USCIPI REPORT #1055

Stochastic Singular Value Decomposition Texture
Measurement for Image Classification

by
Behnam Ashjari

February 1982

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 400
Los Angeles, CA 90089-2564 U.S.A.



ACKNOMLEDGEMENTS

Sincere gratitude is presented to the individuals who graciously
took steps and accompanied me along the path Tleading to the
accomplishment of this dissertation.

Dr. William K. Pratt, now of Vicom Systems, Incorporated,
continued his guidance, as the chairman of my dissertation committee,
after his leave from USC. His suggestions on the practical portion
of the thesis and his advice throughout my entire graduate career
have been truly helpful.

Appreciation is offered to the math member of my committee,
Professor Theodore E. Harris, for a reading of the thesis and his
encouraging comments on the theoretical work. The interest of the
other member of the committee, Dr. A. A. Sawchuk, 1is also
acknowledged.

While it is not possible to mention all the people who assisted
in the preparation of this document, special thanks are given to
Corinne Lleslie for her rapid and accurate word processing of the
manuscript; Ray Schmidt for a splendid photographic work; Paul Liles
for providing computer consultation; Dr. Keith Price for his remarks
on computer graphic devices; and Professor George A. Bekey for his
assistance and cooperation.

Most of the applications and experiments of the research have
been performed at the USC Image Processing Laboratory. The USCIPI is
thanked for providing support and facility.

Cooperation and hospitality of members of the Image Processing

ii



Group at Institut de Recherche d'Informatique et d'Automatique (now
INRIA) Recquencourt, France, particularly, Drs. Olivier Faugeras and
Andre Gagalowicz during a Six month visit, at the onset of this
project, is hereby sincerely thanked.

Production of a doctoral dissertation is a thought provoking
experience: its research portion satisfies the instinctive childish
curiousity, its organization and structure caresses the human
sentiment for construction, and its writing rewards the student with
strengthening of vocabulary and learning to communicate formally.
The theoretical aspects (random matrices) and engineering
applications (accurate and inexpensive feature extraction) of this
work became particularly compelling to me.

Finally, the contribution of my family to this work has been
significant. Deepest affection is expressed to them for their
encouragement and love.

Behnam Ashjari



CONTENTS

Page
ACKNOWLEDGEMENT . . . . + &« + « « o o o o o« « o 1ii
CINJENIS. & « « o o » w o = w « m % s @2 % &« @ ¥
LIST OF DERIVATIONS « + & w s & w & @ & % & w % @@ X
LIST OF ILLUSTRATIONS . . . .+« .+ + + « & « « & + . xi
LIST OF TABLES. . . .+ + « + « « o « o o« o o « . Xxiv
ABSTRALT: & « w = 4 « w & w® & x = @ & = @ & w XV
PREFACE = « + « = & & w s % % & @« % s = #» & w« Xviii

PART ONE: BACKGROUND

CHAPTER

1 INTRODUCTION . . . « v & v v v « o o . 2
1.1 SVD Texture Processing. 3
o Motivation. P &

1.3 A Brief Historical Review of Random Matrix
Theory « ¢ « + ¢« o« 4 4 e e e 10
2 TEXTURE AND TEXTURE FEATURE EXTRACTION. . . . . 13
2.1 TeXtUre « o o o o e e e e e e 13
2.1.1  Definition + + + v « + .« . . 15
2.1.2  Texture Processing. . . . . . . 24
2.2  Feature Extraction Theory . .« .+ .+« . . . 25

2.2.1 Evaluation of the Techniques. . . . 27

2.3 Some Important Texture Feature Extraction
Techniques « « +« « « « +« « + <« . . 30

2.4 SHOHRYY, » + @« « # = 5 & @ » « @ 5 0

PART TWO: THEORY
3 DIFFERENTIAL SINGULAR VALUE DECOMPOSITION . . . . 39

iv



CONTENTS (continued)
Page

3.l VB o 5 = ®m 2 @ i @ @ & 139
Unique Definition and Notation . . . 40
Linear Algebraic Properties . . . . 4l
Non-Unique Decomposition of

Singular Values . . . . o 43
3.1.4 A Perspective of the L1terature . . 47

www
L] - L]
—
- - L]
L MR =

3.2 SVD Perturbation Theory . . . . . . . . 48

3.241 Definitions for Differential Forms of
Matrices . . . « 49
3.2.2 Mathematical Reasonwng for SVD
JacobIan i @ 5 5 & e o= & @ @ Bl

3.2.3 Derivation of the Jacobian of SVD
Transformation, J (U Si¥)e s v w e 53
Analysis . . — & i &« @« 9B
Experimental Ver1f1cat1on on

Significance of the Singular Value. . . 61

[FS RS
.
IR AS]
M)
o B

3.3 Differential Spectral Factorization . . . . 63
3.3.1 The \JaCOb'iaﬂ, JF T(U’_A) . . . . . 6?

3.4 SUMMATY 5 » 4 % s @ % & % & § @ w £}

STOCHASTIC TEXTURE MODELING . . . . . . . . . 172
4.1 Lexicographic Transformation of an Image Field 72
4.2 Notion of Separability . « « « « « + o 73
4,2.1 Definition of Separable Covariance
Matrices . . . . 14
4.2.2 Two-Dimensional Separab]e Spectra]
Factorizatinn « + « « « = » « A9

4,3 A Practical Texture Model, . . + « .+ . . 81

4,3.1 Computer Generation of Correlated
Stochastic Texture Fields . . . . . 85

4.4 SUMMArY. =« « o o « o o « o o+ « o« 89



CONTENTS (continued)

Page

STOCHASTIC SINGULAR VALUE DECOMPOSITION . . . . . 90
5.1 Distribution of a Stochastic Texture Field . . 90

5.1.1 Mathematical Preliminaries. . . . . 90
5.1.2 Probability Density Function . . . . 94

b2 Joint Probability Functions of the Singular
Values of a Random Texture Field in a Normal
Sample with Bidirectional Correlation. . . . 95
5.2.1 P.d.f. for the Null Case . . . . . 99

53 Probability Functions of the Dominant Singular
Value & & o o« & @« v % « & w » « -« 100

5.4 Discussion on Accuracy and Convergence . . . 105
5.4.1 Application of the Bound . . . . . 107
55 Model for g(s3) » « « . . . . . . . . 108
5.6 SUmmaty: =+ # 5 % % & ® § & @ » ¢ w
MULTIVARIATE STATISTICAL DERIVATIONS FROM TEXTURE
BY SVD . . . « . . 118
6.1 Quadratic FOrm « + « &+ &+ « +« « « o+ « 118
6.1.1 Definition . . ¢ % w 118
6.1.2 Formation From Texture F1e1d F . & & 118
6.1.3 Moments « « + ¢« .« ¢ o . « o o120
6.2 Texture Energy « « « =« =« « « « + « o« 126

6.2.1 Moment of the Sum of Square of
Singular Values . . « . . . . . 129

6.3 Invariance of SVD to Unitary Trnsformation . . 129
6.4 Moments of the Product of Singular Values . . 131
6.5 Stochastic Perturbation . . . . . . . . 135

6.5.1 Moments of Singular Values for a
Special Case . .+« +« « « + o . . 136

vi



CONTENTS (continued)

Page
6.6 Summary. « ¢« 4 e e s« e o+ e & « . 139

PART THREE: APPLICATION
7 SVYD TEXTURE MEASUREMENT, . . . . . . . . . . 142

Tl Deterministic Properties . . . . . . . . 142
1.2 Stochastic Behavior of Singular Values . . . 144
f 3% Significance of the Largest SV.. . . . . . 154
7.4 A Family of Texture Features. . . . . . . 156

7.4.1 Vector Features . . . . . . . . 157
7.5 Evaluation of the Featurés @ % @ % @ a 1064

7.5.1 Methods . . . . .+ . . . . . . 165
7.6 SUMMArY.e o o o o o o o o o o o+ « o 167

8 CLASSIFICATION BY SYD, EXPERIMENTS ON ARTIFICIAL
TEHURE - - . L] - L] L] L] L] L] - L] L] - . 1 ? 0
8.1 Artificial Textures. « « + o « « @« s =« 170

8.1.1 Moment Features of_z2 v ¢ A B & A8
8.1.72 Scalar Features . .+« +« + + « + . 184

8.2 Classification of a Texture Against Textural
Backgrounds & « s & o s« & @& s @ @ @« 190

8.2.1 Analysise « « @« w s @ » % & 7w 193
8.3 Significance of the Largest SV Feature . . . 201

8.4 SHEETY: w o &« % » w w » « @ @ ® w20

9 CLASSIFICATION OF NATURAL TEXTURE BY SYbD . . . . . 203

9.1 Natural Textures. . . + « =« « + « . . 203

9.1.1 Vector Features and Their Comparison . 207

vii



10

PART FOUR:

CONTENTS (continued)

9.1.2 Scalar Features and Their Comparison
9.1.3 Analysis of the Results.

9.2 Classification of a Natural Texture Against a
Textural Background. & i

9.3 A Comparative Study.

9.4 Summary.

CONCLUSIONS.
10.1  Applications .

10.2 Further Research.

REFERENCE MATTER

GLOSSARY OF SYMBOLS AND ABBREVIATIONS .

APPENDICES
A MATRIX DIFFERENTIAL FORMS .
B THE MULTIVARIATE GAMMA FUNCTION .
C STIEFEL MANIFOLD AND ORTHOGONAL GROUP .
D TENSOR OR KRONECKER PRODUCT MATHEMATICAL RELATIONS.
E GENERATION OF A RANDOM PROCESS TO HAVE AN APBITRARY
MEAN AND CORRELATION. . s s
F ZONAL POLYNOMIALS
G HISTOGRAM GAUSSIANIZATION .
BIBLIOGRAPHY

Page

. 216
. 221
. 224
. 227
« 235

« 236
. 237
- 239

. 241

. 244
. 252

. 257
. 267

. 270

273

. 281
. 284

viii



Der.

Der.

Der.
Der.
Der.
Der.
Der.
Der.
Der.

Der.

Der.
Der.
Der.
Der.

Der.

Der.
Der.
Der.
Der.
Der.
Der.
Der.

Der.

3.1

3.2
3.3
3.4
4.1
4.1
4.1

e

4.1

4.2
|
5.2
5.3
5.4

5.5
5.6
Sl
6.1
6.2
6.2

6.2-2

-1
-2

w

-4

i1

LIST OF DERIVATIONS

Description

Non-Unique Decompositon of
Singular Values. . .

The Jacobian of SVD

Significance of Singular Values
Jacobian for Spectral Factorization .
Block Toeplitz Form . . . . . .
Block Toeplitz .

Separable Toeplitz .

Wide-Sense Stationarity

Sufficient Condition for Wide-Sense
Stationarity . &

Two-Dim Separable Spectral Factorization.

A Lexicographic Identity .
A Useful Lexicographic Relation.

P.d.f. of a Texture Field.

Joint p.d.f. of the Singular Va]ues of A

Random Texture Field

An Integral Equation

p.d.f. of the Dominant Singular Value.
Upper Bound to p.d.f. of s . . .
Moment of a Non-Central Quadratic Form .
Moment of a Central Quadratic Form
Moment of a Quadratic Form .

Quadratic Form of the Mean . . . . .

Moment of a Quadratic Form . . . .

45
54
)
70
75
77
77
78

78
79
90
91
94

97
102
103
106
120
123
124
124
125

ix



LIST OF DERIVATIONS (continued)

Page
Der. 6.2-4 Moment of a Quadratic Form . . . . . 125
Der. 6.3 Moment of a Quadratic Form . . . . . 125
Der. 6.3-1 Moment of a Quadratic Form . . . . . 126
Der. 6.3-2 Moment of a Quadratic Form . . . . . 126
Der. 6.4 Energy in a Random Texture Field . . . 128
Der. 6.5 Generalized Variance . . . . . . . 132
Der. 6.6 Moments of Product of Singular Values . 133
Der. 6.6-1 Second Moment of Product . . . . . 134
Der. 6.6-2 hth Moment of a Generalized Variance . 134
Der. 6.6-3 Moment of a Chi r.v. v o oy w 134
Der. 6.7 Moments of Singqular Values for a Special
Case s 5 s & o % & ® s & @ 136
Der. A.l Vector Differential Form . . . . . 244
Der. A.2 Matrix Differential Form . . . . . 246
Der. A.3 Matrix Differential Form . . . . . 246
Der. A.3-1 Matrix Differential Form . . . . . 247
Der. A.4 Vector Differentiation . . . . . . 248
Der. A.5 Vector Differentiation . . . . . . 249

Der. A.6 Matrix Differentiation . . . . + . 250



Figure
1-1.

1‘2-
1-3.

1-4.

2"1-

2-2.

2-3.

3-1.

3-2.

3-3.

41,

4-2.

5"‘1-

5"2.

5"3«
5"41

6-}-.
6-2.

LIST OF ILLUSTRATIONS

Description

Natural and Artificial Grass and Ivy
Singular Value Curves for Grass .
Singular Value Curves for Ivy .

Qualitative Behavior of Singular
Yalues . + « . ¥ @

Example of Structural Texture With
Identical Unit Patterns.

Examples of Structural Texture With
Approximately Identical Unit Patterns .

Examples of Non-Structural and Stochastic
Texture « o o« o« + 4 4 e . .

Experimental Verification on Significance
of the Singular Values p = 0.0 and p 1.0.

Experimental Verification on Significance
of the Singular Values, p = 0.5 and p = O.

Experimental Verification on Significance
of the Singular Values, p = 0.7 and p = 0.

Stochastic Texture Models, Bi-Directional
Correlation. i & @ &

Stochastic Texture Models, Uni-Directional
Correlations. . . .

Joint p.d.f. of Singular Values, g(s;,sy)
for an Uncorrelated 2x2 F . . . . .

Plots of g(sy) vs sy w.r.t. p for a 2x2
Case = ov m om mr x im m B 8

Plots of E{slj, and [Var(sl)]1/2 VS P

Model of g(s;) vs sy w.r.t. p for 32x32
Ca Se L - - Ll - - - - - - - -

Sample Quadratic Form Matrices.

Sample Wishart Matrices .

Page

17

19

23

64

65

66

87

88

101

111
3115

116
321
122

X1



LIST OF ILLUSTRATIONS (continued)

Page

7-1. SV Curves vs Index wer.t. oo . . . . 147
7-2. Normalized SV vs Index w.r.t. p . . . 148
?"3| SCETECI verS'iOn H.I"‘-t- D L] . - . 3 . 149
7-4. SV Curves vs p Wer.t. Index. . . . . 150
7-5. Normalized SV vs p w.r.t. Index . . . 151
7-6. Scaled Version w.r.t. Index. . . . . 152
7-7. Graphical Comparison . . .« .+ .+ .« . 153
7-8. ENEropY & o o s s & s a s 8 e 160
8-1 Artificial Texture Fields with Various

Correlation Factors . . . . .« .« . 173
8-2. Block Diagram of the Evaluator. . . . 115
8-3. Semi-log Scale of B-distance for Various

Pajirs of Artificial Texture. . . . . 176
8-4. 64 Non-overlapping Samples Randomly

Extracted for Artificial Textures. . . 179
8-5. Mean SV Prototype Vectors of 64 Samp1es

of Artificial Textures . . 191
8-6. Sketch of Embedment . . . .« . . & 192
B-7. "0.5," "0.6," and Their Embedments . . 194
8-8. "0.5," "0.9," and Their Emhedments . . 199
8-9. Mean-SV-Prototype Vector for Embedded

Artificial Textures . .« . X 200
9-1. Natural Texture Fields . . . . . . 204
9-2. Graphs of Fluctuation in B-Distance

w.r.t. Number of Samples for Natural

TeXtures « « « & @  « @& & ‘& ‘s 206
9-3. 64 Nonoverlapping 32x32 Sample Windows

Randomly Extracted from Natural

Textures ¢« « o« &« o &« o« o o o 208

Xii



9-4.

9"5.

9-6.

B-1.

LIST OF ILLUSTRATIONS (continued)

Mean SV Prototype Vector of 64 Samp]es
of Figure 9-3 . . . . . .

Raffia, Wool and Their Embedments.

Mean-SV-Prototype- Vector for Embedded
Natural Textures

Sketch of mma Function T(x); and Its
Inverse, (x) vs x . .« s

Page

223
225

Xiii



TABLE
3-11

3"‘2-

5-1.

5-3.

6"]—0

7_10

?‘2:

8"10

8-2.

- to

L to

L] tO

LIST OF TABLES

Description Page
Significance of Singular Values . . . 62
Significance of the Uom1nant Singular
Value. « « « « « e e e e 62
Numerical Evaluation of E{s, |, E{S%},

Var(S‘l) . . L] ® L] L] - L] L . L 113
Numerical Evaluation of E{s 2} Eis 22},
Var(sz) e F 8 & % @ i 8 e 113

Experimental Evaluation of Mean, Second
Moment, and Variance of the Largest Singular
Value for 32%32. & + « &« o » s =« =« 114

Moments of Singular Values for a
Special Cas€e ¢« « & « o o o . 138

Tabulation of the Singular Values w.r.t.
D . . . - . . - - . . - . . 146

Lower and Upper Bounds to the Bayes
Probability of Error in Terms of the
B-Distance « « ¢ « + & e s e e 168

B-Distances for Various Humbers of
Samples for Artificial Textures Using 4
Moments: + w = % & % & & @& @ & 177

Probability of Classification Accuracy
for 64 Samples, Artificial Texture Using 4
Moments o o « o & w0 3 e e & e 177

B-Distances and Classification Accuracies 18]-
for 64 Numbers of Samples for Artificial 182,
Textures Using Less than 4 Moments . . 183

Probability of Classification Accuracy for
64 Samples, Artificial Textures Using Four
Scalar Features. . . . .« .+ .+ .« . 186

B-Distances and Classification Accuracies
for Artificial Textures Using Less Than 4 187-
Scalar Features. .« « « « « o o« 189

Experiments on Embedded Textures "0.5," 195-
0.6, "0.5/0.6," and "0.6/0.5% i & & 196

xiv



F-1.

- tO

to

to

. to

»: B0

- to

. to

- to

LIST OF TABLES (continued)

Page

Experiments on Embedded Textures "0.5," 197-
“0.9," "0.5/0.9," and "0.9/0.5" . . . 198

B-Distances and Classification Accuracies 205,
for Natural Texture Using Moments Derived 209-

from - T 211

B-Distances and Classification Accuracies
for Natural Texture Using Moments Derived
from 4 T 213

B-Distances and Classification Accuracies
for Natural Texture Using Moments Derived
form 4 S 214

B-Distances and Classification Accuracies
for Natural Texture Using Moments Derived
fromzy and 2o « « . o . . . . 215

B-Distances and Classification Accuracies 217,
for Natural Textures Using Entropy Scalar 218-
Features . .+ « + « « « « « . . 220

B-Distances and classification Accuracies
for Natural Textures Using Energy Scalar

Features « « & &« w @ & @ s & & 222
Embedded Natural Texture Measurements . 226
Comparison of the Best Features . . . 229

Comparison of SVD Texture Features with
Other Methods in Terms of Classification
ACCUracyY « + % & @& % & @& % ‘& e 233

Zonal Polynomials in Terms of Homogeneous
Monomial Symmetric Functions of Eigenvalues 277

XV



ABSTRACT

The purpose of this study is to develop a highly accurate
technique  for  feature extraction with low computationality
requirements. The particular application explored in this work is
image classification. Other possible applications include fast
texture segmentation and the detection of foreign texture in a
textural background.

The singular value decomposition (SVD), a technique of unitary
matrix transformation, has been used for extracting features from a
texture field. From a large (512x512) texture field with correlation
among its pixels, small (32x32) sample matrices are randomly
selected. The sample matrices (texture windows) are non-
overlapping. Upon SVD transformation on each sample window, a set of
(32) singular values are obtained. The singular values contain much
of the information regarding correlation content of matrix elements
and their dinterrelationships. In reality, the SVD reduces two-
dimensional processing to one-dimensional, resulting in a substantial
saving in computation. Feature selection is performed on the vector
of singular values to further reduce its dimensionality to four or
less. The reduced dimensional singular value vectors are then used
for image classification.

The singular value decomposition is utilized in a stochastic
context and the problem of textural feature extraction is approached
from a statistical viewpoint. A connected theory based on stochastic

SVD is developed for deriving probability functions of a

XVi



bidirectionally correlated random texture field and probability
functions of its singular values.

A family of SVD textural features is introduced. The features'
performance are evaluated, individually and in various combinatorial
forms, in terms of their strength in texture classification. The
classifier is Bayesian and its error criterion is the Bhattacharyya
distance measure.

Experiments are performed on two types of textures: artificial
and natural. For the first type, bidirectionally correlated
artificial (computer generated) textures are used. This set of
experiments provides an evaluation for the SVD features in a
controlled environment. For the second type, four natural textures
are used to provide a real-world evaluation of the features. The SVD
features classify all of the textures with low probability of
error. Computational requirements are significantly lower than

previously developed textural feature extraction techniques.

Xvii



PREFACE

The research component of this dissertation has been analysis of
stochastic Singular Value Decomposition and investigating it on the
real world problem of texture measurement. This document is a
product of research performed at the Image Processing Institute,
University of Southern California.

The dissertation 1is divided into four parts, idincluding ten
chapters and seven appendices. Part one provides the background and
includes the first two chapters:

Chapter 1 presents an introduction to the dissertation.

Chapter 2 reviews some of the important related approaches in
texture analysis and feature extraction. Advantages  and
disadvantages of existing techniques are discussed; and, the approach
and methodology of this study is specified. Particularly, an attempt
has been made to define the concepts of "texture," and "feature
extraction."

Part two provides the theoretical framework and includes

Chapters 3, 4, 5 and 6.

Chapter 3 provides the definition for the theory of singular
value decomposition. It then proceeds with SVD perturbation theory
and Jacobian of SVD. Appendices A through C support this chapter.

Chapter 4 introduces texture modeling, the stochastic model used

in this work, and its justification. Appendices D and E compliment

this chapter.

The next two chapters are devoted to a stochastic/statistical

xviii



treatment of the texture fields and their singular values.

Chapter 5 presents stochastic singular value decomposition.
This chapter derives the probability density and distribution
functions of random texture fields, the joint probability density
function of the singular values of a random field, and finally,
probability functions of the largest singular value of a random
texture field. Appendix F supports this chapter.

Chapter 6 deals with texture multivariate statistical

derivations via SVD.

Part three concentrates on application and experiments.

Computer generation of artificial image textures and experiments with
simulated (artificial) and natural textures are performed:

Chapter 7 presents SVD texture measurements and feature
extraction.

Chapter 8 applies the mathematical developments of the previous
chapters to the problem of image classification. Evalution of the
SVD texture feature extraction method in terms of defined criteria is
also the subject of this chapter.

Chapter 9 investigates the SVD technique for classification of
natural textures. Appendix G compliments this chapter.

Chapter 10 discusses the applications of this work, and some
concluding remarks and suggestion for further research are presented.

Part four 1includes a glossary of symbols and abbreviations,
appendices A through G and a reference section.

CONVENTIONS

Throughout this thesis, the symbol { ] is used for referencing

Xix



and the symbol ( ) is used for equation numbering. Figures are
represented like equations except that they don't have the ( ).
Derivations are represented with the chapter number followed by a
point and then the derivation number. Sub-derivations are
subsequently numbered after their pertinent derivation. For example,
[42] means reference 42, (3-11) means equation 3-11. (D-7) means
equation 7 1in appendix D. 4-1 means Figure 4-1, and 4.2 means
derivation 4.2. Derivation 4.2-1 is the first sub-derivation for
derivation 4.2,

Throughout this work, the word "sample" with its mathematical
statistics implications is used which essentially means that a set of
several vectors are taken from a population. In engineering, a
"sample" is usually referred to one vector from a population.

Matrices are represented with underlined capital and vectors
with underlined small letters, e.g. F and f means matrix F and vector
f. A list of selected symbols are presented in the glossary. Three
separate lists for derivations; figures; and tables are presented

after the table of contents.

XX



PART ONE: BACKGROUND

Chapters 1 and 2 present the description
of the problem, motivation to this work,
and historical background. A survey on
texture analysis and texture feature

extraction techniques are the topics of

this part.



CHAPTER 1
INTRODUCTION

During the past two decades, many classical signal processing
techniques for processing time series and one-dimensional continuous
time signals were modified for two-dimensional data, and imajge
processing emerged as an independent field of study within electrical
engineering. In the past few years, image analysis has developed
into a significant area of research within image processing. Image
analysis involves the extraction of wuseful information and
measurements from an image field. For this purpose, it overlaps with
pattern recognition and artificial intelligence. Because of the
enormous amount of information in a picture, and the high level of
correlation of pictorial data, extraction of "image features" 1is a
necessary and important concept of image analysis. The term
"feature" is commonly used to denote a particuluar combination of
attributes or characteristics that play an intermediate role in the
interpretation of an original picture. One type of feature commonly
used in 1image analysis is texture. Texture will be defined in
Chapter 2. There have been several studies on image texture feature
extraction and various theories and techniques have been deveioped on
the subject. The present study is concerned with a new technique.

A brief description of the problem 1is presented in Section
1.1.  Section 1.2 presents the motivation and Section 1.3 follows

with the historical background of the present work.



1.1 SVD Texture Processing

Singular Value Decomposition (SVD) is a numerical technique of
matrix transformation, which has been used as a linear algebraic
method for obtaining least square solutions for a set of homogeneous
equations and matrix pseudo-inversion [1-2]. In image processing,
SVD has been used for image restoration [3-4]. The SVD technique has
also the promise of being applicable to image feature extraction
[5-6].

The mathematical definition of the SVD is

(1-1)

where, the matrix F is decomposed into three matrices U, S, and V.
Matrices U and V are unitary and S is a real diagonal matrix.

The number of non-zero singular values of a matrix is equal to
its rank. The singular values display the rank in a quantitative
form [17].

The singular values of a matrix can be considered as descriptors
or features of the matrix elements and their inter-relationships. If
a matrix is composed of randomly chosen real numbers, the singular
values will tend toward equality. On the other hand, a hignhly
structured matrix with a high degree of correlation and dependence
will exhibit a few dominating singular values. However, not every
matrix 1is suitable for SVD analysis. It will be amply discussed
later that a highly structured matrix such as an image of man-made

objects cannot effectively be analyzed with SVD. On the other hand,



a matrix of random values such as an image texture can efficiently be
described by the SVD. Suitability of an dimage for SVD will be
discussed in Chapter 7. Considering F as a texture field, the
application of the SVD in feature extraction will be apparent from
the following discussion.

Since the elements of the matrix F are random variables,
obviously, the elements of the matrices U, S, and V will also be
random variables. In this work, it has been verified that the
variation of the elements of the matrix F is mostly reflected in the
singular values of F rather than in the elements of the U and V
matrices. In other words, the singular values contain most of the
essential information. A window taken from the texture image can be
modeled as a random field whose essential information is preserved in
a vector with singular values of the window as its components. It is
obvious that a random vector whose components are the singular values
can be wused as a feature vector which serves a dual purpose:
dimensionality reduction from N2 to N, resulting in faster and less
expensive feature selection and better performance in terms of
classification accuracy. The subsequent chapters will cover the

technique and its application in more detail.

1.2 Motivation

Since the advent of the digital computer, the application of
numerical techniques has grown considerably for extracting useful
information from large matrices such as pictures. SVD is one of the
useful numerical techniques for dealing with Tlarge matrices. The

primary experiments performed on natural and artificial grass and ivy
4



texture fields were encouraging [5]. The prominent result was that
similar looking textures have similar ordered singular value dis-
tribution curves. Figure 1-1 contains examples of natural and
artificial textures. The artificial textures were created by a
random number generator with superimposed randomly placed spikes and
blobs. Figures 1-2 and 1-3 depict their ordered singular value
distributive curves. It was conjectured [Ibid] that the singular
values of an uncorrelated texture field would be relatively equal and
its distribution curve would be flat, and that of a highly correlated
texture field would be relatively steep. The steepness could be
attributed to the low rank of such a field, which would produce a few
dominant singular values and the rest would be aproximately zero.
Figure 1-4 shows the qualitative behavior associated with such a
conjecture [Ibid].

A very realistic model for non-structural 1image texture,
especially, for natural texture is a stochastic one. Unfortunately,
there exists neither a stochastic nor a statistical treatment of the
singular value decomposition. The present work is intended to serve
two purposes: first, to develop a unified mathematical theory based
on stochastic and statistical formulation of the singular value
decomposition; and, second, to apply SVD in the physical world for
devising an accurate, fast and, economical technique for image
feature extraction. The results obtained in this dissertation have
immediate engineering application in 1image processing and pattern
recognition for classifying, recognizing, and segmenting two

dimensional information.
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1.3 A Brief Historical Review of Random Matrix Theory

Few works can be found concerning random matrices. From a
historical standpoint, the theory involving samples from population
with a single-variate, especially when the population was normal had
been developed in the late 19th and early 20th centuries. The
interest in obtaining the simultaneous distribution of the covariance
matrix in samples from a multivariate population had grown in the
scientific community since 1900. However, the extension from single-
variate to multivariate developments was made rather slowly. In
1908, 'Student' considered the first four moments of samples taken
from a population, assumed for simplicity to be normal, and applied
Karl Pearson's method to infer the distribution of standard deviation
[71.

In 1915, Ronald Fisher solved the problem for the bivariate
case. This was the probability distribution function of a 2x2 sample
covariance matrix of a set of independent observations from a 2-
variate normal population [8](*). Fisher, later, extended his work
to the 3-variate case. It was not until 1928 that John Wishart found
the same distribution for a general multivariate case [9]. The

Wishart distribution is the distribution of a k-dimensional sample

covariance matrix in samples from a k-variate normal population. The

sample covariance matrix is defined as follows:

* = - - - - -
( )In engineering literature, sample covariance is sometimes referred
to as experimental covariance.

10



T g T
Xx = _El (%m0 (x5-1,) (1-2)
1:
where, _
X = [xy-4 ,x 'ﬁa’--~s£ﬂ-:£)T (1-3)
knowing that,
X = NyoKo) and (1-4)
x5 -)E-j for i #j (1-5)

In the r.h.s. of (1-2), replacing Ay by x, the sample mean vector and
multiplying the summation by 1/n or 1/(n-1), respectively, gives the
biased or unbiased estimate to the population covariance matrix, and
is called the sample covariance matrix. Essentially, all of the
above mentioned solutions arose from classification problems of
different multivariate normal observations. The next set of problems
that needed to be tackled were the distribution of the roots of
certain determinantal equations which were required for various
statistical tests of classification accuracy. One of the most
important problems was to obtain the distribution of latent roots
(eigenvalues) of a sample covariance matrix. Obviously, a sample
covariance matrix is a positive definite symmetric matrix whose
elements are random variables that vary according to certain laws. A
special case of this problem, namely the case of uncorrelated popula-
tion covariance (5£=021k) (see equation 1-4) was solved approximately
simultaneously in 193;_by Fisher [10] in Britain, Girshick [11] Hsu
[12], Mood [13], in the United States, and Roy [14] in India,
although Mood's paper was not published until 12 years later.

