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ORTHOGONAL DECOMPOSITION AND SEISMIC ARRAYS

It was the objective of this study to see if novel computational
techniques could significantly improve the analysis and understanding
of seismic data, particularly that generated by large aperture seismic
arrays. Conventional methods for processing such data are almost
exclusively based upon the Fourier transform. To a great extent
this approach is based upon historical inertia. But more than that,
trigonometric analysis appears to be well-adapted to the representation
of seismic signals. On the other hand, trigonometric functions are
but one of an infinite variety of orthonormal functions, and of these
others, some are exceptionally well suited for digital computation.

In particular, there are the Walsh functions. These have the virtue
that they assume only two values, +1 and -1. In addition they mimic
many of the properties of the trigonometric functions. Indeed, many
of them (the subset known as the Rademacher functions) are merely
""hard clipped" sine waves. |

Further, the Walsh functions are astonishingly easy to generate
and have many convenient mathematical properties. For example,

consider the basic 2 x 2 orthogonal, symmetric matrix MZ

-1
where a factor 2 /2 is suppressed.
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Its row (or column) vectors are the first two Walsh functions and they

span R All the Walsh functions for any n=2"" can be obtained after

2.
m=log n steps by m-fold formations of the Kronecker product,

schematically indicated in Figure 1. For example, for 8=23 we have

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

It is a very easy matter to show that such generation yields
orthogonal matrices for any n=2"". Further, it is easy to reorder
the row vectors so that they are in serial order (numbered according
to sequency, a square wave analogue of frequency). Further discussion
can be found in Harmuth (1969) as well as an extensive bibliography.
Techniques for computer implementation of these functions have been
worked out by Kane and Andrews (1970) under the subject contract and
is here reprinted as Appendix A.

With the power of these computational techniques at our disposal
we then considered seismic application. The tracings of an array can

be considered to be a two-dimensional picture after the fashion of a
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video presentation. The signal from each element is a line of the
screen with an intensity proportional to the square of its magnitude
at time t. Coherent signals arriving at the array will give a
reasonably continuous presentation as we proceed from line to line.
(To first order, apart from noise, each line will be a displaced
version of the proceeding line). If we take a finite window of this
display and quantize each line into i components then we have an

i x j array for say, j elements in the array. Call this the signal
matrix sij' While not necessary, it is convenient to suppose that
$ij is a square matrix., Because of the computer facilities
available, we generally considered 256 x 256 arrays.

Denote by Hnn’ the square Hadamard matrix obtained by

arranging the first n=2"  Walsh functions. Hﬂnn is symmetric,

and when normalized by z-m/z, is also orthogonal, and indeed its
own inverse. That is
m -2 "m
nn nn

Then, the similarity transformation

T-H $ H

creates a transformed matrix T such that all the coherent information
is crowded into one corner where as, loosely speaking, ''noise' is
largely uniformly distributed. Thus extraordinary filtering operations

and data reduction schemes become possible. Owing to our equipment
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limitations we were unable to explore these with actual seismic data,
but did at least mbdel these with some digitized video signals of the
Surveyor moon shots which were available. These results were
published in the Proceedings of the IEEE and are presented as
Appendix B.

Data reduction of 6:1 is available by these means with but the
simplest of methods, e.g. crude rectangular filtering of T. With more
sophisticated methods, such as the introduction of error correcting
codes, band-with reductions of 15:1 and even 20:1 become quite feasible.

In addition, iterated matched filtering becomes possible.
Traditionally mathced filtering is done once, in the Fourier Domain.

But for quantization n=2"" there are 2m orthogonal domains which can
be used to advantage before the signal is reconstructed. With a

"partial matched filter' in each domain extraordinary filtering techniques
become feasible. For such applications any orthogonal representation
will do, but at least for digital implementation, processing via Walsh
functions presents major computational advantages. Unfortunately, much
of this work is being done after the termination of the present contract,
and the details are still under investigation. Acknowledgement, and

reprints of this work will be forwarded when published.
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KRONECKER MATRICES, COMPUTER IMPLEMENTATION,
AND

GENERALIZED SPECTRA

ABSTRACT

A closed product form and a simplified algorithm for efficient matrix
operation is presented for a class of generalized kronecker matrices. Powers
of two kronecker matrices are further described where the closed form
represcntation is easily implemented with parallel binary register operations.
Orthogonal and symmetric orthogonal kronecker matrices are described in
the context of generalized spectral analys:as. Specific applications are presented

which include the Fourier, Hadamard, and other transformations.



KRONECKER MATRICES, COMPUTER IMPLEMENTATION,
AND

GENERALIZED SPECTRA

Introduction

Often orthogonal matrices will play a major role in the study of spectral
analysis and efficient decomposition schemes for unknown functions on a
digital computer, A certain class of orthogonal matrices are described
which are very efficiently implemented for computer application, The class
of orthogonal matrices described are shown to be a subset of a generalized
class of Kronecker matrices which also have a very efficient computer
implementation algorithm. It is hoped that certain of these matrices could
be useful for efficient signal processing in the form of possibly multi-

dimensional transformations.

A Generalized Class of Kronecker Matrices

Consider the class of matrices formed by the kronecker product operation.

Let the sub-matrices be square and of dimension p by p with entries m

r,i,j

where i and j range from zero through p - 1.

mr,0,0 mr’o’1 o .. e mr,O,p-l
mr, 1,0

Mr = ‘ (1)
mr,p_l’o L] - L] . . . . L] L] L] . mr’p_l,p-l
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Here the first index represents the class of entries corresponding to

a particular dimension in the kronecker product operation. In general

- 2

H, M, (2a)
H, = M, ®H1 (2b)
Hn - Mn-1 ® Hn-l (2¢)

where ® is the kronecker product operator. Thus

mn—l,O,O I_In-l p . . . mn-l,O,p—l Hn-l
H .

