,ms]. Figure (a)
shows the uncertain standard deviation curves at m; and ma. Figure (b) shows the resulting
type-2 set, obtained by combining all the curves similar to the one in (a).

Figure 6.1 (b) shows the membership functions for the three sets. In Chapter 1, we described the
procedure for obtaining the membership function of a type-2 set obtained from a Gaussian type-1
set having either an uncertain mean or an uncertain standard deviation. The sets in Fig. 6.1 (b)
have both of these uncertainties; however, since all the values of means and standard deviations are
assumed equally uncertain, obtaining their type-2 membership function is a fairly easy task. See
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Fig. 6.8 for an explanation. The centroids of F!, F2 and F? are computed, using the computational
procedure described in Appendix D.1. These centroids are depicted in Fig. 6.1 (c).

Again, we consider two different approaches to handling the uncertainty due to multiple re-
sponses.

6.1.2.1 First Approach : Keeping One Response

Just as in Section 6.1.1.1, we consider two methods of choosing a single response : (1) by keeping
the response with the largest weight; and, (2) by averaging the centroids of all the responses for
each rule and using this average in place of the rule consequent centroid.

Method 1 : Keeping the Response with the Largest Weight

In this case, we use the rule-base in Table 6.2. The outputs (type-reduced sets) for five inputs,
obtained using center-of-sets type-reduction are depicted in Fig. 6.9. Each of the sets in this case
is an interval,

1F
osf
o L "
0 1 2 3 4 5 [ 7 8 9 10
(a)
1
05
[+] L L i n il
[ 1 2 a 4 5 [ 7 8 9 10
b}
s
os'l-
° .
] 1 2 3 Il 5 6 7 8 9 10
(e
s
05F
o .
[ 1 2 3 4 5 [ 7 8 9 10
()
‘—
0 R . L L L L L L L
0 1 2 a 4 5 & 7 [ 9 10

(e)

Figure 6.9: Five outputs of the type-2 FLS using rules from Table 6.2 (when the membership
functions are assumed type-2) for the inputs : (a) (0,0), (b) (1,3), (¢) (5,5), (d) (7,7.5), and (e)
(10,10).

We show the calculation of the type-reduced set for (z7,a2) = (1,3). The comparable calcula-
tion, when the membership functions are type-1, is given in Section 6.1.1.1. The memberships of
z; in the three antecedent sets F*, F? and F® are the intervals [0.8007,1], [0.0111,0.1201] and 0,
respectively, These membership grades are computed by drawing a vertical line passing through
z; and noting its intersections with the shaded portions [see Fig. 6.1 (b)]. The membership grades
of &y in F', 2 and F? are [0.1353,0.5006], [0.2494,0.6775] and 0, respectively. Again the four
rules, 1,2,4 and 5, are fired and their respective degrees of firing, which are computed by finding
the meet of their antecedent membership grades, are the intervals [0.1084,0.5006], [0.1997, 0.6775],
[0.0015,0.0601] and [0.0028, 0.0814], e.g., the degree of firing for rule 1 is computed as [see (2.32)]

fig, (@1) M iz, (@2) = [0.8007,1]M[0.1353,0.5006]

[0.8007 x 0.1353, 1 x 0.5006]
[0.1084,0.5006] (6.20)
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The _consequent of rule 1 is F1 and that of rules 2, 4 and 5 is F"' therefore, the degrees of ﬁrmg

for ! and F? are [0.1084,0.5006] and [0.204,0.819], respectively. The degree of firing for F2 is
obtained by adding the degrees of firing of rules 2, 4 and 5 [see (2.66)], as

[0.1997,0.6775] + [0.0015, 0.0601] + [0.0028, 0.0814]
0.1997 + 0.0015 + 0.0028 , 0.6775 + 0.0601 + 0.0814]
[0.204,0.819] (6.21)

The centroids of the fired consequents, F! and F? are [see Fig. 6.1 (c)] C' = [1.2058,1.7617] and
C? = [4.3562, 5.6288], respectively.
The output is computed using (5.22), as follows

YCOS(1!3) - [ / [ /
dy €[1.2058,1.7617] / d2 €[4.3562,5.6288] J ¢4 €[0.1084,0.5006] J e2 €[0.204,0.819)

1/(17161 + daes (6.22)

e) +es

where, the integrals denote logical union. Note that, since C', C?, E! and E? are all intervals,
\ms(l 3) is also an interval. Equation (6.22) is evaluated using the computational procedure
described in Section D.1. Y,,(1,3) is depicted in Fig. 6.9 (b).

Recall, from Section 6.1.1.1, that when there is no uncertainty associated with the membership
functions of the three fuzzy sets, yeos(1,3) = 4.0084. Figure 6.9 (b) clearly reveals the effect of
membership function uncertainty on this value. Note that the band of uncertainty is not symmetric
about the point 4.0084, which means that the crisp output of the type-2 FLS is different than 4.0084.
A plot of the crisp outputs for this type-2 FLS is depicted in Fig. 6.10. The difference plot between
this crisp output and the output of the type-1 FLS keeping the maximum response (in Fig. 6.2) is
shown in Fig. 6.11. It reveals the effects of antecedent and consequent uncertainties. The MSE for
the results in Fig. 6.11 is 0.0735.

Figure 6.10: The plot of the crisp output of the type-2 FLS versus (x;,z2) using rules from
Table 6.2, when the membership functions are assumed type-2.

Method 2 : Averaging the Responses

Here, we adopt the same strategy as in Section 6.1.2.1 Method 2, i.e., we create a type-2 TSK FLS
(see Section 5.3.7), which has rules of the form :
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Figure 6.11: The plot of the difference between the crisp outputs for the type-1 and type-2 cases
versus (z,2), when only the reponse with the maximum weight is chosen for each rule.

R!: IF z, is F¥ and IF z, is FJ, THEN y = Cl

avyg

where . . .
- _ wiC! + whC? + wiC?
av9 wh + wh + wh

(6.23)

where, the “+” signs denote algebraic sum, C is the centroid of F! (i = 1,2,3), and w! are
the weights obtained from Table 6.1. The rules for this FLS are listed in Table 6.5. The type-
reduced sets for five different inputs are depicted in Fig. 6.12. Each of the type-reduced sets in
this case also is an interval. Comparing Figs. 6.9 and 6.12, we see the difference between keeping
the responses with a maximum weight and averaging the responses. The difference is larger when
there is larger disagreement among the experts. Observe, for example, that the type-reduced sets
for (z1,z2) = (10,10), when there is no disagreement among the experts (see Table 6.1), are the
same in Figs. 6.9 and 6.12; but, those for (z,z2) = (0,0), when there is some disagreement among
the experts, are different.

Table 6.5: Averaging the responses, when the membership functions are type-2. For each rule,

C‘wy‘s are weighted averages of consequent centroids, ¢!, ¢* and ¢, where the weights are obtained
]

from the Table 6.1. In each case, C! _ is an interval set.

avg
Rule no. (I) | = | To ” Cloe

1 1 1 1.8359,2.5351
2 1 2 3.7736,4.8216
3 1|3 7.0683,7.6702
1 2 [ 1 || [3.8210,4.7879
5 212 4.0886,5.2084
6 213 7.4308,8.0232
7 3|1 4.9559,5.8131
8 312 8.0457,8.5021
9 3 |3 8.4556,8.8213
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Figure 6.12: Five outputs of the type-2 FLS using rules from Table 6.5 (when the membership
functions are assumed type-2) for the inputs : (a) (0,0), (b) (1,3), (¢) (5,5), (d) (7,7.5), and (e)
(10,10).

We show the calculation for the type-reduced set corresponding to the input (z1,z2) = (1,3).
The membership grades of z; and z» in the antecedent fuzzy sets and the degrees of firing for the

rules are the same as calculated in Method 1. In this case, the rule consequents for rule numbers
1,2, 4 and 5 are C!, = [1.8359,2.5351], C2,, = [3.7736,4.8216), C%,, = [3.8210,4.7879] and

= avg avg avg
Cauy = [4.0886,5.2084], respectively. The consequent for the first rule, for example, is calculated
as [see (6.23) and Theorem D.1]

cl, = 08xC'+02xC?

= 0.8 x [1.2058,1.7617] + 0.2 x [4.3562, 5.6288]
0.8 x 1.2058 + 0.2 x 4.3562, 0.8 x 1.7617 + 0.2 x 5.6288]
[1.8359,2.5351] (6.24)

Il

The type-reduced set is computed using (5.22), as

~ kle! + k?e? + klet + kSe®
e = 1 - 6.25
Yrsh(1a3) ,/kl _/'.’ ];;4. ],;.5 _/el _/c2‘/;4 /,_,5 / el +e2+el+4ed ( )

where : the integrals denote logical union; ke wag forl =1,2,4,5, where CLW are as mentioned
in the previous paragraph; and, ¢! € E' for [ = 1,2,4,5, where E',E? E* E5, the degrees of
firing associated with the 4 rules (see Method 1), are the intervals [0.1084, 0.5006], [0.1997, 0.6775],
[0.0015,0.0601] and [0.0028, 0.0814], respectively. The quantity to the left of the slash in (6.25)
is unity because all the sets involved are crisp. Y;gx(1,3) is obtained using the computational
procedure described in Section D.1.

In this case, since we have averaged the responses, each rule has a different consequent; therefore,
the term to the right of the slash on the RHS of (6.25) has four terms each in the numerator and

the denominator. In the first method, three of the four fired rules (rule numbers 2, 4 and 5) had
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the same consequent, F2; and therefore, the term to the right of the slash on the RHS of (6.22)
contains only two terms each in the numerator and the denominator.

Figure 6.13: The plot of the crisp output of the type-2 FLS versus (x;,z2) using rules from
Table 6.5, when the membership functions are assumed type-2.

Figure 6.14: The plot of the difference between the crisp outputs for the type-1 and type-2 cases
versus (x1,2), when the reponses are averaged for each rule.

Crisp output for this type-2 TSK FLS is obtained by computing the centroid of the type-reduced
set and is depicted in Fig. 6.13. The difference plot between this crisp output and the output of
the type-1 FLS using averaged responses (Fig. 6.3) is shown in Fig. 6.14. It shows the effect of
antecedent and consequent uncertainties on the crisp output of the FLS. The MSE for the results
in Fig. 6.14 is 0.0402.

6.1.2.2 Second Approach : Preserving All the Responses

In this case, we use the rule-base in Table 6.4, with the type-1 fuzzy centroids C!, C? and C*
replacing ¢!, ¢? and ¢®, respectively. We also use the membership grades in the K"s to scale the
membership functions of C!, C? and C?, e.g., if the domains of C' and C? are [c}, ¢}] and [c}, ¢3],
respectively, then K! (see Table 6.4) will be equal to 1/[c},c3] + 0.25/[c}, 3], where the + sign
indicates logical union. Using center-of-sets type-reduction, the outputs (type-reduced sets) for the
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inputs (0,0), (1,3), (5,5), (7,7.5) and (10, 10) are shown in Fig. 6.15. The type-reduced sets in this
case may not be very accurate, because the discretization performed for the actual computation of
(6.30) was somewhat coarse.
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Figure 6.15: Five outputs of the type-2 TSK FLS using rules from Table 6.4 (when the membership
functions are assumed type-2) for the inputs : (a) (0,0), (b) (1,3), (¢) (5,5), (d) (7,7.5), and (e)
(10,10).

The type-reduced set corresponding to the input (x;,z2) = (1,3) was computed as described
next. The antecedent memberships and the degrees of firing of the rules are the same as described
at the end of Section 6.1.2.1. Recall that the consequents of F!, 2 and F? are C' = [1.2058,1.7617],
C? = [4.3562, 5.6288] and C? = [8.4556, 8.8213], respectively [see Fig. 6.1 (c)]; therefore, the conse-
quents in this case are

K!' = 1/C'+0.25/C?
= 1/[1.2058,1.7617) + 0.25/[4.3562, 5.6288] (6.26)
K* = 0.3571/C' +1/C? +0.0714/C®

= 0.3571/[1.2058, 1.7617) + 1/[4.3562, 5.6288] + 0.0714/[8.4556,8.8213]  (6.27)
K* = 0.5/C'+1/C*+0.1667/C*

= 0.5/[1.2058,1.7617] + 1/[4.3562, 5.6288] + 0.1667/(8.4556, 8.8213] (6.28)
K® = 0.1875/C' +1/C*+0.0625/C®

= 0.1875/[1.2058, 1.7617) + 1/[4.3562, 5.6288] + 0.0625/[8.4556,8.8213]  (6.29)

where, in each case, the number to the left of the slash indicates the membership grade of each
point in the interval to the right of the slash, and the “+” sign indicates logical union. Figure 6.16
depicts K', K2, K* and K°®.

The output is computed using (5.22), as

. 2 kle! + k%e? + ket + k5eP
Yorer(l,3) = o (K - 6.30
o= [ L L T [EEEREEEE an
1#£3
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Figure 6.16: The fired rule consequents, K! [Fig. (a)], K? [Fig. (b)], K* [Fig. (c)], and K® [Fig. (d)],
corresponding to the input (z1,22) = (1, 3), of the type-2 TSK FLS when the membership functions
are type-2 and all the responses are preserved.

where : the integrals denote logical union; K e K for I = 1,2,4,5, where the K's are given
by Egs. (6.26) - (6.29); and, e € E! for | = 1,2,4,5, where E', E2 E* E5, the degrees of firing
associated with the 4 rules (see Section 6.1.2.1), are the intervals [0.1084,0.5006], [0.1997,0.6775],
(0.0015,0.0601] and [0.0028,0.0814], respectively. Note that the term H?:l pi (e'), which appears
in (5.22), does not appear to the left of the slash on the RHS of (6.30) because it is equal to 1, since
all the degrees of firing are intervals. Y g (1,3) is computed as described in Section 5.3.5, and is
depicted in Fig. 6.15 (b). A crisp output can be obtained for this FLS by finding the centroid of
the type-reduced set. Figure 6.17 shows a plot of the crisp output versus (z;, z2).

Figures 6.4 and 6.15 both show all the possible outputs due to different answers obtained from
the survey. Figure 6.15, however, also shows the variation in the output due to the uncertain
nature of the membership functions. It is also interesting to compare the figures in Fig. 6.15 with
their counterparts in Figs. 6.9 and 6.12. Doing this reveals the effect of preserving all the responses
versus keeping the response with the largest weight.

Figure 6.18 shows the difference in the crisp outputs for the second approach in the type-1 and
type-2 cases (Figs. 6.5 and 6.17). This shows the effect of antecedent and consequent uncertainties
on the crisp output for the second approach. The MSE for the results in Fig. 6.18 is 0.1930.

An interesting observation, that can be made comparing the MSE’s for Figs. 6.11 (MSE
= 0.0735), 6.14 (MSE = 0.0402) and 6.18 (MSE = 0.1930), is that neglecting antecedent and
consequent uncertainties causes the largest MSE’s for the second approach and the smallest MSE’s
for the second method (averaging the responses) in the first approach.

If a linguistic output is desired from the type-2 FLS, it may be obtained by finding the crisp
output and finding the fuzzy set in which it has maximum membership.

6.1.2.3 A Comparison of the Two Approaches

Qur observations and recommendations in the type-2 case are quite similar to those in the type-1
case. The computational complexity of the first approach is significantly lower than that of the
second approach. This is because of the fact that all the sets involved in the first approach are
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Figure 6.17: The plot of the crisp output of the type-2 FLS versus (z;,z2) using the second
approach, when the membership functions are assumed type-2.

Figure 6.18: The plot of the difference between the crisp outputs for the type-1 and type-2 cases
versus (), %2), when the second approach is used.
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interval sets and we have an efficient algorithm for type-reduction computations of interval type-2
FLS’s. The FLS in the second approach is not an interval type-2 FLS, because the consequents of
this TSK FLS are not interval type-1 sets [see (6.26) - (6.29)]; and therefore, the type-reduction
computations are very expensive.

Figure 6.19: The plot of the difference between the crisp outputs for the two approaches versus
(z1,22) : keeping the response with the largest weight and preserving all the responses, in the
type-2 case.

Figure 6.20: The plot of the difference between the crisp outputs for the two approaches versus
(xy,xs) : averaging the responses and preserving all the responses, in the type-2 case.

Figure 6.19 depicts the difference between the crisp output of the second approach and the
crisp output of the first method in the first approach. Figure 6.20 presents comparable results
for the crisp output of the second approach and the crisp output of the second method in the
first approach. Note that the MSE’s associated with Figures 6.19 and 6.20 are 0.4813 and 0.0857,
respectively. Based on MSE’s, if one is interested only in the crisp output, we recommend using
the first approach with averaging of the responses. Because of its high computational complexity,
we recommend using the second approach only when the additional information obtained from it
(i.e., the uncertainty in the output due to multiple responses) is necessary.
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6.1.3 Conclusions

From the results of Sections 6.1.1 and 6.1.2, we conclude that in both type-1 and type-2 cases, if
one is interested only in the crisp output of the FLS, averaging of responses is the most efficient
method, The additional complexity of preserving all the responses makes this practical only when
the additional information obtained from it is absolutely necessary.

We also observed that linguistic uncertainties in the membership functions, which can be in-
corporated in a type-2 FLS, do affect the crisp output of the FLS, i.e., a type-2 FLS gives us more
information about the output than a type-1 FLS, when the antecedents and/or consequents are
uncertain.

6.2 Time-Series Prediction

In this example, we demonstrate how available information about the training data can be incor-
porated into a type-2 FLS to obtain more information about its output than can be obtained using
a type-1 FLS. We consider the following problem : A FLS is trained with noisy data. If we know
the noise strength, how can we obtain bounds on the output of the FLS within which the true
value of the output is likely to lie 7

We demonstrate this with the example of a 4 input - 1 output, one step predictor for the
Mackey-Glass chaotic time-series [14]. If (k) [k = 1,2,3,..] is the time-series, given z(k — 3),
xz(k —2), x(k — 1) and x(k), we predict z(k + 1). It has already been shown that type-1 fuzzy logic
systems do a good job at modelling this chaotic time-series [19, 26]. We consider the situation
when the available training data is noisy, and see how we can get more information about the true
value of the output if we have some information about the noise.

The Mackey-Glass time-series is generated using the following delay differential equation [14]:

de(t)  0.2z(t —71)
dt — 14z9(t —17)

—0.1z(t) (6.31)

We use 7 = 30 (for which it is known that the Mackey-Glass time series is chaotic) and initial condi-
tion 2y = 0.1. The FLS is trained with (i.e., the rules are formed from) 500 input-output pairs using
x(1001), (1002), ..., (1504) [the first input-output pair is {[z(1001),z(1002),(1003),x(1004)],
z(1005) }; the next one is {[z(1002), z(1003), x(1004), (1005)], £(1006) }; and so on]. The training
data is corrupted by zero-mean uniform noise. Three different signal-to-noise ratios (SNRs) are
considered : 0, 10 and 20 dB. In each case, the FLS is tested on 200 points from z(1505) to x(1708).

6.2.1 Using Interval Type-2 Sets

Here we make use of interval type-2 sets. The following approach is adopted : we design a type-1
FLS using the available data, and then create a type-2 FLS from this type-1 FLS by incorporating
information that is available about the noise. Then, given any input, we use this type-2 FLS to
obtain the range of values within which the true output is likely to lie.

Note that both the type-1 and type-2 FLS’s are designed based on a single available training
realization. If we are given a different noisy realization of the same data set, we would normally
choose a different set of type-1 and type-2 FLS parameters to obtain the best predictions. This
is generally what happens in practice, where only a single realization is available. We, therefore,
provide only single realization results here.

6.2.1.1 Designing the Type-1 FLS

We consider only numerical information, and design a type-1 FLS from the given input-output
pairs using the simple one-pass algorithm described in [26]. The FLS uses Gaussian type-1 fuzzy
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sets, singleton fuzzification, product t-norm, product inference and center-of-sets defuzzification.
In this case, the domain of each of the 4 inputs and the range are identical. The interval between
the minimum and maximum values of the training set is divided into 31 fuzzy sets.