In 1960, James [15] derived the distribution of the eigenvalues

11



of a sample covariance matrix for a general population covariance
matrix. The latter distribution was made possible as a result of the
discovery of zonal polynomials.

In 1959, Faddeev [16] solved a special form of a perturbation
problem. He assumed that the perturbation values [daijj of a
deterministic matrix A = [aij] were uncorrelated with mean zero and
standard deviation o and solved for the covariance matrix of the
perturbation characteristic roots di;. Although Faddeev's derivation
is interesting it has the following differences with our goal: (a)
it is in terms of eigenvalues not singular values (the two are
entirely different for a general matrix), (b) the covariance terms of
dki are also functions of the eigenvectors (we want a relation which
eliminates the eigenvector variations), and (c) Faddeev's derivations
are for uncorrelated case (we want a relation for correlated
variables).

With such a perspective, this project commenced; and as its
results will show, it has the promise of providing singular value
decomposition as a technique for treating multivariate statistical
concepts. At the beginning of this research, the problem of deriving
joint probability density functions of the singular values of a
bidirectionally correlated random matrix interested us. This problen
will be solved in Chapter 6 as a byproduct of stochastic singular

value decomposition.
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CHAPTER 2
TEXTURE AND TEXTURE FEATURE EXTRACTION

Although there has been much research on image texture, there
seems to be no unified quantitative definition for texture. Because
of the importance of texture, this chapter has been partly devoted to
the review and survey of texture analysis approaches. It is hoped
that this chapter will provide sufficient background for the

remainder of the dissertation.

2.1 Texture

Pickett [19] defines texture as:

“The underlying requirement of a pattern to be considered as
texture is that many similar elements with roughly the sane
dimensions be arrayed over a region." Pickett [19] continues: "The
basic requirement or an optical pattern to be seen as texture is that
there be a large number of elements (spatial variation in intensity
or wavelength), each to some degree visible, and, on the whole,
densely and evenly arrayed over the field of view....." Pickett
continues that "The variation may be continuous fluctuations in the
position of a line...at an edge or along a margin...or they may be
discrete elements overlapped with some characteristic distribution of
shape, size, color, shading, and orientation." Hawkins [20] gives a
more elaborate definition of texture based upon three ingredients:
“(1) some local ‘order' is repeated over a region which is large in
comparison to the order's size; (2) the order consists in the non-

random arrangements of elementary parts; and (3) the parts are
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roughly uniform entities having approximately the same dimensions
everywhere within the textured region." The above statements,
however, do not imply a universal, aquantitatively defined,
mathematical definition for texture. Pratt [21] explains the absence
of a direct relation between quantitative measures and qualitative
descriptions of textures: "Although these descriptions of texture
seem perceptually reasonable, they do not immediately lead to simple
quantitative textures measures in the sense that description of edge
discontinuity leads to the quantitative definition of an edge in
terms of its location, slope angle, and height." Lack of precise and
scientific definition of the term texture arises for two reasons
according to Muerle [22]: "Visual texture is a property of pattern
scenes which has escaped precise definition so far. Part of the
problem is that a very precise definition has not yet been required”
and there is "difficulty of achieving a consensus of the views of
diverse group of professional people who are using texture.”

Visual texture is not an absolute and independent phenomenon.
Its appearance must be considered relative to a variety of factors
such as distance of view and perception. Based on the distance that
texture is viewed from, examples can be noted as a tissue section
looked at with an electron microscope or the image of a group of cell
as a lump, a wheat scale under a microscope or a wheat field in an
aerial photograph, concrete viewed from a few feet distance and an
aerial 1image of an urban area. Pictorial examples of textures
include the Brodatz' textures [23] such as the pictures of woven
aluminum wire, reptile skin, grass lawn, raffia weave, ceramic coated

14



brick wall, beach sand, water, woven brass mesh, wool, etc. In
pictures of a human face, hair and skin have textural properties.
For a data-base on digitized texture images, one can refer to [24].
(Figures in Section 2.1.1 will show pictorial examples of various

types of texture.)

2.1.1 Definition

Texture <can be categorized as either structural or non-
structural. Structural texture can have a regular or irregular
pattern. A non-structural texture 1is usually irregular. In the
following discussion, these concepts will be formalized as an attempt
to explain and define texture. Our categorization of texture arises

mainly from a modeling and simulation point of view.

Structural Texture

A structural texture 1is generally viewed as an image of
organized elements. One of the requirements of texture to be
categorized as structured is that its unit patterns must neither be
too small to be unlaboriously countable nor so large that they are
counted at a glance. By unit pattern, it 1is meant the smallest
portion of texture whose repetition over a region reproduces the
original structural pattern. In structural texture, there must be
edge and discontinuity between neighboring unit patterns so that they
are easily separated from each other by human eye. The unit patterns
can either be identical or approximately identical. They can have a
regular or irregular placement rule. For determining the identity of
a unit pattern, a coordinate system which is invariant to the unit

15



patterns Tlocations can be defined on attributes such as geometry,
size, orientation, optical properties, phase, frequency and spatial
relation to its neighboring elements. Thus, obtaining one point on
the coordinate system for each unit pattern. We define subpattern as
a portion of texture usually created by several unit patterns. The
case of identical subpatterns exists when all such points fall over

each other, while the case of approximately identical subpatterns

arises when these points fall near each other resulting in a dense
cluster. Generally, the less dense the points, the more irregular
the appearance and vice versa. A regular structural texture can be
uniquely reconstructed by a unit pattern and a simple placement
rule. Examples of identical subpattern texture is given in Figure 2-
g 2" In Figure 2-1(a) of the checker board pattern, every
diametrically symmetric subpattern containing an equal number of
black and white squares 1is capable of reproducing the original
texture by its non-overlappig repetition over a region. The smallest
of such subpatterns is a 2x2 square, which we call a unit pattern.
In Fig. 2-1(a), there are two possible unit patterns which are in 90°
phase with each other w.r.t. orientation. Unit patterns may not
necessarily be identical in their micro structure; but they may look
so in their macro form. Figure 2-1(b) presents a VLSI network [154]
whose subpatterns appear identical.

Approximately identical unit pattern texture arises when slight

differences exists between corresponding values of the same attribute
in unit patterns. By approximate it 1is meant that the differences

(in units of pixels or gray tone) must be a fraction of the dynamic
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(b) a VLSI network

Figure 2-1.

Example of Structural Texture with Identical Unit

Patterns.
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range of that particular attribute. An example of such a type of
structural texture appears in Figure 2-2. Figure 2-2(a) shows the
unit patterns having an elliptical shape with approximately the same
dimensions. In addition, the placement of unit patterns differ in
orientation. In most of the approximately-identical-unit-pattern
structural textures, the variations in unit patterns and their
placement is not regular and hence cannot be represented by a simple
formula. On the other hand, there 1is wusually some degree of
randomness in such textural patterns. For example, in Figure 2-2(a)
there seems to be a randomness in orientation 6 of each elliptical
unit pattern with 6 being a uniformly distributed random variable
between zero and n. Figure 2-2(b) shows an approximately identical
unit-pattern to be constituted of a few polygons whose number of
sides are randomly selected from an integer between 3 to 6. There is

also randomness in the length and thickness of the sides.

Non-Structural Texture

A homogeneous textural pattern appears non-structural if its
unit patterns (defined above) are too small to be effortlessly
visually countable and separable. In some cases, the unit patterns
are as small as one pixel. One of the characteristics of a non-
structural texture 1is that its percent duty cycle of repetition
cannot readily be determined and is basically very low, while just
the opposite is true for structural texture. Figure 2-3(a) shows
beach sand as an example of non-structural texture.

A structural scene changes its characteristics when viewed from

different distances. For example, the checker board pattern of
18



Figure 2-2.
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Figure 2-1(a), if viewed from 4 to 5 feet distance with a 20/20 eye
for at least five seconds, appears as a textural pattern of black and
white stripes having 45° angle ith vertical direction. This effect
is because of the gestalt or grouping effect performed in the human
visual system. The same texture viewed from 8 to 9 feet seems solid
gray which is a non-structural scene. These observations show that
in non-structural texture, the total effect of many unit patterns as
a group on perceptual system is more important than properties of
individual unit patterns. |

A simple and regular non-structural texture can be modeled with
a non-probabilistic formula. For example, for the texture created by
putting black dots on intersection of every other two columns and

rows of an otherwise white digital picture, the formula is

i [.l;l ; = 0 assign 0 (black)
q q z 0 assign 255 (white)
where 1 andj are row and column indices.

Three fundamental properties can be presented for non-structural
texture: (a) In a digital textured image, the number of pixels is
usually large in order to give enough repetition and outlook of the
texture. This may contribute to the importance of the total (macro)
effect of many pixels on the perceptual system in resemblence of the
textural pattern. (b) Unit patterns are very small. Because of this
property, the spatial relations and values of individual pixels are
of concern throughout the texture. (c) Certain statistical
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properties of the non-structural texture seem to closely relate to
the appearance perceived by human eye. Among such statistics 1is
correlation.

From the above properties, the following conclusions can be
drawn: There is a large degree of freedom in choosing the pixel
values to have the desired visual properties. Thus, for every
pattern, there is a family of textures which can be perceived
similarly. Such properties can be found in certain families of
ergodic stochastic processes. By ergodic, we mean a stochastic
process all of whose statistics (with probability 1) can be
determined from a single member of the process. It is imperative to
note that the term stochastic has nothing to do with scrambling and
irreqularities in textural pattern. A single texture can be modeled
non-probabilistically, or if there is a random appearance in one or
some of the attributes, a probabilistic factor can be used. Such a
probabilistic factor must not be confused with the term stochastic
process defined above. In stochastic notation, we deal with a class
of textures in an ensemble sense. Depending on the generating model
of stochastic process, the patterns in the class can be regular or
irregular. For example, if the finite sequence of random variables
representing the textures is normal and first order Markov with
correlation factor of 0.96 in column direction and zero correlation
along the rows, the pattern will be like that of Figure 2-3(d) which
is obviously irregular. Another member of this family of stochastic
processes can be generated using a different sequence of normal
random variables with the same correlations as before. This pattern,
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too, will look similar to Figure 2-3(d) and has tﬁe same statistical
properties.

Thus, stochastic models are very important for characterizing
non-structural textures. For a homogeneous stochastic texture, wide-
sense stationarity seems quite a reasonable assumption and can be
justified with the results obtained by Julesz et al. [31] and Pratt
et al. [35]. Most aerial scenes are non-structural and can therefore
be modeled stochastically.

In texture processing, there is a frequent referral to the term

natural texture. Natural texture means a pattern whose scene has

been created either by nature (grass and sand) or exists in every day
life in a processes form (raffia weave and wool cloth). The pattern
has then been photographed, digitized and transduced to numbers.

Artificial texture, on the other hand, refers to a pattern whose

content is first generated by a machine in the form of numbers, line
drawings, or 1light and then transduced to form an image such as
Figures 2-3 (c and d). There are other types of textural patterns
that do not 1logically fit into either natural or artificial
categories. Such patterns are usually created by either industrial
processes or by direct human intervention. Thus, we refer to the
former as industrial natural textures and to the latter as man-made
natural texture. An example of industrial texture is plastic bubbles
in Figure 2-2(b) and one for the man-made texture is bricks organized

in an orderly manner. Biological textures such as images of tissues

can be categorized into natural texture patterns. It is hard to
think of a natural texture whose pattern is regular. Barks on the
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(a) natural and non-structural
texture - beach sand

(c) artificial, stochastic (d) artificial, stochastic
texture-bidirectional texture - unidirectional
correlation Pc = PR T 0.96 correlation pc = 0.96, PR = 0.0

Figure 2-3. Examples of Non-Structural and Stochastic Textures.
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trunk of a given tree (e.g. sequoia) having approximately the same
age and on the same part of the world (e.g. California) have similar
textural patterns. Photographed under similar 1lighting conditons
with the same camera from the same distance (e.g. one foot) and going
through a standard darkroom procedure, the bark images will look
alike. Digitized with the same resolution, they look very close,
although they are different when compared pixel by pixel. They form
one class of textures which, like most of the natural textures, are
best modeled by a certain family of stochastic processes. Figure
2-3(b) shows a natural wood grain. Such a texture is simulated by a
normal, first order Markov model depicted in Figure 2-3(d). In this
document, we are concerned with a stochastic non-structural view of

texture and a statistical approach to feature extraction.

2.1.2 Texture Processing
Image texture can be studied at least around four topics:

i)  Texture perception

ii) Texture synthesis

iii) Texture analysis

iv) Texture discrimination

For the first topic, more psychological/neurological research is
needed on the eye and brain. Gibson [26] has shown the relation
between texture cues and a sense of depth in perception. Metzger
[25] first recognized the perception of texture in 1930, and since
then this subject has provided stimuli for many scientists. Julesz
[29-32], Pollack [33], Purks and Richards [34]; and Pratt, Faugeras,

and Gagalowicz [35 and 141] have performed various experiments for
24



understanding the underlying statistical behavior of image texture.
On the second topic, texture synthesis can be applicable in image
coding where the coding process of synthesizable area of a segmented
image becomes, potentially, more efficient than direct image
coding. A method for generation of two-dimensional correlated
texture fields will be introduced in Chapter 4. Recently, techniques
have been developed to simulate some natural patterns using synthetic
texture [142-143].

The third and fourth topics are concerned with performing fea-
ture extraction and useful measurement on textures for the purpose of
image classification, segmentation and modeling. The last two topics
of texture processing, namely, texture analysis and texture
discrimination and the last two applications, namely, texture feature
extraction and texture classification are the mainstream of the
engineering application of this dissertation. Sections 2.2 and 2.3

present a brief survey on texture feature extraction.

2.2 Feature Extraction Theory
One of the most important topics of pattern classification is
feature extraction(*). It is useful, for better understanding of

this section, to define both terms, "feature" and "extraction".

(*)In the literature, this concept is alternatively referred to as
feature selection.
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Definition of Feature

Ledley [36] defines the term "feature" as follows: "The term
feature 1is commonly used to denote a particular combination of
attributes or characteristics that play an intermediate role in the
interpretation of the original data, or picture in terms of the final
pattern classification." Abdali [37] places the term feature into
three related connotations: specialized measurements features,
visual features, and pattern synthesizing features. In the first
meaning, a set of measurements represent the pattern and each set of
measurement is tested according to a "goodness" criteria resulting in
a best combination of measurements. Features, in the second sense
are used to denote some visual characteristic of patterns such as
topological and geometrical. In the third connotation, the pattern
is created from superposition of some unit patterns. In other words,
features are subpatterns [38-39]. In texture processing, the last
two interpretations of feature are useful for structural texture.
Thus, because of the non-structural nature of this study, the type of
features utilized in this document fit into the first category; i.e.,

a set of measurements on the texture field.

Extraction Defined

Feature extraction or selection is the process of mapping the
original measurements into more effective and usually independent
features. The mapping can be linear or non-linear and it, generally,
must reduce the dimensionality. For the 1linear case, it is
sufficient to find the coefficient of a linear function to maximize

or minimize a criterion, or for the more complicated criteria, optim-
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ization techniques can be applied to determine the coefficients [401.

In many applications, important features are nonlinear functions
of the original measurements. Unfortunately, a reasonable general
theory for nonlinear feature extraction is not available and
analytical treatment of a nonlinear case is usually cumbersome. It
can be said that most of the nonlinear feature extraction problems
are solved heuristically, are, therefore, problem-specific. For more

discussion on optimum feature extraction, see [41].

2.2.1 Evaluation of the Techniques

It was previously mentioned that features are tested according

to some "goodness" criteria. The following are the criteria which

are often used in pattern recognition.

i) Classification Evaluation Method:

This method involves measurement of classification error. There

are two common approaches to this problem; namely, probability of

error and separability.

Probability of Error

This criteria is popular because it is related to the Bayes
classifier. The procedure 1is that the number of classification
errors are counted experimentally. However, this criteria has
several shortcomings. One major disadvantage is that an explicit
mathematical expression is not available except for a very few
special cases, making a theoretical analysis difficult. Even for the
simplest one of these special «cases, which is the normal

distribution, the calculation of error requires numerical
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integration, except for the equal covariance case. The second
disadvantage is that this criteria requires the knowledge of the
probability density function. When the distribution of samples in
each class is not normal, the empirical derivation of the probability
density function is tedious and especially erroneous when there are a

small number of samples available [40].

Scatter Matrices for Discriminant Analysis

For multi-class classification problems, the features of
interest maximize or optimize class separability. When there are
only two classes, optimization reduces to maximization. In this type
of classification problem, the goodness criteria is the separability
function, which is independent of the coordinate system, but depends
on the class distribution and the classifier to be used. Fukunaga
[40] proposes five desirable conditions for separability criteria:

1) Monotonic relationship with the probability of error.

2) Monotonic relationship with the upper and Tower bounds

of the probability of error.

3) Invariance under one-to-one mappings.

4) Additive independent features.

5) Metric properties.

These criteria are simple, and the selection of optimum features
is straightforward. The criteria are used for multi-class problems,
and have explicit mathematical expressions. Scatter matrices consist

of the within-class matrix, which shows the scatter of samples around

their class expected vector and the between-class matrix, which shows

the experimental covariance matrix of the class mean-vectors. One
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well-known criterion of discriminant analysis is J = trace (between-
class)/trace (within-class) [42]. For more types of criteria see
[43].

One disadvantage of this type of feature selection is that as
the number of classes increase, the criteria become more and more

inaccurate.

ii) Figure of Merit Evaluation Method:

If more a priori information is available, such as the feature
distribution for each pattern class, figure of merit can be used as
an indirect measure for feature effectiveness [53]. This method has
the advantage that it does not depend on any specific classification
scheme, but it is related to bound on probability of misclassi-
fication. Some of the more common figure of merit criteria are
divergence, entropy function, Bhattacharyya distance, and Chernoff

bound. For more discussion on distance measures, see [44].

Bhattacharyya Distance(*)

B-distance is a scatter function of the conditional densities of
features of two classes. It is monotonically related to the Chernoff
bound of the probability of classification error using a Bayes
classifier.  For general cases, the B-distance and Chernoff bound
criteria are not as practical as the probability of error because,
first, they involve integration of the product of density functions,

which could analytically be very difficult and, second, probability

(*) B-distance for simplicity.
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of error has a direct physical meaning. Kailath [45] has derived
explicit mathematical expressions for B-distance criteria using some
well-known density functions. One of the density functions is the
normal density of features for which the B-distance formula becomes
substantially easier to work with, and it can be claimed that when
there is a Tlarge number of samples from normal distributions, B-
distance figure of merit is very efficient. For a more detailed
discussion on this topic, see Chapter 7 where B-distance is explained
as the criteria of evaluation in this study.

2.3 Some Important Texture Feature Extraction Techniques

Considerable research has been performed on the problem of
texture analysis and various texture feature extraction techniques
and theories have been developed which are of three forms:
statistical, structural, and structural-statistical.

i) Statistical Texture Features:

This group of features is particularly useful for natural scenes
and aerial images. It can be divided into four related categories
whose differences are defined in terms of efficiency which usually
means accuracy vs. cost. Measurements in this group can be made in
spectral and spatial.

Spectral Texture Features

The most important class of features in this category is the
extracts of the Fourier transform of image texture. The Fourier
power spectrum in polar coordinate has a radial and angular
distribution. For a wide-sense stationary field, the Fourier power

spectrum is a real quantity and is equal to the magnitude square of

the Fourier transform of the field. So, if w, and u& are the

frequency coordinates of the Fourier transform, F(mx,qy), r = radial
= ¢w§+m§ and 6 = angular = tan'l(gy/mx). The radial distribution of
a texture region gives a measure of coarseness. The finer the

texture, the less correlation among its elements which, in turn,
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results in a higher degree of variation in its autocorrelation
function. It is well known that abrupt changes in a time function
results in significant components in high values of its Fourier
transform. Therefore, high variation in the autocorrelation function
will result in the presence of significant components in high
frequencies of the power spectrum. So the power spectrum's amplitude
per frequency variation can provide a measure for texture fineness.
The more power at high frequencies, the finer the texture. The
angular distribution of the Fourier power spectrum is sensitive to
the directionality of the texture. This concept is supported by the
fact that angular distribution has high values concentrated around
the perpendicular direction to the directionality of texture [48].
It shall be noted that the notion of directionality in texture plays
an important role in texture processing because there is
directionality in most of the natural textures such as mountains and
agricultural fields. The frequency domain features have advantage
over the spatial first order statistical features in terms of
accuracy, but their performance is inferior to that of the spatial
second order features to be discussed next. Such a disadvantage is

in their high computational cost.

Spatial Texture Feature Based on First Order Statistical Measures

Examples of these types of features include image amplitude in
terms of spatial values, luminance, tristimulus values, or other
units. These features are often simple and practical. Mean and

variance of an image are considered first order statistics. First
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order histogram features are also among this group of features from
which the mean, variance, skewness, and kurtosis of image can be
derived [21]. Another in this category is gray-level difference
method [153], which measures probability of differences between pairs
of pixels at ends of a given displacement vector. First order
techniques have advantages of simplicity and inexpensiveness, and
their disadvantage is in their not taking arrangements of the pixels
into consideration. To illustrate this shortcoming, one can create

several completely different Tlooking texture images with the same

first order histograms.

Spatial Ad hoc Statistics

In this group, we include useful statistics which are neither
first order nor second or higher order. An example is the gray-level
run length method [48], which measures the length of consecutive
pixels 1in the direction of a given vector, having the same gray
level. A directional texture will have longer lines of consecutive
pixels in its direction. In general, a coarser texture will have
higher number of Tlonger lines of equal pixel value. Another adhoc

technique is a procedure using planar random walk for texture

discrimination [148].

Spatial Texture Features on Second Order Statistics

Among this category, autocorrelation can provide a measure for
coarseness based on the same reason given for Fourier power
spectrum: The coarser a texture, the smoother its autocorrelation.

Another wuse for the autocorrelation function is its ability to
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measure periodicity of information in a picture: A spatially
periodic texture will produce a periodic autocorrelation. An
autocorrelation function can be computed by a direct method [21], or
it can be obtained by frequency domain techniques. As another form
of spatial domain feature, we can mention edge per unit area
[49-50]. The finer the texture is, the higher the number of its
edges will be per unit area.

The most important technique among spatial domain texture
features 1is the family of second order joint density between all
pixel pairs of a texture block, which is approximated by joint gray-
level histrogram. Julesz et al. [29-32] and Pratt et al. [35] have
shown that second order statistics are sufficient for human texture
discrimination(*). Based on their results, second order gray-level

statistics are considered very important for texture feature

extraction theory and therefore, deserve some elaboration.

Joint Gray-Level Histogram Matrix{**)

Consider the (x,y) plane and a picture f(x,y) defined over this
plane. Let &6 = (ax,4y) be a vector in the plane. One can compute
the joint probability density of any pair of gray-levels separated by

the vector &  For the discrete case, A& and &y are integers. By

(*)The strong sense of second order statistics is meant.

(**)In the Tliterature, different names have been used for this
concept. Some call it "gray-tone spatial dependence matrix," some
have named it "gray-level co-occurrence matrix," and others have used
"joint gray-scale histogram matrix."
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counting the number of times that each pair of gray-levels occur at
ends of &, one can form an array of mxm where m is the number of gray
Tevels present in the picture [51]. Therefore, a symmetric matrix is
generated.

A simple set of separation vectors are considered to be (1,0),
(1,1), (0,1), and (-1,1). This corresponds to the pairs of pixels
with 0, or 180; 45 or 225; 90 or 270; and 135 or 315 degrees from the
positive direction of the x-axis. As a consequence, there are four
mxm matrices for each nxn sample window taken from the image, where n
is the number of pixels in one row of the Qindow, and m is the number
of gray levels. If the texture is coarse, and § is small compared to
the sizes of the texture element, the pairs of points at separation
should usually have similar gray levels. This means that the high
values in the joint gray level matrix should be concentrated on or
near its main diagonal [48].

Let P(i,j,8) be the (i,j)th element of the joint gray level
histogram matrix of order m, which represents the number of
occurrances of (i,j) at separation §. Also, let S be a normalizing
factor which is equal to the sum of all of the matrix entries. Then
P(i,j,6)/S 1is actually an approximation to the Jjoint probability
density function that gives the probability of the pair of gray
levels (i,j) to occur at pairs of points separated by & = (Ax,Ay).

As an example, a measure for correlation is

s B B
fi = L 2 (i3)(P(i,3,98)/S) (2:2)
i=0 j=0
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where m is the number of possible gray levels.
Definition (2-2) is a discrete version of the two-dimensional
continuous autocorrelation problem,

Ry (S £ e fw} = j:j VWE(V,W, ) dvdw (2-3)

where f(v,w,8) is the joint probability density function of v and w
with spatial separation vector & In formula (2-3), v and w are two
random variables which can have any value and exist at any location
within the assigned frame of boundaries on x-y plane as long as their
Tocations are separated by the vector § (or -§), and f(v,s,8) being
zero outside of the boundary.

fq1 from formula (2-2) can be considered a texture measure.
Haralick et al. [51-52] have suggested 14 texture features based on
the joint gray-level histograms which have proved to be effective in
terms of classification accuracy. However, this family of texture
features has its share of disadvantage. Its critics believe that two
of the major problems with them are high computationality for
obtaining the two-dimensional histograms, and poor accuracy for low
contrast textures [53]. Davis [149] has studied an approach using
generalized joint gray Tlevel histogram matrices for texture
analysis. However, the generalized technique does not seem to
improve the classification accuracy significantly while preserving

its high computational cost.

ii) Structural Texture Feature:

For structural texture description, a formal language has been
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developed by Garlucci [46]. This abstract linguistic technique for
describing texture suggests a model where the primitives are Tline
segments and polygons and their arrangements. Other structural
texture features are based on artificial intelligence techniques Quch
as finding topological features, e.g. connectivity in a pattern
[471. Davis [151] has investigated the structure of cellular
textures. A methodology for feature extraction and reconstruction of
structural texture has been proposed in [152]. A1l of these
techniques deal with highly structured and usually man-made patterns

of texture.

iii) Structural-Statistical Texture Features:

Features wusing a hierarchical mixture of structural and
statistical attributes has been proposed [54]. The approach is
structural in that it views texture as an organized phenomenon for
which subpatterns and their spatial arrangements are taken into
account. They are statistical in the sense that they extract Tlocal
statistics from pixels. An example of this method is extraction of
texture primitives and performing measurements to determine a rule of

placement for them [150].

2.4 Summary

In this chapter, the notions of texture, feature, and extraction
have been defined and explained, and various models for texture and
notable techniques for its measurement have been examined. It was
reasoned that because of the nature of variation in a non-structural

textured pattern, specifically, that of a natural texture, a
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statistical approach is presumed to be the most appropriate in our
study. It was discussed that some advances has been made in
extracting useful information from texture and the most famous of
statistical texture features are the Haralick measures. However,
Haralick features are computationally expensive, and do not much
reduce the enormous redundancy in textural information. Some of the
other techniques are algorithmic, i.e., they do not provide a
mathematical insight into the nature of textural information. In the
following chapters, based on a stochastic model for texture, we will
attempt to present an accurate, fast, and inexpensive technique for
texture modeling, : measurement, feature extraction, and
classification. Particularly, Chapter 7 is devoted to a family of
SVD texture measures which provides good accuracy with Tlow
computationality. The evaluation of SVD measures will be performed

in Chapters 8 and 9.
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PART TWO: THEORY

This part includes Chapters 3, 4, 5, and
6. A model for 1image texture is
established, and probabilistic and
statistical developments on SVD are

presented.
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CHAPTER 3
DIFFERENTIAL SINGULAR VALUE DECOMPOSITION

In this chapter, we address a differential treatment of singular
value decomposition. Such a treatment results in the Jacobian of SVD
which will be used in subsequent chapters for derivation of p.d.f.
and probably distributions of singular values. In Section 3.1, the
notion and mathematical approach of singular value decomposition is
defined. In Sections 3.2 and 3.3, differentiation of decompositions

which are most useful for our later developments are presented.

3.1 SVD

Singular value decomposition is a powerful technique of matrix
transformation. SVD has lately earned an important place in the
fields or disciplines that deal with two dimensional fields. Among
the areas of science that heavily utilize two-dimensional processing
are digital image processing (for the obvious reason of two-
dimensionality of image fields), and pattern recognition. In working
with two-dimensional data, SVD can greatly simplify the task of
extracting information from patterns. It can, also, provide us with
a tool for obtaining analytical insight into the data. As it will be
explained and proved in the subsequent sections of this chapter, SVD
assists us in understanding many wuseful and important inter-
relationships among elements of a texture field. In its special
case, SVD analysis reduces to eigenvalue analysis. It is also
possible to extend the time-invariant approach of this work to a

time-invariant one for television applications. In this work,
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efforts concentrated on the discrete time-invariant case which is

sufficient for the classification.

3.1.1 Unique Definition and Notation

It is desired to obtain a precise definition for singular value
decomposition. The reader may wonder why the adjective “precise" is
used for "definition" since a mathematical definition is synonymous
with preciseness or at least it should be. Section 3.1.3 on non-
unique decomposition of singular values will shed 1light on why the
word precise is used here.

Let F be a kxn (k<n) general complex matrix(*). It is possible

to decompose F into a product of three matrices as

F=usy (3-1)
such that, U is a kxk unitary matrix, hence
T -
uy = -1—k (3-2)

with the real part of the elements in the first row positive,

S is a kxk real diagonal matrix with its diagonal elements called

(*)Any development for k< n can be extended to the case whﬁre k>n.
However, the k < n assumption has the advantage of making F F' a full
rank matrix which is extensively used in this document.
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singular values(*) of F. They are non-negative and in descending

order, where the number of non-zero singular values corresponds to

the rank of F. V is a nxk unitary matrix hence,
viv = (3-3)

Then, the decomposition (3-1) of F is unique.

Remark: For derivations of Section 3.2 and on, without 1loss of
generality, F will be considered real. This assumptions is based on
the fact that the applications and experiments of this work are

performed on digital pictures. Digital pictures are usually real

valued arrays.

3.1.2 Linear Algebraic Properties of SVD

It can be proved that for

a4 st (3-4)
we have,
FE = ual (3-5)
and,
FlE = vy (3-6)

(*)In the literature, the name principal values has occasionally been
used instead of singular values. The term outer product expansion
also refers to SVD.
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Remark: If F ix kxn (Kﬁp) then the rank of.fTE_is r < k which is not

full. Thus, V has r nonzero eigenvalues.

Letting
A2 diag(y,ig,een,hy) (3-7)
A ;
S = d1ag(sl,52,...,sk) (3-8)
Lj_ [ﬂl sﬂas”' s_@_k] (3"9)
Vo= [y avpseeeny ] (3-10)
u; 2 the ith eigenvector associated
with U (3-11)
Vi £ the ith eignevector associated
with V (3-12)
r = rank of F
Then, a hybrid form for SVD can be obtained as
r
F=usy = 7 suyl (3-13)
i=1
or equivalently,
1727 I
F=U0x""V = ) A'i Uivy (3-14)
i=1

square root of A; can be positive or negative. However, by
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agreement, the positive sign of A]i‘/z

is taken as singular value sj.
In Section 3.1.4, it will be explained how the relation (3-13)

and (3-14) have found application in data compression.

