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ABSTRACT

Results of a compreilensive research program to develop
efficient transform image coding algorithms are reported in this
dissertation. The objective is to develop algorithms that outperform
the conventional block-encoding procedures, i.e., achieve data rates
below the one bit/picture element which is the approximate lower
limit for conventional transform coders.

The dissertation includes a detailed analysis of image modeling
aspects of the transform coding problem. Two alternate prediction
algorithms are analyzed for the transform sample variance estima-
tion; the first technique uses a two-dimensional polynomial to model
the image power spectral density; the second technique is a simple
recursive approach based on previously quantized values. The
actual coding algorithms utilize the latter approach.

The generalized phase concept is developed and plays a vital
role in the coding algorithms. Both the Fourier and Walsh trans-
forms are utilized, the former being demonstrated to have superior
performance. A non-negative image constraint is explored via the
Lukosz bound.

The experimental phase of the study includes two dimensional
coding of moﬁochrome, and three dimensional coding of color, as
well as interframe images with coding at 0.38, 0.55, and 0.25 bits
per pixel, respectively. It is ascertained that decoded and recon-
structed images are not significantly degraded. It is also demonstra-
ted that adaptive transform domain modeling is important, and that
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large-size transforms, in conjunction with the proper image model,
can significantly outperform block-encoding techniques.

A requirement for large-size transforms can easily discourage
hardwired usage. Techniques can be developed, however, that could
advantageously be employed for computer -to-computer image
transfer.

Although the new coding-decoding methods are sensitive to
channel errors, it is demonstrated that they produce data which are
statistically equivalent to a discrete memoryless source. Thus,

conventional channel coding techniques can be used.
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I. INTRODUCTION

‘The human visual system can absorb and evaluate vast amounts
of pictorial information. The range of the visual data includes many
different classes such as graphics, biomedical images or aerial
photographs. The human eye responds to color as well as intensity;
consequently the general description of an image also contains spec-
tral information. If the time history of the image is to be character-
ized, the dimensionality of the description is further increased.

Mathematically, an image can be represented by a function of
four variables, I =I(x, y, t, A). The spatial coordinates are x, vy,
the variable t represents time and A is the Wav.elength representing a
particular spectral component. The I represents the energy to which
the eye as a photoelectric detector responds, The energy is a non-
negative quantity; consequently, the following constraint must be

satisfied for an image
I(X, Yy, t, A)=0

This simple non-negative constraint introduces various addi-
tional constraints for image sampling and filtering.

This dissertation is devoted to an adaptive technique of image
coding, In terms of the definition of an image, image coding‘is
specified as a process by which the analog image function I is repre-
sented as a sequence of binary digits. Clearly, the binary represen-

tation must be unique and invertable for a given coder. The relative



efficiency of image coders can be directly compared in terms of the
binary digit sequence length generated to characterize a given image.
1.1 Review of Coding Objectives, Techniques, Results

Although the primary objective of image coding has been
communication bandwidth reduction for pictorial data, there are addi-
tional equally important considerations. The general availability of
increasingly powerful digital computers has permitted numerical
i;nplementations of many image operations. The degrees of freedom
in a typical image are quite large; consequently, the storage and
access of pictorial data itself represents a significant problem.

The definition of image coding given on page 1 is essentially a
source coding process. A schematic of the simplified communication
system is given in Figure 1,1-1.

It is the source encoding/decoding which is relevant to the
nature of pictorial information. Specifically, an efficient source
coding process will utilize the statistics and dimensionality (space,
time, and color, as previously indicated) of the pictorial data. The
conversion of the analog image into a binary stream involves various
distinct steps which may include an analog one- or two-dimensional
prefilter, sampler, quantizer, digital preprocessor, and statistical
encoder. All of these operations are largely determined by the
nature of the source.

The channel encoding/decoding, unlike source encoding/decod-

ing, should be insensitive to the original character of the data.
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Although consideration of the channel and related parameters is im-
portant in the overall communication problem, the relevant encoding/
decoding process is not unique to the nature of pictorial data. It can
be expected that the source encoding process will produce a sequence
of binary digits which are statistically equivalent to a set produced
by a memoryless discrete source. Classical channel encoding tech-
niques should, therefore, be applicable to the source coded image
data without specific reference to the pictorial nature of the informa-
tion.

Although the sampling and quantizing process should be con-
sidered as an integral part of picture coding, it is rarely done. Con-
ventionally, the input to the coder is a sampled and quantized image
which the coding algorithm will process such that its output consists
of a reduced number of binary digits. The conventional sampling is
performed over a rectangular grid and the analog samples are quan-
tified to 64-256 quantum levels. A picture coding algorithm reduces
the source rate, or equivalently the transmission bandwidth require-
ment, by reducing the number of samples and/or reducing the number
of quantum levels.

The well-known and accepted technique of differential pulse
code modulation (DPCM) reduces the number of quantum levels with-
out sample reduction (Cutler, 1952; Graham, 1958; O'Neal, 1966).
DPCM achieves the rate reduction by encoding sample differences
rather than the samples themselves. Many different categories exist

for this coding technique. Compared with the 8-bit conventional
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PCM code, a well-designed DPCM system can achieve a factor of
three rate reduction, 2.5-3 bit per original picture element.

The various algorithms that decompose the image or its deriva-
tives into contours can achieve significant rate reduction for specific
types of images, namely, the ones that can be described by a few
number of contours. The disadvantage of this technique is the high
degree of computational complexity and large buffer requirement
(Graham, 1967). This requirement is that the entire image must be
simultaneously available to the processing algorithm. Contour
tracing algorithms have been adapted to frame-to-frame image
coding (Habibi, 1973). In this case, the frame-to-frame image
difference is subjected to the coding algorithm. The receiver, upon
decoding the difference image, updates the previous frame. Frame-
to-frame coders of this type can achieve a rate of one bit.

Coders that adapt to the local statistics of the image can achieve
additional rate reduction over nonadaptive algorithms. The dual coder
is an example of this technique (Frei, Schindler, and Veitinger, 1972).
In this case, the sampling rate is changed according to the amount of
local picture detail.

As stated earlier, the general image representation requires
four dimensions, two for space, one for time, and one for color.
Most coding techniques consider only monochrome images. Only
recently has color coding acquired more attention (Bhushan, 1970;
Pratt, 1971). Use of frame-to-frame redundancy in images is another

research topic which has not been extensively explored.



1.2 Transform Techniques for Image Coding

Most classical spatial domain coding techniques (contour coding
is the exception) generate code words based on the original picture
elements (PEL) through a one-to-one mapping. In other words, the
bandwidf;h reduction is achieved by requantization, Although the
mapping is one-to-one, inter-element correlations are often utilized
by the coding algorithm (Habibi, 1971). What is fundamentally dif-
ferent for transform coding is that part or all of the image is trans-
formed into another domain via an invertable mapping. The sample
reduction and requantization are performed on the transformed
values and the resultant code words are then transmitted through the
channel. The receiver will attempt to reconstruct the original image
‘utilizing the inverse of the transform upon receiving the appropriate
code words,

Numerous techniques have been developed for transform coding
over the last five years (Wintz, 1972). Although practical ranking
cannot be made, many of these techniques result in data rates as low
as 1 bit/pel. The theoretical justification and motivation behind
transform coding has been rather varied. Transform coding has been
analyzed essentially by statistical tools. One basic motivation has
been sample reduction. The "useful' transforms have the property
that most of the image energy is concentrated in relatively few trans-
form samples. Stating it differently, many transform samples have
very small amplitudes and can therefore be discarded without being

transmitted through the channel.
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The Karhunen-Loeve (K-L) transform is the optimum transform
for images describable by second order statistics (Thomas, 1968). It
has been shown that for correlated Gaussian sources the optimum
quantizer will uncorrelate the samples via the K-L decomposition and
the bit rate is determined in proportion to the transformed va‘riance
samples. The K-L transform, by definition, diagonalizes the image
covariance function. The diagonal terms are the eigenvalues and are
ordered in decreasing magnitude.