1
0.8f
0.61
0.4r
0.2r

Figure 6.21: (a) Gaussian fuzzy sets used by the type-1 FLS in the time-series forecasting example.
The sets are equispaced, the distance between two consecutive centers being A. The standard
deviation of each set is equal to sA, where the multplier s is determined experimentally. (b) Two
type-2 sets created by displacing the means of the two type-1 sets shown in Fig. (a). These sets are
used to design a type-2 FLS for the time-series forecasting example. The mean of each Gaussian
in the type-2 FLS is assumed to be uncertain in an interval of length 2cd. Note that this interval
of length 2¢d is not necessarily symmetrical about the mean of the corresponding set in the type-1
FLS.

Figure 6.21 (a) shows two of the 31 fuzzy sets used by this type-1 FLS. The centers of these
sets are equispaced (the distance between two consecutive centers is A), and remain fixed during
the design procedure. Their values depend on the training sample. All the sets have the same
standard deviation, which is set equal to sA, where the multiplier s is chosen experimentally, so
that, for the given training realization, the type-1 FLS gives the lowest mean-square error (MSE)
with the true output (note that, in practice, it is not necessary that s be the same for all the sets in
the FLS). Subsequent training involves formation of the rule-base (using the algorithm described
in [26]) and determining the multiplier s. See Section 6.2.1.3 for numerical values of the parameters
of this type-1 FLS for different training samples. Note that we do not claim to have designed an
optimum type-1 FLS, i.e., it may be possible to obtain better predictions using some other design
methodology.

6.2.1.2 Designing the Type-2 FLS

Once the type-1 FLS is designed, we create a type-2 FLS from it by incorporating information
about the noise. Similar to the type-1 FLS, the type-2 FLS uses singleton fuzzification, product
t-norm, product inference, and center-of-sets type-reduction. It also uses the same number of fuzzy
sets and the same rules as the type-1 FLS. The only difference now is that the antecedent and
consequent sets are type-2. To design these type-2 sets, we reason as described next.

Qur aim is to model the uncertainty introduced in the FLS due to the noisy training data by
using type-2 fuzzy sets. If we had many different realizations of the training data and if we followed
the same design procedure for the type-1 FLS as explained above, the means of the 31 sets would
not remain the same from realization to realization. They would vary in some range depending
upon the strength of the noise.
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Recall that a zero-mean, uniform random variable with standard deviation ¢,4ise, can take
values in [—4,d], where § = V30 noise. (The variance of a uniform random variable in [-6,0] is
& / 3.) The possible range within which each mean can vary, therefore, is £§, where 6 = V30 noise-
So, we model each set in the type-2 FLS as a type-2 set associated with a Gaussian type-1 set,
where the latter has an uncertain mean [see Example 1.2, and also Fig. 6.21 (b)]. For simplicity, we
assume that there is no uncertainty in the standard deviations of the type-1 Gaussians. In every
type-2 set, all the possible values of the mean are assumed to be equally uncertain, so that we set
all the secondary memberships equal to unity, in which case, the type-2 set becomes an interval
type-2 set (see Section 1.3). The interval, within which the mean of each Gaussian can vary, is set
equal to 2¢d [see Fig. 6.21 (b)], where the multiplier ¢ is a design parameter. Changing the value
of ¢ changes the width of the type-reduced set; however, it is not very easy to visualize the effect
of changing ¢ on the output, because the antecedents and consequents both are type-2 in this case.
A suitable value for ¢ can, therefore, be found by experimenting with different values to get tight
bounds on the output.

Note that the major strength of a type-2 FLS lies in predicting the uncertainty in the output
given the uncertainty in the data used to design the system. This is something that is not possible
using a type-1 FLS. The crisp output of the type-2 FLS, however, may also be used to obtain a
better prediction than obtained by a type-1 FLS, as explained next.

Assuming that the type-2 FLS uses the same standard deviations for its uncertain-mean Gaus-
sians as used by the type-1 FLS, after the type-1 FLS has been completely designed, the parameter
¢ in the type-2 FLS still needs to be determined. Just as it isn’t necessary to choose the parameter
s in the type-1 FLS to be the same for every type-1 set, it isn’t necessary to choose the parameter
¢ to be the same for all the sets. The range of uncertainty for a type-1 mean m; is also not al-
ways required to be [my — ¢d,my + ¢d]; it can be, for example, [my — 2¢d, m4] or [my, my + 2¢d] or
anywhere in between these two extremes. The length of this interval, however, is always 2¢d [see
Fig. 6.21 (b)]. So, there are more parameters to tune in a type-2 FLS than a type-1 FLS; and,
given any realization of the training data, we can tune the additional type-2 parameters to obtain
a better performance over the type-1 FLS.

6.2.1.3 Results

Figures 6.22 - 6.24 show the outputs of the type-1 and type-2 FLS’s, for single realizations of noisy
training data. The parameters of the type-2 FLS in each case were tuned, as explained in the
previous paragraph, so that they gave better predictions than the type-1 FLS. For each case, we
see that the true time-series values lie almost completely within the bounds provided by the type-2
FLS. Since we reduce the amount of type-2 uncertainty (i.e., the interval of uncertainty of each
mean) as SNR increases (the range of uncertainty of each mean is proportional to the standard
deviation of the noise), the bands grow narrower as SNR increases. The MSE’s between the type-1
FLS and the true output in the three cases (0dB, 10dB and 20dB) are 1.97 x 1072, 4.72 x 10~ and
1.63x 1073, respectively; and those between the crisp output of the type-2 FLS and the true output
are 1.34 x 1072, 4.38 x 1072 and 1.59 x 1073, respectively. The most significant improvement in
MSE’s is at the low SNR values.

To see how many points lie outside the upper and lower bounds, we computed a “bound error”
as follows : for points lying above the upper bound, we computed the squared error with the upper
bound; for points lying below the lower bound, we computed the squared error with the lower
bound; and, then we found the mean of all these squared errors with the bounds (this includes
points which don’t exceed the bounds). The bound errors for 0dB and 10dB are 0, and the bound
error for 20dB is 3.33 x 107°; so, the bounds provided by center-of-sets type-reduction are quite
good. As the SNR increases, the distance between the upper and lower bounds grows smaller;
therefore, more points lie outside the bounds.
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Figure 6.22: Mackey-Glass chaotic time-series prediction in the presence of uniform noise, when
SNR = 0dB. The thick solid line in (a) and (b) indicates the true time-series. In (a), the dashed line
indicates the type-1 output and the dash-dotted line indicates the type-2 crisp output. Figure (b)
shows the upper and lower bands obtained with the type-2 FLS. In Fig. (c), the solid line shows
the noisy data used for training and the thick dashed line shows the noisefree data. Training is
performed with the 500 input-output pairs in z(1001),z(1002),...,2(1504) and testing is done
with 200 input-output pairs in 2(1505), 2(1506),...,2(1708). The type-2 FLS uses interval type-2
sets.
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Figure 6.23: Mackey-Glass chaotic time-series prediction in the presence of uniform noise, when
SNR = 10dB. The rest of the details are the same as in the caption to Fig. 6.22.
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Figure 6.24: Mackey-Glass chaotic time-series prediction in the presence of uniform noise, when
SNR = 20dB. The rest of the details are the same as in the caption to Fig. 6.22.

The type-1 and type-2 parameters chosen for the three examples shown in Figures 6.22 - 6.24,
are summarized in Table 6.6. Observe, from this table, that the range within which the noisy
time-series values lie, (m3; — m,), decreases as the SNR increases.

The calculations for this example were performed as follows (see, also, Section D.1.2). The cen-
troids of the consequent sets were computed using the Appendix D.1 computational procedure, and
were stored for further use; for every applied input, the degree of firing for each rule [N, M (x:)]

was computed by finding the meet of the antecedent memberships for that rule (see Example 2.3);
and finally, the type-reduced set was computed using the Appendix D.1 computational procedure
again.

6.2.1.4 Comments

In the examples considered above, the FLS’s were hand tuned, i.e., all the parameters were manually
adjusted. Even better results might be obtained by using, for example, a steepest descent procedure.

In practice, if we do not know the actual strength of the noise, we can assume a reasonable
value for it. If the noise is not uniform, we can still choose a reasonable interval of uncertainty
for any input (e.g., £2¢ points for Gaussian noise) and use uncertain-mean Gaussian sets (like the
ones used in this section) in the type-2 FLS.

6.2.2 Using Gaussian Type-2 Sets

In this section, we show how Gaussian type-2 sets can be used for the time-series prediction example.
We adopt an approach very similar to the one that we adopted when interval type-2 sets were used.
We first design a type-1 FLS using the available noisy data; and, then we create a Gaussian type-2
FLS by incorporating our knowledge about the noise into this type-1 FLS. Again, we provide only
single realization results. Because, at present, we do not have any fast agorithms to compute the
actual type-reduced set for a Gaussian type-2 FLS, we make use of the Gaussian approximation
(see Section 5.7); but, since the approxmation can be used only when the type-2 uncertainty is
small [see Theorem (2.5)], we can use this type-2 FLS only for high SNR’s. This limits the use of
this approach considerably.



Table 6.6: Parameters of the type-1 and type-2 FLS’s for the forecasting example.

Mpy...
denote the means of the 31 type-1 sets and the 31 type-2 sets are denoted as ﬁ’],...,f?al. Note
that, when the SNR is 20dB, the ¢ values are different for different sets.

» 1131

[ SNR__ | 0dB | 10dB 20dB
my -0.2038 0.1437 0.2382
may 1.7989 1.4749 1.3968
A = /30000 0.0668 0.0444 0.0386
s 6.75 2.75 1.75
) 0.4928 0.1558 0.0493
0.75 for Fl,;..,ﬁ‘6=
¢ 0.4 0.5 and Fog, e ﬁ31;~and,
0.6 for Fy,...,Foy
Range of [m; — ed,m;] for i =1, [m; — cd,m;] fori =1, [mi —ed,m;] for i =1,
uncertainty ey 155 [y — €6/2, ey Ty [my = ¢d/2, vy 65 [mi — cd/2,
for the m; + cd/2] for i = 16; m; +¢d/2] for i = 8, m; +c6/2] fori =T,
means and, [m;, m; + cd) ..., 24; and, [m;,m; +¢d] | ...,25; and, [m;,m; + cd)
fori=17,...,31 for i = 25,...,31 for i = 26,...,31

6.2.2.1 Designing the Type-1 FLS

The type-1 FLS is designed in exactly the same manner as described in Section 6.2.1.1.

6.2.2.2 Designing the Type-2 FLS

We create a type-2 FLS from this type-1 FLS by replacing the Gaussian type-1 sets by Gaussian
type-2 sets. The Gaussian type-2 sets are designed as described next.

Using the same rationale as in the case of interval type-2 sets, we can say that if we had many
different realizations of the training data, the means of the Gaussians in different type-1 FLS’s,
designed based on these different realizations, would vary in some range. If we assume that the
noise added is Gaussian, we should ideally design every set in the type-2 FLS as a type-2 set
resulting from a Gaussian type-1 set having a mean that is also uncertain, and that is described
by a Gaussian membership function (see Appendix A - Example A.2 for an example of such a set);
however, since the equations for this kind of type-2 sets are very complicated, we use Gaussian
type-2 sets (see Section 1.3) instead. Since our type-2 FLS uses Gaussian type-1 sets, we use
Gaussian type-2 sets having Gaussian principal membership functions. We also assume that the
standard deviations of the secondary membership functions are proportional to the means of the
secondary membership functions, so that the 2-D representation of the type-2 set looks like the
one shown in Fig. 1.10.

The Gaussian type-2 set described in the previous paragraph can be described using three
parameters : the mean, M, and standard deviation, ¥, of the principal membership function, and
the constant of proportionality ¢, for the mean and standard deviation of the secondary membership
functions [for any z, o(z) = em(xz), where m(x) and o(x) are, respectively, the mean and standard
deviation of the membership grade of z]. Of these three parameters, we fixed M and X to be equal
to the mean and standard deviation of the respective type-1 sets in the type-1 FLS; and, we set
all the type-1 sets to have the same standard deviation.

To decide the value of parameter ¢, we proceed as follows. Recall that, since M is the mean
of the principal membership function of the Gaussian type-2 set [i.e., m(M) = 1], the secondary
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membership function corresponding to M is a Gaussian centered at 1. Consequently, o(M) = ¢,
i.e., ¢ is the standard deviation of the membership grade of M. We find an appropriate value for
this standard deviation next.

We first design a type-2 set by letting the mean of a Gaussian with standard deviation ¥ be a
Gaussian type-1 set with mean M and standard deviation ,,4ise, Where 6,5, is the noise standard
deviation (see Fig. A.2). Then, we find the secondary membership function corresponding to M
in this type-2 set and approximate it with a Gaussian. Finally, using the standard deviation of
this Gaussian as the parameter ¢, we design the Gaussian type-2 sets that we actually use for the
computations.

The procedure is not as complicated as it sounds. Let M be the mean of the Gaussian type-
1 set and, let [mj,mg] be its range of uncertainty. In our case, we set my & M — 20p0ise and
ma & M + 20,0ise. From (A.6) [(A.5) gives the same result], (A.9) and (A.10), we see that the
secondary membership function corresponding to a domain point z is

2
1 ( -1'+IJ:;_"—21II“|| }—M’)
=i
(&

an:éae . ; ﬂ.] E [;—L:l!-,ﬂ'r}}
pa(z, ) = 3 (M) =4 (_L_u_u;__) (6.32)
max {e Imoiae e - naise } ;€ [}, 1]
0 ;  otherwise
where
1 -4 (T}'::L)e
ﬂ'l — e noise (6.33)
2
" -3 (2222)
.u.i. - e "( noise (6'34)

and, the Gaussian type-1 membership function, with mean M and standard deviation o,gise, for
the mean of the Gaussian type-1 set is assumed to be contained in [my,ms], where [my,ms] is
the range of uncertainty of the mean. From (6.32), (6.33) and (6.34), we find that the secondary
membership function corresponding to @ = M = (m; + m2)/2 is

2
(/o) SH(E)
P‘.g(ﬂ{, .“‘l) — }'J'] F 251 € |e 1 (635)
0 ;  otherwise
Observe, from (6.35), that
pa(M,1) =1 (6.36)

Next, we approximate po( M, 1) with a Gaussian. To do this, we find the value of p;, pj, where
pa (M, pih) = exp{—1/2} (corresponding to a point one standard deviation away from the mean of
a Gaussian). This value can be obtained as

W) mm) =t o=l =ed () (6.37)
Using (6.36) and (6.37), we can roughly approximate g2 (M, jt;) with a Gaussian having mean 1 and
standard deviation (1 — p}) = (1 — exp{—(1/2)(0noise/E)*}); therefore, we choose the parameter
¢ for our Gaussian type-2 sets to be

(6.38)

¢ =g (1 — e“%(hf-m)u)
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where ¢ is some constant, which can be determined experimentally. This choice seems reasonable.
If there is no noise, noise standard deviation g,is¢ = 0, and correspondingly ¢ = 0, indicating that
there is no type-2 uncertainty required; and, when o, increases, ¢ grows larger.

The expression for the centroid of this type of a Gaussian type-2 set can be obtained (approxi-
mately) as shown in Example 2.8. We restate the result here.

Consider a Gaussian type-2 set A C X. If the principal membership function of A is a Gaussian
type-1 set with mean M and standard deviation I, and, if for every x € X, the standard deviation,

o(z), of the membership grade is o(x) = cm(z), where ¢ is a constant, then the centroid of A is
approzimately a Gaussian type-1 set with mean M and standard deviation \/2/wcX, provided that
¢ &€ 1/k, where k is the number of standard deviations of a Gaussian considered significant.

In order for this centroid approximation to be good, we require that ¢ < 0.5 (assuming k = 2).
Condition (2.78) on the Gaussian approximation also requires that ¢ be small; therefore, we can
use this approach only for those cases where this condition on c¢ is satisfied.

We assume that ¢g = 1.5 for all the type-2 sets in this example. (Note, however, that in practice,
co need not be the same for all the fuzzy sets.)

6.2.2.3 Results

As mentioned earlier, since this approach can be used only for high SNRs, we just show one
example (see Fig. 6.25), where the training data is corrupted with zero mean additive Gaussian
noise, and the SNR is 20dB. We use center-of-sets type-reduction and the Gaussian approximation
(see Section 5.7) to compute the type-reduced set. In this case ¢ = 0.1619 [calculated using (6.38),
with ¢y = 1.5]. The MSE of the type-1 FLS output with the true time-series is 1.94 x 1073, The
crisp output of the type-2 FLS is the same as the output of the type-1 FLS (see next paragraph);
and, the bound error (see Section 6.2.1.3) of the type-2 FLS is 5.45 x 1073,

Recall that the crisp output of a Gaussian type-2 FLS using the Gaussian approximation, is
the same as the output of its principal type-1 FLS (see Section 5.8). Observe, also, that in this
example, the type-1 FLS trained with noisy data is the principal type-1 FLS of the Gaussian type-2
FLS; therefore, the crisp output of the type-2 FLS in this case, is identical to the output of the
type-1 FLS. If one is interested only in the crisp output of the FLS, the actual type-reduced set
of this type-2 FLS should be computed numerically. Type-reduction, however, is computationally
very expensive and at present, we have no fast algorithms to perform this operation for Gaussian
type-2 sets .

6.2.3 A Comparison of the Two Approaches

In Section 6.2.1, we showed that an interval type-2 FLS can be used to obtain bounds on the
output, as well as a better crisp prediction, by tuning its parameters. This was possible because
we have an efficient algorithm for type-reduction computations of interval type-2 FLS’s.

The Gaussian type-2 FLS in Section 6.2.2 also gave bounds on the output; but, because we used
the Gaussian approximation, the crisp output of this type-2 FLS is the same as the type-1 FLS
output. Also, since the approximation can only be used when the amount of type-2 uncertainty
is small, we can only use Gaussian type-2 sets for very high SNRs. So, at this point, we can
recommend using a Gaussian type-2 FLS only for very high SNRs and if one is interested only in
obtaining bounds on the output; however, if fast algorithms for Gaussian type-reduction can be
developed, a Gaussian type-2 FLS can then also be used for lower SNRs.

Note that, although we used uniform noise while working with interval type-2 sets, and Gaussian
noise while working with Gaussian type-2 sets, this need not necessarily be so. In practice, we rarely,
if ever, know the pdf of noise, so that either approach can be used for any kind of noise.

Note, also, that, in this example, we first designed a type-1 FLS and then created a type-2 FLS
from it by using information available about the noise in the training data. There can, however,
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Figure 6.25: Mackey-Glass chaotic time-series prediction in the presence of Gaussian noise, when
SNR = 20dB. The type-2 FLS uses Gaussian type-2 sets. The thick solid line in (a) and (b)
indicates the true time-series. In (a), the dashed line indicates the type-1 output and the dash-
dotted line indicates the type-2 crisp output. Figure (b) shows the upper and lower bands ob-
tained with the type-2 FLS. In Fig. (c), the solid line shows the noisy data used for training
and the thick dashed line shows the noisefree data. Training is performed with the 500 input-
output pairs in z(1001),z(1002),...,2(1504) and testing is done with 200 input-output pairs in
(1505), #(1506), . ..,x(1708).

be other design approaches. For example, we could start with a type-2 system, and tune it’s
parameters directly using the training data. We leave these other design possibilities as directions
for future research.
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Chapter 7

Conclusions

7.1 Completed Work

In this report, we have developed a type-2 fuzzy logic system. Our work can be broadly divided
into three parts :

1. Casting the nuts and bolts

Since the results in the existing type-2 FL literature were far from sufficient for our work, we
started from the very basic operations of unions, intersections and complements of type-2 sets, and
developed the results that we would need in order to implement a type-2 FLS. In all the cases, we
considered two t-norms : minimum and product. When it was not possible to give simple results for
general membership functions, we concentrated on Gaussian and interval type-2 sets and provided
results that simplify working with these two kinds of membership functions (see [8] for results for
triangular type-2 sets). We studied, in detail, the following topics.

