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ABSTRACT

This technical report summarizes the image processing research
activities performed by the University of Southern California during the
period of 1 March 1973 to 31 August 1973 under Contract No.
F08606-72-C-0008 with the Advanced Research Projects Agency,
Information Processing Techniques Office.

The research program, entitled, ''Image Processing Research,
has as its primary purpose the analysis and development of techniques
and systems for efficiently generating, processing, transmitting, and
displaying visual images and two dimensional data arrays. Research
is oriented toward digital processing and transmission systems. Five

task areas are reported on: (1) Image Coding Projects, the investigation

of digital bandwidth reduction coding methods; (2) Image Enhancement and

Restoration Projects: the improvement of image fidelity and presentation

format; (3) Image Data Extraction Projects: the recognition of objects

within pictures and quantitative measurement of image features; (4) Image

Analysis Projects, the development of quantitative measures of image

quality and analytic representation; (5) Image Processing Support Projects,

development of image processing hardware and software support systems.
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1, Research Project Overview

This report describes the progress and results of the University of

Southern California image processing research study for the period of
1 March 1973 to 31 August 1973. The image processing research study has
been subdivided into five projects:

Image Coding Projects

Image Restoration and Enhancement Projects

Image Data Extraction Projects

Image Analysis Projects

Image Processing Support Projects
In image coding the orientation of the research is toward the development
of digital image coding systems that represent monochrome and color images
with a minimal number of code bits. Image restoration is the task of im-
proving the fidelity of an image in the sense of compensating for image de-
gradations. In image enhancement, picture manipulation processes are
performed to provide a more subjectively pleasing image or to convert the
image to a form more amenable to human or machine analysis. The objec-
tives of the image data extraction projects are the registration of images,
detection of objects within pictures and measurements of image features.
The image analysis projects comprise the background research effort
into the basic structure of images in order to develop meaningful quantita-
tive characterizations of an image. Finally, the image support projects
include research on image processing computer languages and the development
of experimental equipment for the sensing, processing, and display of images.

The next section of this report summarizes some of the research

project activities during the past six months. Sections 3 to 7 describe the
research effort on the projects listed above during the reporting period.

Section 8 is a list of publications by project members.



2. Research Project Activities

Significant research project activities of the past six months

are summarized below:

Powell Hall., The U.S.C. Image Processing Institute has moved to

the recently completed Powell Hall of Information Science and Systems
Engineering on the U.S.C. main campus. Powell Hall is a six story
building of over 120 offices with the ground floor devoted to laborator-
ies. These laboratories include the Engineering Computer Laboratory
(the IBM 360/44 computer host to the ARPANET), the Communication
Systems Laboratory, and the Image Processing Laboratbry. The
Image Processing Laboratory consists of separate rooms for digital
imé,ge processing, image digitization and display, optical processing
and holography, photographic processing, and biomedical image

processing.,

Image Processing Software Systems Meeting, On July 17 and 18 a

meeting was held at U, S, C. on image processing software systems.
Over sixty members of the image processing research and develop-
ment community attended the meeting. The major objectives of the
meeting were to assess the existing hardware and software systems
for image processing and to discuss possible future plans for an
ARPANET based universal image processing system, Presentations
were made by representatives of some of the large scale c amputational
centers on the network summarizing their capabilities. Then, talks
were given on the characteristics of existing image processing software
systems and languages. Finally, discussions were held on future
plans. As a result of the meeting, the following committees were
established to formulate preliminary plans for an ARPANET image
processing system.

Systems Committee

William K. Pratt, U.S.C., - Chairman



* system management
* hardware and software coordination

Hardware Committee

Thomas Stockham, Utah - Chairman

resource site selection

front end hardware

networking considerations

image digitizer and displays, standards and systems

L

Software Committee

Harry C. Andrews, U.S.C. - Chairman

* command languages
* functional algorithms



3. Image Coding Projects

The research effort in image coding is directed towards bandwidth
reduction systems for monochrome and color television systems both for
real-time and slow scan operation, considering the various fidelity speci-
fications required in each case. The results of the image coding research
activity during the past six months are summarized here and presented

more extensively in the following subsections.

In transform image coding, one of the means for achieving compres-
sion is to discard transform coefficients according to a given strategy.
The reconstruction is usually obtained by setting the discarded coefficients
to zero. Observing that the transform coefficients are usually partially
correlated, a more sophisticated reconstruction scheme is studied, in which
the missing coefficients are extrapolated instead of set to zero. Computer

simulations show significant quality improvement of reconstructed images.

In the next report, a class of interpolative models for one and two
dimensional signal representation is introduced for coding of image signals.
It is shown that these models give lower mean square error (and entropy)
for a given bit rate compared to standard DPCM models, and the recon-
struction algorithm gives the optimum quantizer. This representation is

found to be relatively insensitive to variations in image statistics.

A class of lower triangular transformations is studied, which are
not orthogonal, but result in a desired uncorrelated transformed signal.
It is shown that this transformation can be performed recursively for
Markov sources, in a fashion much similar to DPCM. Due to this similarity,
DPCM systems may be regarded as transform coders and readily compared

with that class of coders.

The next report describes an adaptive interframe transform coder
in which the amplitudes and phases of the transform domain are selected
and quantized according to a predicted statistical model. The prediction is
derived from the previously coded block. Computer simulations demon-

strate the feasibility of very high compression factors, good quality
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reconstructions having been obtained with as few as 0, 5 bits/pixel.

Past reports have summarized results for the encoding of sources
with unknown probabilities and no distortion applied to image coding.
Preliminary results are presented here on coding with distortion, and there
is an indication that it is possible to approach the theoretic distortion bound

for a video source without apriori knowledge of its statistics.

Finally, the application of singular value decomposition techniques
to image matrices is studied. Significant dimensionality reduction can be
achieved as shown by pictures reconstructed from a small set of singular
values. A scheme is presented for dimensionality reduction under the
constraint of a given mean square error, and the significance of small

singular values is discussed.

3.1 Transform Domain Spectrum Extrapolation

William K, Pratt

In transform image coding one of the coding techniques is to transmit
only those transform coefficients that lie in some geometrical zone in the
transform domain; these are usually the low frequency components., At the
receiver it has been common practice to insert zeros for the missing
components prior to the inverse transformation operation. However, it is
known that for all transformations, other than the Karhunen-Loeve trans-
form, the coefficients are partially correlated. Hence, it is possible to
utilize knowledge of this correlation to estimate the missing coefficients

rather than arbitrarily setting their values to zero.

Transform Spectra For purposes of analysis it is convenient to

regard the pixels of an image or image block as an N element vector, f,
which is a sample of a random process with zero mean and known covariance

matrix K This vector undergoes a linear transformation defined by the

£
N XN element operator matrix A. Typical transformations of interest include
the Fourier, Hadamard, Haar, Slant, and Karhunen-Il.oeve transforms.

The N element vector —:{ denotes the one dimensional transformation of f



as given by

{ -2t (1)

The elements of % represent the spectral components of an expansion of f
in terms of a set of basis vectors — the rows of A. Since f is zero mean,
% also possesses a zero mean. For a unitary transformation it is easily

seen that the covariance matrix of is

Kg = aK AT (2)

Spectrum Extrapolation-Noise Free Condition Figure la contains a

diagram illustrating the generation of the spectral components of a signal,

the selection or truncation of these components, and the estimation of the
discarded components. The complete vector of spectral components :g is
operated upon by an Mx N (M< N) selection matrix S, that extracts certain
elements of«_% and records them in an M element vector T The selection
matrix contains a unit element at S(i, j) to transfer the jth element of -% to

the ith element of % T

In the diagram of fig, la, the vector ‘£T is multiplied by an Nx M
estimation matrix W which provides an estimate,% , of the complete set of
spectral components of % . An inverse unitary transformation é-l then
reconstructs an estimate, i, of the signal vector, f. The estimator matrix
W is chosen to minimize the mean square error, € , between the signal

vector and its estimate as defined by"<

8 =tr [E{(t-D(£-H*' ] (3)

The optimum choice of W can be found by forcing the dynamic error (ﬁ-_f) to

be orthogonal to the observation% T Thus, by setting

E(-D] 11 = 0 (4)

*
Notation: E{:} = expected value; tr-trace of a matrix; * = complex
conjugate; T = transpose.
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one obtains

E{(f- A WSAf)(SAf) } 0 (5)

This leads directly to the optimum solution

tsTrsak.a'sTy! (6)

W= AKA K,

Premultiplying W by the selection matrix S yields

SW= L, (7)

where 1. denotes an MxM identity matrix. Since

M
A
3 -w, (8)

It is clear from eq.(6) that

s =4 (9)

Thus, the est1mator simply copies the elements of:é T into the appropriate
elements of,% The remaining elements of»% are, in general, obtained
by a linear combination of the elements of % T In essence, the estimator
linearly extrapolates the values of the observation of known spectral compo-

nents to determine the unknown spectral values,

Spectrum Extrapolation - Additive Noise In physical situations an

observation usually is contaminated by noise. If the noise is additive, as in
fig. 1b, the optimum estimator that minimizes the mean square error,
will, in effect, perform an additional task of noise filtering. Applying the

orthogonality principle, one obtains

*T

E{(f-Hv "}=0 (10a)

or

*T *T

E{[f-A"'W(n+SAD] [n A7'sTy =0 (10b)

For the usual case in which the signal and noise are uncorrelated, the



optimum estimator is found to be

-1
a’lst

é'1§T+K 171 (11)

W= AK, [SAK, K_

Performance Evaluation The usual alternative to spectrum extra-

polation is simply to set the values of the discarded spectral components to
zero and perform an inverse transformation. For such a strategy the

. o s T .
restoration matrix is simply W= S~ and the estimated vector becomes

sTsar (12)

i=a

Substitution into eq.(3) yields the sub-optimal mean square error

) 1T
8 o = trlK (Iy-A" 8 54)] (13a)
or
8 = tr[K) (L-S°S)] (13b)
So =4 En2

If the optimal restoration matrix of eq. (6) or eq.(11) is employed the

resulting mean square error is found to be
8 = tr[1_<£ Ly - WS)] (14)
Therefore, a reduction in mean square error by the amount

6 = 6, -6 =t {g{(v_v—gs_T)gj (15)

can be realized by spectrum extrapolation.

Figure 2 contains a plot of the mean square error of estimated

spectral components for the Hadamard, and the Slant transforms.

In this example, the data was assumed generated by a first order Markov

process with a correlation factor of p = 0,95.

Experimental Results Computer simulation experiments have been

performed to evaluate the spectrum extrapolation process for image coding.

In the experiments illustrated in fig. 3, an image was Hadamard transformed
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e uooes T oooT
(b) 4:1 =zonal selection (c¢) 4:1 =zonal selection
spectrum extrapolation

B . O 0 B =
(d) 10:1 =zonal selection (e) 10:1 zonal selection
spectrum extrapolation

Figure 3.1-3. Hadamard transform spectrum extrapolation examples.
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in 16 x 16 blocks, and the coefficients lying outside of 8 x8 and 5x 5 low
sequency zones, respectively, were set to zero before the inverse trans-
formation. In figs.3c and 3e the coefficients outside the zones were extra-
polated assuming the image was a sample of a first order Markov process.
The improvement in subjective quality is readily apparent from the photo-

graphs.

Conclusions The spectrum extrapolation technique, when applied

to zonal transform image sampling, has been shown to offer significant
improvement in image quality. It should be noted that the extrapolation
processing is performed only at the receiver. Thus, the technique offers
promise where a simple coder is essential, but a more complex decoder
is permitted. Effort is continuing to apply the spectrum extrapolation to
variable bit assignment transform algorithms to compensate for quantiza-

tion error.

3.2 Role of Interpolative Models in Coding of One and Two Dimensional
Signals
Anil K. Jain

Consider a stationary first order one dimensional Markov signal,

ui, i=1l,..., N represented by the correlation function.

Efup]=p l1-3

(1)
0<p<l1, i,j=1,...,N

and let

E[ui]=0 (2)

In DPCM coding of such a signal, one forms the differential signal

(3)

;U

and the sequence ei, i=l, ..., N, is quantized and coded. It is easy to show
that this sequence has zero mean and the elements ei are uncorrelated and

that

-12-



2
0t 8E[e]= 149 (4)

Eq.(3) may be interpreted by saying that the differential signal is formed
by scanning the signal in the direction of increasing i, and forming the
difference between its scanned value u, and its estimated value (pui_l) from
the previously scanned element u g
model, and can be rewritten for the signal representation as

In this sense eq.(3) is an online
ui= pui_1+€i (5)

Suppose one wishes to represent u, using two previous samples, i.e.,

ui= plui_1+p2ui__z+t-:i (6)

If the model for the correlation function in eq. (1) is to hold, then it

can be shown [1] that in eq. (6),
P=P (7)
p. =0 (8)

Thus it is seen that the sequence u, with correlation matrix of eq.(l) cannot
be represented by a second (or higher) order predictive Markov process.
Now, suppose u, is represented by

U7 P TR T Y (9)

This means the estimate of u, is obtained by using one prescanned and one
postscanned element, thereby requiring a one step delay. It can be shown

that in eq. (9)

plz pzs ——Lz (10)
1+p
and
1 2
E[viv_] = pz éi.. for p~1, (11)
1+p J

-13-



where 6ij is the kronecker delta function. Comparison between eqgs. (4) and

(11) immediately shows that
2 2
E[vi]_<_E[ei] 0<p<l (12)

Therefore, if v, is used as the differential signal for quantization and
coding, lower quantization error can be achieved for the same bit rate.

This sequence {vi} will be called the '"Interpolative Differential Signal''.

Reconstruction Algorithm It has been shown [1] that the received

signal \)'i\=< can be used to reconstruct u, by solving the following equations,
= )
LIPS B PR (13)
= L =0 14)
Yl-l - l__ ) YN ’ (
Py Yi)
%117 (Si+ o) Y1 °nT° (15)
Alternatively one can solve
5
a,= - (16)
i plli
where
N i N -
A : J o ¥ . )
YT YnA J;l u; s (N+1) Vi N+1 J,;l Vi sin (NH) (17)
and
1 i
M T P "2 cos (N+l) (18)

The sequence u is then given by

-14-



N
_ 2 ~ ijm
%S YNH j=21 Uy s <N+1)' (19)

Optimum Quantizer From eq.(16) the number of bits n., for

minimum quantization error, can be shown to be given by

Mz

2
n = p+x L log,(\)-2log, (A, (20)

k

1}
[

where p is the chosen bit rate in terms of number of bits per element. The

optimum quantizer corresponding to eqs.(13), (14) and (15) can also be

derived.

