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ABSTRACT

This technical report summarizes the image processing research
activities performed by the University of Southern California during
the period of 1 March 1975 to 31 August 1975 under Contract No.
FCE6C6-72~-C~-0CCE with the Advanced Research Projects Agency,

Information Processing Techniques Office.

The research proyram, entitled, "Image Processing Research,” has
as its primary purpose the analysis and development of techniques and
systems for efficiently generating, processing, transmitting, and
displaying visual images and two dimensional data arrays. Reseacrch is
oriented tovard digital prccessing and transmissicn systeams. Five
task areas are reported on: (1) Image Coding Projects: the
investigation of digjtal bandwidth reductjon coding methods; (2) Image
Restoration and Enhancemant Projects: the improvement of image
fidelity and presentation format; (3) Image Data Extraction Projects:
the recognition of oktjects within pictures and gquantitative
measurement of jimage features; (4) 1Imag2 Analysis Projects: the
development of guantitative measures of image quality and analytic
representation; (5) Imaye Processing Systems Projects: the development

of image processiny hardware and softwvware support systeas.
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1. Research Project Overview

This report describes the progress and results of the University
of Southern Caljifornia imayge processing research study for the period
of 1 March 1975 to 31 August 197S. The imagye processing research
study has been subdivided into five projects:

Irace Coding Projects

Image Restoration and Enhancament Projects

Image Data Extraction Projects

Ipage Analysis Projects

Image Processiny Systems Projects
In image coding the orjentation of the research is toward the
development of digital image coding systens'that represent monochrome
and color images wvwith a mwminimal number of code bits. Inage
restoration is the task of improving the fidelity of an image in the
sense of compensating for imaje degradation. In image enhanceaent,
picture manipulaticn processes are performed tc provide a amore
subjectively pleasing image, or to convert the image to a fora more
amenable to human or machine analysis. The objectives of the image
data extracticn prcjects are the registration of images, detection of
objects within pictures and measurements of image features. The image
analysis projects comprise the background research effort into the
tasic structure of images in order to develop meaningful guantitative
characterizaticns of an imagye. Pinally, the image processiny systems
projects include research on image processing computer languages and
the development of experimental equipment for the sensing, processing,

and display of images.



The next section of this repcrt summarizes some of the research
project activities during the past six months. Section 2 is a list of
putlications by fgrcject members. Sections 3 to 6 describe the
research effort on the projects 1listed above during tha regorting

period.
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2. Publications

The following is a list of papers, articles, and reports of
research staff members of the USC Image Processing Institute which
have been published or accepted for publication during the past six

months, and which have resulted from ABPA sponsored research.

H.C. Andrews, "Numerical Analysis Techniques in Digital Imge
Restoration," Proceedings 1975 Symposium on Circuits and Systens,

April, 197S.

H.C. Andrews, "NTF Restoration by Pseudoinversion," Proceedings of
the International Optical Computing Conference, April, 1975,

Washington, D.C.

H.C. Andrews, Chapter 4, *“Two Dimensional Transforms," Picture
Processing and Digjtal Filtering, F.S. Huang, ed., Springer Verlag,

May, 1975.

#H. C. Andrews and C. L. Patterson "Outer Product Expansions and
Their Uses 1in Digital 1Image Processing," IEFE Transactions on

Conmputers, (accepted for publication).

H. C. Andrews and C. L. Patterson, "Digital Interpolation of
Discrete Images," IEEE Transactions on Computers (accepted for

puklication).

H. C. Andrews and C. L. Patterson, "Sinjular Value Decomposjtions

and Digital Image Processing," IEEE Transactions on Audio, Speech, and
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Signal Processing, ({accepted for publication).

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice

Hall (accepted for publicaton).

S. R. Dashiell and A. A. Sawchuk, "Optical Synthesis of Nonlinear
Nonmonotonic Functions," accepted for publication in oOptics

Ccmmunicatons.

W. Frei, "The Need for a Finimum Picture Data Basis," presented at
1975 IEEE Computer Society Workshop on Machine Pattern Analysis, March

3-5, 1975.

W. Frei, “Accuracy Considerations for Digitized Images and Hazdcopy
Output," presented at 1975 IEEE Computer Society Workshop on Machine

Pattern Analysis, March 3-%, 1975.

E. L. Hall, W. O. Crawford, And P. E. Roberts, "Moment
Measurements for Ccmputer Texture Discrimination in Chest X-Rays,"

IEEE Transactions Bigmedical Engineering, November, 1975.

E. L. Hall, 2. H. Cho, J. K. Chan, R. P. Kruger and D. Ge.
McCaughey, "A Comparative Study of 3-D 1Image Recgnstruction

Algorithms," IEEE Trans. on Nuclear Scianca, March, 1975,

E. L. Hall, R. P. Kruyer and A. F. Turner, “"Automated
Measurements frcm Chest X-Rays for Lunj Disease Classjification,"

USA-Japan Computer Ccnference, August, 1975.

E. L. Hall, R. P. Krujer and A. P. Turner, “Automated

oy



Measurements from Chest X-Rays," Proceedings of the Cooaputer

Aéplicatons in Radiclogy Ccnference, March, 197S.

.

E. L. Hall, %. B. Thcagson, G. Varsi and R. Gaulden, "Coaputer
Measurement of EFarticle Sizes in Electron Microscope Inagés,! IEEE

Trans on Systems, Man and Cybernetics, to ba published, 1975.

G. c. Huth and E. L. Hall, "Computer Tomography and its
Application to Nuclear Madical 1Imagyinjy," Computers in Nuclear

Medicine, to be published.

N. D. A. Mascarenhas and W. K. Pratt, "Digital Image Restoration
Under a Regression Model," IEEE Transactions on Circuits and Systenms,

March, 1975,

N. E. Nahi and M. Naraghi, "A General Image Bstimation Algorithm
Applicable to Multiplicative and Non-Gaussian Noise," Proceedings of
18th Midwest Symposium on Circuits and Systems, August 1112, 1975;

Concorshia Univ., Montreal P.Q., Canada.

N. E. Nahi and A. Habibi, "Nonlinear Recursive Image Enhancement,"

IEEE Transactiong on Circuits and Systems, March, 197S.

R. Nevatia, T. O. Binford, "Recognition and Description of Complex
Curved Objects," Fifth Annual Symposiunm on Imagery Pattern

Recognition, University of Marylamnd, April 17-18, 1975.

R. Nevatia and T. 0. Binford, "“Recognition and Descgiption of
Complex Curved Objects", Pifth Annual Symposium on Automatic Imagery

Pattern Recognition, Univ. of Maryland, april 1975.
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B. Nevatia, "Object Boundary Determination in a Teytured
Environment,"” (Tc be presented) Annual ACM Conference, Minneagolis,

October 1975.

B. Nevatia, "Lepth Measurement by Motion Stereo," Accepted for

publication in Ccmputer Graphics and Image Processing.

R. Nevatia, "Structured Descriptions cf Complex Curved Objects for
Recognition and Visual Memory," Accepted for publication as a book by

Birkhauser-Verlag, Basle, Switzerland.

¥. K. Pratt and M. Huhns, "DPCM Quantization Error Reduction for
Image Coding," Society of Photo-Optical Instrumentation Engineers,

19th Annual Technjcal Sympgosium, San Diego, August, 1975.

W. K. Pratt and C. E. Mancill, "Spectral Estimation Technigues for
the Spectral Calibration of a Color Image Scanner,"™ Applied Cptics,

November, 1975.

#. K. Pratt, "Vector Space Formulation of Two Dimensional Signal
Processing Operations, Journal Computer Graphics and Image Processing,

Academic Press, March, 1¢7¢,

J. A. Roese, VW. K. Pratt, G. S. Robinson, A. Habibi,
nInterframe Transform Codiny and Predictive Coding Metods,®™ IEEE

Internatonal Communicatons Conference, San Prancisco, June, 1975.

J. A. Roese, G. S. Robinson, "Combined Spatial and Temporal Codinyg
of Image Sequences", 19th Annual SPEI Symposium on Efficient

Transmission of Pictorial Information, San Diego, <Calif., August
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A. A. Sawchuk and M. J. Peyrovian, "Restoration of Astigmatism and
Curvature of Field", Journal of the Optical Society of America, vol.

65, 1975.

A. A. Sawchuk and S. R. Dashiell, "Nonmonotonic Nonlinearities 1in
Optical Processing®", Proc. IEEE 1International Optical Ccmputing

Conference, Washjington, D.C., April 23-25, 1975.

W. B. Thomgson, A. PF. Turner, and R. P. Kruger, "Automated Chest
Radographic Diaynosis," accepted for publication, Investigative

Radiology.

W. E. Thompson, A. L. Zobrist, "Buildiny a Distance Function for
Gestalt Grouping," accepted for publication IEEE Transactions on

Cceputers.



3. 1Image Coding Prcjects

The effort in image codinygy is directed toward the research and
development of imagye coding systems providing a transmission bit rate
reduction and tolerance to channel errors. Coding systems are under
investigation for: monochrome and color imagery; slow scan and real
time television; and inforzation preserving and controlled fidelity
operation. Results of this research study during the past six months

are summarized here and presented in detajl in subsequent secticns.

3.1 Singular Value Decomposition Image Coding

Harry C. Andrews

The singular value decomposition algorithm (also referred to as
SVD) is a computational algorithm developed for a variety of
applications including matrix diagonalization, regression, and
pseudoinversion [1,2]. The algorithm has also been suggested for
image coding [3,4]. By approaching the image coding task from a
viewpoint of numerical analysis, it is possible to foramulate a
solution in teras of 1least squares methods which results in
deterministically best truncation errors over all other unitary
transforms [6). A discrete image may be considered to be am array of
nonnegative scalar entries formed into a matrix. Let such an image
matrix be designated as G. Without 1loss of generality, let G Dbe

square with a quadratic form given by
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The g matrix is seen to be the "transform" of the image wmatrix where
A tranéforms the columns of the image and B transforms the rows of
the image. A list of traditional transfofm techniques is presented in
Table 1 indicating some of the properties of thé individual transforn
methods. The entries are 1listed in terms of general décreasing

usefulness as decorrelation devices as well as decreasing complexity.

The first entry in the table is the one of interést here and has
decidedly different transform properties from thé remaining. The
singular value deccmpositicn (SVD) method bhas the unigue property that
the coefficient matrix A , is diagonal with at most only N nonzero

entries. The definition of this transfora is given by

e
1
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n
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GG =uAU (va)
and
G'g =vav" (ut)

The A matrix is diagonal and comprises the singular values of the
picture matrix G, while U, and ¥ are the respective singular vector
matrices of Egﬂrand g?g, and are orthogonal as a result of the
nonnegative definiteness cf EQF'and E?é. Because of these prcperties

of U and V it is possible to solve for the image matrix such that

1
G =urY" (52)
or equivalently
R 1 o
— 2
G=D N ny (501

Where R = N and represents the rank or number of nonzero singular
values li . The coling imgplications are that one must transmit the 2N
singular vectors as well as N singular values for image reconstruction
at the receiver. Figure 1 presents a pictorial representation of the

singular value decompositicn. Traditional 1image transform methods
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usually break am 1image up into subblocks for ease in bardware
iomplementations. This technique 1is devaloped here because the
computational expenses for laryge image singular value decompositions
is great. Specifjcally, if an § x M image is broken into H x N
sutblocks, then each subblock takes on:the order of N3 computations to
get to the SVD domain. Since there are (a/u)z suych subblocks, a total
of HZN computaticns are required as ccmpared to H3 conputations 3f the
entire image vere decomposed. A similar comparison exists for fast
computational transforms which require nzlég N total subblock
operations for the N x M image. Thus the number of conputations for
SVD ccmpared to fast transforms is HZN vs Hzlog N. The ratio of N/log
N increase to implement the SVD transform on 16 x 16 subblock sizes is

only a factor of 4 for SVD versus Pourier, cosine, Walsh, or the like.

Figure 2 contains a block diagram of the SVD ccding schene. The
major components at the transmitter consist of the SVD donmain
transformer, a possible truncator, and parallel singular value and
singular vector coders. The SVD transformer, as discussed above,
would require on the order of four times the number of real
computations ccmpared to a real Nzlog N transform algorithm., The
truncator is included in th2 diagram to emphasize the tremendously
large energy compaction property of the SVD technique. From eq. (6)
the truncated image‘EK may contain an extremely large amount of

original image energy in a very few numbar of singular values.

The two remaining blocks in the coder concern themselves with the

singular value codiny and singular vector coding. 1In the former the

-13-
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large dynamic range of the singular values indicates a certain amount
of care needed for coding, but because there are so few large dynamic
ranged coefficients, (N vs.Nz) the total bit requirement still remains
low. The singular vector coding algorithm is broken into tvo
components, that associated with the first singular ©glane {or
eigenimage) and that associated with the remaining eigyenimage planes.
Because each of these planes (actually two vectors which when, outer
groducted, produce a plane) is orthonormal, the scalar entries in the
singular vectors are quite well behaved, and lend themselves to easy

requantization.

Using the basic configuration of figure 2, the numbexr of bits
necessary for transmission of a subblock then becomes a function of
the truncation, if any, the bit distribution over the singular values,
and the bit distribution over the singular vectors. Typical
djstributions on the singular values track the variance of these
values, and, in fact, tend to be proportional to the value itself.
For the singular vectors, two more bLits are provided for scalar
entries of the first eigenimage than for subsequent eigemnjrages. 1In
addition, because the singular vectors are orthoncrral, one need not
transmit N scalar values per vector but only N-i-1 such values for the
i-th vector. (Orthcnormality reduces the degrees of freedom c¢n the

vectors such that the vectors can be ccmpleted at the receiver.)

In order to develop efficient guantizers and coders for the SVD
dcmain, a test image (512 x 512) wvas broken into 16 x 16 subblocks and

data was gathered over each subblock of the entire frame. Statistics

-15-



describing the singular values and vectors were then gathered and are
described here. For 16 x 16 subblocks, one obtains 16 singular values
and nmonotonic decreasingly ordered means and variances of each
singular value can be computed. The exceedingly large dynamic range
of between U and 5 orders cf magnitude indicates the need for variable
bit coding as a functicn of the singular value index. The
distribution of the singular values naturally jis one sided (mo
negative entries) and appears as a curve intermediate between a broad

Gaussian and uniform density.

The statistics describing the singular vectors are much better
behaved. Figure 3 presents twvo specific singular vectors from a
particular sutklock as an illustration of the shape of these
parameters. The sjngular vectors tend to be well behaved in their
range and tend tc have an increasing number of zeroc crossings as a
function of increasing index. In fact it is known that the first
singular vector never exhikits zero crossings when the subbloc¢k is
ncnpnegative (as it always is for imagery) [7]). Thus the lower indexed

vectors tend to have a great deal of adjacent sample correlaticn.

Since the first vector for both J and ¥ are guaranteed to have no
zero crossings (similar to the dc vectors of Fourier, Walsh, cosine,
etc. transfornms), these vectors fora a separate set of statistical
parameters from the rzemaining set. The mean vector over all subblocks
in the test ipage becomes a constant value of 0.25 with a wery tight
variation provided by a variance of 10-3. Naturally a given first

sindgular vector will not, in fact, be a constant of value 0.25 (the

-16-
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Figure 3.1-3. Typical singular vectors.
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appropriate normalized value to guarantee orthonormality), but will
have variations which when wveighted by the corresponding large
singular value will appear quite different from a constant. In fact
the distribution of the scalar values defining the entries in the
first singular vector are very close to Gaussian with parameters

-3
N(0.25,10 ).

The remaining ejgenvectors are also quite wvell behaved with the
average or mead of each cf these vectors being the zero vector. The
variance of these singular vectors is on the order of 10 and the
scalar entries which compxise these vectors are also close to ncemally
distributed with N(O,10-1). Because of the difference in the
statistics of the first singular vector with those of the remaining
singular vectors, they are coded separately as indicated in the block

diagram of figure 2.

One image is used fcr experimental purposes here. Its SVD
structure is revealed in figure 4. In figure 4 the image is broken
into 16 x 16 sukbldocks and each subblock is decomposed into its 16
singular values and associated 32 singular vectors. The first,
second, third, and fourth eigenimages cbtained frcm the corresponding
singular vectors are displayed in the figure. The first plane has no
zero crossings and conseguently the display of negative daka is not
necessary. In the three remaining pdanes, a 1linear dislay is
presented with negatjve values being dark and positive values being
light. Notice that consjderable recognition of the original scene is

available in the first eigenimage and subsequent eigenimages tend to

-18-
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provide more and more zero crossing information which can Le likened

to higher freguency information.

A complete SVD coding system has been simulated according to the
block diagram cf figure 2. The ccding strategy used a linear PCM
quantizer with variable bit assignment on the singular valwes and a
Max quantizer [S) with variable bit assignment on the PCN values of
the entries in the singular vectors. A variety of bit assignments
vere investigated, and an optimization routine in terms of mean sqguare
error measured tke Lest Lit assignment. Pigure S .ptovides some
performance curves developed during the optimizaticn process. The two
lower curves indicate tke truncation effects as ‘the nurber of
equivalent bits per pixel are increased. The uppermost curve
illustrates the mean square error using a linear quéntizer on the
singular values. The Max quantizer curve indicates about a 0,20% wmean
square error impiovement over the linear curvé‘and~is only about J3.20%
worse (or introduces 0.20% more mean sqguare error) than_ghe truncated
but uncoded curves. Pictorial results, from which the wupper two
curves are derived, are presented in figure 6. Here the percentage
mean squarc errors and bit rates per pix21 are 1listed under the
respective coded ipages for both linear and Max quantization on the

singular vectors.