Mp-1,1,0 n-1 . . v M-1,1,p-1  Ppoy

[
H = . (3)

. [ ]

mn-l, p-1,0 Hn—l ¢ ¢ . - mn—l, p-1,p-1 Hn-l

. -

. n .
where Hn is a pn by p matrix.
When operating with kronecker matrices within a computer, it becomes
desirable to store a representation (algorithm) of the entries of the product matrix

rather than the matrix itself. Towards this end, consider the locations in
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the matrix to be described by their lexicographic or dictionary sequence
representation., In other words, a given index of matrix Hn can be

represented by n digits each of which can take on the value zero through
p-1. Representing the horizontal index by u and the vertical index by x,

the names of the rows and columns in dictionary sequence for the H, matrix

2
with p = 3 are q - \‘

00 01 02 10 11 12 20 21 22

00 (— R

02
10
H_ = 11 Hz(x, u) (4)
12
20
21
22 e |

Representing the u and x variables in the dictionary number system mod p
requires n digits to allow u and x to range over zero to pn. Therefore u and x

can be described by

u.u u, efo,1,...,p-1} (5a)

u=un_1un_2... 170 i

x = x X X x, e{o,1,...,p-11} (5Db)

n-lxn-Z"' 170

Using such a notation allows the entries of the p by p core matrix H1

[equation (2a)] to be described by the equation

p-l p-l 6(}( . 6 .

= 0-1) (uo—.])
Hl(x, u) igo jI=IO mo ; , and (6a)
Hl(x’ u) = mo, i’j - (6b)
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where 8(a-b) is the delta function which takes on the value one whenevgr
a=b and zero otherwise. The representation of equation (6a) can be interpreted
as multiplying all entries of the core matrix, equation (2a), together and noting
that all but one entry will be raised to the zero power, The entries of the

2
p2 by p matrix, Hz, equation (2b), can now be represented as

-1 -1 ) . -1 p-1 . .
PP bxg-ie(up-i) Ppo P 8xo-i)8(ug-)

I
HZ(X, u) i=0 J:O ]_,i’j i=0 j=0 0, 1sj

(7)
where, again, the exponents determine the correct product of entries for a

given u and x. In general, the entries for Hn can be represented as

-1 p-1 p-1 . .
n P p mé(xr"l)é(ur'-]) (8)

0 j= r,i,j

—

Hn (x, u)

I
e

r=0 i

following the recursive notation of equation (6a) and (7). Representation of the
rows or columns of a kronecker matrix in the form of equation (8) now allows
the generation of any single element, column, or row of the matrix without
storage of the entire matrix array. This becomes particularly important
for large matricies especially in the area of generalized spectral analysis
to be described later. “

In addition to representing the kronecker matrices in closed product
form, it is important to point out that vector multiplication with the
above described matrices can be implemented on the order of pN logp N
operations where N = pn is the dimension of the Hn kronecker matrix. This
should be contrasted with the N2 operations normally required. This result

was pointed out by Good [1], is referenced by the Cooley Tukey algorithm [27, and
leads to the Fast Hadamard transform algorithm [ 3, 4]. A;\rariation of

the Fourier algorithm, for parallel processing, is presented by Pcase [5]. The class
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kronecker matrices described above can be decomposed into a product of

matrices each of which has only p entries in a given row or column,

Thus

for the Hn kronecker matrix of equation (3) there exist n matrices, each of

dimension pn, such that when multiplied together, they will equal Hn. These

matrices can be described as

My 0,0" "™, 0,p-1

+1
In this matrix there are pn

elements.

mr,p--l, p*°°"? mr,p-l,p-l

m

r, 1,07 M, 1, p-1

r,p-1,0"""""r,p-1,p-1.

rmr,p--l, o’ ""rnr,p-l,p-l

—

. 2
non-zero entries and only p non-redundant

(9)
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Then

= 10
Hn Gn-l Gn-Z GIGO (10)

2 2
Now if a row vector is multiplied on the left by Hn, N =(pn) operations will be required

whereas if the vector is multiplied by Gn , PN operations will be required. If the

-1

resulting vector is multiplied by G another pN operations will be required.

n-2’
If this step is carried out n = logp N times, then a total of p N logP N operations
are necessary,

By using the Good algorithm described above and by using the closed
product representation of equation (8) a kronecker matrix of large dimension
can be generated and matrix-manipulated without storing the Nz term matrix,
Conceivably the set of coeffcients m A, ; of equation (8) could all be distinct,
in which case a .total of only np2 coefficients must be stored., However when
the class of m i are not all distinct,considerably more savings can be achieved.
It is instructive to investigate the class of matrices generated by the kronecker
operation withthe m_, ., =m i, for all r and s. In such a situation equation

r,i,) 5,1,

(8) reduces to

n-1
z : 6(xr-i)6(ur-j)
p-1 p-1 r=0
m

H (x,u) = I .. 11
n( »u) i=0 j=0 i, ] (1)
2 .. 2
Now only p coefficients need be stored compared tonp terms.

