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ABSTRACT

A fast minimum mean-square error technique for
restoring images degraded by blur 1is presented in this

dissertation.

The phenomenon of linear shift-invariant degradation
in an incoherent optical system can be described by means
of a convolution integral. Since digital processing of
pictorial data requires discretization of this integral by
means of a guadrature technigue, a theoretical study of a

broad class of quadrature formulae is first presented.

The discrete image degradation phenomenon is modelled
by two distinct vector space formulations: dark background
objects correspond to a model possessing an overdetermined
blur matrix; objects with unknown background, however,
result in a system that is underdetermined. It 1is shown
that these models become equivalent if the background of
the object is artificially set to zero by processing the
observed image. This fact results in introduction of a

fast restoration technique in the absence of noise.

The noisy restoration problem is resolved by employing
Wiener estimation. It is shown that with proper arrangement
of the observed image data, the covariance matrix of the
object becomes a circulant matrix. Hence, the Fourier

domain properties of circulants gives rise to a
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computationally efficient Wiener restoration technique. A
certain approximation imposed on this technique results in
a suboptimal, but faster, restoration filter. It is shown
that the computational saving gained by this approximation
is significant, while the increase in the error variance is

quite small.
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1. INTRODUCTION

The concept of digital restoration in this text is
interpreted as the reconstruction of an image to an
original object by the removal of degradation phenomenon
known a priori, possibly in the presence of noise [1-1].
Thus, restoration techniques require some form of knowledge
concerning the degradation phenomenon, and this knowledge
either comes from a deterministic assumption about the
phenomenon or statistical models. Degradation systems are
often gquite complex in general. However, in many cases of
practical importance, the degrading systems can be
presented by a linear smoothing operation followed by the

addition of noise known only in a statistical sense [1-2].

Early image restoration techniques, which were
introduced by the pioneers of this field [1-3] [1-4], &id
not prove very successful because the proposed techniques
did not acknowledge the existence of noise in the imaging
systems. To be more specific, the failure of the early
restoration methods was caused because of the amplification
of a high frequency noise component by the inversion of
some degrading process. Tsujiuchi [1-5), Harris [1-6],
McGlamery [(1-7), and Mueller [1-8] have all tried to
overcome this hindrance by modifying the inversion
technique. For example, Harris [1-6] has replaced the

inverse filter by zero for the range of spatial frequencies



for which the noise power exceeds the power of the signal.
Later, researchers in this field realized that a more
successful recovery of the image could be achieved with a
more realistic approach which utilized the characteristics
of the noise in the 1imaging systems. Consequently, an
optimum linear shift-invariant filter was introduced by
Helstrom [1-9] which, when applied on a noisy degraded
image, gives an estimate of the ideal image with the least
mean-square error. This filter is indeed the same as the
classical Wiener filter. Slepian [1-10] has also solved
the same problem when the smoothing function itself is
stochastic. It has later been illustrated that the minimum
mean-square error technique gives better reconstructed

images than the simple inversion method [1-11].

The Wiener filter technique unfortunately has the
limitations of large storage requirements along with
inefficient computational methods. Pratt [1-12] has
introduced generalized Wiener filtering computation
techniques which, by wutilizing transform properties of
imaging systems, have improved the computational
efficiency. Furthermore, Pratt illustrated that a specific
computational procedure could result in a significant
reduction of the computational 1load, with only a small
increase in estimation error. It has also been shown that
lower-triangular transformations can give rise to an

efficient suboptimal Wiener filter (1-13].



Constrained restoration is an alternative solution for
the problem of noisy image reconstruction. Here the
mean-sguare error is not necessarily minimized, but high
frequency noise oscillations are dampened by observing the
constraints governing the image forming systems. Hunt
[1-14) has employed special properties of linear systems to
introduce fast constrained image estimation techniques. A
constrained restoration technigue introduced by Mascarenhas
[1-15]) utilizes linear equality and inequality constraints.
Linear inequality constraints involve solution of a
quadratic programming problem, and require extensive
computing when images of reasonable size are to be
processed. A specific case of inequality constrained image
restoration is when positiveness of image intensities is
utilized for better image reconstruction purposes. A
survey of positive image restoration techniques is given in

reference [1-16].

Blind deconvolution, in which the point-spread
function is assumed unknown [1-17], has attracted some
attention. Ekstrom [1-18] has “suggested means of
estimating the unknown point-spread function by processing
the blurred and noisy observation. Cole [1-19]) has
introduced the homomorphic filter which is the geometrical
mean between the Wiener filter and the inverse filter.
Similar methods have been applied to the problem of
restoring old acoustic recordings as well as reconstruction
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of blurry images [1-19]). (For a comparison of different
restoration techniques, the reader is referred to reference

[1-20]).

The fundamental purpose of this dissertation is to
explore restoration techniques which are computationally
fast and efficient, but can be applied to the restoration
of large size images. This work starts with a brief, but
sufficiently broad, discussion of the discretization
methods of continuous linear shift-invariant degradation
systems. Next, the problem of a fast pseudoinverse
technigue which can be applied to a general noise-free
image is resolved; this part can be considered to be an
application and extension of the Fourier transform
properties of circulant matrices [1-21}, [1-22]. In the
presence of noise, a fast Wiener filtering technique is
developed which overcomes many of the computational
obstacles of the conventional Wiener filter. Finally, the
problem of fast constrained filtering of degraded images is

considered.
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2. THE RESTORATION PROBLEM IN ITS CONTINUOUS FORM

2. 1 The Image

Every visible object can be characterized by its
radiant energy distribution which commonly is described by
a two-dimensional function of spatial variables, f(x,y).
The two-dimensional radiant energy distribution which
enters the human eye is often referred to as the image.
Even in the case of an observer with perfect vision, the
image itself might be a distorted replica of the object
function. This, inevitably, will cause an imperfect
comprehension of the scene by the brain. A degraded image
can result from many different phenomena. A turbulent
atmosphere, for example, deforms the phase function while
the 1light travels through the air. When collected by this
optical system aperture, a blurred image results. A
photographic camera with a poor lens produces a low quality
picture. Also a misfocused 1lens and movements of the
objects in a scene both generate errors in recording the
scene, and thus the image often differs from the original
object in one way or another. The following section
studies the mathematical model of the image-forming and
image-degrading processes. Since this dissertation deals
exclusively with linear phenomena, only degradations which

can be represented by a linear system have been considered.



2. 2 Convolution as a Model for Linear Systems

A continuous space invariant (stationary) linear
system is interpreted to be a convolution of two functions:
a fixed function h, commonly referred to as the impulse
response or the point spread function, and a function f
which 1is the input to the system. The mathematical
expression for convolution is

0o

g(x)= / f(s)h(x-s)ds (2-1)

-00

where.g is the output of the system. ‘In  a more compact

notation, eg. (2-1) can be written as
g(x)=£(x)®h(x) (2-2)

The output of a linear system is equal to the impulse

response, h, when the input to the system is an impulse.

In two dimensions the signals £, h, and g are

functions of two variables as modelled by the relation

Qo 0O

g(x,y)= J{ }r f(r,s)h(x-r,y-s)drds (2-3)

-00 ~-00

The two dimensional convolution integral is the proper
model for a spatially invariant degradation occurring under

incoherent illumination [2-1], [2-2].
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A linear system 1is fully defined by its impulse
response. And, this is also true for a linear degradation
where the impulse response of a A particular process

completely characterizes the degradation phenomenon.

A diffraction-limited rectangular optical system is
characterized by a separable impulse response of the form

[2-3]

2 2
sin (r)) (sin( s)
|

h(r,s)= i

r ]

Blurring due to atmospheric turbulence has been modelled by
a linear operator of the form [2-4]

5
2 276
h(r,s)=exp[-(r +s ) ] (2-5)

Motion blur has a one dimensional point spread function

defined as [2-5]

h(s)=1 if =1/2< s <1/2 (2-6)

4] otherwise

Although the above is not an exhaustive list of sources of
linear 1image degradation, the 1list provides a general
intuition for some of the problems faced in image

restoration. The next section describes the use of the

11



Fourier transform of linear systems for removal of

spatially invariant degradations.

2. 3 Inverse Filtering

To avoid notational complexity and unnecessary
formulations, only one-dimensional degradation is discussed
at this point. This approach will be followed in most
remaining sections of this dissertation, and except for the
examples explicitly discussed, the extension of a
one-dimensional problem to higher dimensions is assumed to
be straight forward. Considering the model for image
degradation formulated by eg. (2-1), the restoration task
is phrased as follows: assuming the observation, g, and the
point spread function, h, are both given, attempt to

recover or estimate the image, f.

It has been shown that Fourier techniques can play an
important role in attempting to obtain the object from the
observation g (x) thfough the inversion of h(.) [2-6],
(2-7]. For a function f(x) the Fourier transform, F(w), of
f(x) is defined as

oo

F(w)= jff(x)exp[-iwx]dx (2-7)

The above integral does not, however, exist for every

function f(x) [2-8], but the existence of this integral for

12



the class of functions encountered in this dissertation is

certain.

An interesting utilization of the Fourier transform is
its application to linear systems. Let G(w), F(w), and
H(w) denote the Fourier transforms of g(x), £(x), and h(x),
respectively. Then from equation (2-1) it is easily shown

that
G(w)=F(w)H(w) (2-8)

Observing the above equality, the concept of inverse
filtering becomes clear. Inverse filtering simply consist
of dividing both sides of eq. (2-8) by the blur transfer
function H(w). If H(w) does not vanish at any point, the

object, f(x), can be completely recovered by the operation

51 G(w)

Ex)= 4~

(2-9)

-1
where the operation (?f denotes the inverse Fourier

transform
o0
1
f(x)=(—) F(w)exp[iwx]dw (2-10)
211 J oo

Equation (2-16) 1is the inverse of eaq. (2-7), and the

notation is the same in both equations.

13



Although the problem of noisy observations will be
studied 1in later chapters, a brief comment on eqg. (2-9)
seems essential at this point. The impulse response H(w)
almost always decreases rapidly with growth of w. On the
other hand, any small amount of noise or uncertainty in the
observation has a relatively flat spectral distribution.
This means that the inverse filtering technique enhances
high frequency noise so strongly that even for a small
amount of noise the technigue could not be applied, and

thus must be modified.
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3. DISCRETIZATION OF THE CONTINUOUS MODEL

To treat degraded 1images by means of digital
computers, the continuous model of eqg. (2-1) must be
discretized. The discretization process will, naturally,
replace the integral by a discrete summation which takes

advantage of values of the signals only at discrete points.

3. 1 Practical Considerations

In most practical situations, the physical sample
image g(x) of eqg. (2-1) is not available over the entire
real line, and also the whole infinite extent of the object
is not usually of particular interest to the image
processer, In fact, in practice, only finite size of
objects are to be restored by processing of finite size
observations. The preceeding argument implies that, in
reality, the 1limits on the definite integral of eq. (2-1)
are not infinite. Another important feature in the model
of eq. (2-1) 1is that the degrading function h usually
vanishes beyond some point, and conseguently the region for
which h is nonzero has a finite length. 1In theory, of
course, most point spread functions have infinite length,
but invariably, h decreases rapidly for large values of x
(the examples in Sec. (2-2), for instance, have this
property). Considering this characteristic, a point spread

function can be truncated to some lengh L without severe

16



modelling error providing that the length L is selected
wisely. Figure (3-1) shows a truncated two~-dimensional

Gaussian point spread function,

In view of the above argument, eg. (2-1) 1is modified
to the form
L
v-x-!'—z'
g(x)=./.f(s)h(x-s)ds (3-1)

u=x- i

where [u,v] is the region of integration.

