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Abstract

This technical report summarizes the image
understanding, image processing, and smart sensor research
activities performed by the USC Image Processing Institute
during the period of 1 April 1978 through 30 September 1978
under contract number F-33615-76-~C-1203 with the Advanced
Research Projects Agency, Information Processing Techniques
Office, and monitored by the Wright-Patterson Air Force
Base, Dayton, Ohio. ’

The research program has, as its primary purpose, the
development of techniques and systems for understanding
images. Methodologies range from low level image processing
principles, smart sensor CCD LSI circuit design, up to
higher 1level symbolic representations and relational
structure manipulations. Results reported herein include
gquantitative edge evaluation, texture analysis and
synthesis, feature combinations for 1linking and 1line
development as well as the formulation of a higher 1level
software system to handle storage and relational structures.
Results in the signal processing area include Poisson MAP
restoration, blind complex OTF deconvolution, condition
number calculation, and inverse SAR imaging. Smart Sensor
design of new 7x7 circuitry is progressing and real time TV
rate 3x3 CCD chips are now operational and available.
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l. Research Overview

This document represents the results of research
developed over the past 6 months at the USC Image Processing
Institute. Research has been devoted to 3 major areas:

image understanding, image processing, and smart sensor
design. These areas are abstracted below.

Image Understanding Projects

The image understanding tasks presented in this
semiannual report are focused in first level and second or
higher level processing procedures. In the first 1level
processes, edge and texture techniques are developed. Edge
analysis results are presented in which qguantitative
measures of performance on a variety of different edge
operators are evaluated. Different performance functions,
such as edge detection, positional accuracy, invariance of
operator to orientation, etc., are utilized. 1In the area of
texture work both analysis and synthesis procedures are
reported. Texture analysis via optical filtering and the
use of color representation has been demonstrated to be an
effective means of detection and visualization of specific
texture patterns. 1In the synthesis of texture a stochastic
“whitening process is developed which looks extremely hopeful
as a tool in defining features for texture recognition and
discrimination. Another texture synthesis technique is
presented which is based upon the statistical (N-gram)
approach. This method although still in its one-dimensional
form, show promise 1in its avoidance of moment technigues.
Finally, some novel "segmented window" first layer
processing technigues are presented with hypotheses as to
their usefulness in ongoing research.



In the arena of second or higher 1level processors,
feature usages of small Fourier transforms on reflectance
imagery, edges, direction of edges and density of edges is
developed. Edge detection, 1linking, and 1line finding
algorithms as well as descriptions of linear segmented
objects are presented as work in progress for various image
segmentation scenarios. Finally, higher 1level operating
software principles are formulated and examples of data
structures and their relationships are presented.

Image Processing Projects

A variety of image processing projects are reported
herein. They fall into three general areas of computational
procedures, restoration methodologies, and inverse SAR
imaging. A presentation is made on the computation of the
condition number of a matrix to predict the degree of
ill-conditioning and subsequent potential degrees of freedom
in such a process. Such computations become extremely
useful for large matrix processes as found in most imaging
applications. In the generation of computer hologram
interpolations, a special computational savings is developed
to avoid the inefficiencies of zero padding traditionally
used in most Fourier image filtering techniques.

In the arena of image restoration two techniques are
reported upon. Results from the method of blind a
posteriori restoration are presented in pictorial form. A
new method of Poisson MAP restoration is also developed and
‘analysis presented in which improved sensor models for
imaging result.

Finally, two papers on inverse synthetic aperture radar
imaging are presented. One is formative in is presentation
and proposes to image shadowed regions via RATSCAT turntable



§
data. The second represents processing results from an

inflight aircraft in both a straight flight and a turn set
of geometries. Resulting imagery is presented.

Smart Sensor Projects

The following report from Hughes Research Laboratories
reflects the continuing progress on the CCD smart sensor
design front. As usual we are pleased to see such results
and wish to point out that this represents a classic
illustration of technology transfer as the US Army NVL has
contracted and received one of our earlier circuit chips in
an operating unit. Recent chip design will afford 7x7
processing as well as programmable arrays and limited
feature selection in our ultimate effort for the computation
of a texture CCD circuit.

Recent Graduates

One of the Image Processing Institutes' most precious
products is its graduate students and it 1is always a
pleasure to see our students graduate and move on to
professional positions. This section lists the abstracts of
the dissertations of the three most recent graduates and
represents research in edge detection, restoration, and
radar imaging. We are proud of their work and wish them
well in their endeavors. Details of their disserations
appear as USCIPI technical reports and are available upon
request for those interested.

