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ABSTRACT

The segmentation of imagery into homogeneous regions using
digital techniques has been a goal of researchers for the past several
years. Pattern recognition approaches using mathematical models
have achieved results which are only partially satisfactory. The large
dimension of the pattern space and the quantity of data involved in
the digital representation of images are in part responsible for the
limited applicability of these approaches. Other shortcomings are
related to the demands for data with which to train the classifier.

Approa;ches based on linguistic models have also been tried,
again with results which are partially satisfactory. The most serious
shortcomings are related to the performance of these approaches in
the presence of noise, a phenomenon with thch man has learned to
function effectively.

This dissertation describes a procedure for segmenting imagery
using digital techniques and is based on the mathematical model. The
classifier does not require training prototypes, that is, it operates
in an "unsupervised'' mode. The procedure is general in that the
features most useful for the particular image to be segmented are
selected by the algorithm. The algorithm operates without any human

interaction.
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The features used are based on brightness and texture in regions
centered on every picture element in the image. To perform an
elementary pre-classification of local regions, a filter based on the
mode of the local area histogram is proposed and used in segment-
ing images. |

The basic procedure is a K-means clustering algorithm which
converges to a local minimum in the average squared inter-cluster
distance for a specified number of clusters. The algorithm iterates
on the number of clusters, evaluating the clustering based on a para- -
meter of clustering quality. The parameter proposed is a product
of between and within cluster scatter measures, which achieves a
maximum value that is postulated to represent an intrinsic number
of clusters in the data.

It has been impossible in the past to compare different segmenta-
tions of the same image. A comparison measure based on the joint
histogram of the two segmentations is proposed and examples of its
use are presented.

It is within the state of the art to adapt the segmentation proce-
dure described herein to operate in hardware at television rates. A
functional diagram of such a system is presented, and estimates of

the required capacities are given.

iii



ACKNOWLEDGEMENT

I would like to express grateful appreciation to the members of
my dissertation committee whose support and critique were invalu-
able. I feel special gratitude toward Professor Harry C. Andrews,
who served as Chairman and whose guidance, support and enthus-
iasm made this work possible. I would also like to express apprecia-
tion to Mr. Ray Schmidt and the staff of the Image Processing Lab-
oratory, without whose indulgence, this work might still be in pro-

gress.

iv



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 9 -
1. 1 Research Objectives 9
1. 2 Organization of the Dissertation 10

2 IMAGE UNDERSTANDING SYSTEMS 13
2.1 Image Understanding System Description 13

2.2 Other Image Understanding System Models 17
2. 3 Image Segmentation Approaches 17

3 PATTERN RECOGNITION, UNSUPERVISED 22
LEARNING, AND CLUSTERING

3.1 Artificial Intelligence Approaches 22
3.2 Mathematical Models ' 23
3. 3 Statistical Decision Theory Applications 27
3. 4 Supervised Pattern Recognition 28
3.5 Unsupervised Pattern Recognition 28
3. 6 Clustering 31
3. 7 Clustering Quality Measures 35
3.8 Feature Selection 46
3. 9 Segmentation Comparison Measure 50
4 IMAGE SEGMENTATION BY CLUSTERING - 56

AN APPROACH

4.1 Overall Approach 56



4.2 Feature Rotation

4. 3 Clustering Algorithm

4.4 Feature Computation
EXPERIMENTAL RESULTS

5.1 APC Image Results

5.2 Aerial Image Results

5. 3 House and Multi-Spectral Images Results
5.4 Computer Time Required

5.5 Comparison Measure Results

REAL TIME IMPLEMENTATION

6.1 Feature Computation

6.2 Segmentor

6.3 Mean Computer

6. 4 Cluster Data Computer

6.5 Preliminary Functional Requirements
6. 6 Motion Picture Segmentation Results

CONCLUSIONS

59
61
65
73
73

79

81

83
nr
117
19
19
120
123
124

128

vi



Figure

3.2
3.3
3.4
3.5
3.6
3.7

3.8

4.2

4.3

5.2
5.3
5.4
5.5
5.6

5.7

LIST OF FIGURES

Image Understanding System

Classical Mathematical Pattern
Recognition Model

Reformulated Pattern Recognition Model
Clustering Quality Measure

Alternate Clustering Quality Measure
Probability Weighting Function

Uniform Weighting Function
Bhattacharyya Measure Distribution
Comparison Measure Example

General Block Diagram

Flow Diagram of Image Segmentation
Algorithm

Clustering Algorithm Flow Chart

APC Image Original Features

Segmentations - 12 Original APC Features

APC Image Rotated Features

Segmentations - 12 APC Rotated Features

Aerial Image Results
House Image Results

Multispectral Images Results

Page
14

24

29
36
40
42
43
49
53
57

60

63
85
88
90
93
96
97

99

vii



Figure

5'8

5.9

6.2

6.3

Average Bhattacharyya Distance vs.
Number of Clusters

Probability Weighted Product vs. Number

of Clusters

Real Time Segmentation System
Mean Computer

Motion Picture Results

Page

100

102

118
121

125

viii

te



Table

5.1

5.2

5.3

5.4

6.2

LIST OF TABLES

Feature Set Descriptions

Covariance, Eigenvalues and Eigenvectors
Eigenvalues vs. Bhattacharyya Distances
Computer Time

Comparison Measure Results

Automatic Real Time Segmentor
Functional Requirements

Motion Picture Means

Page
70
106
13
115
1né

123

126



Chapter 1

INTRODUCTION

This dissertation describes a procedure for automatically seg-
menting images into regions using digital techniques. The background
of this procedure lies in image understanding systems, an expansion
of image processing systems that attempt to draw meaningful inferen-
ces from visual data. An important step to forming inferences about
the visual data is to segment the image into regions of homog.eneity
to aid further analysis.

For the purposes of this report, a '"'segmented image'' is defined
to be an image wherein each picture element (pixel) in the image is
assigned a number corresponding to the index number of the segment
to which it belongs.

1.1 Research Objectives

The goal of the research described herein is to develop a reason-
ably fast algorithm for segmenting images into regions that corres-
pond in a large degree to areas that would be perceived as essentially
homogeneous by a human interpreter. The algorithm does not use
context-related information such as shape and relative position. Eith-
er monochromatic or color imagery may be segmented utilizing the
same algorithm, with a somewhat expanded feature set for the color

imagery to take advantage of the multispectral information.



In the past, most evaluations of image understanding systems
have been performed by subjective judgement. It is not completely
clear how, given two different segmentations of the same image, one
segmentation is judged better than the other. Ultimately, the value of
an image segmentation system will lie in its potential usefulness and
in its ability to segment imagery in a manner that to some degree
emulates human perception. Nevertheless, it would be useful to be
able to numerically compare two different segmentations of the same
image. To that end, a comparison measure is proposed and examples
of compared segmentations are given.

1.2 Organization of the Dissertation

The second chapter provides an overview of image understanding
systems in general and approaches to image segmentation in the past,
The approach taken in this dissertation is the only segmentation pro-
cedure based entirely on clustering that has been reported in the
literature. While clustering has been used to refine and identify im-
age segmentations in the past, it has previously been believed that a
pure clustering approach was too cumbersome computationally to
implement.

The third chapter consists of a theoretical development of the
background of clustering. Additional tools of statistical data analysis
are developed to determine the intrinsic number of clusters in the

data, and a novel arrangement of these tools is proposed to provide
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a reliable and unambiguous stopping criterion for the algorithm.
Previous work in each of the areas brought to bear on the problem
are outlined and their relationship to the work contained herein is
discussed.

Chapter four is a detailed description of the approach taken,
Block diagrams and flow charts of the algorithm are provided along
with the rationale for the various procedures used. A complete de-
scription of the feature sets used to segment images are provided
and the various combinations of these features are justified, based
on results obtained. To obtain an elementary pre-classification of
region character, a novel filter based on the mode of the local area
histogram is proposed and used to segment images.

The results obtained on several kinds of images are described
in detail in Chapter 5. In some cases, images were segmented with
more than one feature set in an attempt to improve performance.
Segmentations of images produced under various conditions are com-
pared using a comparison measure developed for that purpose.

The particular approach taken to image segmentation in this
dissertation lends itself to '"'real time'" implementation, that is, it is
possible to construct electronic hardware to segment images at tele-
vision rates. Chapter 6 is a functional description of a real time
implementation of the algorithm which was programmed on a general

purpose digital computer. The procedure described in Chapter 4 was
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used to segment two frames of a motion picture. The segmentations
are included to demonstrate the ability of the algorithm to produce
essentially equivalent segmentations of spatially non-stationary im-
ages.

Finally, Chapter 7 draws conclusions from the results and pro-

vides directions in which further research is judged necessary.



Chapter 2
IMAGE UNDERSTANDING SYSTEMS

2.1 Image Understanding System Description

An image understanding system is a system that uses visual data
to generate descriptions that are useful for desired applications. The
descriptions generated can be at very different levels and degrees of
detail. If an image is represented in digital form, then the image is
represented by an array of numbers representing the brightness at
each point on a (usually) rectangular grid. These brightness elements
are called picture elements (pixels). In the limiting case, this array
of numbers ''describes'' the image.

Image descriptions of this form are usually the starting point for
image understanding systems. The system generates a series of de-
scriptions that are progressively more general until a descriptive
level is reached that satisfies the system requirements. It has been
observed [Z-l] that the successive levels of abstraction require that
the higher levels of the system interact with the lower levels, based
on the current descriptions. This processing approach is called
"heterarchical." The image understanding system is therefore con-
ceptualized as having a hierarchy of processing levels, as shown in
Figure 2. 1.

The primitive description level extracts local features that are
5
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not related to context. The primary or "first order' features of a
pixel in a monochrome image are the brightness (with due considera-
tion of the sensor spectral response) and spatial location of the pixel.
All other features are of higher order, that is, they describe how the
pixel is related to surrounding pixels in the image. These features
describe such primitive local attributes of the picture as brightness,
texture and color. A proper primitive description level of the image
understanding system would transform the features into a coordinate
system where numerical distance would be related to human percep-
tual difference.

A large percentage of the difficulty with current schemes for
image understanding can be related to the lack of understanding of the
human perceptual system. Preliminary work towards relating texture
features to human perception has been performed by Thompson [2-2].
He used a rank order experiment to define a combination of texture
features. This combination forms a perceptual distance function
which correlates to some degree with human perception. Further work
along these same lines on other features combined with greater under-
standing of the human perceptual system will greatly improve the op-
eration of image understanding systems.

The symbolic description level of the system takes the primitive
descriptions and forms more global and symbolic descriptions of the

image. Segmentation of the image takes place at this level. The ini-
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tial segmentation is based purely on perceptual difference. After

analysis by the semantic interpretation level of the system, the sym-

bolic level may be directed to merge or to further divide regions in

the image. .