Results and Discussion The algorithm described above for one

dimensional signals can be generalized to two (or more) dimensions. The
quantization strategy (eq.20) depends only on the eigenvalue distribution and
for p~1 is very insensitive to variations in image statistics. The eigenvalues
Xi' for all such models are known in closed form as in eq.(18). Figures la
to 1d show the implementation of the coding scheme mentioned here. The
bit assignment in fig. 1d was chosen as n.o - logzi. Experiments are
currently under way using eq. (20) for the bit assignment strategy. Observe

that G’i and Gi are related to the Fourier transforms of u, and \).1 (eq. (17))

%
g
reduces to the straight transform coding. Experiments performed for

and if one sets p=0, then pl)\i-bl and ﬁ’ik= v Thus for p=0, the model
different values of p have indicated that for the values of p near unity,

(0.9 to 1, 0) the value of p may be set equal to unity without any appreciable
effect on coder efficiency. The coding in figs.1lb to 1d actually corresponds
to setting p=1. For greater details and computational comparisons see

reference [1].
References
1. A. K. Jain, "Image Modelling for Unification of Transform and DPCM

Coding of Two-Dimensional Images, " National Electronics Conference,
Chicago, October, 1973.
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(c) encoded image with
quantization levels propor-
tional to variance of the
error signal

Figure 3. 2-1.

(b) interpolative differential
signal €.,
1]

(d) encoded image with quanti-
zation levels depending on
eigenvalue distribution

Examples of interpolative image coding.



3.3 A Unified Representation of DPCM and Transform Coding Systems
Ali Habibi and Ronald S. Hershel

In recent years orthogonal unitary transformations have been used
with considerable success in coding and restoration of discrete signals.
One orthogonal transformation that results in the least mean square error
is the Karhunen-Loeve transformation that generates an uncorrelated trans-
formed signal. Other orthogonal transformations such as discrete Fourier,
Hadamard, Haar, slant, cosine and others have been used to approximate
the performance of the Karhunen-Loeve transformation because of their
efficient computational properties. The Karhunen-Loeve transformation
is indeed the only orthogonal transformation that results in an uncorrelated
transformed signal. However, if the orthogonality constraint is removed,
a second transformation of a lower triangular type can be found that also
uncorrelates the signal. This transformation is computationally more
efficient than the Karhunen-Loeve transformation, but it does not possess
many of its desirable properties. An interesting property of this transfor-
mation is that the transformation can be accomplished recursively for
Markov data. Indeed, it will be shown that coding Markov processes using
this transformation results in a modified form of the differential pulse code
modulator (DPCM), thus making DPCM a member of the class of transform

coding systems.

Transformation by Lower-Triangular Operators Consider an

T
N-dimensional data vector X = (xl, X ; xN) and let X represent a

PIREE
sample vector from an ensemble of N-dimensional zero mean random
variables. A vector Y= (yl, Yoo e yN)T can always be generated from a

linear combination of xi's as

Yy % (la)
j-1

S L., X for j=2,...,N 1b)

3T 1§=:1 jk 'k ! (

or in vector form

-17-



Y = LX (2)

where L is a unit lower-triangular matrix; i.e.,

1 0 0 o0 0 0
- 0
251 1 0 0 0
- 1 o - 0 0
f31 a2
L= . . . . (3)
- - 1
N1 N2 N, N-1
Denoting the covariance matrices of X and Y by CX and CY respectively,
eq. (2) implies that
cC,=LC LT. (4)

Y X

Choelsky has shown that for every symmetric positive definite matrix CX
there exists a real non-singular lower-triangular matrix L. such that matrix
LCXLT is diagonal [1]. Martin and Wilkinson have considered numerical
algorithms for finding L. and CY and have developed efficient techniques

requiring only N3/6 multiplications [2, 3].

Some of the significant properties of the transformation by the unit

lower-triangular operator are:

1) The unit lower-triangular operator L is not unitary; thus the
transformation does not preserve the length of a vector. Although the
determinant of the covariance matrix of X is invariant under this transfor-

mation, the trace of the covariance matrix is not invariant.

2) This transformation does not share the optimum concentration of
energy in the first M <N components of Y exhibited by the method of principal
components. Indeed, for an nth order Markov process, the variances of

the Y components, except the first n components, are all equal.

3) Transformation with the lower triangular operator L does not

-18-



require a transformation delay.

Note that if the components of X are samples from an nth order

Markov process, the stochastic linear model of eq. (1) will be

n
N o, X, =1,2,...,N 5)
it § k' j-k ! (
k=1
where x, = 0 for i=0,-1,-2,... . Then the operator Lrl will be a banded
matrix of n+l bands
1 o 0 0 .- 0]
..er 1 0 0 . 0
-az -a, 1 0 0
Ln= E R SR Y 1 o --- 0 (6)
0 - ¥, -o, 1 0 0
0 0 0 -« -a, 1
- n 1

Transformation of an N vector with operator L requires less than
nN multiplication as compared to N /2-N multlpllcatlons needed for trans-
formation with the unit lower-triangular operator L in its general form.
Furthermore, since transforming with the Ln operator requires only the
n most recently encountered components of X, this transformation can be
performed by using a feedback loop identical to one in an nt th 4rder DPCM
system to perform the transformation recursively. In this case, the -
complexity of the transformation is independent of the dimensionality of X
and depends only on the order of the Markov process n. The block diagram

of the system using the feedback loop for operation LnX is shown in fig. 1.

-19-
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Figure 3,3-1,

Block diagram of a system performing the transformation
Y = Lnx.
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Coding by Lower-Triangular Transformation In a transform coding

system that uses a Karhunen-Loeve transformation and block quantization,
the average coding error is minimum if the vector X is transformed to an
uncorrelated vector Y by the matrix of eigenvectors of CX. Block quanti-
zation of Y involves assigning a given number of bits to the N compo-

nents of Y such that the quantization error is the same for all components
of Y [4]. Denoting this error by A and observing the fact that the quantiza-
tion error is additive and uncorrelated for various components of Y, it can
be shown that the average coding error is bounded by

;= -l%tr[AI] = 4. (7)

Transformation of the vector X by the lower-triangular operator L
results in a vector Y where the components of Y are uncorrelated and in
general have unequal variances. Components of Y are quantized using the
block quantization technique and are transmitted. The vector X can be
reconstructed at the receiver, within some level of degradation, by opera-
ting on the coded vector Y +Q with operator L-I. The average coding error

is bounded by

tr[L'l(L'l)T]. (8)

62 A
L N
Comparison of eqs. (7) and (8) shows that using the lower-triangular
operator, a non-unitary matrix, rather than the Karhunen-Loeve transfor-
mation prior to block quantization, results in an inferior coding system.

1

This is evident from the fact that L.”~ is a unit lower-triangular matrix,

thus
tr[L-l(L-l)T] > trI. (9)

When components of X belong to a first-order Markov process, the
transformation is accomplished recursively using the block diagram on
fig. 1 with a single feedback loop. Then, using linear prediction theory, it

can be shown that the variance of v, is the same as the variance of X, where

-21-



the variances of ¥, through Yy are all equal to (1~af%). Thus, with the
block quantization coding system shown in fig, 2, only two quantizers are
required. One quantizer encodes Y, and the other Y, through N since
v, through YN have identical variances. From published literature, the
performance of this encoder is improved by including the quantizer in the
predictor loop as shown in fig. 3. This combines the operation of the
quantizer with the transformation, and is identical to a DPCM system with
the stipulation that a separate quantizer is used to encode the first compo-
nent of the differential signal. Naturally the effect of using only one
quantizer is negligible for large N; thus the two systems are identical.
This is easily generalized to conclude that transforming an nth order
Markov process by a lower triangular operator Ln results in an nth order

DPCM system.

Since L is a triangular matrix, the operation of the quantizers can
always be combined with the transformation to give a generalized DPCM
system. In reference 5, the authors propose a combination of transforma-
tion and block quantization, similar to one in the DPCM system, and show
that the performance of the generalized DPCM system at high bit rates
approaches the performance of the encoder using the method of principal
components and block quantization, This system uses NZ/Z-N multipli-
cations to transform the data and requires no coding delays. It simplifies

th th

to an n"" order DPCM encoder if components of data X belong to ann

order Markov process.
References

1. L. Fox, ""Practical Solution of Linear Equations and Inversion of
Matrices,'" Appl. Math, Ser. Nat. Bur. Stand., Vol. 39, 1954,
pp. 1-54.

2. R. S. Martin and J, H. Wilkinson, "Symmetric Decomposition of a
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3.4 Interframe Transform Coding of Images

Andrew G. Tescher

A new transform image coding technique which is characterized by
a high degree of adaptivity and is capable of very significant bandwidth
reduction has been developed. The various implementations include the
coding of two dimensional (monochrome and interframe) as well as three
dimensional data (interframe and color). In this section, the indicated

coding technique is discussed as related to interframe images.

An interframe image coder removes the high degree of redundancy
which is present in a sequence of images representing the temporal varia-
tion in visual scenes. The particular implementation operates on a
sequence of four images. The basic steps of this interframe coding proce-

dure are shown in fig. 1.

The sequence of four frames, I = {Il' L, 1L, 14} is processed by a
three dimensional transform (Fourier and Walsh transforms are utilized
in the specific implementations). The three dimensional transform consists
of four 256 x 256 two dimensional transforms followed by the four element
one dimensional transform along the temporal axis, In the final image
transform, T = {TI’TZ’T3’T4}' The image elements are considered to be
uncorrelated within each transform plane as well as between different

transform planes.

The coder '"dynamically' determines the model of the transform
domain on the basis of the previously coded transform elements and speci-
fies the number and location of the required quantum levels for amplitude
and phase quantization. The amplitude and phase are assumed to have

Rayleigh and uniform probability density functions, respectively. The
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amplitude variance is estimated locally and is made proportional to the
number of quantum levels for the companded amplitude. The number of
bits for the phase is normally one higher except when the amplitude code
is one bit in which case three bit quantization is utilized for the phase.
The coder does not generate code words if the estimated amplitude

variance drops below a specific threshold.

The coder shown in fig. 2, in effect, adapts to the three dimensional
image power spectral density. The latter quantity may be modified by the
multiplicative (linear or nonlinear) filters prior to the coding process.

For example, the data rate may be reduced by low frequency filtering.

The decoder of fig. 3 simply repeats the estimating steps of the
coder and determines the variance of the next amplitude and then recon-
structs the quantified image amplitude and phase. The subsequent utiliza-
tion of the three dimensional inverse transform completes the decoding

-~ ~ -~

process yielding the estimate of the four frames, I = {Il, L, L, 14}.

The novel features of this image coding process are: a) a very
high degree of adaptivity without any bookkeeping; b) the lack of any pre-
determined transform model (such as for example, the exponetitial Markov
image correlation model); c) the capability for varying the amount of band-

width reduction via the application of the filters preceeding the coder.

An example for the interframe coding procedure is shown in fig. 4.
The eight bit images have been reconstructed using only 0. 3 bit per picture
element. The three dimensional Fourier transform was utilized for this
case. An example for the adaptively determined bit assignment is shown
in fig. 5. Here, the numbers indicate the adaptively determined amplitude
code word lengths in the left half of a Fourier transform plane. Similar
application of the above described transform coding technique to mono-
chrome and color images demonstrates good quality image reconstruction

with as low as 0.4 and 0. 5 bits respectively.
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(a) original (b) original,
8 bit/pixel 8 bit/pixel

!

(c) reconstructed image, (d) reconstructed image,
0. 3 bit/pixel 0. 3 bit/pixel

Figure 3.4-4. Interframe coding of a four-image sequence

(the first two images are shown only)
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3.5 Coding Subject to a Fidelity Criterion for Sources with Unknown
Probabilities

Lee D. Davisson

Past reports have summarized results for the encoding of image
sources with unknown output probabilities without distortion. This report
presents some preliminary results on coding when distortion is allowed.
Of particular interest is the minimum possible average distortion when the

bit rate of the coding procedure is fixed.

Assume a video source with individual output samples, called
"letters', drawn from some ""alphabet" .AO of quantized values and a
reproducing alphabet AO. A blocklength N code CN is simply a collection
of, say, M= M(N) N-tuples yli\r= (yio, EEE A ), i=0,..., M-1, where

A~

each letter of each N-tuple is drawn from A_ so that yli\le AN, the N-fold

0

cartesian product of A A nonnegative single-letter distortion measure

o
pN defined on ANx AN is given by
N-1
N N -1
i=0

where Py is called the per-letter distortion measure. A source is encoded

by looking at a source N-tuple xN and mapping it into the codeword yNe C

N

N
such that pN(xN, yN) is minimized. The resulting codeword is iN(x )s

and then

N N .N, N
Pl 1€y = pplx & (x))

(2)
min o (", yN)
N N

-1 .
The rate R of a code CN is defined by R=N "1ln M and the average distor-

tion of a code p(CN) is given by

_ N
p(C) = Efp (X [C)] (3)
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N ..
where X' denotes a random source vector and the expectation is over

the source ensemble.

There are two approaches to studying the "optimum!'' performance
obtainable in source coding systems. The first and by far the most
common is the rate-distortion approach wherein the desired average dis-
tortion is fixed and an attempt is made to determine the minimum rate for
which there exists a code meeting the fidelity constraint, i.e., one studies

the function r(D) where

r(D) = inf inf N tin M(C ) (4)
N G :p(C)<D

It is well known that for stationary ergodic sources r(D) can be given in
terms of the rate-distortion function R(D), which is defined as an informa-

tion theoretic minimization. Specifically,
r(D) 2 R(D) (5)

and for arbitrary €>0, there exists a sufficiently large N and a code CN

having

N g M(C ) € R(D) +¢

(6)
p(CN) < D+e

An alternative approach is to specify a fixed rate, and find.the
minimum possible average distortion attainable. This is the distortion-
rate approach and is the more natural when one begins with a capacity
constraint or a fixed number of quantization levels as opposed to an average
fidelity constraint. In this case one is interested in the function §(R)
defined by

8(R) = inf _yint p(Cy) (7)
N CN:N In M(CN)§R

and the answer for stationary-ergodic sources is given in terms of the

distortion-rate function (inverse rate distortion function) D(R)
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§(R) = D(R)

and for arbitrary €>0, there exists an N and a code CN such that

N tin M(C ) g R+e

(8)
p(CN) < D(R) t+¢

For the usual stationary, ergodic case the two views are entirely
equivalent (although one may be more natural for a particular problem)
and the functions are evaluated via identical parametric equations [1, Ch. 2].
This equivalence no longer holds, however, for fixed rate source coding
stationary nonergodic sources as is typical for video sources where pictures

of nonhomogeneous scenes are to be encoded.