(a) Set-theoretic operations on type-2 sets : We examined the operations of unions, in-
tersections and complements of type-2 sets in great detail, and, developed easily implementable
algorithms for performing these operations. When actual results were difficult to generalize, we
developed practical approximations.

(b) Algebraic operations on type-1 and type-2 sets : We examined the algebraic operations
of addition and multiplication on the membership grades of type-2 sets (which themselves are
type-1 sets). We also defined the “centroid of a type-2 set” using Zadeh’s Extension Principle, and
studied aspects related to its computation.

(¢) Properties of membership grades of type-2 sets : We thoroughly investigated properties
of membership grades of type-2 sets, e.g., commutativity and associativity.

(d) Type-2 relations and their compositions : We showed the validity of the “extended”
sup-star composition in the type-2 case and studied type-2 fuzzy relations and their compositions.

2. Putting the system together

Using the results in (1) above, we implemented the operations of inference, type-reduction and
defuzzification in a type-2 FLS. “Type-reduction” is a term that we have coined for an extended
version of a type-1 defuzzification operation. We studied the following important type-reduction
methods (corresponding to different type-1 defuzzification methods) in detail : centroid, center-
of-sums, height, modified height and center-of-sets. We introduced “center-of-sets” type-reduction
to overcome some shortcomings of height type-reduction. In general, type-reduction tends to be
computationally quite expensive; therefore, we provided approximations that considerably simplify
type-reduction for Gaussian, and interval type-2 FLS’s (see [8] for triangular type-2 FLS’s). For
interval type-2 FLS’s, the exact type-reduced result can be obtained relatively easily by using a
computational procedure that we have developed,
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3. Showing that it works

We demonstrated the use of a type-2 FLS and its advantages over a type-1 FLS by considering two
real applications : managing rules collected by means of a survey, and time-series prediction. In
the survey example, we showed how the linguistic uncertainty about membership functions of the
FLS, as well as rule uncertainty from multiple experts, each of whom may give different answers
to the same question, can be handled in the type-2 framework. In the time-series example, we
considered a type-1 FLS trained with noisy data and showed how information about the noise in
the training data can be incorporated in a type-2 FLS to obtain bounds on the output and also
better predictions.

7.2 Future Research Directions

Many directions for future research are possible, both in theory and applications of type-2 FLS’s.
We give a few examples next.

Theory of type-2 FLS’s

1. All of our work dealt with minimum and product {-norms; and, most of it concentrated on
Gaussian, interval and triangular membership functions. Similar results can be developed for other
choices of membership functions, t-norms or other parameters.

2. We have developed efficient computational procedures that can obtain actual (i.e., not approx-
imate) results for interval type-2 FLS’s. It may be possible to develop similar procedures and/or
analytical results for Gaussian, triangular or other type-2 membership functions.

3. We considered only singleton fuzzification in our work. A “Non-singleton” type-2 FLS can be
developed, possibly using the extended sup-star composition results that we have provided.

Applications of type-2 FLS’s

1. Design and training procedures for type-2 FLS’s (i.e., procedures for choosing and tuning the
parameters of the FLS’s from available data) need to be developed.

2. New areas of application, where the additional information provided by a type-2 FLS (e.g., the
type-reduced set) will be useful, need to be explored.

7.3 Final Conclusion

A type-2 FLS takes into account rule uncertainties in a FLS. Just as variance provides a measure
of dispersion about the mean in statistical-based designs, the type-reduced set of a type-2 FLS
provides a measure of dispersion about the crisp output of the FLS. We believe that this additional
information provided by a type-2 FLS makes it indispensable as a modeling tool in the presence of
linguistic and/or numerical uncertainties.
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Appendiz A

Examples for Chapter 1

In this Appendix, we provide 3-D representations for Examples 1.1 and 1.2, assuming that the
standard deviation of the Gaussian in Example 1.1 and the mean of the Gaussian in Example 1.2 are
Gaussian type-1 sets. We shall see that obtaining the 3-D representations in this case is fairly more
complicated than obtaining the ones in Figs. 1.4 and 1.5, where the uncertain standard deviation
and mean were assumed to be crisp sets.

Example A.1 Consider Example 1.1. Suppose that the standard deviation of this Gaussian is
a type-1 fuzzy set with domain [y, 02| that is characterized by a Gaussian membership function
with mean M, = 313_5—‘3‘- and standard deviation £, = “—Zf‘ﬂ- These values for M, and £, were
chosen for illustration purposes only. The membership grade for each x still has the same domain
as it had when all the values of the standard deviation were equally uncertain, but now, we assign
secondary memberships as follows. For any z (e.g., ¢ = 0.65 in Fig. 1.1), if a primary membership

2
j1 € [0,1] is such that py = exp{—-.zl(%”l) } for some o' € [01,02) (61 = 0.1 and o2 = 0.2 in
Fig. 1.1), then we set the secondary membership corresponding to this x and p;, pa(z, p21), equal

to the membership of ¢’ in the fuzzy set o, i.e., we set

po(w, 1) = (e_% (%)2 where p; = e_é (,_:’ﬂ)j (A1)

In Fig. 1.1, for z = 0.65, this occurs for p; € [0.3247,0.7548]. If a primary membership p, € [0, 1]

is such that no o' € |01, 0] satisfies y, = exp{—%("';—,’“)-}, we set pa(z, 1) = 0. In Fig. 1.1, for

x = 0.65, this occurs for p; ¢ [0.3247,0.7548]. Note that the above choice of pa(x, 1) was quite
arbitrary. One may choose (2, j1;) to be any suitable function of o'.

2
Note that y; = exp{ - %(%’-"-) } = o' = |o —m|/\/—2In(4;), where we have made use of

the fact that o', being the standard deviation of a Gaussian, is positive. Consequently, we can
rewrite (A.1) explicitly in terms of x and p; as follows : When z # m,

—m 2
1 = T T e
expd — 3 R ; ;zle[exp{—.z
] =

pa(x, 1y
exp { -

| Ll
.

L3

3l

3
—
X!

(A.2)

o=

—~
]

|? _E
=

0 ;  otherwise

2
When = m (m = 0.5 in Fig. 1.1), every o' € [o1,02] gives 1y = cxp{—%(%) } = 1. In this
case, we set o' equal to that value of o which maximizes pa(x,t1)|(m,1), i-€., we set o = M,;
consequently, j2(m,1) = 1 and pa(m, 1) =0 for py # 1.
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Figure A.1: (a) Three dimensional representation of the type-2 set in Example A.1, assuming that
the standard deviation is a Gaussian type-1 set with mean 11—'12"—“2 = (.15 and standard deviation
22291 = (.025, contained in [o1,02] = [0.1,0.2]. (b) The membership grade corresponding to
x = 0.65.

The membership grade in (A.2) is depicted in Fig. A.1 (b). Figure A.1 (a) shows a 3-D rep-
resentation of this type-2 set. Observe, from (A.2), that the membership grade corresponding to
any z (i.e., prg — po plot for a fixed z) is generally non-Gaussian. Each of the slices in the 3-D plot
was constructed by evaluating (A.2) for different values of z. O

Example A.2 Consider Example 1.2. Suppose that the mean of this Gaussian is a type-1 fuzzy
set with domain [m;,ms] that is characterized by a Gaussian membership function with mean
M,, = 22 and standard deviation I, = "27™L. Figure A.2 (a) shows 3-D diagrams for
Example 1.2, when m; = 0.4 and my = 0.6. The secondary memberships are computed as follows.

For any z (e.g., # = 0.65 in Fig. 1.2), if a primary membership y; € [0,1] is such that

o
the corresponding secondary membership p2(z, 1) is set equal to the membership of m’ in the
type-1 fuzzy set m, i.e., we set

ing
i = exp{—%(—”ﬂ) } for some m' € [my,ms] (m; = 0.4 and mz = 0.6 in Fig. 1.2), then

e : - == 2

pa(z, ) =e ’( . ) where p; =e ( ’ ) (A.3)
In Fig. 1.2, for z = 0.65, this occurs for gy € [0.4578,0.9692]. If y is such that no m € [my, ma]
satisfies 1y = exp{—l(‘ s ) }, we set ps(w, 1) = 0. In Fig. 1.2, for z = 0.65, this occurs for

p ¢ [0.4578,0.9692). Observe also, from Fig. 1.2, that in the interval [mi,m2], there may be
more than one value of m' which satisfies (A.3). In this case, we choose that value for m' which
maximizes ps(z, p11). In Fig. 1.2, this occurs for z € [0.4, 0.6].

2
Note that gy = exp{ (1 o ) } implies that

z+0oy-2In(y) ; T<m
m' =< zxoy/-2In(p) ; mu <z <m2 (A4)
z—oy-2In(ry) ; x>ms
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Figure A.2: (a) Three dimensional representation of the type-2 set in Example A.2, assuming that

the mean is a Gaussian type-1 set with mean &1%1 = 0.5 and standard deviation #2771 = 0.05,
contained in [my,ms] = [0.4,0.6]. (b) The membership grade corresponding to x = 0.65.

Consequently, using (A.4), (A.3) can be rewritten as follows (see Fig. 1.2) : For # < my,

_%(‘+ﬂy_‘_21':‘(ll-'l]—ﬁlm) . =
s € [pg, pg) (A.5)

0 :  otherwise

pa(z, ) =4 e

For m; <z < (my +m»)/2,

2
1 r+¢!£—-2h|(pl}—.ﬁfm
8_2 m

i om € [,uf,,u}]

2 2
pa (@, 1) = _l(@) _L(m)
max {e : " & “ } ;€ [p}1]
0 ;  otherwise
(A.6)
For (m) +my)/2 <z < my,
1 (:—a:{—'}ln[pll—.\]m )2
e’ " 5 m €[]
.,-_1,2(;;_-’“1) = _g (a+¢3{—2ln(m}-,\!m ) 24 (a—u:f—zlntﬂil—Mm)
max {e > " e - } ;€ [pd1]
0 ;  otherwise
(A7)
For z > ma,
_l(:—alf-ﬂniul}—Mm)z
pa(z,m) =< e’ " 5 € [y, 1) (A.8)
0 ;  otherwise
where .
-l
hy=e (A.9)
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and ,
- _z'_'m
5( i ) (A.10)
Figure A.2 (b) shows the membership grade corresponding to = 0.65. Observe, from (A.5) -
(A.8), that the membership grade corresponding to any x is generally non-Gaussian. Each of the
slices in the 3-D plot was constructed by evaluating (A.5) - (A.8) for different values of z. m]

n=e
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Appendiz B

A Note on the Extension Principle

T'he Extension Principle [30] allows the domain of definition of a mapping or a relation to be
extended from points in U to fuzzy subsets of U. If f is a mapping from U to V and A is a fuzzy
subset of U, such that

A= Z,u,-/u,' ; (B.1)

i=1

then .
FA) =" pif f(us) (B.2)

=1,

If f is a mapping from a Cartesian product Uy x Uy x -+ x U, to V' and if A is a fuzzy set
(relation) in Uy x Uy % --- x U, characterized by the membership function uz (uy,...,uy), where
u; € U;, then

FR) = [ 13 nseee ) S ) (B.3)
Many times, we don’t know A, but instead only know projections of A, _:\,,:-XQ,...,J_X,, on

Uy, Us, ..., Uy, respectively. If A = A, x --- x A, we can use the following expression for
pe5 (wr, ... 1,) [Zadeh uses only the minimum ¢-norm]

pi (U, ... ty) = M3, (uy) *!132(1{2) *oek iy (un) (B.4)

Let us consider the case n = 2, for which * is a binary operation defined on U x V' with values
in W, ie.,ifueUandv eV, thenw=u*v € W. Now, if A =37, pi/u; and B = 370, v;/v;
are fuzzy sets in U and V, respectively, then

(gﬂi/“i) * (;VJ‘/UJ‘)

ZZ(“’:*VJFJ/(“* * ;) (B.5)

i=1 j=1

A.*}j

Il

The validity of (B.5) depends on the assumption that u; and v; are “non-interactive”, or that there
is no constraint on (u;,v;) [we can think of u; and v; as being “independent” in some sense]. If
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there is a constraint on (u,v), which is expressed as a relation R with a membership function it
then the expression for A » B should be written as

T T

(Z,u,f/ui) * (ijfuj) NR

i=1 J=1

A+B

I

T m

DD vy x g Uj)]/(’ui *05) (B.6)

i=1 j=1

If R is a crisp relation [i.e., if the constraint on (u;,v;) is expressible as a crisp relation R], then
the right-hand side of (B.6) will contain only those terms which satisfy the constraint.

Example B.1 Let U = 1+ -+ 4 10 and let A be a fuzzy subset of U defined as
A=1/1+06/4+04/5 (B.7)
A? can be found in two ways. If we take f as the operation of squaring, then using (B.2),
A*=1/1+06/16+0.4/25 (B.8)

. 12 s = : . i
If we write A" as A x A, (B.5) gives us (assuming minimum #-norm)

t

AxA = (1/1+40.6/4+0.4/5) x (1/1+0.6/4+0.4/5)
= (1/1) x (1/140.6/4+0.4/5) + (0.6/4) x (1/1+ 0.6/4 + 0.4/5)
+(0.4/5) x (1/1+0.6/4+ 0.4/5)
= 1/1+0.6/4+0.4/5+0.6/4+0.6/16
+0.4/20 + 0.4/5 + 0.4/20 + 0.4/25
= 1/1+0.6/4+0.4/5+0.6/16 + 0.4/20 + 0.4/25 (B.9)

From (B.8) and (B.9), we see that using (B.5), A? # A x A ! This happened, because we did not

. B =
use the right form of the Extension Principle. In order to get A° = A x A, we have to use the
restricted form of the Extension Principle [i.e., (B.6)] to evaluate A x A. The restriction is crisp in
this case and can be expressed as

L 5 =y
pr(ui,v;) = { 0 ; ot.herwijée (B-10)
Using (B.6) with (B.10), we get
AxA = (1/1+06/4+0.4/5) x (1/1+0.6/4+04/5)NR

[(1/1) x (1/1+0.6/4 +0.4/5) + (0.6/4) x (1/1+0.6/4 + 0.4/5)
+(0.4/5) x (1/1+0.6/4+0.4/5)]NR

= [1A1ARR(LD]/QAx1)+[1A0.6ApR(L4)]/(1x4)
+[1A04A pr(1,5)]/(1 x5) +[0.6 A 1A pr(4,1)]/(4 x 1)
+[0.6 A0.6 A ptr(4,4)]/(4 x 4) +[0.6 A 0.4 A pr(4,5)]/(4 x 5)
+[0.4A 1A pr(5,1)]/(5x 1) + [0.4 A 0.6 A ur(5,4)] /(5 x 4)
+[0.4 A 0.4 A pr(5,5)]/(5 % 5)

= 1/1+40/440/5+0/4+0.6/16+0/20+ 0/5 + 0/20 + 0.4/25
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= +06/16+04/25

L

Il
:D-I

(B.11)

O

Observe that using the restricted form of the Extension Principle can complicate computations
quite a lot. There are also a few problems/difficulties associated with using the restricted form of
the Extension Principle.

1. If we have to perfom an operation between two given fuzzy sets A and B, it may not always
be easy to define a restriction between the two. For example, if we have to find AUB, where
A=1/1+40.6/4+0.4/5 and B = 1/1 + 0.7/3, without any other information about A and
B there is no fixed way of defining a relation between A and B; in fact, it may not even be
possible to tell if A and B are related at all.

9. When performing operations like AN B U A, if we are given a restriction on A and B, it may
be easy to use the restricted from of the Exr(,nslon Principle; however, if we are given ANB
and A, it may not be easy (or it may not even be possible) to define a restriction on the
elements of A M B and A so as to use the restricted form.

3. When we use the product t-norm, even using the restricted form of the Extension Principle
may not give us equalities in cases like the one considered in Example B.1, as demonstrated
in the following example :

Example B.2 Consider the same type-1 set A C U considered in Exa.mple B.1. Computing

Al by considering squaring as an operation on A gives us the same A asin (B.8); however,
computing A x A using the product t-norm, gives us [where we use the same restriction R as
in (B.10)]

AxA = (1/1+06/4+0.4/5)x (1/1+0.6/4+04/5)NR

= [(1/1) x (1/1+0.6/4 + 0.4/5) + (0.6/4) x (1/1 +0.6/4 + 0.4/5)
+(0.4/5) x (1/14+0.6/440.4/5)]N R

= [1x1xpp(l,1)]/(1x1)+][1x0.6xpr(1,4)]/(1x4)
+[1 x 0.4 x pr(1,5)]/(1 x 5) +[0.6 x 1 x pp(4,1)]/(4 x 1)
+[0.6 x 0.6 x pr(4,4)]/(4 x 4) + [0.6 x 0.4 x pp(4,5)]/(4 x 5)
+[0.4 x 1 x pr(5,1)]/(5 % 1) + [0.4 x 0.6 x pr(5,4)]/(5 x 4)
+[0.4 x 0.4 x ug(5,5)]/(5 x 5)

= 1/1+0/4+0/5+0/4+0.36/16 + 0/20 + 0/5 + 0/20 + 0.16/25

= 1/140.36/16+0.16/25

- ¥

£ A° (B.12)
O

Though, as shown in Example B.2, product t-norm does not give intuitive results with the
restricted form of the Extension Principle, in view of the desirable properties of the product ¢-
norm, we continue to use it in our work. In order to avoid the above mentioned difficulties with
the restricted form of the Extension Principle, we adopt the following approach.
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When we need to extend an operation of the form f(6,,...,6,) to an operation f s Ands
we will not extend the individual operations, like multiplication, addition, etc. involved in f;
rather, we will use the following definition :

f(Al,...,;\“)=f0 / ;;Al(g,)*.--*,.-,,-\“(9,1)/f(91,...,9,1) (B.13)

where 8; € Ai for i = 1,...,n. For example, if f(6,,0:) = [9,6‘2]/[81 + 6], we write the extension
of f to type-1 sets A; and A, as

SRk = [ [ 005,00 /52 (B.14)

where 6; € .5&?- for i = 1,2; and not as

£ ek

= — = B.15
i (B.15)

f(A,A,)

When discussing properties of membership grades in Chapter 3, however, we use the unrestricted
form of the Extension Principle, just like Mizumoto and Tanaka do in [17].
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Appendiz C

Proofs in Chapter 2

C.1 Proof of Theorem 2.1

In the proof of Theorem 2.1, given next, we represent fuzzy sets F and G as follows :

F

Il

flv)/v (C.1)

veER

G / o g(w)/w (C.2)

As is apparent from (C.1) and (C.2), fuzzy sets ' and G can, in general, have the real line as
their domain. If a real number wyq is not in F (or G), f(wo) [or g(wo)] will be zero. With this
understanding, we will sometimes use the notation v € R and v € Forw € R and w € G
interchangeably.

Proof :

(a-I) The join operation between F and G can be expressed, as

FuG= /ueae /weﬂ[f(v) Ag(w)]/(vVw) (C.3)

Let’s see what operations are involved here. For every pair of points {v,w}, such that v € F and
w € G, we find the maximum of v and w and the minimum of their memberships, so that v V w
is an element of F UG and f(v) A g(w) is the corresponding membership grade. If more than one
{v,w} pair gives the same maximum (i.e., the same element in F U G), we use the maximum of
all the corresponding membership grades as the membership of this element. So, every element of
the resulting set is obtained as a result of the maz operation on one or more {v,w} pairs, and it’s
membership is the maximum of all the results of the min operation on memberships of v and w.
We analyze the join operation by picking a point in FuG and finding it’s membership grade.
Figures 2.1 (a) and (b) depict an example of the join operation. Let 8 € FuG. As noted in the
preceding paragraph, # must be the result of the maz operation on one or more {v,w} pairs; hence,
the possible admissible pairs can only be {v,8} where v € (=00, 8] and {6, w} where w € (—o0,8)].
To find the membership of €, we have to perform the min operation between the memberships
of all these possible pairs {v,w} and then take the maximum of them. For example, to find the
m(,mbelshlp grade of the point ¢ = 3 in the union of F and G, first we compare g(3) with each
f(v) for v € (—00,3] or v < 3, find the minimum in each of these comparisons and finally find the
maximum of all these answers; then we compare f(3) with all g(w) for w € (—00,3] or w < 3 and
do a similar minimax operation, and finally find the maximum of the results of these two minimax
operations.