3. 2 Quadrature Formulae

By definition, a gquadrature formula (g.f.) 1is an
approximation to a definite integral; the approximation is
a linear combination of values of the integrand and its
derivatives at certain points of the interval of
integration called the nodes of the g.f. [3-1]). When the
derivatives of the integrand are unknown, then the general

form of a g.f. 1is expressed as

v n

/ f(x)dx=Zc_ f(x, )+Rf (3-2)
1 1

u i=l

where ¢, and x, are the coefficients and nodes of the q.f.,
i 1

2.....
functional which, for any given function f£(*), equals the

respectively, and u<x1 <x <xn<v. The term Rf is a

difference between the exact value of the integral and its

17



Figure (3-1) A Gaussian Point Spread Function
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approximation, and Rf may vanish for some <class of
functions. If the nodes of the g.f. are selected in
advance, the only available parameters to be treated are
the coefficients C . Examples of this type (fixed node)
are the method called pulse approximation (equal
coefficient), Newton-Cotes, and the best g.f. in the sense
of sard. If the nodes of a qg.f. are free, the best
location of the nodes, 1in a certain sense, can be
determined, and the q.f. is called optimal. Examples of
the optimal type are Gauss-Legendre and the optimal g.f. in
the sense of Sard. 1In image restoration the nodes x, are

usually preassigned, therefore, only fixed node guadrature

formulae are discussed here.

3. 3 Spline Functions and Sard’s Best Quadrature Formulae

Given a set of real numbers

X, . =U <X _<X.€eoes <xn<v=x:n (3-3)

0 172 +1

a spline S(x) of degree m with the nodes x ,Xx ,...,x 1is a
function defined on the real line so that in each interval

(xi,x ), for 1i=0,1,...,n, S(x) 1is represented by a

i+l
polynomial of degree m or less, and the function and its
derivatives of order m-l or less are continuous on [u,v],

thus S(x) is m-1 times continuously differentiable [3-2].

19



To represent splines, truncated power functions can be
employed to <construct a set of basis functions for the

spline space. A truncated power function is defined as

m X x>0
X, = (3-4)
] x<0

A spline function of degree m and number of nodes n,

S (x), has a unique representation [3-2]) of the form
m;n

m n
i -1 m
S (x)= a x + (m!) E c (x-x ) (3-5)
i i 1+
i=1

m, n
i=0

where a_and c¢_ are unknown coefficients to be determined.
1 1

To develop Sard’s best q.f., let K(x) be a monospline
of degree m [3-3] with n preassigned nodes. By definition,
a monospline of degree m is a spline of degree m-1 plus a
polynomial of degree m; thus, K(x) can be formulated as

m
X

K(x)=-—-+8 (x) (3-6)
m! m-1,n
It is known that an arbitrary monospline can give rise to a
g.f. [3-4]. To achieve this, set

(1) (1)
K (u)=K (v)=0 (3-7)

for i=0,1,...,m-1, and using K(x) as the kernel (3-4], then

20



v n
ff(x)dx=§ cif(xi)+Rf (3-8)
u 1=

where

\'4
(m)
Rf=[f (x)K(x)dx (3-9)

u

Note that Rf vanishes if f is a polynomial of degree m-1 or
less. If K(x) has the 1least square deviation (minimum
norm) among all kernels of the form (3-6), then the
a.f. (3-8) is called best in the sense of Sard. Thus,

\'2
2 -
K =./.[K(x)] dx=minimum (3-10)
u
Schoenberg [3-3), [3-5] has shown that there exists a
unique monospline H(x) of degree 2m

2m
X

H(x)s===-—- + S (x) (3-11)
(2m) ! 2m-1,n

with nodes x;,%3,... ,%x,, that satisfies the following

three conditions:

H(Xi)=ﬂ i=1'2'ooc ,n (3-126)
(m-+i) .
H (u)=8 i=g,1,... ,m-1 (3-12b)
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In terms of H(x), the kernel K(x) of Sard’s best g.f. is
given by
(m)

K(x)=H (x) (3-13)

and the minimum norm of K(x) is obtained as

\'s
||x|i=[[x(>()]2 dx=(-l)me(x)dx (3-14)
u

u

By normalizing ([u,v] to [-1,1] and applying condition

(3-12b), H(x) simplifies to

(x+1)2m m-1 i n (x_xi )Zm-l
H(x)= - a, x - E G — (3-15)
2m S 1 (2m-1)!

Conditions (3-12a) and (3-12c) produce m+n independent
eguations, whose solution gives the coefficients a, and c; .
An upper bound can be derived for the error term Rf using

eq‘ (3_9) . Thus’

1
f (m) _” ””(m)ll
Rf= K(x)£f (x)dx<||Kipqlf (3-16)

-1

or
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Rf_g(-l)fnflla(x)dx “f(m)“ (3-17)

The aq.f. of form eq. (3-8) with coefficients c
obtained from eg. (3-12) has some interesting properties.
By varying m from 1 to n, eg. (3-8) presents a large family
of aguadrature formulae. The case m=1, if x are placed
uniformly, is sometimes called the pulse approximation
method. An upper bound for the error term Rf can be
derived when m<n. This property is an important one
because it makes study of the error possible even in the
simple case of pulse approximation. When m=n the technigue
is called Newton-Cotes method. Newton-Cotes g.f. results
in zero error for the class of polynomials of degree n-1 or
less, but no explicit error term is given if the integrand
does not belong to this class. The following ‘example is
designed to aid the reader in better understanding of the

best g.f. 1in the sense of Sard.

Let m=1 and assume x; are uniformly placed on [-1,1].
Figure (3-2) illustrates the location of the nodes for the
case of n=5. When the nodes are placed uniformly on

[-1,1), the location of the nodes is obtained from

1 i
X ==]l-—+2- (3-18)
1 n n
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Figure (3-2) Uniform spacing of the nodes,
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Here the expression for H(x) is given by

2 n
H(X)=--5-— —ao- ci(x--xi ) + (3-19)

Equation (3-12b) then redﬁces to

n

E ci=2 (3-20)

i=l

and eg. (3-12a) becomes

n

2
(x; +1)
E Cj(xi-ﬁ ) —agp= . (3-21)

j=1

For i=1,2,...,n. From equations (3-28) and (3-21), a0 and

c;j are obtained as

=L 3-22
=5 ( a)
2
.. (3-22b)
n .

for i=1,2,...,n. Substituting (3-22b) in (3-8), the latter

eguation becomes

1 n
2
jrf(x)dx=;f E f(x;)+RE (3-23)
-1 i=1

To estimate Rf, the norm of K(x) must be established.
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Therefore,

1 1 1 n
(x+1 ) 1 12 2
H(x)dx= x -— l-xi) (3-24)
1 6 1 2n 1 ni=l

4 1 (4n-1) 2

Sh— - - - ——— S ——

3 n 3n 3n
Thus the norm of K(x) can be obtained as

1

2
||K‘|=-./‘H(x)dx=—- (3-25)
3n

-1

Using the inequality of form eg. (3-16), the upper bound of

Rf is then established as

mo 2 , |
wec [ K]] [|€]] == || €| (3-26)
And, as one would expect

Lim Rf=0 (3-27)
nN—go

In the process of determining a a.f., one is faced
with the task of selecting parameter m. Equation (3-9)
requires that, for a given m, énﬂ must exist, and this
condition 1is met by most functions dealt with in this

dissertation for any value of m. The stability of the
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discrete system as well as the error term Rf are affected
by the choice of m. Reference [3-6] studies the behavior
of Rf for different classes of functions regarding specific
values of m. 1In view of the conclusion at (3-6], m=1, 2,
and 3 are considered to be good choices for the problems

discussed in this dissertation.

3. 4 The Overdetermined Model

A discrete image degradation system which is of full
column rank is characterized as overdetermined. In
practice this situation arises from either a dark
background in the object scene, or over-sampling of the
observation [3-7]. Assuming that the object exists only on
some given interval [a,b], the observation at a given point
x 1is formulated as

b
g (x; )=f f(s)h(x,~s)ds (3-28)
a

where x, is in [a—li,b+31] and h(x) is a space 1limited
2 2

function. Thus,
. L
h(xi-s)=@ if X, =S >— (3-29)

2

Considering the above condition, eq. (3-28) becomes
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x+L/2
g(x,)i[ £(s)h(x ,~s)ds (3-39)
b Vx-L/2
Using a g.f. on the integral of eqg. (3-38) and taking the

nodes at a discrete set of points, the above model is

discretized as
X )= c, f(s.)h(x. -s. 3-31
g ( 3 E f (J )h{( i J) ( )
J

If the nodes sj are placed uniformly (a valid assumption in
regard to image restoration problems), s jcan be assumed to
coincide with the integers on the real line without loss of

generality. Thus

9"‘i’=§ ¢, £(3)h(x;-3) (3-32)
)

Equation (3-32) formulates a general discrete image
degradation process. If the observation g(x) is sampled

uniformly at points x, =i, then

1+—-—-
g(i)= E £(j)h(i=-3) (3-33)

= 1+_....

Employing vector space notation, eq. (3-33) can be
presented in a more compact form. To construct the vector
space model, assume the object is defined with N samples on
[a,b]. Thus an object vector, £, can be constructed as
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£ =£(i) (3-34)

for i=1,2,...,N. Assuming that the number of observed

samples is M, an M-dimensional vector, g, can be defined as

g =9(i) (3-35)
1

for i=1,2,...,M. The relationship between M and N is then

given by

M=N+L-1 (3-36)

The vector space formulation of eq. (3-33) is

g = Df (3-37)

Where D is the overdetermined blur matrix, defined by

29



o

171

¢ h
L

(3-38)
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where

E=[h1'h2' o'o,hL] (3—39)

is the impulse response vector.

Equation (3-37) states the fundamental relationship
which exists between an object vector and the corresponding
observation. Under the present model there are more
observed samples than unknown parameters, which is a direct
consequence of the condition imposed on the object scene.
This condition (a scene with dark setting) is equivalent to
knowledge that the object is in the window. Figure (3-3)
illustrates that equal rate sampling of the observation and
the object results in more observed gquantities than the
unknown parameters. The stability of the system of
equations defined by eqg. (3-37) can be examined by studying
the condition number of D. This number depends on the
shape and the variance of the blur function as well as the
choice of the a.f. coefficients < . Reference [3-8]
contains a study of the condition number of overdetermined

systems versus the degrading function h.

3. 5 The Underdetermined Model

Continuing on the discussion of the previous section,

a more realistic model evolves if no restrictions are
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«——— f(x) (object) ————=

y(x) (image) >

L-|

N

Figure (3-3) Imaging with dark background.
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imposed upon the background of the scene. The model
developed in section (3.4) is rarely very accurate because
most scenes are not necessarily placed in a setting which
has =zero intensity, or even satisfy the less restrictive
condition of constant intensity. Often, in the process of
restoring an object, the observed image is partitioned into
many smaller portions, and "these small secfions are
processed separately. This partitioning process, by
itself, contradicts any assumption made on the setting
which surrounds the image because différent portions of an
image do not share the same background as the whole image

does.

Assuming lack of information about the background of a
scene, the object is assumed to extend very far in both
directions, and consequently, so does the image. But,
being able to handle only finite segments, one should be
able to construct a model which relates portions of the
object to corresponding segments of the observation.

Figure (3-4) illustrates the concept.