The decisions about dividing the scene into similar or homo-

»

geneous regions are made at this level of the image understanding
system. The notion of "similar'" is a purely defined concept. Con-
sider the problem of grouping automobiles, busses and airplanes.
These three items are different in obvious respects, and in certain
circumstances, it would be legitimate to group them separately. It
is also true that they are all vehicles used for transportation, and
they could be grouped together. The transportation specialist might
group busses and airplanes together as representing forms of mass
transit, whereas the average person might group busses and auto-
mobiles together because they are both land vehicles. For these rea-
sons, it is obvious that any grouping of data must be performed with
a specific intent. Feedback from the semantic interpretation level is
necessary to ensure that the symbolic descriptions are consistent
with the goals of the image understanding system.

The semantic interpretation level of the system generates hypo-
theses for the contents of the image based on the symbolic descrip-
tions. The semantic interpretation level then further directs the low-
er processing levels until the symbolic descriptions confirm one of

the hypotheses. 8



2.2 Other Image Understanding System Models

A number of somewhat different models have been proposed other
than the model suggested here. It has been suggested, for example,
that a goal directed or "'top-down'' approach be used to look for a
specific object in, or test a specific hypothesis about an image. Ex-
amples of this are discussed in [2-3] and are typified by locating
telephones in an indoor office scene. Other examples of this approach
are the location of specific objects in x-ray radiographs [2-4] .

The problem with top-down approaches is that the specific cir-
cumstances under which the system operates must be well defined in
advance. Any substantial departure from these circumstances will
cause the system to fail to perform adequately.

Other models represent a middle ground between the completely
top~-down and the completely bottom-up approaches. These models
differ mainly in that they use knowledge of the scene at the earliest
possible stage of the image understanding system to refine the scene
description as it is generated [2-5, 2-6].

2.3 Image Segmentation Approaches

In all of these image understanding system approaches, gross
overall image segmentation is necessary to direct the attention of the
higher system levels, form preliminary hypotheses about the image
(such as whether it is an aerial photograph or indoor scene, etc.)and

identify areas to be examined in greater detail or merged with other
9



areas of lesser interest. The image segmentation procedure must be
sufficiently general that it will operate satisfactorily over a wide
range of image types and within a wide range of possible implementa-
tions of image understanding systems. The segmentation procedure
must be reasonably efficient in terms of computer time and storage
required in order not to require unnecessary resources to implement,
Many previous approaches have required several hours of computer
time to implement. It has been observ_ed that "It is usually possible
to solve a difficult problem in a difficult manner by brute force and
ignorance. However, real advances are made by recognizing difficul-
ties and avoiding them.' [2-7]

At the current state of the art, it is fashionable to invoke the
""other level of the system'' argument when the difficult interfaces
between the image understanding system levels are encountered. This
argument inevitably insists that some (usually the most challenging)
aspect of the problem is that which the higher (lower) level of the
system will solve. Not invoking this argument requires that the gross
overall image segmentation be performed with some degree of auto-
nomy, in other words, it must decide on a segmentation without close
supervigion from the higher levels of the system. If more or less
detail about a particular region is desired. the higher level of the
system can either merge regions or direct that regions be further

scgmented. The number of regions with which the higher levels of the
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system must deal must be kept to a minimum, to permit reasonable
implementation of the higher system levels.

Segmentation of images into homogeneous regions has been a goal
of image understanding researchers for many years. Beginning with
simple block-like objects and the work of Roberts [2-8'] , image seg-
mentors evolved into those attempting to segment natural scenes.
Roberts' work used intensity to detect object boundaries for further
manipulation. Later efforts [2-9,2-10, 2-11, 2-12, 2-13] manipulated
the line drawings in different ways, but extracted these line drawings
as a pre-processing step for higher level operations.

Extension of artificial intelligence based procedures to image
segmentation often used ''top-down' approaches based on a-priori
knowledge of the image content. Many of these approaches used train-
ing algorithms to train the classifier and highly heuristic features
based on the a_priori knowledge of the image and the purpose of the
image understanding system [2-14, 2-15,2-16,2-17,2-187] . Some of
these approaches were interactive, that is, a human operator provi-
ded guidance to the computer to direct the segmentation [2-191. An
excellent description of each of these segmentation approaches and
the context in which they were applied is contained in [2-20].

Common to all of these approaches is the extraction of line draw-
ings by varying means. Thus the region boundaries represent the seg-

mentation of the image. In some of these approaches. the edges are
1



sought directly by edge detection [2-21, 2-22, 2-23, 2-24] or func-
tional approximation [2-25, 2-26] . In other approaches, the regions
are detected first and the boundaries determined later. There are two
general approaches to region detection. The first is a top-down ap- .
proach wherein the picture is segmented into progressively smaller
regions until certain criteria are satisfied. Examples of these ap-
proaches are found in [2-27, 2-28] . The second approach is a bottom
up approach wherein the picture is divided into a large number of
small regions, possibly as small as one pixel. These regions are
successively merged to form larger regions. Examples of this ap-
proach are given in [2.-29, 2-30] .

A few attempts at bottom-up approaches to image segmentation
using clustering have been made in the past. The first of these was
performed by Haralick and Kelly [2-31]. This procedure used a
modified linking or '""nearest neighbor' rule to form the clusters on
multi-image data. The procedure uses two arbitrary thresholds or
parameters, the maximum number of clusters and a probability
threshold parameter. The histogram is computed and peaks are iso-
lated to accelerate the location of cluster centers. Naturally, the
performance depends on the parameters selected.

Further work has been performed using textural features and a
classifier operating in the supervised mode [2-327. The supervised

mode requires that the cluster center be determined by "training,"
12



that is, samples whose classification is known are used to identify
the cluster centers.

Clustering has also been applied to images segmented by a edge
detection procedure [2-33] . The procedure used was: 1) compute a
gradient image. 2) threshold the gradient image. 3) clean the threshol-
ded gradient image. 4) label connected regions in the cleaned image.
5) cluster the labeled, connected regions. Thus, clustering is used
to merge and identify segmentations after they are formed. A number
of thresholds are required in forming and cleaning the gradient image
and labeling the connected regions. This procedure is a combination
of former Lypes, utilizing both edge detection and region detection
to form the segmentation.

An additional bottom-up approach to image segmentation is des-
cribed by Ohlander [2-34] . This procedure uses histogram analysis
to successively delete points contained in feature histogram peaks.
The feature histograms are then recomputed and the process repeat-
ed. The initial system required considerable human interaction in-
volving peak finding and selection, selection of connected regions
and data base manipulation. Later work [2-20] refined and accele-
rated the procedure based on a priori knowledge about feature use-

fulness and sub-region analysis.
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Chapter 3
PATTERN RECOGNITION, UNSUPERVISED LEARNING =

AND CLUSTERING

A large body of information and techniques has been built up over
the last several decades under the general subject heading of pattern
recognition. It is convenient to divide this body of knowledge into
two categories, The first category consists of theory and techniques
from statistical data analysis and communication theory. The
second category contains knowledge that is most closely related to
computer artificial intelligence.

3.1 Artificial Intelligence Approaches

The artificial intelligence approaches often use language theory to
describe a scene in terms of primitive elements or subpatterns and
their relationship to each other. The relationships are described in
the synt;ctic structure models of formal language [3-17. Visual
patterns are considered to belong to a two-dimensional language, The -
structural descriptions of these patterns in terms of the grammar is
the syntax. Recognition becomes syntax analysis (often called pars-
ing). The limitations of these approaches are that relatively little

work has been done in noisy syntax and that most existing linguistic
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schemes are in terms of shape which is but one of many features
available to human observers. Nevertheless, context is easily
visualized in such an approach as additional constraints on the
relationships between the primitive elements.

3,2 Mathematical Models

The first results obtained in the general discipline now called
pattern recognition were based on mathematical models. These
models [3 -27] assume that a sensor or series of sensors measure
physical quantities about an object in the real world as shown in
Figure 3.1, In general, the measurements of the sensors form a
vector that describes the object. In the case of visual data, the
sensors are usually some form of camera, perhaps extracting multi-
spectral measurements about the physical world. At each point

(x,y) the output of the ith sensor at time t is
L
Px,y,t) = [ Fexy,t,0V,00d\ (3-1)
0

where Vi()\) is the spectral response of the ith sensor and F(x,y,t, )
is the brightness of the physical world sensed at point x, y in the
sensory plane of the ith sensor at time t [3-3] . Similar to the
definition for one dimensional time signals, the time average of the

image at (x,y) is

T
<P (x,y,6)>= lim {%[‘ Pi(x,y,t)L(t)dt} (3-2)
T ‘T

15
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where L(t) is a time weighting function. The image at this point is
still in continuous form, For purposes of manipulation of the data by
digital computer, the image must be converted into digital form by
appropriately sampling the image. Thus the images are represented
as real-valued functions of two spatial variables whose value at a
point is related to the spectral and time integrals given in equations
(3-1) and (3-2).

The pattern space consists of the spectral samples just des-
cribed, The 'first order' features of an image are its brightness
(possibly in several spectral regions) and the x and y coordinates of
the appropriate point. Each point is usually called a pixel (picture
element), Other features, such as texture, are properties of a
region [2-2] . Thus the feature extraction process may, in the case
of images, enlarge the amount of data required to represent the
image considerably. This increase causes the model to differ
somewhat from the classical pattern recognition model where the
feature extraction process usually performs a data compression by
representing entire objects with a single vector of features,

The feature space, as described above, represents a high
dimensional (dimension > 10 is not uncommon) space in which each
point in the image is represented by a vector of features —i;(x, y) =

(Pl(x,y), Pz(x, Y)eo .Pn(x,y)). Here n is the dimension of the feature

17



space and Pi(x, y) is the value associated with dimension i at point
(x, y).

The classification problem is now to find separating surfaces
in n dimensions which will partition the feature space into K mutually
exclusive and collectively exhaustive regions, The classification
which results from assigning the vectors in accordance with a
particular partitioning of the feature space can then be evaluated
based on the purpose of the classification,

The model just described often assigns the vectors by discrimin-

ant functions whichare functionals of the feature vectors. Thus

g (P05 y) > g(Rx,y)  forallk=1,2,...,n (k#j) (3-3)

implies that the feature vector P is a member of class W The

k.
discriminant functions usually assume the form of distance functions.
The assumption is normally made that the feature space forms a

metric space. The metric defined must satisfy the following condi-

tions with respect to vectors ;l’ 52 and 33 in the space:

i) m(Fl,FZ) = m(FZ,Fl) (3-4)
ii) m(Fl,Fz) sm(_ﬁl,53) + m(52,53) (3-5)
iii) m(Fl,Fz) 20 and m('ﬁl,FZ) =0 iff Fl =Fz . (3-6)

This model of the feature space when applied to the image seg-
mentation problem implicitly assumes that numerical difference is

18



directly proportional to perceptual difference in the human perceptual
system, This is an assumption which is almost certainly untrue at
the current state of knowledge about the human perceptual system and
the current state of development of features used in digital image
pattern recognition techniques. Nevertheless, the existence of a
(almost certainly) nonlinear transformation can be postulated which
would map the feature vectors into a new space where the model
described previously would be perceptually valid, The theory and
techniques currently being applied to pattern recognition approaches
are equally applicable in the new space., It would be anticipated that
the results obtained in this new space would more closely emulate the
human perceptual system.