Important Remark: Only for a non-negative definte, symmetric matrix
are the singular values and eigenvalues equivalent. For this group
of matrices uj = v4. For a general matrix, the two decomposition--

singular value and eigenvalue--are entirely different.

3.1.3 Non-Unique Decomposition of Singular Values

Let F be a general complex kxn matrix. It is possible to
decompose F into a product of three matrices as F = QQET such that,
U is a kxk unitary matrix, S is a kxk real, diagonal matrix, and V is

a nxk unitary matrix. It is, also, possible to decompose F as

|™

=U S T such that U is a kxn unitary, S is a nxn real diagonal, and
V is a nxn unitary matrix. A third method of decomposition is when U

is kxk and unitary, S is kxn and V is nxn and unitary. In this case

; r n-r
S | i
k. | Ol r
i
s = S (3-15)
_____ L
0 i 0 k-r

The above decompositions are not unique. As an example,
consider the first type of decomposition. For Proof of its non-

uniqueness, the following remarks shall be presented:

Remark 1. Consider a k-dimensional column vector e; such that its

ith element is 1 and the rest of its elements 0 as e;=
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[0,0,...,1...,0,017.  Then, a kxk identity matrix can be

ATH

represented as
I_k = [_e_ls{:“O:Eis"'sgjs"'sgk]' (3-16)

Upon interchanging the ith and jth column of Ik, a new

matrix is obtained as

E‘ij = [g_l,g_z,...,_e_j,-.-,g_.i,..-,_e_k]. (3"1?)

Remark 2. The matrix P;; s called an elementary matrix of the
first kind which represents the elementary operation of the
first kind meaning interchanging ith and jth columns (rows)
of a matrix which has k columns. In order to interchange
the ith and jth column (row) of a matrix, Pij must be post-
multiplied (premultiplied) by the matrix.

Remark 3. The same matrix Eﬁj can be premultiplied to a matrix which
has k rows and the ith and jth rows will be interchanged.

Remark 4. The second kind of elementary operation is multiplying any
columns (row) by a nonzero constant c. The third kind is
addition to any column (row) of any other column (row)
multiplied by an arbitrary nonzero constant c.

Remark 5. The operations of second and third kind can be represented
by their pertinent right (for operation on the columns) or

left (for operation on the rows) elementary matrices.

"Right" refers to the postmultiplication and "left" to the
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premultiplication of an elementary matrix.
Remark 6. Any matrix can be considered equivalent to the product of
a series of left and right elementary matrices of the first,

second and third kinds [55-56].

P.5=1 and P,. =Pl (3-18)

Remark 7. 23 Pij T 5

Derivation 3.1: Let F be kxn, U a kxk unitary, S a kxk diagonal,

and V a nxk unitary. The decomposition F = U S VT, in its

general form, is not unique.

The proof of this derivation can be given in two parts, each of which

is sufficient to prove the non-uniqueness of SVD.

First Part of the Proof:

Using Remark 7,

T

F=usvl = uprispiyl (3-19)

But (3-19) is

- T T wT - T T T _
Fo= E(P1JB1J)_S_(£1JP-|JW (U P)(_P_-[JE PTJ)(BTJE ) (3 20)

P¥J§Pij means the ith and jth diagonal elements are interchanged.

Q-Edj means that the ith and jth columns of U and Elj[T means that
ith and jth row of !T are interchanged too. The latter means the ith
and jth columns of V must be interchanged. Due to many possible

combinations of the interchanges, the decompositon is non-unique.

This completes the first part of the proof.
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Second part of the Proof:

Using equation (3-13), it is easily verified that multiplying
the elements of the ith columns of U and V i.e. u; and v; by a minus
sign does not alter F. Even if the order of singular values may be
set fixed, the combinatorial possibility of various negative
multiplication for columns of U and V without altering F is 2K, which

is another indication of the non-uniqueness of SVD. Hence, the

proof. Q.E.D.

The non-uniqueness of the decomposition F = U S f- can lead into
analytical difficulties. Therefore, there is a need for a unique
definition of SVD which was already given in Section 3.1l.1. With
this definition the first row of U is positive for real (orthogonal)
U [and the real parts of the first row of U is positive for a complex
(unitary) U] which results in a unique decomposition. In order to
make the first row of U positive, the following procedure shall be
performed :

i) SVD is performed.
ii) The singular values are ordered descending-wise.
iii) Every column of U whose first component is negative is
multiplied by (-1).
Obviously, according to the second part of the proof, the
corresponding columns of V must also be multiplied by (-1). Hence,
the first row of U will become positive. Such U is unique; and

hence, SVD related to it will be unique as well.
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3.1.4 A Perspective of the Literature

As a remark on the history of SVD, it should be mentioned that
this concept was known to the mathematicians of the early 20th
Century in the sense that they knew how to algebraically decompose a
real general matrix into a diagonal matrix and two different
orthogonal matrices. The elements of the diagonal matrix were called
principal values as opposed to the presently used singular values.

The algebraic method becomes cumbersome for medium to large
matrices. Since the advent of digital computers, numerical
computation of the singular values of a matrix has been proposed
through various methods: one method is to compute_f,EI and obtain a
diagonalization of it. Taking the square root of the diagonalized F
£l gives the singular values. However, this technique rapidly
propagates the computer round-off error and, therefore, 1is not
desirable. The computation of the singular values based on plane
rotational methods has been proposed by Kogbetliantz [57], Hestenes
[58], Forsythe and Henrici [59]. A QR algorithm was suggested by
Kublanovskaja [60]. A combination of Housholder Transformation to
bi-diagonalize F and then QR algorithm to obtain the singular values
were developed by Golub and Reinsch [1]. Golub and Kahan have
applied singular values in least square solutions and calculating the
pseudo-inverse of a matrix [134]. The most recent approach for
computation of singular values has been developed by Lawson and
Hanson [61], and seems to be more advantageous than others. Moler
[62] has elaborated on the conditioning of SVD matrix factoriz-

ation. Applications of SVD in linear systems and linear algebra is
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presented by Klema and Laub [63]. A SVD application in system theory
of model reduction is discussed in [17] by Kung, and in filtering of
two~-dimensional signals by Lashgari, Silverman, and Abramatic [145]
and by Lee [156]. Moler and Stewart [64] have recently used the PDQ
factorization that requires less computation time and Tess computer
memory for SVD representation of images. Based on the results in
[4], Andrews and Patterson [130-132] have applied SVD to approximate
photographs by truncation of negligible singular values, and thereby
have shown SVD as an aid in image coding, data compression and image
restoration. Huang and Narendra [5] corrupted an image by Gaussian
noise and succeeded in restoring the original image through the use
of 38 out of 50 singular values of the image plus noise field. The
use of more or less number of singular values would decrease signal-
to-noise. Sahasrabudhe and Vaidya [65] have discussed the relation
between the behavior of singular values of an image with its
autocorrelation. The above mentioned works have all been in
deterministic domain. The present research 1is concerned with

stochastic SVD.

3.2 SVD Perturbation Theory

F is kxn, and without loss of generality, we assume that (k<n)
and will continue this assumption throughout the rest of the
dissertation.(*) The objective is to derive a relationship between a

perturbation of F and its SVD representation. Let F be perturbed as

(*)For image processing puposes, k is, usually equal to n, in other
words, texture fields are usually square matrices.
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-

F11+;’_\.F11 cee F1n+AFln
Exa(F) = : : (3-21)
LFkl+&Fk1 cese Fkn+AFkn

obviously S will change to S+A S as

e 0

S+A(S) = : (3-22)
S| tAs,

likewise U and V will be perturbed. We can see that if
A(F)»0, then A(S)»0. It is desired to find a limiting relationship

as

T AF, .

: ij
Jo(U,5,V) = lim : . (3-23)
AF; 50 [1{[ bs; ](if[jw"j](i szavij)

where for 1T AJ.. and I A‘J,].
i, i
zero terms. (See Appendix C). In other words, it is desired to

, we nmust exclude the redundant or

obtain a differential form for dF in terms of dU, dS, and dV.

3.2.1 Definitions for Differential Forms of Matrices

If i ¢
Fll F12 s Fln
F21 F22 R an
Fkl sz — Fkn

is a kxn real matrix, then the differential volume element of F is

defined to be the product of all differentials on elements of F.

49



Definition I. Differential Volume Element

A k,n
dF = @ dFij (3-25)

where dF.ij is the differential element of the (i,j)th components of

the matrix F.

Definition II. Differential Volume Element for a Real Diagonal

Matrix S
If § = diag(sl,sz,...,sk), then the differential volume element

of S is defined to be the product of all differentials on the

diagonal elements.

k
¢ £ nds,
i
- dSldSZ...dSk (3-26)
Definition III. Vector and Matrix of Differentials
If a = [al,az,...,ak]T is a vector then,
A g1 |
d(a) = [dal,daz,...,dak] (3-27)
and
d(F) 4 [¢F;] (3-28)
Note 1: d(F) of Definition (3-28) is a matrix of differential

elements of F, and hence

dF = product of all elements in d(F) (3-29)
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Note 2: (3-25) and (3-26) are scalars while (3-27) and (3-28) are

arrays.

3.2.2 Mathematical Reasoning for SVD Jacobian

In this section, a more general variation on Jacobian will be
presented which is different from the standard Jacobian in that it
involves matrix relations.

The objective here is to determine a relation between dF and

dudSdV as

dF = [J:(U,S,V)]dudsdv (3-30)

V) is Jacobian of SVD transformation, dF and dS are

where J(U,S,
define&‘in (3-25) and (3-26) and dU and dV are defined in Appendix C.

By Jacobian, it is meant to describe a mathematical relation
between the volume elements of F with those of its decomposed
counterparts U, S, and V. Notion of Jacobian in this case is
depicted by Jg(U,S,V).

The main question to be considered is the following: consider
the space of elements of the matrix F. This space is mapped into
another space which contains elements of the matrices U, S, and V.
Then, one seeks to determine the behavior of dependent variables
(elements of F) as a function of the independent variables (elements
of U, S, and V) near a given point. To put this argument in mathe-
matical terms, let us consider a point such as f; in the space of the

elements of F. The point f; has (kn) coordinates in space RKN as
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f; = (F(1,1),e00,F; (k,on) (3-31)

The image of f; in the joint space of U, S, and V is a point called

Pulslvl with (k2+k+kn) coordinates in space RNk, The basis for space
of U is %-k(k—l) dimensional; for S is k-dimensional; and for V is

[nk --% k(k+1) ]-dimensional.  Since spaces of U, S, and V are
independent and disjoint, the sum total of their basis dimensions

will add up to kn which is to be expected.

PUlslvl = [(Ul(l,l),...,Ul(k,k),Sl(1),...,51(klvl(l,l),...,vl(k,n)]
(3-32)
: . = T
one wishes to study F near pU151“1 given that F, = U,S,V,.
In the physical world, the behavior of F near a sufficiently
close distance of PU151V1 is linear provided that the variable

elements of U;, S;, and V; be restricted to a small variation.

Because of this Tinear behavior in the close vicinity of PU151V1’ the

first partial derivatives at PU151V1 are needed to linearly
approximate F at that point. As a result, second or higher order
partial derivatives are considered to be zero.

Thus, it suffices to determine a mathematical relationship
between the product of the first power of the differential elements
of F with the product of those of U, S, and V. In simpler terms,
using the definition (3-25) and (3-26), it is desired to obtain a
relation between differential volume elements of F, U, S, and V or,

notationally, between dF,and dUdSdV. This mathematical relation will
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result in the [generalized] Jacobian Jg(U,S,V).

3.2.3 Derivation of the Jacobian of SVD Transformation
For the derivation of the Jacobians of SVD, and spectral

factorizations, three mathematical concepts will be used:

i, Jacobians of matrix transformations [66-67].
iie Strategy like that of decomposition of a multivariate
normal distribution into three independent

distributions [68].
iii. Orthogonal functions in the hyperbolic space of
matrices [99].
It must be emphasized that the results are not
restricted to the case of normal samples and that they
hold for samples from any distribution.

For image processing applications, F is always a real-valued

matrix. Consider SVD in (3-1),

Fo=usV | (3-33)

where, F is a real kxn (k<n) matrix, U is a real kxk orthonormal

matrix, S is a real kxk diagonal matrix with non-negative elements,

and V is a real nxk orthonormal matrix.

Applying differential operations on both sides of (3-33), we

will have

dF) = dws vl +UudesnT +us dvl) (3-34)
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where, d(F) is defined in (3-28).
V is a nxk (k<n) orthonormal matrix. In order to form V into a

square orthonormal matrix, we choose a nx(n-k) matrix Q such that the

partitioned [V|Q] is orthonormal. Therefore,

TvjQl = 1,101 (3-35)

Premultiplying d(F) of (3-30) by ig and postmultiplying it by [V|Q],

we obtain

(3-36)
The reason for modifying the nxk V to a nxn matrix [V|Q] is that,

eventually, the determinant of [V|Q] shall be taken and for that

matter it must be a square matrix [68].

Using Appendix A, Section 3.2.1, and the decompositon method of

[68], we can modify (3-36) and state the following derivation:

Derivation 3.2: The Jacobian of SVD transformation is

2
(k + kn)
K I s.) n (s

( 55
G G) il i<G !

JE(Q,Q,V) = abs| sj)

(3-37)

where, s; is the jth singular value and rk(nlz) is the k-variate

gamma function of argument n/2 (a constant). Appendix B

elaborates on the multivariate gamma function.
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Remark: One can say that J(U,S,V) = ———— where dF =
- U ds dv

dQLngﬂﬂ is defined in (3-25), dS in (3-26), and dU and T = 4V are
defined in Appendix C.

Proof:

Obtaining the volume elements of both sides of equation (3-36)
and using [68, page 71] followed by definition (3-26), equations (C-
14) and (C-23) of Appendix C, we obtain

2 -2

K
& = abs[ls|"* 1 (s5-53) Jasd)d(v) (3-38)

<]
Using (C-35) and (C-38) of Appendix C on (3-38), and noting the fact
that SVD of F is obtained with the consideration of uniqueness of

decomposition, (C-41) 1is used

_;E kn
k k2 k
aF = 27K B2 _)ET__Jabs[|s|"™* 1 (s?—sg)]deUdV (3-39)
e ol J
Le) &) 1<

Explanation: The factor 27K at the beginning is because of having
the first row of U positive. This is due to the fact that the U here

is one of the 2K combinationally possible U's without sign

restriction.

k
IS| = @ s, (3-40)

Thus, from (3-39) and (3-40)
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- NI

K
T (s -s? Jdsdudv  (3-41)
i<

Constant

where, dU 1is the normalized invariant (Haar) measure on the
orthogonal group O(k) and the differential form dV is the normalized
invariant measure on the Stiefel Manifold Hk,n of k-frames in

Euclidean space R". Considering that
dF = J.(U,S,V)dSdudv (3-42)

and comparing (3-42) with (3-41), the proof for (3-37) will be
obtained. Q.E.D.

3.2.4 Analysis

Equations (3-37) of derivation 3.2 and (3-41) are always true
regardless of whether singular values are ordered or not. If the
singular values Sy 1 3 l,...,k are arranged according to their
descending order, then the "abs" sign of (3-37) can be removed.
Equation (3-41) 1is of importance for our future derivations and
analysis. Its significance is two-fold: one, being that U and V can
be integrated out to result in the joint probability density function
of the singular values of F. And, two, (3-41) proves that, in SVD,
the variations of F is a function of singular values of F rather than
elements of U and V. Formula (3-41) will be properly treated in

Chapters 5 and 6 to obtain probability functions of the singular

values and to develop stochastic SVD theory.
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For the second significance, i.e. the property of singular
values to carry most of the information of F and its elemental

variations, the following theorem is presented:

Derivation 3.3: It is the singular values of F that determine the

significant portion of the information regarding

changes in F.

Proof:

(3-37) of Derivation 3.2 shows that the generalized Jacobian for

SVD transformation of F into U, S and V is only a function of the
singular values of F rather than a function of the elements of its
unitary eigenmatrices U and V. Therefore, one can attest that it is
the singular values which determine the Jacobian and hence the
significance of the change in elements of F with respect to the

variations in S, U and V. Q.E.D.

Numerical Example:

As an example for application of the Derivation 3.3, consider

the 2x2 matrix

5.000 9.000

2.000 7.000

Upon SVD decomposition of F

F=yusy (3-43)
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5.000 9.000 0.819 0.574 [ {12.536 0 0.418 0.908]7
2.000 7.000 0.574 -0.819 0 1.356f |0.418 -Or.418

F u S v
(3-44)
0.1 0.1
Upon incrementing F by A(F) =
0.1 0.1
5.100  9.100
F+a(F) = (3-45)
2.100  7.100
The SVD of (3-45) will be
Fra(F) = (U+A()) (s+A(S)) (VT+A(vT)) (3-46)
T
5.100 9.100] [0.817 0.575 ] [12.721 0 0.423 0.906
2.100 7.100| |0.575 -0.817 0 1.344] | 0.906 -0.423
F+A(F) U+ A(U) =S+A(S) +a(V)
(3-47)
Clearly,
_ [-0.002  o0.001]
A) = (3-48)

0.001 0.002

A(S) = (3-49)
0 -0.012,

_ |0.005  -0.002
A(Y) = (3-50)
-0.002  -0.005[ -




Using (3-37) of Derivation 3.2, the Jacobian of the SVD will be

Z
52 &+ 52 5
Jplllisd) = T, (T T, (1) (s1-s5)

1
—%}-(15?.161-1.839)
m

6131.867

(3-51)
where from Appendix B, A& (1) = m Using equations (C-14), (C-37) and
(C-38) of Appendix C, M which is the normalized (Haar) measure on

the orthogonal group 0(2) will be

T
4 = U AY,)
0.001
0.002
= 1.967 x 1073
Using definition (3-22)
5 = sy 8,
= 0.185 x (-0.012) (3-53)
= 22,22 x 1073

Since n=k=2, the Stiefel manifold for j2,2 will reduce to the
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orthogonal group 0(2).

= VM) = -viAly,)
0.005
= [0.908  -0.418] (3-54)
~0.002
& 5,376 % 10~

Using the derived values of (3-51), (3-52), (3-53), and (3-54) in the

r.h.s. of relation (3-42) of Derivation 3.2, one obtains

(6131.867) (1.967x1073)

Jp(U,S,V) AeS oY
(2.22x1073) (5.376x1073)

1.43 x 107

(3-55)

The l.h.s. of (3-42) is dF which is the product of differentials in
A(F) as

&
I

(0.1)(0.1)(0.1) (0.1)

(3-56)
1074

As it can be observed from comparison of (3-55) and (3-56), the two
numbers are of the same order and are close. The slight difference

between them has two reasons:

i) A(U),A(S), and A(V) are approximations up to 3 digits after

the decimal point.
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ii) Relations (3-37), (3-41), and (3-42) are true at the limit

when

AV) 0
From (3-51)-(3-55), three observations can be made:

Observation 1) Significance of the Singular Values:

The changes in F are mostly reflected in the Jacobian J(U,S,V)
which itself is a function of singular values. Table 3-1 shows that

majority of variation in F, is reflected in singular values of F.

Observation 2) Significance of the Dominant Singular Value:

There are a pair of singular values for each of F and F+A(F).
For both cases, the dominant singular value is much larger than the
other one. This indicates that the dominant singular value can play

an important role in information extraction.

Observation 3) Significance of Variation in the Dominant Singular

Value:

As a result of variation in elements of F, the dominant singular

value reflects the largest change.

Table 3-2 presents the numerical results for observations 2 and

3.2.5 Experimental Verification:
Derivations 3.2 and 3.3 are theoretical proofs of the

significance of singular values of F in relation with the variation
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Table 3-1. Significance of Singular Values and Jacobian
of SVD.
SYMBOL VALUE
AF 0.000100
aU 0.001967
AS 0.002220
AV 0.005376
JF(§,§.£) 6131.867000
Table 3-2. Significance of the Dominant Singular Value and

Its Variation.

SINGULAR CHANGE IN SINGULAR
VALUES VALUES
!.&5,]
of [F] of [F+a(F)] AS A RESULT OF A(F)

FIRST SINGULAR
VALUE (DOMINANT)

12.536

12.721

0.185

SECOND SINGULAR
VALUE

1.356

1.344

-0.012
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in F. Figures 3-1 through 3-3 present the results of a set of
experiments performed to verify this fact. In the experiments,
artificial texture fields are generated. Then, matrices U, S, and V
are obtained and changed to luminance amplitude information to be
displayed by Tektronics 4014 graphic terminal. Any variation in F is
followed by the variations in U, S, and V. However, the ones for U
and V are minimal while that of S is very noticeable. In Figure 3-1,
the case of perfectly correlated and uncorrelated textures is
shown. Figure 3-2 displays a Tektronix 4014 representation of
luminance amplitude for p = 0.5 and p = 0.6 and shows the change in
the singular values w.r.t. The correlation factor Pc = PR = Pe

Figure 3-3 depicts the same for pr = pp = p= 0.7 and pc = pp = p =

0.9. The 3-dimensional representation of F, U, S, and V makes it

easy to see any trend in the above matrices while numerical detection

of changes in such large matrices is cumbersome to follow.

3.3 Differential Spectral Factorization

In this section, the procedure of Section 3.2.3 is utilized to
obtain a Jacobian for spectral factorization transformation.
Consider F as a real general kxn (k<n) matrix. Then, E_EF is a kxk
symmetric matrix.

It 1is known that any symmetric matrix can be spectrally

factorized to its eigenvalues and eigenvector matrices. Hence,

EE = ual (3-67)

where,

A = diag(xl,xz,...,xk) (3-58)
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and, X, 1 = 1l,...,k 1is the jth eigenvalue of F Fr. U dis an

orthogonal matrix of eigenvectors of E_EF where

H' - [H_l ,‘_J_z,o--,gk:[ (3-59)
Uj s i=1,...,k is a k-dimensional column vector and

o'y = 1 (3-60)

The objective, here, is to derive a relation for d(FFT) W.r.t.

dU and dA where,

k

d(FF") 4 1 d(FF");. (3-61)
i<j J
dA is defined in (3-26) as
k
drn = I da (3-62)

i
and dU 1is the Haar measure on the orthogonal group O(k) defined
Jointly by (C-14) and (C-38) of Appendix C.

3.3.1 Jacobian, JF FT(!*ﬁ)

In order to simplify reference to f;f?, an auxiliary matrix ¢ is

used to denote it

67



¢ = FF (3-63)

hence,
2= uay (3-64)
differentiating (3-64),
= T T T
d(@) = d(WAU + U d(au +U AdlU) (3-65)
where, d(¢) is
d(e) = [de;] (3-66)

Pre- and post-multiplying both sides of equation (3-65) by_yT and U

uTd(a = uTd(U)a+ d(m) + 2 4Ny (3-67)
According to Derivation A.6 of Appendix A
dwhy = -uTd) (3-68)
Using (3-68) in (3-67)
T ~ T
u'd(e)y = U'd(U)a+ d(a) - _U.E_) (3-69)
The volume element on the 1.h.s. of (3-69) is
T Tk k
volume element {U d(¢)U} = abs(|U | |U| ) [ dé; 5
i<J
= de (3-70)
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where, d® is defined in (3-61). Considering the r.h.s. of (3-69)

represented by an auxiliary matrix A.

A = uTd(u)a+d(a) - 2 uTd()

(3-71)

Clearly, A is a symmetric matrix of 1linear differential forms.
Hence, the differential volume element of A will be product of the
differential forms on the diagonal multiplied to that of the ones on

the upper diagonal

k k
Volume Elements of A = ( I Aﬁ][ I Ai.] (3-72)
- ;" R J
i=1 i<
But
Aoe = ud(u A + dA - Aurd(us) (3-73)
ii —i==i’" i ===
Using Theorem A.5 of Appendix A
i -
u;d(u;) = 0 (3-74)
Thus
Also,
- T _ T
A-ij .“_-i.c_l(.“__j))‘j kj_U_i_Q(_U_j)
S &
= H1E(£\] )(Xj‘}"--i) (3-76)

Using (3-75) and (3-76) in (3-72) and then equating the result with

(3'?0) L]
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k k
de = abs| Il . T u.d(u.) (3-77)
T<J (=% i=1 Ti<j ==
Derivation 3.4: The Jacobian for spectral factorization is
[ Kz x ]
J (U,A) = abs I (x;-2.) (3-78)
fIE R K2) g5 71
Proof: Using definition (3-62) and equation (C-14) of endix C in
(3-77),
k
de = abs[ I (A;- A ) Jdadu (3-79)
i<

(C-38) of Appendix C is used in (3-79). Also, it is noted that for
the sake of uniqueness of spectral factorization, U is restricted to
have the elements of its first row positive. Then, (C-41) of
Appendix C is also used in (3-79). Hence,

ok szz K
Il

do = abs|[2 k( ) T (y=2) Jdady (3-80)

But, ¢ = F F' and

d(FFT) = > FT(u , A)d AdU (3-81)

Comparison of (3-81) with (3-80), provides us with the proof for
(3'?8)0 g-E-D.

Remark 1: (3-78) 1is always true regardless of the order of the
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eigenvalues.

Remark 2: If the eigenvalues A, i = l,...,k are according to their

descending order then the (abs) sign of (3-78) can be removed.

Remark 3: The Jacobian of (3-78) 1is of importance in the derivations
of p.d.f. of the dominant singular value of a random texture field in

Section 5.3.

Remark 4: Variations of the Jacobian (3-78) have been used in the
mathematical statistics literature e.g. [122], although its formal

derivation has not been located by the author.

3.4 Summary

In this chapter, a precise definition for singular value
decomposition has been established, its various properties have been
presented and a perspective from literature on the topic has been
provided.

The proof of necessity for a unique decomposition is given and
the notion of differential SVD is introduced. The concept of
Jacobians for SVD and spectral factorization have been presented with
its detailed proofs. An analysis and example is presented for the
particularly important concept of Jacobian of SVD. The Fgeneralized]
Jacobian of SVD derived in this chapter holds regardless of the
elemental distribution of F (texture field).

The next chapter has little relation with this one. However,
together, they provide a framework for the forthcoming derivations of

Chapters 5 and 6.
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CHAPTER 4
STOCHASTIC TEXTURE MODELLING

An accufate mathematical model is essential for simulating a
physical phenomenon. In this chapter, a model for image texture will
be established which will be used throughout the rest of the
dissertation. Let us assume that F is the texture field from which
the singular values are extracted to be used as features for
classification, recognition, or other applications. For stochastic
modeling of F, three mathematical concepts must be considered:

i)  Lexicographic Transformation Technique
ii) Separable Covariance Matrix Concept

iii) Multivariate Normal Distribution

It is important to note that the first of the above concepts
will assist in developing the second which is essential in our proof
of the Toeplitz property for covariance matrices of our model. The

above notions will be elaborated on in the following sections.

4.1 Lexicographic Transformation of an Image Field

In superposition operation applications, it is easier and
computationally more feasible to work with vectors than matrices.
Therefore, it is preferred to change the matrix F to a vector f
without losing any information regarding the 1location and value of
its elements. Such an operation is possible. The processing that
must be performed on F can be done on its vector counterpart f. The
vector version of a matrix is nothing but the columns or rows of the

matrix stacked on top of each other in an orderly manner. One form
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of order, for example, is top-to-bottom, left-to-right scanning of
columns. The operation of stacking the columns or rows of a matrix,
in this document, is called lexicographic transformation(*). The
mathematical technique to carry it out is the Kronecker product
operations.(**)

Considering F as a texture field. Using a Tlexicographic
transformation of F»f, a vector f will be obtained. References [91]

and [21] explain this type of transformation in mathematical terms

and details.

4.2 Notion of Separability

The notion of separability of a covariance matrix has many
practical advantages in image processing. Many types of texture
images empirically display a separable property in their covariance
matrix. The reason behind the separable property in visual texture
can be explained in terms of texture's wide-sense stationarity. As
an indirect outcome of [29-35], one can claim that second order
statistics between various pairs of points with equal pairwise
distance remains the same for a similar looking textured regions. 1In
addition, the mean of every point throughout the texture field is the
same and independent of location. These statistical properties of

texture contribute to its wide-sense stationary behavior.

(*)Lexico for lexis a late Greek word meaning words or symbols and
graphy for graphikos another Greek word meaning writing or forming in
a specified way.

(**)}In the literature, Kronecker product is sometimes referred to as
direct product, and other times as tensor product. .



The image array F will result in a lexicographic vector f for

which the covariance matrix will be K¢ where,
*T
Ke = {(i'ﬂf) (i‘.Ef) } (4-1)
and . is the mean vector of f.

For a wide-sense stationary j;_gf is of block Toeplitz form [21]

- -

Kl K2 KB LN ] K

n
K* K K LR ] K
K = | 2 . P n-1 (4-2)

-K% K%_l K%_z cos El

where K¢ of equation (4-2) is called a Her;itian matrix(*). Al though
block Toeplitz forms do not directly imply separability, they can be
easily represented by two separable Toeplitz forms. As a result, the
wide-sense stationarity of image textures can simply be modeled by

the separable connotation. Derivation 4.1 in the next section, will

prove this conjecture.

4.2.1 Definition of Separable Cmvariance Matrices

The covariance function K(s,t;s',t') of a continuous two
dimensional field F(s,t) is separable if K(s,t;s',t') = Kp(s,s')x
Kp(tst'), where Kc(+)s Kp(.) are the column and row covariance
functions. Separability for the discrete field will be ﬁ£i,j,;i',j')=
Ke(isi')Kg(3,3') which means that the covariance matrix of the vector

f can be expressed as the direct product of row and column covariance

(*)A Hermitian matrix is a matrix which 1is self-adjoint, where
adjoint means conjugate transponse. A Hermitian matrix is the
complex counterpart of a real symmetric matrix.
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matrices. Appendix D elaborates on direct product relations. Using

Definition (D-1), K¢ can be represented as [21]

Kp(L1)Ke  Kp(L1,2)Ke «en Kp(Lin)Ke

Ko (2,1)K Ko(2,2)K~ «os Kp(2,n)K
- _ R - R = R 20
K = Ke @Kp = (4-3)

LKR(n:l)EC Ka(n2)Ke +-. Ka(nan)K,

—

Remark: In equation (4-3), left direct product is used because f,
the image vector of lexicographic transformation of F, is formed by
column scanning of F in left to right, top to bottom order. If row
scanning is wused, the right direct product will be applicable.
Throughout this chapter, left-direct product will be used
consistently.

In equation (4-3), Kc is a kxk covariance matrix for columns of
F and Kz is a nxn covariance matrix for rows of F. The block
Toeplitz form which was mentioned earlier as a result of the wide-
sense stationarity of texture can be represented in separable form of
(4-3) provided that both K¢ and Kp matrices are, also, of Toeplitz

forms.

Derivation 4.1: The block Hermitian Toeplitz form (4-2) can be

represented by separable form of (4-3); for which the

Kp is Hermitian Toeplitz and Ke is Hermitian.