Powers of Two Kronecker Matrices

If the general matrices described above are generated from a two by two
core matrix, the closed product representation analogous to equation (8)

becomes particularly convenient to implement. Let the core matrix H1 be
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H = (12)

H = (13)

r ¢ *Y% p *rYr (14)
r r

wherec the exponent operations become Boolcan '"and'" operations, and the bar
over the binary variable represents the complement value. For the case in

whichA =A , B =B, C =C, D_=D forallr ands, the representation
r s r s r s r s

3

again simplifieg] and becomes

n-1_ n-1 n-1 _ n-1
rz":OurXr r=0 Xrur rZO Xrur 1'2-:0 Xr“r
H (x,u) = A B c D (15)

Equation (15) is particularly suited for special purpose digital implementation as
the exponent operations require simply counting the number of '"ones'" obtained

from a parallel component wise register '""and" operation on the values of u and x.
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This means that gencration of the rows, columns, or specific elements

of the matrix Hn requires storage of only four variables (A, B, C,D) and
simple register "and" operations for any dimension N = 2", Then to
implement a vector-matrix product will require 2Nn = 2N log2 N operations
with a storage requirement of only 4 variables.

Orthogonal Matrices and Generalized Spectra

In the areca of signal processing, it is often desirable to perform some
type of transformation on a function in order to learn more about that function,
Certain computational processes of particular interest are discrete orthogonal
transformations on input functions in the search for characteristic properties
of the transform domains otherwise obscurred in the original data. Because
of the restriction of digital computation to discrete operations, it is natural
to think of digital transformation processes on digitized functions in the
context of matrix algebra. In such a situation let the input function be f(x)
considered as a vector in the x dimension with N = 2" samples and let the
transformation matrix be Hn' Then the transformation operation can be
expressed in matrix notation as

u

—>

T [ Fa) ]
xJ/ H (x,u)
n = (16)

Where the vector F(u) is the transformation result of the vector-matrix

multiplication. The function F(u) can now be expressed in arithmetic form as

F(u) = Zf(x) H_(x, u) (17)

X
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where Hn(x, u) can be considered the kernel of the transformation process.

If the matrix Hn is constrained to be orthogonal, then the linear trans-
formation can be interpreted as a decomposition of the input data into
generalized spectra where each spectral component in the transform domain
corresponds to the amount of energy of that spectral orthogonal function within
the input data. Using such a concept, the idea of frequency can now be gener-
alized to include transformations of orthogonal functions other than sine and
cosine waves. This type of generalized spectral analysis will allow the
investigation of specific orthogonal decompositions which could be '"better"
rﬁatched (in possibly an eigenvector sense) to specific purposes and input
data classifications [6]. In passing it should be noted that the above discussion
can be generalized to multi-dimensional transformations resulting in

F(u(l),u(z)

s u » X s u g 0oy X

! L))

(18)

where the 2-tuples {x(l), u(l)}relate the x(l)

(1)

dimension data space with the

generalized spectral components in the transform spectral

(1)

1
space obtained from that particular x

corresponding u
data dimension. Anexample of the
application of such a multi-dimensional concept is one in which the orthogonal
basis vectors in a particular dimension of the data space are matched to the
natural eigenvectors of that dimension. In other words a Fourier transform
might be applicable to one dimension of data whereas a Hadamard transform

might be more applicable to data transformations in a second dimension [2, 3,4 1.

e L e Y e ) ) @) ) ()
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A general class of orthogonal transforms of particular interest can be obtained
from the kronecker matrices described in earlier sections by requiring that

the sets of variables {m 1} satisfy the orthogonality

g 8 ¢ 0y m
r,0,0 r,P'l’P'
requirement for all r = 0,...,n-1. If this constraint is satisfied, then the
matrix, H , of equation (3) or (8) becomes orthogonal and is a valid candidate
n
for a kernel in a generalized spectral decomposition problem. For the power

of two case the orthogonality constraint on the sects {Ar, Br, Cr’ Dr} for all

r=0,...,n-1 reduces to

Ar2+B 2.1 (19a)
cl+p%:-1 (19b)
r iy

AC +BD =0 (19¢)
r r r r

for each r. In this case equation (14) becomes the kernel of the transform and

when the sets lAr, Br’ CrDr} are all identical, equation (15) becomes the kernel,
If it is desired to make the kernel matrix symmetric so that a transformation

taken twice results in the original function again, then further simplifications

result in the closed form representation of the matrix Hn' The requirement

for symmetry and orthogonality f?r the case of identical sets lAr, Br’ Cr’ Dr}

for all r is

B=C | (20a)

2 _2

A +B" =1 (20b)
2

B® + D% = 1 (20¢)

(A+D)B =0 (204)
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The entries of the matrix H become

n- -1 n-1

n
1——
gux u@x u x
Zp rr r r rr
B

B T p* (21)

o)

Hn(x, u) = A

Where @imp]ies an exclusive "or'" Boolean operation. Notice that the exponents
can be determined by summing the result of parallel register operations
(Boolean "and'" and Boolean "exclusive or'') on the variables u and x. However

equation (21), under the constraint that B = 0 satisfying equation (20d), reduces

to
n-1 n-1
H (x,u) = A" D 6(u-x) (22a)
n n-1
or >
r
D\ *
= (= 8lu-x
Hn(x, u) (A) (u-x) (22b)
which is a diagonal matrix, The alternative constraint to equation
(20d) is that A = -D in which case more interesting orthogonal symmetric
matrices result.
rE“ uﬁ)xr ri u @ X E u X
Hn(x, u) = A B (-1) (23a)
ox 2) 5@ '
2 : = Ur Tr ¥ r
H (x,u)= A" Q—A ) (-1 (23b)
n AZ

wherc@ is the Boolean "coincidence' operation equivalent to the complement
of the exclusive '"or'" operation. The class of orthogonal matrices described by

equations (23) is a two parameter family of sets of kronecker matrices
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2 2 .
subject to the constraint that A~ + B~ = 1. Consequently, valid 2-tuples

satisfying this requircment are {cos 8, sin8}, {3/5, 4/5}, (1//2, I/ﬁ ]

and many others.