3.3 Statistical Decision Theory Applications

The extension of the model developed thus far to statistical
decision theory is straightforward; each image is considered to be a
sample function of a two dimensional random process and each fea-
ture vector is a (vector) random variable, The classes defined by
the discriminant functions become decision regions. Depending on
how much is known (or is assumed) about the underlying statistics of
the feature vectors, the many different forms of statistical decision
theory can be applied.

These methods implicitly define the concept of ""similarity, ' The

19



scaling of the feature functionals and the selection of the features to be
used implicitly défines how the pattern classifier is to interpret
similarity. This suggests that, in reality, the classical pattern
recognition system is better represented by Figure 3. 2.

3.4 Supervised Pattern Recognition

The determination of the discriminant functions in the traditional
pattern recognition system is made through the use of prototypes or
training samples whose correct classification is known. These
samples are fed to the system and establish the decision boundaries
for use in classifying unknown samples. This approach is often
called the ''supervised' pattern recognition approach.

The selection of the training prototypes, the selection of features
and the cost weighting of the feature space effectively define to the
classifier what is intended by ''similar.'" Since similarity is highly
context dependent, the best results that can be hoped for using this
methodology are to classify based on non-context related criteria.
This conceptualization points out the reason for some of the dis-
appointing results in past efforts which are based on classical
Pattern recognition. Similarity is a defined concept and depends on
context. The mathematical approach does not readily lend itself to
the application of contextual criteria.

3.5 Unsupervised Pattern Recognition

Frequently, it is desirable to design a pattern classification
20
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system without the use of training samples [3-4]. This is often
called the "unsupervised' approach. There are a number of reasons
for using the unsupervised approach.

i) The number and characteristics of the classes may not be

known a-priori.

ii) Obtaining a sufficient number of prototypes to train the
classifier is difficult and time consuming.

iii) Underlying structure in the data may be overlooked if
training prototypes are used.

iv) In many applications, the characteristics of the patterns
change slowly with time. Satisfactory pedbrmance can
still be obtained if the classifier can track the changes
using unsupervised techniques.

The theoretical framework on which unsupervised pattern
recognition is based is very tenuous. If nothing whatsoever is known
about the data, tﬁe problem is not solvable in general. That this is
so is obvious from the fact that a nonlinear transformation on the
feature space could be defined which would reorganize the data in
any desired form. The reorganized data would be equally as valid
as the original data if nothing whatsoever is known about the data at
the outset.

In the case of image related data, it is known a priori (or at

least assumed) that the data represents low level perceptual differ-
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ences, It is to be expected that regions of the image that appear the
same would produce feature vectors that are near to each other
whereas regions that appear substantially different would produce
feature vectors that are far apart. This assumption leads naturally
- to the expectation that similar appearing regions will produce groups
of vectors that are close together in feature space, These groups of
vectors will hereafter be called ''clusters, '
3.6 Clustering

In general, the term clustering refers to the grouping of a given
set of objects into subsets according to the properties of each object,
The subsets are required to contain objects that are in some sense
more similar to each other than to the objects in other subsets.
Clustering has been used for several decades, and was first applied
by Tyron to numerical taxonomy problems [3-57.

It has been previously pointed out that the theoretical basis for
unsupervised learning using clustering techniques is weak at best,
It has been observed by Watanabe [3-67 that under certain conditions,
there is no theoretical basis at all for clustering and unsupervised
learning. His observations eminate from philosophical grounds and
proceed as follows. Suppose every object to be clustered is
described by n binary descriptions. No loss of generality is incurred

since any object described by a finite number of finite precision
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numbers can be described in this manner,

Thus, in theory, there are N = ZZn different possible descriptions
if the set of descriptions includes all complementary descriptions,
Hence, every object is described by an equal number of binary ones
and zeros. It is also true that if there is at least one binary des-
cription that is different between two objects, then it follows that
there are exactly N/4 binary positions in which the objects are
described identically (a proof of this is contained in [3 -7]). From
this follows the somewhat startling conclusion that any two objects
are as similar to one another as any other two objects when the
degree of similarity is measured by the number of identical binary
descriptions. It follows that there is no such thing as a class of
similar objects in the world.

The above conclusion does not coincide with intuition or
empirical observation, The apparent conflict is eliminated if it is
assumed that some of the binary descriptions are more "important"
~ than others., For example, binary descriptions that correspond to
most significant bits are much more "important'" than descriptions
that correspond to least significant bits. As has been concluded
previously, it is obviously of great importance in the classification
process to define the concept of similarity in the selection and

weighting (importance) of the descriptions or features.
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There are any number of clustering procedures, each having its
own peculiar characteristics. An extremely detailed discussion of
numerous different clustering techniques is contained in [3-8].
There are, however, certain similarities between the various
techniques that permit them to be categorized. Ball [3-8] defines 7
different cluster-seeking techniques for finding similar subsets in
data. One of these he calls ''clustering techniques' which are
distinguished by the iterative sorting of the data using multiple
cluster points until the cluster means '"adequately'’ describe the data.

When it is anticipated that the clusters are tight and widely
spaced the chain method [3-97, [3-10] may be used. The first data
point is taken to be the starting point of the first cluster. If the
distance to the second data point exceeds a threshold, the second
data point becomes the starting point of a new cluster, The distance
from each succeeding data point to every member of every cluster
is computed, and the point is included in an existing cluster if its
minimum distance is below a threshold. The procedure runs into
trouble when the clusters are close together and the boundaries are
indistinct.

There are a number of procedures which will iterate to a local
minimum in the average distance from each sample to the nearest

cluster mean, Perhaps the best example of these procedures is the
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nearest means algorithm adapted by Ball and Hall[3-11] and called
ISODATA.

This procedure begins with an assumed number of clusters. The
means are arbitrarily assigned, although the initial mean assignment
will affect the clustering through the number of iterations required
for convergence. The data is then assigned to the nearest mean.
After all of the data points have been assigned, the cluster means are
recomputed based on the assigned data points. This process continues
until the data assignment does not change, at which point the process
is said to have converged. This algorithm will iterate to a local
minimum in the average within cluster distance.

Various methods have been proposed to use procedures of the
type just described to find the ''correct' or '"best' number of clusters
in the data. The algorithms developed by Ball and Hall [3-11] use
merging and splitting to arrive at a2 final number of clusters. Thus
clusters having variances that are larger than a threshold will be
split and clusters whose means are separated by less than a thres-
hold will be merged. One major shortcoming of this approach is that
the merging and splitting thresholds must be established a_priori.

A procedure for determining these thresholds from the data has been
developed by Fromm and Northouse [3-12].

It has been observed by Nagy [3-13] that the procedures based on
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minimization of a distance function, such as the procedure just
described, are most appropriate for fairly isotropic clusters., The
methods which maximize the minimum distance between the members
of distinct clusters are most appropriate for dense, clearly separated,
clusters of (perhaps) odd shapes.

3.7 Clustering Quality Measures

For clustering procedures of the nearest means type, the key
obstacle to be overcome is the determination of the '"correct'! number
of clusters. In addition to the merging and splitting procedures
mentioned previously, it has been suggested that a possible approach
is to obtain a measure of the clustering quality represented by some
parameter alpha [3-2] . This parameter might be expected to vary
with the number of clusters as shown in Figure 3, 3,

A number of measures have been proposed for alpha, one of
which is the ratio of the between to within cluster scatter measure
[3-14'] . Thus, if it is true that there are intrinsic clusters in the
data, the behavior of alpha would be as follows, If the initial number
of clusters is less than the intrinsic number, L, the within cluster
scatter measure will be large, and alpha will be small. As the
number of clusters is increased, the within cluster scatter measure
decreases rapidly, increasing alpha rapidly, When the intrinsic

number of clusters (L) is reached, the rate at which the within
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cluster scatter measure increases becomes small, The between
cluster scatter measure changes very little after L clusters are
reached, because the new cluster centers are close to the old
cluster centers, Thus, alpha might be expected to behave as shown
in Figure 3, 3a,

The within-cluster and between-cluster measures are derived
from within-cluster and between-cluster scatter matrices, These
measures are intended to measure the separability of the data [3-14].
The within cluster scatter matrix is based on the scatter of the data

about the cluster means and is given by (3-7)
- = T
s, = Zl: P(W,)E{(x-M,)(x-M,) " W} (3-7)

where Wi is the ith cluster, P(Wi) is the relative frequency (or
probability) of the data in that cluster, and Mi is the ith cluster mean.
E{-} denotes the expected value or average, and (. )T denotes the
transpose of the vector quantity in parentheses,

The between cluster scatter matrix can be defined in numerous
ways, but for multi-cluster problems, (that is, problems having

more than two clusters) the most straightforward definition is given by

T
5, = 21: P(W,) (M, -M)}(M, -M,) (3-8)

M0 is the overall expected vector of the entire mixture and is given by:
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M, = E(x) = 12 P(W M, (3-9)

The goal of using the scatter matrices is a measure of cluster
separability, It is therefore necessary to derive a number from these
matrices which is related to cluster separability. If this number is to
behave like the parameter alpha discussed earlier, it should increase
when the within cluster scatter decreases or the between cluster
scatter increases. There are a number of ways of deriving such a

number, among which are:
a, =tr(s7's,)
1 =S, Sy

a, =4nfls_+s, |/|s I}
(3-10)
0.3 = tr Sb - U(tr Sw-c)

@, = tr Sb/tr Sw

where tr(-) indicates '"trace' or sum of the diagonal elements of a mat-

rix, and |+ | denotes the determinant of the matrix, When a_ is used,

3

the procedure is to maximize Tr Sb subject to Tr Sw = €, Here| is

the Lagrange multiplier and ¢ is constant,

The terms % and a, are invariant under any non-singular linear
transformation. The terms o, and Oy while easier to compute,
depend on the coordinate system,

The use of the parameter alpha to measure the '"goodness' of

clustering requiree that a knee in the alpha va., number of clusters be
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detected (see Figure 3,3)., If the data is noisy and the curve is not
smooth, this may be very difficult, A better procedure would be to
observe a parameter beta which passes through a maximum at the
“intrinsic'' number of clusters (see Figure 3.4).

A candidate for this measure is
B = Tr Sw-Ter (3-11)

When the number of clusters equals 1, Tr Sw = oz, the variance of
the mixture, Tr Sb = 0and B= 0, When the number of clusters

equals N, where N is the total number of vectors in the mixture,

TrS =0 and Tr S =crz
w b

Hencef = 0.