150



We break this process into three steps : (1) find the minima between the memberships of all
the pairs {v,0} such that v € (—o0,6] and then find their supremum; (2) do the same with all the
pairs {#,w} such that w € (—o0,#]; and, (3) find the maximum of the two suprema, i.e.,

Iiuc) (0) = 01(0) V ¢2(0) (C4)
where,
¢1(0) = sup {f(v) Ag(0)} (C.5)
vE(—oc,0]
and
$2(0) = C?up {£(6) A g(w)} (C.6)

In (C.5), g(#) is a constant with respect to v, and in (C.6), f(f) is a constant with respect to w;
therefore,

$1(0) = ‘G(Q)A.E(sfp E”f(v) (C.7)
$20) = f(O)A sup g(w) (C.8)
we(—oo,0]

We break 6 into the following three ranges : 6 < vy, vo < 6 < vy and 6 > v, (see Fig. 2. 1).
Recall that f(vg) = 1 and g(v1) = 1 and that F and G are both convex. Also, observe that
convezity of F is equivalent to the condition that f is monotonic non-decreasing in (—oo,vo) and
monotonic non-increasing in [vg,o0) (see Appendix C.2). Similarly, convezity of G is equivalent
to the condition that g is monotonic non-decreasing in (—oo,v1] and monotonic non-increasing for

[Ul 3 OO)
6 =0; < wvg: See Fig. 2.1 (a). Since f and g both are monotonic non-decreasing in (—oo, vp),
sup f(v) = f(6), (C.9)
vE(—00,0)
and
sup  g(w) = g(0); (C.10)
we (—00,d]

therefore, from (C.7) and (C.8), we have
$1(8) = $2(6) = g(8) A f(6) (C.11)
Using (C.11) in (C.4), we get
Hiuc () = 9(0) A £(8) 3 6 < wo (C.12)

vg < 0 =8y < v : See Fig. 2.1 (a). Recall that f(vg) = 1 and that g is monotonic non-decreasing
in (—oo,v]; therefore, sup,e(_oo,0 f(v) = 1 and sup,¢(_o.g 9(w) = g(8). Using these facts in
(C.7) and (C.8), we have that in this range

¢1(0) = g(0) A1 =g(0) (C.13)
and
¢2(0) = f(0) A g(8) (C.14)
Using (C.13) and (C.14) in (C.4), we have
Reucy (@) = g(8) v [£(8) A g(9)] (C.15)
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Observe that, if f(#) < g(#), the RHS of (C.15) simplifies to g(#) V[f(8)] = g(8) and if f(8) > g(8),
the RHS gives g(8) V [g(8)] = g(8). So, in either case

nruc) (0) = g(0) 5 vo <0 < u (C.16)

6 =603 >wv; : For 6 in this range [see Fig. 2.1 (a)], both f and g have already attained their
maximum values; therefore,

sup f(v) = 1 (C.17)
vE(—00,0)
sup glw) = 1 (C.18)
we(—o0,b]
Consequently,
o1(0) = g(0) (C.19)
$2(0) = f(6); (C.20)
therefore, from (C.4),
iue)(0) = @)YV g(8); 0>uv (C.21)

From (C.12), (C.16) and (C.21), we get (2.19).
(a-II) The meet operation between F and G can be expressed, as

FnéG= /ueéﬁ /wesn[f(u) A g(w)]/(v A w) (C.22)

This equation looks very similar to (C.3). The operations involved here are the same as for the
join operation, except for the fact that every element of F G is obtained as a result of the min
operation on one or more {v,w} pairs, where v € F and w € G. Consider § € FrG. The
possible pairs {v,w} that can give us 8 as a result of the min operation are {v,6} where v € [f, 00)
and {#,w} where w € [#,00). To find the membership grade of 6, we find the minimum of the
memberships for each of these {v,w} pairs and then take the maximum of all these results. Again,
we break this process into three steps : first we find the minima of the membership grades of all
the pairs {v, 0} such that v € [, c0) and then find their supremum; then we do the same with all
the pairs {0, w} such that w € [6, c0); and, finally, we find the maximum of the two suprema, i.e.,

Hing) (0) = d3(0) V ¢4(6) (C.23)

where,
é3(0) = "eS{ggo){f(v)/\y(ﬁ‘)} (C.24)
$1(0) = mesﬁ?m){fw)/\y(w)} (C.25)

Again using similar reasoning as in part (a-I) of this proof, we have

¢3(8) = g(0) A Ies[t;p )f(v) (C.26)
da(0) = fO)A sup glw) (C.27)
welf,o00)

We consider three ranges for € : 6 > v, vo < f <wv; and 8 < .
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f =03 > v; : See Fig. 2.1 (a). f and g, both, are monotonic non-increasing in (v, 00); therefore,

sup f(v) = f(0)

vE[f,00)
sup  g(w) 9(0)

we[f,00)

Using (C.28) and (C.29) in (C.26) and (C.27), we get
¢3(0) = ¢4(8) = £(8) A g(6)

Therefore, from (C.23), we have
Hing) (8) = f(8) Ag(0)

(C.28)
(C.29)

(C.30)

(C.31)

vy < 0 =6y < : See Fig. 2.1 (a). Recall that f is monotonic non-increasing in [vo,00) and that

g(vy) = 1. This gives us

sup f(v) = f(9)
vE(l,00)

sup g(w) = 1
welf,o0)

Using (C.32) and (C.33) in (C.26) and (C.27), we have

¢3(0) = g(6) A f(0)
$a(6) f(0)

Using (C.34) and (C.35) in (C.23), we have

tEna) (0) = [9(0) A f(O)] V £(6)

I

Reasoning as in part (a-I) [see Egs. (C.15) and (C.16)], we get

HeEne)(0) = f(0);vo <0<

0 =6, <y : See Fig. 2.1 (a). We have that f(vg) =1 and g(v1) = 1; therefore,

sup f(v) = 1
vE(f,00)
sup g(w) = 1
we(f,00)

Using (C.38) and (C.39) in (C.26) and (C.27), we have

¢3(0) = g(0)
$4(6) f(0);

therefore, from (C.23), we have
tEnc) (0) = f(O)Vg(8);0<uvo

From (C.31), (C.37) and (C.42), we get (2.20).

(C.32)
(C.33)

(C.34)
(C.35)

(C.36)

(C.37)

(C.38)
(C.39)

(C.40)
(C.41)

(C.42)

(b-I) In [17], Mizumoto and Tanaka show that results of join or meet operations, using maz t-
conorm and min t-norm, on convex and normal type-1 sets are also convex and normal. Using this

fact, we generalize the result in part (a) of Theorem 2.1 to more than two sets.
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Consider n convex, normal, type-1 fuzzy sets f’l yeens f‘u characterized by membership functions
fis..., fn, respectively. Let v;,va,...,v, be real numbers such that v; < v < --- < v, and
fi(or) = fa(ve) = -+ = falvn) = 1.

Using (2.19), we have

fn—l(g) A fn(e) ) 0 < Up—1
pi o, (0) = fn(6) i Up1 S0< v, (C.43)

Ja1(O)V [a(0) 5 0> wn

Using the associative property, we have (we are interested mainly in dealing with type-1 sets which
are membership grades of type-2 sets; for more discussion on properties of type-1 fuzzy membership
grades, see Chapter 3)

Fr1—2 u F 1 u Fn = Fn—z u (ﬁ‘rl—l U f:‘n) (044)

n—
Let fin—1)n = i _UF, Since F‘,,_l UF,, is also a convex, normal, type-1 fuzzy set [fn(v,) =1,
and from (C.43) we see that f(,,—1)n(va) = fu(va)], another application of (2.19) gives us

f(tt-l]n(g) A fa—200) 5 0 <vp-2
pi ok, o, (0) = fn-1)n(9) i Un—2<0< vy (C.45)
f(n—l}n(gJ V fa-2(0) ; 0>uvy

Since v < vp—1, (C.43) and (C.45) can be rewritten as follows :

i fn—l(a) A fn(g) 3 g < Up—2
n— &) A n [4 ; Un—2 < 0 < v,
o, @ = § TP e (C.46)
L fn—-l(g)vfn(g) 3 g > Up
( f{n_l)u(g} A _fn—‘l(g} ] 0 < Un—2
: ” " _ f(u-l)n(e) i Un—2 S0 < vy

pF“"uLIF“—lLJF" (8) - f(n—l}n(g) ;o Un—1 S 0 < U, (04?)

! f(n—l)n(g} Vv fn—2(9) 3 0> Un

Substituting for f(,,—1), into (C.47) from (C.46), we obtain

fn—'.!(g) A fﬂ—l(g) A fn(g) i 0<vp_2

i = _ - fn—-l (9) A fn(B) 7 Un—=2 S 0 S Un—1
;.LI:"—2UF““'UF"(8) - n 6 7 Un— S 0 S Un (048)
fn20)V faa () V fu(0) 5 0> v
Again, F,,_,UF,_, UF, is also a convex and normal type-1 set, therefore (2.19) can be applied

again. Continuing in this fashion, we get (2.21). L
(b-II) The proof is very much similar to that of part (b) - I. Starting with I, MF, and using (2.20)
repeatedly, we get (2.22).
C.2 Proof of Assertion in the Proof of Theorem 2.1
The convexity of F = [ £(8)/6 is equivalent to the condition [17]
flwa) > min{ f(v1), f(vs)} (C.49)

if vy is between vy and wvs, i.e., if v; < wvs < w3 or vy < vy < wy. (See Figs. 2.1 and 2.3 for examples
of arbitrarily shaped convex membership functions.) We first prove that convexity of f implies
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the monotonicity conditions on f, and then prove that the monotonicity conditions on f imply its
convexity.

(I) Since f is a membership function for a normalized type-1 fuzzy set (see Theorem 2.1), we know
that f(v) < 1 for all v. Also, we know that f(ve) = 1; therefore, letting v; = v in (C.49), we get

f(ve) > min{1, f(vs)}; vo <wvs < w3 or vg < vz <y (C.50)
i.e.,
flva) > f(vg); vo<wa<wgorwvg<va<up (051)

In other words, f is monotonic non-decreasing in (—oo, vp] and monotonic non-increasing in [vg, 00).
(II) Now, assume that f is monotonic non-decreasing in (—o0,vp] and monotonic non-increasing
in [vg,00), with f(vp) = 1. Consider two points v, and v3, such that v; < vz. We will show that
any point vs between vy and vg, satisifes (C.49). There are three possibilities for v; and vy :
1. v; < w3 < vp : Since f is monotonic non-decreasing in this range, for any point v, between
vy and vg, f(v2) > f(v1); therefore, (C.49) is satisfied.

2. vy < v < vy : Since f is monotonic non-decreasing in (—o0,vg), if vy < va < vy, f(v2) >
f(v1). Also, since f is monotonic non-increasing in [vg, 00), if vg < va < v3, f(v2) > f(v3).
In either case, (C.49) is satisfied.

3. vy < v; < w3 : In this range, f is monotonic non-increasing; therefore, for any v between v
and vs, f(ve) > f(v3), which implies that (C.49) is satisfied.

Since (C.49) is satisfied in all the three cases, we conclude that f is convex. ]

C.3 Proof of Corollary 2.1

(a) Let f(vo) = 1. Using Theorem 2.1, we have

fOYNFO-F) ; 8<uwo
PG (v) = f(0—k) ; vo<O<vw+k (C.52)
fOVFO-k ; 6>v+k

We have made use of the fact that the membership function of G is a shifted version of f. The
point v; in Theorem 2.1, now becomes (vg + k). As shown in Appendix C.1, the convexity of F
implies that f is monotonic non-decreasing in (—oo,vp] and monotonic non-increasing in [vg, 00),
which implies that f(8) > f(8 — k) for # < vy and f(0) < f(6 — k) for > vg + k. Using these facts
in (C.52), we have
Hiug(8) = f(O —k) = pg(0); VO e R

=>FuUG=G (C.53)
A very similar proof can be used for the meet operation.
(b) A repeated application of part (a) yields part(b). O

C.4 Proof of Theorem 2.2

From (2.16), we have
-F= [ f(6)/(1-6) (C.54)
feR



Let y = (1 —6), then 8 = (1 —y) and 8 € R = y € N; therefore,

-F = fA=u)/y (C.55)

yeR

f F(1-0)/6 (C.56)
feR

O

C.5 Join under Product i-norm

(a) Consider the two convex normal type-1 fuzzy sets, F and G used in Theorem 2.1. The join
operation between F and G, using the product ¢-norm can be represented as

FuG=[ [ ooy (C.57)

where V denotes the maximum. Equation (C.57) is the same as (C.3) with the min replaced by a
product.

The following analysis is very similar to that in Theorem 2.1. If § is an element of F U G, then
the membership grade of § can be determined by finding all the pairs {v,w} such that v € F,
w € G and vVw = 6; multiplying the membership grades of v and w in each pair; and then finding
the maximum of these products of membership grades. The possible admissible {v,w} pairs that
can give us @ as the result of the maz operation are {v,0} where v € (—00,6] and {#,w} where
w € (—00,#]). We find the products of membership grades of v and w from each such pair and take
the maximum of all these products as the membership grade of . We break this process into three
steps : (1) find the product of the memberships of all the pairs {v,f} where v € (—o0,6] and then
find their supremum; (2) do the same with all the pairs {#,w} where w € (—o0,6]; and (3) find
the maximum of the two suprema, i.e.,

#(F‘u(‘:){g) = (0) V (0) (C.58)
where
Gi(0) = sup {f(v)g(0)} (C.59)
vE(=—00,]

Since g(f) is a constant for a given 6,

¥ (6) = g(0) (SUP f(v) (C.60)
vE(—occ,d
Similarly,
Pa(0) = E?ED {f(0)g(w)} (C.61)
= f(6) sup g(w (C.62)
we(—o0,0

We break 6 into the following three ranges : 8 < vy, vo < # <wv; and 8 > vy.
6 = 6, < vy : See Fig. 2.1 (a). Since, f(v) and g(w) both are monotonic non-decreasing in (—oo, vo],

sup  f(v) = (), (C.63)
vE(—o0,8]
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and

E g(w) = g(0) (C.64)
Consequently, from (C.60) and (C.62), we get
P1(0) = ¥2(0) = f(6)9(0) (C.65)
which implies that [see (C.58)]
Euc)(0) = f(0)g(0) ; 6 < vo (C.66)

vo < 0 =6, <w;: See Fig. 2.1 (a). Recall that f(vg) = 1 and that g is monotonic non-decreasing
in (—o0, v;]; therefore,

sup f(v) =1, (C.67)
ve(—o0,f]
and
sup  g(w) = g(6) (C.68)
we(—o0,0]
From (C.60) and (C.62), we get
(@) = g(0) (C.69)
a(6) = £(0)9(0) (C.70)

Since f(g) S 1, T,{J[(G) Z ﬁ)_;(e) Conseqll{illtl}" from (058)
B (0) = 9(0) 5 vo <0 < vy (.71

6 =0 >wv; : See Fig. 2.1 (a). For 6 in this range, both f and g have already attained their
maximum values, i.e.,

sup  f(v) =1, (C.72)
vE(—o0,0]
and
sup g(w)=1; (C.73)
we(—o0,0]
therefore, from (C.60) and (C.62), we get
vi(0) = g(0) (C.74)
a(8) = f(6) (C.75)
Consequently, from (C.58),
Eucy(0) = f(8) vV g(0); 8 > v (C.76)

Combining (C.66), (C.71) and (C.76), we get (2.23).
(b) The proof of (2.24) is very similar to the proof of (2.21) in Appendix C.1. The only thing
that we have to show is that using maz t-conorm and preduct t-norm, the meet of two convex,
normal type-1 fuzzy sets is also a convex, nor mal fuzzy type-1 set. Consider the convex, normal
type-1 sets F and G described in part (a) of this proof. We must show that F UG is also convex
and normal under magz t-conorm and product t-norm. To show convexity, we use the equivalent
condition proved in Appendix C.2.

Since F and G, both, are convex and normal, f and g both are monotonic non-decreasing in
(=00, vp] (recall that v < vy), which implies that fg is also monotonic non-decreasing in (—o0, vg).
Also, g(vo) > f(vo)g(ve) and g is monotonic non-decreasing in [vg, v;]. Consequently, g ,(0) is
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monotonic non-decreasing in (—oc,v;]. Since, f(#) and g(f) are both monotonic non-increasing
for @ > vy, f(#) V g(#) is also monotonic non-increasing for § > vy, which implies that pp, 5 (8) is
monotonic non-increasing for 8 > v;. Additionally, pug a(v1) = gln1) V f(v1) = 1; hence, FuGis
also convex and normal. .

Suppose that we have n convex, normal, type-1 fuzzy sets f‘, ,...,F, characterized by mem-
bership functions f,..., fa, respectively. Let vy, vs,...,v, be real numbers such that v; < vp <
-+ < v, and fi(vy) = fa(ve) = -+ = fa(vn) = 1, then proceeding exactly as in the case of the
proof of part (b-I) in Theorem 2.1 (see Appendix C.1), by using the associative property of the
join operation and by repeated application of (2.23), we get (2.24). O

C.6 Meet of Gaussians under Product {-norm

Consider the case when f(v) and g(w) (as in Theorem 2.1) are Gaussians with support [0, 1] with
means my, mgy and standard deviations oy, oy, respectively. Then,

" 5 _l(itmpe g wem
FnG:/f e 3 77 )ﬁ’ %{Tﬂilz/(vw) (077)
vdw

Recall that the integral in the above equation denotes union in the continuum. If 6 is an element
of F G, then the membership grade of # can be found by : finding all the pairs {v,w} such that
veF, we G and vw = #; multiplying the membership grades of v and w in each pair; and then
finding the maximum of these products of membership grades, i.e.,

_Lg¥TMpy2 jw—mga2
3( afleg( =)

ping(0) = supfe ow=0veF;we G‘} (C.78)

Given any v (assuming v # 0), the constraint vw = @ gives us w = 8/v. Further, since w € [0, 1], it
follows that 8/v < 1 or v > 6. So, given any 6 € [0, 1], the acceptable {v,w} pairs that can give 6
as the result of the product operation are {(v, %); 0 € 8 < v < 1}; therefore, from (C.78), we have

£my

1 (i A8 Y S b A
Hgna (@) = sup e HTTT ST (C.79)

vE(,1]

Observe that, when § = mym,, v = my; maximizes the above quantity, making the exponent 0.
This implies that
Hina(mpmg) =1, (C.80)

which shows that our result is consistent with the type-1 case result, my * m, = mjgm,, obtained
by reducing type-1 sets F and G to singletons, having unity membership at m; and m, respectively
and zero membership at all other points. The result of the meet operation is then a singleton also,
with unity membership at mym, and zero membership at all other points.

For 6 # mysm,, the only thing that is easily observable is that the exponent in (C.79) does not
reduce to zero, implying any # other than msm, will have a membership grade less than unity.
Now, let’s see if we can determine an expression for @ in terms of v.