Ergodicity is crucial in proving coding theorems since the law of
large numbers or more general ergodic theorems provide a crucial step in
random coding arguments. Roughly speaking, an ergodic source is a
stationary source for which all doubly infinite output sequences are '"typical"
so that relative frequencies of functions of a finite number of letters of the
process converge with probability one to their expectation. As an example,
if one considers a Bernoulli process consisting of a sequence of independent,
identically distributed binary random variables with Pr(1)=p, Pr(0)=1-p,
then the relative frequency of ones in a block of length N converges to p
with probability one as N+, Now suppose that at time -=, Nature flips a
fair coin and chooses either p =P, OT PP, P, #pz, and then sends a
Bernoulli random process with the chosen parameter. The resulting
source is a mixture source and the probability of k ones in a block of

length N is given by

N-k N-k

k k

so that the resulting mixture source is stationary, but it is no longer
independent, identically distributed and no longer ergodic. It is not

ergodic since any doubly infinite sequence (string) is not ''typical" of the
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mixture source, it is 'typical' of one or the other of the subsources
comprising the mixture, i.e., the relative frequency of ones approaches
either P, or p,, but not %(pl+p2). Similarly, if Nature spins a fair wheel
to determine p so that p is a uniform [0, 1] random variable, one would
have a stationary, nonergodic source consisting of a mixture of an uncoun-
table number of stationary-ergodic subsources [9]. The ergodic decom-
position theorem states that all stationary sources having an alphabet with
a separable 0 -algebra can be considered as a unique mixture of a possibly
uncountable number of stationary-ergodic subsources so that the Bernoulli

example above is in a sense typical.

Consider now the case of a source that is a mixture of a finite
number, say K, of stationary ergodic subsources with a prior probability
W k=0,...,K-1, This can also be viewed as a composite source with
memory where the particular subsource is chosen at -» and fixed for all
time [ 1, Section 6.1]. A codebook for the mixture is constructed as
follows. For each of the subsources a rate R + €/2 code CN(k) is developed

such that for N sufficiently large,
p(C (k) [k) ¢ D (R) +e (9)

where p(CN(k)Ik) is the average distortion of a code CN if the ktB
subsource is the 'true' source chosen by Nature. Then N is chosen large
enough so that a CN(k) satisfying eq.(9) can be found for each k=0, 1, ..., K-1,
A super codebook
K-1
Cy= U C.(k) (10)
N k=0 N
consisting of all of the words in each of the subcodes is then formed. The
source encoder still finds the best word in C__ for whatever source N-tuple

N
it sees. Thus CN has average distortion

-34.



K-1
p(C) = 3 pPC k) w
N e PN Y

K-1
P CYUIEES

A

K-1
E D (R)w, +e
=0 k k

nA

and the number of codewords M(CN) contained in CN is

K-1
M(CN) = k);o M(CN(k)) <Ke

N(R+¢/2)

(11)
= exp {N(R+¢/2 + N—lln K)}

so that by choosing N large enough, C__has rate < R+e. If the kt? subsource

N
is present, then p(CN|k) 2 Dk(R). Thus for arbitrarily small ¢

K-1 K-1
3> D (R)w, < 8R) < D D (R)w, +¢ (12)
oo Tk k o Tk k

It is the weighted average of the distortion-rate functions of the individual
ergodic components that yields §(R), and not the usual distortion-rate

function of the mixture source.

In fact, more than eq.(12) is true. Given a code CN satisfying
eq.(12), one might ask how well this code would perform for a specific
subsource as opposed to its performance for the mixture. Specifically,
what is the average distortion p(CNIk) if the kth subsource is in effect?

Since

P(C k) € P(C (k) [k) £ D (R) +e (13)
one obtains the surprising result that when the ergodic decomposition is
finite, there exists a single code CN of rate approximately R such that the

average distortion obtained under any subsource is the best possible,

ignoring second order terms, i.e., is just as small as if we knew in
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advance which subsource would be chosen by Nature.

The preceeding results can be extended to a nonfinite number of
ergodic subsources as is more typical of video sources. The result is
essentially the same although the methods of establishing the more general
result are much more complicated. Thus it is known that it is possible to
approach the information theoretic rate distortion bound for a video source
without a priori knowing the source output probabilities, The implication

of this theory to practical video coding is presently under investigation.

3.6 Image Data Compression Using Singular Value Decomposition

Monty Adler and Harry C. Andrews

The primary area of this research involves the use of singular value
decomposition (SVD) as a tool for dealing with the inversion (or pseudo
inversion) of large, nearly singular, matrices. As a by-product of this
research, there have been attempts to use the SVD technique on images for

the purpose of data compression and perhaps image enhancement.

SVD Definition and Properties In the SVD technique a digitized and

sampled portion of an image (not necessarily square) is expanded as the
sum of matrices of rank 1. If H is an NxN image, the first step in the SVD
technique entails finding the eigenvectors and eigenvalues of the matrices
HHT and HTH. Let HHT have the eigenvector decomposition ()\1, Ul),

”‘2’ UZ) s (XN, UN), ie., HHTUi = XiUi. Similarly, let HTH have the
eigenvector decomposition (nl, Vl) (nz, VZ) <o (T]N, VN), i, e.,

HTHVi = niVi. The following properties can then be shown:

1) xizo i=1,...,N
2) xi=ni i=1l,...,N

N
3) H= 2 )\I/ZUiViT where ),il/z is positive.
1=

i

The terms k:/z are the ""singular values' of H and property 3 is the
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""singular value decomposition' of H., If the )‘i are ordered in decreasing

magnitude, it is possible to approximate H by

k
Z 1/2 T
iz 1
It can be shown that the error in approximating H by HK is
2 N
l-m %= T
i=k+1

Use of SVD for Data Compression A direct representation of the

image matrix H requires N2 data elements, while H can be approximated

by H_, using only 2ZKN elements. The following elementary algorithm for

K
data compression will permit reconstruction to within a required mean

squared error, €.

Step 1 - Compute ||H||2, set k=1, S=0,

Step 2 - Compute and save )‘k' Uk’ Vk'

Step 3 - S=S+)\k.

Step 4 - If ||H||2 -S<e, done. Otherwise step 5.
Step 5 - k=k+1; go to step 2.

This technique has been used on three 120x 120 images. All three

cases exhibited basically the same results which are summarized here:

(2) When the singular values were plotted, the curve was convex
and the singular values dropped off very quickly. For one of
the images, the first 10 singular values were 1907, 442, 338,
183, 149, 115, 93, 80, 67, 59. Singular values with indices
20, 30 and 40 were 25, 16 and 12, respectively.

(b) The percent mean squared error in truncation as defined by
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120

> A,
i=k+1
120

)RR
i=1

MSE(k) = x 100% dropped off to below 1% at

approximately k=15,

(c) Successive values of Hk were displayed on a high resolution

display in sequence. Viewers could barely differentiate H15

from H20 and the original.

(d) The number of data values using SVD is 2xkx 120 + k which
for k=15 yields a reduction of 75% and for k=20, a reduction of
67%. It should, however, be noted that the original pixel
elements are integers of 6-10 bits., However, the vectors
Ui’ Vi are made up of real signed numbers less than 1 in

absolute value which could possibly require more than 8 to 10

bits for their representation.

(e) The algorithm to compute the SVD of a matrix will in general
compute the Xi in decreasing order. A ''real time'" algorithm
should have the capability of '""handing over'' the )\i, Ui’ Vi
values one at a time and letting the user decide whether any

more terms are required.

(f) Figures 1, 2 and 3 show images and their reconstruction for
different values of k. In each case the images have been
treated as a 120x120 array. In figs. 1 and 2 note that for k=20
and k=22, respectively, the comparison with the original is
quite good. However in fig, 3 it is necessary that k=26 before
the reconstruction is good. As expected the plot of )“%1; vs k

drops off more sharply for figs. 1 and 2 than for fig, 3.

For the sample 120x120 images, the singular values had the
property of decreasing sharply at first and then after a while decreasing

linearly. This can be seen in the table below which gives every 10th
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(e) K = 20 (f) original

Figure 3.6-1. Expansion of an image by singular values - image no. 1.
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(e) K = 22 (f) original

Figure 3.6-2. Expansion of an image by singular values - image no. 2.
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(e) K = 26 (f) original

Figure 3.6-3. Expansion of an image by its singular values - image no. 3.
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singular value for two different pictures.

Singular Value

k- Picture 1 Picture 2
1 1272 1625
11 109 96
21 60 52
31 38 34
41 27 21
51 18 16
61 13 11
71 9.3 7.8
81 6.7 5.6
91 4.8 3.6
101 3.0 2.4
111 1.3 1.0

Considering the amount of redundancy in the pictures, one might
have expected that singular values would exist which were either zero or
small numbers resulting from computer round-off. A tentative conclusion
is that the nonzero but small singular values are the result of low level

noise in the original images. In these cases, H, might be a better repre-

k
sentation of the 'true' object than H. In the image shown in fig. 1, low
level noise showed up as '""patches' in the relatively flat area on the left
side. For certain values of k this noise was not present. Although the

above discussion is tenuous, it does lead to the question of the significance

1
of individual terms )\7‘15; Uk VkT and how they could be treated.

Areas of Further Investigation

(2) Methods of coding the components of Ui and Vi to achieve better

data compression.
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(b)

(c)

A method for image enhancement in which the expression

k

i
H = ) W A%U, V.T where the W, are chosen to bring out
k i bioid i

certain features.

Examination of the significance of the individual terms

py
ULV, T
1 1 1
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4. Image Enhancement and Restoration Projects

Image enhancement techniques have a variety of purposes such as
to improve the subjective aspect of images, improve the visibility of parti-
cularly interesting features, or to translate the image information into a
form more suitable for subsequent machine data extraction. Image resto-
ration attempts to reconstruct images as they would have been formed by
ideal imaging systems, using available degraded image values and some

apriori knowledge of the physical imaging system and/or image statistics.

The first report analyzes distribution transformations which are
used in image enhancement to equalize the gray level histogram of an image.
This technique is often applied to increase the perceptibility of features with

a very low contrast range.

Many imaging systems can be modeled by a set of linear equations.
In that case, image restoration entails the solution of the set of linear
equations., -One classical mechanism for solving a set of linear equations
is the matrix pseudoinverse, whose properties and performance are
discussed here. Computational difficulties and possible instabilities are

pointed out,

In the following report, a restoration algorithm is studied, which
combines matrix and gradient methods to attain numerical efficiency and
accuracy. It is hoped that this algorithm will provide a practical numerical
tool for a wide variety of nonlinear image restoration problems involving

large two dimensional arrays.

Constrained image restoration takes advantage of some apriori
knowledge of the image. The use of equality and inequality constrained
estimators in the underdetermined and overdetermined case is studied

and compared with unconstrained methods.

The resultant quality of image enhancement is limited by the restric-
tion imposed by linearity. A nonlinear statistical image model is introduced,

upon which a new recursive image enhancement procedure is developed.
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This technique utilizes . simultaneous statistical detection and estimation
theories and attempts to treat ''signal' and '"background' in images
separately. Simulations show improved enhancement particularly at edge

boundaries.

In the following report, the concept of a nonlinear statistical image
model is explored further. The problem is to estimate the parameters of
the model which determine the location of an object in the image to be
restored. The presence of the object in the noisy image data is postulated

as apriori knowledge.

A method of image restoration for incoherent optical systems with
third order aberrations is presented. The technique uses coordinate trans-
formations to initially operate on the degraded image with a geometrical
distortion. Following this, space invariant inverse filtering or estimation
and another transformation are used to complete the process. The technique

makes restoration practical by effectively reducing the system dimensionality.

The last two reports of this section are concerned with digital color
image processing. The reproduction errors in color imaging systems are
partly due to the inherent dimensionality reduction process by which the
colors of the scene are reduced to three quantities or tristimuli. Errors
occur when the spectral sensitivities of the color sensors do not correspond
to the human color matching curves. The problem considered is to estimate
the original color tristimuli, given the tristimuli of a photographic color

image and the characteristics of the film.

When photographing a color CRT display like a TV monitor, the
imperfection of color films can be partly compensated for because each
color displayed has a unique spectral distribution. When the spectral
emissivity of the CRT and the spectral sensitivities of the film are known,
a pre-distortion may be designed to obtain the desired colors in the photo.

Methods to cope with physical gamut restrictions are also discussed.
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4,1 Almost Uniform Distributions for Computer Image Enhancement

Ernest L., Hall

The desirable information in an image often occupies only a small
portion of the available contrast range. Thus, certain objects may not be
distinguishable because their gray level values are too nearly the same.
Computer contrast enhancement techniques are often used to increase the
perceptibility of this low detail information. Certain useful contrast
enhancement techniques may be based on the histogram or empirical cumu-
lative distribution function, CDF, (integral of the histogram) of the gray
level values in the image. For general image enhancement, one may design
a contrast transformation which produces an image with a uniform or other
desirable gray level distribution. Transformations of this type have been

used for image enhancement [1,2] as well as for an image normalization

[3,4].

The conventional solution to the problem of producing a uniform

(x) (x)
EX and use the FEX

formation. This transformation produces a discrete variable whose

distribution is to form the empirical CDF F trans-

empirical CDF, FEY(Y)' might be expected to be approximately uniform
because of the well known distribution transformation. The purpose of this
note is to investigate how closely such a discontinuous function can approxi-

mate the uniform. The conclusion is stated in the following lemma.

Lemma Let X be a discrete random variable with values

x, = Q’T'\Iﬂ i+a, i=0,...N,

i.e., a< x, < b and distribution function, Fx(x) = Pr {X<x}, which is a

jump function with maximum jump equal to €. That is:

max, [Fx(x ) - Fx(xi)}=e_20, i=1,2,...,N.

i+l

Then the discrete random variable, Y, defined by: Y =FX(X), has an

approximately uniform distribution in the sense that:
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F =1, 1<
Y(Y) <y

= O, 0
FY(Y) y<
and 0<y - F_(y)<e, O<y<l]l.

Obviously if an absolutely continuous function, F(x), defined on
(a, b] is approximated by its sampled values, F(xi), at N equi-spaced points,
the approximation improves, i.e., € approaches zero, as N increases. The
point of the lemma is to develop a bound for the approximation for a finite
N and €. The finite distribution transform thus changes the range and the
spacing of the variable and provides an approximation to the uniform

distribution.

To obtain a good approximation, € must be small, which may not be
the case for some empirical distributions. However, certain modifications
of the discrete transform which are easily implemented on a computer may

be used to improve the approximation.

The simplest method for improving the approximation is simply to
rescale the transformed variable. The discrete distribution transformation

produces a variable

Y5 = FEX(xi)' i=0,1,..., N

with range
FEX(a) <vy; < 1.

In the previous lemma, the distribution of Y is compared to a uniform [0, 1]
distribution. If Y is rescaled and compared to a uniform [FEX(a,), 1]

distribution then it is easily shown that
Iz—FY(y),< eZ< €

where z represents the uniform [F__(a), 1] variable. Quantizing the

EX
rescaled variable to equispaced values may or may not improve the approxi-

mation but may reduce the number of levels and produce a 'false contouring"
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effect in pictures,

It may also appear that the number of non-zero histogram values of
the original variable, X, determines the effectiveness of the transformation.
However, according to the lemma, it is the values of the non-zero histogram
values which determine the accuracy of the approximation. A greater
number of quantization levels generally tends to produce a smaller € and
thus a better approximation. Of course, if the original variable is a constant

then increasing the quantization levels does not reduce €.

Another variation which may be considered is to compress two or
more x, values into a single 1A value. This compression would increase €

but possibly also increase F__(a), thus the approximation would not be

improved but the range enha,rEl:Ziment may be improved.