This measure is zero at the limiting points of the clustering and
greater than zero in the interval, Therefore, it must attain at least
one (and perhaps several) maximum values somewhere in the interval,
The ideal behavior for 8 would be for it to attain a unique maximum
at a clustering of the data that would be regarded as ''good' by a
human observer,

The use of Tr SW and Tr Sb to define clustering quality implicitly
defines a weighting function W(ni) on the cluster size, Each term in
the within and between cluster scatter matrices is composed of a
weighted sum of terms, The weighting is based on the relative

frequency (probability) of the data points in each cluster,
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The weighting function is depicted in Figure 3.5. Here, n,
is the number of points in the i‘:h cluster and N is the total number of
points.

This weighting causes large clusters to have a greater effect
on the clustering quality measure than small clusters. The
probability weighting is correct if large clusters are indeed more
important or if the clusters are of approximately the same size.

If small clusters are of equal importance as large clusters,
the quality measure should be based on a weighting which gives
equal weight to every cluster, regardless of size. This suggests a
uniform weighting as shown in Figure 3.6. Reformulating (3-7) and

(3-8) as

S
w

1 T
T Z Wn,)E [2-M;) (z-M;) | (3-12)
1

1 T
Sb =T 1Ev.r(ni) (M;-Mg) (M;-M,) (3-13)

maintains the property that the quality measure is not directly
affected by the number of clusters.

Other situations can be postulated. If it is assumed that the
clusters are normally distributed in size about an average value, Ny
a Gaussian weighting is suggested. If the criterion is to minimize
the maximum cluster variance, a weighting which is 1 at the

maximum diagonal element of S, and zero elsewhere is correct. All

33
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of these weightings attempt to quantify in different ways what is
meant by ""good clustering,"

An interesting relationship is true when the probability weighting
function of Figure 3,5 is used,

By definition:

Tr sb 8 Tr ZP(Wi)‘Mi'Mo)(Mi'MO)T (3-14)
i
2
- in(wi) JZ(mﬁ-mm) (3-15)
2 2
= Z [ZP(Wi)mij-zmoJ. Zp(wi)mij+moj ZP(Wi)]
j 1 t (3-16)
Noting that:
Z P(W,) = 1 (3-17)
1 1
and
iz P(Wi)mij = mOj (3—18)
yields
2 2

additionally, by definition:

Hne»

Tr S

w Tr ZP(Wi)E[(;i-mi)(;i-mi)T] (3-20)

2
; P(W,) ‘J[, E{x,;-m,,)") (3-21)
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2 2

= ) PWOER] - )P P(W, ). (3-22)
J 1 J 1

Therefore,

2 2
TrS, +TrS, =§J: Zi P(Wi)E{xij} - Zj :moj (3-23)
2 2
Ei P(Wi) Ej E{xij} - Zi P(W.) ZJ :ij (3-24)
S P |3 Ef ] - m! (3-25)
T i 3 ij j0

- — T
zi:P(wi) Tr E{(x,-M)(x,-Mg) "} (3-26)

Tr{g] = K (3-27)

where [#7 is the covariance matrix of the data. Thus Tr S, tTr Sy

constant and

Tr Sb = K-Tr SW (3-28)
Hence
B = Tr Sb-Tr SW = (K-Tr Sw) Tr SW (3-29)

differentiating with respect to Tr SW and setting the derivative equal

to zero yields

Tr Sw = K/2 (3-30)

which implies that B achieves a maximum at the clustering that
causes Tr S_ to equal one-half the Tr [¢].

Further,
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a = Tr Sb/ Tr SW (3"31)
K~-Tr SW
= “Trs. (3-32)
w
When Tr S =K/2,
w
K-K/2
= — 1 -
a K/2 (3-33)

Therefore, the ratio of between to within cluster scatter measures
will be exactly 1 at the product maximum,

Knowledge of this relationship is an advantage for real time
applications in that determination of the product maximum (Bma.x)
requires that clustering be performed on one greater number of
clusters than the number at which the product maximum occurs in
order to detect a decrease,

This relationship does not hold in general but is 2 phenomenon

which is peculiar to the weighting of terms by the cluster probabilities,

3.8 Feature Selection

Different images can be expected to be segmented most efficient-
ly by different sets of features, depending on the content of the scene.
Once initial clustering has been performed, it may be desirable to
discard those features not contributing to good clustering and re-
cluster based on the most important features, In order to accomplish
this, some means for evaluating the usefulness of the features is

required. A related problem is that the features may be highly
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correlated in the original space. Thus several highly correlated
features may be evaluated as good while conveying essentially the
same information due to the high degree of correlation. It has been
concluded by Andrews [3-15'] that feature selection in an uncorrelated
space is highly desirable.

The criterion of optimality for the selection of a feature set is
the probability of misclassification of the samples. Several
measures have been developed which upper bound the misclassifica-
tion rate. Specifically, for a Bayes symmetric cost function
classifier and Gaussian data the error rate has been shown to be
upper bounded inversely as the Bhattacharyya measure [3-16], [3-17],
[3-187.

Hence

-B(S,, §,)
P, < P(S,)P(S,)e (3-34)

for a two class problem where

-1 -1
-1
+ 3l (00,7 1,07 Gy o)y 1)) (3-35)
The Gaussian distributions are given by

P(xls,) = Ny, [d,]) (3-36)

and [¢k'_| is the covariance matrix of the k'" class.
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For a multi-class problem, Pe can be bounded as in Eq. (3-34)

by pairwise averaging, i.e,,

K J -B(S;, 5)
P_s iZ:> j P(S;)P(S, e (3-37)

Equation (3-35) is called the many-at-a~time form of the
Bhattacharyya distance measure. This equation requires that the
covariance matrix of every class be invertible, a condition which
may not be achievable in practice where the covariance matrices
are sample determined, A computationally moresimple form of the
above results when the one-at-a-time formisutilized. This form is

given by:

2 2
0,(n)  o,(n)

= 1 i
Bn(sl' Sz) - 4ocn 4( 2 + 2 + 2)
| o,(m)  o)(n)

2
(M) () - p,(n)

(3-38)
2
or(n) + og(n)

where n refers to the nth dimension of the space, This form involves
only scalar means and variances.

Figure 3,7 provides some insight into the behavior of the one-at-
a-time Bhattacharyya measure., When the variances are equal but
the means are not, as in Figure 3,7a, the first term of the
Bhattacharyya measure will be zero but the second term will be non-

zero., The second term will be large if the variance is small under
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this condition, implying that a large difference in means accompanied
by small variances is a desirable quality in a feature for distinguish-
ing betweean two classes, The situation depicted in Figure 3.7b is
the reverse,‘ that is, the means are equal but the variance is not.

If the variances are significantly different, the feature is still
considered of potential usefulness in separating the classes, Thus,
in this situation, the second term of the Bhattacharyya distance will
be zero but the first term will be non-zero. Finally, in Figure 3, 7c
both the mean and variance are unequal and both terms of the
measure will be non-zero.

The performing of feature evaluation in uncorrelated space
implies that an eigenvector (or discrete Karhunen-Loeve) trans-
formation is required [3-19]. While the dimensions having the
largest eigenvalues will be the best under certain conditions, they
will not be optimal in general. The one-at-a-time Bhattacharyya
measure will pick the correct eigenvector regardless [3-15'] .

3.9 Segmentation Comparison Measure

There exist a host of techniques developed over the last few
years for forming clusters and segmenting images. A common
shortcoming is that it is nearly impossible to compare these methods
since no quantitative conditions of optimality exist, Typically in the

literature a statistical or heuristic argument is made that a proposed
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method should work well for a particular type of scene, A mathe-
matical argument sometimes proceeds and classified images are
displayed to support the predicted performance. Virtually ho means
exist for comparing performance among methods and it is suspected
that no one method works well for all types of scenes,

An approach to this shortcoming would be for there to exist a
standard data set of segmented pictures that human observers agreed
were ''correctly' segmented. If pictures segmented by a candidate
procedure could be compared to the standard segmented data base, a
primitive means would then exist for comparing different segmenta-

tions of the same scene, A comparison measure that is proposed is:

" 1 1
C = [Z h LI - T.7 min(, J)]F% (3-39)
i,]
r = i.OO
1 “T7 min(l, J)

I and J are the total number of segments in images 1 and 2 respective-
ly. hmax(i,j) are the elements of the joint histogram of the seg-
mented images which are maximum in both the rows and the columns
of the joint histogram. T is a normalizing factor which forces C to be
bounded as 0 <C < 100 and N is the total number of pixels in each
image.

Pictures which are identical will have C = 100% while pictures

which are completely unrelated and have equal sized eegments4§vill



have a uniform joint histogram and have C = 0%. This measure
penalizes the segmented images for having non-equal numbers of
segments. Pixels in the image having the greater number of segments
that are located in the smaller sized segments are regarded as being
misclassified.

As an example of the behavior of this measure, consider the
segmentations of Figure 3.8, The joint histogram of these segmenta-
tions is also given in Figure 3,8, The comparison measure between

these two segmentations will be:

64 24 1
T = 1?0 =1,5
1 -z 2
C = 82%

As another example of the behavior of this measure, suppose
that the two segmentations to be compared were similar to seg-
mentation number 1 except that segment number 2 is of different
size, When segment number 2 consists of only one pixel, the
comparison measure will equal47.5%. At the other extreme, where
segment number 2 consists of all but 1 pixel of the segmentation,
the comparison measure will equal 46.0%. The measure will, in

this case, reach a maximum of 100% when segment number 2 is of

44



10

| |

I |

1 |

0 2 8 10
SEGMENTATION NO. |

10

2__—

m——-—
o

I

I

|
O 2 6
SEGMENTATION NO. 2

Figure 3.8 Comparison Measure Example

45



\ Segmentation
No |

Segmentation | )
No 2

| 0

2 | o©

3 O 12

O = Maximum in Row and Column

Figure 3. 8(continued) Comparison Measure Example

46



Chapter 4

IMAGE SEGMENTATION BY CLUSTERING - AN APPROACH

4,1 Overall Approach

The overall approach taken to segment images by clustering is
depicted in the general block diagram of Figure 4,1, The feature
computation block computes several features at each pixel. These
features are related to brightness and texture at several window
sizes centered on every pixel,

The feature decorrelation is performed by a multi-dimensional
axis rotation (Karhunen-Loeve transformation), The rotation is
performed so that the new feature set is uncorrelated.

Feature reduction, which is accomplished subsequently, will
retain only those features necessary for good clustering. If feature
reduction is not performed on decorrelated features, several highly
correlated features may be retained, but convey essentially the same
information,

The feature reduction is accomplished by performing clustering
on the full feature set on a sample basis, In other words, only
samples of the image are used for clustering to reduce the time
required, At the number of clusters which is determined to be
"optimum, ' those features having above average one-at-a-time

Bhattacharyya measure are retained, and the remainder are
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equal size in both segmentations. If both segmentations are complete-
ly unrelated and have equal sized segments, the joint histogram will
be uniform and each entry will equal -1.1__]' min(l, J) where I and J are

the number of segments in pictures 1 and 2 respectively, The

comparison measure will equal 0% in this case.
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discarded. The optimality criterion will be discussed in greater
detail subsequently.