The K-L transform is almost synonymous with optimum image
coding, and sometimes the relevant assumptions are neglected. In
the practical sense, K-L transform has somewhat less universal
utility. Even theoretically, the K-L transform is optimum in the
mean-square error sense and only through second order statistics.
For a correlated Gaussian source, the optimality is achieved in fact.
Practical image sources are not Gaussian and have higher than second
order moments which cannot be derived from the first two.

The lack of availability of the covariance function is another
difficulty. There are two fundamental questions to be analyzed:

(1) How meaningful is the concept of covariance to images? Stated in
another way: is image covariance a valid statistical concept for
images which are likely to be nonstationary? (2) If we ignore the
first question, how will the functional form of the covariance function
be determined?

Question number one is, in fact, ignored in practice; and the

perhaps oversimplified statement can be offered that because of the



lack of better statistical understanding of images, no better param-
eter has yet been offered.

The approximation of the covariance function or its transform
domain equivalent can be done either numerically or by a closed
form function. For the first case, one can directly determine the
transform sample variances experimentally and make the bit-

assignment accordingly. An example for the functional form is:
exp (-O!IXl-BIYl)

This simple experimental form has been used successfully in spite
of its gross simplicity (Habibi and Wintz, 1972). The parameters
a and B represent the horizontal and vertical correlation, and
directional separability of these principal axes is assumed. The
exponential form of the covariance function is attractive. It is
simple and the parameters o and B are easily estimated.

A small number of statistical parameters is desirable in any
coding scheme. Since both the receiver and transmitter must know
these parameters, their transmission may require non-negligible
bandwidth and should be considered as part of the overall bit rate.

The separable form of the covariance function, although not
necessarily characteristic of actual image fields themselves, has
served a useful purpose.

Let

Rx,y) = R, (x) R (y)

@



be the covariance function. Let T represent the transformation

operator, then, symbolically, if T = TxTy
T{R(x,y)} = Tx{Rx(x)}Ty{Ry(y)} = 5, (WS (v)

where

T {R =)} =S _(u)
! -
TY .RY(Y) } SY(V)

The generalized power spectral densities Sx’sy should decrease
for increasing values of the transform domain coordinates, u, v if the '
transform operations are to be useful for image coding. This fact is
achieved by the proper choice of the transform operator T. The bit
assignment is proportional to log Sx(u) + log Sy(v). The clear im-
plication is that the principal axis in the transform plane (e.g., when
either u or v is zero) will receive a relatively large fraction of the
available bits. Most transform image coding techniques operate
on adjacent sub-blocks rather than the whole image itself. The
separable covariance function results in effective superior recovery
of the horizontal and vertical image structure. The block boundaries,
however, become an integral part of the image statistics and their
objectionable visual appearance is greatly diminished by the utiliza-
tion of the separable covariance model. On the other hand, at very

low bit rates, excess amount of the bahdwidth may be required to
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maintain the horizontal and vertical structure at the expense of a
greater amount of resolution loss than may be justified.

The choice of the actual transforms have been dictated by the
requirement of computational ease and the potential of practical
implementation. The transformations, considered to date, are
Fourier, Hadamard, K-L, (on sub-blocks) and more recently, the
Slant transform. (Habibi and Wintz, 1971; Anderson and Hugng,
1971; Pratt, 1972; Pratt, Welch and Chen, 1972.) All of these
except K-L can be implemented by ''fast' algorithms.

1.3 Research Objectives

The amount of visual data generated in commercial and
scientific applications is enormous. The ordinary home television
set generates over 500 x 500 samples 30 times a second. The Earth
Resources Technology Satellites and weather satellites typically
produce in excess of 4000 x 4000 and 8000 x 8000 data points, re-
spectively. Data storage and transmission becomes a major prob-
lem for pictorial sources because of the excessive amount of data.
Clearly, techniques that permit greater efficiency (e.g., reduction
in the required bandwidth) are urgently needed.

Numerous approaches have been considered for efficient pic-
ture coding. While these techniques are based on widely different
considerations, they are all motivated by the required simplicity of
potential implementation. Consequently, the developed algorithms
are relatively simple, utilize simple models, and are somewhat

inflexible in terms of their adaptivity to the image structure.
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The philosophy on which this dissertation is based, emphasizes
flexibility and maximum efficiency at the possible expense of
increased computation and buffer requirements. Demonstration of
a highly efficient coding scheme, even if impractical for actual
implementation, provides a new lower-bound for other bandwidth
reduction schemes. Secondly, even if the implementation of a
"hard-wired' configuration of the particular algorithm is not
warranted, it may be valuable in the computer -to-computer
communication environment.

Development of computer networks whose individual computer
members may be separated by vast geographical distances is a
modern concept which allows higher utilization of the modern "super"
computers. The Defense Advanced Research Projects Agency
(DARPA) of the U.S. Department of Defense network is an operational
example, other networks are likely to follow, By design, a large
scale computer network can perform arithmetic operations inexpen-
sively. The data transmission, however, remains a relatively
important cost factor. Image manipulation within the network will
probably be expensive because of the requirement for large -volume
data transmission. On the other hand, implementation of arithmeti-
cally complex coding/decoding algorithms may be easily programmed
for the local "host' computers. The extra amount of computation
may be offset to a significant degree by cost reduction for the

transmission of the visual data.
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Most of the picture coding techniques have considered mono-
chrome imagery only. Multispectral, color, and frame-to-frame
coding requirements have been addressed only very recently and
there is still a great deal of research needed in these areas.

Another objective of this dissertation is to extend the concepts
developed for monochrome imagery to the 'third dimension''; specifi-
cally, color imagery and frame-to-frame redundancy are considered.
1.4 Overview of the Dissertation

Description of a research project on adaptive transform domain
coding is given in this dissertation. The presentation of the objec-
tives, development, and experimental results follow what the author
believes to be a carefully developed logical presentation which is
summarized in this section.

Chapter 1 is the Introduction and as such lays the groundwork
for the basic body of the dissertation. This chapter also places the
research project into perspective relative to the large amount of
research previously conducted in the field of picture coding. The
primary objectives of the dissertation are also spelled out in this
chapter.

Images are a specific class of signals and require careful con-
sideration if extreme redundancy reduction is desired. Chapter 2
addresses this important point of how images can be modeled and
characterized in terms of statistical and deterministic parameters.
Generation of the sampled image is considered, and important com-

parisons with the one-dimensional classical sampling theorem are

ty
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given. The image model as a statistical representation is also given.
A review of the Fourier transform constraints is provided. Error
criteria and image structure are briefly considered. The extremely
important non-negative bound due to Lukosz is analyzed as related to
sampling and relative importance of amplitude vs phase.

