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Chapter 1

Introduction

Imege edges can be defined as 1local changes or
discontinuities in an image attribute such as luminance,
tristimulus value, or texture [1]. These changes are
important in the analysis of images because they often
provide an indication of the physical extent of objects
within the image. An operator used to detect these changes
is called an edge detector. This operator transforms an
image into a binary array containing ones where the
magnitude of the discontinuity is significant and zeros
elsewhere. The binary array obtained is usually called an
edge map. This transformation is useful in image
understanding systems, because while the edge map retains
much of the basic structure of the image, less
computational effort 1is required for analysis as compared

to the original image.

1.1 Edge Detection Techniques

There are many techniques which can be used in edge
detection. These include simple differential operators,

template matching, least square edge fitting, and



techniques based on statistical detection theory. There
are also many heuristic methods developed for edge
detection. A complete survey of all edge detectors is not
a simple task, and can even be confusing. Hence, only a
group of the most useful operators will be discussed in the

following sections.

Linear differential operators are commonly employed in
edge detection. In this method, edges are enhanced by
convolving the image with a set of discrete differential
operator masks. A corresponding edge map is obtained by
thresholding some function of the outputs of these masks.
One of the differential operators used is the gradient.
The gradient is approximately calculated by convolving the
image with two masks that measure the pixels luminance
change in any two orthogonal directions. The sum of the
squares of the masks output is a measure of the gradient
magnitude squared. Roberts has used 2x2 masks to compute
the 1luminance difference across the diagonals [2], while
Prewitt [3] and Sobel [4] have used 3x3 masks to measure
the difference in the horizontal and vertical directions.
Another differential operator, which has been used in edge
enhancement, 1is the Laplacian operator. Examples of the
Laplacian masks are given in [1, 3]. However, since the
Laplacian operator is more sensitive to points and lines
than to edges [5], it is not an efficient method for edge

detection. In general, all of the linear differential
2



operators have the advantage of using simple mathematical
formulas which require short computation time. Their major
disadvantage is their sensitivity to noise. One method to
improve the performance of differential operators, in the
presence of noise, is to increase the masks size. This can
be noticed in comparing the performances of the Roberts and
the Sobel operators. Another, and rather better method, is
to design edge detectors taking into consideration the
effect of noise. This leads to using template matching in

edge detection.

The problem of edge detection can be reformulated as
follows |1]: given a subregion of the image, find one
member of a finite group of templates representing edges
and no edges, such that this member matches the subregion
as close as possible and label the subregion accordingly.
Matching is usually measured in terms of the mean square
difference between the subregion and the‘ templates.
Calculation can be simplified by expanding the mean square
difference and neglecting the slowly varying terms. The
remaining term 1is the cross correlation between the
subregion and the templates. This term should be maximum
for the best match. Cross-correlation template matching
has been used in edge detection. One of the template
matching operators was introduced by Prewitt [3]. The
Prewitt method aimed at finding a better evaluation of the

gradient operator by wusing a set of oriented edges and
3



searching sequentially at each point for the best match.
In this method, gradient magnitude is equated with the
maximum response, and direction is taken ©parallel to the
orientation of the corresponding detector [3]. The
templates correspond to horizontal, vertical and diagonal
edges. Other forms of templates were later introduced by
Kirsch [6] and Robinson [7]. The basic advantages of these
operators are that they can be implemented with a
relatively small computation effort. In addition, proper
choice of the template coefficients gives almost optimum
performance. However, optimum performance can never be
achieved since the number of templates used is always
finite. A different approach to achieve optimum

performance was later introduced by Hueckel.

In Hueckel's algorithm [8], edges are detected by
fitting circular subregions of the image to ideal edge
models. If the fit is sufficiently accurate, an edge is
assumed to exist with the same parameters as the ideal edge
model. The edge model used is a two~dimensional step in a
circular disc. The parameters ‘of this model are the
luminance levels, the edge orientation and distance from
the center. The accuracy of edge fitting is measured in
terms of the mean square error criterion. Hueckel
introduced a polar Fourier expansion and used the first
eight coefficients in the minimization procedure. Although

this approximation simplifies the computation needed, it
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affects the accuracy of the minimization procedure.

Hueckel has not provided any evaluation of this problem.

Another method to achieve optimum edge detection is to
introduce statistical detection theory concepts. 1In the
statistical model, images are considered to be the sum of
two components; the first is an ideal image in which edges
of different orientations and heights are distributed,
while the second consists of a random additive noise. For
this model, edge detectors are designed to achieve an
optimum probability of correct decisions. Griffith has
used this approach in the analysis of scenes consisting of
prismatic solids. He introduced a detailed study of the
distortion and noise affecting the image, and implemented a
decision procedure based on computing the probability that
a line representing a real edge 1is centered in and
traverses some long narrow band. But, the computation of
this probability was a difficult task, and the final
results were based on many unjustified approximations [9].
A different approach to statistical edge detection was
proposed by Yakimovsky [10]. In this approach, two
adjacent regions of the image are tested; first assuming
that they have the same average 1luminance, and then
assuming that they have two different 1luminance levels.
Maximum likelihood estimates in both cases are compared,
and an edge is indicated if it 1is more 1likely that thev

regions have two different luminance levels. A

5



disadvantage of the Griffith and Yakimovsky algorithms is
that they are designed to detect edges of a certain
orientation. They are less sensitive to edges with other
orientations. To avoid this problem, the operator is
usually applied with enough orientations to give uniform
response. The different results are then combined to form

the edge map.

A completely different approach to edge detection is
to use the a priori knowledge of the image objects in
searching for their boundaries. Examples can be found in
the work of Kelly [11] and Chow [12]. Kelly introduced a
program for extracting an accurate outline of a man's head
from a digital picture [11]. His method consisted of three
steps. First, a new digital picture was prepared from the
original; the new picture is smaller and has less detail.
Then edges of objects are located in the reduced picture.
Finally, the edges found in the reduced picture are used as
a plan for finding edges in the original picture. Chow
studied the problem of detecting the boundary of the human
heart in a cineagiogram [12]. He assumed that the
probability distribution of any small region of the picture
that contains only object or only background is unimodal,
and a region that contains both object and background will
. be a mixture of the two distributions. The wunimodal
distributions are assumed to be Gaussian. Starting from

these assumptions, Chow's algorithm examines the
6



probability distribution of the image subregions. 1If the
standard deviation is large, the probability distribution
is fitted to a bimodal Gaussian. The bimodality is
measured by computing the valley-to-peak ratio. If this
ratio is high, the points in the subregion are classified
as a part of the object or the background depending on
their intensity. Although the Chow algorithm is successful
in determining the boundary in single-object scenes, it 1is
not directly extendable to scenes with many objects. This
later case is more important in scene analysis. Because
the previous operators are limited in their applications,

they will not be considerd further in this dissertation.

1.2 Edge Detector Evaluation

Another field of study in edge detection, which has
not been given enough consideration, is the performance
evaluation of edge detectors. As stated in reference [1],
this evaluation is difficult because of the large number of
proposed methods, the difficulties in determining the best
parameters associated with each technique, and the lack of
definite performance «criteria. One method for edge
detection evaluation was suggested by Fram and Deutsch
[13]. In this method, a test image in the form of ideal
ramped edge with additive Gaussian noise 1is wused to
evaluate the performance of edge detectors suggested by

Hueckel, Macleod, and Rosenfeld. Two parameters are used
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in this evaluation, the first is the maximum 1likelihood
estimate of the ratio between the number of correct
detections of edges and the total number of detected edges.
The practical significance of the second parameter is not
clear. The results are compared with human ability to
perceive edges. In this experiment, the results obtained
with the Hueckel operator appear to be inferior. This can
be partially explained by- the fact that the Hueckel
internal parameters used are far from the optimum choice.
Another method for measuring the performance of edge
detectors was given by Pratt [1]. This method uses a
figure of merit which is sensitive to the different kinds
of errors encountered in edge detection: missing or
displacing a true edge and the false detection of noise.
The figure of merit introduced has been used to measure the
optimum performance of the Roberts, Sobel, Kirsch, and
compass gradient operators in the case of an artifical
image of a vertical edge with additive Gaussian white
noise. The experiment shows that the Kirsch and the Sobel
operators have relatively high figures of merit followed by
the compass gradient operator and finally the Roberts

operator. These results agree with the visual data.
1.3 Organization of Dissertation

In the previous survey it should be noticed that while

there are many operators that can be used in edge
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detection, the effort given to the comparison and
evaluation of these operators has not been sufficient. A
quantitative evaluation of the edge detectors is needed if
these operators are to be efficiently used as a part of an
image understanding system. The following chapters will be
devoted to the introduction of gquantitative methods into
edge detection problems. In Chepter 2, a detailed
discussion o0f the basic edge detection operators, used in
this dissertation, is given. An image model 1is developed
in Chapter 3, and used to evaluate the performance of these
edge detection operators. 1In Chapter 4, edge detection is
formulated as a pattern classification problem, and 2 least
square error algorithm is wused to determine the edge
detectors parameters. The figure of merit derived by Prett
is used in Chapter 5 to evaluate the performance of the
different operators in the case of vertical or diagonal
edges. The results obtained in these chapters are used in
the improvement of existing operators and in the
introduction of new methods for edge detection. These are
given in Chapters 6 and 7, respectively. 1In Chapter 8,

some final conclusions are presented.