Since the physical extent of the observation g(x) is
smaller than the physical extent of the object f(x), the
discrete observation g is represented by a smaller number
of samples than the discrete object f. This, of course,
holds true when the sampling rate is kept the same for both

the object and the observation. Thus, for an equal
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- f(x) (object) 'l

: Je——3 (x) (image) —

-
_..'-_'ll._
2

Figure (3-4) Imaging with unknown background.
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sampling rate, the system defining the degradation
phenomenon is equivalent to a set of linear equations which
contains a greater number of unknown parameters than the
number of equations available for solving for these

parameters. The i-th equation is given by
g(xi)= ij(s)h(xi-S) (3-40)

where xi is in [a+L/2,b-L/2]. Following the approach
adopted in section (3-4), an N-dimensional object vector £,
and an M-dimensional vector g are defined. Using notation

B for the blur matrix, the model is expressed as

g=Bf (3-41)

where B is an MxN matrix, and
M=N-L+1 (3-42)
Since M< N, the blur matrix is not of full column rank, and

for this reason B is called an underdetermined matrix. The

blur matrix B is defined as
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— _
CLPI, CLBI . . clhl (/] . . @
] CLPIJ . . c Pl [/}
B= (3-43)
. CLhL clhl ﬂ
g cLhL‘ooooooo 01l1l

Unlike the blur matrix D of the previous section, B does
not possess a finite condition number. Thus, as will be
discussed in the next chapter, the degradations introduced
under the model of eq. (3-41) are impossible to remove
completely. Another major difference between the two
models is that although eq. (3-41) is a more realistic
model for image degradation phenomena, it does not possess
a structure which leads to the computational simplicity of
the overdetermined model of eq. (3-37) for purposes of

image restoration.
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4, NOISE FREE RESTORATION

For the sake of simplicity, let H represent a general
blur matrix of size M by N. The mathematical expression
governing the discrete degradation phenomenon, with H as

the degrading matrix, is given by

9=HE (4-1)
The above expression is a vector space egquality, and in
essence, it is a set of M linear equations with N unknown
parameters. The most straightforward approach for
recovering £, is to effectively invert BH. If B is square
and nonsingular, the estimate f is obtained as

~

-1
f=H g (4-2)

where g’l

is the inverse of H. Unfortunately, H is seldom a
square matrix, and even if so, H may not be invertible. To
define an inverse process for the system eq. (4-1) which
will work in all circumstances, a different inverse for H
is defined as

T 2 -1T

+
H=1lim (HH +d I) H (4-3a)
d-0

for rank N or
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+ . T T 2 -1
H = lim H (HH +d I) (4-3b)
d—-0 — -

for rank M, where H is called the pseudoinverse of H

[4-1], and denotes the identity matrix. It has been

I
+
proven that H, as defined by eq. (4-3), always exists and
is unique [4-2]. The most attractive property of H is

stated as follows. Given the observation g, the estimate
f=H g (4-4)
is the vector of minimum norm among those which minimize

&= g-Hf (4=5)

+
The above property of H introduces the key approach to the
restoration techniques adopted for many image restoration
applications. If H possesses some specific structure,
computation of §+ may be simplified greatly. For example,
if H is a square and singular matrix whose first r diagonal

entries are nonzero
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1o

H(1)

H(2)

H(r)

the pseudoinverse of H becomes

I:l:+

H(1)

)

H(2)

H(r)

°

(4-6)

(4-7)
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If H is of full column rank or full row rank (two
fregquently encountered safuations in image restoration
tasks), simple forms for H can be obtained. The next
section deals with the problem when the rank of a matrix is

equal to its row size.

4. 1 Blur Matrix with Full Row Rank

Let B denote the blur matrix possessing full row rank.

Then, the image degradation model is described by

g=Bf (3-41)
The minimum norm estimate of an object blurred under
eg. (3-41) is given as

A+
f'g (4-8)

+
where B can be computed from

+ , T T 2 -1
B=1lim B (BB +d I) (4-9)
= dSo- — =
. T . .
Since B has full row rank, BB is nonsingular, and the

limit on the right hand side of eq. (4-9) can be carried

out yielding
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B =B { %EQJ(Q_ +d I)} v4-10a)
or [4-3]
+ T T -1
B =B (BB ) , (4-10b)

Although eq. (4-10b) suggests a much simpler method for
computing §+ than eq. (4-9), an N by N matrix qujmust

still be inverted.

There are two drawbacks to the estimation method
described in this section. The first stems from the fact
that the model does not allow full recovery of the object
vector f since there are fewer equations than unknown
parameters in the system of eq. (3-41). The second
drawback is in the need for inverting a matrix of size N by
N. For moderate sizes of the object, the ill conditioning

of the matrix §§T‘

could cause difficulties [4-4]. When
relatively large images are to be processed, the 1limited
size of available computers could put an intolerable
restriction on the size of the object. Often in situations
like this, the observation must be broken into smaller
segments, each of which is used to estimate the
corresponding object section. Notice that although the

A
estimate, f, is not in general equal to the object, £, the

following equality always holds
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A
Bf=Bf=g (4-11)

4. 2 Blur Matrix with Full column Rank

Equation (3-37) describes the model, where D is the

overdetermined blur matrix of form given by eq. (3-38)
g=Df (3-37)
Since D has full column rank, QTQ is always invertible.

Using eq. (4-3a), the pseudoinverse of D can be obtained as

[4-3])

+ T -1T
D =(DD) D (4-12)
Thus, the minimum norm estimate is given by

+

f=D g (4-13)
Since system eg. (4-9) has more observed parameters than
«nknowns, the object f can be recovered with no error.
Thus,

ATIC
f=D g (4-14a)

or
44



A T -1 T

f=(D D) D Df (4-14b)
or

A

£=f (4-15)

The above equality states the basic characteristic of
overdetermined systems. Full recovery of the object is an
advantage which only systems of full column rank enjoy.
Another superiority of these systems is in the possiblity
of introducing efficient methods which drastically reduce
the computational complexity of the associated filters.
The next section introduces a technique in which the
overdetermined model is modified to pave the road for

constructing computationally simple filters.

4., 3 A Circulant Model

The objective in this section is to establish an image
degradation vector space model eguivalent to the one stated
by eqg.(3-37), in which the blur matrix D is replaced by a

circulant blur matrix C. A circulant matrix can best be

explained by illustration: a K by K circulant matrix has

the following particular structure.
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| T
Cl C2 . CK
CK cl L ] [ ] * %-1
C= (4-16)
¢ - 9

Each row, or column, of the above matrix is a circular
right shift of the row, or column, immediately preceeding.
This property extends from the last row (column) to the
first row (column) since the first row is a circulant shift

of the last row (column).

To set up a degradation model with a blur matrix of
structure defined by eqg. (4-15), two auxiliary vectors are
defined as follows. Let K be an integer, where K>M and

define an extended object vector of size K, Ec, where
£_(1)=£(1) for i=1,2,.. ,N
(4-17)

=0 for i=N+1,.. ,K

Likewise form an extended observation vector 2: of size K
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g (i)=g(i) for i=1,2,.. ,M
(4-18)

=ﬂ fOr i=M+1'oo ,K

Next, placing the impulse response vector in the first

column, construct a circulant matrix

S L -
h(l) @ . . 0 h@D) .  h(2)
. a h(L-1)
¢=| h(L) (4-19)
) \\\\
@ . . ) h(L) . . h(1)
N - L237) -—-:D
'K XX K-EM*- = f %’(\ mu%*\
£>M
The discrete convolution summation of eqg. (3-30) is
equivalent to the vector space equality [4-5]
g = Cf (4-20)

o} Cc

Equation (4-20) which presents the desired model, is

similar to eq. (3-37), where g, D, and f are replaced by
47



g ,C, and £ .

C - -t

It is known that a K by K matrix which possesses K
independent eigenvectors can be diagonalized through a
similarity transformation [4-6]. Hunt [4-7] demonstrates
that matrices of the form of eq. (4-15) have K independent

eigenvectors, and that the Fourier transform diagonalizes
T—

circulant matrices, In fact, the eigenvectors of

——

circulants are the Fourier basis vectors. Let A represent

the Fourier transform matrix, thus

211j

A(i,k)=exp{-( %

)ik} (4-21)

The similarity transform which diagonalizes the blur matrix

C of eq. (4-19) is

)—’ . ‘% ) O b \ é -‘.
it (( ;'1 = o -—? L~ “
/ i C ) - (4-22)

B 7

A (4-23)

A
= K|

The X; are obtained by Fourier transforming the first

_

column of C. Thus,
— —_ 48




i

1-1
X . znj
i = exp{-(l-l)k——E-}h(k+1) (4-24)
k

for i=1,...,K. To study eq. (4-20) in Fourier space,

substitute eq. (4-22) in eq. (4-28) to obtain

-1
g =A A Af (4-25)

c -c

Next, eq. (4-2?) is rearranged as the following

Ag = AAf (4-26)
-c _=c

By definition Ag and Af are the discrete Fourier

transforms of the vectors 9. and Ec, respectively.

F =Af (4-27a)
c —c¢
§c=§_gc (4-27b)
where
-1 .
) 1 j?: ) 2[TJ
E‘c (1)—(?)k_0fc(k+l) exp{-(i-1) k-R—}
K;l . (4-28)
G (i)= jL k+l)ex {-(i-l)kzgl}
c(1)-( 7 Z. g ( P R

for i=1,...,K. Thus, in the transform domain, eq. (4-20)
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simplifies to

§c= A—E-‘C (4-29)

Since A is a diagonal matrix, eq. (4-29) is actually a

scalar equation
Gc(i)=Ati(1) (4-30)

for i=1,...,K. To restore gc, multiply both sides of

-1
eg. (4-29) by A . Thus,

= % - (4-31)

C

|ra>

C

or in the scalar form

A 1 . .
F (i)=--G (i) i=1l,.. ,K (4-32)
c A,

(o
1

A
Inverse Fourier transforming of F. results in the estimate

I}

n>
im>
0

(4-33)

C o=

A
The object estimate, f, can be obtained by extracting out

A
the first N entries of £.. That is,

A
£= III\]<£ (4-34)
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where 5—1112 is a selection matrix of the following form

N
Sl '= ’ N -
) I | 8 (4-35)

Figure (4-1) illustrates the relationship between the

models expressed by eg. (3-38) and egq. (4-28).

As noted earlier, the model developed in this section
is equivalent to the overdetermined model established in
section (3. 4); thus, the restriction of objects with dark

background still exists. The incentive for taking a detour

by introducing the circulant model is in the present _

system ‘s computational superiority over the previous model.
Syetem 2 e Ak,

The inverse filter, 51, used in estimating £r does not

require a matrix inversion. Thus, the ill-conditioning, or

N—

the large size of the system is not a major obstacle in the

process of computing the circulant filter.

4. 4 Experimental Results

Figure (4-2) 1illustrates an object with zero
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Figure (4-1) The relationship between the overdetermined

model and the circulant model.

52



Figure (4-2) The test object.
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background. The object in this case is a set of bars of
constant intensity separated from each other by a set of
bars with zero intensity. The object and its background
form a square picture which is sampled at 256x256 uniformly
spaced points. Figure (4-3a) shows this object after
undergoing a one-dimensional blur degradation of Gaussian
shape with standard deviation of 2.5 pixels. Figure (4-3b)
shows the estimate. This estimate has been obtained using
the method explained in section 4. 3. Since the
restoration has been performed in the Fourier domain (a
scalar operation), the relatively large size of the image
is of no concern. The estimate is identical to the object
itself. This interesting achievement holds for all
examples in which the object possesses a black background,
and the environment is noise free. Figure (4-4a)
illustrates the object after undergoing an extreme amount
of blur. The degradation models a motion blur for which

L=15. Figure (4-4b) is the estimate which is error free.

If the images discussed above were to be restored
using an underdetermined model (section 4. 1), the large
size of the image would require that the observation be
partitioned into smaller segments. Note that an estimate
of the form given by eq. (4-8) cannot be obtained by direct
Fourier techniques [4-5], [4-8]. Figure (4-5) plots the
error for the underdetermined model estimate. Each

observed segment has 25 pixels and is assumed to estimate
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(a) Blurred (b) Restored

Figure (4-3) Image restoration with Gaussian shape blur.