Proof: We first prove that if (4-2) is separable, then Ke and Kp ape
Hermitian.
By comparing the (i,j)th and (j,i)th blocks of K¢ in (4-2) with
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the same in (4-3), we note that

Ko(iad)Ky = [Kp(d,1)K 120 (4-4)
where, adj means conjugate transpose. (4-4) leads to
G _ *0 . sypad]
Ka(1:3)Ke = Kp(3,1)Ke (4-5)
where a * means the complex conjugate of a. (4-5) means that

ke = Kg° (4-6)

hence Kc is Hermitian. Also from (4-5)

- - i * - -
&R(-] ’J) - ER(J’-I) (4-?)
means that
. yadd .
ER - ER (4-8)

hence Kp is, also, Hermitian.

Now, the second part of the proof is the Toeplitz property of
Kp:  Fixing an integer value for m such that 0 <m < n-1. Then,
comparing all (i,1+m)th blocks (i = 1,...,n-m)of K¢ in (4-2) with each
other shows that they all are represented by ﬁnﬁl matrix and

therefore, are -equal. Expecting the same equality between the
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corresponding blocks of Ke in (4-3), results in all Kqp(i,i+m)Ks for

i=l,...,n-m to be equal. Hence
KR(1,1+m) = KR(2,2+m) = .o = Kp(n-m,n) (4-9)

Combining (4-9) and the Hermitian property of Kp, we have

-

(1) K@) KB) . k()
K‘F:(z) k(1) Kp2) e Kp(n-1)

S I : o
* % *
_fR(n) KR(n-l) KR(n-Z) via'e KR(I) i
which is a Toeplitz form. Q.E.D.

Derivation 4.1-1: Any block Hermitian Toeplitz matrix can be
represented with two separable matrices for which one

is Hermitian and the other is Hermitian and Toeplitz.
Remark: For the real cases, Hermitian will be replaced by symmetric.

Derivation 4.1-2: If the covariance of (4-2) is separable, then K

and Kp of (4-3) are both of Toeplitz form.

Proof: K¢ is a Hermitian matrix which can be represented both by
left or right direct products depending on column or row scanning of

the Tlexicographic transformations of F-f. It was proved in

Derivation 4.1 that K¢ and ER are both Hermitian and in addition, ER

is also of Toeplitz form. But Derivation 4.1 dealt with the Tleft

direct product. If we stack F row-wise, then K¢ = Ko X Koo As a
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result, the proof of Derivation 4.1 can be applied again to obtain

the result in a reverse manner meaning that this time .EC will be
Hermitian Toeplitz and Kp will be Hermitian. Because K¢ is the same

for both cases and K¢ and Kp are both Hermitian, then K. and Kp must,
also, be of Toeplitz form. Hence the proof. Q-E.D.

Derivation 4.1-3. If a wide-sense stationary field has separable
property in its covariance, then the covariances along

column and row direction are of Toeplitz form.

Derivation 4.1-4. The sufficient condition for a random field to be
wide-sense stationary 1is that the covariances along
columns and rows be separable and Toeplitz. This
condition is, however, not necessary, i.e. it is
possible to have wide-sense stationarity without having

separable property.

Proof: If Kc and Kp are Toeplitz and separable then, K¢ = Keo @ Kp is

of block Toeplitz form which implies wide-sense stationarity.

Conclusions:
There are three concluding remarks:
1) The covariance matrix for a wide-sense stationary texture
field is of block Toeplitz form.
2) A block Toeplitz form can be represented by a separable
relation.
3) If a separable relation is used, then the separated

covariances are, also, of Toeplitz form.
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Remark: In order to perform experiments with our texture model in
Chapters 8 and 9, first order Markov Toeplitz form will be used for

Ke and Kp (although higher orders can also be, easily, used).

4.2.2 Two-Dimensional Separable Spectral Factorization
For establishing the model, the following two relations for

Kronecker product operations shall be mentioned from Appendix D,
followed by Derivation 4.2:

(AeB)(Ce®D) = ACeBD (4-11)

(AeB) = AT @B (4-12)

Derivation 4.2. If the covariance matrix Kf is separable, the

spectral factorization of Ke¢ will also be separable, i.e. if
Ke = Ko ®Kg (4-13)

Then, for spectral factorization of K¢ as

= T
Ef - .Eﬁﬁﬁgf (4-14)

Ef and Af are also separable. Hence,

Ef = E®K (4-15)

and

_j}f = k@ﬂa (4-16)
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Proof: Upon spectrally factorizing K. and Kp
T

Ko = Echcke
and,

Ky = EoAES

Kr = EpfREp

The r.h.s. of (4-13) and (4-14) are equal. Therefore,

_ T
c ®Kp = Ephcks

K
Using (4-17) and (4-18) in (4-19) we will have

EchE ®Ephly = Eelekr

but, using identity (4-11), we will change (4-20) to

T T)

(Eche @ Eply) (Eg ®Fp) = Eeheky

fRFEf
reapplying the identity (4-11) on the 1l.h.s. of (4-21)
(E. ®Ey) (A ® &) (EL®EN) = EAED
¢ @Epllis @ Sp)lEp @ Ep Eghebe

. . . T T .
Using identity (4-12) on E. ®Ep, we will have
T . T
(Ec ®Ep)(A; ® M) (Ec ® Ep)’ = EgAce

hence, (4-15) and (4-16) [155].

(4-17)

(4-18)

(4-19)

(4-20)

(4-21)

(4-22)

(4-23)

Q.E.D.
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4.3 A Practical Texture Model
The objective of this section is to form a mathematical model
for texture field F. The model must satisfy the requirements of the

texture. There are five requirements for F.

1) F is a matrix over the real field.
2) F has zero mean.

3) Covariance matrix of the elements of F is separable.

4) Elements of F are normally distributed.

5) F is a wide-sense stationary field.

Remark 1: The first of the above requirements is not an essential
one for our theoretical developments. The derivations over the real
field can easily be extended over the complex field. However, since
the real life image texture fields are matrices of Tuminance values

transduced to real numbers, the first assumption 1is of physical

importance.

Remark 2: Requirement 2 is not essential either. Zero mean texture
does not physically exist in nature because it implies having
negative as well as positive values in a real texture field.
However, considering ergodicity for image fields, it is possible to
make a texture field zero mean by subtracting 1its experimental
mean. In any event, the structure and inter-relationships between
the pixels do not change, and even the covariance matrix of F remains
the same. However, with zero mean, the analysis is simplified. It
is mathematically possible to generalize the derivations 1in this

document in order to develop and deal with non-central (non-zero
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mean) cases.

Remark 3: Requirements 3 and 4 are essential in developing both the

theoretical and experimental results.

Remark 4: The 5th requirement i.e. wide-sense stationarity is not
essential and not needed for the theoretical developments of Chapters
5 and 6. However, in Chapters 8 and 9, wide-sense stationarity is
assumed; and when combined with the third requirement along with the

result of derivation 4.1-3, implies Toeplitz forms for the column and

row covariances. In fact, for the experiments of the Chapters 8 and

9, first order Markov Toeplitz form will be used for K¢ and Kp.

Satisfying the 1st and 2nd Requirements

For satisfying the first two requirements, the following
technique is used: Consider f as the Texicographic vector version of
F. f must have correlation among its elements. Noting that K¢ can
be factorized as (4-14), f with covariance K¢ is generated from an

uncorrelated process m. From Appendix E

1/2
£ ® ..E_fi\f/m (4-24)

where m is a white random process. It should be noted that mean of
f, i.e. He = E{f} = 0.

For the third requirement which is separability, (4-15) and
(4-16) will be used in (4-24)

f o= (E ®E)(1t/% @ &/%)m (4-25)
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Using identity (4-11) in equation (4-25)
f = (gc_!%/z @ERAé/Z)_r_q (4-26)

relation (D-12) <can be rewritten from Appendix D, if,

f = (A ®B)m where, A is a kxk and B is a nxn matrix. Then,

for F»f and M>m, we have
F=ams’ (4-27)
Thus, using (4-26) and (4-27), F will be as
E o= (Bt MEpny) (4-28)

In equation (4-28), M is a kxn random matrix whose elements are

statistically orthonormal and have zero mean. Such a matrix can be

called a white random matrix. Elements of matrix F are correlated
with K- as covariance matrix along the column and Kp as covariance
matrices along the row directions where separable property holds as
in (4-13).

Texture Field in a Multivariate Normal Sample

The 4th Requirement

The reason behind the normality requirement of the present
texture model is a profound physical property:
Numerous independent random parameters are involved to form the

visual appearance of a texture. Since these parameters are additive
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along rows, ag = nll-ppl, 2; = pp, and a, = c[l-pﬁ:ll/z- After
generation of a row, it will be correlated with the previous one
along the column direction as y,.1 = b0+b1yn+bw(xn+1-n)/c for n =
l,...,511 where, (xn+1-n)/c is a zero mean, unit variance normal
random variable with x,,; as the present pixel, y, as the previous
one and y,,; as the one replacing xp4 (yn+1 is correlated with
Yn). As in the case for row direction, by = n[l-pcl, by = pp, b=

0[1-9%]1/2. In this procedure o = o.q where GE and 0% are the
variance terms for the covariance matrix K; and Kp. The final matrix
generated in this fashion has elements with mean n, variance 02, and
every adjacent pair of pixels are correlated with GZpR correlation
factor along the rows and pc along the column, the covariance matrix
K¢ will be

_ _ 2r |i-3] 2- |i-3]|

For our generations n = 0.0 and 9% = 9 = 1.0, hence
X; = 4 = N(0,1) (4-31)
Xoep = Xy * (1-6) 2w 0= 1,500 (4-32)
Yoe1 = ¥y + =000 2% 0= 1,050 (4-33)

Figures 4-1 and 4-2 show examples of the stochastic textures
that satisfy all 5 requirements of the model. In Figure 4-1 the
textures are bidirectionally correlated with Pc=PR= P and 1in
Figure 4-2, the textures are unidirectionally correlated with Pc=P
and R = 0.0 where in both figures p accepts values as 0.0 (perfectly
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Figure 4-1. Stochastic Texture Models with Bidirectional Correlation.



(E) pR pc=0°8
Figure 4-2. Stochastic Texture Models with Un

irectional Correlation.
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uncorrelated), 0.5, 0.6, 0.7, 0.8, and 0.9.

4.4 Summary

The entire present chapter has been devoted to texture
modeling. In this chapter, a stochastic texture model has been
presented based on physical meaning and behavior of the many image
textures.

The model to be used is concisely as follows: Modifying (4-28),

one will have
1/2

ARy

/2] (4-38)

where, Ec and A; are defined by (4-17); and Ac and Ay are defined by
(4-18). M is a white random matrix defined as in Appendix E.

Eq. (4-34) satisfies the first three requirements of the model;

namely, real, zero mean, correlation with bidirectional and separable
covariances. Using relation (4-30) in (4-29) and considering that f
is knxl, then d = kn. Also, because of the second
requirement Me = 0, therefore, (4-29) can be modified as:

1

p.d.f.(f) = expl- 3 tr(kzlf £1)} (4-35)
(zﬂ)kn/2|£f|172 7 trike

(4-34) and (4-35) satisfy the first four requirements for the
elements of F. The last two equations provide the model for the
theoretical works of Chapters 5 and 6. For real-world application
and experiments, without loss of generality, wide-sense stationarity

will also be considered for the model, as the fifth requirement.
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CHAPTER 5
STOCHASTIC SINGULAR VALUE DECOMPOSITON

The derivations of Chapter 3, the model developed in Chapter 4
and the zonal polynomials from Appendix F are used in this chapter
for obtaining probability functions of the texture field and its

singular values.

5.1 Distribution of a Stochastic Texture Field(*)

Referring to the model for a stochastic texture field, [(4-34)-
(4-35)], let F be a real stochastic texture field with zero mean,
correlation in row and column directions, having a multivariate
normal distribution. It is desired to derive the probability density
and distribution function of F. In order to establish enough
background, the following section on mathematical preliminaries is

presented.
5.1.1 Mathematical Preliminaries

Derivation 5.1: If a and b are vectors of the lexicographic

transformation of A and B, then

Trfab'] = TrAB'] (5-1)

where A and B are kxn matrices and a and b are knxl vectors.

(*)In the literature, a stochastic matrix or field usually means a
matrix whose elements are probabilities of certain events
[109-110]. In this document, however, by a stochastic or random
matrix, it is meant a matrix whose elements are random variables.
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(Note that, although a T is a knxkn matrix and A T is a kxk

matrix, their traces are equal.)

Proof: A has n columns as A = [A;,Ay,...,A ] and B has n columns as

B = [El’§2""’§n]' Then, using a hybrid representation

n
87 = ) A8l (5-2)

| =

Therefore

Tr(AB') = Tr

Il 3
I=
(vl
c—

-
=

S

(5-3)

rohos. of (5-3) = Tr(A;B]) + Tr(AB]) +...+ Tr(ABT)  (5-4)

T 7
ABl v v v e e e .
e MR .
P.h-S- Of (5'4) = Tr . . L]
T
L] L] L] - L] -ﬂngn
(A ] -
i
T T T
= Tr . [51’52’.'-’5-"] (5'5)
-_ﬂ -
But
T _ T %1 T T._ ToT 1
E = [-&1’5-2"0.’%] and P_ i ["B"l’B ,o--,En]
Thus,
rohes. of (5-5) = Tr(a b')
HenCE, (5'1). g.E.D.

Derivation 5.2: If f is the vector of the lexicographic
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transformation of F, then

£1(A ®B)f

1
—
-
| g |
—
=
@

|o=
|-
|—h

(5-6)

where A is a kxk and B is a nxn matrix.

Proof: The first equality of (5-6) 1is true according to

similarity with identity (4-30). The second and third equalities

shall be proved as follows:

Tr[(A ®B)f £11 = Tr(I,A ®LB)f f 1, (5-7)

because A = I;A and B = I, B where I, is identity matrix of order k.

Rewriting (D-7)

(LA®LE) = (I, ®L)(A®B) (5-8)
Hence,
roh.s. of (5-7). = Tr[(L,®1 )(A ®B)f f'] (5-9)

but, according to the circular property of the trace

rohes. of (5-9) = Tr[f (I, ®1 )(A ®B)f] (5-10)
rohes. of (5-10) = Tril(L ®1)f1'[(A ®B)fl} (5-11)

Using (D-12), the lexicographic transformations of each vector inside
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the brackets of the r.h.s. of (5-11) will be as follows:

(I, ®1 ) = L F1I (5-12)

(A®B)f -~ AFB (5-13)

Using (5-12) and (5-13) in the r.h.s. of (5-11) along with the result

(5-1) of Derivation 5.1

rohos. of (5-11) = Tr{(L, F INT(AF 8T)} (5-14)
Therefore,
r.h.s. of (5-14) = Tr(ﬁ?&.f__T)
= Tr(AFBTFT) (5-15)
Hence, the proof of (5-6). Q.E.D.

The following four definitions are necessary in order to
consistently derive the functions of this section as well as the rest

of the dissertation:

Definitions: For the random vector f and random matrix F, we define

[

I. g(f) p.d.f. of vector f (5-16)
II. ~ G(f) 2 distribution function of vector f (5-17)
Then,
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de(f) = g(f)df (5-18)

Similarly
I1I.  g(F) % p.d.f. of matrix F (5-19)
IV. G(F) = distribution function of matrix F (5-20)
Then,
dG(F) = g(F)dF (5-21)

where dF in (5-21) means the product of elements of F, I dFij.
1,J

5.1.2 Probability Density Function
The following derivation results in the p.d.f. of a random

texture field.

Derivation 5.3: The probability density function of F, namely, a
real, random texture field in a multivariate normal sample, with

bidirectional correlation is

1 &
g(F) = exp {- Tr KA _E ) (5-22)

Proof: Using equation (4-35) of Chapter 4, p.d.f. of f is

a(f) = - expl- 5 Tr(k:lf 1)} (5-23)

For separable correlation in the texture's covariance, we replace K¢

by K¢ ® Kz in equation (5-23). Thus
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o) = L expl 3 Tr(Ke @Kg) T £11} (5-24)
(2m) ™77 K@ Kp |

noting from (D-6) of Appendix D that

l gl (5-25)

(A@B)t = A

Using (5-25) followed by derivation 5.2 in the exponent of (5-24) and

also applying (D-11) of Appendix D in the coefficient of (5-24),
5.2 Joint Probability Functions of the Singular Values of a Random
Field Texture in a Normal Sample with Bidirectional Correlation

In the derivations of the present section, it should be observed

that g(F) and G(F) denote only the p.d.f. and distribution of F and

not any general function of F. The result (5-22) of Derivation 5.3

is used in deriving the joint probability functions of a singular
values of a texture field. The essential idea is that in equation
(5-22), F 1is replaced by U é_‘-’_T, and U and V are integrated out.

Hence, considering g(S) as a joint p.d.f. of singular values,

9(8)as = J 9(E)dF| oy g T (5-26)
space of -== =
U and V
But,
dfF = JF(__Siy_)dUdeV (5-27)

It was proven in equation (3-37) of Derivation 3.2 that Jg(U,S,V) is
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a function of only the singular values. Replacing F by its SVD

components §_§_EF in (5-22) and using (5-26)

1
K¢ |

g(s)ds =

kn/2

a7z JpUiS.M)ds

(2m) K|

[ expl 3 Tr(kgU s VKM s uT) fduay
Vk,n 0(k)

(5-28)

where dU and dV are defined in Appendix C.
The exponential function in (5-28) can be represented in terms

of its McLaurin Series expansion, where the MclLaurin Series expansion

for an arbitrary function f(x) is
» P
f(x) = l Pl (5-29)
P=0 :

where, f(p) is the PtN derivative of f and it must exist.
Hence, considering f(.) = exp{.}; knowing that the nth
derivative of an exponential function exists and is equal to itself,

and that evaluated at zero results in unity, we derive

1
9(s) = n Jp (U,S,Y)
(2m) 2k "2 K 12 E

1 1 ,-1 T, -1 T
T Jy J o ATr(- 5 KUS VKV S U

) tPduav
n,k 0(k)

1]
CDM 8

'P
(5-30)

The derivations hitherto have been based on probabilistic and

group theoretic arguments. For the solution of equation (5-30), the
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concept of zonal polynomials of the group representation enters into

perspective.

Derivation 5.4: The joint p.d.f. of the singular values of a normal

random texture field F, with bidirectional correlation is

k(1- ) 2
K 2n ?n}r: - K72 II(I (53 ?)(
L @) G IR 17 [Ke 1777 i<g =1

9(Sysevess,) =

=Gl 3K e RHe (5%)
PTC, (1 )c (1 ) (5-31)

P

U

where, T (n/2) is the multivariate gamma function (Appendix B)
and F has been defined in Chapters 3 and 4.

Proof:  Instead of {Tr(+)f in (5-30)(*), the equation (F-4) of

Appendix F can be used to give

1

g(s) = ] SRURRY
7 e o Lpmly o 4Tl o o

&]fﬁ%m Jugl 2Ec LS L s Ui

(5-32)

(*) Trace of a matrix is equal to the sum of its eigenvalues. Thus
. m
{Tr(A)} is (11+...+Ak)p = z:(P'/ml m!) i?l...kkk. But the

latter polynomial is replaced by a simple one called zonal
polynomial and shown as Cy(A).
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Using property (F-7), ET can be brought to the beginning of the

argument inside qp(.):

1
1T, -7 K¢ e oS Y V

IO(k) Col- 7 UK sy E;;.Y§ = C (—k)

(5-34)
noting that in (5-34), U is eliminated.
Taking Qp(§‘!T5§¥!_§) of (5-34) into consideration, and applying
property (F-7) on it

To-1y 2y _ T,-1 ¥
oL KV 57) G VKV S) (5-35)
Hence, noting (5-32)

g(S) = (other terms) J QO(ET5§13_§?)dv (5-36)
v
k,n

Applying property (F-8) on (5-36),

52
c,(s°)

(K1)
ly )y - @ ER(;_) (5-37)

T~
v
J, VKV S
k,n

Note that in (5-37) V is also eliminated. Denoting (5-37), (5-36),

(5-34), (5-32), and (3-37), the joint p.d.f. of the singular values
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of F will be as (5-31) and hence the proof of Derivation 5.4.

Q.E.D.

Equation (5-31) is an open form formula for p.d.f. of singular
values. The zonal polynomials C@(.) can be recursively computed.

See Appendix F for more insight into zonal functions.

5.2.1 P.d.f. for the Null Case

Derivation 5.4 gives the p.d.f. of the singular values in terms
of zonal polynomials of the covariance matrices K, and Kp. An
interesting result of the joint p.d.f. ofh singular values given by
(5-31) is that by letting Kp = I, and K¢ = &I, the joint p.d.f. of
the singular values of F will be obtained. This corresponds to the
null case where there is no correlation among elements of F. In such
a case, using equation (F-4) and (F-10), PEO Y () in (5-31) will

=0 p
reduce to exp[—_l2 Tr(S_Z)J, and hence (5-31) will have a closed

20
form given by (5-38)

ko) 2
2( 2l

k
2 2 n-k
G54 senvaSy ) » (s5-s5)( 1 s.)
1 K rk(l:;Jrk[%J F I AT
k
1 .2

X expi- ¥ 5-38
pi =2 1_=21 il (5-38)

(5-38) givés the joint p.d.f. of singular values of a kxn matrix F

whose elements are independent normal random variables with mean zero
and variance o2*

For a 2x2 F, k=n=2, from (5-38), g(sy,sp) will be
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2+52

- L 2Dexp(- 12), w> s 35, >0 (5-39)
9(sy.85) = 7 S]-Sp )exp g ] 5 -

g(sy,Sp) given by (5-39) is displayed in Figure 5-1 for ¢=1.0 and o =
2.0. The maximum point happens at s; = o2, and s, = 0,
where g(ovZ,0) = 2/(d%e).

In (5-31), performing the transformation X; = s? for i =1, ...,
k, the joint p.d.f for the eigenvalues of a quadratic form will be
obtained [123]. In (5-38), performing the transformation A; = s% for
i = 1l,e..,k, the joint p.d.f. for the eigenvalues of a sample
covariance matrix will be obtained for the case where each observ-
ation vector has uncorrelated components with identical variance
o2, This distribution of eigenvalues is classic in multivariate
statistical Titerature and has been simultaneously obtained by Fisher
[10], Cirshick [11], Hsu [12], Mood [13], and Roy [14], and it is
also presented in [81] and [117]. In (5-31), Tletting Ko = I,, and
performing the transformation Ay = s2 , one obtains James' extension

i
of the above mentioned classic formula for an arbitrary K¢ [15].

5.3 Probability Functions of the Dominant Singular Value

The largest singular value of a texture field plays a paramount
role in SVD texture feature extraction for two reasons: (a) the
majority of information is carried by the first few singular values
particularly the dominant one, (b) utmost sensitivity of the dominant
singular value to correlation among texture elements.

The cumulative distribution function of the largest

characteristic root of a matrix 1in two to seven variate normal
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samples has been studied in [111]. The distribution of the largest
eigenvalue of a sample covariance matrix in normal samples with popu-
lation covariance matrix U?L has been derived in [112] and the same
for an arbitrary population covariance matrix has been derived in
[113]. The following is a derivation for the p.d.f. of the dominant
singular value of a random texture field with bidirectional correl-
ation. The case of [113] is, in reality, a unidirectional quadratic

form; while the case described below is for a bidirectional one.

Derivation 5.5: Let x be a diagonal matrix such that

: 0
2
h3
_)§= hg and1>h2>...>hk>0
2
0 hy
Then,
k k k k
J (@ h.]zt'kc (x) =@ (1-h§) I (h%-h? I dh,
I>hy>...>h 50 i=2 2 P 422 i<j 7 =2
k+1
= kt+P I'k(k/z) (t)p lﬂk(t)rkt"“’z_) C (I,) (5-40)
- kT k2 (b L) Tp e KLy Pk
¥ Z’p 'k e
where,
(a) - > (i-1))
a = n (a - i=1
I = T P;

for p = (Pl,Pz,...,Pk), p is a partition of P into not more than

k parts (see Appendix F). Also, as defined in Appendix B

(x)p

X(x+1) ooo(x+n-1)
and

I
—

(x)g 102



Proof: Using Theorem 3 of [114] and modifying it, we will obtain

I r(t)r (m  (t)
. k> Tk
IO— LA m)c@(¢)d¢ BERAGD) GDN Coll) (5-41)

where, ¢ is a positive definite symmetric matrix of order k. & can be
spectrally factorized as in (3-64); therefore &= g_g,gT.

The Jacobian (3-78) and the result of equation (3-80) are
applied in (5-41). Also, letting m = (k+1)/2 and considering that if
a positive definite matrix is varying between 0 and identity, its
eigenvalues must vary in the spacel > N > Az ¥ wwe ¥ Ak > 0. An
integral equation will be obtained in terms of the eigenvalues. But,
UeO(k) and the integral of dU over the whole group is unity
(Appendix C). Hence, performing the transformation h% = li/ll for i=
l,ee,k on (5-41) and noting (F-10) of Appendix F for zonal
polynomials, one will obtain (5-40) and hence the proof. Q<.E.D.

P.d.f. of sy, the Dominant Singular Value

Consider equation (5-31) which provides the joint p.d.f. of the
singular values of the random texture field F. In order to extract
the p.d.f. of s;, we need to integrate 9(515595004,5K) Weret.

Sz,...,Sk.

Derivation 5.6: The p.d.f. of the largest singular value of a random

texture field is u ( ‘1) ( =t
o C (K~)C (Kpo)
g(sq) = (Constant) ) ) agkfl £ EC(IJg -
S
kn
1.p -2 P 2p-1
5 [- ?-Jp p! S?n'* p (5-42)
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where,

k+1
_ 1 n &)
COnStant . 2(kn/2)'11K |n;2|K |k/2 r (n+k+1] (5-43)
2¢ =R k2
Proof: Consider equation (5-31) for the joint p.d.f. of

g(sl,sz,...,sk). Let hj 4 sj/sy, hence s; = sihj. Factoring all of

the sy's out, we will have
(1= (n/2)) K°/2
r K, §) IkeI ™4 1kg| M/

k k
. T (1-h%) T (h§_h§)(sl)2k(k-1)/2
* i<

g(sl,hz,....,hk) =

i=2

K k-1
. ( fz dh, )(s;)" "dsy (5-44)

where x has been defined in Derivation 5.5. Integrating (5-44)

W.re.te hp,e..,hy yields

2 -1
K(1-(n/2)) K%/ 2 = ¢ (- S ke kD)
3{s;)dsy” 2k e pélez(;c)g.?l-% 5§n+2p_1ds1
N GIT GIK Y Ke7p=0 9 P op ik Tpion

K K
mh "% (x) 1 (hE-h?) T (dn,)  (5-45)

D>hy>.0>h, >0 =2 ! PG 37 4=2

104



where,

X = g (5-46)

Fall g

Applying Derivation 5.5 on the integration of (5-45), we will obtain

(5-42). Q-E.D.

Remark: The p.d.f. given by the Eq. (5-42) can be verified for a 1x1
matrix, which gives
2
g(s1 2 Vém )exp{ —%— over the range 0 < 51 { =

This is logical because s; is equal to the absolute value of the 1x1

matrix.

5.4 Discussion on Accuracy and Convergence
The following steps have been taken into consideration to insure

the accuracy of the p.d.f. of the largest singular value derived by

Derivation 5.6:

1) The integration of (5-42) over the space sy > 0 is 1.
2) Considering N = s% and applying the Jacobian

3(sq)/3(x) = (251)'1 we can derive the p.d.f. of the largest
T

eigenvalue of F

I,» i.e., no correlation among columns of F, we will obtain

Then, letting Kp in the latter derivation be

Sugiyama's derivation, in [113], of the largest latent root of

the sample covariance matrix and letting ER = I, and Kq = -lk’
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we will obtain the derivation in [112].
3) Convergence of g(s;) for Kg = I, can be shown with 1little
difficulty: for Kg = I, (uncorrelated columns for F) the

following derivation gives the upper bound function for g(sl).

Derivation 5.7: For Kp = 1,, the p.d.f. of the dominant singular

value of F is bounded as in (5-47)

g(sy)< (Const)sk" KD + 5 s Tr(kch) Jexp b s (k)] (5-47)

where, 1 ; (%l]
i k
Const = —7 ) " (n+k+1)
2 n/2 'k 2
2 Kel

Proof: Replacing Ky with I, in (5-42)

102 7tP ) .
g(sq) = (Const) si{nl ) £ (%- s%)pg [—FE—E%] C@(-Kcl)

(5-48)
Because terms before ) are positive, a bound can be established on

p
the alternating part [122] as

) ), c (k) < |3 ) REL]
pe [_n_-i_-_2+_lp C n+k+1lp p' °C
@) .

<E l(ﬂ++ )'p Cp"(Kc)l
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“ﬁ?ﬁgr‘—“ RIACH

_1?__

&)
E -2.

[RCT
» EF=), P

<1l kgh (5-49)
The last two steps in (5-49) were obtained because C (-K 1)
(-1)Pe, (k1) and

0 <-Eﬁ;égT__ <1. (5-49a)

According to, Remark 2, Appendix F, Qp(ﬁil) >0 because‘ﬁc and hence

551 are positive definite matrices. Thus, the last step in (5-49)

will be equal to ) QQ(KEI). But, ) qp(Kél) will be equal
ps

to [Tr(KEl)]P. Hence (5-48) will lead to

g9(sy) < (Cont)skn 1[ § knf2( %)P[Tr(Kal]]P
P=0
(5-50)

+ Loy (g s UrikehT )

Using the McLaurin Series relation for exponential functions given by

(5-29), (5-50) will lead to (5-47) and hence the proof. Q.E.D.

5.4.1 Application of the Bound

For‘EC, a kxk first order Markov covariance matrix,
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1 o & s gob
p 1 (o DN-Z (5-51)
_ 2 N-3 i
ﬁC = p 'p 1 . p
pN-l N-2 N-3 1
where 0 < p < 1. From 561 given in [115], Tr(gél) will be obtained

as

2
Te(kg) = Kelkzle (5-52)

1-p

Therefore the bound presented by equation (5-47) for a kxn,

texture field F with column covariance matrix K. as given by (5-51),

will be
g(sq) <
k+1
1 [+ ] kn-l [kn (k'l'(k 2)0 )] 152(k+(k-2)92))
kn_y (n+k+1) L& i e el L I
2 X |n/2 o7 P

(5-53)

5.5 A Model for g(s;) vs s1

g(sy) given by (5-42) and (5-43) is an open form representation,
which 1includes an infinite series. An infinite series including
zonal polynomials is much 1like exp(x), which, if represented in a
Taylor or McLaurin series expansion, its trailing terms are

insignificant. For example, for xe(-1,1) in exp(x) = E ET s
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©
have ) -i-r < 1078 which means that with the first eleven terms of

the pr;flelr series, it is possible to numerically represent exp(x) up
to eight digits of accuracy after the decimal point. It is also
possible to speed up the convergence, by application of Remes single
exchange algorithm [10?]) to a degree seven series while having the
same accuracy. Zonal polynomials are of the same breed, but they
have slow convergence. In order to obtain a graph for a general case
of g(s;), the rate of convergence must be improved. Possible
techniques for such enhancement have been explored. For example,
convergence speed-up methods of Dahlquist and Bjorck [147] have been
examined, but they seem to be unfit for zonal polynomials. Because
of these problems associated with numerical evaluation of the open
form for g(sq), an attempt has been made to develop a model for g(s;)
that will provide some insight into its behavior.