Chapter 2

Review of Edge Detection Operators

The edge detectors of interest in this dissertation
can be defined as local operators which are able to detect
image dicontinuities without any a priori knowledge of the
image content. These local operators are useful as a first
step in many image understanding systems. Most of the
local edge detectors can be classified into two basic
groups. The first 1is the edge enhancement/thresholding
methods that includes the use of simple differential
operators and template matching. The second is the edge
fitting technique. For purposes of design and analysis,
the input to the edge detector is assumed to be an ideal
ramp edge as shown in Figure 2.1. The function represented
in this figure is usually the luminance attribute.
Parameters that describe this edge are its 1location,
orientation, edge width and height. These parameters are
to be estimated by the edge detector. One of the factors
which determine the edge detector's performance, is the

operator's accuracy in estimating the edge parameters.

In this chapter, a detailed analysis of some of the

edge detection operators is given. Section 2.1 reviews the
10



Figure 2.1.

Edge model
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edge enhancement/thresholding operators. Section 2.2
evaluates the edge detectors performance using an idesal
edge model. Section 2.3 discusses the edge fitting

technique.
2.1 Edge Enhancement/Thresholding Methods

The edge enhancement/thresholding technicque can be
represented by the block diagram shown in Figure 2.2. 1In
this model, the image F(j,k) is first convolved with a set
of linear spatial operators {Hi(j,k)}, the output G; (j,k)

is given by
G; (3,k) = Hy(3,k) ® F(j,k) (2.1)

where 1 =1,2,...,m. A nonlinear function of the set
{Gi(j,k)} is then calculated. The output A(j,k) is

described by the equation
A(j, k) = g(Gl(jlk)IGz(jlk)l"'le'(j'k)) | (2.2)

Typical forms of the function g(.) are the sum of squares,
the square root, the magnitude, the maximum or combinations
of these functions. The outpﬁt A(j,k) is a measure of the
discontinuity at the center of the convolving masks; it can
be used to form a grey-level edge map. In order to improve'
edge visibility, and to reduce the edge map complexity at
the same time, the grey-level edge map is compared with a

threshold t, and an edge is detected if

12
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A(3,k) > t (2.33)

while if

the decision is no edge. The threshold t defines the
resulting edge map; if it is chosen too high, then
low-amplitude changes will not be detected, and if it |is

chosen too low, noise can be falsély detected as edges [1].

If an edge 1is detected, it 1is often useful to
determine its orientation and height. This information can

be obtained from the set {G;(j,k)}, as will be shown later.

After this general introduction to the edge
enhancement/thresholding technique, some important examples
of the simple differential operators and template matching

operators will be given.
2.1.1 Simple Differential Operators

This group of edge detectors includes the Roberts [2],
the Sobel [4]), and an operator suggested by Prewitt [3].
The Roberts operator is applied on 2x2 subregions of the
image as sketched in Figure 2.3a. The output A(j,k) is
given by
A(3,k) = [(fz—f3)2 + (fl—f4)2]!5 (2.4)

14



a. 2x2 Subregion

2 3
£5 £f6
£q £q

b. 3x3 Subregion

Figure 2.3.

Image subregions
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Equation 2.4 can be viewed as two convolutions

0 -1
X(j,k) = @ F(j,k) (2.5a)
1 0 4
-1 0
Y(5,k) = ® F(j,k) (2.5b)
0 1l
followed by the nonlinearity
2 2|
A(j,k) = [(X(j,k)) + (Y(3,k)) (2.6)

Roberts has also introduced a magnitude operator, in which

the discrete gradient is alternatively calculated as

A(3,k) = |X(3,k)| + |¥Y(3,%)] (2.7)

In both operators, an edge is detected if A(j,k) > t, where
t is a given threshold. If an edge is detected, its

orientation is given by

8(j,k) = % + tan'l(§%%f%%) (2.8)

The angle 6 (j,k) is measured with respect to the horizontal

axis.

Approximations of the discrete gradient function by
3x3 operators were given by Prewitt [3] and later by Sobel
[4]. These operators are applied on 3x3 subregions of the

image as sketched in Figure 2.3b. The outputs X(3j,k) and

16



Y(j,k) are given by

1 o -1
X(j,k) =}lc 0 =-c| @ F(j,k) (2.9a)
1 0 -1
-1 -c -1
Y(j,k) =] 0 0 0| ® F(j,k) (2.9b)
1 c 1

where the constants ¢ is 1 in the Prewitt and 2 in the
Sobel operator. The output A(j,k) 1is still given by
Eq. 2.6, while the edge orientation with respect to the

horizontal axis is calculated by

. _ -1{¥Y(3,k) (2.10)
6 (j k) = tan (X—(%TT{_))
2.1.2 Template Matching Operators

The compass gradient [3], Kirsch [6], 3-level and
5-level operators [7] are examples of template matching
operators. 1In this technique, the input image is convolved
with the set of linear masks {H;(j,k)} shown in Figure 2.4.
The outputs {G;(3,k)} measure the gradient components along
the basic orientations. The enhanced edge is formed as the

maximum of the gradient arrays. Thus

A(j,k) = max{lcl(j,k) | 16, Gk [,eenn |G (3,Kk) I} (2.11)

If A(J,k) is greater than the threshold t, an edge is
17



a) compass directions

I B 3 3 -5
I -2 - 3 O -5
| | -] 3 3 -5
i) Compass ii) Kirsch
gradient
| 0 =i | o -l
I o -l 2 0 -2
I 0 = | o -l
iii) 3-level iv) 5-level
b) mask H1
I =1 =1 3 -5 -5
I -2 - 3 O -5
I | | » 3 3 3
i) Compass ii) Kirsch
gradient
0 -l =l o -1 -2
I 0 =l ! o -
I | 0 2 I 0
iii) 3-level iv) 5-level

c) mask H2

Figure 2.4. Template matching operators



detected with orientation 6(j,k) given by the compass
direction of the largest gradient component. Because of
the symmetry of the 3-level and 5-level masks, they can be

implemented using the first four masks only.

In Chapter 1, it was mentioned that the previous four
operators can be considered as cross-correlation template
matching operators. This can be shown as follows; assume
that it is required to match a subregion of the image with
one of m templates, where the elements of the 1'th template
are shown in Figure 2.5. The 1'th cross correlation is

given by
R, = :%:fj(b + aj,lh) (2.12)

The first term of Eg. 2.12 1is constant for a given
subregion. Iin addition h 1is proportional to a. ,f..

9 prop Z: 3,277
Thus maximizing Eq. 2.12 1is eguivalent to maximizing

?aj,zfj‘

In this section a survey of the edge
enhancement/thresholding operators has been given. It
should be noticed that, because of the diversity of the
operators wused, it is useful to compare the performance of
these operators quantitatively. There are different
approaches that can be used in this comparison. One
example is to compare the edge detectors outputs for a set

of ideal edges. This technique will be considered in the
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following section. Other methods that implement
statistical detection theory will be discussed in

Chapter 3.
2.2 Edge Detectors Performance, Case of Ideal Edge

In this analysis, the edge model shown in Figure 2.1
is used. Here the edge 1is assumed to be of zero width
(ideal step function). When an edge detector is applied on
this edge model, the output will be determined by the edge
position and orientation. To simplify the analysis, the
effect of each parameter is considered separately. First,
the edge is assumed to pass through the center of the edge
detector with general edge orientation ¢. Second, the edge
is assumed to have a fixed orientation while its distance
from the edge-detector center is varied. 1In both cases the

outputs of the different edge detectors are evaluated.
2.2.1 Case of Central Edge with orientation ¢.

The average intensities of the different pixels, of a
2x2 and a 3x3 image subregion containing a central edge,
are shown in Figure 2.6. These intensities are given as a
function of the edge orientation ¢ . Because of the
symmetry of the edge detectors, it is sufficient to measure

T
the operators performace for 0 < ¢ < 7.

When the Sobel operator is applied on this edge model,

21
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the values of the output A* and the estimated edge

orientation are as follow.

4h(sec(¢)] 0 <¢=< tan'l(%)
A= Zag—m—)-[[-9tan2(¢)+22tan(¢)—-1]2 (2.13)
-1,1 T
tan " (3) < ¢ < =+
+[7tan2(¢)+6tan(¢)-1]2]% 3" -7 -4
¢ 0<¢<tant(3)

g = (2.14)

2
tan-l(?tan £¢)+6tan(¢)—l tan_l(%) <4< %
-9tan” (¢)+22tan(¢) -1

Similar expressions can be obtained for the other simple

differential operators.

When the Kirsch operator is applied, the values of 2

and 6 are as follows.

12h 0 < ¢ < tan T(3)
2
A= h[lz-(3ti§é%£)1) ] tan 1 (3) < ¢ < tan T () (2.15)
2
(1-tan ($)) -1,1 .
h[12 tan () ] tan ' (7) 2627
0 0<¢ < tan-l(%)
6 = (2.16)
7 tan )< 0 <

Similar expressions can be obtained for the other template

matching operators.

* Starting with this section, the (j,k) coordinates are

dropped.
23



Plots of the values of A and 6 for different edge
enhancement/thresolding operators are given in Figures 2.7
and 2.8. 1In these curves, the value of A 1is normalized
with respect to its value for a vertical edge. From these
curves, it is clear that all the edge detectors are not
isotropic because A varies with ¢ . This variation is
smaller in the template matching operators compared to the
simple differential operators. Also, the estimated edge
orientation, 6 1is usually different from the actual
orientation, ¢ . This difference is smaller for the simple
differential operators than for the template matcﬁing
operators. This is basically because the template matching

operators measure the edge orientation in a quantized step.

2.2,2 Case of a Fixed-Orientation Edge with Varying

Displacement

In this case, the edge is assumed to have a fixed
orientation, while its distance to the center of the edge
detector is changed. The edge orientations chosen are the
vertical and the diagonal, with =0 and w/4,
respectively. Similar results can be obteined for
horizontal and -mw/4 orientation edges. These are the only
edge orientations for which the continuous-edge shape is

preserved after sampling.