For many classes of images, the "ideal" distribution of gray levels
is a uniform distribution and the above theorem indicates the method for
obtaining an approximate uniform distribution with a simple gray level
transformation. A uniform distribution of gray levels tends to make equal
use of each quantization level and to enhance low detail information because

of the range compression. To use this transformation, one must:

(a) compute the histogram of the image gray level values;
(b) compute the empirical distribution function;
(c) wuse this distribution curve for the gray level transformation;

(d) rescale and quantize the resulting values.

Finally, although this transformation is very effective for enhancing low

contrast detail, it does not discriminate between low contrast information

and noise.
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4.2 Application of the Matrix Pseudoinverse to Image Restoration

William K, Pratt and Nelson D. A. Mascarenhas

In many imaging systems it is possible to model the imaging process
by a set of linear equations. Image restoration then entails the solution by
the set of linear equations. One classical mechanism for the solution of a
set of linear equations is the matrix pseudoinverse. Its properties and

performance for image restoration are discussed here.

Sampled Imagery Model A large class of imaging systems may be

mathematically described by a linear systems model. Consider an ideal,
continuous, infinite extent image function F(x, y) which is subject to some
linear spatial degradation (blur) resulting in an observed continuous, infinite
extent image function F(x, y). The linear spatial degradation is assumed to

be well modelled by the convolution integral
Fix,y) = [[ Fla,p)Glx-a, y-8) dadp (1)

where G(x,y) represents the impulse response of a linear spatially invariant
system degradation. If the observed image F(x, y) is physically sampled
over an MXM grid of resolution A by an ideal” array of Dirac delta functions,

the observed image samples are given by

f(mlA,mZA) = f[mF(a/,B)G(rnlA -a, mZA -B)dodp +N(rn1A, mZA) (2)

" The effect of finite width sample pulses can be lumped together with the
spatial image degradation,
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where N(rnlA,mzA ) denotes an additive noise component in the image sensor
and sampler, For numerical purposes the continuous integration can be
replaced by a summation by numerically sampling the ideal image F(x, y)
with an NX N grid of Dirac samples at a resolution of § and then invoking
quadrature integration. Also, in the discrete representation, it is necessary
to truncate the impulse response operator to some spatial limit, say (L3, L§).

Then, the samples image may be described by

L+m.-1 L+m_-1

) ] 2
F(ml,mz) = Z } : F(nlé,nzé)H(mlA-nlé +L6,m2A-n26+L6)
i S T

(3)

+ N(mlA. mzA)

where the array H, assumed to be zero outside its range of indicies, repre-
sents the sampled impulse response and incorporates all quadrature inte-
gration factors. In order to prevent serious approximation errors at the

boundaries of AFJ‘, N should be chosen such that
N6&6>MA+(L-1)8 (4)

Usually the numerical sampling resolution & is kept quite small to limit
numerical approximation errors of the continuous integration of eq. (2) by
the discrete summation of eq.(4). In such cases N is usually greater than
M, that is, there are more representational points in the ideal image, than

physical sample points of the observed image.

It is possible to represent the linear eq.(3) in vector space form by

~

defining vectors f, z, and n which are obtained by column scanning F, F,

and N, respectively. Then,
£=Bf+n (5)

. 2 2 .
where B is an M XN blur matrix which can be partitioned as
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r 0 0
ggl,l —BI,Z El,L 0
|
10 B Bon BaLn 0
!
B = | (6)
0
— EM’ N-—
The general term of B is then given by
n = - -
B(g;z, nz) H(m A-n 8+L8, m,A-n,6+L6) (7)
1’71
for
1< m, < M 1< m, < M
m15n15L+m1_1 m25t125L+m2_1
Pseudoinverse Consider a set of linear equations represented by

the vector equation

y=Axte (8)

where A is a PxQ matrix and e is a Px1 vector representing error or

uncertainty in a measurement. A common problem is to determine some

vector x
—0

have: (1) a unique solution; (2) many solutions, or (3) no solution at all,

that satisfies the vector equation. In general, eq.(8) may either

The pseudoinverse of a PxQ matrix A is a Qx P matrix é"' that

satisfies the relation [1]

1>
>
>

"
1>

(9a)

>
>
1>

"
1>

(9b)
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Also éé+ and é+é must be symmetric. If A is of rank P, then the pseudo-

inverse can be computed by

at- AT(AAT)-I (10a)
and if A is of rank Q, then
At = (ATA)-I AT (10b)

The pseudoinverse can be utilized to compute solutions to eq.(8) if such
solutions exist, and to compute '"best'" approximate solutions in the case of

nonexistent exact solutions.

For e=0, it is known [1] that a solution exists for eq.(8) if and only

if
aa’y=y (11)

Also, if a solution to eq. (8) exists, then the solution is of the form
-A A)v (12)

where v is an arbitrary Px1 vector and I.

P is a Px P identity matrix, If

the solution is unique

+

= 1
A'A=1, (13)
For an arbitrary error vector e, the pseudoinverse solution
X = A+y (14)
_0 —_—
is a best approximate solution in the sense that
T T
(Ax-y)" (Ax-y) 2 (Ax,-y)} (Ax,-y) (15a)
and
T T
X x> X, X, (15b)
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That is, the pseudoinverse solution is the best solution in the mean square

sense and also the lowest energy solution.

Image Restoration Application The pseudoinverse solution may be

employed to determine an estimated solutioni to the vector space repre-
sentation of a sampled image as given by eq.(6). As an example consider a

blur matrix which is spatially separable such that the direct product relation

= 1
B=B, By (17)
holds where EC and ER are Mx N matrices describing the image blur in
horizontal and vertical directions. Furthermore, the blur matrix E’C is
a‘ssumed to be of the form
B _ .« o . 1 0 . e . ]
hC(L) hC(L 1) hc( ) 0 0
0 hC(L) e hC(Z) hC(l) v 0
= . 18
B (18)
i 0 e 6 ¢ o o o o o o @ 0 hc(l) LA hc(]_)—

where
2
ho(i) = Kexp {-[j-(L-1)/2]7/5 }

with K and Sc constants. The blur matrix ER is of similar form. The
noise is assumed to be independent of the image and to be white with
covariance matrix En = GZ_L It should be observed that with this direct
product structure of the blur matrix, the computational task of performing

the pseudoinverse can be considerably reduced since

+_ o+ +
B =B, Bgp (19)

Several computer simulation experiments have been performed to

evaluate the pseudoinverse restoration technique for the imaging model
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described above. In these experiments the original 8 x8 pixel image of

fig. 1 consisting of a bright square of value 245 on a constant background of
value 10 over a 0 to 255 scale has been subjected to linear blur and additive
noise by computer simulation, The noise free restoration for various degrees
of blur is illustrated in fig. 2. The results indicate that the restoration is
subjectively better than the blurred image but the original picture is not
necessarily obtained. This is due to the fact the pseudoinverse has produced
one of an infinite number of possible restorations, namely, the minimum

norm solution,

The experiments have been repeated with a small amount of noise
added to the observation, as shown in fig. 3. In this figure restoration values
outside the range 0-255 have been clipped. It can be seen that the small
noise perturbation can cause a severe change in the result, as is the case
with the blur coefficient equal to 5. This can be explained in terms of the
ratio of the largest to the smallest nonzero eigenvalue of the matrix (BTB).
Since the non éero eigenvalues of BTB are equal to the nonzero eigenvalues
of BBT and since BT is assumed to have full column rank, BBT is nonsingular
and that ratio is the condition number of BBT. In fig. 4 this number is plotted
against the blur coefficient. This result implies, quite interestingly, that
the worst results in pseudoinverse restoration should be expected with

moderate amounts of blur, as compared with small or large values.

Conclusions The pseudoinverse technique has been studied .for image

restoration in the hope that this method for solving linear equations would
provide good quality image restoration. The results of the study indicate
several shortcomings of the method. First, computational problems occur
when attempting to compute the pseudoinverse, especially for large size
blocks. Secondly, observation noise can lead to numerical instability of the

solution at moderate values of blur.
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original

Figure 4, 2-1. Original image for pseudoinverse restoration examples.
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B =8, = 0.5 (b) restoration

[0l o % ¥

'(c) observation S =S, =5 (d) restoration

S = 500 (f) restoration

1

(e) observation o -S

Figure 4.2-2. Pseudoinverse restoration or noise free observation.
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(a) observation S = SR. = 0.5 (b) restoration
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(f) restoration

(e) observation S

Figure 4. 2-3, Pseudoinverse restoration for noisy observation.
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4.3 DPositive Restoration by Deconvolution

Ronald L.. Hershel

Whenever an object scene 3 is degraded by an imaging system
(characterized by a linear transform S) and additive noise 3, the image }’

may be expressed as

ri= Zsi_o_-l—n i=1,2,..., N, (1)

ij

With certain statistical assumptions which include a positive constraint on
3, one may estimate both the object and noise by the following restoration

formulas 1]

* *
o, = exp (ZS5,.a; 2
;- e p(j ij%5 ) (2)

2, 2
n, = Ba,'i'.~ g = Gn/OO (3)

where the unknown parameters a’ik(i= 1,2,...,N) are determined through
satisfying eq.(1). The expressions in eq.(2) ensure a positive estimate o™
while no such constraint appears on the noise estimate (assumed uncorrelated

with zero mean).

The main effort in this research has been to develop a suitable
numerical algorithm for solving the simultaneous nonlinear equations associ-
ated with eqs.(l) and (2). Due to an explicit use of an Nx N matrix, standard
procedures such as Newton-Raphson [2], secant [3], and variable metric [4]
suffer from a limitation on the number of unknowns that can be effectively
handled (N<100). Other methods which do not require matrix handling (such
as the steepest descent [ 5], conjugate gradients [6], and the generate
Partan [7]) either converge too slowly (lacking quadratic convergence) or

break down due to accumulated round off error.

Mathematical Considerations Consider the scalar function

5 M N B N 5 N
f(a) = E exp (Z S,_a,) + B Z ai - Z a.r
i i

i
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where M >N to accommodate the higher resolution associated with positive

restorations [1]. This equation may be expressed in vector notation as

f(3) =2  exp (S2)+8/23 a-2'%  w =1,i=1,2,..., M (4a)

For small deviations X, f(-a’) may be expanded to second order

T

fa+d) = g+ Lg+ 32T

I3 (4b)
where the gradient g and Jacobian J are defined as

2

f 7. = 93 f
i da ij da,da,
1)

By eq.(4), one may write

g=So+n-r (5)
7=565T +8 (6)
where the matrix 6 is defined as
0 i#j
8.. = i=1,2, M
ij ..
o. i=j

with the object values o, determined by eq.(2). Since o, (a) >0, it is apparent
from eq.(6) that J is posﬂ:lve definite symmetric for all real values of a.
Hence f(a) displays global convexity and possesses a unique minimum f(a ).
This minimum coincides with a zero gradient (§*= 0) which by eq. (5) is

written as

Se*+n¥-T=0
Hence finding the minimum of f(-g.) is equivalent to solving the positive
restoration problem expressed by egs.(1)-(3). With these considerations

an algorithm can be developed which incorporates the salient features of
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both the conjugate gradient and matrix methods in an attempt to minimize

the overall computational requirements.

Mixed Algorithm for Rapid Convergence The initial estimates

= ;1’ and -t;(o) = 0 are used to begin the iterative process. These estimates

(o)

3(0)

correspond to 2 = 0 as seen by eqs.(2)-(3). Hence, from eq. (3), the initial

value of f(g) is

flo)=a'u =M

which is simply the object sample size. Denoting -\;= S;:l’, eq.(5) gives

+ 4
g, = r-v

from which the following quantities are defined

+ (2
c = lg (72)
_ T
d =T g (7b)
-+ T+
h =S"g, _ (7¢)

-
The next estimate for a is along the direction of steepest descent

2,7
a= 58

-
whereby one may write f(a) as a function of the unknown scalar bl’ ’

+T < 2
f(bl) = u exp (b1h1)+ g/2 Clbl —dlb1

(1), b(ll)-g. and

and proceed to find the b(ll) that minimizes f(bl). Denoting a 1

3 (1)

—’
gz = g ) the process is continued as follows. For the kth iteration:

2 _ T~ _ oI
I ) dk- r gkandhk—S g

3 — -’
(1) Find S ng
(k)

i

k
(2) Leta = Z biéi and find those values bi= b
i=1
minimize £(3).

(i=1,2,..., k) which
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.

k
(3) Set K L 5 plkg
=1 b 1

k
g(k):: exp (:2: ték)ﬁi)
i=1

200 _ o3
(4) Find _ék+1 = otk k) 2

(5) Set k= k+l and return to step 1.

One important feature of the above algorithm is that only two S trans-
forms are required for each iteration. Step (2) is performed efficiently
using the Fletcher-Powell algorithm [8] which is particularly well suited to
the form of f(;). Furthermore, Step (2) ensures orthogonality of the _g'
vectors in succession

T+

g gk+1=0 1=1,2,..-,k

4. <k .
and in effect reduces the hyperspace of the error a™ - a( ) by one dimension.
Hence complete convergence is assured after k=N iterations where the

-

gy i=1,2,..., N, completely span the space of a*. As to the behavior of

. : (k)
the incomplete solutions a

(k< N), preliminary tests indicate rapid
-
convergence to the near quadratic region of f(a). Once in this region, the

algorithm is entirely equivalent to the conjugate gradient method [6].

Modification for Restricted Storage The kth iteration normally

requires k linearly independent vectors to minimize f(;) over a k dimen-
sioned subspace. However in the vicinity of f(;*), the quadratic approxima-
tion of eq.(4a) becomes valid and only a single conjugate direction is
required for each iteration [6]. This property suggests a procedure which
retains less than k conjugate directions. Assume, for example, that there
is a restriction to five direction vectors for use in Step (2) due to storage

limitations, Then as each new gradient §k+1 is found, the gk 5 is eliminated
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Each new vector

L L. -+ -+
after J-orthogonalization with gk_4, gk_3, RS E

becomes

o
“c

_ + -
8i = 8 T¥iBx.s
where o is found by requiring

Since -g"iI‘J-g'k is equivalent to ﬁ?@ﬁj, the calculations envolved in eq.(8) are

relatively fast,

Conclusions A restoration algorithm has been presented which

combines matrix and gradient methods to attain numerical efficiency and
accuracy. Though for any given problem the convergence rate is dependent
on the imaging transform, object structure and noise level, it is hoped that
this algorithm will provide a practical numerical tool fof a wide variety of

nonlinear image restoration problems involving large two dimensional arrays.
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4.4 Constrained Restoration of Digital Pictures

Nelson D. A. Mascarenhas

The problem of restoring digital pictures degraded by blur and cor-

rupted by noise can be put into the framework of a linear regression model
y=Bx+z

where y is a (mxl) vector of observed values, B is the (mxn) blur matrix,
x is a (nx]1) vector of original pixel values, z is the random (mxl) vector
representing a noise process. A considerable improvement in the restora-
tion can be obtained if the experimenter incorporates any prior knowledge
about the possible values for the parameter vector x. In this section two

kinds of constraints will be considered: equality and inequality constraints.