Applications

Specific transformations which are readily implementable in the context
of the above kronecker and matrix factorization techniques include the Fourier,
Hadamard or Walsh, Generalized Walsh, and a variety of other unnamed
transforms. Referring to equation (23b) it was indicated that the 2-tuple

given by {cos 9, sin8} describes M for all r as

cos @ sin 6
M = . (24)
sin® -cos @8

o o
As 6 varies from 0 to 45 the resulting kronecker matrix varies from a
diagonal matrix to one in which the energy in each row (and column) is

uniformly distributed over every entry. The matrix is given by

n- n-1
u x
sin 6 r-O @ r?o urxr
H (x u) = cos” B (cose (-1) (25)

o
as can be seen from equation (23b). When 6 = 0 we use the fact that zero
raised to the zero power is one and when 8 = 45° this matrix reduces to the
Hadamard matrix of order 2 which is cquivalent to the discrete Walsh

transform, [7]. The matrix of equation (25) then becomes



13a

n-1

n/2 e U X
H_(x, ) =(§) (-0 rT (26)

The transformation described by equation (26) also describes a class of
error correcting codes given by Hadamard matrices of order 2. Another
example of a Hadamard matrix which can be easily represented in the above
described lexicographic notation is the powers of four matrix generated by

kronecker products of

1 1 1 -1
1 1 -1 1 :
Moo= o110 (27)
-1 1 1
for all r. In this casc equation (11) describes the matrix in closed product
form where p = 4 and m, f = -1 for all i+j = 3 and m, 3 = 1, otherwise.
Consequently, equation (11) reduces to
n-1
-3
H ) = 0 (-8 F.73 (28a)
n
r=0
or
n-1 3
Eo 6(xr+ u - )
Hn(x,u) = (-1) (28Db)

where x and u range from zero through 3. This particular transformation

r
has the property that each orthogonal vector in the matrix Hn has approximately
the same number of zero crossings. This is to be contrasted to the Hadamard

(Walsh) transform which has N = 2" different number of zero crossings.
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The Walsh transform, cquation (26), has been generalized to a much
larger class of orthogonal transformations by Chrestenson [8] who has
described many of the convergence properties of,this expanded class. In
discrete matrix notation the generalized Walsh transforms of order p
require Mr for all r to be given by

M_(x,u) = W™ (27)

where W = exp{2mj/p} and simplifications can be made due to the fact that

wiE = Wt mod P ForanN by N discrete generalized Walsh transform where

N = pn, the matrix is given by
n-1

s
p-1 p-1 r=Oé(xr"l) é(ur"J)
H(,u= 101 0 W (28)
n : :
i=0 j=0

Note that the discrete generalized Walsh transform of order 2 reduces to the
Hadamard transform. It is also interesting to note that the generalized
Walsh transform core matrix, equation (27), performs a Fourier transfor‘m
of resolution p. However, the kronecker product of the generalized Walsh

transform, equation (28), no longer performs a Fourier transformation.

Conclusions

It has been the purpose of this paper to present a generalized closed
product representation of certain classes of kronecker matrices. Vector
or matrix multiplications have been shown to be implementable in fewer
operations than normal matrix algebra requires. Powers of two kronecker

matrices are described and are shown to be representable in simple product
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forms which reduce to parallel binary register operations in the exponents
of the core matrix entries. Orthogonal kronecker matrices are described
and generalized spectral analysis technques are presented. Finally, some
specific applications are presented in order to develop some practical
results using the concepts presented earlicr. While the applications are not
exhaustive, they do present a few specific areas where processing with

kronecker matrices occupy a pertinent role.
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Hadamard Transform Image Coding
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Abstract—The introduction of the fast Fourier transform algorithm has
led to the development of the Fourier transform image coding technique
whereby the two-dimensional Fourier transform of an image is transmitted
over a channel rather than the image itself. This development has further led
to a related image coding technique in which an image is transformed by a
Hadamard matrix operator. The Hadamard matrix is a square array of plus
and mirus ones whose rows and columns are orthogonal to ene another. A
high-speed computational algorithm, similar to the fast Fourier transform
algorithm, which performs the Hadamard transformation has been de-
veloped. Since only real number additions and subtractions are required with
the Hadamard transform, an order of magnitude speed advantage is possible
compared to the complex number Fourier transform. Transmitting the
Hadamard transform of an image rather than the spatial representation of
the image provides a potential toleration to channel errors and the possi-
bility of reduced bandwidth transmission.

I. INTRODUCTION

N PREVIOQUS papers a new technique of digital image
]:[ coding, Fourier transform coding, has been introduced

{1]-[3]. By this technique a two-dimensional Fourier
transform of a digitized image is performed by a digital
computer using the fast Fourier transform [4]-[8]). If
S(x, v) represents the amplitude of image samples over a
square array of N? points then the two-dimensional
Fourier transform F(u, v) is defined as'

N-1 N-1

Fuvy= Y Y fix.y exp{— 2}:7{—'.(ux + vy)}- (n

x=0 y=0

The Fourier transform of the image is quantized, coded,
and transmitted over the channel. Then, at the receiver, the
inverse Fourier transform

N-1 N-1 R i
fxy =Y Y Fu. v)exp{ ~ (xu +yv)}, (2)

u=0 =0 N

is taken of the decoded transform F(u, v) to reconstruct a
close approximation of the original image. Fig. 1 contains
photographs taken from a cathode ray tube of an original
test scene, the logarithm of the magnitude of its two-
dimensional Fourier transform, and the inverse Fourier

Manuscript received July 22, 1968 ; revised October 14, 1968. This work
was suppcrted by NASA Grant NGR-05-018-044, Jet Propulsion Labora-
tory Gran 952312, and U. S. Air Force Grant AFCRI.-68-C-0342.
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! Some authors insert the multiplying factors 1/N or 1/N? before the
double summation for purposes of normalization. The multiplying factor is
not inherent to the computational algorithm and will be omitted here for
both the Fourier and Hadamard transform formulations in series form.

transform of the Fouricr transform. The logarithm of the
magnitude of the Fourier transform is displayed rather than
the magnitude itselfl because of dynamic range limitations
of the recording film.