In concluding this section it is important to emphasize a few
points. First, the work is incomplet2, and it is premature to base
any conclusions cn the viatility of SVD coling in coampetition with

cther existing techniques. It is fair to say that if as much effort

-20-
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is put into investigating the potential for SVD coding as has been put
iqto traditional transform methods, then considerable improvement over
the results presented here can be expected. However, algorithaic
igplementation mjght beccme quite complex. On the other hand five
years ago realtiae (video banduidth rate) FPFT transform cepders were
thought to be too complex, and yet they exist today. Conseguently
only time and future study will tell whether SVD coding becomes 'a

practical reality.
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3.2 Restoration for Binary Symmetric Channel Errors

Michael N. Huhns

A previous report [ 1) has presented and analyzed a technique for
restoring the output of a quantizer so that the result nmore accurately
matches the guantizex's input with respect to a mean-square error

criterion. The zestoration is obtained by the use of

x p(x)dx
R— - -

j; plo)dx

E{x|xeR} = (1

where B is a region in N-space to which an N x 1 vector x is assigned
during quantization, and p(x) is the multidimensional proktability
density function of x. The restoraticn is based essentially ugon
exact knowledge of the gquantizer output. A sjimilar, but more
difficult probles results shen the guantizer output is not known
exactly. This could occur, for examgle, when the quantizer output is
transmitted over a npisy channel. The first section in this report
explores the effect of channel erzors on the restoratiocns obtainead

using eq.{(1). The next section examines a technique that
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statistically compensates for the effect of channel errors.

Effects of Channel Errors on Quantized Signals: In this analysis,

channel errors are assumed to be mnmodelled Ly a binary symmetric
channel (BSC) [2]. The characteristics of this type of channel are
shown 1in figure 1. The channél is discrete and menoryless and can be
specified by a transition probability assigpment F(j|k), for 3j,k=0,1,

as
P = 1 - (2)

Since the channel is memoryless, the probability of an output sequence
gf(zl,zz....,zﬁﬁ, given an input seguence 1=(x1,x2,...,xpg, is given

by

N
p(zlx) =TT p(z|x) 3
i=1

Based on this definition, a BSC was computer simulated with the
channel error [probability, p, chosen to be 0.01. The sinulated
channel was then applied tc transform coded images. Three inages were
zonal transfcre coded in 16 x 16 blocks an1 their quantized transforn
domain components were enccded by assigning each a tinary code word.

The resulting sequence c¢f binary digits was operated on by the
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INPUT K j OUTPUT

Figure 3.2-1, Transition probabilities for a binary symmetric channel.
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simulated channel. The error-corrupted bit stream was then either
decoded directly, as shown in figures 2a, 2c, and 2e, or restored by
the use of eq. (1) to reduce the effects of the guantization process.
Figure 3 «contajns a schematic of this procedure. The decegded jrmages
vith the quantization effects reduced are shown in figures 2b, 24, and

2f.

Bit errors im transform coding that arise due to a binary
sypmetric channel are seen to result in an emphasis of the block
structure and a subjéctive error that extends over the entire block.
This latter effect occurs because inverse transforaing a block
containing an error distritutes this error over all the resultant
image domain cosgonents. The reconstruction technigue implied by eq.
(1) is thus insensitjve to channel errors. Since it provides vwisual
and mean-square ergor improvements in noise-free cases, it ¢an be

utilized equally sell in noisy enviroanmeats.

Reconstructjon of Quantized and Transmitted Signals: The previous

section demonstrated that channel errors do not adversely affect the
performance of the restoration technique derived previously. However,
this technique doeEs nothing to ameliorate the effects of the channel
errors. This is because the fundaaental restoration formula presented
in eq.{1) vas derived without any consideration of channel structure.
By including the chaanel structure in the derivation, the resultant
restoration technique can simultaneously reduce the effects of the

guantization process and mitigate the effects of channel errors.

27~



(a) Quantized 0. 5 bit/pixel (b) Restored 0.5 bit/pixel
Pe=0.01 Pe=0.01

(c) Quantized 0. 5 bit/pixel (d) Restored 0. 5 bit/pixel
Pe=0.01 Pe=0.01

{e) Quantized 0, 5 bit/pixel (f) Restored 0.5 bit/pixel
P_ =0.01 ) P, =0.01

Figure 3.2-2, Minimum mean square error restoration of Hadamard
transformed zonal quantized images.
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SOURCE ["] QUANTIZER =" ENCODER
X Rm
DATA RECONSTRUCTION
*| CHANNEL " pECODER [ "{UNIT —
Ry Z

Figure 3, 2-3,

Data system used to model the effects of channel

errors on the quantization restoration process.

-29-



Let the output cf a data source (this output could consist of
DPCM samples, PCM samples, or transform domain samples) be denoted by
gf(xl,xz,...,xﬁp and described by a probability density function p(z).
The reconstructicn of x, after x has been guantized to one of M
regions and channel-error corrupted, is denoted by g;(zl,zz,.;..zN)
for k=1,2,...,M (refer to figure 3). The mean-square error that

results from this process is

MM
6=30 3 pmln [ ez @-zy) plwidx ®
k=1m=1 R
m

This error can te winimized by proper choice of the restoration
points, 2. Setting the partial derjvatives of this errogs with

respect to z egual to zero yields

M
Y pmlo) [ mpeodx
_ m=1 RTn
= (5)
M
Y. plmlk) _4; Plx)dx
m=1 m

for k=1,2,...,4. This expression is the noisy channel wersion of
eg. (1) and provides a minimum mean-square arror estimate of the input
to a gquantizer lLased on the cutput of a noisy chaanel, the
characteristics of the quantizer, and the a priori statistics of the
input. This equation is also a multidimensional version of a sgesult
first derived inm [3). For a noiseless channel, the channel magrix P

becomes the identity wmatrix and eg. (5) reduces to eq.(1). When the
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probability vcluae integrals in the denominator of 2q.(5) are all
equal, which 1is agproximately true for Max quantization, the

restoration equatjon simplifies to

4 xp(x)dx
M | m
z, = p(m]| k) (6)
k :12;1 f p(x)dx.
R
m
or
M .
2, =2, plmlkly_ (7)
m=1

where ynnis given by eg.(1). This result holds for maximum output
entropy gquantizers and two-level symmetrical quantizers, and is

approximately correct for many other types.

A signal that has been quantized and then transmitted over a
noisy channel can thus be cptimally restored by utilizing egq.(5)«< The
restoration scluticns found earlier for Gaussian and Laplacian
probability densjty functions (see [#4] anl [5], respectively) can be
substituted directly into eg. (5) once the transition matriy for the
channel has been determined. The resultant estimator can then be used
to restore the cdtputs of transform and DPCY coders that have been

degradel by channel errors.
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3.3 Interframe Image Coding

Gunar S. Robinscon and John A. Roese

Interframe coding of digital image seJuences encompasses those

technigues which make use of the high correlation that exists betwveen

pixel amplitudes in successive frames. Intraframe coding technigues

that exploit spatial correlations can, in principle, be extended to

#This research is partially supported by the Naval Undersea Center,

San CDiego, Califcrnia.
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include correlations in the temporal domain. Previous research in the
area of three-dimessional Pourier and Hadamard transforsatioas has
indicated that bit rates can be reduced by a factor of five by
incorporating ccrrelations in the temporal directjon [1]. However,
three~-dimensional transform systeas are unattractive since they

require large amounts of data storage and excessive computation.

To alleviate the problems associated with three-dimensional
transform systems, new hybrid (twvo-dimensional transform)/DPCM image
coding systems have Leen developed [2]. These systems utjlize both
spatial and temporal correlations while greatly reducing aemory
storage and computatjonal requirements. A block diagram for a hybrid
(two-dimensional transform)/DPCM system is shown as figure 1. In
present implenentations of this system, either a two-dimensional
cosine or Fourier transformation is performed on 16 x 16 sukbblocks.
DECM linear predictive coding in the temporal dqmain is then applied
to the transfcza coefficients of each subblock. For notational
convenience, the hybrid interframe coders enmploying two-dimensional
Fourier transforms will be denoted as FFD and those using
tvo-dimensicnal cosine transforms as CCD. The FFD and CCD coders are
adaptive in the sense that statistics of the transform coefficient
differences of each subblcck are ccmputed prior to encoding tﬁe
transform coefficients in the temporal directicm by parallel CPCHM
coders. At the receiver, the transmitted transform coefficients are
decoded and a replica of each frame is reconstructed by the
appropriate inverse two-dimensional transformation. These systens

require only a single frame of storage and involve significantly less
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penory and fewer ccmputations than three-dimensional transform coding

techniques.

Operational Modes: At least three operational modes have been

identified for the hybrid interframe coding systeas. These
operational modes depend on the initial conditions assumed for the
previous coder. The initial conditions are:
a. No apriori information available at the receiver;
b Limited infpormaticn (such as mean, variance and temporal
corcrelations based on a statistical model)
available at the receiver; and

C. Pirst frame available at the receiver.

In the no apriori information available case, several frames are
required for the hybrid coder to sattle. However, it has been
experimentally verified that in the remaining two cases, nearly stable
coder performance is achkieved within the first 4 to 6 frames. From
operational considerations, the third set of initial conditions is the
most r2alistic as periodic full frame updating will be required to

eliminate the curulative effects of channel noise.

Mathematical Formulation: Let f({x,y) denote a two-dimensional
array of intensity values on an N x N subblock of a digital telewision
inage of size M x M. Typical values for ¥ and N are 256 and 16,
respectively. Let F(u,v) be the two-dimensional array oktained by
taking the two-dimensional transform of f(x,y). In the case of the
two-dimensional discrete Fourier transform, the expressions celating

f(x,y) and F(u,v) are
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Fla,v) =5 20 20 flxy) exp [E0 (ux + vy)] ()
N” x=0 y=0
and
N-1 N-1 ”r s
f(x, v) =Z Z F(u, v) exp [+% (ux + vy)] (2)
u=0v=0

for u,v,x,y=0,1,...,N-1. Por image processing applications, f (x,y) is
a positive real function representing brightness of the spatial
sanmple. The two-dimensicnal Pourier transform of a 1eal-valued
function has the conjugate symmetxy property. Also, the Pourier
transform consists of 232 components, i.e., the real and imaginacy or
magnitude and phase c¢omponents of each spatial frequency. Hovever, as
a result of the conjugate symmetry properties mentioned above, only Nz

cosponents are required to conmpletely define the Fourier tramsforn

[3].

In the case cf the Pourier transform, a shift in the
spatial-domain variables results in a pultiplication of the Fourier
transform of the un-shifted image by a phase factor. If the ipput
imge f(x,y,tl) is shifted by the amount X, in the x-direction and Yo

in the y-direction Lketween times t,  and tz, then the Fourier transform

1
of the shifted image is given by

o
Fla,vt,) = F,v,t) e [E2 ey + vy)] (3)
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This shifting property is expected to be useful in detecting and
compensating for effects cf motion between frames since many types of
motion, such as panned moticn, produce significant changes in phase
components but small chanyes in amplitude components. Thus,
compensation for camera platform moticn could be implemented directly
in the array of phase caocponents by application of appropriate phase

correction factors.

The two-dimensicnal Fourier transform ¥(u,v) of a spatial signal
function f(x,y) is separaktle, i.e., it can be computed as two
sequential one-dimensjonal transforms since the Pourier kernel, is
segparable and sypmetric. Thus, the basic one-dimensional discrete

Fourier kernel transform that must be performed is

N-1
o
F(u =-I!\I—E f(x) exp (-—;"Il ) (4)
x=0

fot u=0'1'.o.'N-1'

In the case of the discrete Cosine transform, the one-dimemnsional

transform is

N-1
F(u) =_1{I E f(x) cos (isz"‘N_ll@_) (5)
x=0

for u=0,1,...,N-1. The cosine ¢transform is also separable and a
two-dimensional discrete cosine transform of an N x N subblcck results

2
in N real coefficients.
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Experimental evidence derived from transmission of a typical
“head and shoulders" picture telephone scene has shown that the frame
difference signal has a protability denmsity clcsely approximated by a
double sided exponential function [4]. The optimua ninisum mean
square error guantizer for this distribution has been found tc be a
uniform quantizer combined with a ccmpanding of the frame difference

signal [5].

Since the variances of the transforn domain coefficient
differences are different, it is necessary to use differeant quantjizer
parameters for each coefficient.. Bach coefficient difference signal
js allocated a number of bits proportional to the estimated variance

in accordance with an optimum bit assignment algoritha.

Pidelity Criteria: In figure 1, differences between the input

signal f(x,y,t) and output signal E(x,y,t) are due to two sources:
quantization errors and channel noise errors. To evaluate c¢oding
efficiency of the bybrid enqoders, twvo objective criteria vere used.
The first criterion, NMSE, is a measure of the =mean square error
between f(x,y,t) and %(x,y,t) averaged over an entire frame of size N
x Y. Normalization is achieved by dividing the mean square errot by

the mean signal energy within the frame to give

. M-1 M-1 2
—2 Z E [f(x, Y, t) - f(x,y,t)]
M= (6)
1 M-1M-1 2

2 LY [ty t)']

x=0 x=0

NMSE =
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The second criterion, SNR, measures the ratio of peak-to-peak signal

to RMS noise as defined by

-1 M-1 2
L)
-13 DD [f(x. v,t) - flx,y, t)]
M x=0x=0 (‘7)
SNR = -10 log,, 22
25

Figures 2a and 2b are graphs illustrating the coding efficiency
of the hybrid FED and CCD coders at various bit rates in the interval
0.1 to 1.0 bits/pixel/frame. To perform this series of experimeants, a
25€ x 256 resoluticn data base consisting of 16 consecutive frases of
a 24 frames per second (fps) motion picture was digitizead. /Aaitial
conditions assumed were that the first frame was available at the

receiver.

Photographs of frame number 16 after coding by the FFD and CCD
coders at average fpixel bit rates of 1.0, 0.5, 0.25, and 0.1 are shown
as figures 3 and 4. The resualts shown in figure 3 for the FFD coder
were obtained by ¢oding the real and imaginary components of the
Fourier coefficients by assigning half of the available bits to each

component.

Noise Immunity: Performance of the FFD and CCD hybrid interframe

coders was investigated in the presence of channel noise. In order to
study the effect of channel noise, a binary symmetric channel vas
sisulated. The channel is assumed to operate on each binary digit

independently, changing each digit frcm 0 to 1 or from 1 ¢to 0 with
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Figure 3.3-2, Error performance of hybrid coders



(2) 1.0 bits/pixel/frame

(c) 0. 25 bits/pixel/frame (d) 0.1 bits/pixel/frame

Figure 3,3-3. FFD coder for frame 16.



(c) 0. 25 bits/pixel/frame (d) 0.1 bits/pixel/frame

Figure 3.3-3. FFD coder for frame 16,
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(c) 0. 25 bits/pixel/frame (d) 0.1 bits/pixel/frame

Figure 3.3-4 . CCD coder for frame 16.
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protability p and leaving the digit unchanged with probability 1-p.
At the receiver, the encoded picture is reconstructed from the string

of binary digits, including errors, transaitted across the channel.

L3 - Y "3
Degradations due to channel noise probabilities, p of zero, 10

and 10—2 for the FFD and CCD coders at average bit rates of 1.0 and
0.25 bits/pixel/frame are shown in figures 5 and 6. The generally
monotonically increasiny character c¢f these curves illustrates the

fact that once an erzxor has occurred, it tends to propagate in the

temporal direction until corrected by a frame refresh.

Resulting pictures shcw that, fcr both coder implementations
studied, minimal image degradaticn occurred for channel error

probability cf 1073 cr less.

Photographs corresponding to average bit rates of 1.0 and 0.25
bits/pixel/frame for the FFD and CCD c¢oders with channel error

-3 -2
probabilities of 10 and 1C are shown in figures 7 and 1.

Bit Transfer Rate: In keeping with the previously mentioned

objective of minimizing the number of bits transmitted while retaining
image fidelity, a series of experiments was performed in which certain
bit transfer rates (BTR) across the channel were fixed. The ETR is
defined as the prcduct of average pixel bit rate per frame and frame

rate and has units of bits/pix2l/sec.

The availaktle 16 frame test data base was extracted frcm a 24 fps

motion picture sejnence. 8y emplcying frame skipping techniques,
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(a) 1.0 bits/pixel/frame

P= 10'-3

(c) 0. 25 bits /pixel/frame (d) 0. 25 bits/pixel/frame

p=10"2 p=10"2

Figure 3.3-7. FFD coder with channel noise.
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(a) 1.0 bits/pixel/frame
p=1o'3

(c) 0. 25 bitsfpixel /frame (d) 0. 25 bits/pixel/frame
p= 10”3 p= 10”2

Figure 3. 3-8, CCD coder with channel noise,
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temporal subsampling was used to simulate short 12, 8 and 6 fps

sequences frca the 16 frame test data base.

Averaygye bit rates in the interval 0.083 to 1.333 bits/pixel/franme
were used in ccajunction with the four frame rates mentioned above to
pecrfcra simulaticns with BIR values of 8, 6, 4 and 2 bits/pixei/sec.
Results of these experiments for 4 bits/pixel/sec are showa in figure
9. For all cases examined, the graphs shov that reduced frame rates
prcduce smaller ©§MSE values for the individual frames coded. This
indicates that reductions experienced in frame-to-frame correlaticns
due to temporal subsamgpling are completely ccompensated for by the
increased number of bits available for coding. However, subjectively,
reduced frame rates tend to result in jerky subject motiom. This is
most apparent for ragidly mcving objects in the field of view and is

of lesser consequence for slovly changing scenes.