Clustering is again performed on the reduced feature set, on a
sample basis as before, When the optimum number of clusters is
determined, the cluster means are forwarded to the segmentation
phase of the algorithm., The segmentation phase assigns every
pixel (vector) in the image to the closest cluster mean received
from the clustering algorithm, Thus, while the optimum number of
clusters and the cluster means are determined on a sample basis,
the segmentation is performed on the entire image.

The algorithm illustrated in Figure 4.1 was adopted for several
reasons. Clustering on a sample of the image is a factor of 16
faster than the same procedure performed on the full set of data.
The segmentation, however-, retains most of the original resolution
since it is performed on the full set of image data.

The feature decorrelation is necessary in order that the feature
reduction will retain the minimum number of features contributing
to good clustering. The feature reduction improves the quality of
the segmentation by discarding noisy and less useful features. The
first clustering is performed explicitly for the purpose of evaluating
the features. The algorithm iterates to a '"correct' number of

clusters, and the features are evaluated at that point. The second
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clustering is performed for the purpose of finding the means with
which to segment the image in the segmentation phase of the algorithm,

A detailed flow diagram of the algorithm is illustrated in Figure
4.2, The feature computation, which will be described in detail
subsequently, produces, as described previously, a vector at each
pixel location. These vectors are forwarded to the covariance
computation routine and to the Karhunen-Loeve rotation.

4,2 Feature Rotation

The covariance matrix is computed over the feature set as
. . . - - T
(o n] = <(p;lxy)-p)p.(x,v)-p,) > (4-1)
J J
X,y
. = . .th

Here {2 denotes averaging and P, is the average of the i feature
over the image. The average is performed on every fourth pixel and
every fourth line to reduce computation time, The diagonal elements
of this matrix are the feature variances over the image. The matrix

which diagonalizes the covariance matrix is computed yielding

ATga = (4-2)

where A is diagonal having the eigenvalues of the covariance matrix

as diagonal elements, i.e.,

A = . (4-3)
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The matrix A which accomplishes this diagonalization is the well-

known matrix of eigenvectors, i.e.,
A = [al a, e aN’| (4-4)
where ;i is an eigenvector, i.e.,

!iiai = N3 (4-5)

A new feature set is computed by multiplying every vector in

the original space by AT, i.e.,

— T—
q(xtY) = A P(x:Y) ‘4"6)

This transformation corresponds to a multidimensional axis
rotation and is the discrete form of the Karhunen-Loeve transform-
ation. The covariance matrix in the rotated space will be diagonal

and will be
[0,6,9)] = AT[80.3TA = A (4-7)

This rotated space of features is forwarded to the clustering algorithm

for clustering.

4,3 Clustering Algorithm

The clustering algorithm uses the k-means algorithm for
2,3,4,...,16 clusters. At each step, the quality of clustering is
computed as = Tr S

b

and (3-7)). The average pairwise Bhattacharyya distance is

oTr Sw (see Ch. 3 and equations (3-3), (3-4)
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computed for every feature, At the product maximum, the
Bhattacharyya distance for all features is computed, Features
having a Bhattacharyya distance which exceeds the overall average
are identified for use in the final clustering. Since these features
are uncorrelated, only the minimum necessary are retained for
good clustering, The flowchart of the algorithm is shown in
Figure 4, 3,

The vectors are assigned to the nearest cluster mean in
accordance with the Ll distance measure, i,e,,

4,779 - i pD-p®] 4-8)
i=

The clustering of spatial sources has been shown to be very insensi-
tive to the distance measure used [4-1]. Therefore, the absolute

value measure was chosen over the L2 distance measure

e

1 2)2
4,7 "7 Z;( (1_p)) (4-9)

to reduce the computation time required.

The clustering algorithm computes the cluster means on every
fourth line and every fourth pixel to further reduce computation
time, For a given number of clusters, the algorithm iterates until
it converges, Convergence is assumed to have been reached when

th
the means on the K-l-s—t-iteration and the means on the K  iteration
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differ by less than one brightness level in any dimension for any

cluster, This is equivalent to
-1
||C;K) - chK N, <1 foranj (4-10)

Since this is the limiting resolution of the data, further iterating is
performed on the quantization noise of the data and does not yield
results which will significantly affect the segmentation.

The algorithm begins at 2 clusters. The initial means are
established by computing the mean and variance of each feature over

the image, The 2 initial cluster centers are chosen as

o 1
i Z0s
Ci = Cp + (V)22(-1) - 1) (4-11)

where CK is the mean of the Kth feature, VK is the variance of the Kth
feature and j =1,2 is the appropriate cluster number, Equation (4-11)
places the initial cluster centers evenly spaced on the diagonal of
positive correlation at plus and minus 1 standard deviation in the
hyper-space of the feature set, As the number of clusters is incre-
mented, the new cluster center is initialized at the vector whose
distance from its respective cluster center is the greatest,

Final segmentation is performed on every pixel, utilizing the
means or-cluster centers computed during the clustering algorithm.

This procedure permits segmentation of the image to nearly the

original resolution, while performing the tedious computations on
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one-sixteenth of the data.

4,4 Feature Computation

An aspect of clustering which has a major effect on the results is
the feature set used to describe the image, While this reseazfch was
not intended to probe deeply into an optimal feature set, some
exploration of the subject was necessary to permit development of
the clustering procedure. For monochrome imagery, the most
obvious features that are intuitively important to human observers
are brightness and texture. Brightness is a relatively straight-
forward concept, but texture is not. Much research has been
performed regarding human perception of texture, and the subject
is far from closed.

To date, the most promising results obtained with texture oper-
ators utilize the grey level dependancy matrices proposed by
Haralick [4-2]. The normal approach followed with these measures
is to compute the grey level dependency matrices and then to derive
texture measures from the matrices themselves. A large number of
measures can be computed from these matrices, but Thompson [A-Z]
found that perhaps 5 or less correlate significantly with human
perception, If the original 256 possible brightness levels in the
original picture are quantized to 16 levels, and if 4 angles and 4
distances are used, then 16, 16 x 16 matrices must be computed at

every pixel, This amount of computation was considered excessive
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in view of the goal that this procedure is intended to be reasonably
fast,

Other texture measures which have been proposed are the '"edges
per unit area'' as a measure of the local edge density, This measure
was computed and used in segmenting several types of scenes, The

basic edge detector is the Sobel operator which is defined as follows:

1 0 -1] (1 2 1]
[sl‘|= 2 0 -2 and [S,] = [ 0 0 o (4-12)
R -1 -2 -1

At each pixel, the image is multiplied by the [Sl] and [Sz']

masks yielding S1 and S2, The Sobel magnitude is then defined as

[

2 2
SM = (S1° +827) (4-13)

and the Sobel phase is given as

SP = arctan (g—f) (4-14)

These measures are designed to detect well defined edges, As a
result, they tend to have large value at such edges and very low
values elsewhere, When quantized to 8 bits, much of the region is
quantized to zero and only clearly defined edges remain visible. For
that reason, the logarithm of the magnitude was taken to expand the
lower range of values, i.e.,

SM* = log(l + SM) (4-15)
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The Sobel phase has the opposite shortcoming. It will have large
(although nearly random) value in regions where no discernible
texture exists, The Sobel phase texture operator was therefore
computed as

SP* = (SP+r)SM#* (4-16)

in an attempt to suppress the phase operator when no texture is
present, These primative operators permitted segmentation of
numerous monochrome images, with varying degrees of success,
The goal of the algorithm developed here is to perform gross
overall scene segmentation. For this reason, very small ''fine
grain'' segments were considered undesirable. It was decided to
perform a pre-filtering to make some basic decisions about region
character on a local level as a first step prior to segmentation,
Linear operators tend to blur the region boundaries and reduce
the region boundary resolution, The Tukey median filter [4-3] ,
while much better in this respect than a local averaging, still causes
some blurring of the boundaries. A filter that does not blur the
boundaries was conceived and called a ''mode filter.'" This filter
computes a local area histogram centered on each pixel, for
different region sizes, and outputs the mode or most frequently
occurring value. The height of the histogram at each pixel may also

be used as a measure of the local dispersion of the region. Region
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sizes of 3 x 3, 7 x7 and 15 x15 were computed. The local area
histogram was computed to N2 levels, where N is th;a linear dimen-
sion of the window.

The effect of the mode filter is to replace every pixel with the
most frequently occurring value in a small regioncentered on the
pixel. This removes small variations in brightness and tends to
create relatively large regions of completely uniform character,
The disadvantage of the mode filtering is that it creates artificial
boundaries when regions of slowly varying brightness cross a
threshold of the histogram., The resulting image looks much like a
""paint-by numbers' painting.

The mode filter causes almost no loss in boundary resolution
because the output of the filter does not change until a majority
of the values change. Then the filter output changes value at the
point where the center of the window crosses the region boundary.
The square window will clip corners of square regions, however,
The dispersion or histogram height does ot have the nice properties
of the mode value, The height of the mode will decrease as a region
boundary is approached, and increase as the region boundary is left,
Some blurring of region boundaries will therefore occur,

If the region size to be detected is near the size of the mode
filter window, it will pass undetected (or be severely reduced) by the

filtering process, The window size must therefore be selected to be
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smaller than the smallest region size to be detected.

Color featurés were computed by performing mode filtering on
the three spectral images (red, green and blue). This expanded
feature set produced more subjectively satisfying results, as would
be expected from the increased information available from the multi-
spectral data.

There are generally five feature sets which are used for image
clustering. These feature sets are summarized in Table 4.1, These
feature sets are clearly combinations of a few different types of
basic features, and are based on the Sobel operators and the mode
dispersion for texture information and on the mode filter for bright-
ness information.

The original set was feature set number 1, Feature set number 2
was motivated by the attempt to obtain a more satisfying result from
the aerial image. In the case of polychromatic imagery, feature set
number 3 is basically similar to feature set number 2 for mono-
chrome imagery, with the larger (15 x 15) mode filters eliminated to
conserve computer time, Feature set number 4 is an obvious choice,
and feature set number 5 was chosen in an attempt to introduce
texture information into the segmentation process for the ten band
multi-spectral image.