The Fourier transform image coding technique has been
shown to provide good quality image transmission with the
same number of bits as required to code the spatial domain
of an image by conventional pulse code modulation.
Furthermore, transmission of the Fourier transform of an
image rather than the image itself offers a certain immunity
to channel errors and the ability to achieve a bandwidth
reduction [2].

The tolerance of channel errors is due to the averaging
process of the Fourier transform as indicated by (2). Each
point in a reconstructed image is a weighted sum of all
points in the spatial frequency domain. For subjective
image viewing the overall loss of resolution that occurs
when channel errors are introduced in the Fourier trans-
form is often less objectionable than discrete defects that
occur when channel errors affect the spatial representation
of an image.

Bandwidth reduction is possible because the image en-
ergy, which is usually uniformly distributed in the spatial
domain, tends to be concentrated near the origin of the
Fourier domain, as evidenced by Fig. 1(b). Many of the
higher spatial frequency components are of very low mag-
nitude, and need not be transmitted.

The Fourier transform was a natural operator to be ap-
plied to the image coding problem because of its widespread
use in other fields and the fact that a very efficient computa-
tional algorithm exists. A question that naturally arises is:
are there other applicable transforms beside the Fourier
transform? The answer is affirmative. For the image coding
application, strictly speaking, all that is required is a two-
dimensional operator which has an inverse, possesses the
averaging property, and redistributes the image energy
properly. It is advantageous from the standpoint of im-
plementation that a fast computational algorithm exists
and that the operator be its own inverse. The symmetric
Hadamard matrix transform fulfills all of these require-
ments, and as will be discussed later, the Hadamard trans-
form is better in many respects than the Fourier transform
for image coding. Both transforms, in fact, are special
cases of a matrix multiplication of the function to be trans-
formed by a general matrix multiplier. Which matrix
multipliers may be factored to reduce computation re-
mains an open question [9]. Because of this, the broader
questions as to what other transforms exist and what is the
best transform for image coding will not be considered here.
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Fig. 1.

o
1
0

(b)

Fourier transforms of Surveyor footpad; (a) footpad, (b) the logarithm of the magnitude of the Fourier transform of (a), and

(c) the inverse Fourier transform of the Fourier transform of (a).

The Hadamard transform has been applied to the coding
of vocoder speech signals by Crowther and Rader [10].
They have built coder and decoder networks whose designs
are based upon a Hadamard matrix. Because of the correla-
tion properties of the vocoder speech signals, it was found
possible to reduce the number of quantization levels of the
Hadamard transformed speech signals.

II. HADAMARD MATRICES [11], [13]

The Hadamard matrix? is a square array of plus and
minus ones whose rows (and columns) are orthogonal to
one another. If H is an N x N Hadamard matrix then the
product of H and its transpose is the identity matrix. Thus,

HH* = NI (3)

2 Boldface symbols représent matrices.

where I is the identity matrix. If H is a symmetric Hadamard
matrix then (3) reduces to

HH = NI. (4)

The rows (and columns) of a Hadamard matrix may be
exchanged with one another without affecting the ortho-
gonality properties of the matrix.

The lowest-order Hadamard matrix is of order two.

I

It is known that if a Hadamard matrix of order N exists
(N >2), then N=0 (mod 4). The existence of a Hadamard
matrix for every value of N satisfying this requirement has
not been shown, but constructions are available for nearly
all permissible values of N up to 200. The simplest con-

1
1

1

H —1

()
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matrix Sequency
~-
+ 4 0
N=2
+ - 1
matrix Sequency
+ 0+, + o+ 0
+ -+ - 3
N=4
+ + - - 1
R
matrix Sequency
F+ + 0+ o+ o+ o+ o+ 4 0
+ -+ - % -+ - 7
+ o+ - -+ o+ - - 3
N=sg|* - - ot + - - % 4
+ 0+ o+ 4+ - - - - 1
+ - + - - + - + 6
+ 0+ - - - -+ ¢ 2
+ - -+ -+ ¢ - 5
Fig. 2. Hadamard matrices of order N=2".

struction is for a Hadamard matrix of order N =2" where n
is an integer. In this case if H is a Hadamard matrix of order

N, the matrix
H H
H -H

is a Hadamard matrix of order 2N. Fig. 2 contains several
Hadamard matrices of order N=2". Another simple con-
struction is possible if A and B are Hadamard matrices of
orders M and N, respectively. Then there exists a Hadamard
matrix of order M - N given by

a;B
Hy.y=| ay,B

G= ©)

0128' * 'alMB

™

Other constructions are given in [13]-[15]. The set of
known Hadamard matrices is sufficiently numerous to
satisfy almost all size requirements for image coding.