(a) Blurred (b) Restored

Figure (4-4) Image restoration with motion blur.
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17 pixels of the object. The error is plotted for two
different blur models: a Gaussian shaped blur of standard
deviation 2.5; and motion blur. 1In both cases L is assumed

to be 9.
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5. WINDOWING OPERATOR

The previous section introduced a circular image
degradation model which resulted in a computationally
efficient restoration technique. Unfortunately, this

technique can only be applied to a scene which possesses a

S

N@ark background. Hence, portions of a given image, or an
object placed in a nonzero intensity setting cannot be
recovered by brute forcing the circulant filter on the
observed image. In fact, since this kind of imaging can
not be expressed by an overdetermined model, employment of
a system of the form of eq. (4-26) for representing the
degradation phenomenon, when objects of unknown background
are involved, can cause a modelling error at the boundaries
of the image. This error can be looked at as signal
correlated noise; hence, considering the ill-conditioning
inherent in imaging models, the implementation of the
circulant filter becomes catastrophic. To illustrate this
claim, figure (5-la) is selected as a test image. This
image is obtained by slightly blurring the original object.
Figure (5-1b) shows the same image after an attempt is made
to restore the center portion of the object by utilizing
the fast Fourier technique of eq. (4-31). Observing the
high frequency noise component in figure (5-1b), it is
evident that an unwise choice of a degradation model not
only does not improve the observation, but, on the

contrary, it could be quite destructive. To approach this
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(b) Processed

Figure (5-1) Image restoration using wrong model,
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problem in a more systematic manner, the relationship
between the background of the object, the system model, and
the observed image must be studied. The next section
discusses this subject and suggests means of treating a
given observation in order to modify the physical samples

to suit a desired model.

5. 1 Overdetermined System with Unrestricted Observation

The primary difference between the two sets of
equations (3-41) and (3-37) is stated as follows. There
are only M equations (or observed parameters) in the system
of eqg. (3-41) to solve for M+L-1 unknown parameters, thus,
since L>1, an exact restoration of the object is
impossible. On the other hand, the system described by
eg. (3-37) has M observations for only M-L+l unknowns.
This means that number of equations is actually larger than
the minimum number necessary for a complete restoration of
the object. Now, considering the assumption made on the
data of the latter model, it appears that the
overdetermined model 1is in essence equivalent to its
underdetermined counterpart if some of the unknown
parameters of the underdetermined system are set to be
equal to =zero. An M by N underdetermined system is

represented by
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g=Bf (3-41)
The following lemma states the compatiblity of system
eq. (3-41) with an overdetermined system of form
eq. (3-37), where the corresponding blur matrix is of size

M by M-L+l.

Lemma 5-1. The underdetermined system of eq. (3-41)
becomes equivalent to an overdetermined system of the form
eq. (3-37) if the first and the last L-1 entries of the
object vector f are set equal to zero.

Proof. Let e represent the object vector after the first

and the last L-1 entries are set to zero.

e(i)=£(i) if LC<i<N-L+1
(5-1)

e(i)=0 otherwise
and assume d, a vector of size M-L+l, represents the

nonzero center portion of e. The observation corresponding

to object e is given as follows

Q=Ee_ ( 5-2 )

Notice that
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Be=Dd (5-3)
where D is the overdetermined matrix of dimensions M by
M-L+1 and 1is given by eg. (3-34). Eguality (5-3) holds

because of the particular structure that both D and B have.

If eq. (5~3) is substituted in eq. (5-2) then
g:Dd (5-4)

Equation (5-4) is the desired result. To find g, subtract

eq. (3-41) from eq. (5-2) giving

9-9=B(e-£) (5-5)
or

9=g9-B(f-¢) (5-6)

Introducing an N by N selection matrix §§#

)

F
)
=

(5-7)
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eq. (5-6) simplifies to

= L
=g-BS—f 5-8

Equation (5-8) holds true since
f-e=S"f (5-9)

The role of §§;is to select the first and the 1last L-1
entries of f. vector f-e, in fact, represents the
background of the object, and vector B(f-e) in eqg.(5-6)
represents the contribution of this background to the

image.

What lemma (5-1) suggests is restated as follows. Any
observed image can be suitably processed for an
overdetermined model provided that the intensity function
describing the setting of the object is obtainable. The
major drawback of the above statement is that the intensity
function of the surrounding of the object is not usually
known a priori., But often this function can be estimated
with an acceptable accuracy. This is the subject of the

following section

5. 2 Windowing of the observation

Since the only available source of information
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concerning the scene is the observed vector, the estimator
which estimates the object background must take use of the
the physical sample vector g. Assume that matrix W
represents the combination of a background estimator plus
the system which removes the effect of the estimated
background from the observation. The product of the image
vector, g, by matrix W results in the desired observation,
gq, which can, successfully, be used in an overdetermined
system. The structure of matrix W (the windowing matrix)

is explained in the following paragraph.

Let g represent the observation vector if the first
and the last L-1 entries of f are zero. The objective here
is to express q in terms of the elements of the observation

g according to the relation

g(i)- h(L+1-3) f(j+i-1) if i<L
ati)={ (i) 1o 1o e L<i<M-L (5-10)
g(i)-Zh(j)f(N+1-j+i-M) if i>M-L+1
3=1

Since the entries of f are not known, the correspondence of
eq. (5-11) cannot be made directly. However by making an
assumption on the continuity of the original image vector

that

f(i)=£(L) for i<L (5-11)

and
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£(N-i+1)=£(N-L) i>N-L (5-12 )

then the vector g can be estimated as

q=Hg (5-13)

where W is an M by M matrix of the form given by

eq. (5-14).

A zero order predictor is inherent in the structure of
matrix W expressed by eg. (5-14). The prediction of the
image background is the main idea in expression (5-13).
Therefore, the success of the operation defined by matrix W
depends on the validity of the prediction method used to
obtain W. There are, of course, other prediction methods
which can be employed. For example a first order predictor

results in a smaller (overall) mean square error. Figure
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h(1) 0 0 ) . . . 0
L
_E h(i) 1 i .
i=3
) 1
L
_z h(i) @
i=
W= . 0 (5-14)
1
-E h(i)
i=1
L-2
. ]._E h(i)
i=1
0 8 h(1)

(5-2) illustrates the expected mean square restoration
error of the object-estimate for two prediction algorithms,
as a function of element correlation p. Fortunately the
zero order predictor, in practice, produces sufficiently
accurate results. Since this predictor has a simple form,
it has been employed in the remaining material of this

text.
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It is interesting to note that the physical
contribution of multiplying an image vector by W is an
attenuation of the first and the last L-1 entries of the
corresponding vector. This is expected since the
observation resulting from the class of objects encircled
by a dark region illustrates dim object boundaries
(boundary of the object with its background). Figure
(5-3a) represents the general form of a typical observed
image line while figure (5-3b) shows the same image

function after undergoing a windowing operation.

5. 3 Error Analysis

Assume x, a vector of size N, represents the object,

and let

g=Bx (5-15)
symbolize the observed image after x has undergone a
degradation of known impulse response. The size of g is

given by

M=N-L+1 (3-38)

The objective here is to estimate the center elements of x
using the overdetermined system model. Since the physical

sample vector g and the system equation (3-41) are not
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s 9(x)

I

Figure (5-3) A blurred image line.
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compatible, the observed vector g must undergo the
windowing operation described in the previous section. The

modified observation, g, is obtained as

g=Wg (5-16)
or

g=WBx | (5-17)
At this stage, the filter derived for the overdetermined
system, Sec. 4-2, can be employed to estimate the center

part of x. Therefore,

+
=D q (5-18)

>

+ A
Where, D is given by eq. (4-12), and f is the estimated

A
center part of x. The length of £, K, is given by
K=M-L+1 (5-19)

If expression (5-17) is wused to substitute for g,

eq. (5-18) becomes

A 4
£=D WBx (5-28)

71



Let £, a vector of size K, denote the center portion of the
ideal image vector x. This vector can be extracted from x

using the selection matrix

L S
K
S2_. = 6 | I | @ K (5-21)
_N - -— —_—
Thus,
= K -
£=52% x (5-22)

Figure (5~4) illustrates the correspondence between the

vectors X, g, g, and f.

The estimation error, e is defined as

(5-23)

To analyze the error vector from a statistical point of

view, the error vector e is assumed to be mean zero. this
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assumption is merely made for the sake of convenience. It
is always possible to subtract the mean value of the object
from x. This will automatically modify all the
corresponding vectors to become mean =zero. The error

covariance matrix, Be, is defined by
R =E{eeT} (5-24)
Ze £=

Where, the notation E denotes the ensemble average. Using

the expression for e from eq. (5-23), ge becomes

A A T
R =E{f-f ) (£-£) ] (5-25)
or
R =E(££T)+5 (2 )-B(££T)-£(£ET) (5-26)
Let
R =E{xx"} (5-27)
SElxx

represent the correlation matrix of the object. The right
hand side of eq. (5-26) can then be evaluated element by

element as

Ty 9K T K,T
E(££7}=52K B{xxT} (52%) (5-28)
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or

AAT Y - T
E(ff 1=s2 R (s21%)
— N\ x ™N

The second term can be evaluated as

ANT 4 r. T T 4T
E{ff }}=D WB[E{xx }]B W (D)

or

AANT T T T
E{ff }=D'WBR B W (D')

The expected value of £§T can be obtained as

N . c T
E{QT}=_12+_V_7§[E{§§_1}] (§_,2_I:. )

or

ll\

Btef 1=p wer (52 )

N

AT
Likewise E{ff ]} can be derived as

Now the total error covariance can be expressed as

(5-29)

(5-30)

(5-31)

(5-32)

(5-33)

(5-34)

75



T T
Re (52 )-D'uBR, (52" )
-s2KR, 8w T(DH) T (5-35)

It is possible to process the physical samples of the
blurred image, g, with the filter derived under the
underdetermined system model assumption. 1In this case the
+ilter is given by eg. (3-41). Therefore, the estimate, g,

is given by

%>

=§+2 (5-36)

And the center portion of the estimate, f, 1is simply

obtained by premultiplying eaq. (5-36) by S to vield

A

.§=._21I\<£ (5-37)
or

A

£=s28'g (5-38)

The error term

A
R (5-39)

has the following covariance
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A AT
R =E{(f-£f) (£-£)} (5-40)

e

Going through the steps similar to those described in the

previous case, the error covariance can be derived as

. . ’I‘
r=52" [1-8" B)R [1-B B] (52" ) (5-41)
e—N — =-~-==x === N

where, I is the M by M identity matrix. Figure (5-2) of
the previous section illustrates the expected mean square
restoration error of £ as a function of the correlation of
elements in f under the assumption that f is a sample of a

Markov process with correlation factor p.

Figure (5-2) illustrates that, except when the object
element correlation coefficient 1is near unity, the error
resulting from the estimate given by eq. (5-20) is 1larger
than the one resulting from eq. (5-38). But, considering
that most images observed by a human viewer possess strong
correlation among their sampled pixels, this extra
contribution of error is not, usually, unreasonably high in
practice. Also, with the D operator, contained in
eq. (5-20), it is possible to perform the restoration by

Fourier domain processing quite efficiently.
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5. 4 Experimental results

Figure (5-5a) illustrates an image corrupted by a
Gaussian blur modelling a blur degradation caused by
imaging through a turbulent atmosphere. The center portion
of the image has been filtered to produce the corresponding
section of the object. A zero order predictor was employed
for estimating the object background, and the restoration
is performed in the Fourier domain as indicated in
Sec. 5. 3. Figure (5-5b) shows the image after the central
portion of the object has been restored. Unfortunately,
since the background predictor is not error free, the
+ilter is not applicable for severe amounts of blur. Since
the system modelling the degradation process is basically
ill-conditioned, the restoration technique greatly
amplifies any uncertainty in the observation. Figure
(5-6a) illustrates a test object after undergoing a severe
amount of blur. Figure (5-6b) is an attempt to restore the
object, which clearly has been unsuccessful. If the
background of the object is of constant intensity, the
zero-order predictor inherent in the windowing matrix can
make an exact estimate of the background. This would
insure an error free observation. Figure (5-7a)
illustrates this case. The center part of the object has
been processed to artificially generate a constant
intensity background. Figure (5-7b) 1is the restored

version of fig. (5-7a). As before, only the center part of
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Figure (5-5)

(b) Restored

Examples of fast pseudoinverse image restoration.
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(b) Restored

Figure (5-6) Image restoration with severe blur
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‘.