Conclusicns: Based c¢n theoretical and experimental resualts

obtained to date, two main conclusions have been reached. The first
is that exploitation of temporal correlations in additicn to spatial
correlations has been demonstrated to be a viable technigue for coding
sequences of digital images. This fact is demonstrated by a
ccomparison of the average bit rates required for the interframe
cosine/cosine/CECM and the existing intraframe cosine/DPCM coders to
achieve the same 1level of gHSE pecrformance. The sixteenth frame of
the test data base was chosen for comparison and was coded at an
average 0.25 Ltits/pixel by the interframe cosine/cosine/DPCM coder.

When using the intraframe cosine/DPCM coder, it was necessary to code
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this frame at a bit rate of more than 2 bits/pixel to achieve the same

NMSE.

The second conclusion is that the perfcrmance of ¢the hykrid
interframe codexs investigated are heavily dependent upon the type of
motion. 1In the case of the 16 frame head and shoulders test data
base, good coding performance was achieved since subject movement wvas
restricted tc a relatively small portion of the image. However,
coding performance with a different aerial data base was degraded froa
the previous case due principally to camera platform motion which
caused frame—-to-frame pixel anplitude variations across the entire
image. Since the performance of the hybrid interframe coders is
dependent on teagoral correlation, a reduced level of performance is

to be anticipated for image sequences distorted by motion.
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4. TImage Restoration and Enhancement Projects

Imnage restoration and imaje enhancement are two «classificaticns
of 1image inmprovement methods. Image restoration techniques seek to
reccnstruct or recreate an image to the form it would have had if it
had not been degraded by some physical imaging systen. Image
enhancement technjyues have two major purposes: improvement ia the
visual gquality of a picture to a human viewer: and manipulation of a
picture for wmore efficient processing and data extraction by a-
machine, Rasearch in becth areas during the past siy months is

descrited bhelow.

4.1 Eigenvectors of Space-Variant Foint Spread Function Systenms

Harry C. Andrews

In image restoration systems a linear model results in an object
f being nmapped into an image g by a point spread function matgix H.

Thus with noise

g+Hf+n (1)

The simplest linear models for imaying systeas are given by space
invariant G[point spread functions (SIPSPF) in which case H is block
circulant. If the linear model is not space invariant, H then
represents a space variant point spread function (SVPSF). In the case

of separable systems ey. (1) becomes
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G=AFB+N (2)

where A represents the coluamn blur and B represents row blur on the
object P. 1In the SIPSF case A and B are circulants, but for the SVPSF
case A and E may have very general structure. It 1is interestiny to
investigate tlke eigenvectors of such systems to get a better feel for
the underlying eigenspace of the distorticns representing such
systems. In the case of SIPSP systems, the eigenvectors are sine and
ccsine waveforms and the eigenspace of such distortions are given by
the Fourier transform. In the SVPSF situation, the eigenvectors often
turn out to be variations on sines and cosines depending on hovw

variant the blur actually is.

To illustrate thjis point a separable (SVPSF) system has been
simulated for two degrees of blur (noderate and severe). Figure 1
illustrates this situation in which 16 point sources experience
spatially varjant dagradations. The izaging systems are separable and
are in better focus jin the center and jot mwmore blucrred toward the
edges. Figures 2 and 3 present selected eigenvectors fcr both the
moderate and severe distortion cases. As the eigenvector index
increases, the eigenvectors experience an increasing numter of zero
crocssings similar to sine and cosine functions. Also note that ‘the
first eigenvectcr has no zero crossings and is not a constant. These
SVPSF eigenvectcrs appear to be FH modulatel trigonometric wavefortms.
It is interesting to conjecture that as a function of the decreasing
variant nature of the blur involved, these eigenvectors vill comverge

to unmodulated trigonometszic functions. In examining figures 2 and 3,
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it is interesting to nota the effort each eigenvector goes to in order
to resolve finer detail at certain points along the axis ccmgared to
other positions. Also note the eigenvectors effectively go to zerc at
higher indices in the <center of the axis indicating they have no

effect on the restoration here.

4.2 Least Squares Restoration for the Continuous-Discrete Mepdel

Steve Hou

For image restoration purposes, a realistic model is that given

by the continuous~discrete model defined by

£= jjll(e.'ﬂ)f(e,n)ded'n (1)

vhere a discrete jmage g is obtained from a possibly space variant
imaging system, described by h(e,M), observing a continuous pbject
£(¢,N). In digitally restcriny such a model only a finite number of
sapnples are available for description of the estimate f(e,ﬂ) pf the

object. Using cubic spline intergolation

(e, M =22cij S;(€)s,(m (2)
i

where si(l) is the i th cutic spline centered at € - An objective

function for restoration with a smoothness constraint is given by
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wed = |lg-2I +ij[¥" (e,M) J%dean (3)
where

é=ffh(€,ﬂ)f(€.ﬂ)d€dﬂ (4)

By lifferentiaticn and subsequent wmanipulation, the systemization

equation result js

[PTP+vyB1Cc=-P'g (5)
Here

P- J’jg(e,mg'r(e,n) ded (6a)
sT(e,m = sT(c®sT (M) (6b)
c=c®¢; (6c)

-]
B - J 8" (e, M)s" T(e, Mded (64)

-]

Equation (5) js known as :the normal egquatijon.

The method of ccnjugate gradients has been used to jteratively
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search for the sclution in eg.(5). Because of computer limitations, a
separable pcint spread function has been assumed, for Loth space
variant and invariant systems. For the separable formulation, th2

normal equation keccames

[aTa+yB ®B Jc-a"g (1)
where
A =ffbij(e,ﬂ)sk( e)sl(’n) dedn (Ba)
and
1" “T
B = sy (e)s) (e)de (8b)
B =fs" (M s" T(n)dn (8¢)

-0

Using this fcrmulatiocn, the generalized extrapolated Jacobi iterative

fcrmulation is given by

. afo_y_o_ .

0 .
where B, is defined as B, except that no derivatives are taken of the
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spline functicns in egs. (8b) and (8c). The advantage of the

formulation in e4.({9) is that no laryge matrix inverses need be taken.

A conjugate gradient algorithm has been igplemented for both

space variant and invariant cases. The blur impulse response is given

hy
My;(€» M=hy( €)M (10a)
where
( € 'xi) 2
hi(e) = kexp 5 (10b)

1

andcﬁ =lkxﬁ such that k gcverns the asount of blur or spread as a
function of pcesition (x5) in the imaging plane. A similar equation
results for hj(ﬂ). For the space invariant case0; was set equal to k

without xs contributing to the spread ofoi .

The simulated results by using the conjugate gradient algorithm
are shown in figures 1 through 6. For both restorations frcm moderate
SIPSF blur (figure 1) and from moderate SVPSF blur (figure 2), the
results are strikingly good for Y =0. The justification for such
results is that the PSP is fairly localized (i.e. narrow), and thus,
the matrix A is well conditioned. In other words, the eigenvalues of

A are clustered together sc that A is far from singularity.

on tha other hand, as the PSF spreads out and the image becounes
more Ltlurred, the restored objects for both SIPSF and SVPSF are far

from perfect. For x=0 ringing in separable form shows up in the SVPSF
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-8

(b) Restored 6 for §=10-8 (c) Restored ﬁ‘ for 6=10

Figure 4.2-1, Restoration from moderate SIPSF blur (k =1).
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(a) Blurred iniage
G(k=1)

= 3 . -

) ) it r.
(b) Restored 8 for 6=10"

- i .

(d) Restored C for 6=0 (e) Restored F for 6=0

st
1

Figure 4.2-2, Restoration from moderate SIPSF blur (k = 1).

~61~



(a) Blurred image
G (k=4)

il

4

(d) Restored 6 for 6=0 (e) Restored i"\ for 6=0

Figure 4,2-3 . Restoration from severe SIPSF blur (k =4).
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il

(a) Blurred image
G(k=0.1)

(d) Restored 6 for 6=0 (e) Restored f for 6 =0

Figure 4,2-4., Restoration from moderate SVPSF blur (k = 0. 1).
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(2) Blurred image
G (k=0.5)

I||

(d) Restored € for 5=0 (e) Restored F for 6=0

Figure 4.2-5, Restoration from severe SVPSF blur (k =0, 5).
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(a) Blurred image
Gk=1)

w/w/

d

|

|

(b) Restored C for 6=0 (c) Restored F for 6=0

Figure 4,2-6 .

Restoration from very severe SVPSF blur (k = 1),
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case; and the norm of the error matrix in the gradient algoritan
oscillates. This is because the matrix A now is badly conditioned and
approaches singularity. Theoretically, as Y=0, the conjugate gradient
algorithm is the same as the pseudoinverse of A. Under ‘this
condition, the ellipsoidal contour surface in the direction
corresponding to zeroc eigenvalues shrinks, thus residual errors gan no
lcnjer maintain orthogonality, and the computing time to convergence

JrCwWs encrmously.

As shown in figures 1 and 2, the tradeoff between +the pjictura
smoothuess and sharpness which may be accompanied by oscillations
becomes evident frcm the results for'Y=1d“gnd'Y=0 in both SIPFSP and
SVPSF cases. The price paid for sharp pictures is a long itecation
time, Notice that imn the SIPSF case, the restored object fpr'Y=10-Bis
almost identical with that for Y=0. Hence, it is suspected that in
the SVPSF case, the oscillation could be supressed by using Y =10-6 or
10-7 without mnuch impairment of the picture sharpness, but with the

additional advantage of faster ccnvergence.

Tte white spcts appearing in all the § pictures are the negative
coefficients in the é natrix. Because of the positive nature of the
spline basis functior the coefficients must have negative values in
order to reconstruct E(e,ﬂ) properly. As expected, the white sgots
appear at the high ccntrast areas of the GIRL picture, such as along
the edges of her scarf, or the flowers and in her eyes. As Y
decreases, the number of white spots increases because the restored

picture baccmes sharper. For severely blurred images, the white spots
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are scarce and hence, the cbject is no longer sharply reconstructed.

4.3 A General Image Estimation Algorithm Applicable to Multiplicative

and Non-Gaussian Noise

Nasser E. Nahi and Mohammed Naraghi

In statistical jmage enhancement, an image is described by a
tvo-dimensional random process (field). These processes are often
characterized by their mean and autocorrelaticn ([3]. Denoting the
image brightess function by b(i,j), with i and j as the horizontal and

vertical variables, the twc moments are defined as

M(i, j) = E{b(4, j)} (n

R(i, j, k,£) = E{ [b(i, j))-M(4, j) ] [b(k, £)-M(k, £)]} (2)
where E is the mathematical expectation operator. The degraded image
(ccmmonly referred to as the observaticn) is denoted by y(i,j) and

specifies the functional relationship between signal, b(i,j), and

noise (i, j) given Ly
Y(i:j)= f {b(i:j):Y(i: j)] (3)
vhere f may be ncnlinear andy (i, J) may_be vector valued.

Optimum filtering of images under the general condition of eq. {3)
has received little attention. However, a variety of procedures have

been developed for the special linear case, where
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y(i, j) = b(i, j)+ v, )) (4)

where Y (i, j) is white and Gaussian [11 to 17]. Although, eyg.(4)
describes many natural forms of degradations [12 to 16], there are
conceivably as many situations where this model does not apply.
Examples are ismages with film grain noise and pictures ctserved
through non-hcmogenecus clcud layers, where the noise is a random

attenuation factor. 1In these examples, the observations take the fornm

y(i,j) = v (i, )b (i,]) (5)

The majority of the existing linear estimation procedures reyuire
the correlaticn function R(i,j,k,£) to be specified as an analytic
function of a particular form [12 to 17]. This limits the generality
of these methods since they cannot be applied to practical cases
vhere, the functjon R({i,j,k,£) is often specified numerically at only

a small numker of argument indices.

The purpose of this wcrk 1is to develop a general estimation
method wvhich requjres numerical Qalues of the autocorrelaticn function
R(i,j.k,£) only, and is applicable to nonlinear (as well as linear)
observation systems. Purthermore, the estimation technique will be of

recursive nature, and hance, computationally efficient.

Notation: Am image is viewed as an a x n matrix with elements
b(i,j), vhere b{i,j) is the intensity cf the image at pixel (i,j). To
reduce notaticnal ccmplexity the rpixels are indexed by 1,2,...,n

consecutively fxcm 1laft to right and top to bottoa. This ccanvention
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enables reference to the doubly jindexed image b(i,j) as b(k),

symbolically. Hence eqs. (1) to (3) can be written as

M(k) = E {b(k)}
R(k,£)= E{[b(k) - M(k)] [b(£)- M(£)]}

y(k) = £{b (k), v (k)}

Let the process x(k) be defined as

x(k) = b(k) -M(k)

(6)

(7)

(8)

(9)

for k=1,2,...,n . Thus, the problem of estimating 'b(k) =reduces to

estimating x (k).

Estimation Method: The minimum mean square (MMS) estimate ;q(k),

of a process x(i) at time (pixel) k and for a given set of ¢bserwvation

y(1) ,.e.,y (k) is given by [23)
x°(k)=E {x(k) | y(1), ..., y(k)}
Letting
Y(k) = {y(1), ..., y(k-1)}

then it can be shown [23,25) that x° (k) and its error

are functionally related to Y(k) and y(k) by
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) jx(k)p(y(k) |(k))p(x() | Y (1)) dx(ke)

X
j ply(k) | x(k))plx(k) | ¥ (k) dx(k)

(k) (12)

2
oz(k) I["‘k)'xc’(k)] Py(k) | x(k))p(x(k) | ¥ (k))dx(k)
(o) = :
jP(Y(k) | x(k))p((k) | ¥ (k))dx(k)

wvhere p designates appropriate density functions. ﬁguations (12) and
(13), in turn sugyest that the optimal estimation at k is achiewed by
first finding p(xék)|Y(k)) and then using it along with y(ky to arrive
at xo(k) and o’ (k) » The mean of p(x(k)\Y(k)) is the MMS one step
prediction of the random variable x(k) and its variance is the error
variance of the predicted value. Thus, the optimal estimation at time
k can be thought of as a two step procedure depicted in figure 1a,
where blocks P and F may be identified as the prediction and filtering
steps, respectively. In this system structure, y(k) is isolated £fronm
other random variables and, assuming p(x(k)‘!(k)) is kncwn,
conceptually one can deal with its ncnlinearities in block F,zi.e. if
p(x(k)\Y(k)) is gjiven,then derivation of xo(k) and o° (k) 1is
accomplished by carrying out the integratjons in eqs. (12) and (13).
However, for the general observation of ej. (3), derivation of this
protability density does not lend itself to analytic methods and
available nunerical approaches are computationally unfeasible [ 23,

Chapter 7].

In this geport an alternate procedure is considered, whereby an

approximaticn to tke protakility density p(x(k)l!(k)) is deriveds The
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method is compatible with the logic of the estimator in figure 1a.
This logic consists cf representing past information (i.e.
information due to a pricri statistic and observations y(1),...,§(k-1)
in the form of a protability density to be combined with y(k) in block
F. Based on this premise and the goal of algorithaic
insplementability, the estimator is constructed accordingy to the
following restrictions.
' a). Only the first two nmoments of any random variable are
computad.
b). The prediction process is chosen to be linear.
C). The prediction is to be based on a selected small number of
past estimates. This will impose a desired limited memory

requirement for the estimator.

Letting E(i) andaz (i) represent the estimate and its error
variance, respectively, at time i, then the block diagram in figure 1b
represents the structure of the proposed estimator. In this figure
blocks LP, F and D signify linear prediction, filtering and cne unit
tise delay, respectively. The subscript M is an indication of the
size of nmepory and x¥(k) andtv*z(k) are the one-step predicted value
and its error variance. The set {k-Il,...,k-Ihd} is a set of two

dimensional indices each distinct and Erior to k.

Modeling Procedure: To derive the linmear predictor {(block LP of

figure 1b), the a priori correlation information is first incorgorated

into a linear finjte order model of the process x(k) in the fora of
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y(k)

V(1)
y(Z)______>
. P | px()| Yk F x° (k)
. 2
y(k-1) . > 0-0 (k)
(a) Optimal
lY(k)
S(k-D,00(-1) >
LP x® o] g x(k)
IS a2 *2 Y
x(k-I, ), 0" (k-1 ) —> o (k) o (k)
D |«

(b) Sub-Optimal

Figure 4, 3-1. Estimator Configurations
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x(k) =ﬁﬁix(k-1i) + B u(k) (14)
1=

where ﬁl,...,ﬁhda:e constants and {u(k),u(k-1),...} is a set of

independent identjcally distributed random variates with

B39} =0 0 im#n

E{u(m)u(n)} = (15)
1 ifm=n

Consequently, ey.(14) is an autoregressive model [12], [18 to 20].

The problem of modeling consists of determining the order M4, the
coefficients B ,....Ppp tha set of two dimensional indices
k=Ijsee.,k-Iy; and the variance of the white noise term B u(k) in eq.
(14) . In this work, first a procedure is developed to derjve an
autoregressive model for a gyiven M followed by a discussion c¢n the
best choice of . The modeling criterion is chosen to be minimization
of E{B u(x)}. The procedure uses the numerical values of the
correlation function and does not require analytic representation of

R(m,n). The results are illustrated by the following example.