Equality Constraints A priori knowledge of linear relations

involving the original pixel values can be expressed by

Gx=u

where G is an kxn matrix and u is an kxl vector in the range of G.

Assuming white noise, under the least squares criterion, one
searches for the minimization of HX~§§_HZ over the set {x :Gx=u}.. The
solution of this problem may not be unique if B does not possess full
column rank, as is the case in an undetermined system, i.e. when there
are more parameters to be estimated than observed values. The minimum

norm solution, however, is unique and it is given by [1]:

x=G'u+B'y
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The equality constrained method has been applied to the restoration
of digital pictures. Figure la shows the center part (8x8) of the original
(12x12) picture. In this case the system is underdetermined. Figure 1lb
represents the (8x8) observed values blurred by a Gaussian shaped transfer
function and corrupted by white noise. When the constraint that the sum of
the (8x8) pixel values of the center part of the restored picture be equal to
the correspondent sum in the input picture, the result is shown in fig. lc.

It can be seen that an improvement over the unconstrained case as shown

in fig. 1d occurs.

This improvement can be made explicit by the reduction on the
covariance matrix of the estimated values. In the case of the overdeter-
mined system, the covariance matrix of the equality constrained estimator

is given by [2]

-~ - -1 - “1
covixl=(8"B) -(8"B) ¢ Ia@ BIGT1 "B B)
Since ng is the covariance matrix of the unconstrained estimator,

the reduction is clear.

The imposition of linear constraints may imply bias, however, when
the restrictions are not true [3]. Even in this case, there may be an
improvement in the mean square sense, taking into account both bias and

variance.

Linear constraints allow also for the calculation of confidence
intervals for pixel values., Figure 2 shows the curves of the residual norm
Iy - Q%“ in the one-dimensional overdetermined system when the fourth
estimated pixel value is constrained to vary over a certain range. The
same figure shows the confidence interval for the estimation of the fourth

pixel value under 95% confidence level.

Inequality Constraints The fact that the original pixel values are

nonnegative quantities can be incorporated in the model, leading to improved
restoration procedures. A prior knowledge of upper bounds or any other

inequality restrictions can also be used.
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Figure 4.4-1. Comparison of unconstrained and equality constrained restorations.
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Under the least squares criterion a quadratic programming
problem results. In the overdetermined case the matrix of the quadratic
expression (B B) is positive definite while in the underdetermined case it

is positive semidefinite.

The main advantages in the use of inequality constrained restoration
are the following: (1) In the underdetermined case there are parametric
functions of the pixel values that are inestimable, i.e., their confidence
interval is infinite, in the unconstrained method. This drawback can be
removed by bounding the range of estimated values in the n-dimensional
space. (2) There is a reduction in confidence interval as the result of the
use of additional prior statistical information. Figure 3 shows the improve-
ment in the 95% confidence interval by the use of the constraints, 0 <x <255
on the one-dimensional overdetermined model. The quadratic programming
problem was solved by the use of Dantzig's version of the quadratic pro-
gramming algorithm originally developed by Wolfe [4]. (3) The very
important effect of ill conditioning can be improved. This occurs by the
reduction on the size of the elongated confidence ellipsoids of the ill condi-
tioned problem, due to the inequality restriction., Even if an unconstrained
solution is attempted followed by clipping the values to their bounds, this
implies the nonoptimal and sometimes disastrous procedure of simply
projecting the unconstrained solution on the boundaries. The constrained
restoration, however, obtains the optimal solution within the restrictions,

A disadvantage of the procedure is that it imposes bias on the solution.

This can be minimized, however, by imposing bothlower and upper bounds.

Computational problems arise in image processing due to the large
dimensionality that may be involved. In an attempt to minimize this problem
a sequential restoration of rows and columns was performed in the two
dimensional case. The result tends to be better when there is little blur.
This occurs because on one hand a moderate blur implies large condition
number and the input to the column restoration will be clipped. This tends
to invalidate the model of additive white noise that is the basis of the quad-

ratic programming algorithm. On the other hand, for large blur, the
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condition number is moderate, but now the random variables in the same
row will tend to be correlated and this is not taken into account in the
column restoration. Figures 4a to 4d show the comparison of unconstrained
and constrained restoration under large condition number. In this case the

sin x
X
strained solution was obtained by clipping at 0 and 255, It can be observed

2
blur function is ) , simulating the effect of diffraction, The uncon-
that a substantial improvement occurs with the use of the constrained

method, transforming an unfeasible restoration into a feasible one,
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4.5 Nonlinear Adaptive Recursive Image Enhancement

Nasser E. Nahi and Ali Habibi

Various linear recursive algorithms for digital image enhancement
have been introduced in the literature [1-3]. While these algorithms repre-
sent efficient methods for performing the task of linear image enhancement,
the resultant quality of enhancement is limited due to the restriction imposed
by linearity. A nonlinear statistical model of an image is introduced which
characterizes more faithfully the discontinuities existing in typical pictures
due to the boundaries of various texture segments. Based on this model a
new recursive image enhancement procedure is developed utilizing simul-
taneously the concepts of statistical detection and estimation theories.
Hence, the algorithm is called detection-directed image enhancement

procedure.
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A Nonlinear Statistical Model of Image The linear enhancement

filters (estimators) described [1-3] reflect a continuity characteristic in
that the brightness level at any point on the enhanced picture is a function
of brightness levels of all points of the original picture. This in effect will
introduce a global smoothing over the entire picture causing elimination of

sharp boundaries which usually signifies various textured segments.

Consider a picture composed of an object with one texture in a back-
ground; extension to multi-textured pictures is straightforward. Let
bo(m, n) and bb(m, n) denote random processes describing the object and
background brightness levels, respectively. Consequently, bo(m, n) and
bb(m, n) will assume the statistics of object and background textures. A

picture can now be thought of as a random process b(m, n) where

bb(m, n) within the background segment

b{(m, n) ={

bo(m, n) within the object segment

Equivalently

b(m, n) = o(m, n) bb(m, n) + [1 -a(m, n)] bo(m, n)

where

1 within the background segment
a(m, n)

0 within the object segment

In other words, the picture (in the absence of noise) represents a
replacement process of a section of random process bb(m, n) by a section
of the random process bo(m, n) where generally the binary replacement
variable is unknown since the location of the object within the picture is not
known a priori. This model for b(m, n) is a nonlinear statistical model
where its sample functions possess discontinuities reflecting the boundaries

of textured segments.

Edge Detection in Presence of Noise In a typical problem o(m, n)

is not known apriori and must be estimated using the noisy observation
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y(m,n). Two methods of estimating o(m, n) are suggested. The first
method is one dimensional and operates on the scanned lines of the
observed data y(m, n), while the second method uses a two-dimensional

estimator directly,

Let the first and the second order statistics of the image and the

noise be denoted as follows:
E{v(m,n)} =0

E{v(m, n) v(m+i, n+j)} = (Jrz1 8(i, j)

E{bb(m, n)} = b,

E{(by(m, n)-bg) (b (m+i, n4j)-b )} = o} R (3, j)

E{bo(m, n)} = S0

E{(bo(m, n)-So) (by(mH, n+j)-so} = 02 Rs(i, j)

Now let H0 and H1 indicate the hypotheses that no edge has occurred at the
(m, n)th pixel and an edge has occurred on the (m, n)th pixel, respectively.
Appropriate likelihood ratios are then formed to test hypothesis HO versus
H1 by considering the joint probability density functions of y(m, n) and a
number of adjacent pixels. Naturally due to the spatial nature of the corre-
lation of the picture the adjacent pixels should be those surrounding the

(m, n)th pixel in various spatial directions. This gives a two dimensional
edge detection technique which is more appropriate to be used with the two
dimensional Bayesian estimator [3]. For a one dimensional estimator

[1,2], a similar approach is used to develop a one dimensional edge detec-

tion technique. For details on both techniques see [4].

Decision-Directed Image Enhancement The block diagram of this

decision directed estimator is shown on fig. 1. Each pixel is first examined
to establish if it belongs to the signal or the background, i.e. o(m, n) = 0

oro(m,n) = 1. Then it is directed to one of two Kalman filters Fb or Fs
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Figure 4.5-1. Block diagram of the nonlinear estimator.
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respectively. These filters are designed based upon the statistics of the
signal or the background. Naturally for any (m, n)th pixel only one of these
filters is active. The idle filter retains the values of the parameters most
recently processed and uses them as the initial values for proceeding with
the estimation of the next pixel when it would switch to an active mode. In
the two dimensional estimator in addition to the presence or absence of an
edge at (m, n)th pixel the angle of the edge is also indicated to the filters so
that a proper updating of the initial values is performed. Design and opera-
tion of the one and two dimensional Kalman filters are discussed in

references [1-317.

Experimental Results To evaluate the performance of the edge

detection technique a grid size of 32 by 32 was used and two signals of con-
stant brightness levels were generated against a zero background. These
signals are corrupted by gaussian white noise to generate the pictures
shown on figs. 2a and 3a. These pictures correspond to a signal and a back-
ground that both have zero variances and unit correlations, the only factor
distinguishing the signal in each picture from its background is a higher
mean values for the signals. Figures 2b and 2c and 3b and 3c show the
signals as detected for two different thresholds. A negative threshold gives
less overall error while a threshold of zero gives a better signal in expense

of more error in the background.

The second example considered is a girl's picture on a grid size of
256 by 256 where each pixel is represented by 8 bits. The original and the
noisy picture, corrupted by a white gaussian noise are shown on figs. 4a
and 4b. The nonlinear Kalman filter composed of the two dimensional edge
detector and two two-dimensional Kalman filters as shown in fig. 3 was
simulated on a digital computer. The filtered picture is shown on fig. 4c.
The noisy picture was separated into a ''signal' and a "background" by
using the mid-gray value as a threshold. The statistics of the "'signal"
and the "background" were estimated separately. For this particular
picture the statistics of the ''signal" and the ""background" were identical

except for the mean values, thus two Kalman filters differed only on their

-75-



(a) noisy signal

(b) detected signal (c) detected signal
threshold = -3 threshold = 0.0

Figure 4.5-2. Input and outputs of the edge detector for threshold values

of zero and -3 for square image.
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(a) noisy signal

(b) detected signal (c) detected signal
threshold = -3 threshold = 0.0

Figure 4. 5-3. Input and outputs of the edge detector for threshold values

of zero and -3 for numeral 2 image.
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(c) nonlinearly filtered (d) linearly filtered

Figure 4. 5-4, Original, noisy and enhanced images using two-dimensional

linear and nonlinear Kalaman filtering.
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mean values. Figure 4d is the filtered signal using one Kalman filter as
discussed in [3]. Comparison of figs. 4c and 4d indicates that nonlinear
filtering eliminates, to some extent, edge smearing which is characteristic

of standard Kalman filtering.
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4.6 Nonlinear Recursive Image Enhancement

Nasser E. Nahi and Mohammad H, Jahanashahi

A typical image in the absence of any distortion or noise consists of
an object of interest within a background. The object, such as a human face,
usually contains detailed information which is essential in the quality of the
final enhanced image. In addition to this detailed information content, the
object represents a shape defined by its boundary. Generally, both the
detailed information and boundary information may be characterized by
statistical measures such as the mean and autocorrelation. This is the

only a priori knowledge available to the image restoration system.

If one now attempts to represent the entire image (the object within
a background) by first and second order moments, the statistics of the
boundary will usually overwhelm the statistical information on the details
of the object. It is then expected that while the minimum mean square
estimate of the object given a noisy observation provides good restoration

of the object as an area within the image, it does result in undesirable
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blurring of the detail within the object. This is clearly apparent in

references [1]-[4] especially in fig. 8 of the latter reference.

Consequently, the estimate of the object should be composed of two
estimates: 1) estimates of the object boundary, and, 2) estimate of object
detail. Let the output of the scanner be represented by s(t). Furthermore,

let s(t) = a(t) A\(t) where

™2
M) = 2 [u(t-or) -u(t-g.)]
j=m J J
1
(ml-l)T <t< mZT
m1=1,2,...,M
m2 = ml,m1+1,...,M
with
a(t) = gray level of the image at scanning time t
m, = starting line of the object
m, = terminal line of the object
M = number of lines in the image
u(*) = step function
o:j = start of the object in line j
Bj = end of the object in line j
T = time to scan each line of the image
J = number of pixels in each line of the image

The justification for choosing s(t) as above is due to the a priori knowledge
that there exists an object of interest in the image. The problem is to
estimate the values of ml, mz,cvj, and Bj which would determine the location
of the object. Moreover, it is desirable to obtain an estimate of the unknown

process a(t) which would result in a high detail restoration of the object.

Sampling s(t) at equal intervals of t = %[.'- will result in s(k) = a(k) \(k),
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T 2T
k—(rnl—l)T+ T (ml-l)T+ 7 ,...,mZT.

It will be assumed, without any loss of generality, -?—= 1. Now given the
observation sequence y(k) = s(k)+ v(k), with v(k) as the observation noise,

one may estimate the unknown process a(k), k=(m_-1)J+1,...,m_J, and

1 2
afj, Bj, j=m1, m1+ 1,..., mz, based on the maximum aposteriori probability
criterion. The values of m, and m_ are determined on the basis of statis-

1 2
tical inference theory.

Let a(k) be independent of afj and Bj. Assume a(k) is a zero mean
Gaussian random process E[a(i)a(j)] = P(i, j), and v(k) is a zero mean
Gaussian white noise with E [v(i) v(j)] = 02 A(i-j), where A(+) denotes the
Kronecker delta. A MAP estimate of a(k),a/j, Bj is found to satisfy the

following relationships:

k-1
a(k) = L(k,k)y(k) + 35 L(k, £)[y(4) - 4(2)] (1)
£=(ﬁ11-1)J
where
L(k, ) = P(k.z)x(f) (2)
o+ P(k, k) A(k)
k=(m1-1)J+l,(m1-l)J+2,...,mZJ
and
-~ I?.lz
A2) = Z; [u(z-&j)-u(z-éj)] (3)
j=m,
minimum
, O s es e, O -2Log flo  ,o yeees@  ,B  ,B yeoos B
am] M4 m, { e ™M ™M m, mp Mg m
B.. »B
my ™Mi4,...,8 ST (4)
mz ]. 2 AZ ~
= X [3%2) - 2a(2) y(£)] A(2)
o z=(r?nl-1)J+1
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where f(x) is the joint density function. Furthermore, 1‘?11 and r'ﬁz are values

of m, and m, which maximize F(ml,mz) subject to m,-m, > 0; where

F(m,,m,) = A (m,) - A (m,-1)

1

m2 = ml,m1+1,...,M
-and

LJ . )
ML) = Me-1)+ > [2a(i) y(i) - a"(i)]
i=(2-1)J+1

with

A(0) = 0

4=1,2,..., M.

It can be shown that Q(k) for &j <k< éj’ j=m1,m m

141’ My takes the

same values as estimates of s(k) obtained by a Kalman filter as in [1], [2].