Chapter 3 presents the theoretical basis for the adaptive
transform domain coding technique. It begins with the comparison
of source and channel coding and consideration of schematic repre-
sentation of adaptive techniques. Statistical properties of the Fourier
and Walsh domain are analyzed. Phase and amplitude coding are
considered in terms of quantization, sampling, and relative amount
of information. Nonlinear effects of phase quantization are consi-
dered. Relative importance of phase is demonstrated via nonlinear
filtering and gross reduction of amplitude information.

Chapter 4 is the first of three chapters discussing the experi-
mental results. Monochrome image coding is considered in this
chapter. Detailed discussion is given of the following topics: the
algorithm, preprocessing, error analysis. Comparison is made
with the conventional Markov model. Sensitivity analysis of noise
effects on the coding algorithm is performed. Pictorial examples are
included.

Experimental results of color coding are presented in Chapter
5. This chapter briefly reviews the theory of color perception and
representation of color images. Extension of the monochrome algo-

rithm of Chapter 3 is discussed and is followed by pictorial examples.
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Frame-to-frame coding is considered in Chapter 6. Algorithm
development is discussed and implementation includes both the
Fourier and Walsh transforms. Pictorial results are provided.
Unfortunately, the actual visual performance of the frame-to-frame
coder can only be demonstrated in a realistic time-variant medium
such as video presentation.

Chapter 7 summarizes the dissertation.

Appendix A contains the original test images. The numerical
noise generation process of the large Fourier transform is considered

in Appendix B.

(n

"



2., IMAGE MODELING

The fundamental objective of the research project presented in
this dissertation is the development of a very efficient source coding
method for images. The emphasis is on the efficiency even at the
expense of more complex algorithms and data handling. Clearly, the
coder/decoder process must utilize as much a priori information as
possible. The model should utilize both statistical and deterministic
information.

This chapter addresses the role of image modeling in the image
coding process.

2.1 Generation of the Discrete Image

Virtually all operations and transforms discussed in this disser-
tation are performed numerically on discrete samples. It is tempting
to follow the general approach to image coding and restrict the -
analysis to the discrete equivalent of the image. However, it should
be remembered that images are generally viewed in analog form.

The discretization of the image plays a fundamental part in the image
coding process. In addition to the higher dimensionality of the prob-
lem, there are very important factors that distinguish image sampling
from sampling of one-dimensional time dependent signals. These
concepts will now be considered.

Let the image be represented by I = I(x,y), where x,y are
spatial coordinates and I represents the analog image. The image is
sampled on a square grid of lattice distance A. Let the sampled
image be defined IS.

15
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The actual image sampling is always, almost by definition,
performed by an optical system. The image (normally a photographic
transparency, print, or an actual scene) sample of location x, y is
imaged onto a photo detector whose output, ideally, is linearly pro-
portional to the image brightness of that location.

The sample area can be considered via an aperture function
A(x,y). Typically A(x,y) has the value of 1 in a small region around
x,y and 0 elsewhere. Allowing for the finite aperture size, the

sampled image has the following definition.

I5 (x,y) = comb (}-2-) comb ( f) I(x,y) * Ax,y)

(2.1-1)

=/f00mb (12-) comb (%) I(p,s) A(x-p,y-s) dpds

where

comb (x) = z: §(x-n)

n=-®

and 6(x) is the Dirac delta function,
Considering the Fourier integral of this equation, one obtains

(Goodman, 1968)

~ ~

I(uv) = {comb (Au) comb (Av) * I(u, v)}l(u, v) (2.1-2)

The frequency domain coordinates are u, v and the symbol ~ indicates

the Fourier transform.

(a
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Equation (2.1-2) isthe classical result of sampling theory,
however, one must be careful in its interpretation for image-related
applications. The image I is always bandlimited. Visual scenes
have structure at all levels, at the extreme, down to the micro or
molecular structure. Permanent recordings do limit the spatial
frequency extent and therefore become bandlimited. However, they
introduce their own characteristic structure, for example, film
grain. The bandlimiting is also performed by the optical system
that performs the imaging.

The bracketed term in Equation 2.1-2 indicates that the funda-
mental frequency band f(u, v) is replicated at locations n(1/4),
m€l/8), n,m =0, £ 1, £ 2, .. in the frequency plane. If twice the
bandlimit of I is larger than the sampling rate, 1/A, the replicated
bands will partially overlap and undesirable aliasing occurs. The
aperture function A should separate the fundamental band from its

replicas. The requirement on A in this case is that

= . 1_ i
A(u,V) —l,u,Vf [- ZA’ za]
(2.1-3)

K(u, v) = 0 otherwise
equivalently,

A(u, v) = rect (Au) rect (Av) (2.1-4)
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Equation (2. 1-4) contradicts the physical constraint that the

aperture function must be non-negative. Equation (2.1-4) leads to

(L}

the unrealizable condition that
Alx,y) = A% sinc ¥ sinc z (2. 1-5)

where
sinc x = sin mx/nx.

A similar argument indicates (a more formal argument will be
presented under the Lukosz bound section) that an optical system can-
not perform the bandlimiting without attenuation in the band pass. *
On the other hand, the minimization of the attenuating effect of the
optical system and/or the sampling aperture may lead to aliasing.
2.2 Statistical Consideration
The image sampling process and the non-negative image con-
straint are deterministic bounds. There are other descriptive con-
straints on images which can only be utilized through statistical
consideration.
A wealth of knowledge has been developed in statistical commu-
nication theory and related disciplines which can be very useful in the
design of image coding algorithms. The image can be considered as ®
a sample function generated by a stochastic source. The statistics
of the source may be available or can be estimated or, as is usually

done, calculated from the image itself. For the latter case to be
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valid, ergodicity for the calculated parameters usually must be
assumed.

Knowledge of the image second order statistics can provide
significant assistance in the development of efficient image coding
algorithms. The image correlatimm function, R(xl, xz;yl,yz) is

defined as

(2.2-1)

The over-bar indicated ensemble averaging. Iis the image
which in this case is considered as a random process, and I(xi, yj)
is a sample of that process and is considered as a random variable.

The correlation function is usually estimated by involving the
ergodicity argument and the assumption of wide sense stationarity.
If R can be decomposed into the product of vertical and horizontal

correlation functions; then

R y) =R () R (y) (2.2-2)

The approximation of Rx and RY by exponential function has
been utilized for coding (Habibi and Wintz, 1971) as well as filtering
(Pratt, 1972) of images, .and for this case the correlation function is

given by

R{x,y) = e'a|xle's|y| (2.2-3)
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Although the actual image coding techniques discussed in this

dissertation do not utilize Equation (2.2-3), the discussion of this

(«

structure is desirable since many transform image coding algo-
rithms are relying on the separable exponential form. In subsequent
chapters comparison will be made between such approaches to image
coding and the new algorithms presented in this dissertation. Some
of the later analysis will require an explicit form for the correlation
function; for example, the effect of additive noise on the coder, and
the use of the exponential form because of its simplicity.

One should emphasize that Equation (2.2-1) refers to the
recorded sampled image. The correlation properties of the analog
visual scene are rarely available and can only be inferred from

detailed knowledge of the sampling parameters.