Let us call the quantity in the square bracket on the RHS of (C.79) J(v). The v that achieves
the supremum in (C.79), minimizes J(v). In order to find pp~g(#), we have to find an expression
for v that minimizes

V=M. - g — T
J() = (L 4 (= (C81)

gf [}

158



subject to the constraint v € [#,1]. Differentiating J(v) and equating the derivative to 0, we see
that the v, that achieves the minimum satisfies (with the constraint v, € [0, 1])

; my Ve —‘ﬂ’ly
J(v.)=0 & 2(—1)(—;)+2( = 2)—0

Ty oyv2
v. my 6% m,l
S~ —mat—55=0
o} o} oyl ojvl
o2 o2
s vl- m;vf + 8—,£-mg-v. - 92—£ =0 (C.82)
o o
] g

Let us call the polynomial on the LHS of (C.82) D(v). Observe that

2 &2
D(mj) = /nf /uf +9—-mgmf~—6‘"—a—r§
a 9
o7
= 0—=(mym, —0) (C.83)
05
6 _ 84 f 4 af
D(;}g) = (m )t —m f( ) 72 iy g o2
_ 8 4 06
- (mg) (m_q =)
63
= ﬁ(ﬂ —mymy) (C.84)

From (C.83) and (C.84), we observe that D(my) and D(6/m,) are of opposite signs [since 8, my
and m,, are all in [0, 1], the quantity (6 — msm,) decides the sign]. This implies that D(v) always
has a root between m; and 6/m,. As long as 8/m, < 1, v, always satisifes the constraint that
v. € [6,1], because my < 1; however, after a critical value, say # = 0., v. > 1, and then v = 1
minimizes J(v) while satisfying the constraint. The critical value 6, can be found from (C.82) by
expressing 6 in terms of v. Rearranging (C.82) and solving for 8, we get

,, 07 o} .
6‘“’(-—%) - 6’(—_£m&.v,) + (myv} —v}) =0
I g

Vs o}
= §= —[mgr m2 + 40—39.(0* —my)] (C.85)
f

We are interested in finding those values of € for which v. > 1. Obviously, this implies that
v, > my, because my < 1 and therefore the second term in the bracket on the RHS of (C.85) is
greater than or equal to my; hence, keeping the positive root of the above equation (recall that
6 > 0), we get

Vs 0’3
= [mJ m2 + 4;5'0.. (v. —my)] (C.86)
/

The critical value of @ can be found by substituting v, = 1 in (C.86) and is

. = %[mg + \/m - 4—(1 —my)] (C.87)
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So, for # < 8., v. can be obtained by solving Eq. (C.82) without using the constraint and then
picking the root that satisfies the constraint and minimizes J(v). If there is more than one root
that satisfies the constraints, we check the value of J(v) at each of the roots and pick the root at
which J(v) is minimum. For # > 6., v = 1 minimizes J(v).

In what follows, we attempt to solve Eq. (C.82). We rewrite (C.82) as (for notational simplicity,

we drop the subscript “*”) ‘
v —av’ +bv—c=0 (C.88)

where

a=my

2
B lQ:rn-,’.orJr
= 2
7
2 2
_ 8oy

CcC=
2
Ty

(C.89)

In the following, we use a standard procedure for solving quartic (4th order) equations [6]. Substi-
tuting y = v — a/4 (i.e., v =y + a/4) into (C.88), we get

(v+ )" —aly+ 3P +bly+ 3 —c=0 (C.90)
which, upon simplification, gives
3 . a® ab 3
4 _ 2 2v..2 _ ; =
- (ge g +b-5 Wk (o =58 —0) (C.91)

This equation has the following resolvent equation [i.e., if the roots of the following equation are
found, the roots of (C.91) can be calculated from them]

B i 3 a®
23 (Za2)22 = at —_ z—=(b— — 2 =
z (4a )z +{16a +4e—ab)z — (b 8) 0 (C.92)

In order to find roots of (C.92), we simplify it further by substituting z = t+a*/4 (i.e., t = z—a?/4).
Upon simplification, we get
£ + (d¢c — ab)t + (a*c - b*) =0 (C.93)

Let a = (4¢ — ab), B = (a’c — b*) and D = (8/2)* + (a/3)?; additionally, let

A = (54D
B = —(g- +VD)'/3 (C.94)
Then, the three roots of (C.93) are
h o= A+B
v = 225+ it Eva
G = -(A;B)—f.(“‘;B)JE (C.95)
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If D > 0, one of these three roots is real and the other two are complex conjugates (which are
discarded); if D = 0, all the three roots are real and at least two of them are equal; and if D <0,
all three roots are real and unequal.

The three roots of the resolvent equation (C.92) can be obtained by adding a”/4 to each of t;,

ty and ty, as

L
(3]

23

I

A+B+%

~4
=

4

A+B}+( )‘/5_!_

2
a-

4

— 2

5 )

From these, we can obtain the roots of (C.91) as

A+ VE+E
2
N

2

~VE+ VR~ E
2

VA= VB
2

Finally, these four roots of Eq. (C.91) give us the roots of (C.88), as

51

V2

Uz

V4

RN
s/ VA, 4
—\/—+\/z:—vf—-+4
~ VA - \2/*+\/“+

Summarizing, we have four choices for v, :

U1

U2

U3

U4

where

21 =

_ \/5+V/2_3+V/E a
- 2 1
. VASVEYE
4
_ —r+¢— V&,
_ VA - \/5+\/_
2

o = =]

a
4
a
*1

A+ B A-B :
+)+ﬁ_;4ﬁ+%

(C.96)

(C.97)

(C.98)

(C.99)

161



z3 = —(A+B)—i{A_B)\/§+a—2 (C.100)

2 2 4
and
b? — a’c 2 p? d¢ — ab p
4= B @y ey (@101
22, 2 __ 19 L )
B = [b 2(J.L_\/(a Qb)2+(463ab)3}l/‘; (C.102)

with a, b, ¢ as in (C.89).

Of these four choices for v., we choose the one that is real, satisfies the constraint v. € [, 1],
and minimizes J(v). [This can be checked by examining J(#), J(1) and the value of the second
drivative of J at the root.] As mentioned earlier, if there is more than one root satisfying the
constraints, we pick the one at which J(v) attains the minimum value.

Summarizing, we have :

Ve=My. g, 5y T2
i (0) = e HETT P HEG (C.103)
where v, is obtained by solving (C.82) if # < 8, and v. = 1 if # > 8., where 0, is given in (C.87).
Observe that computations begin by choosing a value for # € [0, 1] and must be repeated for every
# € [0, 1], so that 8 must, in practice, be discretized.

Figures 2.11 - 2.15 show some examples of Gaussian curves and the result of the meet operation
between them. The meet curve in all the figures was obtained numerically. The order of the curves
(i.e., the order {mys,my} or {oy,0,}) is not important, which means that the meet operation is

commutative, as we would expect it to be.

C.7 Solving for the Gaussian Meet Approximation

The problem of maximizing the RHS of (2.55) reduces to the problem of minimizing the objective

function
0 — myv

)2 (C.104)

A o
II(U) - ( Uf ) + ( kﬂ'g
This minimization also needs to be performed with the constraint v € [, 1]; however, for simplicity,
first we minimize H unconstrained and then handle the constraint. Observe that my,my, 05,0,
are all positive (in addition, we will always have ms,m, € [0,1]). It can be easily seen that H is
convex (H" = 2/03‘: +2(my [kay)? > 0); therefore, equating the first derivative of H to zero (and
assuming that the infimum is obtained at v = v*), we get

vt —my 1 0 —mgv* ., —my
A——)(—)+2(————)(—) = 0
e a
1 m?
(gt mh) = O+ ot (C-105)
oy k*o; k*oy = o%
Omyo% +mskio?
v* A MARL (C.106)
mzoy + k*o;
Substituting (C.106) into (C.104), we get
inf Hv) = (—oe MM _y2 (C.107)

fo2 2 | 19 2
m_qo'f+h oy
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Now, let us handle the constraint. Since H is convex in v, H is monotonic increasing for v > v*
and monotonic decreasing for v < v*; therefore, if v* < 6, the minimum in the constraint set is
fixed at v = 8, and, if v* > 1, the constrained minimum is fixed at v = 1. Otherwise, v™ is as in
(C.106).

Observe that the condition v* € [f, 1] translates into conditions on @ and also depends on the
parameters my, oy, mg,, 0, and k, since all of them appear on the RHS of (C.106). Next, we
analyse these conditions.

1 - 1
_,.'/ a<a:
v=ad+b. 7 e
v s V=0 v et
Eod _ - =V=ag+b
- - 1
I
~ |
00 = REfe : (}0 L Her :
(@) ¥ (o)
xic 1
L = i
i a<a:.b=0
v=ab+b- :
v et " 1 v V=
et Vg | v=ag+b-
- ] —"
| R
i -
0 a>ac B2y o=
0 %) ! 3 %@ !

Figure C.1: Plots of v* = af + b versus # and different possibilities that can arise depending on
the value of @ and b. The critical value of a is a, =1 —b. (a) a = a.. In this case, the constrained
minimum is always equal to the true minimum. (b) a < a.. (¢) @ > a.. (d) The special case, when
b =0 and a > a.. In this case, the constrained minimum is equal to the true minimum only at
8=0.

From (C.106), we can see that v™ is affine in 8. Let

myo} (C.108)
(a = ‘—'} i
m2o} + ko
l mrk oy (C.109)
) T O .
mioj + ko}
Then,
v* =af + b, (C.110)

i.e., if we plot v* versus f, we get a straight line. Figures C.1 (a) - (d) show some examples.
QObserve that @ > 0 and 0 < b < 1 always. For any b, if a is such that the portion of the line in
[0,1] is contained completely in the area above the line v* = # and below the line v* = 1 [Fig. C.1
(a)], then the constrained minimum is always equal to the unconstrained minimum. Let’s call the
critical value of a that achieves this a.. To find a., we use the condition that a.f + b = 1 when
§ = 1 (this condition is required for the portion of the line in [0, 1] to be contained above v* = 6
and below v* = 1). This gives us
a.=1-0 (C.111)

If a < a., after some critical value of 6, 8.1, in [0,1] [Fig. C.1 (b)], v* < 6. 6. is the point of
intersection of the lines v* = afl + b and v* = #; therefore, #,; can be found as

aby +b = 64

163



br = (C.112)

where a and b are as in (C.108) and (C.109).
Similarly, we can see from Fig. C.1 (¢) that when a > a,, after some other critical value of 8,
O, v* > 1. 0. is the point of intersection of the lines v* = a8 + b and v* = 1; therefore,

abeo+b = 1
C1-b
- a

02

(C.113)

where a and b are as in (C.108) and (C.109).

The above discussion can be summarized in terms of three cases, as follows : Let 8,1 and 8.2
be as in (C.112) and (C.113), respectively; then,

1. a < a,.

(C.114)

T3 17 ;
m,oy +k o

9 ; 9 > Hc]
Substituting (C.114) into (C.104), we get

(79%&”%) AL
inf H(v) = myoy + kog (C.115)
veld,

] O—myso  ppl—mgyn |
( of )+9{-W9—) ’ 9>901

{ Gm.go"fr +m;k2(f§ . g <b.
vt = =6

Substituting (C.115) into (2.55), we obtain

_*{ B—m pmg )2
B i =
e ! 0 £ b (C.116)

pi(0) = o . ’
= fy2 g2 1=m
e 1( 77 )e—%fﬂm—g”'}g : 9>9d
2. a=a,
Om,oF +msk’o?
=t LTI T L gefo,) (C.117)
myof + k7o
Substituting (C.117) into (C.104), we get (C.107), i.e.,
6 — 9
e 2 gelo,1] (C.118)

inf H(v) = (———=—
vel0.1] /Mo + ka2

Substituting (C.118) into (2.55), we obtain

—%tfhzs;"‘."" )
pp@) =e VTEIE . geo,1] (C.119)

3. a>a,.

myoy + k‘og
1 ;0> 0

Smga% + 'mfk.'zag )
= { " 5 0S8 (C.120)
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Substituting (C.120) into (C.104), we get

(Tg;%—ﬂ%ﬁ)z i 0 <0
inf H(v) = mgoy + Koy (C.121)

veld,] - o - o
ik (1 U;nj)"*‘(gkgjlg)" N

Substituting (C.121) into (2.55), we obtain

—étT—L=-";"'2 e )?
moe +h‘!o-g .
pp@) =4 ¢ ! 0 < Bc2 (C.122)

¥

ik l'“‘!'_‘ . B=—mg .0
e 3T Ve i 0> 00

Now, we come back to the question of choosing an expression for pp5. Recall, that we solved
this modified optimization problem because we wanted to find a simple expression for fipa, and
it was for this reason that we simplified the actual optimization problem. Although (C.116),
(C.119) and (C.122) give the exact solution to the simplified problem, the expressions are still too
complicated. Even if we were to accept (C.116), (C.119) and (C.122) as they are, we are still going
to have an approximate solution to the actual problem; therefore, it seems very reasonable to choose
the simplest of the three possible expressions for pj(#) and just use that as our approximation of
Hing(8). So, we choose the expression for the case a = a, as the required approximation (in effect,
this is equivalent to simplifying the problem even further by disregarding the constraints v* > 6

and v* < 1); therefore,
— (et )?

2 2.2
f+l' L

2
mye

Hind (9) ~e (0123)

As explained in Chapter 2, this expression is also consistent with the type-1 case.

Now, we have to choose some value for k. As explained in Chapter 2, we need some value in
[0,1]. Since the meet operation is commutative, we want our approximation to also be commutative.
This will make generalization to the case of more than two Gaussians easy. By observing (C.123), it
is apparent that if we choose k = my, the approximation becomes commutative (if we interchange
{mg,0r} and {my,0,}, we still get the same result); so,

LTI

m2a2 pm

pina(0) ~ e e (C.124)

0

C.8 Error Bounds for the Gaussian Meet Approximation

To obtain bounds on the Gaussian approximation error, we first find bounds on the result of
the actual meet operation between two Gaussians. As explained in Chapter 2, just after (2.57),
using k = 1 (k = 0) in (2.55) is equivalent to finding an upper (lower) bound on the result of the
actual tneet operation. Let’s find an upper bound first.

C.8.1 Upper Bound on the Meet between Gaussians

If we just substitute & =1 in the expressions for pj(6), the resulting curves, generally, will not be
Gaussian [see (C.116), (C.119) and (C.122)]. Here, we try to find a Gaussian upper bound for the
meet operation, to facilitate generalization of this operation to more than two Gaussians. For this
purpose, we consider H(v) in (C.104), the objective function for the Gaussian approximation.
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For any k, the unconstrained infimum of H(v) should always be less than or equal to its
constrained infimum; hence,

inf H(v) < inf H(v)
v ve(d, 1]

S4 g i[inf, H(v)] > 5_5['“rvél9-1! H(v)]

_].( f—mgmg )2
% ,"2,‘2 +k3og e
= e ; f > pp(f) (C.125)

where, we have made use of (C.107) and (2.55). A suitable upper bound on the result of the meet
between two Gaussians can therefore be obtained by substituting k£ =1 in (C.125), i.e.,

_%{ H=m rmg )._)
@ =c Vi (C.126)

Observe that (C.126) is not symmetrical in {my, 0} and {my, 0,4}, i.e., if we interchange the fuzzy
sets F and G, we get a different expression for the upper bound,

~§(7=e“'j”"‘ =)’
U _@)=e V"I (C.127)

el

e

Both (C.126) and (C.127) give an upper bound for the meet between F and G; therefore, to ensure
that the upper bound is independent of the order of the two Gaussians, we choose the minimum
of these two functions as the upper bound [because both (C.126) and (C.127) are upper bounds,
the minimum of the two is also an upper bound], i.e.,

_1 H—mgmpg o
w0 =e W= (C.128)
where
Oy2 = min { \/mgo'? + a2, \/m'ﬁo"g - rrfr} (C.129)

Let’s see how this result generalizes to the meet of more than two Gaussians. Suppose that we
have to find the meet between three type-1 Gaussian fuzzy sets F,, F, and F;, having means m;,
ma and ma, respectively, and standard deviations oy, o2 and o3, respectively. If we perform the
meet between F, and F, first, (C.128) gives us the following upper bound

WY i, (0) = e (s (C.130)
where
Oy12 = Min { \/m,'fag + o2, \/mzal + 02} (C.131)
which can also be rewritten as
Tu2 = \/min{mie? + o?,m3o} + o} (C.132)

Now, an upper bound on the meet of F,, F, and F, can be found by finding the upper bound
on the meet of Fy and the Gaussian in (C.130), ie.,

’ 2 B—mymaom 2
1E g p, (0) =72 o) (C.133)
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where

S R 22 2
Oul23 = \/lmn{mimgrr;; + 01g, M30510 + 03}

& 2 9 9 . ) . 2 9 b
[mln {m‘l‘m.}ag +min{mjo: + o}, m3o; + 03},

9 . : 2 9 9 9
m2min{mios + o}, mio; + 03} + 03 }]

i i 2 2 92 9 9 s 2 .
[mm { min{o? + mios +mimiol, o3 + mioi + mimios},
1
n 9 2 . :
min{o; + 173302 + mgmgol, UJ + m: ,crl + mlm302 }}

- 2 L ) 2 o | i 5 2 9 2 b bl
[mm {a[ +mia? +mimias, 0F +mioi + mimio3,

Il

7
2 3.2 o 4 2 2 oL 4.8
0% +mjio; + mimio;, 03 + mio; + ml-m;;arg}] (C.134)

This expression is also not symmetric in F;, F, and F3, i.e.,

(s—ml momy )z

y [
I o =@ Tu231 C.135
-0 (C.135)
where
; : 2 2 2 9 2 :
Ou2gl = [mm {af +mios +mimiol, o} + mio? + mimiol,
02 + miok +mimic} +m3o? + mimio? (C.136)
2 203 2M30y, ‘73 302 2M307 ) .
and,
B momeg 2
U 9) = 1(—‘,1*"'2—'3)
v w132 137
#Flr‘ll-:’l‘ch( ) ( }
where
. o 9 0 oy 9 9 2 2 r o
Culze = [mm {35 +mio; +mimio?, o5 +m3o; +mimiot,
2 2 21|”*
o? + mioi + mimios, o + mio; + mlm30,} (C.138)

Observe that we have considered all the possible orderings of F,, F, and F, that would give
us distinct results for p r{ﬂ) eg since the cxpression for the upper bound for the meet of two
Gaussians is commutative, ;;(F B Al = gy (P e

We choose the minimum of the three Gd.llSSlaIlS in (C.133), (C.135) and (C.137) as the final

upper bound, i.e.,
U _%(6‘—-mlmzma }2
L oEoop, =€ 2 Tus C.139
P, ni,nF, ( )

where (some terms are common to gy123, Tu231 and oy,132)

w3 = min{oui23, Ou231, O132}
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. 2 L S L b . 2 2 2 2 2
= [mm {Ui’ +mjo; +mimsoy, 07 + mftrg + mim3o;,
9 2 9 9 9 a9 2 2 9 9
03 + mio} + mimio?, oF + mio; + mimio;,
1

i
02 + mio} + mimio}, oF + mio: + mimio; }] (C.140)

Continuing in this fashion, the upper bound on the meet between n Gaussians Fy, ..., F, having
means m;,...,m, and standard deviations oy, ..., o,, respectively, is given as

1.6-TI", mi

#g;‘:lﬁi = "XP{_g( 5{: )’} (C.141)

where
&, = min{E;,Iz,...,Zm} (C.142)

where
B = \/"'5}1”31 teont o HGOL ¢ d=Liawmnl (C.143)

where {i1,...,i,} indicates a permutation of {1,2,...,n}, and the ¢;;s (k = 1,..., n) are calculated
as follows :

ci, = 1,
Mige_1) Cigeoyy  TOr K=2,...,m. (C.144)

Il

Ciy,

In order to illustrate the use and validity of (C.143) and (C.144), we consider the following
example.