The domain of the largest singular.va‘lue (sl) is the positive
portion of the s; axis (0 < S1 < @), It is evident that for s; = 0,
g(sy) = 0. Because the area under g(s;) is unity, and g(sy) is non-
negative for all values of s;, it can be concluded that g(sl) is
convergent and that g(s;) asymptotically goes to zero. Rayleigh,
Maxwell, or chi-square (of higher than two degrees of freedom)

densities satisfy these conditions. Such models completely agree

with the behavior of g(sq) for an uncorrelated 2x2 case. For a 2x2
matrix F,a closed form for g(sl) can be analytically derived as a
marginal density of g(s1,sp) given by (5-39). Let Ko = Ky =
‘Fl:.z be the column and row covariance matrices of dimension
two. Then g(sq) is
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S N
= exp (- + — -1 Jexp i~ erf(— 5-54
a(sq) 3 p( g J = (';2' Jexp{ 27 % (' )

where, & = variance of the elements of F, and
A1 Y -(E)
erf(y) = — | e dx (5-55)
0

It is possible to independently derive a closed form for g(s,),

as another marginal density of g(sl,sz) for which —K-C = ER = 0212:
2 2
23 Spy, w22 32 99
g(s,) = )+ = (= -1)exp(- = Jerf(==)
e Rl A 22"
Za (52 7
= [2') ( ';2' 1 Jexp(- Z?J (5-56)

As can be seen, the mathematical representations of g(s;) and g(s,)
are alike except for an extra term for g(sp). Plots of g(s;) and
g(sp) are given in Figure 5-2. In Figure 5-2(a), g(s;) has been
plotted for o = 1.0 and o = 2.0. The same values of o have been
plotted for g(sp) in Figure 5-2(b).

The plots of g(sy;) shown in Figure 5-2(a) agree with the model
of Rayleigh or Maxwell shape for a general order g(sj). In both
cases of o = 1 and o = 2, the shapes are those desired, except for
the case of 1xl matrix which has its pdf of s; equal to twice the
positive portion of a zero mean normal density with variance 02. The
higher the o, the wider and lower are g(sl) and g(sz). In fact,

mathematically speaking, if o is multiplied by n (in g(sl) and
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g(sp)), the mean and standard deviation of s; and s, will also
multiply by n. The integration of g(s;) and g(sp) over the space of
s;1 and sp, respectiyely, will be unity in all cases. Table 5-1
numerically evaluates equation (5-54) to obtain integration of g(sl),
and mean and standard deviation of s; with their respective
computational errors for both cases o = 1.0 and o = 2.0. Table 5-2
shows the same for the second singular value using equation (5-56).
One observation from Figure 5-2(b) 1is that it has its highest
probability around zero. This behavior agrees with the space of
variation 0 < Sy €59 { =

For higher dimensional texture fields, a table of experimental
moments and variance for the largest singular value of randomly
generated textures can be obtained. Table 5-3 experimentally
evaluates the largest singular value moments of a 32x32 texture field
using 64 independent 32x32 sample texture fields for each
correlation factor p. In Table 5-3, "p" denotes texture field whose
correlation matrix is Ko = Kp = [pii“jlj. Figure 5-3 shows plots of
the mean and standard deviation given by Table 5-3 as a function of p
for the model of g(sy).

Based on the Table 5-3, Figure 5-2(a), 5-3, and the discussion
presented in this section, the model of g(sl) for a general case is

shown by Figure 5-4 as a function of s; w.r.t. different correlation

factors.

5.6 Summary
In this chapter, using the derivations of Chapter 3 on

differential SVD; and the texture model F of Chapter 4, we developed
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Table 5-1. Numerical Evaluations fors].

Staqdard
o f9(51)ds] Error | E(s;) | Error E$v:?t1on Error
1.0 1.00  |3x10°® | 1.77 |sx107® 0.65 2x1076
2.0 1.00 |3x10® | 3.58 |2x107® 1.31 3x107
Table 5-2. Numerical Evaluations for 52.
Standard
o fa(s,)ds Error E(s,) Error Deviation Error
2)4s5 2
of )
1.0 1.00 |5x107® | 0.52 | 3x107® 0.40 2x1078
2.0 1.00 | 3x10°® | 1.08 | 1x107® 0.80 2x1076
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Table 5-3. ExperimentalEvaluation of Mean, Second Moment, and
Variance of the Largest Singular Value for 32x32.

2

TEXTURE E{s1} E{s]} Var{s]}
"0.0" 10.8060 116.9899 0.2191
"g.5" 16.4986 274.1390 1.9644
"0.6" 19.7199 393.2498 4.4426
. 24.7485 624 .3566 12.0559
"9.8" 33.4432 1160.0092 42.2152
*0.9" 52.0764 2947.2329 239.0112
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the p.d.f. of a stochastic texture field. The joint p.d.f. of the
singular values of F has been developed. From the latter derivation,
the p.d.f. of the dominant singular values of F has been extracted,
an upper bound for the p.d.f. of the dominant singular value has heen
derived, and a family of p.d.f. plots has been generated for various
textural correlation factors.

Two of the interesting results of this chapter are that: a)
p.d.f. and distribution function of the singular values of two
stochastic texture fields are identical iff the mean and covariance
matrices of the two are identical; and b) because the first and
second order statistics determine the appearance of texture fields;
similar looking textures have similar singular value distributions.
In other words, the conjecture in [5] and [6] which was discussed by
Figures 1-1 through 1-3 in Chapter 1 has been mathematically proved

in the present chapter.
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CHAPTER 6
MULTIVARIATE STATISTICAL DERIVATIONS FROM TEXTURE BY SVD

In this chapter, singular value decomposition will be used to

derive multivariate relations.

6.1 Quadratic Form
Quadratic form 1is an important concept in multivariate

analysis. The following presentation is a brief discussion,

definition and derivation.

6.1.1 Definition

Let X and Y be kxn matrices whose n columns are independent k-
variate random vectors from the same distribution d. Let A be a nxn
positive definite symmetric matrix, and let E[X] =My and E[Y]= My.
Then, |

B £ (x-m)A(Y-m) (6-1)

where B is called a bilinear form in samples from distribution d. In

(6-1), if Y = X then

Q= (X-M)AX-m) T (6-2)

where Q is called a quadratic form in samples from distribution d.
For (6-2), L&LT is called a non-central quadratic form and
ifMy = 0, i.e. the samples are taken from a zero mean population,

% A XT is a central quadratic form. Relation (6-2) itself is a
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central quadratic form because if we let Z = X-fy, then, E[Z] = 0,

hence resulting in _Zf_i;T.

6.1.2 Formation From Texture Field F

From relation (4-34),
C o e 42T
E o= Ecn/om g% (6-3)

where M is a kxn random matrix obtained from a knxl white random
process m (Appendix E). Hence, the elements of M are uncorrelated,
zero mean, unit variance random variables. From (6-3), and the
discussions of Chapter 4, it is evident that F is a kxn texture field
with a separable covariance matrix K ® Kp where Kc. is a kxk
covariance for columns and Kp is nxn for rows. (gc,ixc) and
(ﬂR’ER) are the result of spectral factorizations of K; and Kp
(Section 4.2.2).

Note that if Kp is identity, i.e., if columns of F are

independent,

x & o/t (6-4)
Forming F F:
T /2, 1/2.T. 1/2,T,1/2.T
FE = Eci' N B Eobple B ic" Eg
_ 1/2 T lif2 T
~ Epis MR e s
= x axT (6-5)

Thus, LLT is a quadratic form. It can be proved that the p.d.f. of
X K LT is the same as E_I}RE(_T and that p.d.f. of the eigenvalues of

both will also be the same. For Kp = fp = Iy, _E__T =}__T where _>_(__>gT
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is a Wishart matrix [6]. The p.d.f. of X X' is given in [Ibid].

Fo= x af%] (6-6)

and if elements of M, which generates X by relation (6-4), are

independent and unit variance, and M has mean @M then

r - epan/l]

12T
Me = T Eq
- Egnc mytg e (6-7)

For non-zero pg, (ﬁ-ﬂF)(ﬁ-gF)T will be a central quadratic form, and

LET will be the non-central quadratic form. Figures 6-1 (a and b)

and 6-2 (a and b) respectively show examples of central and non-

central quadratic and Wishart forms.

Remark: If a certain mean @F is desired, a simple method is to
generate a zero mean matrix as in (6-3) and then addﬂl}: to it. The
rank of H_{F can be full, but it is usually one because columns of X

usually have equal mean vectors.

6.1.3 Moment

Let F be a separable kxn random texture field with bidirectional

correlation.

Derivation 6.1: Mean matrix of non-central quadratic form ﬁjT is

Re Tr(Kp), where R, is correlation matrix along the columns 1aznod



Figure 6-1. Sample 32x32 matrices from central and non-central

FE = xax" with o, = pp = 0.80.
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(a) central Wishart

(b)'non-centra1 Wishart withlﬁx=[1.0]

Figure 6-2. Samples of 64 independent 32x32 matrices from the
central and non-central Wishart distribution

T .
u(x X' ,32,32,K) where g; = 0.80 .
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Kg s covariance matrix along the row direction.
Proof: According to (6-5)

FE = xaX (6-8)

where X is a matrix whose columns are independent and have
correlation matrix Re generated by N("—(C’EC)’ and Ay =

diaglap(1),2g(2)5..4520(n) ], then

EFF'} = EQX aX}

3 T
= E{ L R(i)xxg)
1:
n -
= z () (Re)
= EC Tr‘(_QR)
= Re Tr(ER) (6-9)
-EUD-
Derivation 6.2: Mean matrix of a central quadratic form

E(ﬁ—ﬁF)(i-ﬁF)T is Ko Tr(Kp), where K. is the covariance matrix
along column F where E{F} =71..

Proof:

E{(F=tg) (F-tp) T} = E{(X-A) pg (%)
n
1 R (DE{(xg=2) (x;-41)
= Ko Tr(kp) (6-10)
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/
where gj_/c= Edx;ls X = (Xgse0e5Xy)s EX} =My and X511 Xj - Q.E.D.

Derivation 6.2-1: Mean of a non-central quadratic form is equal to

the mean of central quadratic form plus quadratic form of the

mean.

Proof: This is obvious because

EEFT} = E{(F-m)(E-M)T} + Mol (6-11)

Q.E.D.

Derivation 6.2-2: For E{F} =M_ with rank one
My = dhdl, Tr(Kp) (6-12)
whereaﬁé = E{x;} = mean vector of each column of X.

Proof:
From the results of derivations 6.1, 6.2 and 6.2-1, and sincelgc

- (& +hdD

EFF'} = R Trikg)

= K Trikg) + Al Trikg) (6-13)
and hence the proof. Q.E.D.
Remark :
_ 1/2
H . = i) (6-14)
where My = (m,,m m ]T
* —m s B
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Derivation 6.2-3: For Ky a first order Markov process with variance

2
R

EEFT} = ndR, (6-15)

2
Proof: The diagonal terms of Kp are all cg, hence Tr(Kp) = nop.
g-E.n-

Derivation 6.2-4: If the texture field F is zero mean, then

Derivation 6.2-3 will result in

EEFT = nak, (6-16)

Remark : fIg_can also be called a quadratic since if FT = A,

FTE = A AT

Derivation 6.3:

EfFF} = Ry Tr(k) (6-17)

(E-M) b = Kp TriKe) (6-18)

where BR and ER are the correlation and covariance matrices along

the rows.

Proof: We can define a nxk matrix Y whose k columns are uncorrelated

and each column from NQszER)
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L ER_A;lglzﬂT (6-19)
hence,
YT oMol (6-20)
and therefore
_ 1/2,T
E = EA"Y (6-21)
FE o= ¥y (6-22)

and the same proof as in derivations 6.1 and 6.2 will follow.Q.E.D.

Derivation 6.3-1:

EETF) = Ry Tr(Ko) = Ko Triko) +mMim  (6-23)

and for rank one 7,

,_F
T
mim = Aol Tr (K, (6-24)
Derivation 6.3-2:
e aUTH = K. Tr(ky) + MM = R Tr(k,)  (6-25)
UAaut = Ko TriKg) + Bl = Re TriKg
and,
E AVT) = Ky Tr(Kg) + aim = Ry Tr(K,) (6-26)

where A= 22.

6.2 Texture Energy
Based on SVD, some useful statistics can be obtained, which will
be used in the application chapters.

Energy in each element of a random texture field F is equal to
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the second moment of that element. Hence, if F is represented by its
vector of Tlexicographic transformation f, the diagonal elements
of E[f_jT} will contain the second moment of elements of F
e.g. E{F2(i.3) ]

For a separable kxn texture field F with mean matrix of rank one

and using column scanning

Elemental Energy 1n_E = Second Moment of the Corresponding

Diagonal Term of f fl. | (6-27)

For a zero mean (central)F elemental energy is equal to

E{F2(i,3)} = KeliaidKg(dud) (6-28)
Defining the matrix Vg for energy distribution of F, Vg will be
(6-29)
where k- and kp are vectors of diagonal terms of K and Kp where Ke =
[Kc(l,l),...,KC(k,k)]T and kp = [KR(I,I),...,KR(n,n)]T. Of course,

1f_£c and jﬁ are first order Markov matrices, their diagonal terms

for Ke and  Kp will be equal to their variance
coefficients a% and “E' Hence

2 L]
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where the matrix of 1's in (6-30) is a kxn matrix with all of its

entries 1.

Total Energy:
The total energy in texture will be equal to the summation of

energies of all elements of F.

Derivation 6.4: The energy in a non-central random texture field is

Tr(Rc)Tr(Kg), and in a central one is, Tr(Ke)Tr(Kg) -

Proof:
kg‘n 2 T
Texture Energy = ) E{F (i,j)} = Tr E{f £}
1sd

= E{Tr(f £1)}

= E{Tr(F F'|

= Tr Eff F'

= Tr(Rc)Tr(K) (6-31)

The equation (6-31) 1is consistant with equation (6-9). I F 18

central, K. can replace R; in (6-31). Q.E.D.

If _EC and .ER are first order Markov with variance coefficients
GE and dﬁ, the energy will be knc%cg. Equation (6-31) will be equal
to the summation of all entries in !F‘
Remark 1: For zero mean 512x512 artificial texture fields used in

Chapters 4, 8, and 9, og = aﬁ = 1.0, hence the total energy = 512 x

512 = 262144.00, which is also equal to the texture variance.
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Remark 2: Dividing energy texture element by standard deviation 512

will result in a unit variance texture field.

6.2.1 Moment of the Sum of Squares of Singular Values:

Since
Texture's Total Energy = E{Tr E.ET}
= E{Tr A} (6-32)
K 2
E{'Ll si) = Tr(Rp)TrKe)
'|=
= energy in texture (6-33)

6.3 Invariance of SVD to Unitary Transformation

A property of the SVD is its invariance to unitary transforms

[6]. Consider a unitary.transformation

L -y o2
where,
L1l = I, and L,l*' = I
o b =k R™R =n °

It is easily demonstrated that the characteristic equations of g_gf
and _E__E_T are identical, and hence, the singular values of F and Z are

the same. The eigenvector matrices are related by

y = Ly (6-35)
v, = Lv (6-36)
AL LY

As a consequence of this property, it is observed that the singular
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values of an image block and its two-dimensional Fourier and Hadamard

Transform, for example, are identical. Certainly, the structure of

such arrays is substantially different.
Based on the above argument, if we form a random array W
W o= EFE (6-37)
- =~ =R
where F is a separable, zero mean correlated random texture field

(Chapter 4) with covariance matrices K; and Kp.  Upon spectral

factorization of K¢ and K

Iy = ECKGE (6-38)
Bt Bk (6-39)

EC, ER, Acs Mg, are eigenvector and eigenvalue matrices of_lgc and ER’
as noted. It can easily be proved that the covariance matrices of W
along column and row are A- and A, and hence, W is an uncorrelated
array. From (6-35) and (6-36), it has been established that the
singular values of an uncorrelated array W and correlated array F are
identical. This may seem to indicate that the SVD 1is useless for
characterizing the structure of correlated arrays. But, this is not
S0. The spatial correlation information of F has simply been
converted to another form--the variance distribution of W. To show
this, let Vi be a kxn matrix of variance terms of W in spatial

correspondence with W [6]. Then as in (6-29)

Yor (6-40)

Yy
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where the vector Yo and X contain the diagonal terms of gc and ﬁR’
respectively. For some well-defined processes, such as Markov
processes, Vi can be determined analytically. The texture energy in
W s Tr(gC)Tr(gR), which is equivalent to that of F, which is
Tr(Ke)Tr(Kg). This is logical because unitary transforms are energy
preserving operations.

To summarize, if F 1is wide-sense stationary with separable
covariance matrix, then the moments of F can be found indirectly from
the moments of W, which 1is an uncorrelated array with energy

distribution given by equation (6-40) [6].

6.4 Moments of the Product of Singular Values
Before presenting Derivations 6.5 and 6.6, it is helpful to

introduce the concept of generalized variance.

Definition:
A covariance matrix and its determinant are two of the
multivariate analogs of univariate variance “. The determinant of

the covariance matrix is referred to as the generalized variance

providing a scalar measure of variance for a multivariate process.
The unbiased sample covariance is well defined. Its determinant

is defined by Wilks [171] as the sample generalized variance

A A T
|£1 = lm ‘i}l (.Y-]“Y)(.Y-i'y) l (6-41)

where ¥ is the sample mean. The asymptotic distribution and moments
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of |C| are given by Anderson in [81, page 171]. In the following
derivation, the moments of |C| given in [81] are modified to give the

moments of the determinant of the Wishart matrix, ilT.

Derivation 6.5: If X is a matrix of n independent k-variates from

N(Q,Kc), then the hth moment of [X XT| is

n
h Nz

X X" = 2Pk -
Pk('Q'J

Ke (6-42)

Proof: If is formed by N observations from a K-variate normal

c
population N(%,I_(L). The determinant of C will be

N
1 : - -T
& = ———x |t ey |
(N-1)% "4=1 T L (6-43)
An orthogonal transformation can be made to eliminate the sample
mean. Hence, it can be said that |C| is formed by N-1 independent

observations from N(O,ﬁc). But

n
XX =) xox! (6-44)

where x; is from N(0,Kc). Hence, in the derivation of [81], for

sample generalized variance, we compensate for 1/(1\1-1)k of (6-43) and

replace n by N-1 to obtain the result for determinant of _>_(__)_(_T. Then,
using Appendix B, the derivation of [81] will be changed from the
product of single variate gamma functions to multivariate gamma

functions, and (6-42) will be obtained. Q.E.D.
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Derivation 6.6: The mil moment of the product of the singular values

of a zero mean kxk texture field F in a normal sample is

k ol I D
(T L S O O (6-45)
i=1 I‘k (—2-)

where T, (.) is k-variate gamma function of (.) (Appendix B).

Proof: For a central quadratic form,

EF - LARET (6-46)

where X has been defined in Section 6.1.2, and Ay is the eigenvalue

matrix of Kp, thus

EETL = |X AXT| (6-47)
and for a square F
: § T
EE'| = 4] 1% XT]
= kgl 1X XT| (6-48)

The 1.h.s. of (6-48) is equal to |U AU'|, which itself is equal to

k
Al = (@ Aij = (I s?) , where k is the dimension of F. Hence,
i=1 i=1

k

('i'-l:[l 51) = |KR|

12 xxT| 172 (6-49)

Therefore
k
2 T,m/2
B 1 s ") - kel ™ 2ELIXXT| ™2} (6-50)
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Because F is considered as square, then in (6-42) of Derivation 6.5,
we let n=k and h = m/2. Putting the outcome in (6-48), one obtains

(6-45) and hence the proof. Q.E.D.
Derivation 6.6-1: Second moment of product of singular values.

In (6-45), letting m=2

(T s = Ikl gl k! (6-51)

1

From (6-51), we can say that

EEETI} = kel IKgl k! (6-51a)

Derivation 6.6-2: htM moment of the random determimant of |FFT|.

K
M, [h (7 +h)

E{[F P = 2o " kg " K2 (6-52)
N @)

K

Derivation 6.6-3: From Derivation 6.5, all moments of a chi-square

r.v. can be obained by letting k=1 and K = c2. Hence, y = x? =
2. 2 2
XpHXoteeatx
r(% +h)
h 2h "2
E{)"} = 2PN =
riz)
h 2
= "AMEIG 1), @ +0e1) (6-53)
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In (6-53), let h=1

Ely} = nd (6-54)
and h=2
21 _ 4
E{y“} = n(n+2)o (6-55)
Chi statistics: For h = 1/2
'+ 3)
Elx} = 2% =% (6-56)
Fﬁg)
In (6-56), letting n=2
E{x} = ;7210 (6-57)

For the univariate quadratic form q2 = ff * f% +teoat fﬁ , letting F
= [f1,f2,+0.,fy]s the h-th moment of q2 and q can be derived using
derivation 6.6-2 which will be that of (6-53)-(6-57) multiplied by

the corresponding [§R|h.

6.5 Stochastic Perturbation

A basic question is: If elements of a matrix F vary, in a
random fashion, according to certain distribution laws, and just to
make the problem more challenging let us say that there are
correlation amongst elements of F, then how and according to what
distribution laws do the singular value of F vary?

In Chapter 5, from the p.d.f. of F, we derived the p.d.f. of S,
i.e. the joint p.d.f.'s of the singular values of F. Analytical
extraction of the moments of individual singular values for a general
order matrix is cumbersome. The p.d.f. of the Tlargest singular
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values was derived in the last chapter, and numerical evaluation of
the moments of s followed. Moments of s, are important because they
play the most important role in 1image feature extraction. Such
property could be attributed to the high degree of correlation in
pictorial information, which reflects most of the energy in a picture
in its first singular value. The following section gives analytical

derivation of the moments of S.V.'s for a special case.
6.5.1 Individual Moments of Singular Values for a Special Case

Derivation 6.7: Moments of the singular values for an uncorrelated

2x2 Gaussian matrix are as follows:

E(s)) = /7o (6-58)

E(s,) = (-2) /o (6-59)

E(sf) = (2+ 23) & (6-60)

E(s5) = (2- ) & (6-61)

Var(s;) = (2- 3) & (6-62)

Var(s,) = (2-2m+Zn) o (6-63)

2

E(slsz) = 0 (6-64)
E{(syE(s7)) (5pE(s)) } = P (1-m 3 ) (6-65)

136



Proof: Even for the apparently simple 2x2 case, analytical
derivation of moments jnvo]ve numerous calculations and integration
by parts. Therefore, only the method is presented here.

Consider a 2x2 matrix F and let its columns be uncorrelated
bivariate normal random vectors from the distribution N(g,a?gz).
Hence, Kp = Io and K¢ = #1,. Then from (5-39) the joint p.d.f. of
the singular values will be

1,22 5%”%
9(sys,) = =7 (sy-sy)exp(- —~) (6-65)
g 20
(See Figure 5-1 and Section 5.2.1 1in Chapter 5 for related dis-

cussions.) Since => sy > sp > 0, the nth moment of s; will be

o =] n
E(s?) = joj 5:9(sy 55, )ds; ds, (6-66)
"
for i = 1,2. The mathematical procedure is long and therefore
eliminated. Q.E.D.

Based on (6-58)-(6-65), the approximate values of moments are

shown in Table 6-1.

Remark: As it can be seen from Table 6-1, the moments of the second
singular value are considerably less than those of the first one.
From the same table, the covariance matrix of S1 and s, can be

obtained as

0.429 019

Cov(sy,sy) = o (6-67)
0.159
—;2— 0.159
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6.6 Summary

SVD provides a useful tool for dealing with complicated
multivariate problems. Tﬁis chapter presented some concepts in
texture enerqgy distribution, and moments of singular values.
Stochastic perturbation theory was discussed and using SVD, moments
of the random determinant of a quadratic form and moment of product
of singular values were derived. In the preceding section, we
derived the covariance matrix of the singular values of a_gﬁg_random
matrix where elements are normally distributed, uncorrelated and zero
mean, and possess standard deviation o.

One result of this derivation is the fact that although element
of F are uncorrelated and zero mean, its singular values are
correlated and non-zero mean. The ideal thing would be to
analytically derive the covariance matrix of the singular values for
a general case. For the most general case, we have got as far as:

i) Analytical derivation of the joint p.d.f. of the singular
values - g(S).

ii)  Analytical extraction of the p.d.f. of the largest
singular value - g(sp).

iii) Analytical derivation of a bound for the p.d.f. of
largest singular value.

iv)  Analytical and numerical derivation and graphical
representation of g(s;) for a special case.

V) Analytical derivation of the moments of s; for a special

case.
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case.
vi)  Empirical approximation of E(sy), E(s%), and Var(sq) for a

general case.
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PART THREE: APPLICATION

Attention is directed Tlargely towards
engineering applications of SVD in image feature
extractions. Chapters 7, 8, 9 and 10 are included

in this part.
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CHAPTER 7
TEXTURE MEASUREMENT

Haralick et al. [51-52] have developed a family of texture
measures based on two-dimensional histograms of textural images.
Such measures provide up to 85% classification accuracy, but require
a large amount of computation. In this chapter, a family of texture
measures based on SVD are introduced which possess better
performance. To be more specific, SVD texture measures require much
less computation, but have higher classification accuracy than
Haralick's measures. In particular, for low contrast textures for
which Haralick's measures have accuracy limitation [53], SVD measures
perform well. What follows is an introduction to this set of

measures. Its evaluation will be performed by Bhattacharyya distance

criteria in the next two chapters.

7.1 Deterministic Properties

Deterministic properties of SVD can be demonstrated by the
following examples. Consider the rotation of a pattern. A NxN
matrix with ones along one of its columns and zeros elsewhere. This
matrix has one singular value. Now, consider another NxN matrix with

ones along its main diagonal and zeros elsewhere. This second matrix

has N singular values.

142



N N
1 1 . 0
gigN g.ln
One Singular Value N Singular Values

The rotation of the first matrix has affected the number of singular

values. Consider another example

11 o1 0...11 [1010..1 0]
1 101 0...10
: = jy oy oy sy @
Llu -1 10..10.4

The r.h.s. of (7-1) has one singular value because it is formed by

one outer product of two vectors [5,6]. Consider the checkerboard

matrix

(1] mo10...101 [o] 101...01]

0 1

1 0

0 e

1 0

0 1]
8 1L 0 soue 1 8]
0 0 veer 01

=] v s s < e (7-2)

10 00.0.10
0 01 wee 0 1
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The r.h.s. of (7-2) has two singular values because it is formed by
the summation of two independent outer product vectors. (7-1) has
alternating vertical stripes of zeros and ones, and (7-2) has
alternating diagonals of zeros and ones. Thus, the two matrices are
viewed as rotation of each other. However, their number of singular
values differ.

For periodicity consideration of SVD, consider, again the matrix
of (7-1) with alternating column of ones and zeros and compare it

with (7-3)

- = 9
1 [1 1 ... 11 1 1 ... 1
1 1 1 ... 1
- = . o . (?-3)
Ll_ 1 ] 1

r.hes. of (7-3) is a constant amplitude array with 100% duty cycle

period and has the same number of non-zero singular values as the

striped matrix of (7-1). Clearly, SVD is not a measure of periodic

structure [5,6].

7.2 Stochastic Behaviour of Singular Values

It has been demonstrated that in the deterministic domain, the
singular values of many pictures decrease rapidly with increasing
index [130-132], and SVD is a deterministically optimal transform for
energy compaction [2]. It turns out that singular values decrease

quite rapidly for stochastic images as well. This section
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illustrates such a fact. A set of experiments have been performed on
artificially generated stochastic texture fields.

To generate a:random matrix of order 16 whose elements are
normally distributed with column covariance matrix of K. and row
covariance matrix of Kp with separable property, we consider the
relation (4-34) developed in Chapter 4, F = (ECI_\(I:IZ)H_(ERQ%/Z)T where
M is a 16xl6 white random matrix. Also, K. = EAEL

Ko " Eglese and
ﬁR = gﬂi\RgE as discussed in Chapter 4. Letting

1 P eaesee 015
p 1 L B B BN B p14

S . (7-4)
15 14 1

we will obtain a matrix F whose singular value distribution is a
function of p. For, o = 0.0, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, we
generate seven 16x16 matrices and seven singular value curves.
Tabulation of the singular values is presented in Table 7-1. Figures
7-1 through 7-7, relate the singular value amplitudes to correlation
factor. Figure 7-1 is a direct plot of this relationship. Figure
7-2 has the normalized version of the curves of Figure 7-1 in which
all SV's in each curve are divided by the sum of singular values.
Figure 7-3 shows the scaled version of the curves of 7-1 in which all
SV's in each curve are divided by the largest singular value of that
curve to give the first element a value one and the rest less than
one. Figure 7-3 is particularly interesting because it displays the

systematic increase in steepness as correlation increases. Figure
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Figure 7-3. Scaled SV Curves vs Index w.r.t. o.
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7-4 depicts the monotonic increase in the first (largest) singular
value as correlation increases. The same graph shows a fall off in
2nd to 16th singular value. Taking the log, of the curves in Figure
7-4 shows a linear increase for the largest SV. Hence, the largest
SV increases exponentially. The normalized counterpart of Figure 7-4
is Figure 7-5. Figure 7-6 shows the scaled version of Figure 7-5
where it clearly shows the systematic decrease in the ratio of SV's
w.r.t. the largest one as correlation increases. Figure 7-7 provides
a graphical comparison of Figures 7-1 through 7-4 in which a and its
counterpart d, b and e; and ¢ and f are compared. Figures 7-1
through 7-6 show that the singular value curves can be used as a
separating means 1in texture classification (see also Figures 3-1

through 3-3).

7.3 Significance of the Largest SV

In matrix theory, a norm can be specified for a general matrix F
such that it is equal to the Euclidean length of the largest vector
¥, where y=F x and x is of unit length [129]. We designate such a
norm as

Il = ||_Ll§fu2 = IS, = sg (7-5)

U and V are unitary matrices and hence preserve the norm, and sy is
the largest singular value of F. The unit vector x which provides
such y is the eigenvector vi corresponding to the largest singular
value sy. Therefore IF I, can be expressed as

1&-’_ x|

IFi, = sup ——— (7-6)
2 o Y
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Since F is a continuous operator, sup becomes max, and hence

(7-7)

where s; is the sup norm corresponding to %-norm on the vector space
of a general matrix F. Another norm can be defined as the Euclidean
norm of F as given by

K k

e = mrE 2 = (3 M- (1 S e
j=1 | ‘ j=1 !

Andrews et al. [130-132] have used the square of IFlc in their
experiments. For textural images, theHFH2 norm performs well, and
its simplicity encourages such use. It is obvious that the higher
the correlation in a texture field, the lower its rank, and hence,
the steeper its singular value curves; resulting in more significance
attributed to s;. Thus, in low contrast texture fields, the largest
singular values is of primary importance for automatic
discrimination.