As has been previously discussed, the primary goal of this effort

was to develop the segmentation algorithm, Feature experimentation
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MONOCHROME IMAGERY

Feature Set Number 1

Feature No. Description

1 Original

2 Log Sobel Magnitude

3 Sobel Phase x Log Sobel Magnitude

4 Feature 1 Mode Filtered,3 x 3

5 Feature 2 Mode Filtered,3x3

6 Feature 3 Mode Filtered,3 x 3

7 Feature 1 Mode Filtered,7 x7

8 Feature 2 Mode Filtered, 7 x 7

9 Feature 3 Mode Filtered,7x 7
10 Feature 1 Mode Filtered,15x 15
11 Feature 2 Mode Filtered,15x 15
12 Feature 3 Mode Filtered,15x 15

Feature Set Number 2

Feature No. Description
1 Original Mode Filtered,3x 3
2 Dispersion of Feature 1,3x 3
3 Original Mode Filtered,7 x 7
4 Dispersion of Feature 3,7x 7

Table 4,1, Feature Set Descriptions
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POLYCHROMATIC IMAGERY

Feature Set Number 3

Feature No.

1
4

5

10

11
2,6-7,12-13
3,8-9, 14-15

Feature Set Number 4

Feature No.

1-10

Feature Set Number 5

Feature No.

1 -2

o bW

Description

Red Original

Red Original Mode Filtered,3x 3
Dispersion of Feature 2,3x 3
Red Original Mode Filtered,7x 7
Dispersion of Feature 4,7x 7
Similar to above for Green

Similar to above for Blue

Description

Ten unmodified bands of multispectral
imagery.

Description

Best two rotated features of 10 band
multispectral imagery.

Feature 1 Mode Filtered,3 x 3
Dispersion of Feature 3,3x 3
Feature 2 Mode Filtered,7x 7
Dispersion of Feature 5,7x 7

Table 4. 1 (Continued) Feature Set Descriptions 63



was done as required to investigate the performance of the segmenta-
tion algorithm, but was not pursued in great depth as a topic having
its own merit. A great deal of investigation into features, especially

texture, obviously remains to be done.
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Chapter 5
EXPERIMENTAL RESULTS

An enormous amount of data was collected during the perfor-
mance of numerous experiments in segmenting various kinds of im-
ages. A representative sampling of that data is included in the photo-
graphs, charts and tables at the end of this chapter. The photogréph-
ic data consists of photographs of the features, both correlated and
decorrelated, and the resulting segmentations. The graphs depict
behavior of the Bhattacharyya distance measure, used for feature
selection, and of the clustering quality measure, used to stop the
algorithm at the '"correct'" number of clusters. The tables consist of
the statistical data used to decorrelate the featuresfor the various
images, a comparison of the Bhattacharyya distance with the decor-
related feature eigenvalues, results of running the segmentation com-
parison measure and a table of computer time required to run the
algorithm in its various configurations. The table of Bhattacharyya
distance measure versus feature eigenvalues illustrates the super-

iority of this measure to the eigenvalues in identifying the best fea-

fures.

5.1 APC Image Results

Examples of features and segmented images are shown in Fig-

ures 5.1 through 5.7. Figure 5.1 consists of the 12 original features
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computed from the APC image. These features were subjected to
clustering without rotation, producing the segmentations of Figure
5.2. The probability weighted product maximum occurred at 9 clus-
ters. A graph of the average Bhattacharyya distance versus the num-
ber of clusters for this image is shown in Figure 5.8. This graph is
constructed such that the average Bhattacharyya distance for each
feature is normalized by the average for all features at each number
of clusters. The normalized overall average therefore consists of the
horizontal line at dB = 1. 0. While there is some changing of relative
position between the features as the number of clusters is varied,
those features which are above average tend to remain above average,
and those which are below average tend likewise to remain below
average. The graph shows reasonably consistent behavior of the
Bhattacharyya distance measure as the number of clusters varies.
Thus feature selection based on this measure is a consistent proce-
dure. The probability weighted product of the between cluster scatter
measure and the within cluster scatter measure was computed for
each number of clusters. The between and within scatter measures
are normalized by r2 so that they range between 0 and 1. These pro-
ducts are plotted versus the number of clusters for the APC image
under various conditions as well as for several other images in
Figure 5. 9. At the probability weighted product maximum for the

original APC features (9 clusters in this case), the above average
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features were 7, 1, 4 and 10 in that order. These features are origi-
nal mode filtered 7 x 7, original unmodified, original mode filtered
3 x 3 and original mode filtered 15 x 15 respectively. Thus all of the
texture information has been discarded. These features were used to
again cluster the image and the results are shown in Figure 5.2, The
probability weighted product maximum occurred at 2 clusters for the
reduced feature set.

The covariance matrix of the 12 original feature set was comput-
ed and diagonalized. The covariance matrix and the diagonalization
(eigenvector) matrix as well as the eigenvalues of the covariance mat-
rix are tabﬁlated in Table 5.1. The eigenvectors are shown as col-
umn vectors in the table. In the case of the APC image, rotated fea-
ture number 1 consists of -. 37 x original feature number 1 plus .13 x
original feature number 2, etc. Each vector of the rotated feature set
is computed in this manner from the spatially corresponding vector
in the original feature set. The actual rotated feature set is shown in
Figure 5.3. The version shown in Figure 5. 3 has been rescaled for
ease of viewing. The set of 12 features used for clustering was re-
scaled as a set to cover the range 0,255. The feature set displayed
in Figure 5. 3 has had each feature individually rescaled to cover
0, 255 for viewing convenience. The covariance matrix of the rotated
features is diagonal and each diagonal entry is equal to the variance
for the respective feature. The features are arranged approximately

in order of descending eigenvalue (variance) by the computer 67



routine that diagonalizes the covariance matrix. The lower variance
(energy) of the higher number rotated features is evident from their
appearance. The columns of the rotation matrix are the eigenvectors
of the covariance matrix corresponding to the eigenvalues listed
above it. The average Bhattacharyya distance for each feature is
listed in Table 5.2, along with the eigenvalues and the rank of the
feature with respect to average Bhattacharyya distance. It can be
seen that the relative eigenvalue does not exactly correspond to the
average Bhattacharyya distance.

An interesting phenonemon canbe observed in the behavior of the
clustering quality measure (product) in Figure 5.9. The behavior of
the quality measure for the rotated and non-rotated feature sets is
almost identical, which is to be expected if the intrinsic structure of
the data is unchanged by the feature rotation process. The clustering
quality measure maximum is rather broad in both cases for the full
feature sets. The reduced feature sets, on the other hand, show a
sharper, more clearly defined peak in the quality measure, suggest-
ing that the intrinsic clusters in the data are more clearly defined in
the reduced sets of features. For all images tested, the quality mea-
sure tended to demonstrate a more clearly defined maximum when
computed on feature sets that were expected to yield '"better' cluster-
ing.

The segmentation at the probability weighted product maximum
68
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for the 12 non-rotated features (Figure 5.2) and the segmentation

at the probability weighted product maximum for the 12 rotated fea-
tures (Figure 5.4) appear very similar. That this is so is expected,
since the multidimensional rotation of the axes by the rotation matrix
is a linear invertible map and should not change the shape of the clus-
ters. The differences which do exist are due in small part to numeri-
cal (round off) errors in the computation and it is conjectured that
they are due in larger part to the fact that the clustering algorithm is
somewhat sensitive to cluster initialization. The nearest means al-
gorithm will converge to a local minimum in the average inter-cluster
distance. In addition, since convergence of the algorithm for a fixed
number of clusters is considered to occur when the means change less
than one brightness value in any dimension, the final clustering is
also slightly sensitive to the direction from which the convergence is
approached. Nevertheless, the agreement is surprisingly good, and
supports the hypothesis that intrinsic clusters do in fact exist in the
data.

The average Bhattacharyya distances for the rotated features
were computed for the rotated features and are plotted in Figure 5. 8.
The above average features at the probability weighted product maxi-
mum (4 in this case) were used to again cluster the image. The re-
sults of this are shown in Figure 5.4, The comparison between these

segmentations and the segmentations performed with the 4 best non-
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rotated features is interesting. The feature reduction in the non-
rotated space retained all of the brightness related features and none
of the texture related features. Therefore, the 4 retained features
were highly correlated and all of the texture information was lost.

The feature reduction in the rotated space, on the other hand, dis-
carded only non-correlated information. The features that remained
can be expected to contain most of the information necegsary for
clustering. The segmentation that resulted from the 4 best rotated
features differs from the segmentation of the 4 non-rotated features
mainly in that the background has been split into two segments. Other-
wise, the segmentations are very similar and suggest that the intrinsic
structure of the data has been retained.

The best of the rotated features was substantially higher in Bhat-
tacharyya distance than any of the other features. This is to some
extent expected, since the rotation process will compact the maxi-
mum amount of information into the features having the largest eigen-
values. Accordingly, it was decided to perform clustering on this one
exceptionally good feature. The results of this are also shown in
Figure 5. 4. The classification of the bushes in the images as being
the samé as the vehicle constitutes an error or misclassification in
the process. Substantially more errors were made when the segmen-
tation was done with only one feature, which is expected due to the

large reduction in dimension.
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5.2 Aerial Image Results

The segmentation procedure was applied to an aerial image. The
original as well as the segmentation results are shown in Figure 5. 5.
The photograph labeled ''5 best of 12 rotated features' was segmented
using the same 12 features used for the APC image. This image was
also segmented using a different feature set consisting of 4 features.
To attempt to measure the local dispersion of grey level values, the
height of the local histogram mode as well as the grey scale value of
the mode was used as a feature. The height was rescaled 0, 255 be-
fore clustering. An example of the dispersion feature for a 3 x 3
window is shown in Figure 5.5. The set of four features consisted of
the mode and dispersion for a 3 x 3 window and the mode and disper-
sion for a 7 x 7 window. These features were rotated; clustering was
performed; the above average features (1 in this case) were selected
and clustering was again performed. The results of this segmenta-
tion are labeled "'l Best of 4 Rotated Features' in Figure 5.5. Co-
variance and rotation matrices, eigenvalues and Bhattacharyya dis-
tances, and probability weighted product behavior for this image are

tabulted in Table 5.1, 5.2 aﬁd Figure 5. 9 respectively.

5. 3 House Multispectral Images Results

The segmentation procedure was also applied to polychromatic
imagery. It would be expected that somewhat improved results would

be obtained from the expanded feature set, and the results seem to
n



confirm this expectation. The first polychromatic image to which the
procedure was applied was a color image of a house. The red, green
and blue original images for this picture are shown in Figure 5. 6.
The feature set consisted of the mode and dispersion for each of the
three color planes, in both 3 x 3 and 7 x 7 windows. Thus there were
4 features plus the original for each of the three colors, yielding 15
features. Examples of the dispersion feature for the red image are
shown in Figure 5. 6. The results of the segmentation for the full fea-
ture set and the best (1 in this case) feature are shown in Figure 5.6
and are remarkably similar. The windows were classified as "sky'
because the sky is reflected in them. The covariance and rotation
matrices, eigenvalues and Bhattacharyya distances and probability
weighted product behavior for this image are tabulated in Tables 5. 1,
5.2 and Figure 5.9 respectively.