A recursive algorithm for computing &j and éj from relation (4) has

~

been developed which results in suboptimal values for &j' Bj. The degree
of optimality of this algorithm is under investigation. Experimental results,

however are favorable as to the suitability of this algorithm, Once

r'hI, ﬁlZ'&j’ and éj’ j=ﬁ11, .o 1’;12, are determined one can obtain an esti-
mate of the object boundary, Furthermore, values of a(k) should result in

a high detail restoration.
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4.7 Restoration of Space Variant Aberrations by Coordinate Transformations

Alexander A. Sawchuk

Aberrations in linear incoherent optical systems are most generally
described by a space variant point spread function (SVPSF) h(x,u) in a

superposition integral
4 (x) = f h(x, u) I (u) du (1)

where d(E) is the object radiance and &4 (x) is the image irradiance.
Here the shorthand notation X = (Xl’ XZ) and u = (ul,uz) denotes the image
and object coordinates, respectively, so that % -u denotes (xl- u), xz-uz).
In general, restoration of space variant degradations is exceedingly
difficult [1]; however, by taking advantage of certain degrading system
properties, the dimensionality of the problem may be reduced so that

practical solutions can be obtained by coordinate transformation restoration

(CTR) [2]-[4].

The technique for space variant image restoration involves the
transformation of object, image, and SVPSF to a related space invariant
system. After the transformation, space invariant processing is used for
restoration. Many kinds of aberrations can be exactly described by the
cascaded system shown in fig. 1, where hI(_Z_'X) represents a space invariant

operation. The expressions

v = b(u) (2)
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and
-1
x=c (z) (3)

are shorthand notations for geometrical distortions and have been previously
discussed [5]. The functions O V(v) and ¥ z(g) represent intermediate

quantities that appear in the decomposition.

Whenever any space variant degradation can be decomposed to the
form shown in fig. 1, the general CTR procedure outlined in the block
diagram of fig. 2 can be applied. The first step is to invert the distortion
of eq.(3) to produce an estimate of 4 Z(z,). Then, the blur-removing part
of the restoration is accomplished by using space invariant inverse filtering
or statistical estimation to find the function ¢ u(E). The estimator in
fig. 2 is followed by another inverse distortion point mapping given by
eqgs. (4) and (5), and the result is the estimate ?5(2) of the object. Consi-
derations on performing distortions by digital and optical techniques are
given in Ref.[1]. Simple modifications for filtering with system noise are

also possible [1].

To apply CTR to the restoration of space variant aberrations, object
and image coordinates are assumed normalized to unit magnification for
simplicity. In the geometrical optics description of incoherent imaging
systems, the displacement of an image point from its ideal (Gaussian)
location in the image plane is specified by a pair of ray aberration functions

of the form

S +A1(€1,€

U

5 1’“2) (4a)

X_. = u +A2(€:1,e

2

where u = (ul,uz) is the object point, x = (xl,xz) is the image point, and

€= (e, eZ) are coordinates in the exit pupil 0 of the optical system [6].

1
Equation (4) specifies that a ray leaving (ul, uz) and passing through exit

pupil point ¢ intersects the image plane at x. If series expansions of Al

and Az in eq. (4) are limited to the lowest order terms, these terms appear

-84-



‘agsuodsox asynduwt juelrea adeds jo uorjisoduwiod9p I0J [9PON

‘I-L ‘% 2andig

(Z),0 = X (R-Z)y (A)q = A
<—— uol}ojsI( [*5 ] +UDLIDAU] [e—— UOWLIO4SIQ -~
|D21BWO0aY |(Z) -900dg |(A) | poujewoag | (M4
(P°X)y
- JUDIIDA | —
x) —920dg (M4

-85-



*asuodsax asindwil jueiieas adeds ® Y UOI}BIOISII IOF [IPON

*Z2-)°) 2and1 g

(R),.q="7 (R-7),ly (¥)2 = 2
uouJoysiqg J0jpwys3 10 |4 - uoNIoISIA |
(Mo |DI1143WO039) 3> 194|14 9s49AU] A.N.VNN. IDIBWOIT | (%)
> 9SJ9AU] Vv |1uDIIDAU] - 320dg 9SJ3AU]

-86-



in five combinations that describe the well known five primary Seidel
aberrations [6]. Of these, the term for spherical aberration is independent
of X, and Xy implying a space invariant degradation because the blur does
not change over the image plane. The term for distortion aberration depends

only on x. and x_, implying no blurring at all. The remaining terms for

coma, asltigmatizsm and curvature of field depend on both x and ¢ and imply
space variant imaging. If all aberration coefficients are zero, the Al and
AZ terms of eq.(4) are zero and ideal imaging occurs.

The form of the SVPSF for these aberrations can be derived by a
procedure similar to that used for finding space variant motion degradation
[1],[2],[8]. The major difference is that the summation is over the exit
pupil o instead of over the exposure time interval. The object point u is
assumed near the optical axis so that the irradiance at the exit pupil is a
constant independent of position €. Assuming unity irradiance at and conser-

vation of energy in an infinitesemal area in the mapping from ¢ to x, the

SVPSF response h(x, u) satisfies
h(x, u)dx = de_ (5)

where dx = dxldx2 and de = de:lde:2 are area elements in the image and exit

coordinates, respectively. Using the aberration functions, these area

elements are related by

Tples w)de = dx (6)
where
Bxl axl
%€, 9d€
1 2
J . (e,u) = (7)
A sz sz
ael 82

1 1
is a Jacobian determinant. In general, there are N exit pupil points (el, €5 )

(e?, e;) cee (ell\r, eIZ\I) that map into x, and combining eq.(5) with eq. (6)
and summing over the N points gives the SVPSF for aberrations as
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N -1

h(x,u) = X |7, (g0 (8)
i=1 (el,ez)eo

for x and u satisfying eq.(4) with € €0, and zero elsewhere. In evaluating
eq. (8), reverse substitution to eliminate € must be made in JA(E-’ u) using

eq. (4).

The CTR procedure for space variant aberrations simply involves

solving eq.(5) and rewriting them in the form
bl(ul,uz) = cl(xl,xz)- ml(el,ez) (9a)
bZ(ul'uZ) = cz(xl,xz)- mz(el,ez). (9b)

Whenever this is possible, the aberration is represented as a space invariant
blur between distorted planes and CTR can be used. As before, b(u) and

c(x) are the distortions, and evaluating eq.(8) gives

N -1
hz-v) = X JA(g)l 0 (10)
i=1 el=m1 (zl-vl,zz-v2
¢ =m_

2= ™y (21-Vy5 25-V,)
for x and u related by eq.(18) with e €0, and zero elsewhere.

This procedure can be used for the restoration of coma-like aber-
rations and tilt in a cylindrical lens system [1],[7],[8]. Because of the
circular symmetry in many imaging systems it is desirable to express
coordinates in the u, x, and ¢ 4planes as polar variables (ur, ue), (xr, XG) and

(er, €.). For a system with coma aberrations alone, the aberration func-

0

tions may be written

2
x = ur(l-Fer(2+cos Zee)) (11la)

2 2 .
xg = ue-ﬂ/Z + arc tan[(l-Fer(2+cos Zee))/-Fersm Zee] (11b)

where F is the coma aberration coefficient. In this polar representation
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the system is invariant in the § variables because x.-u depends only

B 8
on ¢ variables. Taking the natural logarithm of eq.(11la) and identifying

z, = 4nx_ (12a)
Ve T tnu (12b)
Ze = XG (12¢)
vg = Y (12d)
mr(er,ee)- zn(l-Fei(2+cos Zee)) (12¢)
me(er,ee) = /2 - arc tan [(1-Fei(2+cos Zee))/-Fei sin Zee] (12f)

puts the system in the form of eq.(4) for CTR. Robbins and Huang [8] have
obtained very good computer restoration of coma and cylindrical lens tilt
by this method using a fast-Fourier-transform (FFT) inverse filter and

Wiener filter for h]'(z-v) in fig. 2.
For astigmatism and curvature of field the aberration functions are

X
r

ur(1+(ZC+D) er u_ cos € (13a)

8

"
i

g = Ug- n/2+ arc tan[(2C+D)/D tan ee)] (13b)
where C and D are the aberration coefficients. Such a degradation may be
inverted by first performing a geometrical distortion to an{r, 0) system,
making the degradation invariant in 6. A transform in the 0 variable is

then performed and a different one-dimensional space variant estimator

for each 0 frequency is used to restore in the r direction. The 6 frequen-
cies are then filtered, and an inverse transform is 6 and reverse polar
coordinate mapping produces the estimate é(_g). The CTR method does not
apply as directly as it does for coma, but still reduces the system from

four dimensions to three. Simulations of this procedure are to be carried

out.
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4.8 Color Image Restoration
Clanton Mancill

Color imaging systems such as color television and color photography
attempt to provide a spectral output at each image point which appears to the
human visual system to match as nearly as possible the color of the corres-
ponding point in the original scene. The errors in color reproduction which

are introduced by the imaging system can be put in three categories:

1. Imperfect sensors. Ideal color sensors would have spectral

sensitivities equivalent to some set of human visual color matching curves. -

When this condition is not met, some color information is lost, and exact
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color restoration is impossible. Statistical knowledge about the input
scene can provide partial compensation, however, for the errors due to

imperfect sensors.

2. Signal contamination. Color signals can be contaminated by

noise or crosstalk from other color signals. Photographic dyes, for
example, absorb light in undesired spectral regions causing the absorptions
of the other dye layers to appear to be excessive. Color crosstalk can, in

theory, be corrected fully if the system is properly modelled.

3. Nonlinearities. Some system nonlinearities may be fully

corrected, e.g., gamma correction. Others, such as dynamic range

limiting, may result in uncorrectable color errors.

Digital Color Restoration The reduction of color errors in a photo-

graphic recording of a scene may be done digitally with significant advan-
tages. The flexibility and speed of computation with a digital computer
allows the restoration of color in a digitally stored image in ways which are

not possible with photographic restoration techniques.

The image which is to be restored is first recorded on color photo-
graphic film and converted to electrical signals by scanning the film trans-
parency with a color separation scanner. Analog-to-digital conversion then
is performed and the resulting digital array (three color values per pixel)

is stored on tape.

The properties of a color reversal photographic film and a flying
spot scanner have been modelled in a computer simulation program. The
color errors due to imperfect sensitivities, crosstalk and nonlinearities
are then present in the scanner signals which are produced as output from
the simulation, These scanner signals are then used as input to various
color estimation algorithms with the purpose of estimating as accurately
as possible the color of each image point of the original scene as it would
be perceived by a human observer. The human observer's response to
input and output colors are described by computing the tristimulus values

of the colors in a standard system such as the 1960 C, L E. uniform
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chromaticity scale (U, C. S.).

The estimation of the tristimulus values of the original image points
using as observables the digital scanner signals may be accomplished in
two independent steps. First the three film layer exposures are estimated.
Then using the estimated exposures as inputs the original tristimulus values

are estimated.

The estimation of film exposures from scanner signals requires the
solution of three simultaneous integral equations. This may be done with
arbitrary accuracy if sufficient computation is performed and if the system
is modelled accurately. Exposure estimation has been described in a

previous report [ 3].

The estimation of tristimulus values poses a more difficult problem
for two reasons. First, information is lost when the film sensitivities
differ from color matching curves. Secondly, the performance of any
tristimulus estimator depends on the spectral intensity distribution of the
light which exposed the film. Spectral intensity distributions are continuous
curves with an infinity of degrees of freedom. In order to investigate
tristimulus estimation techniques, a generator of spectral intensity curves
possessing desired tristimulus values and properties of colors existing in

nature has been developed.

Color Generators Three types of color generating algorithms have

been investigated:

1) Variational method [2]
2) Pseudoinverse method

3) Gaussian curve method,

The first two methods generate intensity curves which have any desired
tristimulus values, but which are not guaranteed to have the desirable
property of being everywhere nonnegative. The third method generates
nonnegative curves, but the resulting tristimulus values only approximate

the desired values. Taken together, these methods can generate large
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numbers of satisfactory colors for testing tristimulus estimators. A
measured spectral intensity is shown in fig. 1 along with visually equivalent

.distributions which have been generated by methods 1) and 2).

Tristimulus Estimation The tristimulus estimators which have

been tested thus far are linear estimators., The general form is the simple

matrix equation:

U My M2 ™3 xR
Vo= | ™21 ™22 ™3 Xa )
w Mgy My, Maa | | Xp

where XR, XG’ XB are the estimated film exposures and U, V, W are the
resulting estimated UCS tristimulus values of the color. The constants
rnij are to be chosen in order to minimize the expected perceived color

error in some sense,

Some simple adhoc choices of constants have been tested with good
results. The nine values of mij can be chosen so that three test colors,
widely separated in chromaticity space, will be estimated exactly, with
some error to be expected for all other input spectral distributions. The
constants can be chosen to minimize the mean squared tristimulus error
over a large class of test colors. Since all colors are weighted sums of
spectral (single frequency) colors, the class of spectral colors suggests
itself as a test color. The results, however, indicate that a class of test
colors containing desaturated as well as saturated colors is better when

tested against measured natural colors (see fig. 2).

Under investigation at this time is a method of tristimulus estima-
tion which utilizes stochastic linear regression [2]. The color spectral
distribution c()) is estimated, then the resulting tristimulus values are
obtained. The estimated c()\) is obtained as the solution to the set of

Fredholm integral equations
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Figure 4.8-2, Chromaticity errors of two types of tristimulus

estimators against ten test colors.
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X, =f 2si()\) c(\) d>‘+zi' i=1,2,3 (2)
by
1

where )\ is wavelength, the x, are the previously estimated exposures, the
si(x) are the known film sensitivities, and Zi is an additive term repre-
senting noise and measurement uncertainty. These equations are discretized
and the resulting matrix equations can be solved for c(A) or for scalar func-

tions of ¢(1), such as the tristimulus values of c(A).
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4.9 Perfect Photographic Reproduction from an Additive Color Display
Robert Wallis

It is well known that a given color can be matched by a weighted sum
of three primaries. When these weights are scaled such that unity amounts
of all three yield a reference white, they are known as tristimulus values
[1]. Unfortunately, the spectral sensitivities of the three layers in present
day color films are such that the tristimulus values of the colors being
photographed are not preserved. Thus, it is possible that colors which
appear the same to the human eye (metameric colors) will photograph
differently and vice versa. If however, the goal is not to photograph a
natural scene, but to photograph a color image on a CRT, the problem
becomes tractable. This is because, unlike natural scenes, each color
which the CRT can produce is a unique weighted sum of its red, green, and
blue primaries, and thus has a unique spectral distribution associated with

it. The same uniqueness property holds for color film in spite of the fact
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that it is a subtractive instead of an additive system. This means that the
CRT-film system can be modelled as a mapping which converts each set of

tristimulus values which the CRT can generate into a (usually) different set

on the photograph (see fig. l1a).

Thus, it is theoretically possible to force the film to yield the
desired tristimulus values. This can be done by using the inverse of the
mapping and photographing a color which will be distorted into the desired
color. This should always be possible provided that the gamut of colors
which the film can produce is a subset of the CRT's gamut, If this is not
true, a number of different strategies are possible to cope with the problem.