The intensities of the different pixels for 3

displaced vertical edge are shown in Figure 2.9. When the
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Sobel operator is applied on this edge model, the value of

the output A is given by

4h 0<d<3
A = (2.17)
3 1 3

When the Kirsch operator is used, A is given by
12h($+1) 0 <

A = (2.18)
15h (3-a)

A
o)
| A

1
2

N =

3
<d <5

Plots of A for the different operators are shown in

Figure 2.10a.

In the case of a diagonal edge, the average
intensities become a second order polynomial of the
distance across the diagonal. The output A for the Sobel

operator is given by

h(3-2d°) 0<ds<i
2
A= {nl1- (d-%)2+2(/§‘-d)2] /1-: <d< /2 (2.19)
2 2
h(=—a) 2 - /Z<d< >
V2 V2
and for the Kirsch operator
h(5+10(1-da%)- ()] 0 <a <X
V2 V2
a= {nis-5@-%2(2-a0%1 L <ac<vz (2.20)
V2 V2
5h(——a) > VZ<d< >
V2 - T V2
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function of edge displacement for 2x2

and 3x3 operators

29



edge gradient amplitude, A
(@]
o
|

Kirsch

Sobel, compass grad,
3-level

PDewi'rt, S-level
Roberts

| |

50 1LO 15 2.0
edge displacement,d

b) diagonal edge

Figure 2.10. (Continued)

30



Plots of A tor the ditterent operators are given 1in
Figure 2.10., 1In these curves, A 1is normalized with respect
to its value tor a central edge. These curves can be used
to determine edge detector resolution. It should be
noticed that small size operators have better resolution.
Also, tor operators with the same mask size, the resolution

is slightly dependent on the mask shape.

The results obtained in this section show that edge
detector peformance 1in the case ot edges with general
location and orientation can be approximately determined
from their pérto;mance in the case ot central edges with
vertical or diagonal orientations. This last case is used

as the ideal edge model in the following chapters.
2.3 Edge Fitting Method - Hueckel's Algorithm

In edge titting, the 1image function F(x,y) detined
over a subregion S/ 1is compared with an ideal edge model
Sp(x,y), where p 1is the edge parameters vector. The
dziference between the actual and ideal models is function
ot p, and by changing these parameters the ditference can
be minimized. Edge acceptance is based on the value ot the
minimum ditference. It it is less than a given threshold
t, the image subregion is classiftfied as an edge with the

corresponding parameter Usually the mean square

Bpin®
error 1is used to measure the ditference between the ideal
and actual edge. This error is given in the form
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E, = I I [F(x,y)-Sp(x,y)]zdxdy (2.21)
b
Minimization of the error Ep can be obtained by an
iterative procedure which is ti&é consuming. However it is
possible to introduce approximations of Eq. 2.21 such that
its minimization can be achieved by simple analytic
methods. This was the basic contribution of Hueckel in his
papers published in 1971 and 1973. 1In the first paper,
Hueckel used an orthogonal transformation to solve the
problem of edge fitting [8]. Later, he extended his ideas
to general edge-line fitting [14]. The Hueckel algorithm
can be summarized as follows: A circular subregion of the

image is compared with the edge model shown in Figure 2.11.

The 1luminance function Sz;x,y) of this edge-line model is

given by
b_ A <r_ <r,
SE = b_+t_ r_ <A <r, (2.22)
b_+t_+t r_.<r, <A
where
—[c. c. r_ r, t_ t, b1t (2.23)
B = X y - + - + - .

The functions F(x,y) and Sp(x,y) are expanded using a set
of two dimensional orthogonal functions {Hi};. This set is
chosen to be separable into the product of an angular and

radial component. The error Ep is now in the form
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Figure 2.11.

Hueckel's edge-line model
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B, = 2 (ai-si)2 (2.24)
P i=0

where

a; = J f Hi(x,Y)F(x,Y)dXdY (2.25)
b

s; = j j Hi(x,y)SE(x,y)dxdy (2.26)
B

The series in Eq. 2.24 is approximated by its first nine
components. The minimization of this truncated form and
calculation of the corresponding B i, €@n be achieved by
solving simple algebraic equations. Hueckel argued that
the truncation of the error series does not affect the
performance of his algorithm because high frequency
components are more related to image noise than to its

signal contents.

The Hueckel algorithm has been considered by many as
an almost optimum procedure for edge detection. A detailed
analysis of this algorithm shows that this is not true.
The basic difficulties with the Hueckel algorithm are the
effect of the truncation of the series expansion and
inaccuracies in the minimization procedure and computation
of the edge parameters. These problems are discussed in

Appendix A.
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A major criticism of the previous approach to edge
fitting is the fact that although images are usually
discrete functions, the optimization procedure 1is derived
in the coﬁtinuous domain, thus the results obtained are
suboptimum. This difficulty can be avoided by wusing the
discrete image model in the derivation of the minimization
procedure. An algorithm based on this idea will be

introduced in Chapter 7.
2.4 Conclusion

In this chapter a review of some of the basic edge
detection operators has been given. The operators chosen
have the advantage of possessing simple mathematical
formulas defined over a small region of the image, and thus
it is not difficult to introduce a quantitative evaluation
of their performance. 1In Chapters 3, 4, 5 and 6, different
quantitati&e methods are used in the design and evaluation
of the edge enhancement/thresholding operators. In
Chapter 7, further investigation of the edge fitting

technique is given.
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Chapter 3

Statistical Model for Edge Detection

One of the methods which can be used in the evaluation
of edge detection operators, is to test their performance
in the case of an ideal signal with additive noise. This
test is easy to implement. 1In addition, if the noise is
assumed to be additive, white, and Gaussian, analyticsal
results are not difficult to derive. Since edge detectors
are used to classify different illumination inputs into
edges or no edges, their performance can be tested by
introducing inputs in the form of a noisy edge, or no edge,
and then estimating the probability of making the right
decision in each case. The following sections develop a
statistical model for edge detection. Section 3.1 is a
review of different decision rules used in
hypothesis-testing. Section 3.2 evaluates the performance
of the edge detectors for' noisy edges. Section 3.3

discusses the estimation of the edge orientation.

3.1 Edge Detection as a Hypothesis-Testing Problem [4, 15,

and 16]

In Section 2.1, the edge enhancement/thresholding
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technigque was described in detail. This technique closely
resembles the hypothesis-testing algorithms used in
classical statistical decision theory. The edge
enhancement/thresholding operators have as an input an
image subregion, with one of two hypotheses to be true,

le The subregion corresponds to an edge;

H2: The subregion corresponds to a no edge.
The edge detector calculates a function A of the input
image, and accepts one of the two hypétheses according to

the rule: Accept Hl if
A>t (3.1)
otherwise accept Hz'

If the input image is noise free, it 1is possible to
find a perfect decision strategy. On the other hand, if
the image is affected by noise there will always be a
possibility of making a wrong decision. For this case,

four probabilities can be derived

P (edge|edge) = P(A>t|edge) (3.2)
P(no edge|no edge) = P(A<t|no edge) (3.3)
P(no edge|edge) = P(A<t|edge) (3.4)
P(edge|no edge) = P(A>t|no edge) (3.5)

The first two equations correspond to correct decisions,
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while the other two correspond to incorrect decisions.

If the probabilities of occurance of edges and no
edges in a given image are known, then the probability of

error will be in the form

P(error) = P(no edge|edge)P (edge)+P (edge|no edge) (3.6)
+P(no edge)

A decision procedure to minimize this probsbility of error

is given by the rule: Decide an edge if

p(A|edge) 5 P(no edge)
p(Alno edge) =~ P (edge) (3.7)

and decide no edge otherwise. This method is known as the
Bayes decision rule for minimum prcbability of error. 1In
Eq. 3.7} p(A |edge) and p(Alno edge) are the conditional
probability density functions of A. A sketch of these
probabilities is shown in Figure 3.1. The threshold ¢t is
set at a value which satisfies Eq. 3.7. In the special

case, if edges and no edges are equally probable,
t =a (3.8)

where a is the point of intersection of the two conditional

probabilities.

If, in addition, the costs of taking one of the four
decisons are known, namely C(edge|edge), e o ’
C(no edge|no edge), then a decision procedure to minimize

the average cost is to decide an edge if
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p(A|edge) [C(edge|no edge)-C(no edge|no edge)]
p(AJno edge) 2 [C(no edge|edge)-C (edge[edge)]

P (no edge) (3.9)
P (edge)

Otherwise, decide no edge. The threshold t can be

specified accordingly.

In more general cases, when the probabilities of edges
or no edges are not known. The threshold t can be set by

one of the following two methods.

In the first method, t is set to achieve a given
probability of missing an edge, P(no edge|edge), while
minimizing the probability of false detection,
P(edge|no edge). In this case, t is the solution of the
equation

t

P(no edge|edge) = [ p(A|edge)dA (3.10)

- 00

This method, known as the Neyman-Pearson criterion, is

freguently used in Radar detection.

In the second method, t is set to minimize the meximum
possible éerror, that occurs when the probabilities of edges
or no edges change for different input images. In this
case the edge detector threshold is chosen such that

P (edge|no edge) = P(no edge|edge) (3.11a)

or
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o]

t
J P(A|no edge)dA = f p(A]edge)da (3.11b)
t

-0

This is known as the minimax criterion.

Any of the previous decision strategies can be used in
the design of edge detectors, especially the Neyman-Pearson
criterion, which does not require the knowledge of the
probabilities of edges or no edges. After choosing the
threshold t, the performance of the edge detector can be
'evaluated as a function of the probabilities of detection
and false detection. Computation of these probabilities
for the edge enhancement/thresholding operators is given in

the following section.