A different significance can be attributed to sj. The number of
zero crossing--change of sign in components--of eigenvector v,
corresponding to sy is zero which means that all components of vq
have positive or negative values. The number of zero crossings in
eigenvectors v; Tlinearly increases with the index [133, p.165].
Another significant behavior of s;, is in its normalized form:
Consider a perfectly correlated picture, e.g. the picture of a clear

sky. A kxk sample window extracted from such a field has one
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singular value. Hence, the normalized version will be (1,0,...,0).
Consider the opposite, i.e. a picture with perfectly uncorrelated
pixel values. In its ideal form, all singular values for such a
picture will be equal, and hence, their normalized version will

be ﬁ% ,-% ,...,-%) Thus, the largest SV in any picture always varies

as

S
%< kl <1 (7-9)
Y s
, =1 !
and the rest vary as
1 S.
oy kJ >0 for j = 2,3,...,k (7-10)
) s
j=1 !

7.4 A Family of Texture Features

In order to compare singular values of several texture fields,
the fields are standardized. Standardization simply means equalizing
the experimental mean and variance. In our experiments, the texture
fields are made zero mean and unit variance. Based on their
stochastic properties, the singular values (51=52""’5k) provide
measures or features of such texture fields. s; alone provides the
majority of information about the texture. A better set of features
is the normalized version of the singular values such as

S S S
1 2 k )
51+52+c.n+5k 51+52+l00+sk 51+52+-n.+5k
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The following family of measures can be considered as means for

texture feature extraction.

7.4.1 \Vector Features

Several vector features, which can be extracted from a texture

window, are listed below:

T
Io E‘l = (51’52’...’sk) (?"11)

IT. Normalized Singular Value Histogram

v ks, o kT (7-12)
% Ls; " 1s; 2" sy
1 1 1
III. Normalized Length
S S S
1 2 k T
zZ ={ s geee gy J (?"13)
=3 5 172 241/2
(IS (Taigt? (1 52
1 1 1

IV. Energy in Individual Singular Values

E4 = (5§9539°"95i)-r (?-14)
V. Normalized Energy
52 52 52
_ 1 2 K 4
}-5_ [li 2 3 kE s"‘s"%"‘"’&) (?-15)
S. S S
j=1 1 4=1 ! =1
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Remark:  WFic = (] 51?)1/2 defined in Section 7.3 is the Euclidean
i

norm of the lexicographic vector of F.

Non-linear Transformation for Dimensionality Reduction

Non-linear transformations can be made on the vector features z;
through Zg to produce effective scalar features. The non-linear
mappings are as follows: A first order histogram h(i) of k levels
can be represented rather accurately by its first four moments
[21]. The four moments, mean, deviation, skewness, and kurtosis can
represent a first-order histogram. z; through Zg can be considered
as first-order histograms. Thus, letting h(i) be the Mcomponent
of any of the feature vectors 2z throukgh Zg, We can derive the

following four moments of h(i): let Mg = J h(i), then
i=1

k
Mean - My = Y ih(i) (7-16)
i=1
k M
Deviation - M, = [} (1'-M—1)2h(1')]1/2 (7-17)
i=1 0
i X M3
Skewness - My == E (i=5=)"h(i) (7-18)
M, i=1 0
2
k M
Kurtosis - H4 =1—4 y (i-ﬁl-)a'h(i) -S"— (7-19)
M2 i=1 0 0

The factor ?a/M0 in the kurtosis makes the kurtosis of a Gaussian
histogram zero in the limit. For normalized vector features z, and
zg where J h(i) =1, h(i) is analogous to a discrete probability
density fl].ﬁl'tion.
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Skewness, a measure of symmetry of a histogram, and kurtosis,
are wusually high in singular value feature vectors Z; and z,.
Moments My through M, provide a good prototype vector to represent
either of z; through zg. The moment of (7-16) to (7-19) will be
equivalent to those explained in [21,p.472] provided that they are

premultiplied by the matrix diag(Mal,Malfz,Molfz,MO).

_ T
UIO "2"6 - (Ml,Mz,M3,M4) (?-20)

In evaluation and classification, instead of using, for example
the 32-dimensional feature vector 2z through zg, we use the 4-

dimensional Zg with almost the same degree of accuracy, but less

computational requirements. In the experiments of chapters 8 and 9,
the unnormalijzed version of the four moments are used such that ﬁq,

MBI/Z,Mé/Z’MO are not multiplied to My ,MysMauM, . This is because it

is intended to preserve the information related to MO in Ze- How-

ever, The results are obviously equivalent in SV vectors z, and zg.

Scalar Features

VII. Entropy
From normalized vectors ) and Zg> One can extract a useful
scalar feature, namely the entropy [21]. Letting h(i) equal the ith

component of the vector_ge or zg

k
z; = = 1 h(3) Togy[h(i)] (7-21)
i=

where using L'hospital rule, one can prove that

lim plogp = O (7-22)
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Figure 7-8. Singular Value Entropy for a 32x32 Texture Field.
Bound on the Entropy

Applying (7-9) and (7-10), it is easily proved that

log§ > z, >0 (7-23)

where k is the dimension of the texture field. For a 32x32 window,
the entropy and its average are bounded by zero and five. From
(7-23), the Tlower the correlation in texture, the higher the
entropy. Hence, z7 provides an additional measure on the correlation
of a texture field. Figure 7-8 shows the entropy vs correlation
factor p, where p is the parameter in the Toeplitz matrices K, = Kp
given by (7-4). As shown in the figure, the singular value entropy

~is maximum when the correlation in texture is minimum, in fact, zero.

VIII. Energy of z; and 2

Letting h(i) be the ith component of any of the feature vectors

Zj through zs,
= 160



g = 1 [h(DT (7-24)
i=1
f cf el - w2 (7-25)
or z;, 2g & % rEF £ X
k
i
for z,, zg = J-—'T(-—G 1 (7-26)
2
(L s;)
i=1
for Z3, 2g = 1 for all textures. (7-27)

Therefore, zg derived from z3 does not provide a measure, but zg
associated with z; and zp provides a measure.

IX. Product of Singular Values
k
II

s. (7-28)

z
9 j=1 ]

For textures with high correlation or low contrast, zg is not a good
choice because the small singular values are very close to zero, and
their multiplication will result in a very small number and could

lead to erroneous results.

X. The Largest Singular Value as a Scalar Feature

Zy S (7-29)
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largest component of normalized histogram:

S
) S5
i=1

largest component of normalized Tength:

1 (7-31)
Z = _— -
S
i=1 !

Energy in the largest component of normalized SV histogram:

!
%2 * K aan (7-32)
(1 %)
i=1
largest energy ratio: 2
s
_ 1
214 ~ FLEER (7-33)
(] s)
i=1

Entropy Content of the Largest S.V. for zy; and Z14

Let b = z17 or z14, then

XI. Measure on the Conditioning of a Texture Field

where 1 < z75 < =
For a texture, whose correlation content is high, the smallest
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For a texture, whose correlation content 1is high, the smallest
singular value is usually zero. Thus, zys measure may not be a good
choice for this type of textures.

Any combination of scalar features zy through zjg can be used to
form a feature vector z, for a given texture field. z, can be
combined with zg to produce a feature vector to represent
the texture. 1In a highly correlated texture, any of the features z;,

through zy4 related to the largest singular value can be utilized as

an effective feature by itself.

Statistical Considerations

A1l derivations and experiments in this document are concerned

s S

with statistical cases. The mean of SV's, E( 77%7-,..., I—%T ) can
L 34 L 3§
i i

be approximated as

S E(s.
) - ) -
1

i
or, for Zg,

. N

E(s?) Esg
f(1s2)  TE)TrERR)
1

(7-37)

m
—s
w

Analytical extraction of moments of singular values is very

difficult. Evaluation s  possible. The mtM  moment
k

of zg = I si has been given by equations (6-45), and its special
s

case E{zg} has been given by (6-51) as |Kc| |Kg|k!. Hence, different

values for correlation along the rows and columns will produce

different moments for zg° which is an indication that the product of
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singular values, can be used as a measure of texture correlation. An

observation is that the second moment of zg assumes its maximum
value, i.e. k! when pC=oR=0.0, which means the perfectly
uncorrelated case. 2zg is at its minimum at zero when correlation pp
or pp reaches its maximum--i.e. one--and the changes are monotonic.
Dividing E{z%} by (k!) gives a normalized measure for correlation in

terms of zg. In a slightly more complicated case, one can derive

the same type of normalized measures for the first moment

s;}+ To be more specific, from relation
k 3 1/2,, 11/2 r, 85)
(6-45), E{ I s;} = 27(K| IKql ——¢— - The dynamic range of

i=1 rk(f) K+l
o 2 &)
E{zg} in this case is between zero and 2 ___ZES— for pe and pp
T
k2

varying from one to zero. Thus, dividing the moment E{zq}

k ¢+1
7 L)
2 _;TZES* , which is a well defined value, will provide a
k *2

normalized measure of correlation.

by

7.5 Evaluation of the Features

We have determined six vector features and ten scalar ones based
on singular values. We certainly would like to know which one of
these features are most effective. There are three tasks which must
be taken into account: one, determining which feature is the best;
the second is testing the best feature on a variety of texture fields
and comparing the results with each other; and third is to compare
our results with those of Haralick et al. [51-52]. For the latter

task the criteria must be related to the probability of error in
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classification. For all of the three above mentioned tasks, we need
a criteria of evalution suitable for texture processing. Of course,
if all features in a combined form be used, the best result will be
obtained. However, much of the information in features is redundant,
and hence, it would not be economical to use them all. It should
also be mentioned that this technique can best be compared with
Haralick's if the same texture fields are used for comparison. In
Chapters 8 and 9, of this document, we will perform the experiments
on a set of artificial and natural textures and leave the close

comparison based on the same texture fields for the future.

7.5.1 Methods

Four criteria have been considered for evaluating the texture
features: (a) separability function based on scatter measurements
[40]; (b) the Wald Sequential Test [135]; (c) divergence [136]; (d)
Chernoff Bound to the probability of error and B-distance [137]. B-
distance has been chosen as the best method suited for evaluation of
SV features.

Chernoff Bound and B-distance

The probability of error in classification is upper bounded by
the Chernoff bound. Consider the two-class case

l-s s
€ <P; P, exp{-b(s)} (7-38)

where € is the Bayes probability of error, P; and P, are apriori
probabilities of the two classes, and 0 < s < 1. For a certain s,

the Teast upper bound for € is obtained. In (7-38),
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1-s S
b(s) = -1n [ P(x|class 1) P(x|class 2) dx (7-39)

space of x
letting s = 1/2, gives the Bhattacharyya distance as B(c]assl,classz)
= b(1/2). Using a Bayes classifier, B-distance is monotonically
related to the Chernoff bound where Chernoff bound is the 1eést upper
bound to the probability of classification error [137].
For two classes with samples from normal populations N(!l,gl)

and N(Jz,g_z) B-distance is

(Cy +C, )Y-1
B(classy ,class,) = é— (g{l-fé)T {—-1—2—_-2——] (;,{_/2/)

% (C,+C,)
1z (G5

+ 2 (7-40)
T T

1/e

where, o_l/_l and .'_J/.Z are the mean vectors and C and (o are the
covariance matrices of classes one and two.

The metric properties of B-distance have been proved in the
statistical literature [40]. B-distance provides a measure for
determining the best feature. It also gives a separability measure
of various texture fields. It is related to the probability of
error; thus, it provides a comparison between the SVD technique and
Haralick's or other feature extraction techniques in terms of Bayes
probability of classification accuracy. Its disadvantage is in its
two-class restriction. However, the multi-class problem can always
be divided into class pairs for B-distance computations. Another

disadvantage is that the analytical derivation of B-distance for a
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general density is difficult. It is, nevertheless, straightforward
for normal densities. Our use of formula (7-40) for normal densities
is justified based on the fact that the histograms of M;, Mp, M3 and
Ms exhibit normal behavior. Thus, (7-40) can be used as a genuine
criteria for experiments of Chapters 8 and 9.

For equally 1likely a priori probability, the probability of

error is related to B-distance as
€ < -% exp(-B) (7-41)

where € is the Bayes probability of error and B is the B-distance.
The Tlower bound to the probability of error is also related to the

Chernoff bound. In general, the lower bound will be
= >%— - %- - exp(-ZB)]”2 (7-42)

and for small errors, the lower bound can be approximated by

€ >% exp(-2B) (7-43)

Table 7-2 gives the lower and upper bounds to the probability of

error in terms of the B-distance for equally 1likely a priori

probabilities.

7.6 Summary
In this chapter, a family of texture features has been

introduced. The method of feature evaluation will be the
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Table 7-2.

Lower and Upper Bounds to Probability of
Error in Classification.

B(CLASS],CLASSZ)

ERROR LOWER BOUND

ERROR UPPER BOUND

0.0
0,1
2

0
0.3
0

(e T |
(82

o o O

o
[ B a |

~J
.
o

10.
11.
12.

o o o o o o

20.
40.0

3.38
4.58
6.15
8.39
1.13
1,53

>

o2

e 2f

o

ee

.50
.28

.20
.16
A2
.10
.08
.06
.05
.04

1072

1073

10°*

107°

1072

1070

0

o o o o

0,50
0.45

0.40
0.37
0.33
0.30
0.27
0.24
0.22
0.20

1.84 x 107!

6.77 x 10

2.48 x 10

9.16 x 10

3.37 x 10

1.24 x 10

4.46 x 10

1.68 x 10

6.17 x 10

2.27 x 10

8.35 x 10

3.07 x 107

%0

& 0
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Bhattacharyya distance figure of merit, which provides the bound to
probability of error for a Bayes classifier. B-distance gives a

quantitative view of the separability of texture fields.
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CHAPTER 8
CLASSIFICATION BY SVD
EXPERIMENTS ON ARTIFICIAL TEXTURE

In this chapter, we address the problem of supervised
classification of artificial textures with some of the SVD
features. Evaluation of the features is performed by the
Bhattacharyya distance figure of merit. Experiments are performed on
textures with controlled correlations, and texture features used in
the process are the first four moments of the vector z,, and scalar
features z7, 219> 211> and zj5 defined in Chapter 7. In the next
chapter, experiments are performed on all of the SVD features.
Detection of one texture embedded in another texture is also the

topic of discussion in this chapter.

8.1 Artificial Textures

A model was developed for texture in Chapter 4. The model is
required to be zero-mean, real, separable, normally distributed, but
not necessarily stationary for the theoretical developments of
Chapters 5 and 6. For experiments of this chapter, this model will
be utilized. Given the nature of the separable covariance matrix of
the texture field F, e.g. first, second, higher-order Markov, or non-
Markovian, it is possible to generate a texture field in a sequential
manner so that each pixel is a linear combination of its previous
ones added to a noise factor [35] and [141]. Such a type of
synthesis can be used for simulation of texture fields with separable

nth order Markov [138-140] covariance matrices. In the following
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experiments on artificial texture, a wide-sense stationary first
order Markov process [pli‘ji] is used for
covariance matrices Ke and Kp. A texture window is defined as a
small square portion of textured image. Nonoverlapping sample
windows are randomly selected from various locations of image and SVD

is performed on them.

The Best Window Size

Several experiments have been performed to determine the best
window size. The choices for a window size are limited since: a) it
cannot be too large because of computational limitations, b) texture
windows cannot be too small because they will be non-representative
of texture, and also, they will increase the number of sample windows
resulting, again, in high computationality.

For standard 512x512 or 256x256 picture sizes, we have
experimentally determined that 32x32 window size is the best for our

experiments.

Generation

The objective is to generate 512x512 texture fields which are
zero mean, normally distributed, having separable first order
Markovian covariance matrices K. = Kp = [pli'jlj. Such texture
fields are 512x512 real valued 36-bit per pixel fields (36 bits
requirement of DEC10 computer). For visualizing purposes, we perform
a linear transformation on each texture field to obtain 8-bit
(integer) pictures with a dynamic range of 0 to 255. The Tlinear

transformation is
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F..-F .
—ll-_y- (255) for ‘15] = 1yess512 (8-1)
max min
where Fij is the ijth pixel of F, Fmin and Frnax are the minimum and
maximum real values of all textures in the set. Figure 8-1 shows the
same texture fields for p = 0.5, 0.6, 0.7, and 0.9. Among four

texture fields of Figure 8-1, Fp,, = 4.6124967 and F = -4.4934617.

min
Definition
"0.5" means the texture shown in Figure 8-1(a) which represents

a texture with Kp = Kp = (0.5)|i‘j|. Likewise for other values of p
we have "0.6," "0.7," and "0.9."

Procedure

From texture fields "0.5," "0.6," "0.7," and "0.9," N non-
overlapping sample windows are randomly extracted to produce N
32-dimensional singular value vectors z; (see Chapter 7, relation
(7-11) for definition of z;). From each 23, its normalized vector zp
is formed. There are two sets of experiments performed on z; and zp:

(a) From each z,, the first four moments are computed to give
the 4-dimensional vector zg where zg = (Ml,Mz,M3,M4)T. Various
experiments on combinations of M;, My, M3, M; are performed to
determine the effectivity of each combination.

(b) The second set of experiments consists of finding scalar
feature zyg from each z;, and scalar features zy, z71, Z15 from each

25 and then various combinatorial possibilities of four features z;,

Z10s 211> and Z)g are tested.
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{a) |r0_5u

Figure 8-1. Artificial Texture Fields with Various Correlation
Factors (512x512).
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The criterion of evaluation is B-distance and the number of
samples extracted are the same for all experiments making it easy to
compare them.

Figure 8-2 gives the block diagram for the evaluator of part
(a). Part (b) is essentially performed the same way except that

instead of the four moments M1= Mo, M3, and M4, we have z7, 210> Z11»
and 215.

Remark: Each 32x32 texture field has mean zero. Its second moment
is tr(KeKp) = tr(Ke) x tr(ER). For a Toeplitz matrix of 512x512,
the trace is equal to 512. Hence, the second moment becomes
Second Moment = 512x512 = 262144.0
The only question is what the value of N (the number of
extracted sample windows) should be. To determine N, experiments are
performed with all four features M, Mo, M3, My used. 32 samples are

used for the first experiment, 64 for the second, 128 for the third,

and 196 for the fourth one:

Number of Sample Windows

Table 8-1 shows the results of the B-distance vs various number
of samples using all four moments. Figure 8-3 displays the semi-log
scale of B-distance for various number of samples. From Table 8-1

and Figure 8-3 the following observations can be made:

Observation 1: It can be observed, from Table 8-1, that the higher

lpz—pml, the greater the B-distance, where pgs 1s the correlation
factor in Ke = ER [p|1'3|] for the gth class. Basically the more
different the correlation content of a texture field pair, the higher
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TEXTURE FIELD 1] jonuM
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N SAMPLE WINDOWS [@— == o=

|

SVD

GENERATOR

l N 32-DIMENSIONAL Z; for i, i=1,...,M

NORMALIZATION

1 N 32-DIMENSIONAL Z, for i, i=1,...,M

4 MOMENTS
GENERATION

1 N 4-DIMENSIONAL Zs for s 15]geeasM

MEANJ_{i &
COVARIANCE C,

l ("!1"21'), i=1,...,M

B-DISTANCE
PAIR-WISE

ANALYSIS

Figure 8-2_. Block Diagram of the Evaluator.
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Figure 8-3. Semi-Log Scale of B-Distance vs Number of Samples for
Artificial Textures.
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Table 8'-1.

B-Distance for Various Numbers of 32x32 Sample

Windows Extracted From Artificial Texture Using

M], MZ’ M3, M4.
ARTIFICIAL | BHATTACHARYYA DISTANCE - (M, ,M,,M..M,)
TEXTURE
32 SAMP, 64 SAMP. | 128 SAMP. | 196 SAMP.

PAIR

“0.5" | *0.6" 2.76 2.35 1.91 1.81
"0.5" | "0.7" || 11.89 10.89 8.69 8.10
"0.5" | "0.9" || 91.89 72.17 64.20 59.97
“0.6" | "0.7" 3.50 3.14 2.43 2.27
*0.6" | *0.9" || 53.78 45.11 38.15 35.32
*0.7" | "0.9" | 23.92 22.44 18.13: 16.78

Table 8 -2. Bayesian Probability of Classification Accuracy in %
Using M1,M2.M3,M4.

ARTIFICIAL " 64 SAMPLES - (MI’ MZ’ M3, Mq)
TEXTURE B-DISTANCE CLASSIFICATION ACCURACY
PAIR LOWER BOUND UPPER BOUND
"0.5" | "0.6" | 2.35 95.2 99.8
"0.5" | "0.7" ||10.89 . 100.0 100.0
*0.5" | 0.9 17217 100.0 100.0
"n.6"| 0. 3.14 97.9 100.0
"0.6"| "0.9" ||45.11 100.0 100.0
"0.7 | "0.9" ||22.44 100.0 100.0
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the B-distance.

Observation 2: 1p£—gn| is not the primary factor which determines

the B-distance. For example, |0.9-0.7| and [0.7-0.5

are both equal

to 0.2; however, the B-distance for ("0.9," "0.7") pairs are
considerably Tlarger than those for ("0.7," "0.5") pair. The
conclusion is that p, and g, play individual roles in the B-distance
computation. But, for equal absolute value of difference, the higher

the max(pg,p,), the higher the B-distance.

Observation 3: There is a systematic decrease in B-distance values

with increasing the number of samples.

Using 64 samples seems sufficient for producing the same order
of classification accuracy as 196. Figure 8-4 displays 64 non-

overlapping sample windows.

8.1.1 Moment Features of z,

Using artificial textures "0.5," "0.6," "0.7," and "0.9," and
applying various combinations of M;, Mo, M3, My, we obtain the
following results:

Combination of M;, My, M3, My Taken Four at a Time

Table 8-2 shows the B-distances and classification accuracy

using all four features.(*)
Taken Three at a Time

(*)In Table 8-2 and all other tables showing classification accuracy,
the number 100% is obtained with the ultimate precision of the DEC
PDP10 machine in use.
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) "0.9" samples

(¢

Mean SV Prototype Vectors for Artificial Textures.

-4

Figure 8
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Table 8-3 shows the B-distances for combinations of four

features taken three at a time hence there are
4 41 iy edas s
(3) =T - 4 possibilities. Table 8-4  tabulates the

classification accuracies for Table 8-3.

Taken Two at a Time

Table 8-5 shows the B-distances and Table 8-6 shows the
classification accuracies for four features taken two at a time.

|
There are (g] = ?ng = 6 possibilities.

Taken One at a Time

Table 8-7 shows the B-distances and Table 8-8 shows their
classification accuracy for four features taken one at a time. There

|
are (?J = T%?T = 4 possibilities.

Analysis of the Results

Based on the results of Tables 8-2 through 8-8, the following

observation can be added to the previous ones:

Observation 4: B-distance is the highest when a maximum number of

features is used. Therefore, for four features, the B-distance is

higher than that of any combination of three, two, or one feature.

In each case, the B-distance is invariant to permutation of elements

of the feature group.

Observation 5: Lower combinations of a particular set of features

produce a smaller B-distance. For example, features (M3, M4) produce
a smaller B-distance than (Mz, M3, and M4). This is logical because

Mp provides additional information to M3 and M.
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Observation 6: For different feature sets, some two-feature

combinations and some one feature combinations are better than some
higher number feature forms. For examples combination (My,M3)
produces a higher B-distance than (M;,Mp,My); M; alone is a more

effective feature than (Mp,M3) or (My,M).

Observation 7: Looking at Tables 8-7 and 8-8, it is easily verified

that the most effective single feature is M;, followed by M3, M,, and

Mo, respectively.

Remark: The dimensionality of zg = (Ml,Mz,M3,M4)T can further be
reduced by a linear transformation that does not significantly alter

the performance [40, pp. 273-275].

Overall Results

Single-feature combinations incur minimum cost. The best of
them for classification purposes is M; (mean) followed by M3
(skewness), Mg (kurtosis), and M, (deviation) taken from z,.
Classification accuracy can be enhanced by using more than one
feature, reaching up to four in which case the accuracy is at an
excellent rate of 99.5%, with its worst case at 95.2. The best
double-feature s (M;, Mp), and that of triple-feature being
(Mo sM3,Mp ).

8.1.2 Scalar Features

On artificial texture fields "0.5," "0.6," "0.7," and "0.9" of

Figure 8-1, a similar set of experiments such as the one in Section
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8.1.1 are performed except that instead of My,Mp, M3, My, four single
features 2z7,2z709,z71, and zj;5 are used where zy = entropy of all
singular values, zyg = the largest singular value, z11 = normalized
largest singular value and Z15 = entropy content of the Tlargest
singular value. (See Section 7.4 for a complete description of the

scalar features.)

Combination of 2752105 Z11» and zyg Taken Four at a Time

Table 8-9 shows the B-distance and classification accuracies.

Combination of zy, Z10s Z11» and zyg5 Taken Three at a Time

Tables 8-10 and 8-11 shows the B-distance and classification

accuracies.

Combination of z7, z1g, 211, and zjg Taken Two at a Time

Tables 8-12 and 8-13 show the B-distance and classification

accuracies.

Combination of z7, zyg, 271, and zyg Taken One at a Time

Tables 8-14 and 8-15 tabulate the B-distance and classification

accuracies.

Observation 8: Taking all four features results in a near perfect

accuracy. For artificial textures, this set of four features are

more effective than the moments My, My, M3, Mg

Observation 9: One of the features in this set namely zjg = sp is

related only to one singular value while the other three are related

to all singular values out of which two are functions of the first
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Table 8-9,

B-Distance and Classification Accuracies for

27,210,21],215) Taken Four at a Time.

ARTIFICIAL |

64 SAMPLES - (z

752102211 2%15)

TEXTURE B-DISTANCE CLASSIFICATION ACCURACY %

PAIR | LOWER BOUND UPPER BOUND
_ —=i —
*0.5" 1 "0.6" 4.32 99.3 100.0
*0.5" 1 "0.7/" § 22.59 100.0 100.90
0. 5" "0.9"}[174.29 100.0 100.0
"0.6" | "0.7" 8.04 100.0 100.9
"0,6" | "0.9" || 138.34 100.0 100.0
"0.7" | 0.9 ﬂ 94 .32 100.0 100.9
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k
normalized singular value fi.e. zqq = slj_zlsi and z15=z11 109 237.
1=

z7 utilizes the information regarding all SV's that is why it is more

accurate than the others.

Observation 10: From Tables 8-14 and 8-15 it can be deduced that the

most effective single feature is z; = entropy followed by 25, 217,
and zyp. Such a result is quite logical since zjg utilizes the Tleast
amount of information. Interestingly, the double feature (27,210) 1$
more effective than (z7,z15) or (z7,zj7). This is because most of
the information in zyg or z7; is already 1n'z?, and we are not adding

as much to zy by using zj5 or zj; alongside it as we do when we use
Z10°

Overall Results

One feature 2z s sufficient to give an average of 98%
classification accuracy on the textures under study, and therefore is
the best single-feature in these experiments. The best double-
feature is (z7,z7¢), while the best triple-feature is (z7,2105271) -
Figure 8-5 shows the mean singular value prototype vectors and an
examination of it verifies all of the results in Tables 8-2 through
8-15. The curves which are more apart agree with the texture pairs

which produce higher B-distances.

8.2 Classification of a Texture Against Textural Background

This section is devoted to the general task of detecting a
texture within another one. It has been discussed and shown in
Chapter 7 that SVD is not a good measure of the structural properties

of a picture. SVD, on the other hand, is a good and inexpensive
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Mean SV Prototype Vectors for Artificial Textures.
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measure of correlation and stochastic behavior of images. In
detection of an object against a background, an edge detection or
thresholding technique can be applied in a rather efficient manner.
Such techniques, however, do not perform well for texture mixtures.
Particularly, thresholding performs poorly for segmentation of a
mixture of similar textural patterns. In such a case where there is
a texture against textural background, SVD seems to be useful.

A set of experiments are performed on artificial textures with
controlled correlation contents. After generating the texture fields
with various p's, 16 32x32 sample windows of texture with p = 0.5 is
imbedded onto texture fields wifh p = 0.6, and p = 0.9. The same

embedments are performed in a reverse manner.

Notational Convention: "0.5" of Figure 8-1 represents the texture

associated with p = 0.5. "0.5/0.9" means the texture associated with
p = 0.9 has been imbedded onto the textural background "0.5." Figure

8-6 shows a schematic depiction of "0.5/0.9."

512

128

si12 128 0.9

Figure 8-6. Sketch of "0.5"/"0.9" Texture Mixture.
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For classification of texture mixtures, moment features M,
(M1,M5) , (Mo,M3,M,), and (M1,My,M3,Ms) and scalars features z7,
(z7.219)» (2z7,2105271)» and (27521952115215) are used. Figure 8-7
presents the imbedded forms "0.5/0.6" and "0.6/0.5" for which B-
distances between various combinatorial pairs have been tabulated in
Tables 8-16 and 8-17 using moment features; and Tables 8-18 and 8-19
show the same results applying scalar features. Tables 8-20 through
8-23 show the results for "0.5," "0.9," "0.5/0.9" and "0.9/0.5"
textures of Figure 8-8. From each of the texture fields in Figure 8-
7 and 8-8, 64 32x32 sample windows are randomly selected making sure
that the 16 imbedded ones are included. This, in essence, means that
for example "0.5/0.9" provides 75% "0.5" + 25% "0.9." The method of
evaluation is as given by block diagram of Figure 8-2.

8.2.1 Analysis

Figure 8-9 shows the mean singular value prototype vector for
texture mixtures of Figures 8-7 and 8-8.

The B-distance between "0.5" and “6.5“ is obviously zero. Table
8-22 shows that using all four scalars, the B-distance between "0.5"
and 100% "0.9" is 205.03 which 1is considered to be enormous. B-
distance between "0.5" and "0.9/0.5" (i.e. 75% "0.9" + 25% "0.5") is
4.629. The drop from 205.03 to 4.62 is clearly an indication that a
great change in B-distance happens when 75% "0.9" is used instead of
100%. The drop is 200.41 and is so great that the probability of
error in separating them is almost zero. Likewise, when "0.5" is
taken with 100% "0.5," the B-distance is zero; but when "0.5" is
taken with 75% "0.5" + 25% "0.9," B-distance increases to 3.41. The
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Figure 8-7. Embedments "0.5/0.6" and "0.6/0.5".
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Figure 8-8. Embedments "0.5/0.9" and "0.9/0.5."
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classification accuracy for the latter is, in its minimum, 98.4%.
This means that the two textures which used to be the same and could
not be told apart can now be discriminated and classified with a good
probability of at least 98.4%. This is due to existence of a foreign
texture in one of them. The same analysis holds for moment features
given in Table 8-20.

The more interesting result on artificial texture is for
textures of Figure 8-7 in which the embedments can hardly be
distinguished by human eye. But, using SVD scalar features (Table
8-18 and 8-19), the foreign texture "0.5" in "0.6/0.5" can be found
with an accuracy of between 86.9% to 98.3%. The average being 92.6%
gives an indication of SVD features usefulness in detection and
classification of a texture within another one.

8.3 Significance of the Largest Singular Value Feature

Figures related to the curves of mean-SV-prototpye-vectors show
that their steepness systematically increases with texture
correlation. The most sensitive element of this change is that of
NE For example, in Figure 8-5, the mean is higher for p =0.9
correlation and drastically drops from 24.44 to 17.43 for a 0.2

change in p.