Consider the stationary two-dimensional correlation functjon

R@, j,k, 2) = R(]i-k]|, |j-¢ )= E{x(, j) x(k,£)} = exp [ J 2+ (j-z)z]

Application cf above procedure provides the following:

a). Best 2nd order model is
x(i, j) = 0.3 x(i, j-1)+ 0.3 x(i-1, j) + 0.883 u(1, j)
b). Best 3rd order mcdel is

x(i, j) = 0.29 x{i, j-1) + 0,25 x(i-1,j) + 0.12 x(i-1, j+1) +0,877 u(i, j)
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C). Best 4th crder model is

x(i, j) = 0,28 x (i, j=1) + 0.24 x(i-1,j) +0,12 x(i-1, j+1)
+0.03 x(i-1, j-1) + 0,8769 u(i, j)

d). PBest Sth order model is

x(i, j) = 0.28 x(i, j-1) + 0.24 x(i-1,j) +0,11 x(i-1, j+1)

+ 0.03 x(i-1, j-1) + 0.02 x(i=1, j+2) + 0,8768 u(i, j)

Hence, for exaample, to a third decimal place accuracy, the 3rd order

model is a sufficient apgroximaticn. Note that, for examgle, the
derivation of the 3rd order model requires the numerical values of

R(C,C), R(C,1), B(1,0) and R(1,1).

Linear Prediction: Let the model of the random process x(k)

(ottained in thke previous section) be

M
x(k) = z Bi x(k-Ii) + Bu(k) (16)
i=1
Given the estimate ;(i), i=1,2,¢¢e4k=1 the linear predictiom x (k), in
general, is given Ly

k-1
% (k) =Z a x(k=j) (17
=1

uheredl 2o 0 jare to be chosen such that

E[x(k) - x (k) P (18)
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is minimized. Thjs minimization is to be carried out subjedt to the
system structure of figure 1b and is based on avaiiable information to
the predictor. This information consists of the values of x(i) and

(i), i<k-1. since each f(i) andez (i) is the mean and varjance,
respectively, of a pgcsterior demsity on x (i) at time 1 (having used
okservations through y(i)), then the expectation in eq. (13) is vell

defined and operates on each random variable x (i) such that

E {x(i)} = (i)
(19)
E{[x4) - 2014 = 6%6)

Theorem 1: When the randcm process x(k) satisfies eq.(16), them the
{optimal) <choice of 01,02,...,GK_1in eq. (17) which minimizes egq. (18)

is given by

B if k-j=k-I

0 otherwise

The proof is given in [26].

This thecrenm states that the best linear predictor is given as

M
x (K) = Z B §(k-1i) (20)
i1
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The implerentation of eg. (20) is very simple. This simgpljcity,
along with the effectiveness of the result as illustrated in the next

sections, are the justification behind the necessary approxjimaticns.

Filtering Step: Referring to figure 1b, the computaticnal 1logic

o,

of block F 1is now developed. The [fredicted value x4jk) and its
variance %3(k), obtained frcm the linear predictor, represeat the mean
and variance of the a fposteriori density on x(k). This density
represents the available kncwledge on the random variable x(k) prior
to reception of y (k). Since, for a given mean and variance the normal
distribution represants the maximum uncecrtainty (entropy) [24., p.
132], this Jdensity function is assumed to be normal. Further
uncertainty is assocjated with x (k) ito*z (k) is used in place of
Oﬁ(k). Consequently, an approximate and a rather conmservative choice

of the probabjlity density for x(k) is

fx (k) - (k) P
—_— ( (21)

E3
20" 2(K)

plx)] = [o ) 271} exp’

Observaticn y(k) and p(x{k)) in eg.(21) are combined to derive

the Bayes estinmate, ;(k)

;:(k) = E{X(k)‘Y(k)}= Sx(k) p(x(k)|y(k)) dx(k)
(22)
) P(}}(k)) f"‘k’ Py (k) | x(k))p(x(k)) dx(k)
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But

ply(k)) = JP(X(k)aY(k)) dx(k) = Ip(v(k)|X(k)) p(x(k)) dx(k)
Hence, [25]

Sx(k) ply(k) | x(k) p(x(k)) dx(k)
(23)

x(k) =
jp(y(k) | (k) plx(k)) dx(k)

Sigilarly,

I(X(k)-;t(k)) 2 ply(k) [%(%))p(x(k))dx(k)
(24)

5% (k) = E{[x(0) -x(0)]% |y(0}=
j’ Py (k) | x(k))p(x(k)) dx(k)
where p(x(k)) in egs. {23) and (28) are given by eq.(21) and

p(y(k)\x(k)) is obtained from the observation system structwre.

In general, evaluation of x(.) and 32(.) in egs. (23) and (24)
will e perfcrmed numerically. This in turn, allows the procedure to
be applicable to a broad class of observation systems including
nonlinear forms o¢f the observation Yy(k). The feasibiljty of this
estimator is due to the structure of figure 1b which 1leads to egs.

(23) and (24).

Jultiplicative Noise Term in Observation: Consider okservations

containing uniform multiplicative noise. 1In this case the obserwation

is given by
y(k) = y(k) [x(k) + M(k)] (25)

with
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1

i 0 <y, k) =y <y,
MG Z(k)_ YlZk’) 1 2 (26)

p(y(k)) =
0 otherwise

With x (k) + M{k) as the image intensity at pixel k, egs. (23) and
(24) become [2%)]

s 1C = (1) - %" (k)
*(k) ='c§s K M) *P - 207209 - dx(k) (27)
a
20 -1 Sb [x(k) - x(k) 12 (se(k) - " (k)2
Y = exp = 5 (k) 28
G A x(k) + M(k) 20::2(k) (28)
where
> x(k) =% (k)
G- ——— |- — dx(k) (29)
x(k) + M(k) 20 (k)
and
a= XK M
Y, (k)
(30)
b= _y(k) M(k)
Y, ()

Since eqs. (27)tc (29) are definite integrals, they can be evaluated
numerically. All noisy images contain uniform multiplicative noise
with noise bounds as indicated in these figures. The estimated images
of figure 2 to U4 provide 5.48, 7.58 and 7.7 db. improvenent,

respectively. Aside frcn this guantitative iaprovesent, the
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(a) Original

(b) Noisy, noise=0,7-1 (¢) Estimate

Figure 4, 3-2, Uniform multiplicative noise
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(a) Original

(b) Noisy, noise=0.7-1 (c) Estimate

Figure 4,3-3. Uniform multiplicative noise
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(a) Original

(b) Noisy, noise=0,7-1 (c) Estimate

Figure 4.3-4, Uniform multiplicative noise
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preservation of edges in the estimated images should be notedl The
responsiveness of the estimator to abrupt pixel tc pixel intensity

changes is due to the estimator structure of figure 1b.

The estimaticn procedure can also be applied to more general

observation systems. As an example consider the case where
y(k) = v (k) [x(k) + M(K)] + v(k) (31)

whereY (k) and v(k) are both uniform. Letting the density of Y(R) be

given by ey. (25) and that cf v (k) be

v (kl) vy EVy ) S vk £ vy (k)
p(v(k) ={ 2 a2
0 otherwise

then p(y(k)|x(k)) can be oktained in terms of the convolutign of
plY(k)) and p(v(k)) [22]. This density, then, can be substituted in

eys. (23) and (24) to obtain pertinent fjiltering equations [25].
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4.4 Image Restoration by Smoothing Spline Functions

Mohammad J. Peyrovian and Alexander A. Sawchuk

In a linear space-invariant imaging system with peint-spread

function h(x), the image g(x) is given by
g(x) = jh(x-u) f(u)du+ n(x) n

vhere n(x) represents measurement Noise. In order to estimate the
object function f{u) from image g(x) by a digital computer, the above
continuous model must be discretized. A common method is to sample
the functions h and g at a finite number of points. Spline functions,
btecause of their highly desirably interpolating and approximating
characteristics, are¢ an interesting alternative to the above method.
For uniformly spaced knots, a class of spline functions, called
B-splines, has the following properties

(i) shift invariance

(ii) strictly positive

(iii) convolutional fpioperty

(iv) local basis property

Using B-splines for interpolation or approximatjion, the functions
f and h <can be represented by B-splines of degrees s and n,

respectively
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£(x) =): £, B_ (x-x)) (2)

iz

h(x) = Z hy B, (x-x,) (3)

j:-w

Substituting eqgs. (2) and (3) in the convolution integral of eq. (1)

gives

g(x) =Z Zfi hiB_(x-x,) *B_(x-x,) +n(x) (4)

iz j=-o

From the convclutjcnal progerty of B-splines
Bm(x-xi) % Bn(x-xj) = Bm +n(x-xi-xj) (5)

and representing g(x) by B-spline,s of degree m ¢+ n and assuming

A R=X5017X gives

Z g B, (x-kAx) =Z Efihj B_, (x-(i+j)bxjn(x)  (6)

k=~ 1= o j:_m

Equations (4), °'(5) and (6) show ¢that <the B-spline, which is
interpclating the deterministic part of the degraded image, must be of
higher degree than the B-splines interpolating object and point-spread

function. In cther words, since the blurred image is always smoother
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than the object, a hjgher deyree spline can follow the image function
better than the one approximating the object function. This can be
aexplained in the Pourisr domain by observing that the Fourier
transform of an z-th degree B-spline is a Sinc function to the power
m. As m increases the amplitude of higher frequencies decreases.
Since a blurred isage has 1less higher frequency content than the
okject, a higher B-spline can represent the image better than the one

representing the object.

In a noiseless imaging system, ey4.(6) may be written in the

matrix form
g=Hf (7)

If the point sfread function is of finite width, the matrix H is
banded. Figure 1la 1is a rectangular object which 1is blurred

analytically by a 4tk order polynomial

2,2

h(x)=—§-2(l-(;‘—.5)) -3.5 £x<3,5 )
0 , elsewhere

The object is a stop function, therefore it is interpolated ty a zero
order B-spline. The second derivative of h at points x=-3.5 and x=3.5
is a step function and it is interpolated by a second order B-spline.
Since the <convclution of a zero and second order B-spline is a cubic
B-spline, the ipage is interpolated by a cubic B-spline. Pigure 1b,

the restored image with and without splines, shows that the spline
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restores the edges much sharper than the common pulse apgroximation
method. Figure 2 is another example of spline restoration apglied to

a twc dimensional blaur with point spread function
H(x, y) = h(x}h(y) (9)
where h is defined in eq. (8).

For a noisy image, the image data is first smoothed by minisizing

jfg"(X) 1% ax

2
amcng all functicns g€éc such that

Z(g(xi)'yi) ss (10)
C.
1

Here y;, is the noisy ipmage measured at point x;...s8>0 and O0;>0 are
given aunmbers. Sektting S=0 leads tc an interpolation prctlem. The
factor<§ contrcl the smoothing window at point X, and S controls the
extent of smcothing. If the standard deviation of Y; is available, it
may be used aso . In this case, natural values of S lie within the

confidence interval of the left hand side of eq. (10) as given by

L 1
N - (2N)2 < S < N + (2N)?

where N is the number of data points. Reinsch [3] has shown that the

solution to eqs. (9) and (1C) is a cubic spline, and more generally, is
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(a) Original image

(b) Blurred image (c) Restored image using
spline functions

Figure 4.4-2, Examples of spline restoration

-91-



a spline functicn of degree 2K-1 for least square minimization of the
K-th derivative instead of the second derivative. 1In smoothing (S>0),
the shape of the function is much mnore influenced by the wmininunm

princifle of eq. (9) than in interpolation (S5=0).

The above smoothing criterion will be subject of further research
on noisy blurred jmages, fparticularly the case K=2 because it leads to
cubic splines which read simpler algorithms and less computation.
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4,5 Detection and Estimation of Image Degradedby Film-Grain Noise
Firouz Naderi and Alexander A. Sawvchuk

The yoal cf this research has been to analyze the problem of
film-yrain noise in the context of detection and estimation theory.
The first step is the development of a mathematical ascdel that

reflects some of the complexities of image formaticn process, and yet

is tractable in the subsequent restoration of the image.
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Denoting by y(i,j) the observed optical density of photogsaphic

film as measured by a micrc densitcmeter let

y(i, j) = 8@, j) + n(i, j) {1)

vhere S(i,j) denctes the density that would have been registered in
tﬁe absence of grain noise and n(i,j) is the noise. Experiments by
researchers in the field of Photoyraphic Science have indicdated that
n(i,j) 1is apfproximately Gaussian distributed with zero mean and a
variance that is dependent on the type of the films used, the size of
the scanner aperture and the value of S{i,j). Clearly the gtservation
model described jin eg. (1) is additive with signal-dependent noise.
Equivalently, the additivity of this wmodell wmay be sadrificed to
obtain a signal-independent noise model. The result of doing so is

the nonlinear observation model

v{i, j) = 81, j) + g[S(i, H] n(, j) (2)

where the noise n(i,j) is zero mean and unit variance Gaussian. The

form of the function g(.) has been subject cf some discussion. The

experimental fora

elsti, )] = xIsG, )P (3)
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has been found to be in agreement with many different theoretical and
experimental results. Simplified photcographic emulsion models such as
Nottings, result in a value of 1/2 for the exponent b in the above
equation. Data taken by Higygens and Stultz [1] suggest values of b in
the range 0.3 to 0.4 if the scanning aperture is allowed to vary

within a reasonakle range.

With this model the restoration F[froblam is considered in two
different contexts: detection and estimaticn. In s®many inage
processing probleas, it is necessary to use a high magnification to
extract image information out of a phctographic recording. A digital
image of size 25€ x 256 can be obtained by scanning a square region of
side approximately 1.25 mm using a 5 micron aperture. Measuring
optical density in such a small region of a photographic film resalts
in such a high 1level of grain noise that distinguishing between
adjacent areas of small contrast with the naked eye becomes
impossible, Recently Zueng and Barrett considered image detection by
a method called the "Noise cheatinj algoritha." References [2,3] show
that this equivalent to method is sub optimal maximum liklilhood

detection.

To set up the problem in the framework of detection theory
suppose that the portion of the photographic film which is to be
scanned can ke segmented into M spatially wuniform or near unifora
density regjions RyrecesRyp Let a square aperture of size a x a be
used to measur2 the optical density of the film. It is them r[ossible

to formulate an M + 1 hypothesis problem. The first M hygotheses, Hy

-94-



are the hypotheses that a given densitometer reading was obtained when
the aperture was entirely in one of the M regions R,. The last
hypothesis Hyiel ¢orresponds to a reading taken when the aperture
overlapped on two or more regions simultaneously as shovn in figure 1.
Conventional maximus likelihcod or Bayesian detectors can now be

utilized for optimal detection of the M + 1 hypotheses.

A sinple suboptimal method to accomplish this procedure is to
perform the M + 1 hypothesis detection in two different steps. 1In
step one the hypctheses %M+lis ignored and the other M hypothesis are
optimally detected. Therefore, in the first step the possibility that
some readings might have been taken when the aperture overlapped mwore
than one region is ignored. In the second step, in regions wvhen
hypothesis Hyryq 3FE€ATS to be highly probable (i.e. the edges), the
image is re-examined with a finer aperture to recover details.
Figures 2c to 2e contain simulation results of this restoration

prxccedure for the three detection strategies described below.

Maximum 1liklihcod detection fer signal-independent noise:

Referring to figure 1 assume that the mean density in region R ,
called the background, is L% and the variance of the readings taken
with an aperture of size a x a in this region is G%. The scanned
image is of size 256 x 256. A two by two spatial averaging is first
performed on the scanned image (Note that in effect the averaged image
is what ve would have obtained had we scanned the film with a 2a x 2a
apreture to begin with.) In the averaged image, pixels in the region

~ ~2
Ry will now have mean m, and variance G%= Gb/u. Each pixel in the
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(2) Ideal image

(b) Image with film-grain (¢) Maximum likelihood detected image
noise added assuming signal independent noise

(d) Maximum likelihood detected (e) Bayesian detected image
image assuming signal
dependent noise

Figure 4.5-2, Image detection in the presence of film-grain noise.
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averaged 1imaye is ncw quartized to one of % levels. These lewvels are
chosen such that one of them will coincide with the mean of the
background, @,, and the others will be 4 G,, apart from each pther.
Since the distribuwtion of the nocise is Gaussian, if thé decision
levels for the quantization are set exactly at the mid-point between
each guantization level then it is easy to demonstrate that the

quantization is in fact maximum liklihocod detection.

Since the levels are taken to be four standard deviations apart,
all the image regicns which happen to have a mean demsity equal to one
of the quantization levels will almost always be restored to. their
correct mean deasity following the quantizaton. Regions having mean
densities that fall Lketween two quantization levels will te f*coded"

into a percentage of these two levels.

The second step in the maximum ljiklihood detection process is to
revork the edges §n the guantized image by coamparing the guantized
image with the oriyinal scanned image which was scanned with the finer

a x a aperture. Figure 2c is the detected image using this proceduare.

Maximus liklihood detection for sijnal-dependent noise: The

perfocrmance of the previous detector is dependent upon the distanqe
between the quantjzation levels. If the levels are four standard
deviations apart, it is certain that regions whose mean deansities
coincide with cne of the guantization 1level will be <clear of the
noise. As seen in eg. 3, the standard deviation of the noise is a
function of the sjgynal. Therefore for an image wjith high dygnanic

range it is necessary to increase the distance between the higher
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quantization level so as to keep the Jistance always four G .
Purthermore, since the standard deviation varies, the decision level
of the gquantjzation vhich corresponds to the pnpaximum 1ikelihood
detection, will no longer te at. the mid-point between the ¢gwantization
levels, Pigure Z shows the improvement ovar the previous detector

vhen the signal dependence of the noise is taken into account with the

proper quantization.

Bayesian Detection: As previously mentioned, gquantizaticn is, in

effect, nmaximus 1likelihocd detecticn. To take advantage of any a
priori knowledge that might be available about the image, it is
advantageous to perform Bayesian detecticn. Corresponding to the M
hypothesis detection in the first step of the above two detectors, the
mean densities of the M region may assume a distribution owver a ssall
range. Using the distributicn as apriori statistics, the result of

tayesian detection is shown in figure ze.