3.2 Edge Detector Performance, Case of Ideal Edge Plus

Noise

In the model used in this section, an image subregion
is considered to be the sum of two components. The first
is an ideal central edge with orientations ¢ =0 or mw/4,
while the second is an additive white Gaussian noise with
zero mean and standard deviation g. The actual intensity

f, is then given by
J

f. = s. + n, (3.12)

where sj and nj are the 1ideal and noise components,

respectively. The random variable fj has the probability
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density function

2
p(£) = (chzy%expl}(fj zj) ]

o (3.13)

When an edge detector is applied on this image model, the

output of the i'th convolving mask is given by
G, = Z:Mi(J)fj (3.14)
]

where Mi(j) are the components of the mask Hj. In this
case {G,} will be 3joint Gaussian with the probability
i

density function

m
p(e) = (2m 2Y| %exp[--z-(E-E) 2 he-an (3.15)

In Eq. 3.15, G and G are vectors of the actual and ideal

masks outputs given by

€=16, G, ... G (3.16)
€=16, G ... GIT (3.17)
with
3 = 2 M, (j) s, (3.18)
i 5 i j

Also, the covariance matrix Z is given by
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[ 2 2 |
2 [ ] L *
911 %12 %1m
2 2 . L ] L ] 2
> 921 922 ° %2m (3.19)
2 2 2
Lcml m2 % mm
with
_ 2 - : 3.20
Oy = O >3: M, ()M, (5) (3.20)

The analysis introduced so far applies to both simple
differential and template matching operators. To obtain
expressions for the probability density function of A, each

group of edge detectors has to be considered separately.
3.2.1 Simple Differential Operators

With the Roberts, Sobel, and Prewitt operators, two
convolving masks are used. The outputs X and Y are joint
Gaussian with mean and covariance matrix as given in

Table 3.1,

From Table 3.1, it can be noticed that the random
variables X and Y are independent. If the nonlinear

function used is the square root, then

A = (x2+72)% (3.21)

and the probability density function of A in the case of no

edge is given by [17]. Thus,
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TABLE 3.1

Mean Vector and Covariance Matrix of
Differential Gradient Operators

G
Operator 2
vertical diagonal =
no edge edge edge
0] 1] 1] /2 0]
Roberts h h g
0 -1 J 0 J 0 /2
L. J L .
0] 4] 3 /Z o
Sobel h h o
0 0 3 0 /I—Z‘J
L. L L
Fo F3 2 Y& 0
Prewitt h h c
0 OJ 2 0 /'b’J
_— - e
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p(a) = r (3.22)

while in the case of an edge

2, .2
_5_2_ exp[— (A +a2 )]IO( Aa2) A >0

o} 20 o] (3.23)
r r
p(a) = t
0 A <O
where o, is the diagonal elements of , and
a2 - 22 + §2 ‘ (3.24)

In Eq. 3.23, IO(~) is the modified Bessel function of zero

order.

The previous probability density functions can be used
to determine the probability of false detection Pp and the
probability of correct detection Pp, for a given threshold

t. These probabilities are of the form [18]

t2
PF = exp -;——5) (3.25)
c
r .
a t (3.26)
P, =Ql——
o= o(a)

where Q(a,b) is Marcum's Q-function defined as

o 2, .2
Q(a,b) = I . X exp[—a ;x ]Io(ax)dx (3.27)
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If the nonlinear function used,is the sumof magnitudes
A = le + IYI (3.28)

the probability density function p(A) can be derived in the

form
1 A2+a2
p(A) = exp {- 3
2/Fcr 40
[p, (X, ) +p (X,-D)4p, (-X, D) +p; (-X,-1)1 ¢
where
-Y)A- +X+ A-X-Y
py (X,Y) = exp[QEY_)Zz\_EY_] [erf(A X Y).,_erf(-F——)] (3.30)
20 /fcr 20,
The corresponding probabilities PF,and PD are
P, = 1- 2erf( t )]2 (3.31)
! /20
Py = 1- erf(t+x+Y)+erf(t-X-Y)
i /20 V20 /|
- ~ A ~ A~
erf(t+x—Y)+erf(E:§iZ) (3.32)
| Y20 V2o /|
In the previous eqguations
X 2
erf(x) = J "i“.exP(‘Zz‘)dY (3.33)
v2m

0

To compare the performance of the Roberts, Sobel and
Prewitt operators, the probability of correct detection PD
is plotted as a function of the probability of false

detection Pp. Figure 3.2 presents such plots for vertical
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Figure 3.2. Probability of detection versus probability
of false detection for simple differential

operators
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b) SNR = 10.0

Figure 3.2. (Continued)
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and m/4 edges, with signal-to-noise ratios, SNR* = 1.0 and
10.0. From these curves 1t is clear that the Sobel and
Prewitt operators are superior to the Roberts operator.
The prewitt operator is better than the Sobel operator for
a vertical edge. But, tfor a diagonal edge, the Sobel

operator is superior.
3.2.2 Template Matching Operators

With the compass gradient, Kirsch, 3-level, and
5-level operators, eight convolving masks are used. The
output vector G 1is a Jjoint Gaussian with mean and
covariance matrix as given 1in Table 3.2. The mean é is
zero for no edge, and § tor T/4 eddge is the same as § for

vertical edge with all the components shitted one position

downward.

For these operators, computation ot p(A) 1is not
straight forward. However, their pertormance can be
evaluated using the probability density tunction p(G). As

an example

*The signal-to-noise ratio is defined as

SNR = edge height 2
- noise standard deviation
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TABLE 3.2

Mean Vector and Covariance Matrix of
Template Matching Operators for a Vertical Edge

OPERATOR 3 Z
[ 37 6 4 O0 -4 -6 -4 0 4
2 4 6 4 0 -4 -6 -4 O
0 0 . .
- -2 -4 . . 2
3-Level -3k -6 . g
-2 -4 . -
0 0 . .
[ 2] 4 . .
[ 4] 12 8 0 -8-12 -8 O s'l
3 8 12 8 0 -8-12 -8 O
0 0 . .
-3 -8 . .
5-Level -al b -12 . o?
-3 -8 . .
o 0 . .
| 3 | 8 . .
[ 3] [12 8 4 0 o0 0 4 8]
2 8 12 8 4 0 0 0 4
0 4 . .
Compass :§ h g *, o
Gradient -2 0o .
o 4 . .
i 2- R 8 . o
[ 127 [120 56 -8 =72 =72 =72 =8 56]
8 56 120 56 -8 =72 -72 -72 -8
0 -8 . .
Kirsch -Ig h I;% o B Es
-8 -72 .
0 -8 . .
= 8- - 56 ¢ '-
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o
I

P(A > t|no edge)

F
= P(|G1| > t+OR+|G,| > t...:OR+|Gg| > t|no edge)
t t
= 1- J .o I p(G|no edge)dGldGz...dG8 (3.34)
-t -t

Equation 3.34 can be evaluated numerically using the
parameters in Table 3.2. 1In Figure 3.3, PD is plotted as a
function of PF for the ditferent template matching
operators for SNR = 1.0 and 10.0. From these curves, it is
clear that the 3-level and 5-level operators have the best
performances, followed by the Kirsch and finally the
compass gradient operator. This can be explained by the
fact that with the Kirsch and compass gradient operators
more points are used in evaluating A, and thus, more noise

is introduced, while these points are combined in such a

way that they do not enhance the edge output.
3.3 Estimation of the Edge Orientation

The analysis in the previous section can be extended
to the estimation ot edge orientation. For the simple
differential operators, the edge orientation is determined

by the angle

60-tan (X)
If X and Y correspond to no edge, they are zero mean
Gaussian random variables. In this case,eo is a random

variable with p(eo) given by
51



compass
gradient
0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

F

a) SNR.= 1.0

Figure 3.3. Probability of detection versus
probability of false detection for
template matching operators
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Figure 3.3. (Continued)
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!
p(8y) = 5= (3.36)

for 0 < 0g £ 27 .If Y and X correspond to an edge, their

means are non zero in general, and p(eo)is given by [19]

al 1+2erf(é%%§¥) .
P8, = == 1+2/Tacosy » exp(a“cos”y) (3.37)
where
2,2
3
a = (543%—)2 (3.38)
2ar -
and
y = 8p-tan”t I (3.39)

The conditional probability of estimating the edge
orientation, within a tolerance A¢, given that the region
corresponds to an edge with orientation ¢, is in the form

$+4A9
P($p-Ap<0<¢+Ad |edge, <) = J p(6|edge,<¢)d¢d (3.40)

¢-0¢
it should be noticed that the probability of the exact

estimation of the orientation of a noisy edge is zero.

For the template matching operators, the detection of
the edge orientation angle can be considered as
multiple-hypotheses testing. 1If the actual edge angle is

06, the probability of making a correct decision is
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P (0=0,|edge,<8;) = P(G,>G,Vk|edge,<b;)

o G.
= i
= J .o JG =_:m;.Jp(gle<-:iqe,<ei)dc;ldG2...dGB
K
ki (3.41)

Equation 3.41 can be evaluated numerically.

Since the estimation of the edge orientation is
affected by more sources of error, compared with the
detection of the edge presence or absence, this additioﬁal
information should be used carefully. An uvnwise usage of
the estimated edge orientation may reduce edge detector
performance. More research is needed to find an optimum

strategy for using edge orientation information.