Some possible techniques are discussed below.

Gamut Restrictions Any color reproduction system is only capable

of producing a certain range, or gamut of colors. This gamut can be repre-
sented as a solid in tristimulus value space. Consider for instance a color
CRT display with red, green and blue primaries. If the amount of each
primary is constrained to be between 0 and 1, then the display's gamut is

a unit length cube in R, G, B space (see fig.1b). The problem considered
here is how should one represent a color lying outside the possible repro-
duction gamut, such as one requiring a negative amount of red for instance?
A reasonable approach is to use the color on the display solids' surface
which is geometrically closest to the color R'G'B'. For the special case

in which the solid is a unit cube, this strategy is equivalent to merely
'"clipping' the R'G'B' coordinates between zero and one. This transfer
function is shown in fig. lc. Simulations on real color images have shown
that such a trivial scheme works surprisingly well. However, there is
much room for improvement since the RGB space is typically not a uniform
color space [3]. In other words, equally separated colors in the space do
not seem equally separated perceptually. For example, errors in saturation
seem less noticeable than errors in hue, for most colors. This suggests
another simple scheme, that of desaturating (adding white) the color towards
grey until it lies within the possible reproduction gamut. A convenient way

to represent these approaches is the use of a chromaticity diagram in which
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Figure 4. 9-1. Color film gamut correction.
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luminance information is ignored (fig. 2).

A more relevant approach would be to use one of the uniform color
scales. That is, a space in which metric distances more nearly corres-
pond to perceptual distance. Good examples are the U v W™ and L,a,b
(cube root) coordinate systems [3]. Such nonlinear systems would of
course lead to a distorted display solid, and render the analytical problems
of finding a point within that solid closest to a given point outside the solid

much more difficult.

Computer simulations of the above mentioned techniques along with
the development of a mathematical model of color film are currently under-
way. The goal of this research is the capability of producing high fidelity

color photographic reproductions of color CRT images.
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5. Image Data Extraction Projects.

Image data extraction is oriented towards the automated or interactive detec-
tion of specific features and the measurement of parameters in images. Various
image enhancement techniques such as histogram equalization, spatial registration
etc. are typically performed prior to the data extraction process for purposes of
normalization and for more efficient extraction.

The following report is a study of the potentials of image data extraction for
the automated detection of female breast carcinoma. One diagnostic method con-
sists in determining anomalies in the body surface temperature patterns. Images
can be obtained with an infra-red scanner where a suitable portion of the tempera-
ture scale is mapped onto a grey scale. In a mass-screening situation, these im-
ages can be analyzed by computer, and further tests such as biopsies would be in-

dicated upon a positive computer diagnostic.

5.1 Quantitative Measures of Asymmetry in Contiguous Image Regions
Richard P, Kruger and Mark A. Stein

The human visual system is excellent at detecting local variations in picture
brightness. However, it is poorly adapted for quantitative image brightness esti-
mation and contiguous area comparisons [1]. Digital processing techniques have
proven useful in the detection of objects within images and performing quantitative
image interpretation.

A project recently undertaken by members of the biomedical image processing
group of the Image Processing Institute entails detection of female breast carcin-
oma from thermogram scans. Basically, the techniques involve the location of
continguous regions of constant temperature within each breast area and determi-
nation of possible asymmetry of these areas, The technical problems associated
with the asymmetry measurements appear to be of general interest, and are de-

scribed below.

Quantitative Thermographic Measurements. A quantitative computer ap-

proach to asymmetry measurements will of necessity be experimental. The goal
is to extract quantitative measures indicative of this asymmetry. The most salient
common factor in these criterion is that of asymmetry between the left and right
breast regions caused by temperature differences. The hypothesis therefore is

that asymmetry between the breast regions in a thermogram are indicative of po-
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tential abnormality with elevation of temperature as a primary component cause.
It has been reported that temperature elevation of at least 1 degree centigrade in
an involved breast region over that of an uninvolved region of the same breast or
a similar region of the contralateral breast was present in 95 percent of subse-
quently proven malignancies in a screening program involving 3, 500 women [27.

A feasibility study is being undertaken consisting of 15 benign and 16 malig-
nant thermographic images. These images were recorded on polaroid film and
later digitized to 256 by 256 pixels. The malignant cases were confirmed by
biopsy.

Spatial Signature Analysis. Spatial signature analysis (3,4,5 ]is a tech-

nique which has aided in the localization of anatomical features in thyroid scin-
tigram, bone lesions, and chest radiographs. These signatures are obtained by
either summing the rows or columns of a digital array within a prescribed region.
In the present application, the spatial signatures are being studied for two poten-
tial uses. First it is hoped that they will be useful in automatic location of the
breast region in the thermogram. Second, it is hoped that measures which char-
acterize one or both of the signatures will be useful asymmetry features for the
computer diagnostic screening., Preliminary evidence indicates that these signa-
tures may be of use for both purposes. The case illustrated in Figure 1 is an
example of their potential.

The horizontal signature obtained by summation of the indicative subframe
columns indicates a characteristic pattern shown in figure 1. This signature indi-
cates that non anatomical background can easily be distinguished from either the
left or right lateral chest wall, In addition, the chest middle is detected by the
relatively '"hot'" mediastinal region. The vertical signature is characterized by a
lateral summation of the fraction of picture elements in rows between the lateral
chest walls, This signature is characterized by two ""hot" peaks between a cool
region associated with the breast. The upper peak is due to the relatively uniform
heat pattern detected superior to the breast region. The inferior peak is caused
primarily by a lateral summation across the intra mammary fold, By these signa-
tures, isolation of both the breast region and individual breast areas appears to
possible. This preprocessing is however not the objective. However the hori-
zontal signature has also provided interesting insights. The thermogram horizon-
tal signature in figure 1 also demonstrates diffuse elevation of the left breast tem-
perature. What remains is to further reduce this signature information to a man-

ageable set of features.,
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Figure 5,1-3. Normal thermogram.
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This example illustrates the use of spatial signature for detecting and local-
izing relevant anatomy and shows a potential for lesion detection. However, other
measures will also be presented.

Histogram Analysis. After the breast regions have been isolated it is pos-

sible to compute measures of symmetry based upon the histogram or first order
statistics (thermal density distribution) of rectangular regions which enclose each
breast. Temperature distributions computed for one breast may be compared with
those for the contralateral breast in order to provide a measure of thermal asym-
metry. The 30 level histograms shown in Figure 1 represents the total right and

left breast histograms respeci:ively. These histograms indicate the left breast

has a greater proportion of its area at a higher temperature when compared with

that of the right breast. Quantitative measurement of this asymmetry is being under-
taken using several measurements often used to characterize probability density
functions.,

The histogram h(t) of respective breast areas will be denoted as:

h(t) t=1,...,30 (1)

In addition to the mean Q,L) and variance (V) which are well known measures of
average gray level (temperature) and dispersion respectively, two other measures
are being extracted, Skewness (s) measures the departure from histogram sym-
metry and kurtosis (K) expresses the tendency of a distribution to either cluster

about 4 or disperse towards the tails of the distribution.

These measures are expressed as follows.

The r-th moment about zero Mr is given by

30

M_ = Z t™h(t) (2)
t= .

The mean M=m,. The r-th central moment is given by

30 v .
j
c.= Z () "ht) = z y M, ;M (3)
t=1 j=0
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The variance V, is given by

V=C,=M

2
2 -M,

2

The skewness S is given by

,{Bl (B,+3)
S= (4)
2 (5B,-6B,-9)

where B1 is referred to as the coefficient of skewness and B2 is the coefficient

of Excess
2
C C
B. = .__3.___ B = —_4—. (5)
1 C 3 2 C 2
2 2
The kurtosis K is given by
Cu
K= o > -3 (6)
2

These measures are computed for each breast region. Initial automated diag-

nostic classification will be attempted with the following features

f1= ‘ur-uLl f3= lSr-SL‘
(7)
f,= [Vr-VLl £,= IKr-KL|

This is an attempt to detect asymmetry via absolute difference of the studied mea-
sures under the hypothesis that complete symmetry would yield a zero value for

each fi of course other measures may evolve but these will initially be tried.
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Spatial moments. Spatial moments are commonly used to describe a mass

distribution. The total mass, centroid, and radius of gyration are often used in
mechanics to describe the properties of a single object of a collection of objects.
The generality of the method of moments and the use of moment in varients in pat-
tern recognition was described by Deutsch [6]. He proposed that the information
contained in the relation of a point to the weights of its neigh‘bors can be hypoth-
esized to demonstrate the invariances to size, location, orientation, mirror im-
age, and symmetry which have been observed in human perception experiments.
Furthermore, he proposed that the process of human perception was based on the
assumption that the human measures moment type information in an image. He
proposed the theory mainly as a basis for developing other, more explanatory,
theories.

The mathematical generality of the set of moment invariants has been pointed
out by Hu [7], Duda and Hart [8], and others. The set of infinite moments of
any bounded density function, exactly, completely, and uniquely describe the den-
sity function. All possible measureable features of an image are represented in the
set of moments., Various normalization procedures may be performed on the com-
puted moments to obtain metrics which are invariant to certain transformations
such as translation, rotation, size change, or symmetry. The moments may be
easily calculated for any finite image function, f(s,y), the (p+q)th order moments

are defined by:

mo o= 2, 2% v i) (8)
x vy

P,q-_— 0,1,...

myo =2, D fxy) (9) .
x y

represents the total mass.,

m =D x f(x,y) | (10a)
x y
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mg; =ZE/ f (x,y) (10b)
xy

are used in determining the centroid, (X,y), or center of mass, since
X= — , y= — (11)

The central moments, mpq’ are defined by:
- - P _aq
Mpq = 22 ox - F) (y¥) fx,y)
Xy

where p,q=0,1,...

It is easily shown that the central moments are translation invariant, It
is also possible to normalize the central moments to obtain invariance to a change
in size, |

For this study, only raw moments were used, since it was determined that
translation invariance was not desirable, but size invariance was necessary. The
moment computation has been initially limited to the set of first order moments.
The use of measurements-based only on the histogram moments negate to a great
extent contextual structural anatomical difference between the breasts. The ini-
tial use of x and y centroids for each of the 30 gray levels in the horizontal (X) and
vertical (Y) planes have been calculated for all the films in the test group. The

X and Y centroids were computed in the following manner

N . !
X(t) = Z; Zx £(%,) (12)
Y:
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t=1,..0..,30 N

M

y f(x,y) (13)
y=1 x=1
h(t)
where h(t) is the histogram computed previously and M and N represent the

dimension of a rectangular region containing the breasts.

Figure 2 indicates the pattern exhibited by these centroids for an ideal
image consisting of a diagonal pattern of temperatures with decreasing value from
upper left to lower right. The centroid pairs (X(t), Y(t)) corresponding to each of
t=10 temperature ''points' to the area of the field where the particular temperature
(t)as a éentroid. Within the context of these measurements one would expect
that asymmetry of either breast would be detected by a noted asymmetry in Xt).
In a similar manner the Y(t) might locate the lesion vertically, Figure 1 illustrates
the use of the centroid measures on the test case, Note that the X(t) centroids
of higher temperatures are heavily biased to the right indicating an abnormality
of the left breast. The Y(t) centroids while usually not as specific is also often
useful in locating the lesion. Several possibilities exist to further reduce this
centroid information to a useable form for computer classification, One approach
may be to view the (X(t), Y(t)) centroids within the context of the three dimensional
(x,y,t) plane. Within this context, completely temperative symmetric breasts
would present a linear contour of minimum length orthogonal to the X, Y plane., Any
deviation from this ideal would both lengthen the contour and increase the variance
from the ideal. In either case if random fluctuations are small with respect to

deterministic changes caused by focal or diffuse temperature asymmetry either

parameter should indicate it,
Figure 3 illustrates a benign case with the previously described features

extracted. It should be noted that asymmetry of the horizontal signature and Y (t)

is not present. There also appears little difference in the temperature histo-
grams of the breast.
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6. Image Analysis Projects

The image analysis projects focus on distinctive aspects of image
information that are essential in the design of image coding and process-
ing systems. In particular, quantitative image error measures are in-

vestigated considering some properties of the human visual system.:

In the first report, a new model of color vision is presented, in
which the color representation is more similar to the actual perceptual
quantities than in conventional colorimetric representations. The effec-
tiveness of color image processing may be improved if the operations or
fidelity measurements are performed in the '""perceptual'’ space defined
by the model.

In the next section, the problem of generating constant brightness
surfaces in color perception space is considered. A recursive algorithm
coupled with a transversality condition is developed to improve computa-

tional accuracy.

6.1 Modelling Color Vision for Psychovisual Image Processing

Werner Frei

Color image coding and processing can take advantage of some pro-
perties of human vision which are not described by the conventional colori-
metric color representations. After reviewing the Young-Helmholtz theory
of vision, a simple non-linear model is presented, based upon physiological
evidence and postulates currently used in vision research. This new model
is intended to predict the colored sensation produced by picture elements as
it is influenced by the surrounding image features.

Conventional color representations: the Young-Helmholtz theory of

color vision. The fact that any colored light can be matched by superimposing

three appropriately chosen colored lights forms the basis of the Young-

Helmholtz theory of color vision. That theory postulates the existence of
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three types of photoreceptors in the retina, whose spectral energy absorb-
tions are linearly independent. Accordingly, the perception of a colored
light C characterized by its spectral energy distribution C(\) depends on
three quantities X, i = 1...3, namely the respective amounts of energy

absorbed by the receptors

)‘U
X, = f C(A) t.(N)dX i=1..3 (1)
M, 1

1

where t, ()\) is the spectral energy absorbtion of
the i-th receptor and A_ and \,, are
the lower and upper limits of the vis-
ible spectrum,

Consequently, two colored lights C1 and C2 seen under the same viewing

conditions (such as visual angle, background, previous adaptation) will

match if the amounts of energy absorbed x, are respectively equal, re-
gardless of the particular spectral distributions C(A).

Colors can therefore be represented by vectors in the positive oc-
tant of a three dimensional space defined by the spectral absorbtion func-
tions of the receptors, and Grassmann's experimental laws of color mix-
ture can be expressed by vector addition in that space or any nonsingular
linear transformation thereof. The basis vectors of such a space are called
primaries, and the vector components tristimulus values, normalized with
respect to an arbitrary '"reference white''. Tristimulus spaces are currently
used for ""objective'' measurements of colors (referred to a well defined
""standard observor'') as well as for color representation in conventional
color television [1] and color image processing [27,

Uniform color spaces. Unfortunately, the perception of colors is not

a linear function of the colorimetric tristimuli, as is shown by the variances
of color matching experiments[3] arWeber's law of luminous sensation [4].
Error criteria like the mean square error defined in tristimulus spaces are

therefore of limited relevance to the human observor.
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Various nonlinear transforms have been proposed which map the
tristimulus spaces into approximately '"uniform perception' representation
spaces like the U* V* W*space, the cube root coordinate system, etc. Such
spaces should be used for quantizing color information to obtain uniform

perceptual increments in the discrete color representation space.