3}

The Fourier transform of Equation (2.2-1) is the conventional
definition of power spectral density, S(u,v). Using the aperture

function A of subsection 2.1, it is straightforward to show that
X 2
S, (w,v) =|Kw, v)| S(a,v) (2.2-4)

here, the subscript s denotes the sampled version. As indicated

previously, the lack of precise knowledge of the sampling parameters

[0

does not permit accurate modeling of the original image. The
structural form of Equation (2.2-4) permits a somewhat different

interpretation. The sampled image can be considered as one which
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has been processed by the linear spatial filter A(u,v). Consequently,
the conventional PCM code available to the image coder reflects the
essentially low-pass filtering effect of the sampling process.

2.3 Consideration of the Transform Domain

Image coding algorithms generally operate on image elements
directly. The significant advances in digital hardware technology
stimulated research in a new approach to image coding which have
come to be known as transform coding. In this section, a short
overview is given to the transform domain.

Let the image be denoted by I as in Chapter 1, I = I{x,y, A, t),
indicating the functional dependence on the spatial coordinates (x,y),
color (A) and time (t).

A transform coder algorithm operates in a domain other than
the original described by the four parameters: x,y, A, t. The

following symbolic representation can be written

I(ul,uz,u3,u4) = T{I(X:Y: As t)} (2. 3-1)

T is the operator which performs the transformation between the two
domains and it should be invertible. The latter requirement is due to
the fact that without coding no ambiguity should be present in the

image transformation. Consequently,
Ty, 20 8) = -1ty 00000} (2.3-2)

and
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[()

TT " =T "T=1 (2.3-3)

where T is the identity operator.

Other than the requirement for invertability, T is completely
general; Specifically, it may be linear or nonlinear. The operator
T may be decomposable and it can operate on the continuous analog
image or its sampled equivalent.

The choice of T is motivated by hope that T(ul,uz, u3,u4) can
be coded more efficiently.

Practical requirements restriét T to mathematical forms
which are numerically implementable without excessive computation.

The transform algorithms which have been successfully implemented

"

can be grouped into three classes.

a) Karhunen-Loeve (K-L) Transform

The image I is expanded into the eigenfunctions of the

image covariance matrix. Although this transform is important
from the theoretical viewpoint, its practical value is much less
significant. The difficulties are lack of "fast'" implementation, and
in addition, the exact form of the covariance function usually is not
available. In the presence of noise, the eigenfunction expansion

will become degenerate. This is very significant and has not been

4

considered in the context of image coding. The K-L transform

w

emphasizes the second order image statistics., Its optimality is

achieved for Gaussian processes which do not closely represent
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ii'na.ges in general. The K-L transform assumes stationarity which
is an additional assumption that is rarely met for typical images.
b) Trigonometric Decomposition (Fourier Transform)

The image energy tends to concentrate for low frequen-
cies, e.g., low values of Us Uy, g, Uy, These deterministic and
statistical properties are useful to the transform coding algorithm
and will be further considered in Chapters 3 and 4. The multidimen-
sional Fourier transform is decomposable into a set of one-dimen-
sional transforms and it can be implemented by the 'fast' Fourier
transform algorithm. The Fourier domain is also constrained by
the Lukosz bound (subsection 2.5).

c) Other Orthogonal Decompositions

Transform coding has also been successful in utilizing
various fast orthogonal decompositions. The most well known among
them is the Walsh transform. Although, no simple mathematical
justification can be offered for their successful utilization, it can be
shown that these functions are ''approximately' trigonometric
functions.

The particular value of the transforms under this
category is their close similarity to the Fourier transform, however,
they are suboptimal to it. What is meant by optimality in this case
is deferred to the experimental chapters. In spite of this subopti-
mality, the non-trigonometric, orthogonal function decomposition

may be preferred because of the ease of numerical implementation,
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The Walsh decomposition can be accomplished without multiplicatio;l
or division, and, consequently, its digital implementation is superior
to that of the Fourier transform (Harmuth, 1972); although, this fact
is more significant for smaller computers without hardware floating
point multiply and divide registers.

Equations (2.3-1) and (. 3-2) are implemented in numer-

ical form; therefore, the discrete representation will be considered,
If T is restricted to be a linear operator, these equations can be

represented in (generalized) matrix notation,

I(ul,uz,u3,u4) = Zx %%: Zt: A(ul,uz,u3,u4,x, v: Lt) I{x, v, A, t)

(2.3-4)

In all practical cases, the multidimensional operator can
be factored into a number of operators equal to the dimension of the
problem. Let A = A1A2A3A4 and equivalently A = Al(u,x)
A, (u,,y) Aglug, A) Ayluy,t).

Specification of Ai’ i=12,3,4 defines the transform and

the numerical implementation. The following well-known representa-

tion exists for the discrete Fourier transform (Andrews, 1970)

-1 20
Afw,x) = (VN)  exp - 2 (2.3-5)

I
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Similarly for the Walsh transform

A@,x) = (\/F)-l(-l) (2.3-6)
N is the order of matrix A(u ,x). It is arbitrary for the
Fourier transform but restricted for the Walsh transform to values
Zn, where n is a positive integer. The variables XU, in Equation
(2.3-6) are the binary representation of x and u respectively.
2.4 Error Criteria
Between the source and the destination, the image is subjected
to significant processing., It is important to note again that the com-
munication link of Figure 1. 1-1 is digital and the source, the visual
scene, is analog. It is highly desirable to quantify the image degra-
dation due to the coding algorithm. Let I be the input to the coder
and/I\its estimate at the destination, A measure of error, E may be
schematically specified as a functional dependence G on the difference

A
between I and I,
N )
E=G(I-1) (2.4-1)

with the constraint that G(0) = 0.
Although the practical implementation of Equation (2.4-1) is

extremely useful, it is still an unsolved problem.



26

Determination of a useful error measure for image evaluation
is extremely difficult because even the most approximate mathema-
tical modeling of the human vision is available only in limited cases,

A conventional compromise to Equation (2.4-1) is the mean-
square error between I and/I\, which can be written in terms of the

previously-developed notation as

o 2
E = [I(X, Y, A, t) - I(x’ Yy, A, t)] dXdeldt
Xy At

(2.4-2)

The equivalent form of Equation (2.4-2) for the discrete case

is
E = ZZZ};Z (I, v, M t) = Tix, y, A, 1)} 2 (2.4-3)
Xy t

The image energy, Ie’ is obtained from the above two equations by
letting /I\= 0. Consequently, the normalized mean square error as
used in Chapters 4 through 6 is given by 100 x E/Ie in percentages.
2.5 Non-Negative Bound (Lukosz)

The Fourier transform of a non-negative signal obeys various
well-known constraints. Perhaps the most important is the amplitude

constraint,

«

[
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Let
G(u) = f g(x) e-erjux dx (2.5-1)
if
glx) =0
then
|G(u)| < G(0) (2.5-2)

The inequality (2.5-2) is well known (Goodman, 1968). The
very important extension of this inequality to bandlimited non-nega-
tive signals has unfortunately been relegated to obscurity. A pro-
perly sampled image does represent a non-negative band-limited
signal and as such obeys the inequality discovered by W. Lukosz
(Lukosz, 1962) and is designated in this dissertation as the Lukosz
bound.