A frequency interpretation can be given to the Hadamard
matrix. Along each row of the Hadamard matrix the fre-
quency is called the number of changes in sign. Harmuth
has coined the word “sequency” to designate the number of
sign changes [16]. Fig. 2 gives the sequency interpretation
for several Hadamard matrices of binary order. It is possible
to construct a Hadamard matrix of order N=2" that has
frequency components at every integer from 0 to N—1.
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This frequency interpretation of the rows of a Hadamard
matrix leads one to consider the rows to be equivalent to
rectangular waves ranging between +1 with a subperiod
of 1/N units. Such functions are called Walsh functions
{17}-[21] and are further related to the Rademacher func-
tions [22]. Thus, in this context the Hadamard matrix
merely performs the decomposition of a function by a set of
rectangular waveforms rather than the sine-cosine wave-
forms associated with the Fourier transform.

ITI. HADAMARD TRANSFORMATION OF IMAGES
Let the array f(x, y) represent the intensity samples of an
original image over an array of N2 points. Then the two-
dimensional Hadamard transform, F(u, v), of f(x, y) is given
by the matrix product

[F(u, )] = [H(w, ][ f(x, ][H(x, v)] ®)
where [H(u, v)] is a symmetric Hadamard matrix of order N.

Pre- and post-multiplication of [ F(u, v)] by the Hadamard
matrix gives

[H(u, v)][F(u, v)][H(u, v)] 9)
= [Hw, ][Hes ][t ][ Hew, 0] [He, ]

But, from (4), for a symmetric Hadamard matrix, HH = NI.
Hence,
1
[fx, ] = N2 [H(u, v)][F(u, v)][H(u, v)] (10)
and, aside from the constant scaling factor N?, the arrays
f(x, y) and F(u, v) are two-dimensional transform pairs.
For symmetric Hadamard matrices of order N=2", the

two-dimensional Hadamard transform may be written in
series form as

N-1N-1

Fuv)= Y. Y flx,y)(=1per=» (11)
x=0 p=0
where
n—1
p(x’ Ya u, U) = (uixi + viyi)’
i=0

The terms u;, v;, x; and y, are the binary representations of
u, v, x, and y respectively. For example,

(u)decimnl = (un— tUp-2 """ ul“O)binary (12)
where u€{0, 1}. In (11) the summation in the exponent is
performed modulo two. This representation of the Hada-
mard transform is for the Hadamard matrix in “natural”
form as given by (6). Another series representation exists for
a Hadamard matrix in “ordered” form in which the se-
quency of each row is larger than the preceding row. By
this representation

N-1 N-1

Fuv)= Y Y fx, y)(—=1)gxrue

x=0 y=0

(13)

where
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u —»

(b)
Fig. 3.

(a)

u —

(c)

Hadamard transforms of Surveyor scenes (displays of the logarithm of the magnitude of the Hadamard transform);

(a) footpad, (b) boom, and (c) experimental box.

n—1

q(x, y,u,v) = 'Zo [gi{u)xi + gi(v)yi]
and
golw) = u,_,

gl(u) — un—l o Up_2
gl)=u,_5 + u, 3

Gn-1(U) = uy + up.

The two-dimensional Hadamard transform may be com-
puted in either natural or ordered form with an algorithm
analogous to the fast Fourier transform computer algo-
rithm. A computational algorithm for an ordered transform

is considered later. All experimental results in this paper
have been obtained with the Hadamard transform given by
(13).

Experiments have been performed to determine the
nature of the two-dimensional Hadamard transform of an
image, and to assess the effects of a double Hadamard
transformation. Fig. 3 contains cathode ray tube displays
of the logarithm of the magnitude of the ordered Hadamard
transform of several Surveyor scenes. In these photographs
the origin (zero sequency) appears in the lower left corner.
As the sequency increases, the magnitudes of the samples
tend to decrease. This is an indication that there are rela-
tively few high-amplitude brightness transitions between
elements in the original scenes. Fig. 4 shows the double
Hadamard transforms of the three scenes. There is no
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Fig. 4.

noticeable image degradation between the originals and the
double Hadamard transforms [compare, for example, Fig.
1(a) and Fig. 4(a)].

IV. PROPERTIES OF HADAMARD IMAGE TRANSFORMS

The Hadamard transform has several interesting prop-
erties. The most important properties from the standpoint
of image coding are dynamic range, conservation of energy,
and entropy.

The zero sequency term

N—1 N—-1

Y, o f)

x=0 y=0

F(0,0) = (14)

is a measure of the average brightness of a scene. If f(x, y)
is a positive real function, then the maximum possible
value for the zero sequency term is N4 where A4 is the maxi-
mum value of f(x, y). All Hadamard domain samples other
than the zero sequency sample range between +NZ?A/2.
The magnitude of the zero sequency term is a bound for the
magnitude of all other Hadamard domain samples.

Double Hadamard transforms of Surveyor scenes; (a) footpad, (b) boom, and (¢) experimental box.

A conservation of energy property exists between the
spatial domain and the Hadamard domain. Specifically,

N—-1 N-1 N-=1 N-1
X X If(w)lz— z 2 L [Fwo)l (19
x=0 y=0 u=0 v=0

This equation is analogous to Parseval’s relationship for
the Fourier transform [23]. The implication of this equa-
tion for image coding is that if a few of the Hadamard
domain samples are of large magnitude, then many of the
remaining samples must necessarily be of very low mag-
nitude. Conceivably, the low-magnitude samples may be
discarded, as is possible with the Fourier transform coding
technique, to obtain a bandwidth reduction.