8.4 Summary

This chapter has shown the usefulness of SVD features for
classifying textural image data. Artificial textures have been
employed because it is possible to control their correlation so that
the behavior of singular values can be observed in a controlled

environment. These results will aid us in real-world experiments of
201



Chapter 9 where natural texures will be under experiment. It is
established here, that both scalar and moment features perform very

well 1in a controlled textural environment, while scalar ones have a

slight advantage over moments.
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CHAPTER 9
CLASSIFICATION OF NATURAL TEXTURE BY SVD

Natural textures, as defined in Chapter 2, are referred to image
patterns whose subjects have been created either by nature (such as
grass) or exist in every day life without being altered or generated

by machines prior to being photographed (such as patterns of a wool

cloth).

9.1 Natural Textures

Four natural texture fields of grass, raffia, sand, and wool
have been employed for experimentation. Figure 9-1 shows the four
textures. They are digitized and have 512x512 pixels quantized to
256 gray levels. The principle of evaluation is as in Chapter 8.
However, the natural textures have been standardized so that
measurements on them can be made in an unbiased fashion. By
standardization, it is meant to create textures that have the same
first-order statistics and equal variance. For such a purpose, we
Gaussianize the four textures' histograms having zero mean and unit
variance (see Appendix G). The 32x32 windows at the boundaries of
natural textures are avoided. Such a practice provides 196 possible
non-overlapping 32x32 sample windows from each texture. An
experiment is performed wusing moments varying the number of
samples. For such a purpose, N = 32, 64, 128, and 196 is used, and
the results are tabulated in Table 9-1. Figure 9-2 shows semi-log
scale of the B-distances of Table 9-1. The fluctuation in the values

is stabilized after 64 samples. Sixty-four non-overlapping 32x32

203



4. _
bk .

4

I it

R TR :

vt )

3¢ &

R ;

g T3 =

s Y )

Jr*w IS

Mpmm‘— .. y . f_.

grass

)

a

204

(d) wool

Natural Texture Fields (512x512).

(

(c) sand

Figure 9-1.



Table 9-1.

B-Distances for Various Numbers of 32x32 Sample
Windows Extracted From Natural Textures.

HATURAL BHATTACHARYYA DISTANCE - (M, ,M,M_,M,)
TEXTURE 3
32 SAMP . 64 SAMP. 128 SAMP 196 SAMP.
PAIR
G R 2047 2.47 2.36 2.42
G S 1.62 1.42 1.25 1.25
G W 4.11 3.7 3.45 3.31
R S 10.91 7.20 6.64 6.33
R W 13.81 11.20 10.69 9.24
S W 4,25 3.91 2.94 2.56
Table 92. . B-Distances and Classification Accuracies for
My, M,, M,, M, Taken Four at a Time.
1 2% i3> O
NATURAL 64 SAMPLES - (Ml,MZ,MB,-4)
TEXTURE B-DISTANCE CLASSIFICATION ACCURACY %
PAIR LOWER BOUND UPPER BOUND
G R 2.47 95.8 99.8
G S 1.42 88.0 98.5
G W 3.71 98.8 100.0
R S 7.20 100.0 100.0
R W 11.20 100.0 100.0
S W 3.91 99.0 100.0
G = grass, R = raffia. S = sand, W = wool
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sample windows for four textures are displayed in Figure 9-3. Five
sets of experiments are performed with M;, My, M3, M; taken from
vector features 2z, 2zp, 23, Zg, and zg; and two sets on scalar

features 27, 28s Z1Qs Z11» Z12» Z13> 214> 215-

9.1.1 Vector Features and Their Comparison

Using natural textures grass, raffia, sand, and wool, various

combinations of Ml, Mo, M3, My are tested.

Z9, The Normalized Sinqular Value Histogram

My ,Mo M3, My Taken Four at at Time

Table 9-2 shows the B-distance and classification accuracy.

Taken Three at a Time

There are four possibilities. Tables 9-3 and 9-4 show the

results.

Taken Two at a Time

There are six possibilities. Tables 9-5 and 9-6 show the

results.

Taken One at a Time

There are four possibilities. Tables 9-7 and 9-8 tabulate the

results.

Observation 1: The same basic observations of Section 8.1.1 hold

here too. For single feature case, in most texture pairs, M; gives
the highest accuracy, followed by M3, Mg, and Mp respectively. This

result agrees with those of artificial textures. The best double-
207
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feature is (Ml,Mz). The best triple-feature is (Mo,M3,Ms) as in the

artificial case.

z3 and z5, Normalized Length and Enerqy

2Z3 1s the normalized Tlength vector and 25 s the normalized
energy vector. The same experiments as in Zp are performed on these
vectors. The best results for single-feature combination are M2 and
M, the best double-feature is (Ml,Mz),the best triple-feature is
(Mz,ﬁ3,M4), and the four-feature combination is the best of all in

terms of the B-distance. Tables 9-9 through 9-12 show the results.

Overall Results

Vector feature 23 is better than 25 while both are Tess

effective than 2 in terms of the B-distances and classification

accuracies obtained.

Z3 and 28

In these vector features, the kurtosis, MQ, is the best single
feature for Z; and deviation, Mz, is the best one for Zy- (M3,M4) is
the best double-feature for z; and (MI,MZ) is the best one for z,. The
best triple feature for both appear to be {MZ’MB’M ). Tables 9-13,

9-14, 9-13a, and 9-14b show the results.

Comparison

23 is better tham z4. In comparing the vector features, the
order of effectivity among them is Zys 295 235 Zgs and Z4- Such a
result shows that the normalized vectors perform better than the

unnormalized ones. The best moment combinations are (M;), (M;.M,),

212



0°00T | £'86 0°00T 1°86 6°66 L' 96 G'86 6°L8 M S
0°00T| 0'00T | 0°00T | 0°00T | 0°00T | 0°00T| 0°00T | 07001 M d
0°001| o0°00T| 0°00T | 0°00T | 0°00L | 8°66 0°00T | 9°66 S d
0°00T| 0°66 L' 66 6° 6 G566 €' €6 1°86 L'98 M 9
686 G568 9°86 788 v°96 b 18 0°¥6 V9L S 9
6°66 L' 96 8°66 6°G6 6" L6 G'G8 798 8°59 d J

"ad “dn [*ag "m0 ["ad “dn [ad ‘MO fa8 “dn [ad "MOT | *ad "dn_[*QE"HOT

R BERRD) %) &) AT Al

S31dKYS ¥9 = AIVHNIIY NOILYIIAISSYTI %

*9% UL S9LOBJNDIIY UOLIBILJLSSE|) °01-6 dlqelL

G9°¢ g2'¢ 1L°2 21 M S
G9°21 0€°8 1S L 50" L " N
92'§ 9p° L 0€°S 98 S d
€6° € 62°2 10°¢ 49! M 9
0§°1 91 66°0 SL°0 S )
0L°2 1572 72! 8e"0 ! 9
CEETRTIL B GTRTR (% ) (%u) dIVd FUNLYIL
TvHNLYN
SI1dWYS ¥9 - JINVLSIA VAAUVHOVLLYHE

*suoLjeuLquo) Judwol 3sag ayy bBulsn “z JAo) ssouelsig-g “6-6 @L9eL

213



0'00L] 68 | oo0L | 68 | 666 676 | L'89 pes | S
0-ooL | o-ootl o-ooL | oooL | oooL | oooL| 09 so8 | y
0-00L| 6661 oooL | 666 | oooL | 266 | v66 e'z6 | s Y
6° 66 896 | 866 | 896 | 866 | 956 | 0°LS sos | M 9
€16 8es | L6 | 2¢8 | c68 169 189 ves | s 9
8°66 2°G6 L7 66 L ¥6 £°96 0°L8 8 16 8°LL bs| H

aq dn T moTl a9 4 | ad MoT | dd dn ad nol ag dn agd Mol

¥Ivd

e Ee o ) (e Eue ) e ) an J¥NLXIL
SITdWYS ¥9 - AIVUNIIY NOILYIIAISSY1D % TVHNLYN

N :_. %UML:UUi :O_.u.mum.."_._.mmm_.u N_.lm wwﬂm.ﬁ

8¢ 18°€ 10°€ £0°0 ! S
20°6 9L°8 80°8 760 M Y
86°S 06°G 90°S 18°1 S Y
6.2 102 e 10°0 H 9
et 60" L 87" 0 £0°0 s 9
be'2 v2°2 1670 180 y 9

(e S o ) € ) (% W) &) ¥IVd
JUNLX3L

STTANYS ¥9 - JINVLSIO VAAUYHOVLLYHE HNLYN

SUOLJRULQUO) JUBLOY 3S3F 9y3 Butsp 97 404 seouelstq -g ‘LL-6 @l9el

214



0°001 6°86 0°001 1°86 6°66 L°96 9°66 ¢ b6 M S
0°00T 07001 0°00T 0°'00T 0°00T 0°00T 0°00T 9766 M d
07001 0°00T 0°00T 0°00T 0°00T 666 6°66 AR S d
0°00T 2 66 6°86 £°68 L" 16 0°98 0°/6 0°€8 M 9
6°86 7'68 9°'86 £" 88 2°96 6°08 616 ¢ 8L S 9
6°66 G°96 mdmm 1796 1°86 G°98 ¢ 06 ¢ 0L d 5
ag-dn ‘dg Mol *ag'dn| "dg Mo1y| "ad dn |"dd MO ag dn Qg Mo S L
(Ve S e t) (T € n) ("W Ew) ("w) TVHNLYN
SITdWYS ¥9 - AJVdNIIY NOILVII4ISSY1I %
"9 UL S3LORJNIJY uoLjeOLILSSR|) “HI-6 dLqeL
£€8°¢ 92°¢ L2 91°¢ M S
91°¢€1l 19°01 29°'8 6y M d
9¢2°8 68" L £€9°9 G¥° € S d
Gl v GG°'1 0¢°1 80°1 M 9
G6°1 9t°1 96°0 £€8°0 S 9
99°¢ 76°¢ €1 25’0 d 3]
ﬁwza ME. NZ. ﬁZv ﬁwzamz. N__: ﬁ.vza m—..: n._uzv dIvd 3Jdnix3il

S3TdWVYS 9 - JONYLISIO YAAUVHIVLLVHY

TVANLYN

*SuUOLjeULqUO) JuUBWOl 3S8g 8yl Bursp ‘Z 404 saduelsig-g “€I-6 @LqeL

215



215a

0-oot| 68 | o0ot| 9'86 | 666 e'6 | 862 | 86g M s
0'00r| o'00ot| o0'00ot| ooor| o-oor| .ot0ot| ocoor| 6°66 M ¥
0'001| o'00t| o'0ot| 666 | o'oor| 666 | o0001| <66 s ¥
0'001| z'86 | 6°66 16 | 666 1" 26 1'¢6 | 9°tL " 9
£ 96 218 | 856 | 66, | 616 | 2z | o068 | 89 s 9
166 | 6°%6 566 | 626 | 9726 | 6°¢L | 806 211 ¥ 9
.am.am womszJ .cm.gﬂ ngwgoA “ag"dn .mm.ﬂOA “g-dn .em T M—
("W W W W) ("W W W) (“We*w) (°W) TVINLYN
STINYS 79 - AOVENIIY NOILVOIJISSY1D %

"9 UL S9LOBJANIOY UOLIBILILSSBL) *Bpl-6 3[qel

8¢ 95 ¢ 16°2 220 M S

b2 1 TR 0°01 €89 H ¥

£9° 7 189 61°9 61 S ¥

0E € €82 98" 2 89°0 " 9

860 160 09°0 TR S 9

62°2 561 59°0 550 d 9

(Ve Ene e Ty (T Ewe ) (% W) %4) ¥IVd JWNLX3L

SATdWYS ¥9 - JFONVLISIA VAAUVHIVLLVHE

TVANLYN

*suoLjeurquwo) juswop 3sag ayz bursp V7 404 saouejsig-g "eEI-6 @lqeL



(Mp,M3,Mg) and (My,Mp,M3,M4) for each feature group. The four-

feature gives the highest classification accuracy.

9.1.2 Scalar Features and Their Comparison

On the same textural images of grass, raffia, sand and wool, two
sets of experiments are performed on the scalar features defined in
Chapter 7. One, on zy, zj(gsZ11s and zyg, which include entropies and
largest singular value features. The second, on zg, zjp, 213, and

Z14, which contains the energy features.

Z7221022112915

z7 is the entropy of all singular values and is a measure of
correlation in texture. 2z is the Tlargest singular value. zyy is
the largest component of the normalized singular value histogram and
is Tess than one. zyg is the entropy of the largest SV.

Tables 9-15 through 9-21 tabulate the results of this set of
experiments. The best single features for natural textures are
determined by Tables 9-20 and 9-21 to be zy followed by zjg, 237, and
z1g- With a few exceptions, the best double-feature artificial case,
is (z7,z19) and the best triple-feature is (z7, zjp, z11). Al

results agree with the artificial case.

2822122213214

zg is derived from z, and is given by equation (7-26). zg is
the total energy in the normalized singular values histogram and 1is
always less than one. z;, is the largest component of the normalized
SV length and it, too, is always less than one. 213 is the energy in

the largest normalized singular value, while zy4 1is the largest
216



Table 9-15. B-Distances and Accuracies Using 29521922112 %15
Taken Four at a Time for Natural

Textures

NATURAL ﬂ 64 SAMPLES - 2,210,217 21

TEXTURE — CLASSIFICATION ACCURACY

PAIR LOWER BOUND UPPER BOUND
G R 1.18 84 .6 97.6
G S 1.09 83.4 97.1
& W 2.05 93.6 99.6
R S 7.73 100.0 100.0
R W 9 .65 100.0 100.0
S W 2.68 96.6 99.9

|| .
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component of the energy ratio of SV's. zj;3 and zj4 are also less
than one. Being less than unity, this set of features assure
algorithmically good behavior. Only the best combination of features
will be shown in this part. From our experiment, the best single-
feature is found to be zg. The best double-feature is (28,214). The
best triple feature is (zg,zj3,z74) and the four feature produces the
highest B-distance as expected. Tables 9-22 and 9-23 tabulate the

best combinations.

9.1.3 Analysis of the Results
Figure 9-4 shows the mean-SV-prototype vectors computed for 64
sample windows extracted from raffia, grass, sand, and wool texture
fields. From Figure 9-4, raffia and wool curves seem to be farthest
apart suggesting that, infra structurally, these two textures are the
most dissimilar--although visually they may not 1look that way.
Raffia-wool highest dissimilarity is systematically verified in all
of our experiments in this chapter. This pair always produce the
highest B-distance comparing to other possible pairs.
The summary of results for feature selection from the SVD family
of texture features are:
i) Entropy scalar feature set generally performs better than
energy scalar feature set. Thus various combinations of
Z7s Z1Qs 211s 215 are usually better than those of zg, z75,
213> Z1a-
ii) Moment features perform better on natural textures than
scalar ones.

iii) Moment features are computed from vector features among
221
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Figure 9-4. Mean Singular Value Prototype Vectors for Natural
Textures.
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which zp has the best performance.
iv) Subcombination of moments giving the best results are (M;),
(MI’MZ)’ (Mz,M3,M4) and (Ml,Mz,M3,M4) with the last set

being the most effective.

9.2 Classification of Natural Texture Against a Textural Background
In this set of experiments, with the same scheme of Figure 8-6,
16 homogeneous sample windows of standardized and histogram
Gaussianized wool are 1imbedded onto the raffia image and vice
versa. Then, the B-distances are computed as in the artificial

case. Figure 9-5 displays raffia and wool imbedded forms.

Notational Convention: Rf means raffia and Wl means wool. Rf/W1 or

Raffia/Wool means 16 samples of wool are imbedded onto raffia
background. Upon extracting sample windows, this embedment is equal
to 75% raffia + 25% wool.

Tables 9-24 and 9-25 present B-distances and classification

accuracies for various possible pairs of Rf, W1, Rf/W1, and W1/Rf.

Remark 1: Each texture field is a real picture with zero mean, unit

variance, and Gaussian histogram.

Remark 2: The B-distance values for (Rf,W1) pairs are slightly
different from those of Section 9.l1. This is due to usage of a set
of different sample windows. In fact, in this chapter the classifier
is forced to select the 16 center windows and the other 48 are
randomly chosen where in Section 9.1 all windows are randomly

selected.
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Analysis

Figure 9-6 shows the mean-singular value-prototype-vectors for
raffia-wool textures. For natural textures, using four moment
features, Table 9-24 displays that B-distance between raffia and 100%
wool is 11.8747. The distance drops sharply to 1.6211 when 75% wool
+ 25% raffia is employed instead of 100% wool. The foreign texture
(i.e. raffia) introduced onto wool causes such a drop in the B-
distance. This is also clearly an indication that singular value
decomposition can be used as a means of classification of texture

mixtures.

9.3 A Comparative Study

From all experiments performed in this chapter, one important
table can be drawn: The four-feature combinations as well as the
best single, double, and triple feature combinations for M, My, Mg,
Mg and z7, 2709, 2z11s 215 features on natural texture are shown in
Table 9-26.

From B-distance analysis, it has been determined that the most
effective single features for moments are M;, M3, Mg and My,
respectively. Hence M; is the best single-feature. The best double-
features have been determined to be (Ml,Mz), while the best triple-
feature is (Mp,M3,Mz). For scalars, z7, z15, 211, and zyg are
respectively effective among single features. Hence, the best
single-feature is zy. The best double-feature is experimentally
shown to be (z7,z7g) and the best triple-feature is (z7,2109,277)-

In Table 9-26, there are two columns for evaluation of the

features in each group. One being the worst case and the other being

22?
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the average in classification accuracy. The "worst case," in our

experiments, is taken as the lower bound to the probability of

classification accuracy for the most similar textures among all

natural textures under experiments. The "worst case" does not
provide a fair judgement on the strength of features. So we have
defined a value for an overall comparison, and that is the "average"
to the probability of classification accuracy. Such averge values
“are determined by considering the mid-values between lower and upper
bound to probability of classification accuracies for all pairs and
multiplying them by the weight 1/6 (for 6 combinatorial possibilities
among four  textures) tgen summing them. Hence, average
classification accuracy = ‘El.é (rm‘d--vaIue)i for i being an index
for each possible pair. T{Ee comparative classification accuracies
are presented in Table 9-26. As an example, in Table 9-26, the
numbers 88.0% and 98.3% are obtained from Table 9-2 1in the manner
which was defined above.

Using Bayesian probability of error, it is desired to compare

SVD family of features with other methods in texture processing in

order to evaluate its performance in terms of accuracy and cost.

Haralick Texture Measures

One of the well established texture feature algorithms has been
developed by Haralick [51-52]. The reader can refer to Chapter 2,
Section 2.3, for a brief review of this technique, which is based
on gray-level co-occurrrance matrices of images in various angular
directions. Haralick, et al. performed essentially three sets of

experiments on textures [51]: (a) on photomicrographs of sandstones,
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which produced an average classification accuracy of 89%, (b) on
aerial photograph pictures, which produced an average of 82.3%
classification accuracy, and (c) on multispectral scanner data
derived from satellite imagery, which produced an average of 83.5% of
classifier accuracy, which was a substantial improvement on 74-77%
accuracy using, a now obsolete, spectral texture classification
algoritm. Other experiments with Haralick measures have been
performed [48], and have produced relatively similar classification
results. In terms of computationality, thi; form of classification
is expensive because, typically, it uses eleven features, each
computed for four directions, thus giving rise to a 44-dimensional
feature vector to be used in classification. Computing time for each
of the 44 components of every feature vector by itself can be
enormous. SVD features, on the other hand, are simple and require
much less computation. To be quantitative, using a 4-dimensional
vector of moment features, an average classification accuracy of
98.3% 1is obtained for an input of four natural textures grass,
raffia, sand, wool using 18.62 minutes of CPU on a DEC system
computer

It is imperative to mention that although the computing systems
in both Haralick's and our experiments are DEC and the input data are
four images at a time on both cases, relying on above experiments, it
is difficult to objectively compare the two techniques. This is

because the input textural images are not identical.

Laws Segmentation Algorithm

Contrary to the previous case, it 1is possible to, more
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objectively, evaluate SVD features performance in comparison with a
recent texture segmentation procedure suggested by Laws [146]. Four
of the natural textures used in [146] are grass, raffia, sand, and
wool, and are the same as, in fact identical to, the ones used in our
SVD experiments.

Using the predicted class confusion percent values among the
four natural textures [Ibid, page 148], and subtracting each from
100.0, we obtain a predicted pairwise classification accuracy.
Noting that 1in Laws' class confusion table, two textures have
different class confusion values if their pairwise order are changed
(e.g., grass-raffia, and raffia-grass), an average value of the two
is computed. All values obtained are compared against the SVD four
moments taken all at the same time given by Table 9-2 in this
document. In Table 9-2, the lower bounds to the probability of
classification accuracy for all texture pair are slightly less than
Laws' average predicted value, while the upper bound 1is slightly
higher. Since the true classification accuracy lies somewhere
between the lower and upper bounds, an average is computed between
them and the results are compared in Table 9-27.

For most texture pairs, SVD has higher values. The overall
results are close, while an average of 97.7/8% predicted accuracy are
recorded for Laws, SVD gives an average of 98.33%, which is slightly
over half a percent more than Laws. Computation time difference is
more notable. For eight natural textures, Laws uses 48.05 minutes of
CPU to achieve classification while SVD uses approximately 4 sec per

32x32 sample windows to extract and compute 32 singular values; and
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Table 9-27. Comparison of Average SVD and Average of Laws
Classification Values and Computation Time.

NATURAL SVD LAWS
TEXTURE AVERAGE AVERAGE PREDICTED
PAIR CLASSIFICATION % CLASSIFICATION %
Grass Raffia 97.8 99.4
Grass Sand 93.3 92.8
Grass Wool 99 .4 9g9.7
Raffia Sand 100.0 98.1
Raffia Wool 100.0 100.0
Sand Wool 99.5 96.7
— =:‘_==
OVERALL RESULT 98.33 97.78
E =m
TOTAL EIGHT ONE ONE
COMPUTATION TIME SEPARATE |COMPOSITE COMPOSITE
(CPU MINUTES) 34 .68 17.61 48 .05
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subsequently producing the four moments M;, Mp, M3, M;. 1.54 minutes

are used for all B-distance computations. We have used 64 sample

windows taken from four textures in our experiments with 18.62

minutes of CPU time to calculate all combinations of features. Using

8 natural textures and extracting 64 samples from each, and
calculating only the necessary features will take 34.68 minutes of
CPU. The same procedure can be applied on one composite 512x512
picture in which 128x128 texture windows are placed beside each other

at the top half and reducing the texture windows to 32x32 and 16x16

at the bottom half. In such a case, the SVD sample windows can be
reduced to  16x16. There are 1024  16x16  non-overlapping
windows. Each one will take about one second of CPU for singular
value computations to which the B-distnace computation 1is added
resulting in a total of 17.61 minutes of CPU. In both cases, as
Table 9-27 shows, computation times are substantially less than Laws
in order to give the same order of classification accuracy. SVD
features have advantages of flexibility in both the number of samples
and number of features. For example, only one feature, M;, can be
used, but average classification accuracy will decrease about 10%.
Both Laws and SVD techniques have determined that among grass,
raffia, sand and wool, raffia-wool are the easiest to classify, and
grass-sand are the most difficult. Also, grass-wool are more
easily separated from each other than grass-raffia while the same
holds for raffia-sand and sand-wool, respectively. Although such

agreements on results hold in most cases between Laws algorithm and
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sand-wool, where Laws' predicted values indicate that the former must

classify easier than the latter, while ours show the opposite.

9.4 Summary

The objective of this chapter has been to determine the best
combination of SVD features for natural texture classification and
segmentation. It 1is established that moment features derived from
vector zp generally perform better on natural textures than scalar
features. On the other hand, the opposite is generally true for
artificial textures. Adding scalar features, such as z7 (entropy) to
zg to make it a 5-dimensional vector improves its sensitivity, but
the improvement is so slight that it does not justify the cost.

The best single, double and triple combination of feature as
well as all four together are compared in Table 9-26. Section 9.3
presents a comparison of SVD features with those of Haralick's and
Laws and the results are promising.

Section 9.2 introdues a technique for detection of foreign
texture in a textured image and classification of texture mixtures.
An application can be named in medicine where unhealthy tissues
demonstrate different textural properties than healthy ones. In food
processing, an unwanted substance with a different texture can be

found using the SVD technique.
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CHAPTER 10
CONCLUSIONS

Often times the engineer/scientist of today has to deal with
multi-parameter and large-scale systems and data. In many instances,
the data is stochastic in nature, which makes it even more toilsome
to analyze. In this document, such a type of problem has been
encountered and analyzed, and the solution to part of it has been
presented.

This dissertation has studied the problem of stochastic singular
value decomposition for texture processing. The material has been
divided into four parts. Part one has surveyed various studies,
techniques and approaches to texture analysis. Part two has
presented the theoretical developments on the topic. Part three has
included the experiments and applications, and part four contains the
glossary, appendices and references.

Efforts have been made to systematize the theoretical
derivations. Thus, they can be shown to be members of one family of
derivations, and that they lead 1into each other. Most of the
probability functions are given in terms of transcendental functions
of zonal harmonics of covariance matrices.

It would be possible to have textures with similar appearances
but different 3rd or higher order statistics. It was plausible to
ask whether this were true for appearance of texture and its singular
value distribution. The answer to such a question was not evident at
the beginning. We are at a position now to assert that similar

looking textures have similar singular value distributions. The
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appearance of a non-structural stochastic image texture is closely
related to its 2nd order statistic. This fact distinguishes the set
of singular values as a powerful measurement of correlation.

In summary, stochastic SVD provides an answer to complex

behavior of a lattice of correlated random variables.

10.1 Applications

The application of this work can be discussed in two contexts:
mathematical and engineering. For mathematical applications, this
work has investigated the problem of stochastic perturbation, and, as
a result, the p.d.f. of a random matrix and the joint p.d.f. of its
singular values has been derived. Probability distribution function
of the largest singular values as well as various applications in
solving multivariate statistical problems have been explored. Any
problem which involves numerous correlated parameters in lattice form
can be handled or approached using the present technique. For
example, the problem of round-off noise in matrix computations where
many interdependent parameters are involved can be solved through the
derivations of this work.

For engineering applications, the basic utilization is the SVD's
ability to reduce the degrees of freedom in image feature extraction
from k% to k, and, as shown in the application part, in many cases, k
degrees of freedom can further be reduced, reaching in some instances
to one. Such enormous dimensionality reduction is important in terms
of speed and cost of classifying images. Stochastic SVD also has the
ability to substantially save bandwidth 1in 1image transmission.

Oftentimes, standard edge detection and thresholding do not perform
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well on non-structural patterns. In such cases, identifying and
locating a textural pattern within another texture is much more
difficult than Tocating a well bounded object in a background. The
technique of sections 8.2 and 9.2 can provide a solution to the
problem of texture detection within another texture. In food
processing, for example, an unwanted substance having different
textural properties can be readily detected using such techniques.
SVD texture feature extraction can be applied on infrared
multispectral scanner data in remote sensing and ultrasonic textural
patterns as well. In another applicatidn, a bank of singular value
features can be stored on memory for the textural patterns which are
obtained through identical conditions. Then, the SV features of an
unknown texture obtained under similar conditions can be correlation
matched with the data in the bank, and a hint on the texture's
identification can be designated. In medical applications, unhealthy
tissues which usually exhibit different textural properties than
healthy ones <can be distinguished and recognized through the
application of the SVD feature extraction technique.

SVD technique can be implemented on microprocessors and a real-
time 1image feature extraction can be established. The only
restriction on engineering application of SVD feature extraction

technique 1is that it performs accurately on textural, but not on
structural patterns. Therefore, applying it on pictures of man-made

objects shall be avoided.
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10.2 Further Research

Research can be continued on this topic on two grounds:
theoretical and practical.

On the theoretical ground, one can extend the derivations of
this dissertation to various combinations of non-central, complex,
time variant, infinite dimensional with finite rank, and non-normal
cases. The same analysis can be extended to discrete probability
functional cases. The analytical calculation of moments of
individual singular values and the singular value covariance matrix
can be researched further in the context of applied mathematics.
Speeding up the convergence of zonal polynomials needs further
investigation.

On the practical ground, a high correlation texture field
produces a steep singular value curve. At the same instance, the
field possesses a smooth autocorrelation function and Tow power at
the high frequencies of its power spectrum. On the other hand, a Tow
correlation texture field has flat singular value curves, while
exhibiting an abrupt autocorrelation function and high power in the
high frequencies of its power spectrum. Hence, there must be a
relation between singular values of an image field and its power
spectrum behavior. Further research on SVD, in such contexts, is

worth performing.
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PART FOUR: REFERENCE MATTER

This part provides the necessary
supplements, support and compliments for
the disseration. It includes the

glossary of symbols and abbreviations,

seven appendices A-G, and the bibliography.
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GLOSSARY OF SYMBOLS AND ABBREVIATIONS

Description

Acronym for Singular Value Decomposition
Symbol of footnoting in this document
White Random Process m

White Random Matrix M

Vector f (Lexicographic vector of F)

Matrix F (Separable Correlated Zero Mean
Texture Field)

Lexicographic Transformation of Matrix
F to vector f

Matrix of Differential Element of Matrix
Differential Value Element on F.

Transpose of Matrix A
ajtap*e..+a, (Summation)

ay *dye..d (Product)

Constant = 3.141592653589793
Probability Density Function of (.)
Distribution Function of (.)
Determinant of Square Matrix [-]
Definition Symbol

Identity Symbol

Direct or Kronecker Product
Covariance Matrix Along the Columns

Covariance Matrix Along the Rows
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Lf
K
Var(.)
Cov(.)
U
abs(.)
[aij]

Ceu

diag(ayses.»ay)

S5

M

%)

&
[A|B]
Jp(a)

Mean of Random Process f
Covariance of Random Process f
Variance of the Random Variable (.)
Covariance Matrix of Variables (.)
Statistical Independence Symbol
Absolute Value of (.)

Matrix Whose (ij)th element is a;;
Euler Constant = 0.5772156649

Diagonal Matrix of (aj,...,ay)

jth Singular Value

ith Eigenvalue

Diagonal Matrix of Singular Values
Diagonal Matrix of Eigenvalues
Partitioned Matrix

Jacobian of Transformation b = T(a)
Gamma Function of Real Number x
Factorial of n = 1x2x...xn

Logarithm in Base 10

Logarithm in Base e (Neperian)

Infinity Symbol

Orthogonal Group of Dimention k

Stiefel Manifold of k-frame in Euclidean
Space RN

Symbol of Being Unnormalized

Symbol of Membership in a Group or Set

Approximately Equal
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Ibid

1im

p.d.f.
l.h.s.
r.h.s.

Wer.te.

Ibidem (a Latin word) "in the same place,
used for Referencing

Limit

Pobability Density Function
Left Hand Side

Right Hand Side

With Respect To
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APPENDIX A
MATRIX DIFFERENTIAL FORMS

The results of the following six derivations have been used in
the theoretical part of this dissertation. Derivation A.l is the
essence for Derivations A.2, A.3 and A.3-1 and has been proved
in [68] by the use of exterior products and Weierstrass Theorem of
determinant. The anticommutative property of exterior products has
been established in [69, Chapter 3]. In this appendix, with a
different method, formal proofs will be given for all six.
Derivation A.1 will be proved by use of the standard Jacobian

concept.