Spatial effects. The Young-Helmholtz theory predicts colored

sensations under well defined viewing conditions only. In actual images
however, the perceived color of picture elements is likely to be altered
more or less by the surrounding elements due to a number of perceptual
phenomena. For example, very small colored areas seen against a neutral
background look colorless; a small colorless area seen against a colored
background seems to have a hue complementary to that of the background;
colored objects seen under a chromatic illumination appear to retain their
original color,to a certain extent. Such effects are believed to be due to
lateral neural interactions between the outputs of the photoreceptors in the
retina, or to an unequal loss of sensitivity (bleaching) of the three types of
receptors, or both[5].0ur present knowledge of the structure of the retina
suggests models of color vision which predict these effects in terms of
spatial frequencies.

First order model of spatial color vision. Figure 1 contains a

psychophysical model for color vision. In the model it is assumed that:
(1) The retina contains three types of photo-receptors whose
spectral energy absorbtion funétions are linearly independent[é, (K
(2) The neural outputs of the receptors are approximately logar-
ithmic functions of the respective amounts of absorbed light energy [87;
(3) The spatial neural interactions between the outputs of the re-
ceptors are approximately linear summations; the interactions can
therefore be represented at that stage by linear spatial filters [9].
The first stage of the model describes the respective energy absorbtions
in the three types of photoreceptors according to the Young-Helmholtz
theory of color vision. Let C be the spectral energy distribution of light

evaluated at n wavelengths )\i, i =1i...n. The components of T are the
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tristimulus values of € referred to a yet unknown set of primaries and

reference white defined by the spectral absorbtions tij’ i = 1L..3
j = l...n of the receptors. In matrix notation
T =TT _ (2)
1
<, t)
c _ | ;.20 ;¢ =le| ;5 .20
. 1 2 1
. t3
c
[yl
t11’ b122 00 tin
T = . 2
tZl,tZZ' th ’ t1j =0

where @ and T are functions of the spatial image coordinates x and y; assum-
ing shift-invariance, T is constant. For the model to be consistent with

Grassmann's laws of color mixture, T must be a linear transformation of

the CIE - T,, g, BX or i‘)\, ?)\, ':Z}\ color mixture data for spectral colors.
That is,
n %12 %13 A N2 0 Tan
T = 3,1 355 2,3 E)\l, .g)\z, cees g)\n (3)
b ... ®
231 %32 %33 B Paze An

The second stage of the model represents the logarithmic conversion that is
assumed to occur in the receptors between absorbed light energies ti and
output neural signals t;k. (The superscript star denotes the logarithmic
domain.) This stage imposes a condition on the spectral absorbtion func-

tion of one type of receptor, because Abney's law states that the luminance
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of a color mixture is equal to the linear sum of the luminances of the mix-

ture's components.
Let V)\T represent the relative luminous efficiency of equal energy
spectral lights evaluated a wavelengths )\.1 ,1i = l...n. The luminance Lc

of ©is given by

L = k_\:’)\T-::

¢ (4)
2T . 0<v.. <1
= [V)\l' Viagr tee s V)\n] ; SV S

where k is a constant. The linear additivity of luminances can only be
satisfied here if one of the receptor types exhibits a spectral absorbtion

proportional to the relative luminous efficiency function, for example

T Mg (3)

The third stage of the model represents the spatial neural interactions
between the receptor outputs. It has been shown elsewhere{5] that linear
interactions can be modeled by spatial filters. Let the components of E'*
be the "perceptual' variables of interest, and H*denote a 3x3 matrix of

* * * % *
spatial filters hij (ju , jv )where u and v are the spatial frequencies in the

logarithmic domain . Then
B = H t* (6)
Abney's law (see condition (4) above) imposes that one of the perceptual var-
*
iables g, has to be a function of the '"luminance' receptors only. With eq.(5)

therefore

h.. = h,. = 0, h. = h (7)
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The perceptual luminance variable g -h; ;‘ h log t, satisfies
Weber's law of luminous sensation.

The perception of chromaticity is a function of the ratios of the energies
absorbed in the different types of receptors. Therefore we can define two
""perceptual' chromaticity variables g*2 and g: by simply forming

differences in the logarithmic domain.

sk
0 o |
B
H = -hz1 +h22 0 (8)
* 0 +hY
h 33]

3#*

The perceptual quantities g, are now

% ~ h* !
g]. - 1 Og (tl) (9a)
¥ *
h__/h
* " (t.) 22" 721
g = h,. log _2 (9b)
2 21
t
1
W /hy
" " (t.) 33" 731
g3 = h31 log "3 (9¢c)
t1

Note that if t1 corresponds to a ''green'' receptor, t2 to a '"red" and t3 to a
'""blue'' one, gz" turns out to be a protanopic chrominance quantity and g; a
tritanopic one, which brings this model close to explaining defective color
vision. In fact, one may use available data on color blindness to determine
t,. and t3iin €q.(d,and hence the model's tristimulus space t [10]. Assuming that
the hues of tritanopic and deuteranopic color pairs do not shift as a function

of spatial frequency (no such shifts have been reported), one can write
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he. = kh.. = kh
22 - 221 - 22
(10)
h. = kh. = kh
33 3731 373
where k2 and k3 are constants and
k
*
g, = h log(tZ) 2
t
% t,.k
g3 = h, log('3)3
tl

It is interesting to compare the perceptual variables g: andg: defined above
with the chrominance signals used in European color television systems.

Figure 2 shows a linear quantization of the normalized European chrominance
signals plotted in MacAdams geodesic chromaticity diagram(11]. These signals

are defined as follows

. - R-Y
! Y

. - B- Y
2 Y

where R, B, Y are the FFC red, blue, and luminance primaries respectively.
The logarithmic like distribution of the quantum steps is clearly visible in
figure 2. Slightly different primaries are of course required for the

model because the television primaries are negative outside the FFC-RGB

triangle.

* * *
The spatial filter functions h , h, and h,. Models essentially similar

to the one presented here have been proposed for achromatic vision [5] and used
for black and white image coding and processing[lz]- -Since this-model reduces

to Stockham's visual model in the case of achromatic vision, his results can
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* A *
be used to evaluate h1 (ju , jv ).
Since the resolution of the visual system at high spatial frequencies is
*

- 2
sarily smaller than the bandwidth of hl' Measurements of threshold notice-

maximum for luminance differences[Bl the bandwidths of h. and h; are neces-

able chromaticity contrast using square-wave gratings[14]suggest that h: and
h; should exhibit an increasing attenuation for spatial frequencies exceeding
1-2 cycles per degree of visual angle. On the other hand, the question
whether the visual system actually attenuates low chromaticity spatial fre-

%k

quencies is still controversial (15 16]. A low frequency attenuation of h2 and

hj would enable the model to predict simultaneous color contrast as well as
chromatic adaptation according to the VonKries theory. Studies are under
way to determine the filter functions to be used in this model.

Conclusion. A model of color vision for the primary purpose of
image processing is presented. It maps the spatial spectral energy distri-
bution of light into an approximately uniform perceptual representation space, taking
spatial interactions into account. The nonlinear transformation of tristimulus
space defined by the two latter stages of the model may be used for establishing
error criteria more relevant to the human observer, as well as for problems
involving limited dynamic ranges of display devices. The multiplicative
structure of the model further suggests that homomorphic filtering [17] may
be most appropriate for coding and enhancing color pictures. Another

possible application lies in the design of color display devices for optimum

human recognition.
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6.2 Constant Brightness Surfaces in Color Perception Space
Anil K. Jain
In the theory of color vision a constant brightness surface is such that
any two colors lying on this surface (in the color perception space) appear
equally bright (not necessarily indistinguishable). Any curve that lies on
this surface is called a constant brightness geodesic. If C. and C_ are any

1 2

two colors on this geodesic with coordinates (xl, vy Yl) and (xz, Yy YZ)
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in the CIE color system; then for fixed (xl, Yl’ Y, x ), C2 is such

1’ %20 Y2

that the color distance between C1 and any other color (xz, Voo Y) is minimum

Thus, among all geodesics originating from C1 and termin-

), parallel to the Y axis, the color

when Y equals YZ'

ating at the straight line through (xz, Y,

distance along the constant brightness geodesic is minimum. This minimum

color distance property could be utilized in color gamut correction applica-

tions and in production of equally bright pseudocolor displays of image features.
For example, suppose the triangle R-G-B shown in figure 1 represents

1’ PZ’ P3. If

the colors in this triangle are to be reproduced with a different set of pri-

the color gamut obtainable with a set of primary sources P

mary sources P!, P P'3 having a color gamut R-G-B, then all the colors

'
{ C} lying outside R-ZG-B should be reproduced by colors such as {C'} so that
the color shift (color distance) between C and C'is minimum. Clearly, this
can be achieved by locating C'on the intersection of the constant brightness
geodesic through C and the color gamut triangle R-G-B\

The problem of generating these curves is considered here. It is
known (and can be proven) that these curves are horizontal at any gray.
Theoretically, this information and the minimum property of these geo-
desics is sufficient to compute them. However, the accuracy of the compu-
tation can be improved (or checked) if one could verify some of their proper-
ties, It is shown [in details in ref [1]] that a transversality condition can be
derived and appended to the algorithm to achieve higher computational
accuracy.

Assuming the color space metric is given in the form [2]
ds = C..dx.dx 2 =F d
’ 1“ i j - (xiv xi)i (1)
i

it can be shown [l:l that the constant brightness curves are solutions of
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b

J = min F(x.,U,t) dt (2)
x,(t), v, (t), tg P

v

dx.
i

dt

where ui(t) =

t = parameter along the constant brightness curves

tf= terminal value of the parameter
i= tristimulus values i=1, 2,3 in the chosen color coordinate system.,

Furthermore, the quality 1:f must satisfy the condition

2
[F + Z Fu.(ai-ui)] . =0 (3)
i=1 ! =

f
where F = OF
u, du
i i
dxi
and ai = -(-it_f_

Equation (3) gives the desired condition. Details of this derivation may be

found in reference [1} .

References

1. A, K. Jain, '"Computational Considerations in Generation of Geodesics
in Color Space,' Optical Society of America, Annual Meeting, Rochester,
New York, October, 1973.

2. A, K. Jain, "Color Distance and Geodesics in Color 3 Space,' Journal
Optical Society of America, Vol. 62, November, 1972, pp. 1287 - 1291,

3. A. K. Jain, "Role of Geodesics in Schrodinger's Theory of Color Vision,"
Journal Optical Society of America, Vol. 63, August, 1973, pp. 934 - 939.

4. K. D. Chickering, Journal Optical Society of America, Vol. 57, 1967, p. 537.

-125-



7. Image Processing Support Projects

The scope of the image processing support projects encompasses
hardware and software developments for the needs of the image process-
int research effort.

The first report discusses the developments in image processing
support software, where the effort has been directed towards improving
the time sharing and text editing capabilities, as well as simplifying the
use of the VICAR image processing language.

The next section reports the progress of the construction of a real
time digital color image display system for use on the ARPANET. That
unit is near completion, awaiting the delivery of memory components.
Extended capabilities are specified for a more sophisticated version of the

display system, whose initial design has been started.

7.1 USC/ARPANET Image Processing System

James Pepin

The past six months have been spent in refining support programs
for network users, starting to implement the new FTP (File Transfer Pro-
tocol) and telnet protocols and investigating the facilities and requirements
for a front-end system for image processing.

The first area of concern has been to improve and increase support
of users on the ARPA net. This increased support has included such items
as improvement in text editing capabilities and general improvements in the
time sharing system. In the last few months IPI has begun to transfer
large volumes of image data to Carnegie Mellon. This has resulted in the
need for an online FTP program, which is now being implemented.

Work on the VICAR image processing software has been continued.
Changes have been made to VICAR to allow users to run with less know-
ledge of the I/O system of the executing machine. New applications pro-

grams to perform filtering and image transformation have been implemented.
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Also, the method which VICAR uses to create jobs has been more closely
aligned with the method employed by O.S. (system on 370 /158). This will
make the maintenance of VICAR on the two systems much easier.

The staff has been participating in the definition of the new FTP
protocol by attending the FTP meeting in May and working with members
of the FTP working group. After the protocol was defined,work began
on converting existing FTP routines to run using the new, slightly changed
syntax. During conversion to this protocol the FTP will be integrated into
the system. This will allow FTP users to access the machine all the time,
instead of by request.

The telnet protocol was recently redefined. This has required pro-
gramming changes and these are proceeding now. Also the NCP has been
modified to handle, in a sensible way, some of the error conditions that
seem to be present in the net,

In July a meeting was held at USC to discuss processing requirements
by the image processing users of the ARPA net. As a result of this meeting,
committies were formed to investigate the possible methods of achieving
resource sharing on the ARPA net. These committees will investigate the

hardware and software requirements for the user community.

7.2 Development of Real Time ARPANET Image Display
John E. Tahl and Toyone Mayeda

An inexpensive digital image display for use on the ARPANET is
under development and is presently in the check out phase. The development
of the high resolution printer/scanner has been delayed, but the basic design
and specification goals of the digital image display have not been changed and

are listed as follows:

1. Receive, from the ARPANET TIP, digital picture information
with brightness resolution up to 64 levels (6 bits) and at input rates up to

19. 2 K baud.

2. Store the received data in an array of up to 256 x 256 six bit
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picture values.

3. Present the received and stored information at standard tele-
vision rates, to high speed output digital to analog converters, for applica-
tion to the red, green and blue inputs of a color monitor. In this mode,
the image presentation will be shades of gray. At a 19.2 K band input
rate, a complete 256 x 256 image can be received and displayed within
approximately 18 seconds.

4, In addition to the black and white display, the input will have
full pseudo-coloring capability, using a high speed random access memory
inserted between the output of the refresh memory and the digital to analog
converters. The random access memory will be remotely programmed
from the TIP or by local switch control. Over 4096 different color combina-
tions of hue, saturation and luminance will be available for pseudo-coloring.

5. The displayed image will occupy only the center portion of the
monitor, to provide a pleasing presentation without a blocked appearance.

A block diagram of the digital image display is shown in figure 1.

All major components for this unit have been received -- with the exception
of the refresh memory integrated circuits. All logic panels have been wire-
listed and wire wrapped. Checkout of the unit has been accomplished as far
as possible without the refresh memory section. No major checkout prob-
lems are anticipated after the refresh memory integrated circuits are re-
ceived.

Initial design of a more sophisticated digital image display has been
started. This second unit will have the following capabilities in addition to
the ones of the first unit:

1. Accept an 8 bit image, or a 7 bit image and a 1 bit graphic overlay.

2. Include a function memory which can be used to translate the 8
bit data (from the refresh memory) with any desired transfer curve to pro-
duce 6 bit data.

3. An alphanumeric keyboard will be used to communicate with the
ARPANET to receive image data, and will also be used to generate alpha-
numeric characters on the display.

4, The output video data and alphanumeric characters will be in
composite RF format so that it can be displayed on any TV receiver using

its antenna input.
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