{(b) Restored

Figure (5-7) Image restoration when the object possesses
a constant background,
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e

the object is restored.
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6. NOISY RESTORATION

The models formulating the image degradation
phenomenon in the preceeding chapters have ignored the
presence of noise. 1In practice, however, imaging systems
are seldom totally noise free. In image forming systems,
noise or uncertainty may arise from a variety of sources;
probably the most common sources of noise are measurement
and recording errors. Scanners, the devices which measure
images, invariably add an element of uncertainty to the
measured (or scanned) signal [6-1]. Usually, after an
image 1is scanned, it 1is operated upon in a computer of
finite precision, creating truncation errors. Coding and
channel errors are caused if the particular image is to be
transmitted through a noisy channel [6-1]. Lastly, film
noise may be added to the image when the signal is recorded
[6-2]. It is, of course, impractical to make an exhaustive
list of all noise producing elements in an image forming
process, but the noise sources listed above are the most

significant.

The next section studies the continuous image
degradation problem in the presence of additive white

noise.

6. 1 The Continuous Model
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The continuous image degradation model of eqg. (2-1) is
modified in the presence of additive white noise to

(¥
g(x)=J{ f(s)h(x-s)ds +n(x) (6-1)
Leo

where n(x) represents the noise component. As a result of
the existence of noise in the system, the inverse filtering
technique cannot be employed to recover the object. If any
attempt is made to force the inverse filter to process the
physical sample image g(x), the high frequency component of
the noise will be greatly amplified ruining the
restoration. To avoid high frequency amplification of the
noise, the  inverse filter can be truncated at a certain
point. The point can be selected so that beyond this point
the noise power exceeds the signal energy [6-3]. Figure

(6-1) illustrates this method.

A more intelligent technique to recover the object in
the presence of noise is the classical Wiener filter. This
filter controls the noise component by keeping into account
the ratio between the signal power and the noise variance
at each point of the Fourier space. The Wiener filter
output is a minimum mean-square error estimate of the
original object, provided that the statistics used in the

filter are carefully obtained.
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Figure (6-1) Truncated inverse filter.
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6. 2 The Discrete Wiener Filter

In the presence of noise, the system governing the

image degradation phenomenon is formulated as [6-3]

g=Hftn (6-2)
where H is a blur matrix and n 1is the noise component
vector. To derive the minimum mean-square error filter for
the system described by eg. (6-2) the well known
orthogonality principle [6-4), [5-6] <can be employed.
Letting U represent the desired filter; the estimate f is

obtained as
A
£=ug (6-3)

According to the orthogonality principle the following

equality must hold
AT
E(f-f)g =0 (6-4)

After substituting for f from eg. (6-3) and carrying out

the appropriate steps, the solution is given as [6-3]
(6-5)

where gf is the correlation matrix of the object and V is
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the noise correlation matrix. The object and the noise are

assumed to be uncorrelated. The following matrix identity

[6-6]

as” (c+BasTy k(& 4efc B 1! BTC! (6-6)

can be used to obtain a different formulation for filter U
given by
-1 T-l-lT -1
U=(R +H'V H) HV (6-7)
...f
The error variance matrix ge is given as [6-7]
C =R - (R BT) (4R HT+V) (R.H) 6-8)
C. =R (_f_ )(__f_ V) (_f_ ) (
And by using the matrix identity [6-6]
-1 7 -1 T -1
(C +B AB) ~C-CB (BCB +A) BC (6-9)
the error term simplifies to
G = (£ eV ! (6-10)
For a white noise process, the noise correlation

matrix has the following simple form
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v=#1 (6-11)

where d2 is the noise power, and I denotes the identity
matrix. Representing the image power by Z , expression

{6-7) becomes

- - -1 T -2
g=(zzgf+d 24Th) H'd (6-12)

or
Us(SC +H H) H (6-13)

where gf represents the normalized object covariance

matrix, and S represents the signal to noise ratio

Likewise, expression (6-5) simplifies to

-1 -1
Tes'1) (6-15)

Although expressions (6-13) and (6-15) are equivalent, the
first expression is employed when blur matrix H is of full
column rank (type D), and the second one is used if H has
full row rank (type B). The reason for this is simply

because of computational savings. Note that for an
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overdetermined matrix the number of columns is less than
the number of rows (Sec. 3.4). Hence, the dimensionality
of E?g (NxN) is less than the dimensionality of gér (MxM) .
And, for an underdetermined matrix, the order is reversed;

the dimensionality of ETH (NxN) is 1less than the

dimensionality of gﬁr (MxM) . Thus, for the case of
overdetermined matrices an N by N matrix (N<M) has to be
«nverted, and in the other case (underdetermined blur

matrix) the inversion of an M by M matrix (M<N) is

reguired.

The necessity of inverting matrices of relatively
large size is an unattractive property of the discrete
Wiener filter. To prevent this, the next section
introduces a technique which eliminates the matrix

inversion reguirement.

6. 3 The Fast Wiener Filter

Section (4. 3) introduced an image degradation model
which, by wutilizing the Pourier domain properties of
circulant matrices, successfully eliminated the matrix
inversion requirement of the pseudoinverse filter.
Although the circular model provides attractive
computational savings in a noise-free environment, it
cannot be applied to a noisy observation. 1In fact, since

the windowing operation of Sec. (5.2) introduces an element
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of wuncertainty in the observation space, the fast
pseudoinverse technique is unable to recover the object
after it has undergone a severe amount of degradation. To
overcome this shortcoming, it is necessary to consider the
existence of noise in the system. Thus, this section is
devoted to the derivation of a system model which retains
computational simplicity and, at the same time, tolerates

noise-corrupted observation samples.

In the presence of additive  noise, the image
degradation model with a circulant blur matrix C is

formulated as

g =Cf +n (6-16)

(o4 [o4

According to the developments and the definitions
established in Sec. (4. 3), both vectors g and £ are of
size K (K>M), and represent the hypothetical observation
and object, respectively. Since the actual physical sample
image, g, is of size M and the actual object vector, £, is
vf size W, the last K-M entries of g. are pure noise, and
the last K-N entries of f. are deterministic and equal to
zZero. In searching for a minimum mean-square error filter
corresponding to the observation in eq. (6-16), the Wiener
filter may seem the logical candidate; however, this is not
true. To illustrate this fact, consider the Wiener filter

solution for the white noise case as given by
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- -1 T
Iehdci'c (6-17)

u=SGreel ¢

where Cﬁzis the covariance matrix of the object. Since the
covariance matrix Eﬂ:is not circulant, the undesirable KxK
matrix inverse operation cannot be avoided by simply
Fourier transforming the filter. Furthermore, since some
of the entries of 2: are deterministic, g&: is a singular
matrix, and thus g}c does not exist. The preceeding
argument implies that a circulant Wiener filter is not
achieveable because of the particular statistical
properties of the vector gc. It 1is conceivable that a
circulant and nonsingular covariance matrix could be
obtained if the postulated object vector, f;, had a proper
statistical background. To obtain a nonsingular covariance
matrix, none of the entries of gc can be deterministic. To
achieve this result, form a new vector.g by augmenting the
actual object f with a vector y which has certain desired

statistical properties to be described 1later. The

augmented vector is

jrn

f = (6-18)

The covariance matrix of the above vector is
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C C |
=f =f
E(f fT = ’
(_c_c)- (6-19)
C
_ =vyf Ey _
where
T
C =E(ff ) (6-28)

is the actual object NxN covariance matrix, and

= T -
PRLTE (6-21)
and
9Y=E(22T) (6-22)

is the (K-N)x(K-N) dimensional covariance matrix of y. At
this stage, the aim 1is to 1illustrate that a certain
statistical assumption on y plus a specific value of K can

result in a circulant and positive definite matrix C

o
As an example let the object vector, £, consist of

exactly four samples given by

T
£=0f,.5 ., 5,4 (6-23)
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Assuming that f arises from a Markovian random process, the

covariance matrix of f has the following form

1 p p? ¢
p 1l p 102
E = 2 (6-24)
PP 1 p
3 2
P P P l_j

where p is the element correlation coefficient. Since the

size of £, N, is four, gf is of size 4x4. Selecting K to

be equal to 6, a 6 by 6 circulant matrix is introduced

1 p p°p o
p 1 p ¢ p p
P°p 1 p F P
R 1 e P o)
Pt p 1 p

p p2pd P2 p 1

—fe

Since the matrix in eg. (6-25) is symmetric, it must be
proven that it is positive definite in order to conclude
that Eﬂ: is indeed a covariance matrix. Since gfc is
circulant, Fourier transformation of the first column can
generate the eigenvalues of this matrix [6-8]. Figure
(6-2) lists all the eigenvalues of gﬂ:according to their
number. Since the element correlation is always less than
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k lk

1 (14p)(1+p+p7)
2 (14p)% (1-p)
3 (1-p)>(L+p) ,
4 (1-p)(1-ptp !
5 (1-p)2(1+p)

6 (14p)2(1-p)

(a) List of eigenvalues

k )‘k

5.5623
.1901
. 0048
. 0476
. 0048
.1901

o~ ;W N

(b) List of eigenvalues for the case of p=.95

Figure (6-2) Eigenvalues of a 6 by 6 extended
object covariance matrix.
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unity, all the eigenvalues are positive. Thus, Cs is a
C
positive definite and circulant matrix. Since K=6 in this

example, vector y is exactly of size 2
T

According to eq. (6-25), y must have the following

statistics (y is mean-zero)

l p
C = (6-27)
and
p? p
3E?
P
ny= 2 3 (6-28)
P P
2
P P

Equations (6-27) and (6-28) can be used to generate the

random process samples y.

To generalize the above example, the case of an
N-dimensional object 1is considered here. Parameter K is

selected according to the following rule

K=N+N-2 (6-29)
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And similar to the covariance matrix of eg. (6-25), a KxK
covariance matrix is constructed using the NxN Markovian
matrix. To acheive this, N-2 center entries of the first
row are folded over and attached to the first row itself to
produce the first line of the KxK c¢irculant covariance
matrix. Since the resulting matrix is circulant, only the
first row is needed to construct the remainder of the
matrix. Figure (6-3a) illustrates the first row of an NxN
Markovian matrix, and fig. (6-3b) shows the resulting first
line of the circulant matrix. Figure (6-4) illustrates the
resulting KxK circulant matrix. The eigenvalues of this
matrix can be obtained by Fourier transforming the first

row of the matrix itself.