A series of 10 multi-spectral imageswere also used for segmenta-
tion. Two bands of the original set and the resulting segmentations
are shown in Figure 5.7. The covariance matrix of the rotated feature
set was approximately singular, indicating that the multispectral data
is highly redundant. The variance of the higher numbered features was
low and approximately the same value as the off-diagonal elements in
the covariance matrix. As a result, the ratio of these very small
numbers was large in some cases and the Bhattacharyya distance was

found by the algorithm to be large even though the features themselves
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had very little energy. As a result, the best two features selected

by the algorithm included a feature which had extremely low variance
and the resulting segmentation looked almost identical to the segmen-
tation produced by the full 10 feature set. In an attempt to improve
performance, the best two features having significant energy‘(varian-
ce) were used to produce the segmentation labeled '"2 Rotated Fea-
tures - Augmented. ' The augmentation consisted of the mode and
dispersion computed on each of the ""hand selected' features. The
covariance and rotation matrices, eigenvalues and Bhattacharyya
distances, and probability weighted product behavior are tabulated in
Tables 5.1, 5.2 and Figure 5.9 respectively.

5.4 Computer Time Required

The computer time, in CPU minutes, for various steps in this
procedure is tabulated in Table 5.3. The '"full runs' are permitted
to run out to 16 clusters, regardless of the occurrence of a product
maximum. The ''abbreviated run'' consists of stopping the clustering
algorithm when the product maximum is realized. This occurs when
clustering is performed with one more cluster than the number cor-
responding to the product maximum. The segmentation produced,
however, corresponds to the previous clustering, that is, the product
maximum.

The computation was performed on a PDP-10 computer utilizing

a BBN Tenex operating system. The programs were written in FOR -
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TRAN. The clustering is performed on every fourth pixel and every
fourth line, while the segmentation is performed on every line and
every pixel. Only one line is stored in core memory at a time, to
reduce core requirements. The effect of one-line-at-a-time cluster-
ing also speeds up the procedure considerably, since the machine is
time-shared, and the computer core image must be stored on disk
each time the allocated time for the particular user expires. Exces-
sive core storage requires excessive switch in/switch out time, and
substantially increases the CPU time required for program execution.

Several steps might be taken to reduce the computer time required
for performance of the algorithm. The mode filters might be imple-
mented more efficiently by modifying the local histogram as the win-
dow is moved instead of recomputing it at every pixel. If the region
size desired in the segmentation is known a-priori, the mode filter-
ing might be performed on only one window size, instead of several
window sizes, as is currently done.

It might be that a suitable fixed transformation of the features
would suffice for a class of pictures. If this were so, the transforma-
tion could be computed once, and used for every picture to be seg-
mented. Alternately, a preliminary feature rejection based on eigen-
value could be performed, eliminating some of the features prior to
the first clustering operation.

Since feature computation comprises roughly one-third (see
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Table 5. 3) of the computer time required, a smaller number of easy-
to-compute features would clearly speed up the process.

Improved computational efficiency could also be obtained by
writing some of the repetitive calculations as machine-language sub-
routines, instead of in FORTRAN, as the algorithm is currently
implemented.

5.5 Comparison Measure Results

The results of comparing numerous segmentations of the APC
image using the comparison measure are tabulated in Table 5.4. The
highest number in the table is 96% and occurs in the comparison of
the 2 clustér segmentation of the 4 best non-rotated APC feature set
with the 2 cluster segmentation of the 1 best rotated APC feature set.
Both of these segmentations were the product maximum for the re-
spective feature sets. It can be seen from figures 5.2 and 5. 4 that
these segmentations appear almost identical, which is intuitively
satisfying since the comparison measure should correlate with hu-
man perception. It should also be noted that the two segmentations
are negatives of each other, that is, the numerical values assigned
to "APC' and '"background' are opposite in the respective segmenta-
tions. The comparison measure effectively ignores the absolute value
of the points by selecting the elements in the joint histogram which are
larger.

The ideal use for the quality measure would be to compare gseg-
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mentations made by different procedures to a '"standard' segmenta-
tion, perhaps created by a human observer. If a ''standard' set of
segmentations existed, different procedures for segmenting images
could be compared to the standard segmentations, and a numerical
indication of effectiveness could be derived.

Ultimately, the effectiveness of a segmentation procedure will
depend on the purpose for which the segmentation is performed. If
the subdivision of one segment recognized by a human observer into
several segmentsis of no consequence, then those elements of the
joint histogram corresponding to the subsegments could be combined
and the comparison measure would be higher. In any event, informed
uge of the comparison measure should permit numerical measure of
segmentation performance, an ability long lacking in image under-

standing system research.
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Original Sobel Log Magnitude

Sobel Phase Product Original, Mode
Filtered 3 x 3

Figure 5,1 APC Image Original Features
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Log Magnitude, Mode Phase Product, Mode
Filtered 3 x 3 Filtered 3 x 3

Original, Mode Log Magnitude, Mode
Filtered 7 x 7 Filtered 7 x 7

Figure 5.1 (continued) APC Image Original Features
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Phase Product, Mode Original, Mode
Filtered 7 x 7 Filtered 15 x 15

Log Magnitude, Mode Phase Product, Mode
Filtered 15 x 15 Filtered 15 x 15

Figure 5.1 (continued) APC Image Original Features
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Product Maximum Most Similar To
12 Rotated Segmentations

Figure 5.2 Segmentaticns -12 Original APC Features
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2 Clusters - 3 Clusters
Product Maximum

4 Clusters 5 Clusters

Figure 5.2 (continued) Segmentations - 4 Best APC
Original Features
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Rotated Feature 1 Rotated Feature 2

Rotated Feature 3 Rotated Feature 4

Figure 5.3 APC Image Rotated Features
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Rotated Feature 5 Rotated Feature 6

Rotated Feature 7 Rotated Feature 8

Figure 5.3 (continued) APC Image Rotated Features
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Rotated Feature 9 Rotated Feature 10

Rotated Feature 11 Rotated Feature 12

Figure 5.3 (continued) APC Image Rotated Features
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Figure 5.4 Segmentations - 12 APC Image Rotated Features
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2 Clusters 3 Clusters -
Product Maximum

4 Clusters 6 Clusters - Most
Similar to 12 Rotated
Segmentations

Figure 5.4 (continued) Segmentations 4 Best APC
Rotated Features
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2 Clusters - 3 Clusters
Product Maximum

4 Clusters 5 Clusters

Figure 5.4 (continued) Segmentations - 1 Best APC
Rotated Feature
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FIGURE 6. SINGLE BEST DECORRELATED FEATURE.



7 Clusters - Product Maximum 2 Clusters - Product Maximum
5 Best of 12 Rotated Features 1 Best of 4 Rotated Features

Figure 5. 5 Aerial Image Results
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Red Original Green Original

Blue Original

Figure 5.6. House Image Results
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Red Dispersion, 3 x 3 Red Dispersion, 7x 7
Window Window

2 Clusters - Product Maximum 2 Clusters - Product Maximum
15 Rotated Features 1 Best Rotated Feature

Figure 5.6 (continued) House Image Results
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(2) House Original (b) 2 Regions (Best Number
of Regions)

(e) 5 Regions (f) 6 Regions

Figure 7. Segmentation of House Picture.



(k) 11 Regions (1) 12 Regions

Figure 8. Segmentation of House Picture.



Original - Band 2 Original - Band 8

2 Cluscers 3 Clusters
Product Maximum - Product Maximum -
10 Rotated Features 2 Rotated Features

Augmented (6 Features Total)

Figure 5.7 Multispectral Images Results
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Figure 5.8 Average Bhattacharyya Distance vs.
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APC Image

Rotated Normalized Average
Feature No. Eigenvalue Bhattacharyya Distance Rank
1 849.3 4, 39 1
2 377.3 0. 61 6
3 279.3 1. 46 3
4 149.3 1. 05 4
5 81.8 0.17 11
6 78.6 0.72 5
7 46. 8 0.17 11
8 26, 4 1,72 2
9 3.2 0. 34 9
10 11,1 0. 57 7
11 13.6 0.53 8
12 6.6 0. 27 10
Overall Average = . 36
(Normalizing factor)
Aerial Image .
Rotated Normalized Average
Feature No. Eigenvalue Bhattacharyya Distance Rank
1 550. 6 3.02 1
2 308. 6 2.51 2
3 209.7 1. 11 5
4 161.7 1.28 4
5 115.1 1, 80 3
6 62.9 0. 30 8
7 46.7 0.19 11
8 25,2 0. 29 9
9 7.2 0.17 12
10 8.9 0.23 10
11 10,8 0.77 6
12 3.9 0. 32 7

Overall Average = 0.19
(Normalizing factor)

Table 5.2 Eigenvalues vs, Bhattacharyya Distances 105



House Image

Rotated Normalized Average
Feature No, Eigenvalue Bhattacharyya Distance Rank
1 1559, 2 12,35 1
2 541.8 0.09 9
3 242, 8 0.24 5
4 76.3 0.03 11
5 69.4 0. 09 9
6 47.2 0.15 8
7 30.3 0.15 8
8 17.6° 0.04 10
9 13.3 0.17 6
10 4,7 0.16 7
11 3.8 0.24 5
12 1.9 0. 41 3
13 0.8 0.15 8
14 0.4 0.25 4
15 1.3 0. 47 2
Overall Average = ,43
(Normalizing factor)
Multi-Spectral Images (Non-Augmented)
Rotated Normalized Average
Feature No. Eigenvalue Bhattacharyya Distance Rank
1 508.3 4, 88 1
2 93,6 0.45 6
3 16.2 0. 02 9
4 12.3 0. 02 9
5 3.1 0.58 5
6 1.3 0. 38 7
7 0.9 0.23 8
8 0.4 0. 66 4
9 0.2 0.96 3
10 0.3 1.82 2

Overall Average = ,18
(Normalizing factor)

Table 5.2 (Continued) Eigenvalues vs, Bhattacharyya Distances
' 106



12 Feature Set - Full Runs

Operation

Compute Basic Features
3 x 3 Mode Filters

7 x 7 Mode Filters

15 x 15 Mode Filters

Total Feature Computation

Feature Rotation
Initial Clustering
Final Clustering

Segmentation

TOTAL

4 Feature Set - Abbreviated Run
(Typical)
Operation

3 x 3 Mode Filter
7 x 7 Mode Filter

Total Feature Computation

Feature Rotation
Initial Clustering
Final Clustering

Segmentation

TOTAL

Table 5.3 Computer Time

CPU Time Required
( Hours : Minutes: Seconds)

1: 54
4: 02
9: 48
36: 02

51: 46
8: 09
1:31: 32
21: 10
1: 13

2:53: 50

CPU Time Required
( Minutes: Seconds)

1: 25
3: 56

5: 21
1: 33
6: 10
1: 59

1: 35
16; 38

107
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Chapter 6

REAL TIME IMPLEMENTATION

(L 2]

With certain minor modifications, the segmentation algorithm
described in this report can be adapted to near real time operation. -
In the sense used here, near real time implies operation at standard
TV rates.