If f(x, ») is considered to be a random two-dimensional
function with a specified entropy, then the entropy of
F(u, v) is the same as the entropy of f(x, y) since the Jacobian
of the transformation matrix is unity [24]. Hence, with
proper coding it is possible to transmit either a scene or its
Hadamard transform over a channel with the same channel
capacity.
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V. COMPUTATIONAL ALGORITHM

The computation of (13) is performed in two steps. First
a one-dimensional Hadamard transform is taken along cach
row of the array f(x, y) yielding

N_
F(uvy) =

x=

1 all
S, p)(—1) B (16)

0

Then a second one-dimensional Hadamard transform is

taken along each column of F(u, y) giving the desired result

N-1

Flu,0)= ),

y=0

Flu, y)(— 1) 25 (17)

Computation of the one-dimensional Hadamard trans-
form by brute force methods requires N2 operations where
an operation is either an addition or subtraction. An
algorithm for obtaining the one-dimensional Hadamard
transform in N log, N operations has been developed. The
algorithm is quite similar to the fast Fourier transform
algorithm; computational savings are realized by storage
of intermediate results [8]. A “fast” Hadamard transform
algorithm was outlined in 1937 by Yates [25]. In 1958,
Good described a matrix decomposition technique which
can be implemented to perform the Hadamard transform
with N log, N operations [26].

Fig. 5 illustrates the computations performed for our
one-dimensional Hadamard transformation with eight
data points. The data points are arranged in a column at
level 3 and then summed by pairs to produce intermediate
results for level 2. A dotted line linking two modes indicates
that the data point at the higher level is multiplied by minus
one before addition, or equivalently, the data point forms
the subtrahend of a subtraction operation. Operations
follow the tree graph to level 0 which is the ordered Hada-
mard transform of f(x). There are two operations performed
at each node of levels 1, 2, and 3 yielding a total of 8
log, 8 =24 operations.

The fast Hadamard transform algorithm performs all of
the operations indicated in Fig. 5, but in a certain selected
order. All operations of level k are not completed before
proceeding to level k—1, but rather operations arc per-
formed according to a sieving sequence. Fig. 6 describes
the basic sequence computations. The first sequence is the
“$™ sequence in which the sum of all data points is formed
to produce F(0). A *'1” sequence subtracts the lower node
from the upper node of a pair of nodes at level k—1 to
produce a result at level &. In the “2” sequence, operations
begin at level k—2 where pairs are subtracted from one
another to produce the results of level k—1 which in turn
are added together. The 3" sequence and higher sequences
to the *“n” sequence follow directly. Fig. 6 also indicates
the storage requirements for the computational procedure.

Original data are stored in a block of N words corre-
sponding to level n. Intermediate results are stored n—1
different blocks of sizes 2"~ ' to 22 words. These storage loca-
tions correspond to levels n—1 to 1 in the computation pro-
cedure.

6h

Computations for one-dimensional third-order
Hadamard matrix.

Fig. 5.

level

n-2 3 2 | O number
2"nodes
.
"$" sequence
level
2 | o] [} O number -
P
.
L
o
"2" sequence "1"sequence
“3" sequence
Fig. 6. Hadamard transform computational sequences.

Computation of the Hadamard transform begins with
the *S” sequence which computes F(0). Subsequent calcu-
lations are controlled by the following sicving scquence of
integers building up to integer n:

L2 L3 L2 LA L2 13 L2 L o 1,20,
1,2,1,3. 1,2, 1}

-sln

For cxample, after the “S™ sequence, the sequence
computes F(1) using the intermediate results stored in level
1. Then, the 2" sequencc computes F(2) using the inter-
mediate results in level 2.
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flO) A _I1 _M F(0 P
My B _J _N F( Q
) ¢ _K F(2) R
f£» b _ L F(3 s
4 E F49 T
€5 F Fs) U
() G F(6) v
X H Fn  w

Fig. 7. Storage locations for computation of one-dimensional
third-order Hadamard transform.

Sequence Level

number number Operation Contents of storage locations Result
- 3 — {0 A 1) B £(2)C H3) D K4 E {(5)F £(6) G §NH
s 2 A+B -1 £HO) + (1) L
C+D ~7J £(2) + £(3) J
E+F ~K f(4) + £(5) K
G+H - L £(6) + £(7) L
1 I+J -M £(0) + £(1) +£(2) +£(3) M
| 1 K+L ~N £4) + £(5) +1(6) +£(T) N
,', ] M#+N ~P £(0) +£(1) +£(2) +1(3) +£(4) +£(5) +£(6) +£(7) P F(0)
1 0 M-N -Q £(0) +£(1) +£(2) +1(3) -£(4) -£(5) -£(6) -£(7) Q F(1)
2 1 I-J M £(0) +£(1) -£(2) -£(3) M
| l L-K =N ~£(4) ~£(5) +1(6) + 1(7) N
«L 0 Mi#N =R £(0) +£(1) -£(2) -£(3) -£(4) -£(5) +£(6) +£(7) R F(2)
1 0 M-N=- S £(0) +£(1) -£(2) -£(3) +£(4) +£(5) -£(6) -£(7) S F(3)
3 2 A-B -1 £(0) -£(1) 1
D-C-1J -£(2) +1(3) J
E-F ~K f(4) -{(5) K
H-G-L -£(6) +£(7) L
1 I+J-M £(0) -£(1) -£(2) +£(3) M
l K+L ~N £(4) -£(5) -£(6) +£(T) N
¢ 0 M+N-~T £(0) -£(1) -£(2) +£(3) +£(4) -£(5) -£(6) +£(7) T F(4)
1 0 M-N-U £(0) -£(1) -£(2) +£(3) -£(4) +£(5) +£(6) -£(7) U F(5)
2 1 1-J-M £(0) -£(1) +£(2) -£(3) M
l 1 L-K-+N -f(4) +£(5) -£(6) +{(7) N
0 M+N -~V £(0) -£(1) +£(2) -£(3) -£(4) +£(5) -£(6) +£(7) V F(6)
1 0 M-N =W £(0) -£(1) +£(2) -£(3) +£(4) -£(5) +£(6) -f(7) W F(7)

Fig. 8. Computer operations for computation of one-dimensional third-order Hadamard matrix.
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Fig. 7 gives the storage locations for computation of a
one-dimensional third-order Hadamard transform. The
computer operations for this example are listed in Fig. 8.