3.4 Conclusion

In this chapter, a statistical model for edge
detection has been developed. The performance of the
different edge detectors is evaluated for actual central
edges with specific edge orientations. The success in
introducing such a model helps in transferring the
communication theory concepts into edge detection problems.
This is a major point in the analysis and design of edge
~detectors, because many- problems in edge detection have
already been solved in communication theory. It is

interesting to notice that the magnitude and angle of the
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simplé differential operators have the same probability
density functions of the envelope and phase of narrowband
signal with additive Gaussian noise |19]. Other examples

can be noticed and used successfully.
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Chapter 4

Edge Detection as a Pattern Classification Problem

Edge detection as a hypothesis-testing problem was
presented in Chapter: 3. Another approach, which is
introduced in this chapter, is to consider edge detection
as a pattern classification problem. The edge detector has
as its input different image subregions, and it is required
to classify these subregions into the class of edges 91,
and the class of no edges 92. The decision strategy given

by Eq. 2.3 can be written in the form

If w(l)A + w(2) > 0 then A ¢ 91 (4.1a)
and if w(l)A + w(2) < O then A ¢ 92 (4.1b)
where the weighting vector w = [w(1) w(2)]T is related to

the threshold t by the relation

t = - w() (4.2)

The components of w are obtained by trasining the edge
detector using a- - set of known edge and no edge patterns.
After this training phase, the edge detector 1is used to

classify unknown prototypes in actual images. The
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performance with actual images will depend on the procedure
used in the training phase. There are different methods
that can be used in training &a pattern classifier. A
review of these methods is given in Section 4.1. One of
these methods, the Ho-Kashyap algorithm, will be wused in
the edge detectors design. The basic concepts of this
algorithm and the reason behind its choice are discussed in
Section 4.2. Experimental' results are summarized in

Section 4.3.
4.1 Training Methods for Pattern Classifiers

The decision function in Eg. 4.1 1is based on the
scalar variable A. This decision function can be

generalized to the n-dimensional case

T
d(x,) = w x + win+l) (4.3)
where in = [x(l),x(2),...,x(n)]T is the pattern vector and

En = [w(l),w(2),...,w(n)]T is the weight vector. Usuelly,

Eq. 4.3 is expressed in the form

d(x) = w'x (4.4)
where x = [x(l),x(2),...,x(n),l]T is an augmented pattern
vector and w = [w(l),w(2),...,w(n),w(n+1)]T is an

augmented weight vector, [20]. The decision strategy is

then
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If wx>0 = xe (4.5a)

and if wx <0 => x e Q

x € Q) (4.5b)

In the training phase, the pattern classifier is given two
sets of prototype patterns {x,,X,,...,x.} € Q;, and
£5N+1”5N+2""'52N'} €Q,. The weight vector w is
determined such that ng > 0 for all patterns of {,, and

g?g < 0 for all patterns of @

2 If the patterns of 92 are
multiplied by (-1), the required condition becomes ng >0
for all patterns. The pattern classification problem is

then reduced to finding a vector w such that
Xw>0 (4.6)

-
is satisfied, where T W

’ (4.7)
| %2y
if there exists a2 w which satisfies Eq. 4.6, the classes

are said to be separable; otherwise they are nonseparable

[20].

One approach to the solution of the set of 1linear
inequalities of Eq. 4.6 is to define a criterion function
J(w) that becomes minimum if w satisfies Eq. 4.6. This

reduces the problem to one of minimizing a scalar function;
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a problem that can be solved by a gradient descent
procedure |[4]. An example of a criterion function, that

can be used, is the perceptron criterion function

I W) = D (-w'x) (4.8)
xex

where X is the set of samples misclassified by w. Another

example is

(w x=Db)

ra (4.9)
2
2 x|l

N =

J.(w) =

1%

where now % is the set of samples for which ng £ b. The
previous two <criterion functions focus their attention on
the misclassified samples. A different criterion function

that involves all the samples is

g ) = |lxw- bl (4.10)

where the components of b are all positive. The
minimization of Js(g) depends on the value of b. If b is
fixed érbitrarily there is no guarantee that the solution
will give a separating vector in the linearly separable
case. To avoid that, b and w are allowed to vary in the
minimization procedure. This is the basic concept'of the
Ho-Kashyap algorithm. Another approach to solve the
inequalities in EqQ. 4.6 1is to use 1linear programming

procedures. Details of these procedures and analysis of

the other previous methods are given in references |4, 20].
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In order to use any of the previous methods in the
design of edge detectors, two conditions for the resulting
vector w are required. First, if the training patterns are
separable, the training procedure should converge to a w
which classifies the patterns correctly. Second, if the
training patterns are not separable, a case which is
usually encountered 1in edge detection, the training
procedure should detect the nonseparability and yield a
solution which can be used practically. These two
conditions are achieved only by the Ho-Kashyap algorithm
(21], and by a linear programming procedure that minimizes
the perceptron criterion function [22]. Any of these two
methods can be wused in edge detector design. The
performance of each method will depend on the distribution
of the classes. A comparison between the two methods is
outside the scope of this dissertation. Therefore, in the
following section a discussion of one of them, the
Ho-Kashyap algorithm, and its application in edge
detection, is given. A similar anaysis can be developed

for the linear programming procedure.
4,2 The Ho-Kashyap Algorithm

In this algorithm, the solution of the inequalities in
Eq. 4.6 has been reformulated as a problem of finding w and
b > 0 such that J (W) in Eq. 4.10 is minimized. The

minimizations can be achieved by a steepest descent
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procedure that implements the gradient functions

3J
_s - T - (4.112)
and
—3-13—=9-§z (4.11b)

9J
. . . S . .
Since there is no constraint on w, 3+~ = 0 implies

T

w= (X% b

where 5# is the pseudoinverse of X. Since all the
components of b are constrained to be positive, this vector
must be varied in such a manner to never violate this

constraint. This can be accomplished by letting

b(k+1l) = b(k) + 8b(k) (4.13)
where

§b(k) = cle(k) + |e(k)]|] (4.14a)
and

e(k) = X w(k) - b(k) (4.14b)

In Egqs. 4.13 and 4.14, k denotes the iteration index, c is
a positive correction increment, and Ig(k)l indicates the
absolute value of each component of the error vector e(k)

[20]. From Egs. 4.12 and 4.13,
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w(k+l) = w(k) + X¥6b (k) (4.15)

Thus, Eq. 4.10 can be minimized through the iteration

w(l) = x'b(1) (4.16)
e(k) = X w(k) - b(k) (4.17)
wik+l) = w(k) + cx¥le(k)+|e(k)]|] (4.18)
b(k+1l) = b(k) + cle(k)+|e(k)|] (4.19)

where b(l) > 0 but otherwise 1is arbitrary, and c is a

constant such that 0 < ¢ < 1.

If the patterns are separable, Egs. 4.17 to 4.19 can
be repeated until all components of e(k) converge to zero,
or to any reasonably small value. On the other hand, if
the components of e(k) cease to be positive, but are not
all zero, at any iteration step, this will indicate that
the classes are not separable [20, 21]. These two
characteristics of the Ho-Kashyap algorithm are important,
especially when the algorithm is wused to design edge
detectors. Because the degree of separability of the
classes of edges and no edges changes for different image
models, the procedure used in the edge detector design
should be able to handle both separable and nonseparable

patterns.
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4.3 Application of the Ho-Kashyap Algorithm to Edge

Detection

The Ho-Kashyap algorithm is used in the design of edge
enhancement/thresholding operators. In this experiment,
patterns of vertical edges, and patterns of no edges, are
generated. Gaussian noise is added to produce edge
prototypes with SNR = 1.0 or 10.0. The outputs of the

different edge detectors in the case of a vertical edge

{n,,A,,...,A}, and in the case of no edge
17772 N
{AN+1’AN+2""'A2N}' are used to construct the augmented
[~
matrix Al lT

X = _;31 :a
N+l (4.20)

|"Aoy "L

The number of patterns of each class is chosen to be

N 20. This ensures that the performance on design and
test data will be similar [4]). The initial components of
b(l) are chosen to be wunity, and iteration given by
Egs. 4.17 to 4.19 1is repeated up to 500 times. The
experiment 1is ended if the components of e(k) are all less
than a small value, (0.001), or if nonseparability is
proved. It is sometimes useful to end the iteration when

the threshold t = -w(2)/w(l) stabililzes within a

‘relatively small variation.
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After the training phase is finished, the values of w
obtained are tested with a2 new set of 250 prototypes
generated with the same model. The probability of
detection in the case of an edge, and the probability of
false detection in the case of a no edge, are calculated.
The results obtained are compared with the theoretical
results derived in Chapter 3. These results are given in
Table 4.1 for different edge detectors with vertical and
/4 edges and SNR = 1.0 and 10.0, respectively. It should
be noticed that in many cases the edge detector threshold t
converges to a value which results in equal probabilities

of error
P_. ~ 1-P (4.21)

This satisfies the Bayes minimum error criterion if edges
and no edges are equally probable. Thus, the results
obtained with the Ho-Kashyap algorithm have practical

significance.
4.4 Conclusion

In this chapter, it has been shown that edge detectors
can be designed using pattern classification techniques.
As an example, the Ho-Kashyap algorithm, was used to design
different edge enhancement/thresholding operators. The
edge model used was an 1ideal edge plus Gaussian noise.
This model helps in comparing the experimental results with
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the theoretical ones obtained in Chapter 3. The same
technique can be easily extended to the design of any edge

detector with any erbitrary noise model.
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Chapter 5

Figure of Merit Comparison of Edge Detectors

The methods introduced in the previous two chapters
can be used in both the evaluation and the design of edge
detectors. In this chapter, a third method which can be
used only in the evaluation of edge detectors performance,
is introduced. The procedure used in this chapter can be
summarized as follows. First, an artificial test image is
generated. Second, an edge detector 1is applied on this
test image. Third, the quality of the resulting edge map
is measured in terms of a scalar function. That function
can be considered as a figure of merit of the corresponding
edge detector. The fiqure of merit used should be
sensitive to the different expected errors so that it is
maximum when the edge map is perfect, and decreases as the
error in the edge map increases. Methods based on the
previous technique have been introduced by Fram and Deutsch
113], and by Pratt [1]. This 1latter method has two
advantages: it weights the different errors according to
their importance; and it allows each edge detector to be
tuned to its best capabilities, which guarantees a fair

comparison, Because of these advantages, the experiments
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discussed in the tollowing sections will be based on the
figure of merit developed by Pratt. Section 5.1 explains
the basic ideas of this technique. Section 5.2 summarizes
the results obtained with simple test images. Section 5.3
introduces conclusions based on the results of Chapters 3,4

and 5.
5.1 Figure of Merit Concepts

The procedure introduced by Pratt utilizes a test
image consisting of a 64 x 64 pixels array over a 0 to 255
amplitude range with a vertically oriented edge of variable
contrast and slope placed at its center. Independent
Gaussian noise of standard deviation ¢ is added to the
edge 1image, and the resultant picture is clipped to the
maximum display limits. As in the previous chapters, the

signal-to-noise ratio is defined as

_(n\2
SNR—(E) (5.1)

where h is the edge height.