In his original paper Lukosz was concerned with the modulation
transfer function properties of optical systems as related to incoher-
ent imaging. The Fourier transform of the modulation transfer
function (the point source image) of an optical system is non-negative
and has an absolute cutoff frequency. Given this information, Lukosz
intended to determine if any additional constraints are applicable

beyond Equation (2.5-2). Structurally, the incoherent optical
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transfer function and the Fourier transform of a band-limited non-
negative image are equivalent; that is to say that by definition they
satisfy the same requirements. Consequently, the mathematical
derivation of the Lukosz bound is applicable to a band-limited image
as well as to the optical transfer function.

The Lukosz bound can be derived for any number of dimensions.
The bound becomes stronger with increasing numbers of dimensions.
The mathematical derivation of this bound will be demonstrated in
this section., For derivation of the two-dimensional case, the reader
is referred to the original Lukosz paper.

Consider the Fourier transform paid as in Equation (2.6-1),

with the additional constraint:

G(u) =0, for u= L (2.5-3)

where u is the cutoff frequency. Note also that Equation (2. 5-2) is
already applicable.

Let h(x) be another non-negative function, not restricted to
be band-limited. Clearly, the convolution of h and g is also non-

negative.

h*ng h(s) g(x - s)ds =20 (2.5-4)
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Assume h to be Fourier transformable,

0

Hu) = f hix) e ~2TIWX g

Furthermore, it is easy to show that h * g satisfies Equation
(2.5-4) by utilizing the Fourier transform properties of the convolu-
tion integral. The previous statements become even more obvious in
the framework of linear system theory, as Lukosz argued, where g
represents a low-pass filter function and h is the input signal. How-
ever, the specific physical argument, while intuitively satisfying, is
unnecessary to the mathematical derivation.

Let h(x) be the Dirac comb function, comb x/L, as defined
previously in Equation (2.1-1). The comb x/L is a periodic function,
where the period is L., Therefore, a Fourier series representation
of comb x/L exists, and it is (see also Figure 2.5-1 for the graph-

ical demonstration):

o0
comb® =1 +2 21 cos 2mx/L (2.5-5)
n=

Let
G(u) = |G(u)' exp jé(u),
and let

1/Lzu /2
m
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then the convolution integral will preserve only the n = 1 term in

Equation (2.5-5):
h* g = G(0) +2|G(1/L| cos {2n x/L +6(1/L)} (2.5-6)

Clearly, the inequality (2.5-2) is not sufficient to prevent the viola-
tion of inequality (2.5-4). The additional constraint must be imposed

that
|G(1/L)| s-é- G(0) for 1/L > u_/2 (2.5-7)

Equation (2.5-7) is, in fact, the Lukosz bound for the region
um/Z Su<u_ . The derivation of other segments is based on
choosing appropriate forms for h(x). Specifically, let h(x) have the

following form

x -1/8

h(x) = ‘é‘ {comb IS P + comb L1/8}

L
Equation (2.5-8) has the following Fourier series representation
(see again Figure 2.5-2 for graphical demonstration).

o0

1+2 2 cos X n cos 2mnx/L

h(x)
* n=1 4

8

]

1 +/2 cos (2m x)/L +2 Z cos %n cos 2nL x/L
n=3

(2.5-8)
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For 1/L > um/3, the form of h * g is

h*g =G(0) + ﬁ'c;(l/L)l cos {2mx/L +e8(1/L)} (2.5-9)
Since h * g must not be negative,

|G(1/L)| < 1/\/2 G(0) for 1/L = u /3 (2.5-10)

Inequality expression (2.5-10) provides the next section of the
Lukosz bound, namely, um/3 <u< um/2. It is equally valid for
um/Z <uc< u_ but it is weaker than (2.5-7), therefore, not useful
for that region.

The general form of the non-negative bound is obtained by
choosing more complicated forms for h(x). The general inequality

is the following

]G(u)| <G(0) cos ~qforu_/n<us<u_/(n-1)

(2.5-11)

and it is demonstrated in Figure 2.5-3. The argument u in in-
equality (2.5-11) is equivalent to 1/L in inequalities (2.5-7) and
(2.5-10).

Inequality (2.5-11) is the Lukosz bound for one-dimensional,
non-negative, band-limited signals. Its extension to higher dimen-

sions can easily be obtained by successive Fourier decomposition
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Figure 2.5-3. One-Dimensional Lukosz Bound

Figure 2.5-4. Two-Dimensional Lukosz Bound

34
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of the various dimensions. As previously stated, only the results
will be given here.
Let g be non-negative, have two-dimensional Fourier trans-

forms, G, and have band limits, u_, v
m’ m
G v = ff gty e 2 g ay  @s.12)

G(u,v) =0, foruzu_orvza2v (2.5-13)
m m

The functional form of the inequality for G is (Figure 2.5-4):

-;—“G(u,v)l + IG(-u,v)’} = %“G(u, V)I + IG(u, -V)I}

< G(0,0) cos cos

I
n+l m-+1

(2.5-14)

for
u /nsusu_/(n-1)
and

vm/n Svs< vm/(n—l)

The actual derivation (Lukosz, 1962) is straightforward

although somewhat involved. By letting G(u,v) = Gu(u) Gv(v) and
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applying the one-dimensional bound to Gu and Gv individually the
validity of Equation (2.5-14) was demonstrated by Lukosz. Note

if G has directional symmetry, then
Hlow v +|ctu v = FHlowv)| +|cw@ v} = |cw@ v
2 ’ t4 , 2 ’ ’ ?
(2.5-15)

Equation (2.5-15) can easily be proven by the well-known property of

the Fourier transform of real functions in which G obeys:

G(u,v) =G (-u, -v) (2.5-16)
It easily follows that
|6, )| = |G(-u, -v)[ (2.5-17)
and
|G (-u, v)] =] Glw, | (2.5-18)

It can easily be shown via Equation (2.5-18) that if ’G' is symmetric
around the u axis, it has symmetry around the other axis as well,
Before proceeding to the derivation of additional constraints
based on inequality (2.5-14), a few general comments on the impor-
tance of this inequality are in order.
The Lukosz bound restricts the amplitude range in the Fourier
domain, it does not, however, constrain the values the phase may

assume, One can qualitatively argue that in some sense the phase

"

"
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carries more "information'' about the non-negative sampled image
than the amplitude. This statement, which will later be considered
in a more formal presentation, is quite significant for the various
areas of image processing, including holography, where, in fact,
the superiority of phase information has been observed experimen-
tally (Kermisch, 1970).