Since computation of the Hadamard transform requires
only real additions and subtractions, whereas the Fourier
transform computations are composed of complex multi-
plications, additions, and subtractions, considerable com-
putational savings are afforded with the Hadamard trans-
form. Both the Fourier and Hadamard transforms have
been programmed on a TRW-530 digital computer. For a
256 by 256 point scene, the Fourier transform can be
computed in 20 minutes and the Hadamard transform in
3 minutes.

VI. HADAMARD DOMAIN QUANTIZATION

The Hadamard transform of an image must be quantized
for subsequent digital coding and transmission over a
channel. In order to quantize Hadamard domain samples
it is necessary to determine the number and placement of
quantization levels. Both of these factors affect the degree
of image degradation caused by quantization errors and
the entropy of the quantized symbols. The approach taken
here has been to select quantum levels to maximize the
source entropy, and then to subjectively evaluate image
quality.

Two models for the probability density of Hadamard
domain samples that have been considered are shown in
Fig. 9. The first is the linear quantization model, commonly
used for spatial domain quantization, in which the quantum
levels are equispaced over some maximum range. The
second model is the Gaussian quantization model in which
the quantization levels are chosen to partition the Gaussian
curve into equal areas.

In the Gaussian quantization model the probability
density of Hadamard domain samples is assumed to be of
the form

2
Py(2) = [2n03,1)] "t exp {— Z—OJZT”)} (18)

where the variance function oZ(u, v) controls the placement
of quantization levels as a function of the Hadamard
spatial frequency. Referring to Fig. 3, it is evident that the
variance function should be highest at the origin in the
Hadamard domain, be circularly symmetric over one
quadrant, and decrease monotonically toward the higher
Hadamard dimensions. A convenient two-dimensional
function possessing these properties is the Gaussian curve

described by
w? + vz}
14

where S is an amplitude scaling constant and p is a spread
control constant.
Reconstructions of the Hadamard transform of the foot-

(19)

o(u,v) = Sexp{—

8b

P(2)

{a)

P(2)

Glz{(u, v)

(b)
Fig. 9. Hadamard domain quantization rules; (a) linear,
and (b) Gaussian.

pad scene with the linear and Gaussian quantizer are shown
in Fig. 10. In both cases, 64 quantization levels have been
employed. Results with the linear quantizer are poor be-
cause of the large quantization errors at high sequencies.
The reconstruction using the Gaussian quantizer with the
variance parameter p=1500, on the other hand, shows
negligible image degradation. Fig. 11 contains additional
examples of reconstructions with the 64 level Gaussian
quantizer with p=1500. Tests have been conducted to
determine the effect of fewer quantization levels. Fig. 12
shows reconstructions of the footpad sceme with the
Gaussian quantizer with p=1500 for 32 and 16 quantiza-
tion levels. The loss of resolution apparent in these pictures
is due to the quantization errors at high sequencies.

If the Gaussian quantization rule is to be practical it is
imperative that a variance function can be chosen for a
wide class of scenes without detailed knowledge of the con-
tent of these scenes. Figs. 10 and 11 show that the Gaussian
variance function, with the same variance parameter
(p=1500), provides satisfactory reconstructions for three
different scenes. It is also of interest to determine the effect
of changes in the variance parameter. Fig. 13 contains
reconstructions using the Gaussian quantizer with p= 500,
1000, 2000, and 5000 and with 64 quantization levels.
For p=1000 and p=2000 the reconstructions are quite
satisfactory. At p=500 a distinct checking effect appears.
This checking is due to quantization errors of large-
magnitude low-sequency Hadamard samples. The quantizer
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(a) ' (b)

Fig. 10. 64-level quantization of footpad; (a) linear quantization, and (b) Gaussian quantization, p=1500.

(@) ' (b)

Fig. 11. 64-level Gaussian quantization of boom and experimental box, p=1500; (a) boom, and (b) experimental box.

(b)

Fig. 12. 32- and 16-level Gaussian quantization of footpad, p=1500; (a) 32-level quantization, and (b) 16-level quantization.
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Fig. 13. 64-level Gaussian quantization of footpad with different variance functions; (a) p =500, (b) p= 1000, (c) p=2000, (d) p =5000.

has clipped the magnitudes of these samples to a relatively
low level. At the other extreme, for p=35000, the high-
sequency samples, which are of low magnitude, are all
given the same magnitude of the first quantum level. The
result is a loss of resolution.

CONCLUSIONS

It has been shown that it is possible to transform an
image by a Hadamard matrix operator which is similar to
the two-dimensional Fourier transform. Use of the Hada-
mard rather than the Fourier transform results in an order
of magnitude speed increase. The Hadamard samples can
be quantized to as few as 64 levels, using a Gaussian quanti-
zation rule. Reconstruction of the quantized transform by a
second two-dimensional Hadamard transform introduces
negligible image degradation. With conventional PCM
coding it is possible to transmit the Hadamard transform
of an image at the same bit rate as the image itself. The
potential advantages of the Hadamard image coding tech-

nique are a tolerance of channel errors and the possibility
of bandwidth reduction.
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