When an edge detector is applied on this test image,
three major types of error will affect the resulting edge
map: (a), missing of valid edge point; (b), failure to
localize edge points; (c), classification of noise pulses
as edge points. Examples of these errors are shown in

Figure 5.1.
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The quality of the resulting edge map may be assessed

by the tigure of merit defined by

Ia
} 1 1
~ max{I_,I,}
max{lp Iy} {2 1+ad® - (5.2)

where II and IA represent the number of ideal and actual
edge map points, respectively, & is a scaling constant, and
d is the separation distance of an actual edge point normal
to a 1line of ideal edge points. The rating factor is
normalized so that F = 1 for a perfectly detected edge.
The scaling factor o may be adjusted to penalize edges
which are localized but offset from the true position.
Normalization by the maximum of the actual and ideal number
of edge points insures a2 penalty for smeared or fragmented
edges. This figure of merit gives higher rating for a
smeared edge than for an oftset edge. This is reasonable
because it 1is possible to thin the smeared edge by

post-processing [1].

The figure of merit method has been used to evaluate
the performance of the Roberts, Kirsch, Sobel, and compass
gradient-operators. In each case, the thresholds are
chosen to maximize the figure of merit, plots of these
maximum values are given in (l1]. The results obtained in
this experiment can be predicted theoretically using the

probabilities of detection of central edges P of

Dl
and of false detection
71

detection of displaced edges PDis'



PF' for a given edge detector. As an example, if a 3 x 3

edge detector is applied to the test 1image shown in

Figure 5.1, there will be a central edge at column g- + 1,

displaced edges at the two adjacent columns, and no true

edges elsewhere. For this case, Eg. 5.2 reduces to

N N,
2P . 2 )
- N Dis 1 1
S ol - B £ PF( 2 TradZ = dz)
d=-2 d=2 7% (5.3)
where
Iy = max{N,[PD+2PDis+(N—3)PF]N} (5.4)

The analysis introduced thus far is based on a test
image that contains a vertical edge. The same analysis can
be extended to other image models, but in these cases the
evaluation of Eg. 5.2 will become more difficult. Another
test image which is relatively easy to aﬁalyze is one that
contains a diagonal edge. As has been shown in Chapter 2,
the results obtained from the vertical and the diagonal
edge models are sufficient to determine edge detector

performance.

A test image that contains a diagonal edge .is shown in
Figure 5.2. The image «consists of 128 x 128 pixels
generated with the same signal and noise models used in the
test image that contains the vertical edge. To simplify

the comparison of the results obtained in both cases, only
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the central part of the diagonal edge 1is used in
calculating the figure of merit. This central region 1is
shown bounded by dotted lines in Figure 5.2. The number of
edge pixels in this region is chosen to be equal to the
number of edge pixels in the vertical edge model. But, the
number of non-edge pixels in the diagonal edge model is
twice their number in the vertical edge model. The effect
of this difference is compensated by scaling the diagonal
distance d by a factor v2. The results obtained with these

two test images will be given in the following section.
5.2 Experimental Results

The Sobel, Prewitt, compass gradient, Kirsch, 3-level
and 5-level operators are evaluated using the figure of
merit defined previously. The test images are generated in
the form of ideal steps with vertical or diagonal
orientations. The height is h = 25, Gaussian noise is
added to the ideal step with signal-to-noise ratios 1.0,
5.0, 10.0, 20.0, 1U0.0, respectively. Each edge detector
is applied on the ditferent test images, and the threﬁhold
t is varied untill the figure of merit is maximum. Plots
of the figure of merit as a function of signal-to-noise
ratio are shown in Figures 5.3 and 5.4. The figures of
merit generally tollow expected trends: small for low
signal-to-noise ratios and large in the opposite case.

Some of the edge detection methods are superior to others
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for all test images. Examples of the edge maps, obtained
in the previous experiments, are shown in Figure 5.5. It
should be noticed that the tigures of merit are correlated

with visual gquality of the edge meps.

The figures of merit plotted in Figures 5.3 and 5.4
can be related to the response of an edge detector to
displaced edges, shown in Figure 2.10 , and to the
operating characteristics of an edge detector, as shown in
Figures 3.2 and 3.3. The figure of merit is large when the
edge detectors have good performance in the presence of
noise, and when the edge detectors suppress non central

edges efficiently.
5.3 Conclusion

In general, the results obtained in Chapters 3, 4 and
5 show that the 3-level operator has better performance
than any of the other edge detectors. 1Its performance can
be compared only to the performance of the Prewitt
operator. The advantage of the 3-level operator is that it
has almost the same performance for all edge orientations,
while the advantage of the Prewitt is that it requires less
computation effort, especially if the square root is

replaced by the sum of magnitudes.
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a) Prewitt square root b) Prewitt square root
vertical edge, SNR=1 vertical edge, SNR=10

¢) Prewitt square root d) Prewitt square root
vertical edge, SNR=100 diagonal edge, SNR=10

Figure 5.5. Edge maps for 2x2 and 3x3 operators
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e) Sobel square root f) Roberts square root
vertical edge, SNR=10 vertical edge, SNR=10

g) 3-level h) Kirsch
vertical edge, SNR=10 vertical edge, SNR=10

Figure 5.5. (Continued)

81



Chapter 6

New Edge Enhancement/Thresholding Methods

The analysis introduced so far has been concerned with
the evaluation of existing edge detection operators. This
evaluation is one of two objectives of the dissertation.
The other objective being to introduce new edge detection
techniques and to evaluate their performance. In this
chapter, some new trends in edge enhancement/thresholding
are given. 1In Chapter 7, a new edge fitting algorithm is

discussed.

There are some modifications that can be introduced to
the edge enhancement/thresholding operators, such as
changing the mask size, weighting the mask elements, and
using an adaptive thresholding procedure. Before
introducing these modifications, it is useful to evaluate
their effects and to decide if they actually improve the
edge detector performance. This will be the subject of the
following sections. In Section 6.1, the effect of
increasing the mask size is evaluated. In Section 6.2, the
effect of weighting the mask elements is discussed. 1In
Section 6.3, some adaptive edge thresholding methods are
introduced.
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6.1 Effect of Changing Mask Size

The 3x3 edge detectors can be considered as a special
case of general (2K+1) x (2K+1l) edge detectors. Extension
of the two masks of the Prewitt operator, is shown in
Figures 6.la and b. Also, the set of four masks of
Figure 6.1 represent an extension of the 3-level operator.
Increasing the mask size will affect edge detector
performance in two ways. .First, the operator will be less
sensitive to noise because it bases 1its decision on a
larger number of pixels. Second, the edge detector will
have a lower resolution. A discussion of these two effects

in the case of the 3-level and the Prewitt operators is

given in the following paragraphs.

The performance of the (2K+l1) x (2K+1l) operators in
the presence of noise, can be evaluated using the
statistical model of Chapter 3. 1In the case of the 3-level
operator, the covariance matrix:E:,and mean vectorlévf are

of the form

-

(2K (2K+1) 2K (K+1) 0 -2K (K+1)
-2K (K+1) 2K (2K+1) 2K (K+1) 0
32 (6.1)
. . ) —_
G* = h[K(2K+1) k (K+1) 0 -K(K+1) T (6.2)

Y
*év denotes the mean vector for a vertical edge
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Figure 6.1. Extended masks for the Prewitt
and the 3-level operators
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In the case of the Prewitt operator, the output of the
vertical and horizontal masks are independent Gaussian
random variables, with covariance matrix Z,and the mean

vector §V' in the form

2: [2K(2K+l) , 0 ]

= 0 2K (2K+1) (6.3)

Gy = hIK(2K+1) 0] (6.4)
The probabilities of detection and false detection can be
evaluated as in Chapter 3. Plots of the edge detector
operating characteristics for a signal-to-noise _rafié of
1.0, and operator mask sizes of 5x5, 7x7, and 9x9 are given
in Figure 6.2. From these plots, it 1is clear that the
performance of the 3-level operator is better than the
performance of the Prewitt operator for diagonal edges,
while it 1is slightly 1less than the performance of the
Prewitt operator for vertical edges. Also, it can Dbe
easily noticed that performance improves as the mask size
increases. On the other hand, increasing the mask size
will reduce the edge detector resolution. This effect can
be shown by plotting edge detector output as @ function of
the distance between the edge and the center of the

operator. Plots of the normalized outputs of 3x3, 5x5,
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-===3-level

— Prewitt vertical
-—-— Prewitt diagonal

o 1 ] 1 | : l A I
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Figure 6.2. Probability of detection versus probability
of false detection for extended Prewitt and

3-level operators
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7x7, and 9x9 mask operators, in the case of a vertical
edge, are shown in Figure 6.3. It is clear that, as the
mask size increases, the region over which the edge is
detected increases. This will reduce the operator’'s

ability to detect the finer details of the image.