Actually the inequalities (2.5-11) and 2.5-14) can further be
strengthened. The average values of Figures 2.5-3 and 2.5-4 are
clearly larger than 1/2 and 1/4, respectively. It can, however, be
shown, and again the reader is referred to the original paper for the
derivation, that, 1/2 G(0) and 1/4 G(0, 0) are the appropriate limits
for the one- and two-dimensional cases, respectively. For the one-

dimensional case

um I
/ |cw)| du = 5 G(0) (2.5-19)
0

and for the two-dimensional case

u v

m m 1
/’ f IG(u,v)' dudv < 7 G(0, 0) (2.5-20)
0 0

The implication of Equations (2.5-19) and(2.5-20) is that for

no image, can G actually assume the upper bound in the Fourier
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domain. The functions which, in fact, satisfy Equations (2.5-19)

and (2.5-20) with equality are for the one-dimensional case:

|| = G(0) [1 - -‘|1-‘l1] B UER (2.5-21)
m

For the two-dimensional case:

'G(u,v)l = G(0,0) [1 - juil-] [1 - .w!'x-[] , lu' < u 'v'svm
m m
(2.5-22)

It is interesting to note that G reaches the bound at a single point:
1 1
G(ium) = 3 G(0), and
/1 1 1
— — . e— G 0 0 L)
G(z um, va) p) ( ] )
Except for this point, G as defined in Equations (2.5-21) and (2.5-22)
lies below the appropriate non-negative limit. The two special
functions, (2.5-21) and (2.5-22), represent for the optical case the
modulation transfer function for the uniformly lit slit and rectangular
aperture, respectively.
The various inequalities (2.5-7),(2.5-14), (2.5-19), and
(2.5-20), allow an information theoretic interpretation of the
Fourier domain for non-negative signals.
The entropy associated with an image is invariant under the

Fourier transform as well as any other transform for which the

%
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Jacobian of transformation is unity. If no a priori information is
available, the image entropy is uniformly distributed in the frequency
domain by assumption. This type of reasoning yields upper bounds
on the entropy rather than entropy estimates for actual images
whose correlation properties are known. Given, thus, that the
image entropy is divided between amplitude and phase, it is im-
portant to learn what affects the constraints (2.5-7), (2,5-14),
(2.5-19), and (2.5-20) will have on the entropy division, Assump-
tion of no a priori information implies, on the basis of Equation
(2.5-2) alone, that the Fourier domain represents a uniform entropy
density for spatial frequencies below the band limit. Restriction of
the allowed amplitude range will proportionally limit the entropy.
The ratio of the entropies with and without the Lukosz bound is 1/2
and 1/4 for the one-dimensional and two-dimensional cases, respec-
tively. This statement follows from the inequalities (2.5-19) and
(2.5-20). One can argue that, for band-limited, non-negative
images, the entropy associated with the phase is larger by a factor
of 2 and 4 for the one- and two-dimensional cases, respectively.

The optical analog is the case of incoherent imaging, for which
it can be argued, as Lukosz did, that the optical system by virtue of
its low-pass filtering will limit the information transfer by 1/2 and
1/4 for one and two dimensions, respectively.

The Lukosz bound is a significant contribution to the science of

the signal processing of non-negative band-limited signals. The



implication of the importance of phase over amplitude in digital
image processing is useful information and has strongly motivated

the research in this dissertation.
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3. IMAGE SOURCE CODING

The transmission of data consists of two distinct coding steps:
source coding and channel coding. Schematic representation of the
classical communication problem was reviewed in Chapter 1. This
dissertation treats the image coding problem as one which fits into
the domain of source coding. This approach permits structural
separation of image coding from the consideration of channel errors.

In this chapter various aspects of image coding are considered.
The basic theme of the dissertation is that the phase (yet to be
explicitly defined) is the primary parameter whose fidelity should
be maintained in the coding process. The various steps that con-
stitute the coding process are considered in the context of phase
coding. The primary transform domain is that of the Fourier, how-
ever, extension is made to the Walsh domain as well. In f;ct,
successful utilization of phase in other than the Fourier domain is
a discovery which, prior to this dissertation, has not appeared in
the literature as far as the author is aware.

3.1 Statistics of the Fourier Transform

The various coding schemes of Chapters 4 through 6 utilize
the properties of the transform domain. The primary transform is
the Fourier which has extremely advantageous properties from the
coding standpoint. The close similarity between the Fourier and
Walsh decompositions makes the latter transform also useful. The
statistical properties of the Fourier transform domain are explored
in this section, the extension to the Walsh domain is the topic of the

next section,
41



42

“

Let ’f(gg) and T(g) be a Fourier transform pair. To simplify

notation, the image coordinates are condensed into vector form.

o

Vectors u, x have a number of components equal to the dimension
of the coding.problem. The monochrome problem has two dimen-
sions for this case,

u = {u, v}

x = {x, v}

The frame-to-frame, or color coding problem is of three dimen-

sions, for this case.

= {u, v, w}

Is

= {x, v, t}

X

The vector notation permits statistical analysis of the Fourier trans-
form of an image without specification of the dimension.

In addition, the infinite extent of the image plane implies that
the Fourier domain is uncorrelated in the limit as the number of
samples grows to infinity (Davenport and Root, 1958, Section 6-4),

The functional form of the power spectral density is required,
if quantization of the transform samples is to be accomplished

efficiently, All transform coding techniques require an estimate

1

of the power spectral density, their overall performance is largely
determined by how well the power spectral density estimation is

accomplished.



43

Information-theoretic discussion of the frequency plane, based
on the Lukosz bound, already implied a certain superiority of the
phase. Stochastic consideration of the Fourier domain allows addi-
tional interpretation, in fact, a general definition of the phase. This
dissertation expands the phase concept to what will be referred to as
the unconventional definition.

a) Conventional Definition

The complex valued function Tis the sum of real and

imaginary components,

~

Tw =T @ +j L)

the phase 8(u) associated with u is normally defined as

8w = tan™" Tw)/T; (@) (3.1-1)

The definition in Equation (3. 1-1) is required if the various well-
known phase-related deterministic properties of the Fourier trans-
form are to be utilized.
b) Unconventional Definition
Under the assumption, based on experimental evidence,
that TR and ‘ii are approximately Gaussian, 6 is uniformly distributed

and uncorrelated for different values of u, that is
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Efolu,)s 8(a,)} =2/3 7 s, - u)) (3.1-2)

and

S S R Y S

In most practical situations S(u) is a smooth surface, which means

that S(gl) ~ S(u,) for Igl - Ezl < M. The expression IEI - gzl is the

Euclidean distance for vectors u, and u,. For the sampled case, a

reasonable value for M might be at least 5 (in harmonics)., The

comment should be interjected that the I can be only approximately

Gaussian since its components are restricted in range by the D.C. "

term and for the band-limited case by the additional Lukosz bound.

1]

Based on the smoothness of S, the following stochastic
unconventional phase definitions can be made, with the previously-

made restriction lgl - Ezl < M.
ofu;s 1) = tan” L (a))/1; (u,)} (3.1-4)

Subscripts K and L represent the actual independent subscript assign-

ments from I and R (imaginary and real) if u, # u,. Kand L repre-
sent different subscripts if u, =u,. The following forms for 6 are

allowed under the unconventional definition
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6y, u,) =tan'1{IR(21)/lR(gz)}. u, #u,

-1
o(u; up) = tan” {Ip (w))/L(u))}
The following definition is not permitted
8(u,, u.) =tan'1{1 (u,)/L, (u )} =
4y 4 r(2)/ 1R ())f =37

since, in this case, 8 is a single value rather than a random var-
iable. The stochastic phase definition is important because it gives
validity to phase coding in domains other than the Fourier. Exper-
imental demonstration of the utility of the stochastic phase will be
given in this chapter.
3.2 Extension to the Walsh Domain

The Fourier transform of an image tends to be uncorrelated.
The existence of uncorrelated samples permitted definition of the
generalized phase. Although the Fourier transform is unique in
having the above-mentioned properties, other linear transformations
may approximate the Fourier transform in some sense. One spec-
ific implementation will involve the Walsh functions,

Let f,. be an element of an N component vector (that is

k

K=1, 2, ...N). Two distinct transforms of fk and a, and bj which

are also elements of N component vectors, therefore



a; = % Gypcfie (3.2-1)

b, = Zk: H (3.2-2)

where matrices G and H are invertible matrices of order N. The

summation in Equations (3.2-1) and (3.2-2) is over N components,
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the same convention will remain in force for the rest of this section.