6.1 Feature Computation

Figure 6.1 is a block diagram of a hypothetical system. The fea-
ture computer computes the features in real time from the input tele-
vision image. The technology for this block of the system is in deve-
lopment [6-1] on charge-coupled-device (CCD) hardware and may
even be implemented on the focal plane of a multi-element sensor.
This conceptualization is sometimes called the ""smart sensor" design

The raw features are then forwarded to the feature rotator. The
feature rotator performs a real time multidimensional rotation of the
input vector, that is, each component of the output vector is a weight-
ed sum of the input vector components. The weights are a function of
the picture statistics, specifically the picture covariance matrix
which is computed and diagonalized by the statistical computer, The
statistical computer may consist of a combination of a microprocess-
or and other hardware. It is a reasonable assumption that the picture

statistics will not change substantially over a small number of frames
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The statistical computer will therefore not have to compute and
diagonalize the covariance matrix in a single scan, but may take
several scans to perform this computation.
6.2 Segmentor

The heart of the system is the segmentor. This device accepts
the incoming rotated feature vector and the cluster means from the
mean computer and assigns each incoming vector to the nearest clus-
ter mean. The output of the segmentor is therefore a scalar corres-
ponding to the index number of the cluster to which the vector has
been assigned. The segmentor must accept an input from the cluster
data computer through the mean computer which defines those fea-
tures to be ignored in the assignment of the vectors. The ignoring
of features in the vector assignment is equivalent to feature reduction
in the élgorithm which has been implemented in software on a digital
computer.

6. 3 Mean Computer

The mean computer accepts the incoming feature vectors and the
output of the segmentor and recomputes the cluster means for use in
segmenting the next frame of picture data. The effect of this proce-
dure is that the current frame is always being segmented based on the
means computed during the previous frame. The assumption is made
that the cluster means change slowly with respect to the frame time

(usually 1/60 second).
11



A functional diagram of the mean computer is shown in Figure
6.2. The vector switch accepts the input feature vector and switches
it to the summing register specified by the output of the segmentor.
The classification summing register also records the number of vec-
tors in each cluster, for division of the vector sums at the comple-
tion of the frame. The output at the end of the frame consists of the
vector sums in the vector summing registers divided by the number
of vectors that contributed to each respective sum. These new cluster
means are then forwarded to the segmentor for segmentation of the
next incoming frame.

6.4 Cluster Data Computer

The purpose of the cluster data computer (Figure 6. 1) is three-
fold. First, it decides when the mean computer/segmentor loop has
converged for a fixed number of clusters. Convergence will be as-
sumed to have occurred when the previous means and the current
means differ by less than some amount in an appropriate norm. The
second function of the cluster data computer will be to evaluate the
rotated features with respect to usefulness and specify to the ;egmen—
tor those features to be ignored. The remaining function of the cluster
data computer is to decide on the number of clusters in the data and
to specify to the mean computer how many clusters are present. At
this point, the real time algorithm deviates from the computer al-

gorithm as implemented currently. Implementation of the current
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algorithm would require three sets of segmentation hardware, that is,
3 segmentors and 3 mean computers. One of these sets would per-
form clustering for the assumed number of clusters, N. The other
two sets would perform clustering for N-1 and N+1 clusters., respec-
tively. The number of clusters would be incremented or decremented
as necessary to maintain the quality parameter (see Chapter 4) at
maximum for N clusters.

The requirement for 3 sets of segmentation hardware to deter-
mine the intrinsic number of clusters in the data is cumbersome and
inefficient. It is suggested that alternate procedures be used to ac-
complish tfxe same result with one set of segmentation hardware. A
suggested starting point would be for the algorithm to attempt to main-
tain the ratio of within to between scatter measures at some fixed
(possibly operator adjustable) value. SuitaBle hysteresis would be
necessary to prevent a low level limit cycle about the fixed value.

The cluster data computer will most likely require more than
one frame to compute the measures necessary to set the number of
clusters. In addition, it must wait until the inner loop comprised of
the segmentor and mean computer has converged in order to begin
computation of these measures. Further, as the number of clusters
is incremented or decremented, the cluster data computer must de-
cide which cluster to eliminate or where to initialize a new cluster

center. The suggested procedure is to combine the cluster center
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pair having minimum separation and to initialize new clusters at the
vector furthest from its respective cluster center, as is done current-
ly by the computer algorithm. An alternate procedure would be to
split the cluster having greatest variance into two clusters, each 1
standard deviation removed from the previous cluster center. It
should be noted that an additional respect in which the real time pro-
cedure suggested here differs from the computer procedure described
previously is that the real time procedure uses every pixel for every
calculation. This differs from the computer algorithm in which a
sample procedure is used to reduce.computer time required.

6.5 Preliminary Functional Requirements

A preliminary estimate of the accuracy and overall register size
necessary to achieve useful results for this system is given in Table
6.1. These values are derived from the subjective judgment of the
author only, based on results obtained with the computer algorithm.
Minimal, most probable, and maximal requirements are given since
the cost of implementation in terms of hardware may be very non-
linear and an intelligent compromise can often mean large hardware

cost savings.

Most
Parameter Minimal Probable Maximal
Feature Precision (bits) 3 6 8
Number of Features 4 8 16
Max. Number of Clusters 6 16 32

Table 6.1 Automatic Real Time Segmentor Functional Requirements
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6.6 Motion Picture Segmentation Results

The algorithm described in Chapter 4 was used to segment two
frames of a motion picture of a chemical plant. The results 6f these
segmentations are shown in Figure 6. 3, along with the original photo-
graphs. The motion picture was taken from a moving aircraft, and
the originals are not spatially registered, as can be seen. They are
five frames apart in the motion picture.

The two segmentations, however, appear quite similar, and
support the hypothesis that the statistical structure of the data can
be identified for the purposes of segmentation even when the pictures
are not spatially registered. The mean vectors for the 12 feature
gets are shown in Table 6.2. The first mean, which is the mean of
the original image, differs between the two images by about 12%.
This is presumed to be caused by frame to frame exposure/develop-
ment differences between the two frames. The difference in means
causes a corresponding difference in variances, and the rotation
matrices for the two feature sets are sufficiently different to prevent
idealtracking of the cluster means, since they are effectively repre-
sented with respect to different bases.

If a real time system is implemented, and frame to frame amp-
litude differences are expected, either appropriate scaling will be
required or the rotation matrix will have tobe forced to change slow-

ly. The effect of this procedure would be to rotate image feature sets
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Original - Frame 1 Original - Frame 5

Segmentation - Frame 1 Segmentation - Frame 5
(4 Clusters) (4 Clusters)

Figure 6.3. Motion Picture Results,
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Feature Mean

10

11

12

Table 6.2

Frame 1
88
199
94
83
166
94
84
137
93
79
134

94

Motion Picture Means

Frame 5

100
198
96
97
166
97
90
132
93
87
128

88
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with a non-optimal rotation matrix. Since the rotation is performed
to permit feature rejection in decorrelated space, the penalty for

this procedure will most likely be small.
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Chapter 7
CONCLUSIONS

This dissertation has presented a procedure for gross segmenta-
tion of digital imagery. The procedure uses an unsupervised method,
and requires no human interaction or adjustable thresholds. There
are disadvantages to using an unsupervised approach. So little is
known about the human perceptual system that the resulting segmenta-
tions will usually not be as satisfying as segmentations made by a
human being or those performed by a carefully trained segmentor
operating in a supervised mode. Additionally, the segmentor has no
knowledge of the intent of the segmentation except that provided
implicitly through the features selected to be used.

There are, however, advantages to the unsupervised approach.
The construction of a set data to use during the training phase of the
supervised approach is time consuming and tedious. Additionally,
the supervised method is incapable of satisfactory performance in
situations where the statistics of the scene vary substanﬁally. Situa-
tions that are likely to encounter such statistics are those in which
the sensor characteristics vary and those in which near real time
segmentation of real images is desired. The difference in appearance
with weather, time of day and terrain makes an unsupervised proce-

dure mandatory. 120



The procedure outlined herein lends itself to near real-time
implementation. While the design of such a system to operate at
television rates will require considerable ingenuity on the part of the
circuit designers, it is felt that such a system is well within the state
of the art at this writing. Such a system should find wide application
in target recognition/tracking systems and possibly may be used to
solve the problem of cross-correlation of the same scene observed
by sensors of radically different characteristics. With some general-
ization of the concept of cross-correlation, segmentations of the same
scene viewed by different sensors can be compared.

The unsupervised appfoach may also reveal characteristics in
the data (image) that were unobserved by the human observer. There
may exist inherent clusters in the data that passed unnoticed by hu-
man beings. Use of a supervised procedure will tend to fux;ther mask
these unobserved characteristics, as the training of the classifier
effectively instructs the classifier to ignore these characteristics.
The unsupervised approach may eventually find usefulness in image
enhancement because of the ability to detect unnoticed structure in
the data.

A comparison measure was introduced and utilized to compare
different éegmentations of the same scene. This comparison measure
would be particularly useful in comparing segmentations of an image

performed by a candidate procedure with a standard segmentation of
121
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the same image. In addition, the comparison measure may be the
basis from which to proceed on defining a generalized cross-correla-
tion function for use in cross-correlating different sensor outputs.

Further work is certainly necessary in understanding the human
perceptual system at its intermediate level and using this kndwledge
to develop features to improve the performance of the segmentor.

It may well develop that some textural recognition processes occur
at a fairly high level in the human perceptual system and do not lend
themselves to implementation in the lower levels of an image under-
standing system. If so, the improved understanding of the human
perceptual system will prove valuable as much for what it indicates
cannot be done as it is for its indications of what can be done.

The clarification of what is meant precisely by a '"segmented
image'" is also an avenue for further investigation. If a "well-seg-
mented image'' can be represented by a mathematical criterion, then
analysis based on picture statistics will almost certainly provide
suggestions on how to improve segmentor performance. In addition,
it will provide means for predicting hypothetical system performance
without having to build and test the system.

Much of the usefulness of an image segmentation system must be
determined by application. The current state of the art in image
understanding systems is such that applications are just now being

postulated, much less implemented and tested. The advantages of the
122



procedure described herein seem to be twofold.

First, the procedure provides the cluster means directly as a
by-product of the segmentation process. This is opposed to the pre-
vious procedures, which segment the scene with boundary detection
methods, compute features inside the boundaries, and only then per-
form clustering to determine the means.

A second advantage of this procedure is its potential for real
time implementation. Many previous procedures have required exact
spatial stationarity of the image data to permit the iterations necess-
ary to perform segmentation. This procedure requires only that the
picture statistics change slowly with time, and does not require
storing the entire image at one time. Such a procedure will have
clear advantages when the sensor is mounted on a moving platform

as in target detection/recognition systems.
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