The previous two effects can be measured
simultaneously by using the figure of merit defined in
Chapter 5. The 3-level and the Prewitt operators are
applied on the test images containing a vertical and a
diagonal edge. The figure of merit is plotted as a
function of the signal-to-noise ratio. These curves are
shown in Figure 6.4. The results agree with the previous
analysis: for low signal-to-noise ratio, the operators with
large mask size have better performance because they are
less sensitive to noise, which is a dominant factor in this
case, while for large signal-to-noise ratio, the operators
with small mask size have better performance because they
are more accurate in detecting edge location. Examples of
the edge maps for the wvertical edge with SNR = 1.0 are
shown in Figure 6.5. These examples give a visual
indication of the improvement achieved by increasing the

mask size.

Since the 3-level and the Prewitt operators achieve an
almost optimum performance while using simple computation

procedures, the performance of these operators can be used
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a) 5x5 mask b) 7x7 mask

c) 9x5 mask

Figure 6.5. Edge maps for extended Prewitt
operator, vertical test image
with SNR=1
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as a standard to which any other edge detector performance
should be compared. As an example, the performance of the
convential 69Y pixel Hueckel operator is compared with the
performances of a 7x7 or a 9x9 mask operators in Appendix
A, This comparison indicates that the 3-level and the
Prewitt operators has better performances than the Hueckel

operator.
6.2 Use of Weighted Masks

The resolution of edge detectors with large mask size
can be improved by weighting the mask elements, such thet
they are maximum near the mask center and decrease to zero
as they approach the mask periphery. There are many
examples of weighted masks that can be wused in edge
detection. Argyle [23] has proposed a split Gaussian

function defined in one dimension as

2
exp (- 337) x>0

V21k 2k
h(x) = 0 x=20 (6.5)
2
-1 exp (— 357) x< 0
V27k 2k

where k is a spread constant. Macleod |24] introduced a
continuous Gaussian function; a special case of the Macleod

function is given by

siwi = oup () fone[-(52)7]-ome[- ()]} oo

where p and t are spread constants. Another example of the
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weighting functions is the polynomial

1 1 2 . . - . . X > 0

1+ay2 l+ox
H(x,y) = 0 . +« « « « « « x=0 (6.7)
1 1

l+ay2 l+ocx2 rene e xS0
where o is an adjustable scaling factor. The elements of
the previous weighted masks are not integers, and thus
require more computation time compared with the 3-level
simple mask. This problem.can be avoided if the weighted

mask is chosen to be the pyramid shaped mask shown in

Figure 6.6.

To test‘ the resolution of the different weighted
masks, the outputs of 7x7 weighted mask operators for
displaced vertical edges are plotted 1in Figure 6.7. In
this experiment, k = p = t = 4.0* and a= 1/9. The results
show that the pyramid-shaped mask has the best resolution
followed by the polynomial, the Argyle, the simple 3-level,

and finally the Macleod weighted mask.

The statistical model of Chapter 3 can be wused to
evaluate the performance of the weighted mask operators,
As an example, for the weighted Prewitt operator, the
performance will depend on the ratio between the ideal edge

output (a), and the noise standard deviation (or). The

*These are the parameters suggested by Fram and Deutsch in

their paper [13].
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Pyramid operator
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weighted 7x7 operators
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larger this ratio, the better the performance. In
Table 6.1, the values of aﬁcr tor the 7x7 weighted mask
operators are given. These ratios, and hence the
performance of the weighted mask operators depend on the
shape ot the weighting tunction used. In general, the edge
detector will have a better performance in the presence of
noise if the mask elements are more uniform, with the

optimum performance achieved by using equal mask elements.

The ditferent welighted-mask edge detectors can be
evaluated using the tigure of merit of Chapter 5. 1In this
experiment, the vertical edge test 1image 1is wused to
evaluate the Argyle, Macleod, polynomial and pyramid shaped
operators with a mask size 7x7. Results are shown in
Figure 6.8. It 1is clear that, excluding the Macleod
operator, most of the weighted mask operators have
approximately identical performances. The inferior
performance of the Macleod operator can be .improved by

changing its parameters.
6.3 Use of Adaptive Thresholding

In the previous experiments, the value of the
threshold t was found to be a function of the absolute
signal levels and the signal-to-noise ratio. In simple
test images, t can be a constant for all the image
subregions. In real world images, however, a constant

threshold should not be used because it will enhance the
97



. I
fo}
CS°LT LO0°8T1 VL 8T 6€°6T 00°T¢ <
oa1duts uoTt3jouny
pTwexid POSTOoeN TeTWOUATOd aTAbavy 1oAST—¢ putaybTaM
o
sy)seW pojybiom 03 AAWV oT3ey 9YL

‘T1°9 STqeLs

98



siojexado 1x; po3jybrtom 107

oT3ex 9STOU-03}-TRUDBTS JO UOT3IOUNF ® SB JTISW JO 2aInbTd °g°9 =INBTJ

OI§D4 3SI0U-0}-|pubis

0°00I 0°0S 00¢ 00l o's 0¢ Ol
[rvyrr v 1 T _ L T I 28

1
(o]
@

o
0o o0 o

{aw Jo aunbiy

|piwouk|od ‘prupiAd 00l

99



boundaries between high intensity regions more than the
boundaries between low intensity regions. This problem can
be avoided if the output of the edge detectors is compared
with a function of the subregion intensities. This can be
considered as a local adaptive thresholding procedure |7].

Examples of the functions that can be used are the average

J
t = 0q :E: £

. (6.8)
j=1
the root mean square
J %
¢ = a, (Z f.2) (6.9)
j=1
and in general
J 2 J
t = al(E f.) +a2(2f.2) (6.10)
=1 j=1

In Egs. 6.8 to 6.10., fq,f9,...,f£5 are the pixels

intensities, and 01,02 are constants that can be adjusted.

A guantitative evaluation of theée adaptive
thresholding methods is not simple because it requires the
knowledge of the image model. A discussion of the problem
will be given in Chapter 8. Some of the experimental
results obtained with the adaptive thresholding edge

"detectors will be shown in Appendix E.

6.4 Conclusion
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In this chapter, various modifications in the edge
enhancement/thresholding operators have been considered.
The purpose of these changes is to achieve a compromise
between better resolution and acceptable performance in the
presence of noise, It is believed that this compromise
should be one ot the basic objectives in edge detector
design. Other methods that achieve better edge resolution
through edge thinning can be found in the works of

Rosenfeld [5,25], and Herskovits |26].
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Chapter 7

A New Edge Fitting Algorithm

Minimum-error surface fitting techniques have been
considered by many as an optimum solution to the edge
detection problem. Although this is true theoretically, in
practical applications, the surface fitting algorithms
suffer from two drawbacks. The first is that the image is
usually defined over a sampled domain while most of the
surface fitting algorithms are derived for continuous
functions. The second is that even assuming the image to
be continuous, the optimization procedures require the
solution of implicit functions of the edge parameters.
This solution can be achieved through iterative procedures,
which are time consuming and thus cannot be practically
used in edge detection. Usually some approximations are
made to avoid this iterative solution. As an example, in
the Hueckel operator, the optimization procedure is
simplified by wusing truncated Fourier expansions of the
image subregion and the ideal edge model. The effect of
this approximation on the optimality of the solution cannot

be easily evaluated.
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The previous difficulties can be avoided by using edge
fitting algorithms based on the discrete image model. One
of these algorithms will be introduced in the following
sections. In Section 7.1, a one-dimensional edge fitting
algorithm is discussed. In Section 7.2, the model is
extended to the more important case of two-dimensional edge
fitting. 1In Section 7.3, evaluation of the edge fitting

algorithm performance is givén.
7.1 One-Dimensional Edge Fitting

The problem of one-dimensional edge fitting can be
stated as follows: given a continuous function f(x) defined
for -b < x < b, it is required to find a piecewise linear

function sp(x) such that the error

b 2
5, - f | (spl0) - £ %ax (7.1)

is minimum. The problem can be simplified by assuming that
the function sp(x) is centered around the origin, as shown

in Figure 7.1. 1In this case sp(x) is given by

E-

a-AxO -b < x < —x0
SE(X) = a+Ax -X; < X <X (7.2)
a+Ax0 xo < x < b

where a is the average value of sp(x), A is the ramp slope,

and x 0is the half ramp width. These three parameters are
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Figure 7.1. One-dimensional edge model
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combined in the vector

p=1[a A xO] (7.3)

The value of p that minimizes Eq; 7.1 is obtained by

solving the set of equations

3E _ A

3 = 0 (7.4a)
9E _
5F = 0 (7.4b)
°E _

*E =0 (7.4¢)

Substituting in the previous equations, the optimum

parameter vector p is given by

1 Ib
a = L £ (x) dx (7.5a)
)
X0 2 1, 3
xf(x)dx = 3Ax,.b + FAx (7.5b)
0 3770
X
0
--x0 b
f(x)dx - f(x)dx = Axo(b-xo) (7.5¢)
-b x0

It is clear that even for this simplified case, the
solution 1is based on implicit functions of Xg and A.
Instead of solving Egs. 7.5b and c¢ through an iterative
procedure, it has been found that reformulating the problem
in the discrete domain will save computation time, while

giving a solution that is feasible.
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In the discrete domain, the functions f(x) &and sp(x)
are defined only for the set of points {-N,...,O,...jﬁ}.
In all of the tollowing discussions, the ramped part of
SEUU is assumed to start and end at sample points -n and n
respectively. This assumption simplifies the computation
without a substantial change in the accuracy of the

results. The curve fitting procedure reduces to finding

the parameter vector

p=>la & n]lt (7.6)
such that the error
N
5, = _Z;N (i) - £ (7.7)

is minimum. Since n assumes a finite number of integer
values, the minimization problem can be solved by repeating
the computation for each value of n and choosing the value
of n that minimizes E . 1In addition, by differentiating
with respect to a, it can be shown that for any value of n,
the optimum a is independent of n and is given by the

average

N
1 .
a = 2: £(1) (7.8)
2N+1 i=-N

Substituting the values of sp(i) in Eq. 7.7 and arranging

the terms, Ep can be expressed in the form

2 (7.9)
E =C. + C.A + C.A
<] 0 1 2 106



where

N
. 2
Cq = § (a-£(i))

-{n+1) n N
C.=2n Q. £(i)-2 Q_if(i)-2nQ  £(i)
1 -N  ‘'-n n+l
and
- (n+l) n N ,
2 .2
02 = '2: n- + 2: i + :E: n
-N -n n+l

Equation 7.9 can be minimized by choosing

Aol
2C2
and for this value of A, Ep is given by
cy
%o~ %0 T Ic,

One-dimensional edge fitting can be achieved

(7.103)

(7.10Db)

(7.10c)

(7.11)

(7.12)

by the

following procedure: given a function f(i) defined over the

range [-N,N], the average (a) is computed using Eq. 7.8.