Example C.1 For n = 3, , can be calculated, as follows. There are 3! = 6 possible permutations
of {1,2,3}. For each one of these permutations, we use (C.144) to calcuate the ¢;;’s, and (C.143)
to calculate the X;’s :

{i1,in, i3} ={1,2,3} : e1=1; co=micr =my; €3 =mMaca =1M1M2
£, = /o7 + mio3 + mim3o};
{iy,d0,i3} = {1,3,2} : e1=1; c3=micy =mq; €3 =mycs = myma
Ty = /o] + m?02 + mim3os
{3'1, é_;, ig} = {2, 1,3} v G = 1; €1 = MaCa = Me; €z =MCp = MH1Ma
Y3 = /03 + m3o} + mimio: (C.145)
{i1,i2,3} ={2,3,1} : ca=1; c3=macy =my; ¢ =mgcz =mams ’
B4 = /o3 + mio; + mimio;
{'i[,'fz,i;;} = {3, 1,2} I 3= ].; Cl = MgzgCz =Mg; Co=MyCcp =1mMypms
L5 = /03 + mio} +mimio?
{i1,i2,i3} ={3,2,1} : e3=1; ca=mgc3 =m3; ¢} =macz =mam3

56 = /o3 + m3os + mimio;
Using ¥41,..., %6 from (C.145) in (C.142), we can verify that the &, we obtain, is the same as in
(C.140). O

As is apparent from (C.142), the calculation of #, is computationally intensive. To find an
upper bound on the meet between 4 Gaussians, we need to find the minimum of 4! = 24 terms;
when 5 Gaussians are involved, the number of terms rises to 120, and so on. Observe, though, that
the minimum in (C.142) gives the tightest of all bounds (i.e., tightest of the bounds that we have
derived). If one just wants to find any upper bound, the minimization in (C.142) is not necessary.
Each of the ;s (j = 1,2,...,n!) in (C.142) is the standard deviation of one of the upper bounds
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of the meet; so, we can just choose one of the n! terms and use it in (C.141) to get an upper bound
on the meet.

C.8.2 Effect of Clipping

So far, in our derivations, we have assumed that we have perfect Gaussians, i.e., we have neglected
the fact that the actual curves are Gaussians contained in [0, 1] and may, therefore, be clipped (i.e.,
any portion of the Gaussians lying outside the interval [0, 1] is cut-off); however, this clipping does
not change the upper bounds in (C.128) and (C.141). The reason can be explained as follows. Let
F. and G, be clipped type-1 fuzzy sets having Gaussian membership functions contained in [0, 1].
Though the membership functions of F, and G, are defined only on [0, 1], in numerical calculations
the membership functions are treated as if tiley are 0 before 0 and after 1. Therefore, Hi < B

and pg < pg, where F and G are type-1 sets whose membership functions are perfect (unclipped)
Gaussians. (Figure C.2 shows an example of clipped and unclipped Gaussians.) Consequently,
1i e < Bine and therefore the upper bound derived above also holds in the case of clipped
Gaussians. We will have to consider the explicit effects of clipping when deriving the lower bound
for the meet in Section C.8.3.

1 T T T T T

0.8f .

0.6F i

0.4F

0.2F 4

O0 0.2 04 0.6 0.8 1 12

1 T T T T

0.8f 4
0.6f 4
0.4r b

0.2r y

0 ; . L N
0 0.2 0.4 0.6 0.8 1 1.2

(b)

Figure C.2: A Gaussian contained in [0, 1] may be clipped as shown in (a). Figure (b) shows the
unclipped version of the same Gaussian.

C.8.3 Lower Bound on the Meet between Gaussians

As we have seen earlier, substituting k& = 0 into (2.55) is analogous to finding a lower bound on the
meet between two Gaussians. Now, however, we also have to include the clipping effects mentioned
in Section C.8.2, because a lower bound that assumes perfect (unclipped) Gaussians may not work
for clipped Gaussians, since, as mentioned in Section C.8.2, Hi G, < Bindg where Fc and Gc are

clipped versions of Gaussian type-1 sets F and G. So, instead of just substituting k = 0 into (2.55),
we go back to the beginning of the derivation for the Gaussian meet approximation.

Recall that using k = 0 is equivalent to assuming that one of the Gaussians has zero standard
deviation (Section 2.3.2), i.e., it is equivalent to assuming that type-1 fuzzy set F (or G) has a
membership equal to 1 at my (or m,) and equal to 0 at all other points. Let’s see what happens
if this is really the case.
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Assume that pgp(my) = 1 and pp(f) = 0 for 6 # my, and pg(f) is a Gaussian contained in
[0,1], i.e.,

DT L gep,
ngl) =49 °© ’ ’ (C.146)
0 ;  otherwise

The result of the meet of F and G is just a scaled version of G, ie.,

Hpng(8) = pe(@/my)

_%_(M):
- e * 7z ) % € [0! 1]
0 ; otherwise
— (L)
= e ' Tmreg i 0€[0,my] (C.147)
0 ;  otherwise

Equation (C.147) follows from the definition of the meet operation under product ¢-norm [see
Eq. (2.36) and also Section 2.3.1]. In Section 2.3.1, we ignored the clipping effects mentioned in
Section C.8.2; but, here, we have to take them into account to make sure that the lower bound
holds in all possible cases. Since the Gaussian ug(6) is contained in [0, 1], the resulting function
in (C.147) is nonzero only in [0, mg].

Now, if we assume that G is the singleton, i.e., if pa(m,) = 0 and pg(0) = 0 for 6 # my, and
pti:(0) is a Gaussian contained in [0, 1], then we get

RN | sy
nina(®) =14 © i 0 €[0,my] (C.148)
0 ; otherwise

The actual lower bound can be taken as the maximum (since each of them is a lower bound)
of the results in (C.147) and (C.148). If we assume that my < m,, then the lower bound is

( G—mgm 5
"""{'%(m%i‘m)“} ; 0€0,my]

L oy L
Hing(8) = < exp{ -1 0,—;:%9-)2} i 0 €my,my) (C.149)
L 0 ;  otherwise

If we assume that m, < my, the lower bound is

1 d—myrm, 2 .
GXP{ - E(W) } ; 0€0,my)

s

Mna@ =) e - y(SEmE 5 o€ mym] (o)
0 ;  otherwise

To simplify (C.149) and (C.150) a little bit, we ignore the part of the curve lying outside
[0, min{my,m,}]. Doing this will make the lower bound a little bit loose, but will let us gen-
eralize to the meet of more than two sets easily. Hence, without any assumptions on mjy and

mg,
Xp4{ — 3 —[—L—’—a"m . 2y 3 0€[0,min{my,m
Hl{:m(::(g) ={ ew(p{ z(maxomfag,m,n;}} } L [ Inlﬂ{ I g}] {C.151)

i otherwise

b

A generalization of (C.151) to the case of more than two Gaussians is a bit tedious; therefore,
we take a different approach as illustrated by the following :
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Example C.2 Consider the meet between three Gaussians ﬁ‘l, f*\,, f"3, in [0, 1], with means m;,
my, mz and standard deviations oy, g2, 03. We consider three cases to find a lower bound for the
meet. First, we assume that F2 and F; are singletons at ms and g, respectively (zero standard
deviations), and F, is a Gaussian contained in [0, 1] with mean m, and standard deviation ;. This
is equivalent to finding the meet between F, and a singleton at momg, because meet under product
t-norm is multiplication under product t-norm. Let the result of the meet be Fl,. Proceeding as
in the derivation of (C.147) and (C.148), the membership function of F'l; can be obtained as

v = {4 e 2} 5 00 mms] (C.152)
A3 : otherwise

Then, we find the meet between F,, F, and F3 by assuming that F, and F; are singletons at
m; and mg3, respectively, and F, is not a singleton. Let us call the result of this meet operation
F%,. Its membership function is

" o l d—mymamsg .
Lga, = exp { 3 mimaoa ) } S [D’ ﬂlfﬂlg] (0153)
! 0 : otherwise

Finally, we find the meet between F,, F, and F, by assuming that F'; and F, are singletons at
m; and my, respectively, and F, is not a singleton. Let us call the result of this meet operation
F},. Its membership function is

mimaos

(C.154)
0 : otherwise

_ { exp{ - %(H——’-—u_m iz )’)} ;0 € [0,myms]

Since iy, Mz, and Hiss, s each give a lower bound on the meet between F, F, and Fy, we

choose the maximum of them [d[,(nn as in (C.151), we keep only that part of the maximum function
which lies in [0, min{mmy, mams, myms}], for simplicity]. This gives us

1 ¢ 0—=mymomay2
L expq — 5(==Lmama) } ;o #el0,ls)
1= s . #) = { - as 0155)
“}-]ni-ans( ) { 0 ; otherwise (
where
&3 = max{m,ma0o3, mymz02, Mamzo } , (C.156)
and
l3 = min{myma, mamy, mymsz} (C.157)
O

Now, suppose that we have n Gaussian fuzzy sets, F,,F,,...,F,, in [0,1] having means
) 1 2 n:

my,Ms, ..., my and standard deviations o1,03,...,0,. A lower bound on their meet is obtained
by generalizing (C.155) to the case of n Gaussians, i.c.,

p.(9)={ e { — 3§} 5 o€ on (C.158)

0 ;  otherwise

where (i = 1,2,---,n)

&1 = max {0’1 H mi, 02 H Miy -+, 0] H Mi, -, 0n H m,-} (C.159)

RES 92 {i#] iii#n
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and

Iy = :nin{ H mi, H M, -, H My, -, H mg} (C.160)

IRES 12 IR ECR] ijisn

maans « [0.3.07,08,08] means = (02 07]

0 dovs = | .06, 008.01,071] mddevs s [01.01]
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Figure C.3: Some examples of upper and lower bounds given in (C.141) and (C.158). In each figure,
the solid line shows the actual result of the meet (computed numerically), the thick dashed line
shows the Gaussian approximation and the dash-dotted lines show upper and lower bounds. The
Gaussians in (c) are coincident (same means and standard deviations). The Gaussians in (d) are
the same as in Fig. 2.15 (f). Since one of the Gaussians is centered at 1 (half of it is clipped), the
approximation does not work as well as in the other cases; however, the upper and lower bounds
still hold. In this case, the upper bound coincides with the approximation.

Figure C.3 shows some examples of the just-derived upper and lower bounds. Both, the upper
and the lower bounds, that we have derived are quite conservative. It may be possible to derive
tighter bounds; however, we will not pursue this issue any further.

C.8.4 Bounds on the Gaussian Approximation Error

Before proceeding to find bounds on the error for the meet between Gaussians and the Gaussian
approximation of the meet, we shall show that, just as the upper and lower bounds derived in this
section enclose the actual meet curve between them, they also enclose the Gaussian approximation
for the meet, i.e., we shall show that

ihy o (0) <oy 5, 0) Sul 5 0) 5 0€[.1 (C.161)
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Recall that to find the Gaussian approximation for the meet between two Gaussian fuzzy sets, F
and G, we solved an optimization problem and arrived at the following expression for the Gaussian’s
standard deviation [see Eq. (C.123)] ,

o(k) = \/mio} +k%2 , kel0,]] (C.162)

Obviously, o(0) < a(k) < a(1) for any k € [0,1]. In particular, 0(0) < o(my) < o(1), ie.,

myoy < \Jmia +mio2 < \/miot + o2 (C.163)

These results are also true when we change the order of F and G; hence,

mo, < y/m2o% +mie2 < \/m3o? + a2 C.164
9% a°f I“a f~a I

Combining (C.163) and (C.164), we get

max{myo, , myos} < /m> o} +m3 % < min {y/m%02 + 5%, m?cr +o0} C.165
90 Matf 1% I = ] I f

Consequently,

2 2
7 2 ] f—mymg _1( f—mymg )
ot o | 3 —
_%(W) Ze 2 ;I§a2+ﬂ‘3!“§ nlln{\/ru L +a \/_ o?-}-a;} (0166}

e

Also, from (C.151), it follows that

( B—memg }2
< ( max{mog.mger} (0.167)

"rncv—

If we denote the Gaussian approximation in (C.124) by fizqg, it follows from (C.128), (C.129),
(C.166), and (C.167) that

i (6) < g @) <nl 4(6) i 0€[0,1] (C.168)

This is in general true for the meet of any number of Gaussians, as can be verified from (2.61),
(C.141), and (C.158) in a similar manner; hence,

M 5. (0) S fing 5, (0) Sl 5 (6) 5 0€[0,1]

Suppose that we have n Gaussian fuzzy sets, F,,F,,...,F,, in [0,1] having means
my,ma,...,m, and standard deviations ¢;,02,...,0,; then, we have shown earlier (in Sec-
tions C.8.1 and C.8.3) that

Mo .(0) S pe 5, 0) Spe 5 (0) 5 6€[0,1] (C.169)
From (C.161) and (C.169), we can see that (dropping the subscript “Mi_,¥,” for notational conve-

nience) if 1(6) < u(0),
u(0) — a(8) < ¥ (6) — 1(9) (C.170)

Similarly, if j1(8) > u(8),
fi(8) — u(9) < i(8) — p*(0) (C.171)
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From (C.170) and (C.171), we can bound the approximation error as

ﬂ'ﬁ?zlf‘l. (0) - Fn:‘:lf?; (g)l < max { [pg}.:l F, () — ﬁns;!f;l_ (6‘)] ;

[;1%,?,‘_ (6) — by (9)] } chel0,1  (C.172)

where fiq. § (0) is given in (2.61), Y (#) is given in (C.141) and ,u;:'l,_ & (0) is given in (C.158).
i=1" i i =171

n R
r‘liﬁll

Equation (C.172) gives an upper bound on the approximation error at any point 6 € [0, 1]. To
use (C.172), one needs to compute the upper and lower bounds [,u{nf“ i (0) and ,u#,, P (9)] along
=it i=mlti

with the Gaussian approximation [g}n._, P (9]]. The approximation error at ¢ is less than or equal
i=1"1i

to the larger of “gv 5 (0) = fipn 7 ()] and |fin. ¢ () — pf‘,l, = (0)]-
!Elba i=1"1 i=1"i n'=:I"

Observe, from Fig. C.3, that the approximation error is less in the high membership regions
than in the low membership regions, and is equal to zero at the point having unity membership
(this point is equal to the product of the centers of all the participating Gaussians).

C.9 Proof of Theorem 2.4
We prove the theorem in two parts : (a) we prove that o;F; + 4 is a Gaussian fuzzy number with

mean a;m; + 3 and standard deviation |a;o;|; and (b) we prove that Y ._, F; is a Gaussian fuzzy
number with mean Y_i* | m; and standard deviation X", where

S { ‘/21._5_ yo; , if product t-norm is used (C.173)

Y 0i , if minimum t-norm is used
(a) Consider
F, =/e_%( i ) Jv (C.174)
v

Multiplying F; by a constant a;(= 1/a;) yields [see Section 2.4.1]

oF, = / [.2_%(15'_"'&).J * 1]/(&;1})
fe_%(%)g/(a;v) (C.175)

Now, adding a crisp constant B(= 1/8) to a;F;, we get [see Section 2.4.2]

aiF; + /[e_%(%)z*l]/(mv+ﬁ)

]

/e_%(%):/{a;v +8) (C.176)

i

1l

Let a;v + 3 = v'; this gives v = (v' — 3)/a;, which when substituted into (C.176), leads to

. v=0) _ ;12
aF,+8 = /uxp{-l[—( o ) ] }/“uf
v 2 a;
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l; =, STTL: 2
= /,,.v exp{ - %[w] }/t}' (C.177)

which shows that a,-f’i + A is a Gaussian fuzzy number with mean a;m; + 8 and standard deviation
|evio;|. Note that this result does not depend on the kind of ¢-norm used, since a; and 8 are crisp
numbers.

(b) Consider f“l and E'g, with means m; and m» and standard deviations o) and oy respectively.
The sum of these two fuzzy numbers can be expressed as [see Section 2.4.2]

/ver / U_m ) *e_ﬁ(w)2/[v+fv] (C.178)

where * indicates the chosen t-norm.
(i) Product t-norm : In this case, (C.178) reduces to

2 2
F, +F, =/vef-’ Lef e‘%(%) c_%(%z) /v +w] (C.179)

If  is an element of F, +F,, the membership grade of 6 in F, + I, can be obtained by considering
all the {v,w} pairs such that v € Fl and w € F and v + w = 6, multiplying the memberships
of v and w in every pair, and, choosing the maximum of all these membership products. In other
words,

2 2
__L(""'"‘l) -%[(Q—U]—mg]
supe “\ 1 /g €2

v

I“'(f.‘l +F‘2)(9) =

2 2
- v=—1n1 (f—v)—ma
= supe [( g ) +( 72 )] (C.180)
Let us call the expression in the square bracket in the exponent of (C.180) J(v), i.e.,
i 2 P 2
J(v) = (v ml) + [Qﬂ] (C.181)
5] aa

The value of v that maximizes the e\(pont‘nt on the RHS of (C.180) can be obtained by minimizing
J(v). Note that J is convex (J" = —-; 4 --.r > 0), so equating the first derivative of J to zero

(assuming the minimum is reached at v *); we get

(L2 G) =5 - o
omoCom)
o= T 0= ) (C.182)

a, +c'1r2



Substituting (C.182) into (C.181), we get

6 — (m + m-z)] ’ (C.183)

i‘.‘.f J(v) = l \/—-}-ﬁ
oi + 03

Substituting (C.183) into (C.180), we get

2
_% s—(mn-l-m:}
0) =e [ Vi ] (C.184)

This result generalizes easily to the case of more than two Gaussians. Let my» = m; +m2 and
g0 = \/{T? + 03, so that f‘l -t F‘z is a Gaussian with mean mi2 and standard deviation ¢12. Now,
if a third Gaussian fuzzy set 1_73, with mean ms and standard deviation o3, adds to this sum, the
mean and standard deviation of the resulting Gaussian are

P, +7,)

Miag = M2 +m3 = my +my +my (C.185)

0123 = \[0fy + 0F = \/‘Tf +03 +03 (C.186)

Generalizing the result to the case of n Gaussians, we see that 31 | F; is a Gaussian fuzzy
number with mean Y7, m; and standard deviation /3, o7.
(if) Minimum ¢-norm : In this case, (C.178) reduces to

11+F3=/EF /EF e_%(u_}"n)?/\c_%(%z)z/[v+w] (C.187)
vel’, JweF,

If  is an element of F, + F,, the membership grade of # in F, +F, can be obtained by considering
all the {v,w} pairs such that v € F; and w € F, and v 4+ w = 6, finding the minimum of the
memberships of v and w in every pair, and, choosing the maximum of all these minimums. In
other words,

H(F, +5,) (0) = sup [f—ﬁ(;TL) A (-E[L__];__h]z] (C.188)

We make use of the fact that the supremum of the minimum of two Gaussians is reached at their
point of intersection lying between their means. To solve for the point of intersection, we equate
the equations of the two Gaussians.

L[ ve—my e _1|(f-ve}—maq =
c-'.‘ EX e 2 ang

[(9— v.) —mg]i’-

" (t;. ;:n.l )- = -
" (v. ;lml)‘z _ [(9—?2:)-—1}.]2
N ve M _ i(ﬁ' —M3) — Vs (C.189)
ay a9 '

The positive square-root on the RHS of (C.189) gives us the point of intersection lying between
the means [m; and (# — m»)]. Solving further, we find

z.:.(l 1) - ﬂ+(9—m2)

—_— —
a) aa T a9
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o oy = Mort(@-mo (C.190)
o1 + 02

Since v. is the point of intersection of the two Gaussians, it has the same membership in F; and
[‘.,, therefore, membership grade of ¢ in F + Fz is

Wi, +7,)(0) = exP{ - %(uﬂ)z}

71
myoa+(0—ma)o 2
1 T my
o 170 — (my +ma)\2
== exp{ 2( pg-snrn ) } (C.191)

This result generalizgs easily to the case of more than two Gaussians. Let m;» = m; +m» and
o12 = 01 + 09, so that F| + I:"".z is a Gaussian with mean m2 and standard deviation o)3. Now,
if a third Gaussian fuzzy set Iy, with mean m3 and standard deviation o3, adds to this sum, the
mean and standard deviation of the resulting Gaussian are

M2z = M2 + Mg = My + Mo + M3 (C.192)
o123 = 012 + 03 = 01 + 02 + 03 (C.193)

Generalizing to the case of n Gaussians, we see that Y"1, F; is a Gaussian fuzzy number with
mean ', m; and standard deviation Y _;_, o;.
Combining parts (a) and (b), we get the desired result. O

C.10 Proof of the Claim in Example 2.5

Consider an interval type-2 set resulting from a Gaussian type-1 set, whose mean is uncertain in
the interval [m;,m»], and whose standard deviation is . We show that, if (my —m;) is small
compared to o, the centroid of this type-2 set is approximately an interval type-1 set with domain
[y, ma].