Summary: Estipation algorithms are presently being applied to
film-grain noise. Both Wiener filter and a nonlinear filtering
reported in USC image processing institute report 580 [4], +sill be

applied, and their pérformances will be compared and reported.
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4.6 vignetting and Density Correction for CRT Film Recording

Werner Frei

The acquisitjon of digitized image data and the restitution of
prccessed pictures are generally costly, time-consuming, and yet
essential stegs of digital image processing. Errors and
non-linearities introduced by the scanning and display equipment or
the photographic process can add a surprising amount of wunvanted and
uncontrolled "image processing." These parasitic effects are by no
means always readjly visible in the finished groduct, but they nmay
well invalidate the results of ccmputer image wpanipulations. A&
careful contrcl of the electro-optical machinery, the phctcgraghic
process, as well as an understanding of hugan visual factors is
therefore essential to instre the success and credibility of digital

image processijing.
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Visual Factors: Optimum reflection prints, transparencies and

television images practically never replicate the brightness
distribution cf original scenes, in the sense that color images do not
reproduce the spectral energy distrjbution of colored 1lights.
_Although comprehensive fidelity criteria for images are yet to be
discovered, a few simple rules have been found wusefal in the

optimization cf image acjuisition and reproduction techniques.

Consider fcr e2xample a black and white reflection print, which
consists of a reflective backing coated with an emulsipn of
microscopic grains of silver. The image is formed by controlling the
amount of silver in the emulsion and thus varying the relative light
aksorption of the print, within a typical dynmamic range of 50 to
1C0: 1. Such a rphotograph conveys 1its pictorial information to an
observer irrespective of illumination variations over perhags four to
five orders of magnitude. This rather surprising phenomenon is cdaused
by the ability of the visual system to "adapt" to ambient 1levels of
lighting and thus to extract the reflection properties of objects
[1,2]. Studies cf the reproduction characteristics of optimal jmages
[3) indicate indeed that although absclute brightness influences
perceived quality, the gquality criterion within the physical
lipitations of any given reproduction situation is greatly degpendent
upon its ability to reproduce relative brightness ratios. ‘Thisr fact
is intuitively satisfying noting that pixel brightness ratics are a
property of the bscene reflectances that is invariant to the absolute

intensity cf a uniform illumination.

-101-



The implicaticns of the above visual phenomenon are that the
digital representation of 1light intensities sensed by a scanning
device should ideally be a measure of image brightness ratjos rather
than arbhitrary aktsolute intemsity values. This is easily isplemented
in practice by recording the 1logarithz of the npeasured image
intensities. Many commercially available scanners provide for such an
option, wusually «called density (as opposed to transmittande or
reflectance) scanning. On the reproduction side, care has then to be
taken to preserve the recorded brightness ratios, a process that is
facilitated by the inherent characteristics c¢f the photographic

process to be discussed in the next section.

The Photographic Process: Exposure of a black and white enulsion

to light and subsequent davelogment produces a light absorbing layer
characterized by its optical density D which is defined as the
logarithm of the ratio of transmitted to incident light: With all
other parameters fixei, the optical density is ideally related to the

intensity of the expcsing light I by the function [14)

D=y log [1t] (nm

where t is the duratjon of the exposure. This function, well knpwn in
phctcyraphy, is the Hurter-pDriffield or D-log E curve. Actual
photographic materials depart from this idealized law at both ends of
their wuseful dyrcasic range. The factor describes the "cgntrast" of
the emulsion and is positive for an ordinary negative wnmaterial, and

negative for a reversal process. Because the unexposed emulsign and
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its substrate are not perfectly transparent, an additional "foy" level

Dy is incorporated into the above equation yielding
D =D, + Y log [1t] (2)

The light reflected from a print or transaitted through a slide is

related to the incident light I by [4]

_ -D 3
1=1;10 (3)

The reproduced 1jght intensity I' is given by
I' = 1, 107P[1¢] (4)

Note that if Y = -1, the conditions for an optimum reproduction as

discussed in the previous section are met.

It is not easy to meet the relationship cf eqg.(4) with actual
image processing aquipment. Film is typically exposed by a CEZ, LED
or laser as a serjes of discrete dots which partly overlap; the
exposure may not bLe uniform over the area of the image, etc. It is
possible though to correct for such defects with a numerical
pre-distortion of the digital image data. A simple model, afpprogpriate

for the correctigcn of a CR1 scanner, is discussed next.

Calibraticn of I/0 Devices: Actual image acyuisiticn and

reproduction devjces have a number of inherent imperfectiouns which
distort the final grcduct. For example, the measurement of pixel
intensity in scamners is usually not perfectly logarithamic (often

linear); the pixel intensjties displayed on television monitors are a
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power functicn of the image signals; the light sensitive or light
epitting surfaces of electron beam devices are not percfectly
homogeneous; optjcal systems may introduce significant vignetting,
etc. A number cf frocedures have been devised to cope with such
imperfections [5,6]. FPor example, table 1look-up or G[polyaosial
approximations may be used to correct for the average deviaticas of
the electro-optical transfer function from the desired behaviowr. A
more refined (and exgensive) soluticn is to vary the coefficients of

the correction as a function of the gecmetric image coordinates.

A true assessment of I/0 device performane and the .gatheriny of
physical data for the design cf correction schemes is best done by
producing test patterns such as step tablets and measuring the ogtical

density functions obtained on hardcopy or transparency.

To illustrate the above, a new software correction technique for
CRT scanners is presented. It is of medium complexity, but
ccmputationally wery fast and has given excellent results with a CRT
scanner. The pajor sources of distortions in this case are
schematized in figure 1. The CRT light epission I as a functien of

the drive and bias voltages U and U, respectively [ 7], as approximated

by

1=[U+U.+ UI]YCR‘T (3)

0

vhere U, represents the cut-off voltage of the CRT. Optical

vignetting produces a darkening towards the image corners (figure 2),

-104-



Optical

y -CRT Vignetting Film
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log E

I

a) Distortions

—=(D logE )-I — (Vignetting)-'
line and
column
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in CRT film recording

—{(y-CRT)"

to CRT

b} Numerical pre-distortion for recording correction

Figure 4, 6-1. Distortions in CRT film recording and numerical

pre-distortion for correction.
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(a) Constant brightness values photographed with a
polaroid camera. The darkening of the corners

is evidenced by the small cut-off pasted in the
middle of the photograph.

(b) The effect of vignetting on a mosaique

Figure 4.6-2, Demonstration of the vignetting effect,
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(particularly annoying if cne attempts to produce a mosaigue, see
figure 2b. Assuning that the vignetting is the only space-variant
distortion, a fast table lcok-up algorithm has been inplemented, such
that each source of distortion mentioned above is corrected for in the
appropriate corder. TheY&éﬂ?and D-log E correction of figuge 1b are
straight fowvard look-up tables based upon measured data. Perhaps the
most interesting pre-distortion step is the vignetting correction.

Assusing circular sysmetry, a second order polynomial of the form
I'=1[a+ B2+ y2)] (7

has been used to boost the light intenities towards the image cornecs
where x and y are the image coordinates referenced to the screen
center. The values A/2+Bx are stored in a one dimensional array C and
the correction is made by looking up this array twice given the pixel
line and column jndicies x; and y;. The results from this fast
correction technique are shown in figure 5. The variations in density
across a unifcrm surface are less than 0.1 density units, whereas the
uncorrected image had corners darkened by as much as 0.35 density

units.
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4.7 Spectral Sensitivity Estimation of a Color Image Scanner

Clanton E. Mancill and Willjam K. Pratt

The spectral sensitivity of a color scanner must be deterkined in
order to calibrate its response. Direct spectral measurements cver
the continuum cf the spectral band are often difficult to obtain,
However, responsivity measurements can be wmade through spectrally
selective filtere to estimate the continuous srectral sensitivity of

the color scanner.

Spectral Radiance Estimation: Many tasks in color and

multispectral image restoration involve the estimation of the spectral

radiance function c(M) fiom a series of obsarvations of the form
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xi=Ic(l)si(k)dX+ni (1)

where si(l) is the sfpectral sensitivity of the spectral wseasurement
filter for i=1,2,...,P observations. The tern n; represents additive
noise or wuncertainty in the nwmeasurement. Discrete estiration
techniques can be applied to this problem solution <1>. The first
step is to discretize the continuous inteyral to form the vector

eguation

T
x, = 8, g’+ni (2)

uhete.;si and ¢ are Q x 1 vectors of quadrature sanmples of sijl] and

c{)\), respectively. Then, the set of P observations may Lte arranged

into the P x 1 vector

x=5c+n (3)

where the vector 53 occupies the i th row of the matriy S. The
systenm of egquaticns represented by ej.(3) |is normally highly
underdeternined if sufficient guadrature mash pcinots are taken to

reduce the quadrature error to reasonable bounds.

An estimate é of the .true spectral energy distribution ¢ can be

obtained by the generalized inverse estimate <2>

e=5"x=5"6s""x ()

Although the generalized inverse provides a minimum mean square error,

pinimum norm estimate of ¢, ill-ccnditioning of S coupled with
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okservational errcrs can lead to oscillatory estimates. Since c¢ 1is
generally 4uite smooth, it is reasonable to impose some smopthing
constraints on the sclution. A ccomon tyge of smcothing estimate 1is

given hy <3

10>
1
I
47]
%
ke
n

22 2 x (3)

vhere M is a smoothinyg matrix of the typical form
~ 1

1 -2 1 00 00 ......0

-2 5-4 10 0 0 .

1 -4 6-4 10 0 .

0 1-4 6-4 1 0 .

M=| 0 0 1-4 6-4 1 .
' (6)

1 -4 6 -4 1 0
0 1-4 6 -4 1
0O 0 1-4 5 -2
o . . . . .0 0 0 1-2 1

A third alternative js to apply Wiener estimation methods <Uu>. With
Wiener estisaticn, the vector ¢ to be estimated is assumed to be a
sapple of a vector randcm process with knovn wmean and covagiance
matrix K.+ The Wjener estimate is given by

(SK_S +K ) 'x

€=KS
t=ae2 2

where K is the covariance matrix of the adiitive observational noise

assuned independent of c. As a convenient approximaticn the

covariancae pmatrix can be modell2d as a first order Markov process

-110-



covariance matrix of the fcrn

1 p o2 e e e oQ'l
2 -
o, p 1 »p e o oQ 2
_C= Q . ° (8)
-1 )
OQ' * . . 'Y 1 -‘

wvhere 0 < p < 1 is the adjacent element correlation factor and
represents the energy of c. Observaticn noise is commonly modelled as

a white noise process with covariance equal to

2
o}

K=7591 9)

vhere oi is the noise energy and I is an identity matrix.

Color Image Scanner Calibration: A common problem in the

evaluation and calibration of color image scanners is to determine the
total spectral respcnse cf the scanner taking into account _the
spectral radiance of the illumination source, spectral absorption and
scattering of the optics, and sgectral sensitivity of the
photodetector. Djrect measurements are often not feasible. BReferring
to eq.(1), let c()A) be redefined to represent the spectral sensitivity
respons2 of the scanner and si(l) be one of P spectral test functions.
The measurement procedure then proceeds as follows. An optical filter
of known spectral characteristics, such as an absorption filter or
narrowband interference filter is introduced into the scanner amd an

output reading is obtained. The process is repeated for a number of
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filters whose G[feak transmissivities span the spectral region of
interest. The ageasurements form the vector of observaticns, and an
estimation operation is then invoked to obtain an estimate of the

scanner spectral resgonse.

In order to evaluate the estimation procedure, a computer
sipulation experisent was performed in which simulated measurements
vere taken of a Gaussian shaped spectral function through simulated
absorption filters. Figure 1 contains a plot of the spectral shapes
of the filters. The simulated measurements were then wutilized as
spectral observaticns for estimation of c(A). PFigure 2 illustrates
the performance of the ¢three estimaticn wmethods for csimulated
measurements through the filters. In these experiments the mean
square fit between the actual spectral function and its estimate was
least for the simulated interference filter measurements using a

Wiener estimate ¥ith @ = 0.9 and a signal-to-noise ratio of 1000.

The spectral estimaticn procedures have also been applied to the
estimation of the spectral response of an Optronics Model S 2000 flat
bed scanning microdensitometer. Figure 3 shows the estimate obtained
with absorption and interference filters for the three estimation
methods. No direct measurements are available for the scanner so that
no "ground truth® can be astablished. But, on the Ltasis of the
simulation exfperiments, it is concluded  that the Wiener estimate
obtained with the set of interference filters is a reasonable estimate

of the actual sgectral resgonse.
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Figure 4.7-2, Comparison of actual and estimated spectral response
for absorption filters obtained by computer simulation.
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4.8 Median Pilterijng

William K. Pratt

The median fjlter is a nonlinear signal processing technique
developed by Tukey <1> which is useful for noise suppressicn in
images. In one dimensional form, the median filter consists of a
sliding window encompassing an odd number of pixels. The center pixel
in the windov is regrlaced by the median of the windcw pizxels. The
median of a discrete sequence a ,a ,...j5a , for N 0dd is that member
of the sequence for which (N-1)/2 elements are spaller or equal in
value, and (N-1)/2 elements are larger or equal in value. For
example, if the values of the pixels within a vindow are
80,96,200, 110,120, tke center pixel wculd be replaced by the value 110

vhich is the median value cf the sorted sequence 80,90,110,120,200.
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In this example, if the value 200 was a noise spike in a monotcnjcally
increasing seguence, the median filter would result in ceonsiderable
improvement. On the other hand, the value 200 might represent a valid
signal pulse for a wjde tandwidth sensor, and the resultant image
wvould suffer scee lcss of resolution. Thus, in some cases the amedian
filter will provide moise suppression, and in other cases it will

cause signal suggression.

Fiqure 1 illustrates scme examples of the operation of a wmedian
filter and a mean (smocthing) filter for a discrete step function,
ramp function, pulse functicn, and triangle function with a window of
five pixels. It is seen from these examples that the median filter
has the usually desirabtle groperty of not affecting step functions or
ramp functions. Pulse functions wvhose periods are less than one-~half
the window width are suppressed. Also, the peak of <the triangle

function is flattened.

Operation of the medjan filtered can be analyzed to a 1limjited
extent. It can be shovn that the median of the prcduct of a coastant

K and a sequence f(j) is

med { K £(j)} = K med {£(j)} (1)
Furthermore,

med {K + £(j)} = K + med { £(j) ] (2)

However, for two arbitrary sequences f (j) and g(j) it does not follow

that the median of ¢the sum of the sequences is equal to the sunm of
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their m2dians. That is, ir jJenaral
med { £(j) + g(j)} # med {f (j)} + med{g(j)} (3)

The sequences 80,90,100,11C,120 and 80,90,100,90,80 are exanples for

which the acdditive linearity property does not hold.

There are various strategies for application of the median filter
for noise sufpfression. One method would be to try a median filter
with a vindow of length 3. If there is no significant signal 1lcss,
the window 1lengtk could ke increased to five for median filtering of
the original. The process would be tetmiﬁated vhen the median filter
beyins to do more harm than good. It is also possible to perform
cascaded median filtering cn a signal using fixed or variable 1length

window,

The concept of the pedian filter can be easily extended to two
dimensions by utilizing a two dimensicnal window cf some desired shape
such as a rectangyle or a discrete approximation to a circle. It is
obvious that a twec dimensional L x L median filter will prcvide a
greater deyree of rcise suppression than sequential horizoantak and
vertical processing with L x 1 median filters. But, two dimensional
prccessing also results in greater signal suppression. Figure 2
illustrates the effect c¢f two dimensjonal nmedian filtering of a
spatial pulse signal with a 3 x 3 square filter and a 5 x 5 plus sign
shaped filter. In this example, the square median has deleted the

ccrners, while the plus median filter has not affected the signal
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function.

Figures 3 and 4 contain examples of the application of amedian
filtering for isage noise suppression. In figure 3 impulse ncise was
added to an isage. One disensicnal madian filtering of 1length L=5
removed most of the noise dimpulses with only a small loss in
resolution. Almost all errors were removed for a pnedian filter with
L=S, but edge distortion is noticeable. In figure 4 continuous
Gaussian noise was added to an image. Median filtering resulting in a

slight visual improvement.

For image enhancement applications, the median filter should
simply be consjdered as an ad hoc tool for noise or interference
suppression. It should not be used blindly, but rather its
performance should be mcnitored to determine if its application is
beneficial.
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(b) Median filtering of (a)
with L= 3

(c) Median fltering of (a) (d) Median filtering of (a)
with L = 5 with L = 7

Figure 4.8-3. Examples of one dimensional median filtering for
images corrupted by impulse noise,
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(a) Image with Gaussian noise (b) Median filtering of (a)
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(¢) Median filtering of (a) (d) Median filtering of (a)
with L =5 with L= 7

Figure 4.8-4, Examples of one dimensional median filtering for
images corrupted by Gaussian noise
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5. 1Image Data Extraction Projects

Image data extrxaction activities jnclude the extracticm and
neasurement of jpage features, the detection <cf objedts within
pictures, the spatial registration of images, and the generaticn of
images from one dimenmsiaonal projections. Another facet of the effort
covers image pre-processing operations which enable more efficient

machine data extraction.

2.1 Textural Boundary Analysis

William B. Thcsgson

Previous regorts have described the davelopsent of a textural
distance function wvwhich  accurately  @estimates  the perceived
dissimilarity between two textural regions. The textural distance
function model alloss the incorporation of textural cues into many of
the existing afpgroaches to scene segmentation. Texture wmay then be
used, along with brightness, colcr, and any desired semantic
processing in determining ckject boundaries. The utility of textural

boundary detectior will be demonstrated in an edje criented systen.