Assuming that f(i) can be fitted to a ramp sp(i) with width

n, the optimum value of A4 and the corresponding minimum

error Ep are computed using Egs. 7.11 and 7.12. The

computation is repeated for different values of n, and the

minimum error in each case is compared. The values of n

and A that result in a global minimum error are chosen as

the edge parameters. Finally, the acceptance of the edge
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fitting can be determined from the signal-to-noise ratio,
Az/Emin. If this ratio is larger than a threshold t, the

edge fitting is accepted.
7.2 Two-Dimensional Edge Fitting

The previous analysis can be extended to
two-dimensional edge fitting. In this case, the image
function £(i,j) defined over a subregion is compared with

an ideal edge model Sp(i,j), where

p=1>(a 6 A& n17 (7.13)

is the parameter vector. The variables a, ei, A and n are
defined as in Section 7.1, where ei indicates the edge
orientation. 1In the following experiments, ei assumes one
of four basic orientations, horizontal, vertical and the
two diagonals. The effect of this approximation on the
accuracy of the edge fitting, will be discussed in
Section 7.3. The edge fitting is achieved by changing the

edge parameter vector p to minimize the error

N

N
2
S ST} ARTUTA L
.p_ i:—N 1==N .E.

Following the ansalysis in Section 7.1, it can be shown

that, for the minimum error, the parameter a is given by

a=—r 2 Z_f(i,j) (7.15)
j

(2N+1) i
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The parameters ei and n can be changed in finite steps, and

for each combination of ei and n, the error Ep is in the

form
E_=2¢C +CA+CA2 (7.16)
P 0 1 2 *
where
ZZ Y (7.17)
co = a-f(i,3)
i j
and

—(n+l)
C; = 2n Z F(i) - 2 Z iF(i) - 2n Z F(i) (7.18a)
i=- i=-n i=n+1l
n
c, = (2:+1) [2(N-n)n2 Y 12] (7.18b)
i=-n
for vertical and horizontal ramps, while
- (n+1)
C; = 2n E [F(i)+F(i+%)]—.z [iF(i)+(i+%‘-)F(i+%)]
1=-N i1=-n
n . N
-2 LR+ (-hPE-D1-n D F)+ri-D)
i=1 i=n+1

(7.19a)

C2 = 2(N-n) [2(N-n)+1]n +2Z 3[2(N-i)+l]i2+[2(N-i)+2] (i-%)2

(7.19b)
In Egs. 7.18 and 7.19, the axis is taken perpendicular to

the edge side, and F(i) indicates the sum of all the
‘elements at distance i from the edge. Sketches of the

masks wused for vertical and diagonal edges are shown in
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Figure 7.2. Since the expression of EE. is the same for
both one- and two-dimensional edge fitting, the values of

and Emin are still given by Egs. 7.11 and 7.12. Thus,
two-dimensional edge fitting can be achieved by the same
procedure described in the previous section. The only
changes are that the computation has to be repeated for the

different ei, and that the values of CO' Cl and Co are now

given by Egs. 7.17 to 7.19Y.

The number of computations required for a 7x7 edge
fitting algorithm is 273 additions and 112 multiplications.
This can be compared to 152 additions and 1 multiplication
needed for a 7x7 template matching operator. The effort
needed for accessing the image intensities and comparing
the masks' outputs is the same for both operators. The CPU
times needed by a PDP-10 KL processor to process a 64x64
image, using the 7x7 edge fitting algorithm and template

matching operator, are 18 and 15 seconds respectively.
7.3 Performance Evaluation

The performance of the edge fitting algorithm has been
evaluated using three different approaches. First, the
output of the edge fitting operators for edges with
different orientations and distances from the center are
compared. Second, a preliminary evaluation of the
performance for noisy edges are given. Third, the figure

of merit for the edge fitting algorithm is calculated.
110



P 3

2 -1 0 I 2 3
-n n N
vertical edge

_

a) 7x7 mask

Figure 7.2. Two-dimensional edge models
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In the first approach, edge fitting algorithms with
mask sizes 5x5, 7x5 and 9x9 are used to process image
subregions containing ideal central edges with variable
orientation and ideal vertical edges with varying distance‘
from the mask center. Plots of /E;E}/ A for the previous
two cases are shown in Figures 7.3 and 7.4 respectively.
In these curves, the abrupt jumps in /E;I;/A occur when A
changes suddenly. This occurs when the width (n) of the
edge model that fits the image data is changed. From
Figure 7.3, it 1is obvious that the edge fitting algorithm
is not isotropic; the algorithm has the best performance
for a vertical edges, it is less sensitive to edges with
orientation ¢/9 < ¢ £ m/6, the performance begins to
improve again as ¢ approaches w/4. Also, it should be
noticed that the output for %/4 is not zero. This is
because the edge model wused does not include a diagonal
step which corresponds to ramp width n = 1/2. The diagonal
edges with fractional ramp width were excluded to save
computation effort, and to keep the numbers of edge
prototypes equal for both the vertical and the diagonal
edge models. The curves in Figure 7.4 show that the error
ﬁ%;;;/A increases sharply as the edge is displaced off
center. This feature prevents the multiple detection of
the same edge point. The threshold of the edge fitting
algorithm can be chosen to allow the detection of central

edges with a specified minimum edge height, while
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suppressing displaced edges. Also, it should be noticed
that by increasing the number of discrete angles (ei), the
edge fitting performance will become more uniform. It
seems, however, that this chenge is not necessary, because
the performance of the edge fitting algorithm with four
basic orientations is sufficiently accurate for all

practical applications.

The statistical analysis introduced in Chapter 3 can
be used to evaluate the edge fitting algorithm.
Derivations of the probability density functions of the

coefficients C(C C and C and of the error Ep, are

o "1 2
straightforward. These derivations are not needed,

however, because as a fesult of the large mask sizes used
in the edge fitting algorithms, the noise is usually
averaged out. The decision strategy can be derived from
the deterministic analysis given previously. To prove the
validity of this assumption, the values of /E;I;/A are
plotted as a function of the edge orientation in the case
of a noisy central edge. The results are shown in
Figure 7.5. The edge fitting mask is 7x7 and the
signal-to-nose ratios are 1.0, 10.0 and 100.0. It should
be noticed that for practical levels of SNR, the effect of

noie is negligible.

The edge fitting algorithms, with mask sizes 5x5, 7x7

and 9x9, have been evaluated using the figure of merit of
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Figure 7.5. Edge fitting normalized error /ﬁmin/A,

as a function of actual edge orientation
for noisy edges
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Chapter 5. The results obtained, for the vertical and the
diagonal test images, are shown in Figure 7.6. Examples of
the edge maps for SNR = 1.0, are shown in Figure 7.7.
Comparing the previous results with the results obtained
for 3-level simple operators with the same mask sizes, it
can be noticed that for small mask size and very low SNR,
the edge fitting algorithm is not as good as the simple
mask operators. This observation can be explained by the
fact that the edge fittiné algorithm bases its decision on
an estimation of the edge parameters. This estimation is
sensitive to noise especially when the number of pixels
used is small. However, the edge fitting algorithm has
better performance for high SNR and for large mask size.
This is because the edge fitting algorithm suppresses
displaced edges efficiently. The edge fitting algorithm
has the additional advantage of being less sensitive to
changes in the signal-to-noise ratio of the image. This
results from using a decision strategy that is based on the

normalized fitting error.

7.4 Conclusion

In this chapter, a new edge fitting algorithm has been
introduced. The new algorithm is derived in the discrete
domain, this allows a direct optimization of the operator's
‘performance. The performance of the new algorithm is

better than that of the edge enhancement/thresholding
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a) original b) 5x5 mask

c) 7x7 mask d) 7x7 mask

Figure 7.7. Edge maps for the edge fitting
operator, diagonal test image with
SNR=1
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operators for a wide range of signal-to-noise ratios.

~
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Chapter 8

Conclusion and Further Work

This chapter summarizes the basic findings of the
dissertation, and discusses the subjects that will need

further investigation.

The objective of this work, was to introduce a
gquantitative analysis of the edge detectors, with an
emphasis on the edge detectors as local operators, that can
be used to preprocess the input images, without any a
priori knowledge of the images contents. The tools that
have been used in this analysis are the statistical
detection theory and pattern classification. These
concepts, help in a better understanding of the edge
detection problem. Numerical ordering of the performance
of the local edge detectors, was achieved by introducing a
figure of merit defined for specific test<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>