Figure C.4 (a) depicts an example of such a set, A. The type-1 Gaussians with centers m; and
ms and standard deviation ¢ are also shown. From the discussion in Example 2.5, we know that :

(1) the centroid of A is some interval, [er, ¢r], which contains [my, ms], and (2) ¢ is the centroid
of an embedded type-1 set, A, [see Fig. C.4 (b)] whose membership function assigns the highest
possible memberships to all the points to the left of ¢, and the lowest possible memberships to all
the points to the right of ¢;. We now focus on the left end-point, ¢, of this interval. The discussion
about ¢, is similar.

We show that ¢; > my — A, where

me — my

A=
2

(C.194)
Consider the embedded type-1 set, A;, shown in Fig. C.4 (c). The membership function of this
embedded set assigns the highest possible memberships to the points less than (m; — A), and the
lowest possible membership to the points greater than (m; — A). It is easy to verify that the area
under this curve, to the left of (m; — A), is the same as the area under it to the right of (m; + 4A)
[see Fig. C.4 (c)]; therefore, the centroid of this curve, ¢, lies between (my — A) and (my + A).
Now consider any other embedded set, A,, which assigns the highest possible memberships to all
the points to the left of some point m’ and the lowest possible memberships to all the points to
the right of m', where m' < m; — A. It is easy to see that the centroid of Az will lie to the right of
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2!
0 m=A"c : €, M, +A
(d)

Figure C.4: Figures for Appendix C.10. (a) An interval type-2 set A resulting from a Gaussian type-
1 set with standard deviation equal to o and mean uniformly uncertain in the interval [m;, ms].
The Gaussian type-1 sets having standard deviations ¢ and means m; (thick dashed line) and
ms (thick solid line) are also shown. (b) The embedded type-1 set, Ai, whose centroid equals ¢
is shown with a thick solid line. (c¢) The embedded type-1 set, A,, whose membership function
assigns the highest possible memberships to the points to the left of m; — A and the lowest possible
memberships to the points to the right of my — A, where A = (mg —my)/2, is shown with a thick

solid line. The Gaussian with center m; is shown with a thin dashed line. (d) The centroid of A
is a crisp set with domain [¢;, ¢,], where m; — A < ¢ <my and my < ¢ <ma2 + A.

¢'. We, therefore, conclude that ¢; > m; — A. Using this result with the fact that [, ¢;] includes
[y, ma], we get
m—A<eg<m (C.195)

Obviously, as A = 0 [i.e., as (m2 —m,) = 0], ¢ = m;. We will make use of (C.195) in the sequel,
to show the dependence of ¢; on .

To show the effect of o on ¢, we write the expression for the centroid of A, [see Fig. C.4 (b)).
Let G(z;m,0) = exp{—3(%52)?}; then

o Bl 2 xG(x;ml,a)d;c+fc'!"'+& zG(x; mg,o)dm+ﬁf::+ﬁ 2G(x;my,0)dz
TTTA T :]OOG(.’IJ;ml,O')tf:E+_f::II+AG(IE;T?L2,O‘)(f:B+j::i+QG(I;THL,D')dI
I 2G(xymy, 0)dx — j::”JrA z[G(x;my,0) — G(z;me,0)]dx
[2, G(z;my,0)de — [MFA G (w;my, 0) — G(z;ma, 0))de

cy
V2zroemy, — Ih

= — C.196
270 — Iz ( )
where

mi+4
L = / z[G(z;my,0) — G(z;m2,0)|dz, (C.197)

Jm:-hﬁ
I, = / [G(zimy,0) — G(z;m2,0)|dx (C.198)

<
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and, we have made use of the facts that : (1) the area under a Gaussian having standard deviation
o is vV2ro, and (2) since the centroid of a Gaussian is equal to its mean,

o0 oo
f =G (z;my,0)dr = my / G(z;my,0)dr = V2r0my (C.199)
. " .

From (C.195) and (C.196), we have

0 Lmy—o = ils (C.200)
2r0 — I

Observe, from (C.197) and (C.198), that

my+A
/ (my + A)[G(z;my,0) — G(x;ma,0)]de = (my + A)L» (C.201)

cl

L2

Using (C.201) with (C.200), we get

Al
0<m - < ———— (C.202)
270 — I»
Now, observe, from (C.198), (C.195) and the fact that G(z; m;,0) > G(z;my,0) for z < m;+A,
that —
I < / [G(z;my,0) — G(z;my,0)]dz (C.203)
my—A

Observe also that, for z € [m; — A,m; + Al,

0 < Gl;ym,o) - Glx;ma,o0)
T (O )
= G(z;m1,0) [1 - exp{ - i—f(ml LA :1:)}]
< Glzyma,o) [1 - exp{ = (%)}] (C.204)

In the last step of (C.204), we have made use of the fact that z > m; — A.
Using (C.204) with (C.203), we have

L < [1 - exp{ - (%)2}] /ﬂ:]:]_-r G(xz;my,0)dz
< [1 —exp{ - (%)2}] /LO:C G(x;my,0)dx
= [l —exp{ - (%)J}] V2ro (C.205)

Observe that

Vara [t -exp{ - (%)z}]

o= (e 5 ()]

1
S|
B
Q

—
s
|
=
E
-y
~—
1]
&
—
L]
~—
d
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(==] .
o 1 724 2i-1
— 1yl = 2=
- Q@A[g( 1) i!( = ) )] (C.206)
It is clear, from (C.205) and (C.206), that, as ‘ZA/J = (me —my)/o = 0, I, = 0; hence, from
(C.202), ¢; = my.
In a similar manner, it can be shown that my < ¢, < mp + A, and as (my — my)/o = 0,
¢, = mo [see Fig. C.4 (d)]. O

C.11 Proof of Theorem 2.5

2
Let G(z;m, o) £ exp{ - %(ﬂ) } Equation (2.75) can now be rewritten as

o

M
i’ = / f / / ﬂiflG(z“m_hU;)*?}’iflG('w“hhA{) &TT}% (6207)
1 Ia Y un wat

1=1 W

where Y £ 000 By W s Wi
Ifwelet y=2z—myand § =w; —h forl=1,..., M, (C.207) becomes

Zfil(hl + &) (my + )
S (b + 1)

Theoretically, each § can take any value in the interval [0,1]; however, only those values which
lie within 2 or 3 standard deviations of h; contribute significantly to the union in (C.208); therefore,
we assume that each &; takes values between £kA;, where k = 2 or 3. Similarly, we assume that
each v; takes values between +ka.

The term to the right of the slash in (C.208) can be rewritten as

(C.208)

‘=// / MG (1;0,00) * TM G(6150, A7)
71 Far Jdy dar

Sowizr Y4 0)(myg +m)
2w i (Pe +61)
_ Z, hymy + Z; hyy + ZI &y + ZI i (C.209)

Zt b + Zl 0y

where the limits on each sum are from 1 to M.

In what follows, we express the term on the RHS of (C.209) as an affine combination of Gaussian
~’s and §’s so that we can make use of Theorem 2.4 to find an (approximate) expression for Y in
(C.207). We expand the denominator of (C.209) by first rewriting it as

| 1 1
= C.210
):Ih;-}-z,ﬁ: Zjhg(l_l_zéx) ( )
Zi hy
If [>2,0] < >l (since & varies between —kA; and kA, this is equivalent to assuming that
k>, Ar < 3, li), we can express the parenthetical term on the RHS of (C.210), as

1 10 T2 1 Xii\®
:gzl_(zfm)+(zthi) _(Zlhi) +oee (C.211)
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where we have made use of the identity

——=l-a+at g i ol <1 (C.212)
If Z
a8t
<1, C.213
Z: ,“ ( )
which means that 55 |
1Za 1
<1, C.214
Sk ( )
we can ignore powers of ), 6;/ >, hu greater than 1 in (C.211). This gives us
1 Y
e W1 (&) (C.215)

ZI hy
1+ Z‘_; ™

Substituting (C.215) into (C.210), we get

1 ~ L 210
S+ 0 - il (1 - Yo ;,{,) (C.216)

Using (C.216) in (C.209), we get

S wiz - S ey 4+ 3 v 4+ Y gy + 3 0w (1 B ¥ 5;) (C.217)
2 Wi Z: hy LT

Ignoring all the terms containing powers of ), d;/ 3", hy higher than 1, we get
2o Wiz . > umy (1 _ 2 5!) > (1 _ Zféf) + Yo 0y E:Jﬂf

> w = > Yol Yol Yot il Z, hy
> iy B Y (Z, k;m;) Yo b

it SN Yl 2
S0l | Y Y G
_ + C.218
ZI h; ( Z!h; ) ZI h; Zl h{ ( )
Let S
M= & umy ; C.219
’ Zz h ( )

then (C.218) can be rewritten as

DVLL OV M2a5t Loy 3 2:51(2111:71) 210 (C.220)

2w 2l Yk Zt he o i\ 3 2 b
Next we focus on the last two terms in (C.220). Observe that
Zf 51"]@ Z; 6!
el TN : = 2
Z; Iy \ - |m?h%(z{ h;)' (C 21)
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Since v; takes values between +kay, (C.221) is equivalent to

=t Tl <k .
ZI h; | = m?_‘ca;] EI h;| (C 222)
Similarly,
|Z" h.“)’{l < kmax oy (C.223)
i h; I
Consequently,
S0 Xy | S| | X0 20 20
- < ' < 2k C.
| Z,h;( Y )+ Sl | < |Z,h,( > hi )|+| e | mf"”‘|z,h,| (e

Observe, from (C.220) and (C.224), that if condition (C.214) is satisfied, we can ignore the last
two terms on the RHS of (C.220) in comparison with ), h,r;q/ >~ lu, which, according to (C.223),
takes values in =k max; g;. Doing this gives us

Yo Wiz & s \AZ' Z:JITHH_ZHW:
2w 2 hl 2 2

Z[“"( iy ) (m'z—l_!‘:"—)]+.aw (C.225)
Using (C.225), (C.208) can be rewritten as
[[ [ ﬂi’;G('n;O,m)*ﬂi"lG(Jr;U:AI)/
mn yar 4 dy dar
2 Y g (T MYT Lo C.226
S ollc) a2 0

Recall that v = z; — my and & = w; — hy. Let

Zy =% -m for l=1,....,.M (C.227)
and ) }
W, =W, -l for I=1,...,M; (C.228)

so that each Z, is a type-1 Gaussian fuzzy number with zero mean and standard deviation equal
to o7, and each W, is also a type-1 Gaussian fuzzy numl)cr with zero mean and standard deviation

A;. Observe that the RHS of (C.226) is equal to + W M| + M (see
; (C.226) is eq [z (st) + ()] (
Section 2.4.2), i.e.,

xmz[ ( hy ) W (’"‘Zth:“t)}hw (C.229)

_ The result in Theorem 2.5 follows by applying Theorem 2.4 to (C.229), using the fact that all
Z;’s and W,’s have zero means. O
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Comment 1 : When all A; = 0, there is only one source of fuzziness in 3, w;z;/ >, wy, namely,
the Z,’s. In this case, (2.75) reduces to

<5 Y, iz
\(Zl ZM,}II.”. M} = 7; G z;,m;,ag) M (0230)
Yz lu

Again, letting vy = zp —my for 1 = 1,..., M, we have

Z;‘ii h(my + 1)
M
Zf:l h:

Y(Zy,--1Zpgs b1, har) = /[ TM G(%;0,01)
T T™
= f :i’:G{w;O,a:}/
T Tar
ZI lhgm; h; ]
+
[ h; Z I(Z )

[H /7;IGw;,Oa;)/[Jw+Z~ﬂ(Zj:’ )]

il

=

- hy
W + M C.231
=1 _I( h") ( )

where ﬂt is as defined in (C.228) and M is as in (C.219). Applying Theorem 2.4 to (C.231),
it follows that Y(Z,,...,Zy, hy,-..,har) is a Gaussian type-1 set with mean M and standard

deviation X, where
M
}fzizl(-‘lml’ ) .
, if product ¢-norm is used

¥ = = B (C.232)
Yo (ar) i .
l= , if minimum #-norm is used

h
=1 '

Observe that this result is exact and it can also be obtained by substituting &; =0 (I =1,..., M)

in (2.77).

Comment 2 : It is not very easy to find an expression for the error between the approximation

in Theorem 2.5 and the true set Y; however, we can find bounds on the domain of Y easily.
Recall Eq. (C.208). If each & varies between :kA; and each v varies between +kgy, the term

to the right of the slash can be bounded as

Zl{hf — kA ) (my - kay) < ZIU“ + ) (g + v) < Zf(hf + kA (my + kay)
2l + kAY) - (b +61) N 2 — kAY)

Let k; = max;[A;/hy] for ly # 0 and let k2 = max;[o; /], assuming my > 0 (l=1,...,M). From
(C.233), we have

(C.233)

o (hy = kkyhy) (g — kkamy) < oy + 8g) (mau + ) <
Z{(h; + kkihy) - Z,(hg +4;)
S (hy + kkyhy) (my + kkamy)
S (hy — kkihy)
(1= kk)(1 - kkz}] & 2o (e + 6) (mu + )
(1 + kky) YT

M|
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(14 kky)(1+ ksz] (C.234)

M| 1 —%k)

where M =37, h;m;/ 3", ly. Since the term to the right of the slash in (C.208) indicates a general

point in Y, it is clear that the entire domain of Y lies between the bounds in (C.234).

Though the bounds in (C.234) are generally very conservative, they illustrate how
‘I'(Zl,...,2‘.“,,\1"1,...,\‘-\."5,.) collapses to y(zi,...,za,wy,...,0n) [see (2.74) and (2.75)], when
all the type-2 uncertainties collapse to type-1 uncertainties. When all the type-2 uncertainties
disappear, k) = ks = 0 and the upper and lower bounds on Y both equal M, implying that the
type-1 set Y collapses to a crisp point equal to M, i.e., 1/M (since pg(M) = 1).

Similar bounds can be obtained when all or some of the m; < 0.

Comment 3 : Since the bounds in (C.234) enclose the entire domain of the type-reduced set
between them, M, the unity membership point in Y, and Cy, the centroid of Y, also lie between
these two bounds. The difference between M and Cy can, therefore, be loosely bounded as
(assuming my >0 forl=1,...,M).

M=Cy| < M[(I+kk1)(1+kk2) (l—kkl}(l—kkz)]

(1 — kky) - (1 + kky)
1+ kk)2(1 + kk2) — (1 — kky)?(1 — kk
> IM-cyl g s[RI (11;;2(;;-’) DX( 2)]
4kky + 2kko (1 k? V
> [M-Cy < M| ‘+ k%;’ )] (C.235)
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Appendiz D

Weighted Average of Interval Type-1 Sets

Hcre, we develop a computational procedure for computing the exact result of a weighted average
of interval type-1 sets. This procedure can be used to compute the centroid of an interval type-2
set (Section 2.5) or to compute the type-reduced set for an interval type-2 FLS (Section 5.9).

Since every point in the domain of an interval type-1 set has a unity membership, we can
describe an interval type-1 set just by its domain, e.g., an interval type-1 set with domain [/, ] can
be indicated as just [{,7]. If we let m = (I +r)/2 (mean) and s = (r —{)/2 (spread), we can also
indicate an interval type-1 set as [m — s, m + s].

D.1 Exact Result : Computational Procedure

Consider the weighted average of type-1 fuzzy sets [see (2.75)], which we reproduce here for con-
venience

gtV = [ o[ [ [ Ty o) |
1 Iar Jun war

M
ZI:! wun zp (Dl)

Z?__{l wy

If each Z, and W, (I = 1,..., M) is an interval type-1 set, then, using the fact that 1z, (z1) =
Iy, (w;) =1, (D.1) can be rewritten as

. i ] Y wiz
Y(Z1yeos 200, Wiy, Wag) = [ oo R (D.2)
z1 zar o un Wy =1 wy

where we have omitted the tilde, since all the sets involved are crisp. We present an iterative
procedure to compute the actual weighted average Y, when each Z; in (D.2) is an interval type-1
set, having center ¢; and spread s; (s; > 0), and when each W, is also an interval type-1 set with
center h; and spread A; (A; > 0) [we assume that by > Ay, so that wy >0 for I =1,..., M].

We make the following observations :

1. Since each set in the weighted average on the RHS of (D.2) is an interval type-1 set,
Y(Zy,...,Zn, Wi,...,Wy) will also be an interval type-1 set, i.e., it will be a crisp set
having an interval on the real line as its domain. So, to find Y (Z1,...,Zp, Wi,...,Wa),
we need to compute just the two end-points of this interval.
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2. Since wy > 0 for all {, the partial derivative 8Y /dz, = wi/¥;ws > 0; therefore,
Y always increases with increasing zp; and, for any combination of {w;,...,wp} cho-
sen so that wy € Wy, Y(Zy,...,Zp, Wi,...,Wyr) is maximized when 2, = ¢ + s; for
l=1,....M; and Y(Z,,...,Zy, Wi,...,Wps) is minimized when 2 = ¢; — 5. The right
end-point of the domain of Y (Z,,..., 2y, Wh,...,Way) is, therefore, obtained by maximiz-
ing [Z, wy(ep + 3;)]/[2I wg] subject to the constraints wy € W; for I = 1,..., M; and,
the left end-point of the domain of Y (Z;,...,Zp, Wi,...,Wyy) is obtained by minimizing

[Z‘ wy (¢ — s;)] /[Z, w;] subject to the constraints w; € W; forl =1,..., M.

From these two observations, it is clear that in order to compute Y (Z,..., Za, Wi, ..., War)
we only need to consider the problem of optimizing (maximizing / minimizing) the weighted average

Y
S(un, .., wyy) = =2 (D.3)
1=1 Wi
subject to the constraints wy € [y — A, by + Ay for I = 1,..., M, where, by > Ay, so that w; > 0,
forl =1,...,M. As explained in observation (2) above, we set z; = ¢; + s (I = 1,..., M), when
maximizing S, and z; = ¢ — s (I =1,..., M), when minimizing S.
Differentiating S(wy, ..., wp) w.r.t. wg gives us

0 _ a Z:’i]z;w;
mS(Wls---gTvaI) = m [ Z;'.z,rl i

) [zkwk + ZI;Hc z;w;]

dwy, wy, + Et# ]

1
- l—wk " sz' (2x)

-1
+ (zkwk + Z z;w;) 5
I#k (wk + 21k w:)

M
kD= aw

M 2
—q M
Zl—l ( =1 TU]')
M
2k _ Zf:l zZywy 1
- M

1=1W Z;L w Zfix L
2k = S(wy, ..., war)
= M (D.4)
2= Wi
Since Z{!l wy > 0, it is easy to see from (D.4) that
D Slwiyeon) 20z 2 Swire..,wn) (D.5)
dwy, < <

Equating 98 / dwy. to zero does not give us any information about the value of wy when S is
maximized or minimized, because

M

2= AW
M = <k
1=1 Wt
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M

M
= Z Iuy = zZp Z wy
=1

=1
M M
=  zZpwg + Z 21wy = Zpwg + 2k z wy

=1 L=T

£k I#k

Dtk AW

= =T - (D.6)

S Wi

where the sum goes from 1 to M. Observe that wy no longer appears in (D.6). Equation (D.5),
however, gives us the direction in which wy should be changed to increase or decrease S. Observe,
from (D.5), that if z;, > S, S increases as wy, increases; and, if z; < S, S increases as wy, decreases.