Many authors hawe developed edge findinyg systems which sear¢h for
major discontinuities in the brightness function of the image [ 1].
This is normally dcne by ccmputing an estimate of the derivative or
gradient of the imags and then finding the [peaks in derivative
function. Many functions Lave bheen suggested for this rfurpose. A

ccomcn and often successful functicn is called the modified Roberts
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cross operator [2] and is defined as

R(,j) = | pli, §) - pli+], 3+ | + |pGi+1, §) - pG,+1) | (1)

The Roberts "gradient" is found by sumsing brightness differenes in
twc orthogcnal directioas. Many mnore sophisticated operators are
possible. In particular, an operator which returns edge crientation

may be quite useful.

A procedure has baen developed to search for edges defined by
textural properties in a manner similar to the Rokerts operatoxr. At
specified intervals in the scene tc be processed, four image regions
arranged in a syuare vere considered (see figure 1). The sum of the
estimated perceived textural differences between regions a and d and
between regions b and ¢ was found. As vith conventional gradient
operations, it wvwas postulated that 1larger values of this sunm
correspond2d tc textural edges running approximately thrcugh the
intersection of the four regions. In addition, an edge direction was
calculated. Let d(i,j) be the ccmputed dissimilarity measure between
two regions i and j (d3(i,j)>0 for any two image regions). Then a
textural boundary operator at the point in the scene shown in figure 1

may te definecé as
T = d(a,d) + d(b,c) (2)

To determine the orientation of the edge, observe that

ang = + arctan [—g—{%"—i}] (3)

-125-



\/
I\

¥igure 5.1-1. Template for textural edge operator
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wvhere ang = 0 implies an edge vith negative slope at 45 degrees to the

x-axis. Two angles are possible since d(a,d)=d(b,c) may corresgcnd to
either a vertical or horizcntal edge. This ambiguity is straight

forvardly resolved by considering d(a,c), 4(,d), d¢a,b), and d{c,d).

In the current system, an edge map is first produced by applyiny
the textural bcenndary ofperator at selected points in an isage. A
second edge map is produced by smearing each point in the first nmap
along the direction of edge orientation. This is done to emphasize
collinear edges. Fipally, actual edge points are isolated by lodating
®ridge points" in the edge map. A ridge point is defined as an image
point sufficiently greater than its neighbors alcng some direction.
Much of the code to process the edge maps was adapted with little
modification frcm a system originally designed to operate cpnly on

intensity infcrmaticn [4].

While most analysis systems designed to operate ¢n natural
imagery will use texture as only one of a set of multiple cues to
determine image organizaticp, some wvway 1is needed to evaluate the
utility of the textural boundary oferator on its o¥n. As a result,
this operator was appliad to pictures in wvwhich the edges could Dbe
described as "purely textural." These test images were created as
mosaics of textural patterns taken frce pictures of natural scenes.
Each ccmponent ¢f the mosaic was norwmalized in the same manner as the
patterns used in the resclution experjiments. Thus, it was impossitle
to distinguish pfpatterns based c¢n average brightness or contrast

criteria.
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Figure 2 shows a representative mosajc pattern. Note that to a
humah observer, tkere are several gquite prominent edges. Thus, it is
clear that human perception can identify boundaries on criteria other
than differences in averaye brightness. Figure 2a is another sosaic
pattern. PFigure 3b indicates the different textural regions present
in figure 3a. 1In figure 3a, a very prominent boundary exists betueen
patterns a and b. The Ltoundary between b and 4 1is relatively
noticeable while the edge batween a and d is hardly detectable.
Region c may be vieved at cne level as a uniform textural region. On
another level, however, the region may be thought of as being composed
of many smaller regicns corresponding to the predominantly 1ight and

predcminantly dacrk areas in the pattern.

The textural edge operator vas applied to these and several other
mosaic patterns using several different sizes for the basic blodks in
the operator (i.e. the blccks in figure 1). The original wmpgsaics
were 256 by 256 picture elements in size. Pigure 4 is an edge map for
figure 3a using a tasic blcck size of 16 by 16 picture elesments. No
post-processing other than the oriented smearing (e.g. edge linking,
noise cleaning, etc.) was applied. An effective job has been dome at
identifying the visually prominent boundaries in the mgsaici The
textural rescluticn experiments would indicate, howvever, that it
should be possikble to achieve higher resclution. Thus, it is possible
to use block sizes as small as 6 or 8 pixels on a side. Figure 2b is
an edge map for figure 2 using an 8 by 8 basic block size, all pf the
perceived boundarjes have Lteen well lccated. Figure 4a is an edge eap

for the mosaic in figure 3a using the sase 8 by 8 basic block size.
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(a) Textural mosaic #l

(b) Edge map for (a) using 8 x 8 regions

Figure 5.1-2. Examples of textural mosaics with
edge map.
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(a) Textural mosaic #2

(b) Identification of regions in (a)

Figure 5.1-3, Textural mosaic with region identification
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(b) Edge map for figure -3a using 16 x 16 regions.

Figure 5.1-4. Edge map differentiation using 8 and 16
block regions
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Again, the boundaries are well identified. The ofperator conmpletely
degenerates in region c, however. A lcok at the original pictire will
show that wmany of the e¢lementary 1light and dark areas are of
ccuparable size to the 8 ty 8 basic block. Thus, at this rescluticn,
the micro-2dges are a dominant 2ffect. This is another example cf the
importance of realiziny that perceived edges have a "size" associated
with them that is a function of the size of the objects being searched
for. Comparable results were obtained on the other rosaic test

patterns.

A difficulty with many of the problems in automated imaye
description is &hat it is often almost impossible to guantify the
success of any given afggroach. For example, the utility of a
particular object isclaticn procedure is really cnly meaningful jan the
context of the processing to follow. Unfortunately, the nature of the
problems are so complax as to make development of completed systenms
most difficult. As much of automated scene analysis involves the
siculation of perceptual effects, the dJdevelopment of lower level
operators described jn this report has used human visual percepticn as

a performance gcal.

The existence of readily perceived textural edges shoukd be
apparent. In pany cases, existing automated systems which degend on
identifying brightness discontinuities will fail to find these edges.
This report has demonstrated a way in which measures cf textural
dissimilarity may be incorporated into scene segmentation systeams. A

textural edge operator is devaloped which is able to accurately locate
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boundaries of a purely textural nature.

The size of the region over which a textural pattern is measured
has a significant effect on how well that texture can be
characterized. Experimental rasults show that a dominant ianfluence on
human textural =resplution is the nature of the patterns surrounding
the region of interest. There is a well defined trade off between
spatial resolution of a textural boundary and the ability to
distinguish between visually similar textures. The structural
interpretation of textural patterns suggests several additiocnal
methods for estimating minimal resolution regions. Unfortunately, at
least one of these measures (an auto-correlation ratio) §s not
supported experimentally. The performance of the textural edge
operator for varying region sizes corresponds closely to the predicted

visual response frcm the rescluticn exgeriments.

References

1. R.G. Duda and P.E. Hart, Pattern Classification and Scene

Analysis, John Wiley and Scns, New York,, 1373.

2. L.G. Roberts, "Machine Perception of Three-Dimensionait Sclids,"

Optical and Electro-Optical Informaticn Processing, J.T. Tippett, et.

al., eds., Caasbridge, Massachusetts: N.I.T. Press, 1965, PP

166-157.

3. M. Hueckel, "A Local Visual Operator which Recognizes Edges and

Lines," JACM, Vol. 20, No. 4, October, 1973, pp. 634-647.

-133-



4, E.L. Hall, G. Varsi, W.B. Thompson, and R. Gauldin, "Computer
Measurement of Particle Sizes in Electron Microscope Images," to

aprfear in IEEE Transactions on Systems, Man and Cybernetics.,

5.2 Image Segmentation by Boundary Determination

Ram Nevatia

Finding boundaries of objects in an image is a major concern of
scene analysis. The boundaries ccnsititute a segmentation gf the
scene. Conversely, the tLtoundaries may be derived from a given
segmentdation. A number of segmentaticn technigques have been suggested
in the past, differing in their assunmptions about the contents of the

scene and in thkeir ccntrol structure.

Using detailed specific knowledge of the objects 1likely &o be
present in an jmage sicoplifies the segmentaticn process [1-2], but
these technigues suffer frcm loss of generality. Another distimction
between various techniques is in their control structures, such as
"tcp-down" vs. "bottom-up." The former treat an entire image as one
otject and successively suk-divide it intc more parts as needed [3-4];
the latter start frco small atomic regions (as small as a single

pixel) or local edges and build larger parts from then.

The bottca-uf technigues are usually referred to as being %edge"
oriented or tased on "region growing." The edge based techniques
depend on detecting a disccntinuity between some prcperties, suc¢h as

brightness or color, of parts of an image and connecting these
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discontinuities to foram boundaries. Region yrcwing proceeds by
clustering isage points of "similar" properties inm regions and further
merging of reyions of sipilar properties until a satisfactory
segmentation has Leen oltained. Knowledge of image properties has

been used to guide the mexging of regicns [5].

The edge based approaches were initially used for analysis of the
scenes of polybedral objects, the so-called "blccks world." The
individual objects vere of uniform, hcmogeneous surfaces and were seen
against a wuniformly 1light or dark background. Here, the edges
detected by a lccal edge orerator usually correspond to the desired
object edges only. Hovever, for more complex scenes, the local
discontinuities dc not necessarily correspond to the object boundaries
only; shadows, surface imperfections and texture, and noise in the

imaging devices being some cf the causes.

Consider the picture in figure 1a showing a toy tank against a
background of grass. Note the wheels of the tank are not visible in
figure 1a because of display limitations. Figure 1b shows the
intensity edges detected frcm figure 1a, by the application of a local
edge detector, known as a Hueckel edge operator [6), at every second
pixel in every cther =rcw of the jmage. This operator detects the
presence of an edge in a circular nejghborhood and returns the
position as well as a direction for the edge. Figure 1b contaims a
large number of edges, most of which dc not belong to the desired
boundary of the tank. However, humans presented wvwith this edge

picture have no difficulty in perceiving the tank. The edges along
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(a) Digitized image

(b) Edges detected in (a)

Edge detection for a picture of a toy tank.

Figure 5, 2-1,

-136-



the tank boundary ccnnect in a coherent way, whereas the edges jin the

grass region are sean as being randomly distributed.

An algorithm to find groups of edges that connect 3in an
approximate strajght 1line, to be described later, is very successful
in separating the tank boundary from the background for the above
example. This ®@ethod of segmentation has the advantage cf being
general, as no specific objects in the scene are assunmed. Also, the
schemes usiny texture properties defined over a regicn are seneitive
to the choice of the regicn size, and it is difficult to 1locate the

boundary accurately within a region.

The choice c¢f linking edges into straight lines was based on the
computational efficiency of this process. Many man-made and natural
objects have boundaries with elongated segments. Further, any curve
can be represented by piecewise linear segmaents; the linking algprithm
only imposes a ccastraint on the maximum curvature of the segments

linked.

Linking Algcxrithm: Much work in the past has been concerned with
linking local edce elements into straight line segments. Two broad
classas of technigues are Lased on the use of the Hough traansform
[7-1C], or the use of graph theoretic methods [11-12]. However, these
techniques have been used in situations vwhere the number of edje
elements is small and nost of these elements belong to the desired
boundaries. Thejir effectiveness for the problems considered here |is
unclear, and 1in some cases the ccmputational costs are likely to be

unacceptable (e€.g. the algorithms wusing nminisal spanning trees,
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require computational times proportional to the cube of the nuamber of
cdge elements to be linked). A detailed review may be found in [13].

A descripticn of the algorithm developed follows.

For this discussion, each edge element, e;, is considered to have
a position P, and an associatad direction(ﬁh. Two oppositely digected
edge elements are considered to have different directions (differing
by 180 degrees). Length of an edge element, determined by the size of

the local edge cperator, is unimportant.

The entire 360 degrees range of directions is divided in a number
of eguiangular intervals (say 12). Linking of edge elements along
directions in each interval is examined. Linking in a chosen interval
is constrained to edge elements having directions approximately within
this interval. The fcllowing are the steps, in detail, for linking in

an interval whose median angle is, say ej.

1. Examine each edge element and put in a set !j if the
iirection c¢f the edge, ai is within a fixed, chosen range, A0 of
the directicn Gj. Note that A0 need not be the same as the width
of the angular interval. Figure 2a shows the edye elements for
the tank frcm figure 1b, which are within a 60 degree range of

horizontal direction |9j = 0 degrees).

2. Transform the co-ordinates so that the new x-axis, lies along

ej. Let (xi',yi') be the transformed co-ordinates of the i-th

€dge element in set Ej.
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A

(a) Edges pointing nearly horizontally

(b) Linked segments from (a)

Figure 5.2-2.

3

(c) Linked segments from all directions

Linking of edges
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3. Divide the jmage rlane in parallel strips (buckets) of a
fixed sjze (say 3 pixels wide), normal to X* (figure 3 shows
schematically sgme buckets, with the rotated ZX-axis disglayed
horizontally). Each edge element e, in Bj will fall into one of
the buckets, determined by the co-ordinate xi'. Store the edge
elements 1in each bucket in a list ordered by the value of the y°

co-ordinate.

4. Link edges jin each bucket: If two ccnsecutive edge elements
in the edge list for a bucket differ in their y' co-ordinates by
a distance sgsaller than a threshocld TY, say 2 pixels, then the
two elesents belong to a common segment. e.g., btucket 2 in

figure 3 is divided into segmeats 51, 52' 53.

5. Link segments in neighboring tuckets: If the end pfpoints of
two segments in adjacent buckets are within a distance cf TY in
their y' co-ordnates and also within a distance of TX in their x'
co-ordinates, then the two segments are merged intoc cne. Also,
the merging must not result in a change of orientation of the
segment, e€.g. in figure 3, 54 and 37, or 55 and S8 are merqged

but not 56 and 59.

6. Retain only segments of a length exceeding a figxed number

(say 7).

Figure 2b shows the 1linked segments resulting from the edge
elements of figure 2a, wusing the thresholds indicated in the

description of the algorithm above. Pigure 2c shows 1linked segments
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BUCKET 1
/— BUCKET N \

Figure 5,2-3, Schematic display of some buckets and segments.
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from 12 intervals covering the entire 360 degrees range. Note that
segments from different intervals are not linked though they appear so
in the fiqure, and some e€dge =lements are connected to more than one
segment. Rescluticn of such overlaps and 1linking of intersecting

inter-interval segrents is straight-forward.

The above described algorithm uses many thresholds at various
steps. However, the algcrithm is relatively robust to these choices
and the programs work vell on widely different scenes without changing
these thresholds. The same program, without change of threshclds has
been tried cn different images, including the problem of rit detection
in a chest X-ray, with encouraging results. The details of the basis

of choice of threshclds are found in [13].

Computational Complexity: The various steps of this algorithm
require the processing of an edge element either in isolaticn or in
conmparison with its immediate neighbors im an crdered list. Thus all
computing costs are 1linearly pioportional to the number of edges
processed, except for the fossible costs of sorting the edge lisks in

step 3 above.

The number of edges in any single bucket is normally a small
propcrtion of the total number of adges. Taking advantage pf the
initial raster order of the edges, the sorting time can be lipmited to
increase only linearly with the number of pixels in the images The

sorting details are not discussed here.

For the exasgle of the tank, ¢the total time to 1link 3jn 12
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directions was 20 seconds on a PDP-KI10 processor. The prograams are
written in the SAIL languace. The total number of edges detected was
about 5000, The rpaxinmum memory requirements were about 50K, 36 bit

words.

The technigues described are 1limited to discoverinyg eloagated
segments of edge boundaries. These segments have to be cpnnected to
form complete cbject boundaries. There is sufficient informpatien to
connect these segments as evidenced by our ability, as husans, to do
so (in figure 1t for example) without recourse to the original grey
level picture. The segments cannot be simply ccnnected to their
nearest neighbors; some notion of prefarred configuraticns is
required. Twoc lpng parallel segments are often boundaries of opposite
sides of a part cf an object; e.g., see the boundaries of the tarrel
of the tank in figure 1b. Information cbtained by other fcras of
analysis of the image, such as texture or color analysis, will aid in
the connection of these segments. Alternatively, these segments nay

be used to aid in such analysis.
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%+3 Cclor Edge Detectjion

Rar Nevatia and William D. Miller

A digital isage may be represented as a matrix of values of a
function 1I(x,y), defined at digitized points in the image. For a
black and white imaye, I is a scalar valued function, correspondinyg to
the brightness of the image at the djgitized points. Por a color
image, I is a vector valu2d function having three coamponants, say Ig.
Ic;and IB' the intensity values in the red, green and blue color bands

respectively.

In a black and white image, an edge is defined by a discontinuity
in the scalar valued functicn I(x,y). An edge in a colcr image may be

defined in several ways. If a metric were 1efined on the vector space
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spanned by I, edges could be detected in the nev scalar space. Note,
this is similar to reducing the color 1image to an egquivalent grey
level 1image. Alternatively, edges may be detected ip the three
R’ IG» and ‘IB of I independently and a single edge
determined frcm their ccaokination. A scheme fcr color edge detection

components I

is developed in the fcllowing.

Pirst ccnsider the details of edge detection in a single grey
level image. It is useful to consider an edge as having a position
and also a direction (a magnitude reflecting the discontinuity nmay
also be included). A simple gradjent operation followed by
thresholding prcvides such edge output. An edge is often 1limited to
belong to certain classes of discontinuities, e.g. a step-like cr a
line-like discontinujty. Consider step edges only. Edge detection
may then be viewed as the Ltest fit of a meighborhood of an image by a
step functicn, and reéquires determination of the position, orientation
and the magnitude of the step. Decisicn cf the preseace of an edge is

based on the size of the step (and perhaps the quality of the fit).