Let a K-dimensional vector r, which represents the

first row of the circulant matrix, be defined as

r=(1 p P2 ... pigtl N2 g2 g (6-30)

The Fourier transform of r, R, is a vector of size K which

is obtained from

R=Ar (6-31)

where A represents the discrete Fourier transform matrix.
The vector R contains the eigenvalues of the matrix in

fig. (6-4). Since r has a particular structure, it is
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(1 p ¢ ... 131\1'3pN'sz'}

a) First line of an N by N Markovian covariance matrix

- -2 N=-1 N-2 N-3 2
[ 1 2 p-3 -2t N2 -3 P p g

b) First row of the resulting Markovian circulant matrix

Figure (6-3) The first line of an NxN Markovian matrix

gives rise to the first line of a circulant matrix.
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possible to find a closed form solution for the entries of
R. By definition of the Fourier transform, the (k+1)th
entry of R, R(k+l), is given as
2N-3
211

R(k+l)= r(j+l)exp{-[———13jk} (6-32)

Py (2N-2)

where k varies from zero to K=2N-3, and i 1is the square

root of unity. Equation (6-31) can be partitioned as

N-1
. 2[Ii .
R(k+l)=zt (]+1)exp{—[-(-2—-ﬁ:-2—)—] jk}+
50
2i
r(j+1)exP{-[-T§ﬁ:§T]Jk} (6-33)

The exact value of r(j+l) can be obtained from eg. (6-30).
If eq. (6-39) 1is wused in eg. (6-33), then along with
further simplifications the following edguation can be

obtained

k N-
R(k+1)=1+(~1) pN 1
N-2 ..
. 2Mijk ‘s
+E pJ {expl- —-———]+eXP[—zl‘-1k—l}
2N-2 2N-2 (6-34)
j=1
or
N-2
R(k+1)=14 (1) N'lzz J cos 2hik ] 6-35
+1)=1+(- + p Cos[——— -
P _ 1< 2N-2 ( )
J:

Observing the following identity [6-9]
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1

1
[l—pCos(t)][l-bNCos(Nt)]+pN+Sin(t)Sin(Nt)

N-1.
Zé Cos(jt)=

(6-36)
< 1-2pCos (t) +¢f

or

N+1
1-pCos(t)+p "Cos(N-1l)t-p Cos(Nt)
= YA (6-37)
1-2pCos(t)+p

eg. (6-35) further simplifies to

k N-1
R(k+l)==-1-(-1) p +
N+1 N

l-pCos(t)+p Cos(N-1) t-p Cos(Nt)
2 3 (6-38)
1-2pCos(t)+p

where t=<§%ik. Equation (6-38) is the desired result which
provides a closed form solution for the eigenvalues of the
matrix in fig. (6-4). In order to use the matrix in
fig. (6-4) in the fast Weiner filter equation, fig. (6-4)

must represent a covariance matrix for real data. Thus,

the matrix of fig. (6-4) is required to have nonnegative

eigenvalues, which is the subject of the following lemma.

Lemma (6-1). Figure (6-4) 1illustrates a nonnegative
definite matrix which becomes singular only when p=1.
Hence, this matrix is positive definite for all the values
of p such that 8<p<l.

Proof. It must be illustrated here that R(k+l) of
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eg. (6-38) 1is nonnegative for all the increments of k.

. Il
Since t—iarrk, then

(N-1)t=ITk (6-39)
and

Cos[ (N-1) €] =(-1)X (6-40)
aAlso

Nt= [l k+——k (6-41)
thus

Cos (Nt) = (-1)" Cos (t) (6-42)

Equations (6-48) and (6-42) can be substituted in

eq. (6-38) to give

k N
k N-1 1-pCos(t)+(-1)Xg o (-1)° P cos (t)
R(k+1)==1+(-1) p +2

l-2p+Cos(t)+p2
(6-43)
or

k N-1 .
(1-p%) [1-(-1)"p ]
(6-44)

R(k+1)= )
1-2pCos(t)+p
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Since p<1l, the numerator of the above equation is always
positive, and also since Cos(t)<1l the denominator is also
always positive. thus R(k+1l) is larger than zero for all
values of k and 0<p<l. If p=1, R(k+l) becomes zero with
the exception of the case when t is the zero angle (k=0).
If t=0, then Cos(t)=1, and

M-1
(1-p) (1+p) (1-p )

R(1)= 5 (6-45)
(1-p)
or
(1+p) (1-p )
R(1l)= (6-46)
1-p

Now if p approaches unity, then the following nonzero value
for R(1) is obtained
N-2

N-1
R(1)=1+p +z§ p =2N-2 (6-47)
371

Since the assumption of p<l is always valid, lemma (6-1)
has illustrated that matrix of fig. (6-4) is a nonsingular

covariance matrix.

The developments of the fast Wiener estimator are

summarized in the following steps
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1. The circular image degradation model is
defined by equation (6-16).

2. An extended object vector is defined by
augmenting a vector y of certain statistical
characteristics to the actual object vector ¢£.
Eguation (6-18) illustrates this vector.

3. A circulant nonsingular covariance matrix of
form fig. (6-4) 1is constructed to be used in the
Fast Weiner filter of eg. (6-17)

4. The augmented vector y is generated - this
step is yet to be established.

5. The observation g, is modified to correspond
to the extended object £, -this step is yet to be

established.

Continuing from step 4 of above, the mean zero random

process vector y has the following statistics

E(yy") =c, (6-48)
and
T
B(£Y )=Cp (6-49)

where_(_:Y is the lower right (N-2)x(N-2) portion of matrix

fig. (6-4) and C is the upper right Nx(N-2) portion of -

fy
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the same matrix. Thus, EY is a Markovian covariance matrix
of size (N-2)x(N-2), and gfy is given as

r— —

N-2 N-3 2
p P ® @ 0 &6 & 8 » ¢ 0 p p
N-1 N-2 3 2
p p e & ® 5 ® & & 0 o0 L] p p
N-2 N-1 4

3
p p ® ® & 0 2 0 0 0 p p

9 = . . (6-56)
3 4 N-1 N-2
p p ee 00 0o p p
2 3 N-2 N-1
p p ® ® 0 0 0 0 &0 p p
2 N-3 N-1
p p ® ® o9 &0 0 0 00 p p

The statistical information on y can be employed to
generate this vector. To proceed, let the entries of y be
equal to a 1linear combination of the entries of the
observed physical image samples, g, plus a noise term.
Assuming Q represents the linear operation, vector y can be

expressed as

where u is an independent noise term. The observation

vector g is given by eq. (3-41). Thus,

y=QBf+0On+u (6~-52)
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The desired covariance of y, EV' is known. Hence,

T
E[(QBE+Qn+u) (QBE+Qn+) J=C (6-53)
or
T T T
9_5%2 Q +QvQ +9u- EY (6-54)

where V represents the covariance of n, and C  represents
the (unknown) covariance of u. Cross correlation of £ with

y gives rise to

T
E[E(QBf+gg+g)]=gf (6-55)
y
or
T.T_
Qfg Q =Cey (6-56)

Equation (6-56) can be solved for matrix Q to give the

following result
Q=C YC B (BB ) (6-57)

And the above equation can be used in eq. (6-54) to solve

for gu
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C -QBC B Q -QVQ (6-58)

Equation (6-58) 1is used to generate the mean-zero
independent noise term u. The numerical value of u must be
summed with vector Qg to generate vector y in order to
complete step 4. In the 1last step, the extended
observation vector g must be established. To proceed at
this point, two hypothetical K-dimensional observation
vectors g, and g, are defined as follows: let g, be formed
by augmenting g with a vector of zeros. The resulting

vector is

a

9" (6-59)

And 9, is formed by artificially degrading (blurring) a
vector of zeros augmented by y. Vector g, has the

following form

I~

g.=C (6-68)

The vector g is found as the sum of g, and g,
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= 6-6la
9_=9,+9, (6-61a)
Hence,
f [}
g =C +C +n (6-61b)
3.7= = n
LE Y
or
g =Cf +n (6-61c)
< ==¢

where n is a noise term which 1incorporates the original
observed noise plus the wuncertainty introduced by a
possible windowing operation applied on the observation.
Equation (6-61c) represents a circular degradation
phenomenon, whose object vector Ec has a circulant
nonsingular covariance matrix. The minimum mean-square
error estimate of the object, f _, is given as

A -1-1 T-1T
f=(SC +CC)Cg (6-62)

c C
where S is the signal to noise ratio. Extraction of the
A
first N entries of Ec results in the true object estimate

A
f. Thus
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A
£=51 £ (6-63)
where §lK is the proper selection matrix.

6. 4 A Comment on the Optimality of the Fast Filter

The previous section developed a fast image
restoration technique which 1is optimal in a minimum
mean-square error sense. It should be noted, however, that
the optimality of this filter depends greatly on the
validity of the statistical assumptions imposed upon the
hypothetical object vector Ec' Although the proper
selection of the physical samples of the auxiliary random
process vector y is essential for recovery of the object
with the least mean-square error, the error analysis of the
next section illustrates that the increase in the error can

be extremely small.

Because of the circularity of the covariance matrix
SQ:' the few end pixels of the true object f happen to be
highly correlated with certain entries of y. To illustrate
this claim, fig. (6-5a) shows the pixels of £c arranged
around a circle. Under a Markovian assumption, it is noted

that
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Figure (6-52)Circular statistical property of

the vector Y-
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. . N

= 1 —_—
. (6-64)
E(f y 1= p i> A
N+1-i 1 2
Equation (6-64) illustrates that the central pixels of f£,
where the subscript i is not close to either one or N, are
just slightly correlated with any pixel in y. On the other
hand, the pixels of f lying close to the two ends, where i

is either close to one or N, are strongly correlated with

or .
Y1 YN-Z

In view of the above argument, a poor estimation of
the physical samples of y would mostly affect the few
pixels of the object estimate at its two ends. Therefore,
it can be expected that a reasonably small amount of error
in the vector y would not influence the center portion of
the object estimate g. Thus it appears that computation of
the physical samples of the random process y can be avoided
if this vector 1is replaced by its mean. In this case,
since y is mean zero, the hypothetical object vector Ec has

the following form

jn

fc = (6-65a)
[}

and the observation is given by
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g. = (6-65b)
2

A
Representing the fast filter by U, the object estimate Eéis

obtained as

A
£ =Yg, (6-66)

A

The first N entries of f result in the true object
C

A
estimate f. Thus,
Ug (6-67)

It should be noted that the above equation represents a
suboptimal estimate of the object £, but the estimation
technigue associated with eq. (6-67) illustrates extreme
amount of computational efficiency. The efficiency of this
technique is due to the fact that only Fourier transform
operation is employed for obtaining the estimate f of
eg. (6-67). The next section illustrates that replacing
vecﬁor y by its mean results only in an slight increase of
the error in the estimation of the few pixels lying at the

two ends of the object vector.

6. 5 Error Analysis

In order to analyze the error for both overdetermined
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and underdetermined systems using a uniform terminology,
the following approach has been adopted. Assume X 1is an
object of size Q and that the N middle pixels of this
object, f, are to be estimated. Vector X is blurred to
generate the observation (. In fact, g consists of the
blurred object plus an additive noise term n. Next, the
observation g undergoes the windowing operation W. This
modified observation is referred to as q. Figure (6-5)

illustrates the vectors and the corresponding operations.