Derivation A.1l:Considering z and y, two column vectors of dimension
k, and Tet z = A y. Therefore, if dz and dy be two corresponding

column vectors of k differential forms, we have

d(z) = Ad(y). (A-1)

Then, the product of the components of dz will be equal to the
product of the components of dy multiplied by (absolute value of)

determinant of A, i.e.

= ~
-

dzi abs(|A]) I dy (A-2)

i

Ll
—

.i
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Proof: It is known from calculus that the volume of the differential
hyper-parallelepiped of dimension k is equal to the volume of
differential hyper-parallelepiped of its transforma'tion multiplied by
the absolute value of Jacobian of the transformation.

The volume of the differential hj{(per-paraﬂelepiped of z is

k

equal to Czifl dzi and for y, it is Cy'ii[l dy; , where C, and Cy are
Jacobians of the representation of z and y w.r.t. a set of

orthonormal basis vectors. Thus,

K k'
nodz; = @, (y)) T dy; (A-3)
i=1 = i=1

Hence, for the transformation z = A y, the differential volume

elements are related by a Jacobian in the form of (A-3). Considering

h

the Tinear relation z = A y, it can be seen that the ith component of

dz is a linear combination of all components of y as

Using the definition of Jacobian, and considering the r.h.s. of (A-4)
to be equitable to a function fi(yl,yz,...,yk), the Jacobian of the

transformation (A-1) will be equal to

Byy  Byp wes By

A1 3 eee Ay
I (y) = ) . . (A-5)
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Using (A-5) and (A-3), we obtain (A-2) and hence the proof. Q.E.D.

Remark: Using definition (3-25), relation (A-2) can be written as

dz = abs(|A|)dy (A-6)

Then d(z) = A d(y)

and, dz = |Al|dy

Derivation A.2: Llet Z be a kxn, A a kxk, and Y a kxn matrix such

that Z = AY. Differentiating and using definition (3-28), we
will have

dD) = AdE) (A-7)
Then,

dz = abs(|A|")dY (A-8)

when dZ and dY are defined in (3-25).

Proof: The differential volume element of each column of Z is
related to the corresponding column of Y by equation (A-2) proved in

Derivation A.l. There are n columns in Z and Y; thus, the total

k,n
differential volume element of d(Z) will be equal to I dzij which
1,J
itself is equal to |A|™ multiplied to the total volume element
k,n
dY L H . d A-8 . eslele
. dYT.] and hence (A-8) Q.E.D

Derivation A.3: Let W be a kxn matrix, Z a kxn matrix and B a nxn

matrix such that W = Z B. Upon differentiation of matrices W and
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Z we will have

d(W) = d(2)B (A-9)
Then,
a = |B|Xdz (A-10)
k,n ksn
where,dd = T dW.. and dZ = @ dZ.. as defined in (3-25).
fd iyl

Proof: Matrix B is postmultiplied to d(Z),, it therefore operates on
the rows of d(Z) to produce d(W) . The volume element for each row
of d(W) is equal to |B| times the volume elements of each row of

d(Z). There are k rows in d(W) and d(Z); thus, the proof for (A-10).
Q-E.D.

Derivation A.3-1: Using Y, Z, and W of Derivations A.2 and A.3, we

have

|=

1
=
<
| oo

upon differentiation, we will have

d(W) = Ad(Y)B (A-11)
Then,
d = abs(|A|"|B[¥)dY (A-12)

where W and Y are kxn matrices, A is a kxk and B is a nxn

matrix. dWé and dY are according to definition (3-25), i.e.,

k,n k,n
dW = T dW.. and dY = T dy .
i, d M ff W

Remark: dW and dY are the differential volume element of W and Y.
247



Proof: Using relation (A-10) which was proved in Derivation A.3, we

have dW =abs(|§|k)dz. But, from (A-8) which was proved in

Derivation A.2, dZ = abs(|A|")dY. Subsequently, using dZ of the

latter in the former, relation (A-12) will be obtained. Q.E.D.

Derivation A.4: If two column vectors a and b are orthogonal, i.e.

alb = 0 (A-13)

Then, their linear differential form is anti-commutative, i.e.

a'd(b) = -b'd(a) (A-14)
Elaboration: Assuming a and b are of dimension k and using
definition (3-27),
db, 3 b, |
db a b
db) =| 2| , a=|?] .adb=|?
dbk _ak_| Lbk_
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Then, (A-14) implies that

Proof:
Since
ab = 0
then,
d(a’p) = 0 (A-16)
but,
d(a’) = d(a)b+ a'd(b) (A-17)
and,
d(ab = bld(a) (A-18)

Remark: (A-18) is true because both sides of it are equivalent to
bjda; + bpda, +...+ byda,. Therefore, using r.h.s. of (A-18) in

(A-17) and equating the result with zero, one will obtain (A-14).
g.E.D-

Derivation A.5: If a vector a has the constant magnitude, then its

linear differential form is zero, i.e.
il -
ad(a =0 (A-19)

Elaboration: assuming the same definition for a as in Derivation

A.4, (A-19) means,
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ajda; + apda, +...+ a da = 0 (A-20)

Proof:
Let
ala = ¢ (A-21)
Then,
dia'a) = 0 (A-22)
But
d(aTa) = g(aT)a + aTd(a) (A-23)
Knowing that
dlaha = a'd(a) (A-24)
Using (A-24) in (A-23) and equating it with zero,
ald(a) + a'd(a) = 2a'd(a)
(A-25)
= 0
Hence the proof. Q.E.D.
Derivation A.6: Each Lfd(g) and ETd([) is a skew symmetric matrix,

where U and V are the real version of the matrices defined in

(3-1). (U and V are orthogonal matrices rather than unitary.)

Proof: For'gfgig), we proceed with the proof as
o'y = 1 (A-26)

Applying differential operations on (A-26),
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d(U')u +u'd(u) = 0 (A-27)

Note that U is the variable and I, at the r.h.s. of (A-26) is

constant. Therefore, from (A-27), we have

duhy = -uTaq)

(A-28)

-Ldnud”

and hence the proof. The proof for j?d(!) will be the same. Q.E.D.

Remark: Derivation A.6 can easily be extended to unitary matrices

over the complex fields.

Selected Reference: [68].

251



APPENDIX B
THE MULTIVARIATE GAMMA FUNCTION

The Single-Variate Gamma Function:

Single-variate gamma function was developed as a generalization
of the factorial function of the natural numbers, that is, n! for
positive integers n. The gamma function is, in essence, the
extension of the above problem to x! for arbitrary real numbers x.

For n! where n is a positive integer, we come upon the following

imporper integral discovered by Euler:

jm e ttMlg - (n-1)! (B-1)
0
Obviously, replacing n by (n+l) on both sides of (B-1) will give us
the relation for n!.

The equation (B-1) is a very interesting one! Variable t on the
l.h.s. of (B-1) 1is continuous and e'tt”'1 is therefore, also,
continuous. But, when integrated, it is mapped to a set of discrete
integer numbers depending on the value of n.

The gamma function is subsequently defined as follows

r(x) & J et Lye (B-2)

where the only difference between (B-1) and (B-2) is that positive
integer n of the former has been replaced by an arbitrary real number
X. It can be proved that r.h.s. of (B-2) converges for all positive

real x.
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From the last 2 relations,

F(ntl) = n! (B-3)

Properties of the Gamma Function:

I'(x) 1is defined for all real numbers, with the

exception of 0 and the negative integers (B-4)
I'(x) 1is continuous and differentiable where
it is defined (B-5)
r(1) 4 1 (B-6)
I(x+l) = xTI(x) (B-7)
T(xtn) = (x+n-1)(x+n-2)...(x+1)xI(x) for every
positive integer n (B-8)
) = () (0 (x42)ee (xen1) £ () (-9)

Note that in (B-9) (x), < 1
2@V r(xr 3) = Jan(2x) (B-10)

where, (B-10) is called the gamma duplication formula.

Remark : (B-9) can be utilized to give the value of gamma function

for negative real arguments.

r(x) >0 for x>0 (B-11)
I(x) has the sign (-1)n for -n < x < -n+l where n is

a positive integer (B-12)
I(x) = t=at x = 0 or x = negative integers (B-13)
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I(x) 1is log convex for x > 0 (B-14)

I'(x) has derivatives of arbitrary high order (B-15)

r(x)r(x) >0 (B-16)

Stirling's formulas:

X___
r(x) = ¥2mx £ g ktmix) (B-17)
where,
u(x) = E (x+n+l)1o (1 +—l—] -1 = — ,0<8<1 (B-18)
n=0 7/109 X+n 1ex. *
my M g
n! = vnn = 8 (B-19)

The last 3 formulas are approximations of the gamma function for
large values of x. The relative accuracy for x > 10 is quite high.
Formula (B-19) provides a simple and highly accurate approximation to

n! for n > 10. Using (B-10),

z) = /7 (B-20)
and using (B-9)

r(-x) = HL=x) (8-21)
Trigonometric Relations:

T ™ __]‘...._._.-

sin —XT(X) T(-x)

™

T TX)T(I-X) (B'22£54



IO (sin 8)2x-1(c05 e)zyﬁlde = -% E%%%§§§l (B-23)

Sketch:

Using (B-11), (B-12), and (B-13), a schematic plot of the gamma

function can be obtained as in Figure B-1.

The Multivariate Gamma Function:

The multivariate case can be obtained through the generalization

of the defining single-variate integral, (B-2)

1
-tr B a- »(k+1)
4 [ e T |B 2

T (a) d(E) (B-24)

(B-24) can be represented in terms of product of single-variate gamma

functions.
%k(k-l) K ¢
r(a) = I r(a--z- (i-1)) (B-25)
k 1=]
Another useful relation is
1 K K
/| exp{-z (trB)}dB = 20 T T(k+l-1) (B-26)
B>0 j=1

Selected References: [71-80].
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Figure B-1. Sketch of r(x) and P'I(x) VS X.
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APPENDIX C
STIEFEL MANIFOLD AND ORTHOGONAL GROUP

Definition C.1: Isomorphism
If R and R' are 2 real vector spaces, then R and R' are
isomorphic if there exists a one-to-one correspondence
a~a' between the elements « of R and o' of R'such that:
) wpry iy & @,
ii) re -r'ai for al,aze\', and a]'_,aée\f' and reReal line
[56].

Definition C.2: Homomorphism

An isomorphism which is not one-to-one or onto.

Definition C.3: Manifold (*)
A topological space such that every point has a neighbor which is
homomorphic to the interior of a sphere in Euclidean space of the
same number of dimensions.
Consider the SVD definition, F =_g_§_jf. From definition

(3-25) of Chapter 3,

k,n
F = 1 dF.. (C-1)
i,j
k,n K
Since F is kxn, T dF;; is the volume in the Euclidean space R n,
i,J

The Euclidean space RKM s homomorphic to the product of the

(*) A variation of the word many-fold meaning one object which has
several outlets.
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orthogonal group V, | which contains U, the vector space RK which
contains S and the Stiefel monifold 0(k) over which V ranges. Hence,
r.h.s. of (C-1) will be represented in terms of the differential

forms of the manifolds 0(k), Rk, and Vk,n'

Definition of the Stiefel Mamifold

Considering k n-dimensional orthonormal vectors (kﬁp) as columns

of a matrix V. The nxk matrix ¥V is a point in the Stiefel manifold

Vk,n
‘_uf_e:vk,n (C-2)
V is alternatively called a k-frame in space RN,  Obviously,
T
yvv=1, (C-3)

and V has nk --% k(k+l) degrees of freedom on its nk elements.
Therefore, Vk,n is a-% k(k+1) algebraic variety on the nk-dimensional

Euclidean space.

Definition of the Orthogonal Group:

Considering k k-dimensional orthonormal vectors as column of a
matrix U. The kxk matrix U is called a point in the orthogonal group
0(k).

Uel(k) (C-4)

Obviously,

y d .I.k (C-5)
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There are %—k(k-l) degrees of freedom for U. Therefore, 0(k) 1is a

K2 - % k(k-1) = % k(k+l) dimensional algebraic variety in a

kz-dimensiona] Euclidean space. Alternatively, one can say that

since

g = [&13!23"':_lik] (C'G)
and

T _ i

uiui-l for 18 l.d,eeek (c-7)
Then,

K 7

il:l usu, = ko (C-8)

(C-8) means the summation of square of all elements of U is equal to
constant k. The latter implies that U, as a point of O(k), is on the
surface of a kz-dimensiona1 hypersphere with radius /k. O0(k) is the

group for all the points on the surface of such hypersphere.

Invariance of the Orthogonal Group:

Consider
X
x = -
Xy
2 2
‘ETE A Xl +on-+ Xk (C-g]

where, (C-9) represents a quadratic form. Upon a Tlinear transform-
ation on x as
Y = ux (c-10)

one can say that
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Yy = xyux = xx (C-11)
(C-11) implies

y% toaat yi = x% tooot xi

which 1is equivalent to saying that'QEO(k) is a matrix of linear

transformation that leaves the quadratic form x%+...+x§ invariant.

Invariant Measure on the Orthogonal Group:

It is desired to determine a differential form for UeO(k) such
that the properties of 0(k) are preserved. The differential form for
an orthogonal matrix is the product of elements of the matrix of its

linear differentials in all possible algebraic variety on the

Euclidean space. Noting that the main property of U is

y = I (C-12)

differentiating (C-12), iﬂggg) will be obtained and is skew symmetric
according to Derivation A.6. For a skew symmetric matrix, the
algebraic variety is %-k(k—l) dimenéiona1. Thus, the product of all
differential forms without duplication will be the product of the
upper diagonal elements of U. Considering (C-6), the product will
be I qu(gj). Defining the measure as d(u)

<3

d(u) 2 differential form for the measure on (C-13)
orthogonal group 260



Thus,
du) = 1 wid(y;) (C-14)

Explanation:
Another way of looking at the above argument is that according

to the Derivation A.5 of Appendix A

E;-r_q(ﬂi) =0 (C-15)

and because of Derivation A.4 of the same appendix

uidu;) = -uld(y,) (c-16)

.—T—

Thus, only the product of elements on the lower or upper diagonal of
U will suffice to provide the differential form d(u) without

duplication of any element in the product.

Invariant Measure on the Stiefel Manifold:

One wishes to obtain a differential form for the invariant
measure onlgevk n Such that the properties of Vk,n are preserved.

Noting the main property of Vy , is that its members V exhibit
yv = 1, (C-17)

It is noted that V is a nxk matrix which contains k n-dimensional

orthonormal column vectors.
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Vo= [3_1,12,...,34(] (C-18)

Considering  (n-k) n-dimensional  orthonormal column vectors

Q15925+ s Such that they form a matrix

Q = [97,9p500059, ] (C-19)

The partition [V|Q] is a member of orthogonal group O(n). Where

vig'vial = 1 (c-20)
(C-20) means
T L, 0
I=¢] VAl - (c-21)
Q 0 1
- —n-k

Upon evaluation of the product of differential forms for [V|Q]; and

noting that there are % k(k+1) dimensional algebraic variety for

[V], and considering the following definition for the differential

form
d(v) 2 differential form for the measure on (C-22)
Stiefel manifold
Thus,
k T k n-k T
d(v) = 1 v.g(y_i) I I q'g(ii) (C-23)
: i<j i=1 j=1 J
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Integral of the Measure on Stiefel Manifold:

The value of the integral STV) is obtained by integrating the
measure (C-23) over the whole space. To derive such integral, it is
necessary to complete the following mathematical derivation.

If m n-dimensional orthonormal vectors 91:99s%++5Gy are
orthonormal to the vector x, all of the involved vectors span a
Euclidean space R™! provided that n = mtl. Through a geometrical

approach and change of coordinates to a polar one, it is easily

proved [68] that

m

i T gld(x) = A(ml) (C-24)
space j=1 =
where,
Q(,&) = [dxl,dxz,...,dxn]T (C-25)
and
L
A(L) = -—1—2"2 (C-26)
Iz 2)

where, A(2) is the area of the unit hypersphere in R¥. FL%-z) of

(C-26) 1is the single-variate gamma function introduced in Appendix
B. It is easy to try the proof of (C-24) for m=1 which is the case

of a unit circle in R2 whose surface area means its perimeter and

will be equal to 2m.
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Remark: The unit sphere in Rl, consists of a line between 2 points

+l. For (C-26) its area will be derived correctly as 2.

The integral of (C-23) will therefore be derived as follows:

- k kK 1 n-k
Joodv) = @ [ 1 vid(v;) T q.d(v;) (C-27)
Ve o i=1 * i4j j=1

According to (C-18), (C-19) and (C-20), the vectors 95 are
orthonormal to vj. Furthermore, vectors v; are also orthonormal to
v; for i #j. In the case of (C-27), for i=1, one will have i<j and
hence the orthogonal vector to vy will be vp,v3,...,v and
q1sGs+++sqyke This provides (n-1) space to be orthogonal to V1.

The integral, therefore, will be that of (C-24) for m = n-1. For

i=2 m=n-2, and for i=k m=n-k. Thus, one will have
[ d(V) = A(n-1+1)A(n-2+1)...A(n-k+1) (C-28)
Vk,n
which means :
/ d(v) = 1 A(n-i+l) (C-29)
Vk 5 i=1
Using (C-26), (C-29) and (B-25)
N 2k"kn/2
IV d(v) = T 72 (c-30)

k,n

where rk(n/2) is the multivariate gamma function introduced in

Appendix C.
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Integral of the Measure on the Orthogonal Group:

Because orthogonal group is a special case of Stiefel manifold
where n=k, the integral of the measure on orthogonal group will be

obtained when n=k. Hence,

Zkﬂszz

Remark:

(C-31) provides the integral over the whole (improper)
orthogonal group.

If the elements of the first row of U is restricted to be
positive, in order to assure the uniqueneés of SVWD (Section 3.1.1),
(C-24) and (C-26) will be evaluated over half of the space, hence the
area of unit hypersphere in R* will be half of that of (C-26) as

oy

A(g) = I (for elements of U's 1st row > 0)  (C-32)

Iz 1)

(C-32) will cause that value of (C-31) to be

f aw) —(—,"kZ’Z
d(u) =
0(k) for I (k/2 (C-33)
elements of
U's 1st Row

Normalized Measure on Stiefel Manifold:

d(Vv) £ normalized measure (C-34)
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In order to normalize d(V) to obtain d(V) it is enough to divide
Hence

d(V) by the value of its integral (C-30).

- 2kﬂkn/2
d(v) = TITE7ET d(V) (C-35)
Thus,
/ d(v) = 1 (C-36)
vk,n
Normalized Measure on Orthogonal Group (Haar Measure):
d(u) 2 normalized measure (C-37)
Hence » '
N 2k“k /2
d(u) = md(U) (C-38)
Thus,
/ du) = 1 (C-39)
Whole 0(k)
Remark: d(U) is also called Haar measure, and
[ duy = 27k (C-40)
0(k) for the
Ist row positive
Therefore,
f du) = 27%f d(u) (C-41)
0(k) for 1lst Whole 0(k)
row positive
[68], [81-89].
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APPENDIX D

TENSOR OR KRONECKER PRODUCT MATHEMATICAL RELATIONS

If A is kxk and B is nxn then the left Kronecker product of A

and B is defined by

bgd Bigh e ByA
o |22 Mgl e Hggh

_&@_B_ = . . . (D-l)
_bnlﬁ Digglt W bnnﬂ_‘

where, B = [bij], i, = 1,000,n. Hence, A®B is a knxkn matrix.

Identities:
(AC) ®B = A®B+CQ®B (D-2)
A@p)* = a2 ep (0-3)
(A®@B)* = A*Q®B* (D-4)
A@B) = A8 (D-5)
(A®B)"t = Al® B! when A and B are non- (D-6)
singular square matrices
(A®B)(C®D) = (AC®BD) (D-7)
tr(AgB) = tr(A)tr(B) (0-8)
Rank (A®8) = Rank(A)Rank(B) (D-9)
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Complex Properties:

If A and B are Hermitian, then

A® B is Hermitian and vice versa (D-10)

Advanced Properties:

IA®B| = |_f.’\_|n|_ﬂ_|k when A and B are square matrices
where k is the dimension of A and n
is that of B

(D-11)

Remark: (D-11) can be proved by spectral factorization of both sides

of the equation.

Consider
A = a kxk matrix
B = a nxn matrix
lexico trans.
M ~m, M is kxn
and, lexico trans.
3 —f, F is kxn
Then, for
f = (A®B)m
one obtains [91]
F = AMB (p-12)

and,
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Tr(mf') = Tr(MF") (D-13)

relation (D-13) is proved in Derivation 5.1.

Selected Publications [93-95] and [91].
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APPENDIX E
GENERATION OF A RANDOM PROCESS HAVING AN
ARBITRARY MEAN AND CORRELATION

It is desired to obtain a N dimensional random process f with

mean u = E{f} and correlation R¢ = E{iiT}.

Consider m to be a N dimensional white random process. Then,

Yy =Em = 0 (E-1)

and,

Ry = '} = Iy (E-2)

Also, the covariance Ky of m is

I
m

oy
13

=i
S
I3

=
S

_‘

Ko

I
m
=
E|
—

R
= I (E-8)

The covariance of f will be
Ky ® E{(f—-u)(f-U)T} = Re - wour (E-4)
—f - =f —f —f  =f=f
Spectral factorization of K¢ yields:
K. = E AET (E-5)
—~f =f—f=f
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Consider the following operation on m

fo= Tm+ u
where,
- 1/2
T = Eek

schematically, (E-6) is

(E-6)

(E-7)

f of (E-6) = the desired vector with

Y
r

I=
e
.

T=Eele ™
Conversely,
f = Tm "‘_Hf
Therefore,
Mean = E{f} =

and,

mean q_fand covariance
matrix Ef(corre1ation
matrix Re)

lTI'i'IJ.F

(E-8)
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Covariance E{(f:yf)(f:jq)T}

£l 12 T 4l /2_176}

1/2 T 1/2
EchEm mm

1/2, [1/2T e
= Ephe’ INATEp = EphcEe = K¢

Ee
(E-9)

The whiteness for process m is an essential requirement. If m
is normally distributed, then f will be a normally distributed,

correlated random process.
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APPENDIX F
ZONAL POLYNOMIALS

The theory of zonal harmonics of a positive définite symmetric
matrix has been introduced by Cartan [97]. The development and study
of this concept has been presented by Hua [98-99] and independently
by James [100].

Consider a kxk positive definite symmetrix matrix A. Let Vp be
the vector space of homogeneous polynomials of degree P in the
distinct elements of A. Thrall [101] has proved that Vp decomposes
into a direct sum of irreducible invariant subspaces V_ corresponding

P
to each partition o of P where

P = (PI’P2’°"’Pk) (F"l)

o is called a partition of P into not more than k parts such that

Pp 2Py ... 2P >0 (F-2)

and
Pl + pz +aoo+ Pk = p (F-3)

For every degree P, there are a number of possible partitions.

For example, if P=5 and k=3, the possible partitions for # would
be: (5), (4,1), (3,2), (3,1,1), (2,2,1). Therefore, following (F-2)
and (F-3), there are five possible partitions of 5 into 3 parts. If
k=5, then to the above 5 partitions, one can add (2,1,1,1) and
(1,1.3.0,1).
)P

The polynomial (Tr A) eV, has a unique decomposition into

polynomials ngg)evp shown as
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(mr AF = ] Cy(A) (F-4)
D

where Tr(A) means trace of A, Qp(g) is the zonal polynomial, A is a
kxk positive definite symmetric matrix and ) means summation over all
possible partitions o of P into not more tEan k parts. If k=1, the
zonal polynomial qp(gg is analogous to the P power of a single
variable, i.e., for a real number r,

Cyfe) = g (F-5)

For dimensionality k higher than 1, zonal polynomial is analogous to
cos k6 and sin k6 in ordinary Fourier series [102].

The principal properties of the =zonal polynomials are as

follows:

i) Zonal polynomials are invariant to orthogonal transformation

B
= C(H AH -6
Cp(A) sl A H) (F-6)
where, HeO(k) (Appendix C elaborates on the orthogonal group O0(k)).
This property can be proved simply by noting that (Tr A) is invariant
under orthgonal transformation.

ii) Invariance under circular transformation

C(ABC) = CCAB) = C(BCA (F-7)

This property can be proved by noting that Tr(A B C) is invariant to
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the circular transformation. It is noteworthy that although A B C

and C B A may be square matrices of different dimensions, their

traces are equal.

iii) Decomposability (Z.P. Fundamental Property)

T C.(A)C_(B)
C(H AHB)H =

-8
o(k) P = Co iy S

where A, B, and H are kxk matrices and dH is normalized invariant

(Haar) measure on the orthogonal group O(k) such that the measure of
the whole group is unity | di = 1 (Appendix C elaborates on the
Haar measure). The proof oftiﬁzl property is given in [15].

Note: If H is nxk where k < n and_ﬂevk’n where Vi . is the Stiefel
Manifold of k-frame in Euclidean space R" (Appendix C defines Vi .n)s
and the integral is taken over Vk,n’ then the same decomposability
holds except that dimension of A which in this case is n will be the
order of the identity matrix in the denominator of (F—S), i.e. Iy of
(F-8) shall be replaced by I.. If H is kxn, where k < n, (F-8) as it

is shown will hold.

It is useful to note that
Co(ﬁ) = 1 (F-9)
= P .
Cp(bA) = b'C (A) (F-10)
where b is a scalar constant.

There is a recursive method (see Remark 4) for calculating the

zonal polynomials up to a desired degree of accuracy for any power P
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and any dimensionality k. Such a recursive technique can be used for
programming the calculations of the zonal polynomials on the
computer. Table F-1 gives the coefficients of the zonal polynomials

of a positive definite symmetric matrix up to order 5.

Example on Homogeneous Monomial Symmetric Functions

As an example, let the degree be P=3, then there are a total of
three possible partitions for 3 as p=(3), p=(2,1), and p=(1,1,1).

Let A be a 3x3 positive definite matrix hence k=3 and there will
be three real, positive eigenvalues Ms M and Age The monomial

symmetric function for partition p=(3) will be

2

SRR (F-11)

@)
for partition =(2,1)

A 2

Mo,y £ 0% By oy + 5+ 6a A, (F-12)

and for partition p=(1,1,1)
Mi1,1,1) ° BT (F-13)

Each Mp is symmetric w.r.t. Al’ Az, and A3, where the degree of each

monomial term in Mp is 3 and their form of powers of Ai's corresponds

to their respective partition.
In terms of Mp's, the zonal polynomial C(2,1) is given by Table
F-1 as

“2,1) T M2yt o )

where, Mp's are given above.

(1,1,1)
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General Monomial Symmetric Function

Let A be an arbitrary positive definite symmetric matrix of
order k. A has k real positive eigenvalues MsMpseeash . Let p =
(P1sP2s444,P) be a partition of P into k parts, then the homogeneous

monomial symmetric functions of Al,kz,...,lk for o will be shown by

Hp as

P

P, P
M 4 All,xzz,...,ak

k + permutation of Al,Az,...,Ak

under the powers Pl,Pz,...,Pk (F-15)
In this appendix, p of 1 through 5 will be presented. The zonal
polynomials are represented by the symbol Qp(ﬂ) in their normalized

form where, A is a kxk positive definite symmetric matrix.
Remark 1: In the Table F-1, the coefficients outside of the
parenthesis serve as the normalizing factors which can be found by

normalizing parameter =

P |
ZopiT X(2P) (F-16)

P
where %?;%T is equal to 1i3x5x?..(2P-1) and determines the

denominator of the parameter. (2P) determines the numerator and is
the dimension of the representation 2p of the symmetric group on 2k

symbols [108].

Remark 2: Zonal polynomials are positive on the domain of positive

definite matrices.
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Remark 3: Zonal polynomials are invariant under interchanging the
eignevalues. In other words, interchanging A and J\j does not alter
the zonal polynomial. This can be seen from the symmetry of z.p.
representation by monomial functions and also from the definition of

the z.p.

Remark 4: To calculate z.p. coefficients of a given matrix
recursively, the Laplace-Beltrami operator [103] can be used which
gives the coefficients in terms of the monomial symmetric functions

of eigenvalues as presented in Table F-1.

Remark 5: For an  identify matrix of dimension Kk,
11 E 12 Seee= lk = 1 which makes every monomial term unity. The
total number of monomial terms can easily be calculated, therefore

C,p(ik) can be determined.

Remark 6: If the dimension of matrix, i.e., k, isless than the
degree P, the zonal polynomials for higher partitions will be zero.

For example if P=3, and k=2, then C; ; ;(A) = O.

Remark 7: The normalizing coefficients in Table F-1, for each degree

and all possible partitions of that degree, add up to unity.

Remark 8: Other than the method discussed, the zonal polynomials can
also be represented in terms of elementary symmetric functions of
eigenvalues of A [102]; and also in terms of sums of powers of

eigenvalues A [Ibid.].

Selected Publication: [103].
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APPENDIX G

HISTOGRAM GAUSSIANIZATION

The objective of this appendix is to outline a procedure to
standardize first order statistics of natural image fields in
experiments of Chapters 8 and 9. Standardization of several images
simply means making them equal mean and variance, having the same
first-order histograms. Such a tactic makes a texture's SVD features
totally related to its internal correlation, rather than to other
factors such as photographic contrast and biases. One of the most
practical methods is histogram Gaussianization. In our experiments,
we modify texture field histograms to become Gaussian with zero mean
and unit variance. The procedure is as follows:

Let Pg(f) and pg(g) represent the actual and modified
probability density functions, respectively, where f and g represent
the actual and modified pixel values. Obviously for mean zero and

unit variance, pg(g) is desired to be

2
Pgle) = —= exnlE) (6-1)

m

The histogram transformation can be obtained as

f
s pglaldg = If Pe(f)df = R (f) (6-2)

gmin min

where P¢(f) is the cumulative distribution function of F. Hence,

— d = f G-3
- f_ exp (_2" J g JEf (f) ( 2)8]



S0

erf(g) = P(f) -5 (G-4)

The integral on the 1.h.s. of (G-3) is referred to as Gauss(g). For
discrete cases Pc(f) is He(m) and Pe(f) is %O HF(m) where j is the
maximum grey level. It is obviously impossigT; to have -« or numbers
which are too small for computer. Hence, the ideal case shall be

changed to a practical one:

J
Gauss(g)-Gauss(gmin) = ZU HF(m) (G-5)
or .
J
g = Gauss-l[ }b HF(m)+Gauss(gmin]] (G-6)
m=

9nin Must be selected in such a way that Gauss(gmin) is close to zero
but not exactly zero otherwise ggi, would be -= resulting in a
computationally erroneous value. The value 0.0013 was chosen for

Gauss(gyi,) which is 0.13% of the total area under p.d.f. of g

EPE
g = Gauss [ ) Hc(m) + 0.0013] (6-7)
m=0
where g .. = Gauss™*(0.0013) another possible method would be
2.
g = Gauss [ I Hg(m)] (G-8)
n=0 F

in which every g is tested and clipped in such a way that if
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lg| > 19m1nl (G-9)

Then, |g| shall be replaced by |gnipl-
Reference: [21].
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