It vas suggested by Binford [1]), that a color edge be determined
by making best fits to the three functions In, Ic;and Ig separately,
but constraining the orientation of the step to be the same for all
three components, and the decision of the presence of an edge based on

the magnitudes cf the three steps.

A popular edge detector for black and white image has been
developed by Hueckel [2]. This operator determines the presence of an

edge in a circular neighborhood and prcvides the position, erientation
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and th2 magnitude of the edge. Briefly, it proceeds by approxiamating
the circular neightorhood Lty expansicn in a finite number of teras of
an orthogonal series of functions. Huackel claims the chosen series
to be optimal under certain assumptions. Lat a; be the coefficients

of the expansion for a given neighborhcod (i ranges from 0 to 7).

A best step function is fit to the approximated function neyt. A
step functicn, rparametarized by a tupla, is expanded in the same
series to yield coefficients si(tuple). Tha parameters of the step

are chosen to zinimize the function
7
N° =§[ai- si(i:uple)]2 (1)
i=

An attractive part cf Hueckel's approach is that anmalytic
sclutions to this nminimization problem can be found, aveiding
expensive searches. In particular, the orientation of the ogtimal

step can be deterrined independently of other parameters.

To extend this concept to a color edgye, the function to be

ginisized may be fcrzulated as

2 2 2
N -NR+NG+N (2)

2
B

The functions NR’ NG and NB are as jefined in eq. (1) for the three

components of the image I, i.e.
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2 U 2
NR =Z[ai - si(tuple)] (3)
i=0 R

vhere the subscript R refers to the red component and sjimilar

expressions exist for N and Ng.

The minisization process nov requires determination of three
tuples of parameters, with the constraint that all three have the sagme
orientation parameters. Again, it tarns out that ¢the orientation
parameter can Lé determined indegendent of the other garameters.
Further, once the crientation has been determined, the parameters in
cne tuple can be detersined independently of parameters in the other

tugles.

The algebraic details of the derivation are not presented here.
A black and whjte, Hueckel edge operator program, coded in assembly
language, has teen in use at USC since last year. It is fossible to
use many parts of this program, as they are, in the develg¢pment of a
color edge operator. This new program is now being develoged and

debugged.

Other interesting considerations for cclor edge detection are 1in
the weightings ¢f the steps obtained for the thre2 color comgonents.
It is expected that transformaticns of the B-G-B space to another
three dimensional spaceé, vwhich is claimed to be Euclidean, based on
rodels of human ferception developed at USC [3], should aid in this

task.
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5.4 Image Boundary Estimation*

Nasser E. Nahi and Mchammad Jahanshahi

In visual percepticn, among the most effective stimulus
configurations are the "edges" outlining objects within an image, [1].
This has motivated many rescarchers in the area of automated image
processing, specifically scene analysis, to develop various techaiques
of edge detecticn and houndary estimation. An incentive for research
in scene analysis is the study of robotics [2]. The avajlable
information about the shapes and sizes of physical objects ccnstitute
and total visual intelligence required by a robot. Such information

can be provided through kncwledge of cbject boundaries.

The oldest method known for boundary datermination 1is that of

thresholding [3]. This mnethod, along with the later procedures of

*This research was partially supported by National Science Foundation

ENG 75-03423.
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lccating the maximupm yradients, are well known to be highly sensitive
to the sources of degradaticn phenomenon [4]. Various refinements of
the above methcds, whicii tc some extent account for the presence of

nocise, have been zeceantly introduced [5].

In this report, a boundary estimator is introduced for a certain
class of noisy images. The irages considered contain an object of
interest within a backyground. Defining the set of points which
separate the object and the background as "object boundary," a
recursive estimatcr is designed to yield an estimate of the pbject
boundary. Extensions c¢f the estimator to multi-object images are
discussed. The perfcrmance of the estimator is illustrated through

aprlications to a few images.

Problep Statement: Consider the class of images which <can be

partitioned into tvo reyions: background and foreground. The
fcreground is aseumed to form a "horizontally convex" object. Given a
ncisy version of such an jimage, the aie is to obtain an estimate of

the object houndary.

Modeling of Images Ly Replacement Processes: An image whose grey

level values, denoted by a two-dizensional function t(n,n), are
unknown is ccmmonly modelad by the given first and second orvder
statistics of b(w,n). Literature in the area of digital image
restoration includes use of this information, along with a set of
observations, to derive a set of estimates (often a minizua mean
square estimate) for b(m,n) [6,7]. However, consistent in the results

has been the [resence c¢f blurry edges. Intuitively, it may be
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ccncludad that an image model based solely on the first two morents of
t(m,n) might bLe sujtable for reccnstruction of image grey level
values, but it does not carry sufficient information to adeguately

reconstruct tke cbject boundary.

A modal for the image signal b(m,n) which explicitly regresents
the object boundary along with the background and object internal

details is giver by

b(m, n) = y(m,n)b (m,n) + [1- y(m, n)]bb(m, n), (1)

where b  and b, represent the intensity values of the object and the

b
background, respectively, and Y carries the boundary information of
the object within the image. The two-dimensional functioans bo(n,n)
and bb(m,n) are assumed to be sample functions of two statistically
independent, wide sense stationary random processes whose first two
mcments are given. The mean values of b, and by are indicative pf the
otject and the tackground brightness sjmilarities, whereas, their

respective autccorrelation functions are measures of the object and

the tackground textural information.

The binary valued function Y{(m,n), another randoa process, takes
values of 1 or C corresponding to the points in the image belongjing to
the object or the Lackground, respectively. In the literature, this
function is usually known as the image "characteristic function® [8].

The statistical pxoperties of y will be described shortly.
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The image mcdel mathematically rerresented by eq.{1), is kased on
a concept <called a "replacement frocess" vhere, by definition, a
segment of a functicn or a random process is ieplaced by another
function or randcm process according to a certain rule [9].
Considering that for typical images the object signal, in fact,
"replaces" a porticn of the background signal, the structure of this
model is justified. In the model of eg. (1), replacement of the object

process bo with the ktackgrcund process b, takes place according to the

b
values of y.

For future reference, note that the domains of the sample
functions ho(m,n) and bb(m,n) are defined *to be the entire jimage.
This is, in fact, the main motivation behind introducing the concept

of replacement frocesses in the image modeling.
A sequence of clkservations ccnstructed as
y(m,n) = b(m,n) + V(m, n) (2)

are assumed available for nmeasurement, where b(m,n) is as defined by
eq. (1), and v(m,n) denotes an uncorrelated process representing the

observation noise.

An image scanner will novw be considered which transforms the
tvo-dimensicnal data representing the noisy image, y(m,n), into
one~-dimensicnal data. The scanner output, in the atsence of

observation noise, is denoted by s(k), where

sk) = x(k)s (k) + [1-2(k)] s, (k) (3)
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models the image in terms cf its grey level values and object boundary

as viewed by the cutput of a line by line scanner.

The structure of the one-dimensicnal model of eg.(3) preserves
the replacement processing concept. The functions so(k) and sb(k) are
associated with bo(m,n) and bb(m.n), respectively. That is, so(i) and
sb(k) denote the grey 1level values of the scanned ¢bject and
background, and are assumed to Dbe sapple functions cf two
statistically independent, cyclo-stationary randcm processes [10],
whose first twc scments are obtainable directly in terms of the first
and second-order statistics of bo(m,n) and bb(m,n) [6]. As in the
case of bo(m,n) and hb(m,n), the dcmains of the sample functions so(k)

and sb(k) are the entire scanned image.

The binary valued process A(k) is the one dimensional counterpart
of Yy(m,n). Its statistics will be described below. Note that the

statistics of A ccmpletely define those of Y.

Let my; and m, indicate the first and the last lines of the cbject
as viewed Ly the scanner, anﬂax', B& represent the beginning and end
pcints of the obZect cn line 4, respectively. In general, . m2'(1£'

B& for m1<L<m2 are random.

The function A(k), appearing in eq. (3), is now defined in terms

of aLand B&’,

ma
k) = ) ul k- o~ (4-1)3] - ul k-8,- (£-1)7] (4)
&=n&
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wvhere u[ ] is the unit step function, J denotes the number of picture

alements in ope line of the imaje, and BL>a . The statistics of the

process A(k) can now be given in terms of the statistics of ml, mz,
and the sequence
= (5)
Wy= (ag By
Assume that W forms a first-order Markov process. This

assunption is made for the sake of computational simplicity, and it
enphasizes the dependence of the object boundary points on line £ apon
the points 1lccated on the previous line, L-1. It is further assumed

that the required density functions are given, and that

p(W, | W, j,m,m,) =p(W, ,,m) (6)

Notice also that

p(W, | W, pomy) = plag, By oy 108y pomy)

M

The two dimensional observation sequence y(m,n) in eg.(2) will
also te replaced ty its scanned version given by

y(k) =s(k) + v(k) (8)

vhere s(k) is as defined in ey. (3), and v (k) is a zero mean Gaussian

. . . . 2
white-noise process with variance o .
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To locate the object boundary, estimates of the first and 1last
lines (m1 and B5) and estimates of the starting and ending points (aL
and BL) of the okject are sought. The estimation procedure deveéloped
here, as will Lte shovwn, reguires the values of so(k), and sb(k),
1<k<N, vhere N is the total number of pixels (picture elements) in the
image. Since, in general, these values are not known (cases of jmages
vith known grey levels are exceptional), the estimates of so(k) and
sb(k) vill be used in their place. Such astimates can, for example,
be obtained by imsplesentation of the results in [11] where only
two-dimensional statistical information on s(k), or y(k) is used.
Notice that the concept of replacement processes assures the existence
of the estimates of so(k) and sb(k) for all 1<k<N. Since the airxr of
this paper is estimation of the object boundary, it will te assunmed

that the values S, and Sy, (cx their estimates) are given.

The boundary estjmaticn problem, as evident from egs.(3) and (8),
is a nonlinear estimaticn problem. Purthermore, due to the type of
nonlinearities invclved (such as the binary nature of A{k)), the
available estimators based cn linearizaticn concepts (such as extended

Kalman filters) do not yield satisfactcry results.

In this work, a set of maximum a posteriori (MAP) estisates for
the unknowns Dy Mye O g o and 3& are obtained. It is shown that the

MAF estimates will sjinimize the followinyg expression

min {-202 in p(mzl m]) - 202{'11 p(ml)
nm, w (9)
m

a
+ z l:T(vsf"[‘)-Zo2 Ln p(wL| W,y ml)] ]
&:n&
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Numerical Derivation ¢f Estimates: Acjuisition of a numerical

sclution for the minimization process of eg.(9) is an integral part of
this presentation. Since a rigorous sclution of eq.(9), resulting in

a set of orptimal estimates for ﬁ,' , and BL' is computatipnally

NZ'GL
unacceptable, apprcximate solutions are soujht. Two approaches, shown

later to yield satisfactory results, are describad in the following.

One approach is to obtain the estimates of o, and B& over the

range m _<{<m_, with the assumption that values of m, and m, are given.

1 2 1 2

For example, values cf ml and mz may be chosen as m1=1 and m2=n,

implying that the object boundary points lie on every line of the
image. Then, if necessary, one may utilize additional structural
properties of the chject to eliminate those boundary point estimates

incompatible with the given structural infcrmation.

An alternative approach is to consider the problem in two steps;

X for a selected set of ml and mz;
then solve for the estimates of my and m, by replacing the estimates

and 5&' A recursive procedure will result if these

namely, solve fck &L and 6{/, my <4<m

o and B, for
3 By @y
tuo steps are performed at each scan line resulting in an algorithm

which yields a set of estimates for My rBpeCy, and B&, concurrently.

The former approach is computationally more attractive. However,
it requires additicnal information, of a nonstatistical gecmetric
nature, on the object, beyond the given statistical information, to

ccmpletely specify the object boundary.

Computation: Assume that the first and the 1last 1lines of the
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object, i.e., my and my, are given. Then, 2q.(9) can be reduced to

m
a
“;;“{E [T(w,)- 20° &n plw, |w, m)]} (10)
&:rnl

Now, from eq. (6)

m

. 2
min
2
) - 1
- {Z [T(WL) 20 an(aLla{_ls&_l, ml) (1)
L=nﬁ
-202 Ln p(BLl a&,a&-ly BL"I’ ml)] }
Furthermore, since

(£-1)J+8, (L-1)T+a -1
Tlw ) = Z K(k) - E K(k) (12)
k=(£-1)T+ k=( 4-1)J+1
where
K(k) = Ko(k) - K (k) (13)

then eg.(11) can ke wvwritter as

m
min a
2
- {Z [-26°4n p(aLl oy y2By_pr™y)

L=1nl
{(14)

2
-20' 'E/n p(BLI 0.&.(1&_1, B&-l’rr’l)

(1-1)3+8, (1-D)T+ 0,1
+ Z K(k) -Z K(k)13.
k= (L-1)T+1 k= (£-1)T+1
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A recursive, easjly isplementable soclution of eg.{14) is possible
if the density functicns of eq.(13) are approximated. Hence, the

pinigsization in eq.(13) is replaced by

m

min a
W 1) By + gl (15)
=
where
(£-1)3'+0.&-1
_ 2 ~ -~ _ 16
glay) = -20“tnp@,lo .8, ,m)- - K(k) (16)
k= (£-1)J+1
(&-I)J-l'BL
_ 2 A A oS 17
h(B,) =-20" tnp(B, 6,8, LB, pm)+ D KW (D)
k= (4-1)J+1

Examples: Several images have been considered to illustrate the
results of this section. Pigure 1 depicts three such examples. All
the pictures have grid size of 256 by 256. In each case the meaon and
variance of the fjctures are determined, and then a white Gaussian
noise of specified variance is added to each picture (figure 2),

An arkitrary segmentation procedure was performed to groducde the
tackground, sb(k), and foreyround, so(k), 1Kk<25€%25¢, sample
functions for each picture. The segmentation procedure was based on

replacing the object intensity values by the opaximum background

brightness value (forming the background sample) and the tackgrcund
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(a) Original Square (b) Original Diamond

(c) Original "Girl"

Figure 5,4-1. Original images
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(a) Noisy Square
(S/N =1.0) (S/N = .6)

o~ .1

{c) Noisy Diamond
(S/N =1.0) (S/N = .6)

(e) Noisy Girl Noiy Gn'l
(S/N =10.0) (S/N=.9)

. po

Figure 5.4-2. Images with additive noise
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intensity values by the minimum object brightness value (forming the
object samgle). In Jeneral an estimator is needed to perform the
segmentation; however, since the original images were available here
(not usually the case), the above technigue was a more conveénient
procedure. With walues of L and 2, givem as 1 and 256, respectjvely,
the outputs of the boundary estimator are shown in figure 3

The signal to noise ratio (S/N=signal variance/noise variance) of the
observed image and the conjectured values of the object maximum width,

L, are indicated in each figure.

5.% Principal Confponents and Ratioing for Multispectral Image Analysis

Guner S. Roktinscn aand Werner Frei

Manual or machine classification of pulti-spectral images is, in
general, made difficult by the dimensionality of the problem and by
the fact that the information of interest nmay reside in sukttle
differences between the spectral bands. However, the redundancy
between multispectral imagyes provides potentiality for a reduction in
divensionality +without an appréciable information loss. Both linear
and nonlinear transfcrms have been studied to achieve such a reduction
and to enhance spectral dissimilarities for terrain classification of

the four spectral bands of Earth Resources Satellite (ERTS) imagery.

The principal component transformation is a well-known 1linear
method by which a linearly independent (uncorrelated) set of images is

obtained. The energy compaction property of this transformation makes
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(a) Square Boundary (b) Square Boundary
SN =1.0 L, =100 SN = 0.6

(¢) Diamond Boundary (d) Diamond Boundary
SN =10 L =140 S/N = 0.6

(e) Girl Boundary (f) Girl Boundary
S/N = 10 L =250 S/N = 0.9

Figure 5.4-3, Boundary estimates
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it particularly attractive for the reduction of dimensionality, but

the computational load may be considered excessive in some cases.

Another popular technigue is to generate ratio images in which
each pixal value is ejual to the rescaled ratio of the amplitudes of
two spectral bands. The advantage of this ncnlinear transformation is
that ratios are invariant to illumination variations and
cogputationally fast. The disadvantage is that there are six possible
ratio images (disrejarding inverses) with rather similar energy

contents.

Principal Ccaponent Analysis of Multispectral Images: Principal

comgponents analysis of ERIS bands is mwmotivated by the desire to
extract the most siygnificant spectral comgponents from the avajlable
four. This digzensionality reduction also results in preserving most

of the ERTS infcrmation in a smaller number of compcnents.

The principal component analysis of ERTS data involves finding a
unitary transformation matrix which, when applied to the four bands,
results in a new set of bands (principal components) having several
desirable characteristics: the principal components are uncorrelated

and each compcnent has a variance less than the previous componeat.

The principal comgonents are obtained from the original four

spectral bands by the matrix aultiplication
y= Ax : (n

where x is the vector of spectral intersities cn four ERTS Ltandsy y is
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the vector of principal components and A is the 4 x 4 Karhunen-<Loeve

transformation matrix. This matrix is derived by diagonalizing the

spectral covariance matrix C of the spectral bands. The rows of A
=X

are the normalized =igenvectors of Eu; The covariance matrix of the

principal ccmgonents is then

r;\(l) 0o 0 0--1
T 0 AM2) 0 o
C,=AC A = (2)
Y 0 0 A3 o
0 0 0 A(3)
b L
where 11'*2 ¢ x3, and (the variances of the principal ccnponents)

are the eigenvalues of Ex crdered such that )»1 >)‘2> 7\3)7\4.