Although, Equations (3.2-1) and (3.2-2) can represent any
linear decomposition, the specific assignment will be made where
G will represent the Walsh and H the Fourier decomposition.

By straightforward manipulation, it can be shown that

-1
-1
f = G, .a. = H, . b, 3.2-3
k JZ kj a_] Z ki 7j ( )
and, therefore,
a, = E: E:G H-lb (3.2-4)
1 3 m 1k ki 7§ ‘

The following definition is introduced for notational convenience

-1
Z,. = G. H . 3.2-5
1j Zk: jk Tkj G )

Consequently, the transform values are related through the linear

relationship:

(v



a, = ) Z 430 (3.2-6)

Let {gi(xk)} and {hi(xk)} be orthonormal basis vectors generating
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the space in which fk is defined. Note that gi(xk) is the k-th element

of the i-th vector. Obviously, both i and k have index values 1
through N.

For the special case where Gki = gi(xk) and Hki = hi(xk)’ it
i to d trate that G -6l ana ¥ - u7!
is easy to demonstrate that G, =G,. an ik - Hige

It is desirable to treat the ai's and bi's as zero mean real

random variables and consider transformation of the second order

statistics. Clearly,

E{a_t 2} = ZJ: > Z&jznkE{bjbk} (3.2-7)

k

If the Fourier designation is given to Hik’ then, according to the

results of the previous section,

2
E{b.b }= 2 5. 3.2-8
i Pk o; GJk ( )
where
by = 1 i=k
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Consequently,

) 2
E{a& an}— Ej:ztjznjaj (3.2-9)
21 2 2
E{aL}- Ej :zéjej (3.2-10)

The previous section indicated that Fourier transform sam-
ples have Gaussian distribution. By Equation (3.2-6), it is observed
that the a.'s also tend toward a Gaussian stochastic process, If the
choice for Gik is such E{a{lan}a‘ 6pk E{ai} » that is, the a{l's are
also uncorrelated, one can define amplitude and phase on pairs of
random variables, say ays @ .

If E{ai} = E{ai} , the functional form of appropriate proba-
bility density functions for the amplitude and phase should be the
same as the ones defined for the Fourier transform.

The specification of G for the Walsh decomposition can be

written in terms of the appropriate orthonormal basis vectors.

Utilizing the conventional notation (Harmuth, 1972)

Gki = wal (i, xk) (3.2-11)

Walsh functions can be generated through the following

difference equation,

1Y
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wal (2j + P, x) =

(_1)[5/2]+P {Wal [j, 2 (x+ %)] + (1P a1 [j,(Z(x - -};)]}

(3.2-12)

P=0or {; j=0,1,2,---

1
2

|-

wal (0, x) = 1 for - sSx =<

= 0 otherwise

and [j/2] is the largest integer smaller than or equal to j/2.

The Z matrix can be generated by decomposing each Walsh
function into a Fourier series. Walsh functions have similar sym-
metry as the sines and cosines. Denoting the even and odd Walsh

functions as cal and sal, respectively, it follows

wal (2i, x) = cal (i, %)

wal (2i - 1, x) = sal (i, x) (3. 2-13)

As previously indicated, real Fourier decomposition is where
the basis functions, hi's are sine and cosine functions, similarly the
gi's are the cal and sal functions. Because of the even-odd sym-
metry of both sets of basis vectors, even functions of one set can be
represented by only even functions of the other set. Similar repre-
sentation holds for odd basis vectors. The same symmetry results

in the following restriction for the Z matrix.

Z) =0 for |2 - k| = odd integer (3.2-14)
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The specific result of Equation (3.2-14) is that elements in
the Walsh domain which are separated by odd-number elements will
be uncorrelated. The choice of adjacent element pairs for amplitude
and phase spécification is strongly motivated by the symmetry
consideration.

Although, simple functional form does not exist for the Z
matrix, numerical generation of the elements can easily be per-
formed for specific transform pairs. As an example, consider the
Walsh into Fourier decomposition for N = 1024 values. For a spec-
ific choice of £, e.g., the £-th Walsh function, {-th row of the Z
matrix is generated. The inverse of Z is similarly generated by the
decomposition of particular sine and cosine functions into Walsh
functions. Numerical examples are shown in Figures 3,2-1 through
3.2-8. These figures indicate the recognized similarity between the
Walsh and trigonometric functions. It is interesting to observe that
diagonal elements of Z dominate each row.

For completeness, the 'fast'' computability of the Walsh and
Fourier transforms should be pointed out. The straightforward
application of Equations (3.2-1) and 3.2-2) requires N2 operation
(operation A one complex multiplication for Fourier and 8 one addi-
tion or one subtraction for Walsh). The particular form of G and H
permits a much more rapid implementation of these transforms
where the number of operations is reduced to N log N (Andrews,

1970; Harmuth, 1972; Cooley and Tukey, 1965).
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The ''fast' algorithms are important for efficient coding
implementation. Particularly for large data blocks, the efficiency
factor N/log N can be significant., The 'fast' algorithm is available
for the Z matrix as well and it was utilized for the generation of
Figures 3.2-1 through 3.2-8.

3.3 Quantization

The continuous image parameters must be expressed in
discrete, that is to say quantized, form before numerical operation
on them can be performed. Formally, quantization is equivalent to
a noninvertible mapping of the real numbers onto a finite set of
integers. It is also equivalent to a one-to-one mapping of finite or
semiinfinite sections of the real axis to a finite set of integer
numbers.

According to the last definition, each member of a set is
assigned an integer designation. All members of a set are assigned
the same integer assignment. Conversely, given a particular integer
assignment, no unique determination of the original real value can
be made.

It is obviously imperative to optimize the appropriate quanti-
zation procedures. This step involves the selection of the optimum
quantization rules, based on the statistical model of the parameter
to be quantized.

The discretization of a continuous parameter always results
in a permanent, hopefully negligible, distortion. This distortion may

appear as an effective noise term or an actual structural distortion.
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For the first case, the number of quantization levels are large and
the appropriate effects can be modeled by additive white noise. The
second case occurs for coarse quantization, for which the nonlinear
aspect of quantization dominates.

The following basic model will be considered. Let x be a
continuous random variable with a probability density function P(x).
The functional form of the quantization can be expressed in terms of

the previously-introduced rect function as

j X, - X,

N
A 1 1
Q(x) = JZ:I X, rect -—J—-—-—J—-_—l(x -5 (xj +xj_l))] (3.3-1)

In Equation (3.3-1) there are N integer assignments. To each
integer another real value, /x\J is assigned. '1"he/x\j is the reconstruc-
tion value or the estimate of x. The specification of the parameters
in Equation (3.3-1) should be such that’:?j should closely "approxi-
mate' x. If the mean-squared error (MSE) is the performance

measure, then
Error = min )fP(x) (Q(x) - x)% ax (3.3-2)

Where minimization is performed over all xj’s and xj's for a given

N. The solution of Equation (3.3-2) is well known (Max, 1960); it is

1 A .
=5, -%. ;) )=2,... N 3.3-3
X 26:\3 XJ-I) j ( )
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and
X4 A~
/ (x-xj)P(x)dx=0,j=l,2,...N (3.3-4)

X,
J

Equations 3.3-3) and (3.3-4) can be solved by iterative tech-
niques for given density functions. A note of caution should be inter-
jected. Equations (3.3-3) and (3.3-4) are formal solutions given
the P(x). In image coding, the relevant parameters are themselves
estimated. Utilization of an erroneous model may result in a poor
quantization procedure even though the solutions in Equations (3,3-3)
and (3.3-4) are faithfully followed,

If P(x) is uniform over a finite region, say [xo, xN] ’

Equation (3.3-1) becomes the uniform quantizer.