Both g and g are of size M, where

M=Q-L+1 (6-68a)

and

N=M-L+1 (6-68b)

The observation g is obtained from the following expression

(see Sec. 3. 5)
g=Bx+n (6-69)
where B is an M by Q blur matrix (underdetermined), and n

is the white noise term. The output of the windowing

operation is given by
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X

(QX1)
(NXD) = 129
- £ -
|
B(MXQ)
{ g=MX|
|
W
"- * gw‘.‘ MXI
|
U
| T=Nxi
GB
x = QXI
|
sz
} T=nxi
q.%._
| —o»

Figure (6-5b) Vectors and matrices used for error analysis
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g=WBx+n (6-70)

To estimate the object f, by means of the fast Wiener
technique and by wuse of the observation g, the random
process vector y must be obtained. For the sake of
computational simplicity, this vector can be replaced by
its mean value which is zero. It must be realized that
this approximation and application of the windowing
operator are the only approximations made in computing the
classical Wiener filter. In other wofds, if the vector y
is generated by executing the process explained in
Sec. (6. 3), the error term for the fast filter must be
identical to the error function derived for the «classical
Wiener filter (assuming a black background for the scene,
or absence of blur). As will be 1illustrated later, the
approximation of y by its mean results in a small increase
in the variance of the error. Nevertheless, considering
the computational savings the assumption vyields, this
approximation is worthwhile. Thus the estimate £ is

obtained by

]
kQ

(6-71a)

1
1l
e
=

or

114



A
f= 11;12( 1% 1 (6-71b)

where U represents the fast filter. For the sake of

shortening the length of the preceeding equations, let
N N T
= ¥ 6-72
T §1Fg(8 ) ( )

where T is an N by M matrix (filter). Using eqg. (6-72) in

eqg. (6-71b) results in

A

f=19q (6-73)
Next, g can be substituted for as follows

A

£=TWBX+TWn (6-74)

The error covariance matrix is defined as

A A
C ~EL(£-£) (£-£)] (6-752)
or
T AAp AT AT
Co= E(LE )+ E(E£ )~ E(£E )~ E(EE ) (6-75b)

To obtain ge, the four individual terms in the right hand

side of eg. (6-75b) must be obtained. Starting from the
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simplest term E(ggT), and assuming that the object is a
sample from a Markov process, this term can be represented

AT
by an N by N Markovian covariance matrix. The term E(ff )

is obtained as

AT T
E(ff )=E[ (IWBX+TWn) £ ] (6-76a)
or
AT T
E(£f )=TWB[E(x£ )] (6-76b)

where E(iér) is the cross covariance of a Q dimensional
object with its own N middle pixels. Presenting this term

by gxf
A

E(££T) =TWBC, (6-77)
where‘gxfis the Q by N center portion of a Q by Q Markovian
covariance matrix. The term E(EET) is simply obtained by

T
transposing E(fx ). Thus,
T T
E(xf )=(2ﬂ§§’d) (6-78)

AAT .
And the term E(ff ) is obtained as

AAT T
E(ff )=E(TWBx+TWn) (TWBx+TWn) (6-79)
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or

AAT TTT
E(ff )=TWBC B W T FTHVH T (6-88)

where C_ is a Q by Q Markovian covariance matrix and V is
the noise covariance. Finally, the error covariance is
given by the following equation

T T_T

T T
§e=TWBQxB W T +C +TWVR T -[TWBfo(TWBC (6-81)

R

T
)]

Figure (6-6) illustrates the error variance for an object
estimate containing 129 pixels. The error is plotted for
two different blurring effects. Plot (a) represents the
error for Gaussian-shape blur of standard deviation 2.
Plot (b) shows the error for motion blur. In both cases L
is 15, the signal-to-noise ratio is 18, and the element
correlation coefficient is 8.95. Notice that the error for
the first and the last few pixels is considerably higher
than the remainder. This can be explained by the
approximation made on vector y. The circularity property
of the current model assumes a strong correlation between y
and the first and the last few pixels of the object. As a
consequence of approximating y by a vector of zeros, these
pixels become correlated with the wrong data —the zeros—

which results in a higher error variance. Figure (6-7)
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illustrates the error for a higher element correlation of
8.99. As expected, both error curves decrease
considerably. Figure (6-8) contains two plots for a
Gaussian-shape blur of the same standard deviation but
having different element correlations. Plot (a) is
obtained for a correlation coefficient of 8.95, and (b) |is
obtained by assuming the coefficient is 0.99. Figure (6-9)

is the counterpart of the previous figure for motion blur.

If an underdetermined system 1is wused to model the
. . . A .
degradation process, the object estimate X can be obtained

using the classical Wiener filter. The estimate g is given

by

1% >

=y (6-82)

where U represents the Wiener filter. The error term is
defined as
e=x-

(6-83)

and the error vector for the N middle pixels of x is given

by
B_soN
f-f=s2,e (6-84)
where §§g is the appropriate selection matrix. The
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covariance matrix of e 1is obtained as follows. Let C
e

represent this covariance matrix, so that

T
C =E[ (x-%) (x-%)] (6-85)
C =E[(x-X) (x-%
or
T = AAT AT AT
C_~E(xx )+E(Xx )-E(xX )-E(x ) (6-86)

T . . . AT
where E(xx ) is a Q by Q Markovian matrix, and E(xx ) is

obtained from
AAT T T
E(xx )=U(E(gg ))U (6-87)

Recall that

T T
E(gg )=E(Bx+n) (Bx+n) (6-88)
or
T T
E(g9g )=§gx§ +v (6-89)

Egquation (6-89) can then be used in equation (6-87) ¢to
yield the following equation

AAT TT T
X

_2 )=UBC B U +UVU (6-90)

E( B
—_—x
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. AT .
In a similar manner, E(xx ) can be derived as

AT _ . T T
E(xx )=C B'U (6-91)
and
AT
E(xx )=UBC, (6-92)

Equations (6-98), (6-91), and (6-92) can be used in
eg. (6-86) to give the final expression for the error

variance

C =C_+UBC B U +UVU -C_B U -UBC (6-93)
- =X ———X= =  m— =X— = —==X.
The error covariance matrix for the N middle pixels of the
object can be obtained by observing eq. (6-84)

' A A N T
E(£-£) (£-£) =520C, (82) (6-94)

Equation (6-94) is the error equation for the N-dimensional
object £. Notice that, unlike the previous case
(overdetermined system), the whole object, x, is estimated
first and then, using a selection matrix, S2N, the
N-dimensional object estimate, g, is obtained. Figure

(6-10) 1illustrates the error for the case when N is 17, L
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eduals 9, and the number of observed pixels, g, is 25.
Plot (a) shows the error for the classical Wiener filter,
and (b) is the error plot for the fast filter. In this
figure, except for the first and the last few pixels, the
error is the same for both the Wiener and the fast Wiener
filters. As was pointed out earlier, this phenomenon is
caused by the approximation made on the vector y. 1In both
plots the blur 1is of Gaussian shape with a standard
deviation of 1, and the correlation coefficient is assumed
to be @#.7. The signal-to-noise ratio is 5. Figure (6-11)
illustrates the error when there is no blur and the image
degradation is; due only to additive white noise. The
signal-to-noise ratio is assumed to be 10, and the element
correlation to be zero. In this example, both error
functions are equal. Since no correlation between the
elements is assumed, the approximation made on vector y
does not affect the error plots. Also, in the absence of
any blur, the .windowing operation does not introduce any
uncertainty. Figure (6-12) illustrates the error curves
for a Gaussian-shape blur having standard deviation of 2,
and an element correlation of #.95. The signal-to-noise

ratio is assumed to be 100.

6. 6 Experimental Results

To illustrate the function of the fast filter,

Fig. (6-13a) is selected as a test scene. This scene is
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(a) Original

(b) Observed (c) Restored

Figure (6-13) Restoration of an image degraded

by motion blur.
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»

represented by an array of 256 by 256 pixels, with each
pixel value uniformly guantized to 256 levels. This image
was displayed on a flying spot scanner cathode ray tube
display and photographed with polaroid type 52 film.
Figure (6-13b) represents the image after it undergoesing a
motion-blur degradation having an impulse response length
of 15 pixels (L=15). To observe the work of the filter on
an object with wunknown background, only the middle N
( N <256 ) pixels have been restored. The restored object,
in this example, contains 129 (N=129) pixels, and it is
placed in the blurred background to make the comparison
between the observation and the restored image simple, as
fig. (6-13c) shows. 1In this fiqure, the background of the
restored object 1is obtained by carefully extracting the
appropriate section of the blurry observation. This kind
of object and background combination enables the observer
to easily view the improvement made on the center region of
the scene. Hence, the image in fig. (6-13c) can be
interpreted as the blurry observation with an enhancing
aperture placed in front of the scene. 1In this particular
example the hypothetical aperture contains 256 by 129
pixels. Since motion blur is a one dimensional
degradation, each line of the observed image has been
processed separately. At the first step, 143
(143=129+15-1) pixels of a line of the observed image have

been extracted. Next, these pixels, after undergoing a
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windowing operation, have been augmented by a vector of
‘2eros to form a hypothetical observation vector of size 256
(Note that the size of the hypothetical observed vector g
is determined by ea. (6-29). After the hypothetical
observation is formed, it is Fourier transformed, and then
this transformed vector is multiplied by the corresponding
filter coefficients in the Fourier domain (a scalar
operation). Inverse Fourier transforming the filtered
vector generates the hypothetical object vector f. The

first 129 (N=129) pixels of this vector form the true

object vector f.

6. 7 The Problem of Unknown Point Spread Function

The process of restoring images when the point spread
function of the degrading phenomenon is not known a priori
is usually referred to as blind deconvolution [6-10].
This kind of problem arises when the characteristics of the
imaging system are not known to the observer, and thus the
impulse response must be directly measured from the
observed image. 1In theory, the point spread function can
be simply obtained by a direct measurement of the image
that resuls from a point source of 1light. Such an
experimental computation of the point spread function is
severely limited in practice because of the 1lack of real
point sources in the original scene. A similar technique
known as edge measurement is an alternative choice when the
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point spread function is isotropic. Unlike isolated point
sources of light which rarely occur in a scene, edges are
abundant in most images. To illustrate how an edge
measurement can help to determine the point spread
‘function, assume U(x) represents an object function of the

following form

1 x>0
u(x)=( 0 x=0 (6-95)
-1 x<9

The function U(x) is known as the unit step function. It
is a widely accepted discipline to represent a point object
by the derivative of the unit step function [6-11}, [6-12].

Thus

A(x)=4Yx (6-96)
dx

where A(x) is now the mathematical notation for a point
object. Assume that the object U(x) has undergone a
degradation with impulse response h(x). Note that this
function, h(x), 1is yet to be determined, of course. The

observation g(x) is given by the following equation

g(x)=[ U(x-t)h(t)dt (6-97)
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The limits of the above definite integral are omitted since
they play no rule in this analysis. Differentiating the

above equation gives rise to the interesting resultation

d
ﬂi‘_)_=f [—U(x-t) ]h(t)dt (6-98)
dx dx
or
d
L"‘L=/A(x-t)h(t)at (6-99)
dx

notice that the right hand side of the above eguation (by
definition) equals the impulse response h(x). Hence

d
h(x)=——§99- (6-100)

dx
Equation (6-100) implies that differentiating the image
pattern associated with an edge 1is equivalent to
determination of the impulse response of a linear
shift-invariant optical system. Figure (6-14a) contains an
image photographed by a SEM Cambridge stereo scan type
S4-19 electron microscope. The image represents a Ferrite
(iron) particle taken from the record side of an audio
magnetic tape. The magnification ratio is 136,000 to 1.
Since this amount of magnification equals the 1limiting
power of the system, the resulting image is blurry. To

assure a nondegraded image, it has been experienced that
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Figure (6-14) Image restoration when the point spread
function is not known a priori.
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the magnification ratio on this system must stay below
1800,000. Fortunately the image contains many edges which
can help to determine the impulse response of the electron
microscope. The estimated impulse response in this example
was approximated by a separable two-dimensional Gaussian
function of standard deviation 2. Figure (6-14b)
illustrates the same image after the center section has
been restored. The size of the restored region is 129x129,
and the observed image, fig. (6~14a), contains 256x256
pixels which have been uniformely quantized to 8 bits. The
restoration technique was the fast Wiener filtering of
Sec. (6. 3). Figure (6-14c) shows the crystal after its

upper left corner was filtered using the fast filter.
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7. THE PROBLEM OF POSITIVE RESTORATION, SUGGESTIONS

FOR FURTHER RESEARCH, AND CONCLUSIONS

The Wiener restoration approach introduced in the
previous chapter neglects certain a priori information
concerning the pictorial data which, if utilized properly,
could improve the quality of the restored images.
Non-negativeness of an optical scene, for instance, is a
restriction which can be utilized to reduce the estimation
error variance, Also, it has been shown that the visual
quality of a restored image can be enhanced if the human
visual system response 1is wutilized in the restoration
process [7-1]. The following section summarizes certain
non-negative restoration approaches which are adaptable to

the fast restoration technique.