It should be notad that, since A is a unitary transformatics, the

total data energy is invariant. That is

PIRIED IEN (3)

where the O, are the variances of the original ERTS bands. As an
example, figure 1 =shous four ERIS images, and figure 2 presents the
principal ccagcpents planes. All images have been enhanced by
histogram manipulation before display. The spectral covariance matrix
SX:Of the four ERTS bands is obtained by computing the spectral
covariance wmatrix on 64 x 64 blocks of ERTS pictures, (each 512 x 512

pixels) and then averaging over all the blocks. Exhibit 1 contains
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(c) Band 6 (Infared 1) (d) Band 7 (Infared 2)

Figure 5.5-1. Enhanced ERTS images
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Figure 5,5-2, Principal Components of ERTS images
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Exhibit 5, 5-1
Statistical Data on Principal Components of ERTS Planes

spectral covariance matrix

57. 16 75. 80 39.23 18,46
75. 80 113.69 53.76 24, 50
39. 23 53.76 68,97 64.78
18.40 24. 50 64,78 85.53

normalized spectral covariance matrix

1. 000 17 .078 . 033
117 1. 000 . 075 .031
. 078 . 075 1. 000 . 105
.033 .031 .105 1. 000

Karhunen-Loeve transform eigenmatrix

0. 44465 0.63040 0.49520 0.39958
-0. 32653 -0. 49866 0. 34168 0.72662
0. 32957 -0.45586 0.67249 -0. 48097
0.76619 -0, 38227 -0.43103 0. 28469

Karhunen-Loeve transform eigenvalues

i M & K
1 224.92 69.14
2 90,78 27.91
3 5,42 1.66
4 4.13 1.27
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the measured ERTS covariance matrix, the computed covariance matrix of
the principal components planes, and the corresponding eigenvalues.
It should be noted that the first twvwo principal components represent

97% of the total eneryy.

Band Ratios: Ratioing of ERTIS pictures is a useful pre-processing

technique for multispectral racognition and classification.
Signatures obtained frcm a training sample under one set of condjtions
may not have a good discriminaticn capability for a given
classification scheme if the same area is observed under a different
set of conditions. If the changes result from simple multiplicative
factors such as the brightress level, then the ratic of the bands will

be invariant.

Taking varicus ratios of the green, red and the two infrared
tands (bands 4, S5, 6, and 7, respectively) of the ERTS data results in
elimination of btrightness variations due to torographic relief. Such
ratio images have been shown to be nmore useful for determining
boundaries between litholoyic units and vegatation groups [1]. Ratios
may be taken to emphasize variations due to color also. Such raticing
processes produce a color display wvhose color variations are more
indicative of material variations than the simple pseudocolor

disglays.

Oordinarily, ratio images are obtained by forming a scaled ratio
of two bands, (direct ratio). Loygarithmic ratio images are produced
by applying a lcgarithmic stretch to a ratio image. The advantage of

the logarithaic ratio is a jreater toleranc2 to gquantization error.
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In the cases studied, it has appeared that 1logarithmic ratio
images contain more visual infcrmation than direct ratio images. It
is felt that exferiments with more images are necessary to confirm the

aktove conclusicn.

As an example, figure 3 shows the logarithmic ratios of the ERTS
pictures shown jn figure 1. These ratio images have been enhanced
using the same histogram manipulaticn algorithm as the oariginal
images. The choice of ratio 1images for a certain classification

scheme depends on the data and the application.

The covariance patrix of various ratios could give some insight
in choosing a set c¢f ratics for a classification scheme: ratios that
are uncorrelated are likely to produce better results than those that
are highly correlated. This idea suggests the use of the principal
cceponents of ratjos instead of ratios themselves. Exhibit 2 ccntains
the normalized covariance matrix and eigenvalues of the 1lcgarithmic
ratios. It jis cbserved that the first two or three principal
components contain most of the relevant information in ratio images.
This can also be verjfied Ly studying the grincipal components shown

in figure 4.

Reference

1« Goetz, A.F.H., et. al., "Apgplication of ERTS Images and 1Image
Processing to Regional Geologic Prcblems and Geologic Magping in

Ncrthern Arizcna,"” JPL Technical Report 32-1597, May 15, 1975.
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Figure 5.5-3. Logarithmic Ratios of ERTS bands
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Exhibit 5,5-2

Statistical Data on Principal Components of ERTS
Logarithmic Ratio Planes

normalized covariance matrix

Ratios 4:5 4:6 4:7 5:6 5:7 6:7
4:5 1.0 -0.297 -0.390 -0. 746 -0.714 -0. 399
4:6 -0, 297 1.0 0.910 0. 837 0.812 0. 486
4:7 -0. 390 0.910 1.0 0. 840 0.912 0.771
5:6 -0. 746 0.837 0. 840 1.0 0. 955 0. 554
5:7 -0.714 0.812 0.912 0.955 1.0 0. 751
6:7 -0.399 0. 486 0.771 0.554 0. 751 1.0

eigenvalues

li
( Z ) .100%
Z; A

i M 1£1 'k

1 35, 495 86. 0
2 3. 270 8.0
3 1.592 3.9
4 0.084 0.2
5 0. 082 0.2
6 0. 080 0.2
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(c)

Figure 5.5-4. The first three principal components of
logarithmic ratio images.
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6. Image Processjnj Systezms Projects

The following describes the image processing systems projects
vhich are ccncerned with the develcpment of image frocessing hardware

and software systenms.
6.1 Hardvare Proiects

Toyone Hayeda

A real time color image magnetic tape recorder/playback systen is
under development. The recorder is to be used to record real time
digitized televisjon signals at a 600 ips rate and played back at a
1-7/8 1ips rate to transfer the data to the PDP-10 computer. The
inverse process is performed to produce real time televisi¢n signals

frcm coded cceputer records.

Delivery of the Emerson {Orion) digital magnetic tape
recorder/playtack unit has been delayed due to difficulty in meeting
the bit error rate and vsaximum skew specifications. Emerson is
presently redesigniny the tape transport nmechanism to reduce the
problam. It is also planned to increase the deskew buffer capacity in
the interface bardware which was develop2d at USC. Delivery is now

planned for 1 January 1676.

A second digjtal image televisicn display system, which is being
developed, is presently in the check out and testing phase. This unit

receives digital fpicture data from the ARPANET, acting as a wvirtual
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TIP terminal, and produces a modulated television signal for
connection to the antenna terminals of any commercial television

receiver.

6.z Softwvare Prcjects

Dennis Smith

The software effort o¢f the Imagye Processing Institute (IPI)
programsing grcug has been centered on twe projects. The first has
been the implementation of a network of pini-computers, and the second

the augmentation of the library of imaye processing user programs.

The purgcoses of the network of nmini-computers are to handle
communicaticn apcong the larger computers of the Engineering Ccaputer
Latoratory and the Image Frocessing Laboratory, and between these
computers and machjnes at other sites, and to handle lcwest level

protocols with isage processing devices.

The primary advantage of this network is the freeing of the
larger computers from the task of wminutely supervising comglex
devices, many of which cause freguent interrupts that are demandiny
upon a processor's tinme. All cconunications among the 2arger
computers, and hetween them and the specialized devices are carried on
in nmessage packets which ar= blocks of data that can be passed about

with a pinimum cf interrupts.

A second advantage of the network is one of reliability. Should
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the PDP-11 mini which is controlling a key device becone
ncn-operaticnal, the software for that dewice can be easily wmoved to
another mini, the device plugged into that machine, and service
restored. Should the PCP-10, the principal ccmputer for user
software, be unavailable, the UP-2100 cr the IBM 36C/44 can ke used in

this capacity, as the user software is written in portable PCRTRAN.

To date, the two programs which will run on all the 11's, the
supervisor prcygram, and the netwcrk contrcl program (NCP), which
manages the routing of wmessage packets from the source to the
destination ccmputer, are both completed. Remaining to be fimished
are the service programs to handle each of the image processing

devices on the 11's, and the NCPs for each of the larger computers.

The second area of concentraticn is user software. Several
personal prograss of the IPI faculty and staff were obtained frem the
individuals wbo wrote them and were added to the IPI 1library after
nodification to ©pake them more useful to the general community. All
of the fcllowing were standardized tc conform to parameter input
conventions of the other library programs, and generalized to process
inages which are any power-of-two size smaller than or equal to 1024.
All programs run jn an interactive mode, asking the users questigns as

to what he wants done. These programs are described below.

CONVOL - a program fcr performing two limensional convolution was
generalized to provide a choice of impulse response arrays (or allow

the user to enter his own) in sizes 3x3, 5x5, or 7x7.
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HSTMOD - a projram to perform modification of histograms, which
does egualizaticn, exponentiation, cr a "gamma" function ugon the

histogram of a picture.

PICOUT - a progzam for contrast wmanipulation was expanded to
perform the follcwiny: clipping, labeling, reformatting (packing,
unfpacking, integer-real, real-integer), and application of one of a
variety of transfer functions: positive 1linear, negative ljnear,
sawtooth, slicer, eye, half power, third power, log, or a user-defined

step function (256 steps) with autcmatic scaling.

MEDIAN - a median filtering program which offers three chcices of
filtering: M1S, which ccmputes the median for each positico of a
rectangular vindow as it scans the picture file; MEDX, vhich coaputes
the median for each position of a cross window; and MOVAVG, which
computes the mear for each positon of a rectangular windovw. All of

the above may be used with any window size 1 x 1 to 11 x 11,

CFIL - a program to dc¢ image restoration and Wiener filtering.
It allows specification of a blur, correlation coefficient, and

signal-to-noise ratio, and an inplulse response matrix up to 31 x 31.

€.2 A Synthesis Procedure for Optical Nonlinearities

Stephen R. Dashiell and Alexander A. Sawchuk

A general technigue for isplementing nonlinear nonmcnotonic

function incoberent optical parallel sijnal processing systems has
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teen described in recent publications [1-4]. The technique cperates
by using special halftona screens and high contrast (binary) optical
input devices to effectively pulse-width nmodulate the ingput. The
selection c¢f diffraction orders in a Fourier transform produces a

desampled output which is a point nonlinear functiom of the input.

A very ccogplete analysis of the entire procéss has been perforaed
[4]. One generalization that has been found is that the halftone
prcfiles (cells) themselves which determinei the dot size b need not
be monotonic. Thus, the effective periodicity of the preprocessing
can be changed. The effect is to reduce the diffraction order
necessary to achieva ncnamcnotonic operation. So many desiga varjables
are now available that the class of mathematical operations [ossible

and ease of iasplementaticn has been greatly extended.

An exact synthesis procedure for nonlinearities wusing ordinary
mchotonic cells has been made and is summarized here for the case of
linear one-dipmensicnal scenes. Omitting wavelength and geometrical
factors for «clarity, the gen2ral expression for the amplitude in the
transform plane resulting from an infinite grating of opague bacs of
width, b, and perjod, a, with unit amplitude illumination is

Fltx)} = 8ley) - Z sie - 2 -

n=-©

ginc (—) (n
wvhere the y dimensicn is suppressed. By selecting these diffraction

orders with simgle spatial filters, the sinc terms in eq. (1) indicate

that ncnmonotcnic behavior can be expected. In the special case of a
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zero order (n=0) selection, an intensity output

2
= - 2
Iout(O) (1 - b/a) (2)
is expected frcm ey.(1) after inverse Fourier transfeorming and

squaring. Por a first order (n=1) selection, the output intensity

1 . 2 ,1b (3)

Iout(l) = ? sin (_a_)

a function which is ncnacnctonic in b.

Because of the halftone process, the value of b in these
expressions is a function of the continuous input intemsity I . A
one-dimensional halftone screen can be described as peciodic
sysnetrical cells centered on x=0 and extending from -a/2 to a,/2, each
with a density functjon f£(x). The intensity I transnitted by the

ingut-screen ccsbination in each cell is

1= 1 10°f® (4)
t in

and this functicn is imaged or contact printed onto a binary clipging
medium with effective cutcff I'. Since there is no exposure if ItsI'

and full exposure if £:>I’, opague bars result where x is such that

1 =1 108 (5)
in
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Taking logarithes yields

x = 7 [log)g (Ilﬁ)] (6)

where f-lis the jnverse of f. The cell sjza b is simply twice x for

halftone cells symmetrical about thke spacing a.

Combining eq. (6) with eqs. (2) or {3) for the approprjate order

gives the overall mapping

I
-1 in 2 A
Lot = 8oL = (1-2f [1oglo(—1, )1/a) (7)

for the zero (n=0) cxder, and

2
I
O 2 G in
Iout = gl(Iin) = (- sin ("“a f [loglo T ])/ﬂ) (8)

for the first order (n=1). Similar expressions can be obtained for

two-dimensional cells and various selecticns of diffraction orders.

These exfressions for transforms and dot sizes are valid cnly in
local regions of constant input values. Input informaticn freduces
low spatial frequency modulation, and the complete expressicn for the
transform is much wmore complicated. The halftcne process assunes
input sampling at a rate sufficient to avoid aliasing, and these
results describe the 1local ncnlinear effects 1f desampling filters

choose the low frequency input information.
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The follcving procedure can be used to obtain the cell profile
f(x) and diffraction order for one-dimensional screens given a desired

Iout=h (Iin) :

I. Deterpine the minimum diffraction order n to be used by
counting the number of sign changyes, 4, in the slope of the transfer
function. If ¢ is zero and the initial slcpe of h is negative, the
n=0 order can be used directly. If g is zero with positive initial
slope, the n=1 order must be used. For q greater than zero, add one
to q if the initial slcpe is negative to obtain g'. If g is greater
than z2ro and the initial slope is positive, then gq'=q. The number of

slope changes in the general I versus b curve is given by 2n-1

out(n)

for h>0, thus n is selected so that g' is less than or egual to 2n-1.
This procedure deterpines the minimum n, so that a larger order can be

us€d if desired.

II. Normalize the desired function by scaling so the 1largest

I equals the paximum Iou for the particular crder used. For n=0,

t
<1/n .

out

I <1; for n>C, 1

out out

III. Equate h(Ihl) with the appropriate general exfression
gn(Iin) of the form eq.(10) or eq.(11) for the particular oxder n

-1
used. Solve this equation for f (loglo(Ihl/I')).

IV. Solve for £({x) by selecting a solution such that £(y) is
mcnotonic and the initial slopes of h(Iin) and gn(Iin) have the same
sign. Whenever the slope of h(Iin) changes sign, the halftone cell

size must aktruptly increase so that the diffracticn output remains the
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sase while jumping tc a region of gn(Iin) cf opposite slope.

An example of this procedure is the synthesis of an optical level
slicer, or intensity bandpass, with the characteristiés shown in

fiqure 1. This functjon is

= = < 9
Iou.t h(Iin) K, Icl Iin s Ic2 )
o, otherwise

and it has one sign change in slope, so q 2gquals one. The 1initial
slope 1is positive, so ¢' is one and the first (n=1) diffradticn order
can be used, Ncxmalizing the function h(Iin), gives K equal to 1/n2,

and eguating h(Iin) with gl(Iin) gives

1
£ og )L ) = (a/2msin ml b1, )1?) (10)

vhere the clif level I' is assumed unity for simplicity. For I (I

P Y
f-l(IOgIOIin) = (%) sin-l(WEO]a) (11)
= 0 or a/2

Selecting the zero soluticn to satisfy the monotonic cell condition,

results in

£(0) = loglol (12)

cl
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Ier Ic2

(a) Characteristic curve

D=1(x)

09,5 I

108, Iy

) (0] a, a5 3314

(b) Halftone cell profile

Figure 6, 3-1. Level slicer function.
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For Icl <Iin<I c2

-1 _ a .. -1, 1.3 (13)
f (logIOIin) = (-'-zTr )sin (n(-—nz) ) = al4
and sclving gives
£f( =) = log, I (14)
4 10" ¢c2

as a point of discontjnuity of f. For ICZ<Iin

1
f-l(loglolin) = ('zin) sin"(n[01Z) = 0 or af2 (13)

Here the a/2 sclution is selected to satisfy the monotcnic cell
condition. This is the end point of the profile having period a.
This functicn f(x), 0<x<a/2 shown in figure 2, has been experimentally
demonstrated [2-3). The width of the level is controlled by the step
size in f(x), and the level 1lccation 1is controlled by the
preprocassing step. In general, the halftone cell profile may cgmbine
smcoth and discontinsous functions, leading to transfer functioas

h{I..) with hoth smooth and limiting ncnlinear characteristijcs.
in

The analysis of system effects due to low contrast (finite gamma)
input media is well undervay. In the zero order the major eftect is a
change in the transfer function; in the first crder, this effect is
combined with a lcss of diffraction efficjency. These effects are not
serious in practjce, and scme techniques of pre-compensating halftone
cells to correct for low gamma have been developed. These appear very
promising for practical implemenation, particularly with real-tinme

input devices. A series of computer rcutines have been written to
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iteratively synthesize cell profiles, produce input/output curves and

study effects of parameter variaticn on the results.

A number of experimental halftone screens have been mpade and
tested. A computer-contrclled optromnics flatbed microdensitometer has
been used, and direct plots on highly resolution film have been
adequate to sake good gJuality screens. Most of the screens have been
one-dimensional line yratings, and plotting aperture sizes down to
10 m. have been used, Kodak 50-427 sheet film is used for the screens
because of its high resolution (>250 lines/mm.) and good line holding
ability. Scme of the functions which have plotted and tested with
good results so far include: intensity lewel slicers, intensity notch
filters, logarithms, and exponentials. Experimental verification of

other functions is undearway.
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