N -
Qu(x) = sz (Jl-\l_l) (xN - xo) rect {X-N—N_—}E—o (x - (Jﬁl-) (xN-xob}

(3.3-5)
Another often-used quantization strategy, known as compand-
ing (Smith, 1957) involves a two-stage process. Firstx is mapped
into y, y = f(x), which is random variable uniformly distributed
between [0, 1]. The random variable y is operated on by the uniform
quantizer. The reconstruction levels of x and y are determined by

the inverse mapping, f-l, & = f-1 ’y\j). The mapping is the distribu-

J

tion function of x:
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y = f(x) = fx P(u) du (3.3-6)
Lo
The reconstruction levels xj and Yj are uniquely related by
the one-to-one mapping, f. By construction, yj occurs with equal
probability, thus, this case corresponds to the maximum entropy the
quantized values may have. This latter type of quantizer procedure
is suboptimal when MSE is the performance criterion; however, for
numerous density functions, optimum performance is closely
approached.

Quantization schemes can be closely approximated by sim-
plified procedures for fine quantization (Panter and Dite, 1951).
The coding schemes of Chapters 4 through 6 involve coarse quanti-
zation in the transform domain, thus, these procedures are not
relevant and will not be further explored.
3.4 Amplitude vs Phase Quantization Effects

The underlying theme of this dissertation is the superiority
of phase information. It is particularly relevant to consider distor-
tions introduced by the quantizing process. In this subsection, the
generalized phase and amplitude will be considered. The assumption
is made that application of the image transform (Fourier or Walsh)
results in uncorrelated samples. Amplitude and phase are defined
over pairé of values as in subsection 3.3 under the unconventional

definition.

¢
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Let 6 and r be a phase and amplitude pair where 8 is uniformly
distributed in [ -m, ] and r has Rayleigh distribution (Thomas, 1968,
Chapter 4). The following procedure will be implemented. Ampli-
tude and phase will be independently quantized, one at a time, and the
appropriate MSE generated will be compared.

a) Phase Quantization

The uniform quantizer is optimum for the phase. The
actual error in the N level quantization process of a single phase

value in one of the N regions, say [0, 27/N], is

Error = A%fel® _ ¢ (3.4-1)
The A2 is the energy associated with random variable r. Mean-
squared phase error (MSE) is obtained by averaging Equation (3, 4-1)
over 6 and all N quantization regions. Because of the symmetry in

6, each of the quantizing sections is statistically equivalent,

therefore
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2A211 --Z-N;'énm cos (e -§) deE (3.4-2)

]
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a——

The more meaningful expression is the relative mean-squared error

(RMSE) or, equivalently, where r is assumed to have unit energy,

RMSE = 2{1 N %} (3.4-3)
m

The approximate form of Equation (3.4-3) for large values of N is

1 2
RMSE (N is large) ~ §(F1\—I)

Quadratic dependence of the MSE on N is typical for all quantization
procedures for large N.
b) Amplitude Quantization

Amplitude is assumed to be Rayleigh-distributed,

1/ 2
-7(%)

P(r) = -’52- e , r<0 (3.4-4)
g

¢
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Maximum entropy quantization (companding)of sub-
section 3.6 will be utilized (Habibi, 1973). The function f is re=~

quired, which is the appropriate distribution function:

2

1/s
r - e -
f(r)=f ize 2(0) ds
0 o
(3.4-5)
- l(z) 2
=1-e 2\o
The inverse of f is also available in closed form of

£ Ys) = o /-2 1og (1 - u) (3.4-6)

Let o = 1; the RMSE for the Rayleigh process using the formalism of

subsection 3.3 is

2
r I
i 2

N
1 Z t 2
RMSE =5, f (r - ri) re dr (3.4-7)

Note that the energy for the normalized (o = 1) Rayleigh process is 2,

O

2
f r3'3-r /zdr

0

i
N

(3.4-8)
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Evaluation of Equation (3.4-7) requires numerical tec;h-
niques. The appropriate numerical integration utilized a Hermitian
sixth order formula. Each region, [ri-l’ ri], was evaluated at 100
equidistant values. In addition to the integrand (denoted by R), the

particular numerical integration requires evaluation of the first and

second derivatives as well,

(3.4-10)

/\
R?(r) = <r5 . 2, rt +(’r‘f - 7) 3 +10 rz/r\i

2
+<6 -3?f>r -4§;>e'r /2

Numerical integration is performed over each of the N

(3.4-11)

sections and summation then performed over the N sections. The
RMSE due to phase or amplitude quantization is shown in Table 3.4-1.
The relative importance of phase over amplitude is effectively
demonstrated by this table, particularly for coarse quantizatfon.
Ignoring amplitude completely causes 21.5 percent error of the total

image energy. The single-level quantizer collapses the entire range
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of the random variable into a single a priori known value. Conse-
quently, all randomness associated with that variable is removed,
thus the associated entropy is zero. Essentially, the same result is
obtained in holography (Kermish, 1970) utilizing a much more com-
plicated physical model. The phase requires 2 bits (N = 4) to main-
tain the same amount of MSE that is achieved by zero bits for ampli-
tude. Similarly, 1 bit amplitude is "worth' 3 bits of phase. Since
the majority of transform values in the experimental chapters
requires a very low degree of quantization, the quantitative results
of Table 3.4-1 are highly relevant, and demonstrative of the phase

superiority.

TABLE 3,.4-1

THE RMSE INTRODUCED BY PHASE AND
AMPLITUDE QUANTIZATION

Number of RMSE RMSE
Quantum Levels Phase Quantization  Amplitude Quantization
1 2.0 0.215
2 0.73 0. 042
4 0.20 0.025
8 0.05 0.011
16 0.013 0.0048

32 0.0031 0. 0020
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3.5 Non-Linear Effects of Phase Quantization

The general comment was made in subsection 3.5 regarding
the nonlinearity of the quantizing process which is quite significant
for the case of coarse quantization. The appropriate effects are
structural and for them, the MSE may not be a descriptive parameter.

The importance of phase information has been emphasized.
Also, the achievement of a high degree of redundancy reduction
requires that most transform domain samples be quantized at few
quantum levels. Therefore, it is of value to demonstrate the type
of global distortion that results from quantizer nonlinearity. Spec-
ifically, coarse phase quantization will be considered.

The effect of phase quantization has been previously considered
in relation to holography (Goodman and Silvesteri, 1970; and Dallas,
1971, a and b). Their analysis is applicable to image coding, with
some important modifications. The primary difference is that unlike
a digital image display, in holography, the final image inherently is
an energy representation. Consequently, extraneous images and
ghosts diminish quadratically with the number of quantum levels for
holography. A similar dependence is linear for image coding, thus
the distortion is more emphasized.
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