Recall that the maximum value that wj, can attain is iy + A, and the minimum value that it can
attain is by — Ag. The discussion in the previous paragraph, therefore, implies that S(wy,...,wyy)
attains its maximum value if : (1) wr = hx + Ag for those values of k for which z; > S, and,
(2) wp = hy — Ay, for those values of k for which z; < S. Similarly, S(wy,...,w)s) attains its
minimum value, if : (1) wg = hy. — Ay for those values of k for which z;. > S, and, (2) wr = h. + Ay
for those values of k for which z, < S.

The maximum of S can be obtained by following the iterative procedure given next. We set
zr=¢+s (I =1,...,M); and, without loss of generality, assume that the z’s are arranged in
ascending order, i.e., 2; <20 < ... < 2pr.

1. Set wy = hy forl =1,..., M, and compute S’ = S(hy,...,har) using (D.3).
2. Find & (1 < k < M — 1) such that z; < S5’ < zp4.

3.8t wy = hy— Ay forl < kandw =+ A forl > k+ 1, and compute S” = S(h; —
Ay, hie — Apy gy + Apgry oo, har + Apg) using (D.3).

[Since the z’s are arranged in ascending order, observe, from (D.5) - see also the sentences
after Eq. (D.6) - and the fact that zp < S’ < 2441, that, because we are decreasing the w;’s
for I < k and increasing the wy's for [ > k + 1, " > §']

4. Check if S" = S'. If yes, stop. S" is the maximum value of S(wy,...,war). If no, go to
step 9.

5. Set 8’ equal to S”. Go to step 2.

It can easily be shown that this iterative procedure converges in at most M iterations, where
one iteration consists of one pass through steps 1 to 5. At any iteration, let k' be such that
zp < 8" < zpoyy. Since S > 8", k' > k. I k' is the same as k, the algorithm converges at
the end of the next iteration. This can be explained as follow : &' = k implies that both S’
and S" are in [z, 2x41]. Note that, it is still possible that S” # S’. If this happens, however,
observe, from step 3, that S" = S(hy — Ay, ..., b — Ag, gy + Ags, - .o har + Ay ); and, because
of step 5, for the next iteration, S' = S(hy — Ay,... ht — Ap, by + Dggry - har + Apr).
The index k chosen for the next iteration will, therefore, be the same as the index k chosen
for the current iteration (k' = k); consequently, at the end of the next iteration, we will have
S"=8(hy — A, hy— Ap hpsy + Aprry oo har + Apr) = S, and the algorithm will converge.
Since k can take at most M — 1 values, the algorithm converges in at most M iterations.

The minimum of S(wy,...,war) can be obtained by using a procedure similar to the one
described above. Only two changes need to be made : (1) we must set 2y = ¢ —s; forl =1,...,M;
and, (2) in Step 3, we must set wy = ly + A; for i < k and wy = by — A for 1 > k + 1, to compute
the weighted average S”" = S(hy + Ay, - R + Ap by — Aggay oo har — Apg).

187



D.1.1 Centroid of an Interval Type-2 Set

Observe, from (2.69), that the centroid of an interval type-2 set A, whose domain is discretized

into N points, is given as
Jl\f
. —1 216,
A:// 1 Zf_vf-\l_” (D.7)
0 On 1=1 0

where #; belongs to some interval in [0, 1]. Equation (D.7) has the same form as (D.2), except for
the fact that z;’s in (D.7) are crisp numbers unlike Z;'s in (D.2); therefore, the same computational
procedure described above can be used to compute C 5o with the z;’s and 6;’s in (D.7) corresponding
to z’s and wy’s in (D.3), respectively. Note that in this case, s; = 0 for all [, because the z;’s are
crisp. If N is very large, in Step (4), we can check if |S" — S'| < e instead of §"” = §', for some
predecided e.

D.1.2 Type-Reduction for Interval Type-2 FLS’s

This computational procedure can be used to compute the type-reduced set for each of the type-
reduction methods described in Section 5.3.

1. Centroid type-reduction : The centroid type-reducer [Section 5.3.1 - (5.7)] combines output
sets for different rules by finding their union, so that the membership function of the combined
output set, B, is given by (5.6).

Let the combined output set be discretized into N points, y,...,yn, and let [L;, R;] be the
domain of ;]E(y,-). To use the computational procedure described in this section, note that the sum
in (D.3) now goes from 1 to N instead of from 1 to M; y;’s in (5.7) play the role of ¢;’s; s; = 0 for
all 1, since the y;’s are crisp; (L; + R;)/2 = Iy, and (R; — L;)/2 = A.

2. Center-of-sums type-reduction : The center-of-sums type-reducer (Section 5.3.2) combines
output sets for different rules by summing them, so that the membership function of the combined
output set, B, is given by (5.13). The type-reduced set can be computed using the computational
procedure described in this section, in exactly the same manner as the centroid type-reducer, where
now B is the sum of individual output sets.

3. Height type-reduction : For the height type-reducer [Section 5.3.3 - (5.17)], 7'’s play the role
of ¢;’s; 8; = 0 for all I, since the §'’s are crisp; and, the output set memberships of the j'’s, ﬁg; @')’s,
play the role of Ws. If the domain of each ﬁﬁi (7') is represented as [L;, Ry], then hy = (L;+ R;)/2,
and ﬂ; = (R{ A L;)/Q

4. Modified height type-reduction : The computations for a modified height type-reducer
[Section 5.3.4 - (5.20)] are very similar to those for a height type-reducer, the only difference
being that each output membership grade is now multiplied by a factor of 1 /5’2, so that by =
(Li + Ry) /26" and A, = (R, = Ly) /28"

5. Center-of-sets type-reduction : The center-of-sets type-reduced set is given in (5.22), where
the ¢-norm used is product, C: = C-l'(;j, is the centroid of the Ith consequent set, and E; = ﬂfﬁﬂﬁ (z:)
is the degree of firing for the Ith consequent set, for { = 1,..., M. In this case, the computati'onal
procedure needs to be applied in two stages. In the first stage, we compute the centroids (C{’s)
of the interval type-2 consequent sets (see Section D.1.1); and, in the next stage, we compute the
type-reduced set using (D.2). When computing the type-reduced set, C, plays the role of Z; in
(D.2). If the domain of C, is the interval [L{, Rf], then ¢; = (L{ + Rf)/2 and s = (Rf — Lf)/2.
The degree of firing E, plays the role of W;. If the domain of E, is the interval [L;, R;], then
h = (L; + R;)/Q and A; = (R; - L;)/?.
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In each of the above cases, a crisp output for the FLS can be found by computing the centroid
of the type-reduced set. Since the type-reduced set is an interval, the centroid is the mid-point of
its domain.

Example D.1 In this example, we illustrate the use of the just-described type-reduction methods
for Interval type-2 FLS’s. We consider a single input - single output type-2 FLS using product
t-norm and product inference, which has rules of the form :

R': IF z is !, THEN y is G.

where z,y € [0,10].

Figure D.1: (a) Antecedent sets (the vertical axis shows the primary memberships of z in the
antecedent sets) and (b) consequent sets (the vertical axis shows the primary memberships of y in
the consequent sets) for Example D.1. The applied input (z = 4) is shown in Fig. (a).

Figures D.1 (a) and (b) show the antecedent and consequent sets. Each of these sets is an
interval type-2 set which can be described by two Gaussians which have the same mean and
standard deviation. The two Gaussians are scaled to different heights. The maximum height
reached by the taller Gaussian is unity, whereas that reached by the shorter Gaussian is s. If the
mean and standard deviation of the Gaussians is m and o, respectively, the membership grade of
a domain point z' is an interval [s cxp{—O.S(?)z} ; exp{»O.S(E’f’-’i)2 }- The m values for each

of the antecedent sets, F!, F2 and F3, are 2, 5 and 8, respectively; the o values are 1, 1 and 1,
respectively; and, the s values are 0.8, 0.6, and 0.9, respectively. For the three consequent sets, G,
G2 and G3, the m values are 6, 2, and 9, respectively; the o values are 1, 1.2, and 1, respectively;
and, the s values are 0.75, 0.75, and 0.8, repectively.

The applied input is z = 4 [shown in Fig. D.1 (a)]. It has non-zero memberships in two

antecedents F, and F,. Figures D.2 and D.3 depict the output sets and type-reduced sets for the
centroid and center-of-sums type-reducers, respectively. Figure D.4 depicts the §'’s, their output

set memberships [ﬁé, (7')’s - see Eq. (5.16)] and the type-reduced sets for the height and modified

height type-reducers. For the modified height type-reducer, the §'’s were set equal to the o values
of the consequent sets : 6 = 1, > = 1.2 and 6* = 1. Figure D.5 depicts the centroids of the
consequent sets, their degrees of firing and the center-of-sets type-reduced set. The centroids of
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G!, G? and G? are [5.8851,6.1146], [1.9986,2.2516] and [8.6415,8.7857], respectively. The type-
reduced set in each case, and the centroids of the consequent sets in the center-of-sets type-reducer
are computed using the computational procedure described earlier in this section.

1 T
[1:1
06F
04r

o2k :F.f;_:;o e

0BF
06
o4F

02

2.3261 33096

B179 10
(b) A

Figure D.2: (a) The combined output set for the centroid type-reducer (the vertical axis shows
the primary memberships of y in the combined output set) and (b) the centroid type-reduced set
(obtained using the computational procedure in Section D.1) for Example D.1.
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i r 23688

| R AR SLt EE i
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Figure D.3: (a) The combined output set for the center-of-sums type-reducer (the vertical axis
shows the primary memberships of y in the combined output set) and (b) the center-of-sums type-
reduced set (obtained using the computational procedure in Section D.1) for Example D.1.

The crisp output for the FLS, for each type-reduction method, can be obtained by computing
the centroid of the type-reduced set. Since the type-reduced set in each case is crisp, the centroid
is equal to the midpoint of its domain interval. The crisp outputs are also indicated on Figs. D.2
- D.5.

The results for this example are collected in Table D.1. In the table, we represent. each interval
type-1 set in terms of its center and spread. Recall that an interval type-1 set with center ¢’ and
spread s' has [¢' — s',¢' + '] as its domain interval. O
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{a) ¥y
1 1 1
05 05 05
o i) 0
o 05 1 [+] 05 1 0 05 1
(&) (e} (d)

Height set : [2.4746,3.3306]
Controid = 2.5026

Moxd. Height set : [2.6496,3.6718]
Centroid = 3,1607

te)

Figure D.4: (a) The 7'’s, and their output set memberships : (b) fiz,(7'), (c) fig, (7%), and
(d) g, (7*); and, (e) the height (solid line) and modified height (dashed line) type-reduced sets
(obtained using the computational procedure in Section D.1) for Example D.1. Figures (b), (c) and
(d) show plots of primary memberships (horizontal axis) versus secondary memberships (vertical
axis). Figure (d) is empty, because ;1133{3}3) is zero (1/0). For the modified height type-reducer,
d'=1,62=12and 6 =1.

1 & ¢’ ¢’
05
19986 | | 22516 58851 | (61146 86415 || 87857
o 4 § 1 ; : A ; .
] 1 2 3 ) 5 6 7 8 9 10
(a) ¥y
1 1 1
05 05 0s
o 05 10 05 v % 05 1
(b) = (d)
1+
L}
L]
o5 ‘I
]
2 25899 | , |33024
2.

£

(o) Lind

Figure D.5: The centroids of consequent sets, C'’s, are depicted in Fig. (a) and their respective
degrees of firing, Iy (z)'s, for | = 1, 2 and 3 are depicted in Figs. (b), (c), and (d), respectively.
Figure (e) shows the center-of-sets type-reduced set (obtained using the computational procedure
in Section D.1) for Example D.1. Figures (b), (c¢) and (d) show plots of primary memberships
(horizontal axis) versus secondary memberships (vertical axis). Figure (d) is empty, because ,(1;,3(:0)
is zero (1/0).
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Table D.1: Results of Example D.1.

| Type-reduced set | Center | Spread |

Centroid 2.8179 | 0.4918
Center-of-sums | 2.8685 | 0.4999
Height 2.9026 | 0.4280

Modified height | 3.1607 | 0.5111
Center-of-sets 2.9462 | 0.3563

D.2 Approximate Result

In this section, we give a result similar to Theorem 2.5 for interval type-2 sets. Before giving the
approximate result, we obtain a result similar to Theorem 2.4 for interval type-1 sets.

Theorem D.1 Given n interval type-1 numbers Fy,...,F,, with means my,msy,...,m, and
spreads sy, 2,..., Sy, their affine combination y'_ | a;F; + B, where a; (i = 1,...,n) and 3 are
crisp constants, is also an interval type-1 number with mean Y.\, a;m;+p, and spread y_"-_, |a|s;.
O

Proof : Consider F; = [m; — s;,m; + s;]. Multiplying F; by a crisp constant «; (= 1/«;) yields
(see 2.63)

a;F; = f 1/(iv) 5 v € [mi — si,mi + si (D.8)
Adding a crisp constant g (= 1/f) to a;F; yields [see (2.65)]
a;F;+ = / 1/(iv+B) ; v€[mi—si,m;+s) (D.9)
Substituting w = a;v + 3, (D.9) gives us
o Fi+ 8= f 1w ; wée [aym; + B — |ailsi , aimi + B + |ailsi] (D.10)
Recall that F; can be represented as [l;,7;], where [; = m; — s; and r; = m; + s;. Observe,

therefore, from (2.66) [see, also, the discussion after (2.66)], that

n

i F; = [i m; — Z Si, imi 4 i Si (D.11)
i=1 i=1 i=1

i=1 =1

Using (D.10) and (D.11), we get the result in Theorem D.1. O
We now give an approximation to the weighted average of interval type-1 sets.

Theorem D.2 If each Z; in (D.2) is an interval type-1 set, having center ¢; and spread s;, and
if each Wy is also an interval type-1 set with center hy and spread A, then Y is approzimately an
interval type-1 set, with center C and spread S, where

M
k
= Zf+‘;f" (D.12)
=1
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and

M [(us) + | - ClA
S= pr (USt]M ler = ClA] (D.13)

1=1

provided that
M oA

Zfﬁ.1 by
The approzimation improves as ( f:f] A;/Z::l h;) grows smaller. The result is exact when
M A =0,ie, when Ay =0 forl=1,....M. 0O

«1, (D.14)

Proof : The proof proceeds exactly like the proof of Theorem 2.5 in Appendix C.11, the only differ-
ence being that now the condition required for a good approximation is [ Y, A /[T, u] € 1

instead of k[ X, Ar] /[ S0, hi] < 1 [see (2.78)]. The factor of k appeared in the Gaussian case,

because the membership of a point in a Gaussian type-1 set is never exactly equal to 0; we just

neglected the memberships outside £kA;, since they were too small. In the interval case, however,

the memberships of points outside +4; are equal to 0; and therefore, the factor of k disappears.
We get a result similar to (C.229) :

1f,-,§ [g,(i%) +m(%‘—"}§)} i (D.15)

where Z,’s are zero-mean interval type-1 sets with spreads s;’s, W,’s are zero-mean interval type-1
sets with spreads A;’s, and all the summations and “+” signs denote algebraic sum. The result in
Theorem D.2 follows by applying Theorem D.1 to (D.15). When applying Theorem D.1, we set n =
2M; Fi=2Z;,and o; = h,-/[z;ﬂil W) fori=1,...,M;and, F; =W, and o = (c;——C}/[ZL’I )
fori=M+1,...,2M. O

Comment 1 : In this case, the true weighted average [i.e., the LHS of (D.2)], Y, will also be an
interval type-1 set (since all the sets involved are interval type-1 sets); however, the approximation
is useful because the actual end-points of the domain of ¥ can only be obtained computationally.
Comment 2 : Comments 2 and 3 at the end of Appendix C.11 apply in this case as well.
Comment 3 : Though Theorem D.2 is very much similar to Theorems 2.5, there is one differ-
ence. In case of Gaussians sets, the secondary membership functions may be clipped because they
have to be contained in [U, 1}: and therefore, may not remain true Gaussians. We ignored these
clipping effects for simplicity; therefore, the results in Theorems 2.5 contained a “clipping effect”
approximation, in addition to the approximations introduced subject to conditions (2.78). In the
case of interval sets, however, no clipping effects need to be considered, because any clipped version
of an interval is again an interval; so, the only approximation that is introduced in the result in
Theorem D.2 is the one subject to condition (D.14).

Example D.2 Consider the interval type-2 FLS in Example D.1. In this example, we obtain
approximate type-reduced sets for each of the type-reducers considered in Example D.1, by using
Theorem D.2. The approximate results are collected in Table D.2. The value of 3, A/ 3, Iy, in
each case, is also shown. For the center-of-sets type-reducer, the three consequent centroids, com-
puted approximately using Theorem D.2, are [5.8859,6.1138], [1.9987,2.2501] and [8.6424, 8.7861],

respectively; and, the values of °, A;/ Y, Iy for the consequent sets G!, G2, and G3, are 0.1429,
0.1429, and 0.1111, respectively.

Observe that the ratios 3", A;/ ", hy for the consequent centroid computation are much smaller
than those for the type-reduction computations; consequently, the approximation is much closer
to the true value (see Example D.1) for the consequent centroids than for the type-reduced sets.
Observe also, from Table D.2, that, for this example, the center-of-sets type-reducer has the lowest
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Table D.2: Results of Example D.2.

| Type-reduced set | Approximate Center [ Approximate Spread | >, A;/ 3" Iy |

Centroid 2.7622 0.4642 0.3576
Center-of-sums 2.8135 0.4730 0.3563
Height 2.7935 0.4002 0.3537
Modified height 3.0511 0.4876 0.3453
Center-of-sets 2.9051 0.3484 0.2220

value of ), Ag/ >~ lu; and correspondingly, the difference between the true and approximate type-
reduced set centers and spreads is the lowest for the center-of-sets type-reducer. 0O
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Addition of interval type-1 numbers, 37
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Interval type-2 set, 47
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Index
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Weight, 122-123
Preserving all the responses, 126-128
Composition of a set with a relation, 66-68
Conclusions:

Completed work, 140-141
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Defuzzification, 75, 94-95
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Height, 79

Modified height, 80

SAM, 77

Using Gaussian approximation, 106
Degree of firing, 72
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Embedded type-1 set, 38, 41, 76, 93
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Error bounds for the Gaussian meet approximation:
Bounds on the Gaussian approximation error,

172-174
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2.3 Meet under product t-norm for interval type-
1 sets, 26-27

2.4 First approximation for meet under product t-
norm in the case of Gaussian fuzzy sets,
30-31
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results from a type-1 set with only
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the claim in Example 2.5), 39-40

2.6 Centroid calculation for a type-2 set:
significance of Gaussian approximation,
43

2.7 Centroid calculation for a type-2 set using
the Gaussian approximation, 44-45
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82-84
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A.2 Type-2 fuzzy set: Gaussian membership
function with uncertain mean
characterized by a Gaussian
membership function, 143-145
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C.2 Lower bound on meet between three
Gaussians, 171
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prediction)
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Fuzzy sets (see Type-1 fuzzy sets; Type-2 fuzzy sets)
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G

Gaussian approximations:
Limitations, 106-107
Error bounds, 165-174

Gaussian numbers, 37

Gaussian type-2 set, 6
Weighted average, 42

Gaussian type-2 fuzzy logic system, 99-105
Center-of-sets type-reduction, 102
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Input uncertainty, 5
Intersection (see Operations on type-2 sets)
Interval numbers, 37
Interval type-2 fuzzy logic system (see also Type-2
fuzzy logic system):
Center-of-sets type-reduction, 188
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Join, 15
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Product t-norm, 23-26
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Absorption, 48, 49, 50, 53, 54
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