7. 1 Constrained Restoration

Positive restoration refers to image filtering
techniques which employ a positiveness constraint to
improve the restoration of degraded images. It has been
illustrated that, in general, linear inequality constraints
reduce the error covariance of the object estimate, and
also improve the stablity of the system representing the
degradation phenomenon. Reference [7-2] illustrates this
claim by adopting a numerical analysis approach to the

problem, although the increased computational requirements
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of this approach impose a severe limitation on the

allowable size of the image.

An alternative approach to this problem is to utilize
the Fourier domain properties of positive signals. Lukosz
[7-3] has determined upper bounds on the Fourier pattern of
a non-negative signal and has shown that the amplitude of
the Fourier transform of a non-negative, band-limited

signal satisfies the constraint

lul | vl
|G(u,v)|gG(ﬂ,o)31- ——Hl— ——f (7-1)

where G(u,v) represents the Fourier transform of the
non-negative signal g(x,y), and U and vV are the cutoff
frequencies. Figure (7-1a) illustrates this bound. it
should be noted that eq. (7-1) is a necessary condition,
but not necessarily a sufficient restriction. In other
words, there are many signals which satisfy inequality
(7-1), but are not necessarily non-negative. The Lukosz
bound in its present form does not apply to discrete
signals, and the only constraint which appears to hold for

discrete signals can be expressed as
IG(i,j)1<G(0,0) - (7-2)

where the G(i,j) are the discrete values of the Fourier
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Figure (7-1) Fourier domain bounds,
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transform of the discrete signal g(l,m). Figure (7-1b)

illustrates this bound.

Constraints having the form shown in eqg. (7-1) or
eq. (7-2) are very simple to implement, particularly, if in
the filtering process, the Fourier transforms can be
computed in advance. For example, implementation of the
inequality in eq. (7-2), for images restored by the fast
Wiener filter of Sec. (6-3), is trivial in nature. This is
because the Wiener filtering takes place 1in the Fourier
domain, and all that remains is to check every coefficient
of this domain against the d.c. value of the object,
G(6,9). If any coefficient violates this bound, the
coefficient will be automatically decreased until the bound

is satisfied.

The major shortcoming of the Fourier domain inequality
restrictions for positive image restoration stems from the
fact that most images contain small quantities of high
frequency components, and thus rarely violate an inequality
of the form of eq. (7-2). For instance, although the
restored object of fig. (6-14b) occasionally contains
negative quantities, it never violates the bound described
by eq. (7-2). Hence, before displaying the image, the

negative entries were cliped to zero.

A brute force approach for assuring the positiveness

of the images restored by the fast filter can ?f
0



implemented as follows. Considering a one-dimensional
case, let F(i) represent the ith Fourier coefficient of a
K-dimensional image estimate g. Starting from the
coefficient associated with the lowest frequency, F(8), an
image is constructed using the Fourier basis function
corresponding to the selected coefficient, its complex
conjugate, and all the lower order basis vectors. Note
that since the image is real, every Fourier entry is
accompanied by another coefficient whiph is its complex
conjugate, and that the d.c. term F(8) is always positive.
Thus, at the very first stage, the image is represented by
a gray level which has a numerical value equal to F(9); at
the second step, the two next lowest fregquency vectors are
added. This process is continued until a negative quantity
is detected in the constructed image when, in this case,
the two coefficients corresponding to the very last two
vectors added to the image are modified to retain the image
positiveness. Then, the procedure is carried on until all
the coefficients are exhausted and the image 1is totally
created. In some cases, however, the reconstructed image
may never become negative. To avoid the lengthy
requirements of positive restoration in such a case, the
image can be first constructed by simply inverse Fourier
transforming, and then if negative quantities are found,
the positive restoration technique described above can be

applied. The only drawback of the brute force method is in
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its computational inefficiency. It takes a considerable
amount of computing time to check if every single Fourier
coefficient retains the image positiveness. One suggestion
requiring further research in this area is to attempt to
establish methods to predict the coefficients which are
likely to produce negative quantities. This type of
coefficient selection is likely to be a function of the
size of the guantity itself. For instance, the quantities
which are very small need not be checked out, for they
usually cannot give rise to negative entries in the image
vector; even if they produce negative quantities, their
modification cannot improve the pictorial data

substantially.

7. 2 The Fast Wiener Filter and the Eye Model

It is known that a subjectively optimal image estimate
can be obtained if the human visual system characteristics
are employed to constrain the restoration technique.
Unfortunately, because of the inaccessiblity and complexity
of the visual system, the true nature of this system is not
fully known. However, indirect measurements and repetitive
experiments have unveiled some of the mysteries of the
process of vision. For instance, for low contrast images,
the freguency response of the visual system is believed to
be of form of fig. (7-2), and, it is known that the human

visual system responds nonlinearly to incident light
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Figure (7-2) Frequency response of the eye.
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intensity [7-4].

To simplify the notation let S* denote an operation
modelling the human visual system. For instance S* can
represent a simple logarithm operation, although, in
reality S* can only be expressed by much more complicated
functions. The complexity of the eye model makes it
impractical to design a minimum mean-square restoration
technique which satisfies the constraint defined by S*. A
good approach for avoiding this hindrance is to process the
image signal output of the visual system. Let g represent
the observed signal, and let g denote the same observation
after going through the system S*, It should be noted that
g 1is actually the image which is perceived by the brain.
To improve g, the Wiener filter technique can be applied to
minimize the observation error in the mean-square sense.
Figure (7-3) illustrates this approach. Figure (7-3a)
represents the eye model, where f denbtes the object signal
and d represents the signal observed by the brain. Figure
(7-3b) 1illustrates the filtering process. 1In this fiqure
S* denotes the inverse function of the visual system. It
should 'be noted that S* is followed immediately by the
observers eye system S*. Thus, the final result is shown
in fig. (7-3¢c). This figure illustrates that, by Wiener
filtering the signal entering the brain g, the complicated

eye model constrait can be avoided.
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To summarize this dissertation, the next section
briefly reviews this work and suggests means of
generalizing some of the techniques introduced in the

previous chapters.

7. 3 Extensions to the fast Wiener filter

It was shown earlier in this dissertation that the
fast Wiener filter in the frequency domain can be described

by the following scalar equation

a(n)

W(n)=
la(n)1? +$¥1(n)

(7-3)

where a(n) represents the n-th eigenvalue of the
corresponding blur matrix, b(n) represents the n-th
eigenvalue of the circulant covariance matrix, and S is the
signal-to-noise ratio. If the noise power approaches zero,

eg. (7-3) represents the inverse filter

1
I(n)=

(7-4)
a(n)

where I(n) represents the n-th entry of the inverse filter

in the frequency domain.

It has been shown that the minimum mean-square filter

is not wusually the best technique for image restoration
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applications. This is merely because this filter does not
emphasize high frequency components of an image, and these
components are very important for visual perception [7-4].
Figure (7-2) shows the frequency response of the human
visual system, illustrating the importance of high
frequency pictorial information for a human observer.
Since the human visual system attenuates lower _spatial
frequencies, the higher frequency components must be of
greater utility. Considering this argument, it may seem
that the inverse filter approximates the human visual
system closer than thg Wiener filter. Unfortunately, in
the presence of noise, the inverse filter is not feasible.
However, a compromise can be achieved if the two filters
are averaged 1in a geometrical sense [7-5]. A Geometrical

Mean filter is formulated as
l-8

1 S a(n;
G(n)= ( 2 =T=1 ) (7-5)
. a(n) la(n)|+S b (n)

where @< s <1, and G(n) is the n-th entry of the filter in

the frequency domain. Clearly, the Wiener and the inverse
filters are both special cases of the Geometrical Mean
filter for s=@ and s=1, respectively. Since ea. (7-5)
defines a scalar operation, this filter is already in a
computationally efficient (fast) form. This holds true
since b(n) is an eigenvalue of the c¢irculant covariance

matrix. To apply a fast Geometrical Mean filter to a
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blurry observation, the same steps which are involved in
the application of the fast Wiener filter must be observed.
For instance, here too the M-dimensional observation g is
operated upon by the windowing matrix to reduce the
wrap-around error and then is placed in a longer vector of
zeros of size K, where K is given by eq. (6-29). And,
after the K-dimensional observation is processed by the
fast flter, a K-dimensional object estimate results in
which the first N entries of this vector are the true
object estimate €. Since the Geometrical Mean filter
represents a class of restoration technigues to which the
Wiener and the Inverse filters are special cases, only one
general software (filter) is necessary to be designed to

give a wide selection of restoration techniques.

7. 4 Summary and Conclusions

This dissertation has developed computationally
efficient image restoration techniques, and pictorial
examples have been presented to illustrate the efficiency

of these techniques.

The continuous convolution integral has been utilized
to represent linear shift-invariant degradation phenomena.
It has been shown that the discrete image degradation
problem can be modelled by an overdetermined system, if the

object background is not known. To avoid this dual model,
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a simple operation has been introduced which, by predicting
the object background, almost eliminates the contribution
of the background to the pictorial data. Hence, only the
overdetermined model is employed to describe the
degradation problem. This operation 1is, in essence,
désigned to control the modelling error. 1In the absence of
noise, the inverse filter for the continuous case or the
matrix pseudoinverse for the discrete data can be employed
to restore degraded images. The computational shortcomings
of the pseudoinverse technigues éan be overcome by
utilizing the Fourier domain properties of circulant
matrices. Simulated pictorial examples were used to

illustrate this point.

In a noisy environment, the statistics of the image
and the noise can be employed to control high freguency
noise oscillation in the restored data. Based on this
fact, a minimum mean-square error filter can be constructed
for image restoration. Since a filter of this kind is
computationally unattractive, a fast Wiener filter was
introduced for noisy image restoration. This filter was
obtained by imposing certain modifications on the observed
image. It was shown that the observed image can be
operated upon to modify its statistical characteristics.
Thus, certain operations were introduced which, when
applied on pictorial data, allow the modified data to be

characterized statistically by a circulant covariance
149



matrix. Later, these operations were approximated to gain
more computational speed at the cost of a slight increase
in the mean-sguare error. An error study then illustrated
that for most of the length of the object vector, the error
variance associated to the fast Wiener filter is equal to
the one associated with the Wiener filter itself. The
slight error increase occurs only at the beginning and the
end of the object vector, and almost vanishes when the
element correlation becomes small. Unlike the classical
Wiener filter, it was shown that the fast filter is capable
of operating wupon 1large images without the need to break

down the observation into small blocks.

Statistically speaking, it was assumed that a scene is
a sample of a Markovian random process. This, of course,
is not an essential restriction, and can be removed. it
appears that the fast filter can be constructed for any
image which possesses a monotonically decreasing
correlation function. 1In fact, any covariance matrix which
can be extended into a 1larger, circulant, and positive
definite matrix characterizes a random image that can be
operated by the fast filter. Thus, lemma (6-1) can be

proved for certain non-Markovian sources as well.

Since the main objective in this dissertation has been
to present computationally efficient restoration

techniques, it seems proper at this stage to point out that
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the classical Wiener approach is not the only restoration
technique which can be modified for computational
efficiency. 1In fact, as previously shown, there is a class
of filters which can be efficiently computed through a
technique similar to the Wiener approach. Notice that the
phrase "computational efficiency" corresponds to both the
time and storage requirements of a certain restoration
technique. Hence, a fast counterpart of a restoration
technique 1is computationally advantageous, in the sense
that the fast filter permits processing of large images in

a relatively small amount of time.
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