Recent Publications

The report closes with a listing of Institute research
staff publications. The majority of these are in the
reviewed open literature and are an indication of the health



Oof our research ideas. Naturally, due to the review process

a delay in published results occurs for the open literature
publications.






2. Image Understanding Projects

The image understanding tasks presented in this
semiannual report are focused in first level and second or
higher level processing procedures. In the first 1level
processes, edge and texture techniques are developed. Edge
analysis results are presented in which guantitative
measures of performance on a variety of different edge
operators are evaluated. Different performance functions,
such as edge detection, positional accuracy, invariance of
operator to orientation, etc., are utilized. 1In the area of
texture work both analysis and synthesis procedures are
reported. Texture analysis via optical filtering and the
use of color representation has been demonstrated to be an
effective means of detection and visualization of specific
texture patterns. In the synthesis of texture a stochastic
whitening process is developed which looks extremely hopeful
as a tool in defining features for texture recognition and
discrimination. Another texture synthesis technique is
presented which 1is based upon the statistical (N-gram)
approach. This method although still in its one-dimensional
form, show promise in its avoidance of moment techniques.
Finally, some novel "segmented window" first layer
processing techniqgues are presented with hypotheses as to
their usefulness in ongoing research.

In the arena of second or higher level processors,
feature usages of small Fourier transforms on reflectance
imagery, edges, direction of edges and density of edges is
developed. Edge detection, 1linking, and 1line finding
algorithms as well as descriptions of linear segmented
objects are presented as work in progress for various image
ségmentation scenarios. Finally, higher 1level operating
software principles are formulated and examples of data
structures and their relationships are presented.
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2.1 Stochastic-Based Visual Texture Feature Extraction

William K. Pratt and Olivier D. Faugeras*

Introduction

Image texture is a region property or feature of an
image that <characterizes the structural relationship of
pixels within the region. The structural relationship of
texture may be regarded from a deterministic or stochastic
standpoint. In the deterministic formulation [1,2], texture
is considered as a basic local pattern that is periodically
or quasi-periodically repeated over some area. This
definition is applicable to line patterns such as ruled line
arrays, tiling patterns, etc. The stochastic formulation is
based on a model in which a texture region is viewed as a
sample of a two-dimensional stochastic process describable
by its statistical parameters. This formulation is
obviously applicable to the texture fields generated from
random number arrays that have been so widely used in
perceptual experiments [3-9]. 1In addition, the formulation
Seems well suited for natural textures consisting of
isolated areas from multi-gray level images such as grass,
water, forestry, etc. Figure 1 contains several examples of
natural textures taken from the Brodatz [10] photographic
album of natural texture.

The deterministic and stochastic definitions of texture
that have been presented do not depend upon visual

perception. The basic pattern and repetition frequency of a

*Dr. 0.D. Faugeras 1is with Institut de Recherche
d'Informatique et d'Automatique, Domaine de

Voluceau - Rocquencourt, 7815G Le Chesnay, France.
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texture sample could be perceptually invisible though
quantitatively present. It may be desireable 1in some
applications to characterize or <classify such textures.
However, the scope of this paper is limited to stochastic
descriptions of visual texture that are in agreement with
human perception.

Stochastic Texture Generation Experiments

Figure 2 contains a block diagram for a general model
of stochastic texture generation. An array of independent,
identically distributed random variables W(j,k) passes
through a 1linear or nonlinear spatial operator®{.} to
produce a stochastic texture array F(j,k). By controlling
the form of the generating probability density p(W) and the
spatial operator COf{.}, it 1is possible to create texture
fields with specified statistical properties.

Visual discrimination testing can be performed on the
stochastic texture fields generated by the model of figure 2
to determine what statistical parameters are of perceptual
importance. Examples of such testing by Pratt, Faugeras,
and Gagalowicz [9] are summarized below:

l. Observers are sensitive to differences in first
order densities of texture field pairs.

2. Observers are sensitive to differences in second
order densities of correlated texture field pairs
that possess the same first order densities.

3. Observers are not sensitive to differences in
third order densities of uncorrelated or
correlated texture field pairs that possess the
same pairwise first and second order densities.

4. Observers are sensitive to differences in the
autocorrelation of correlated texture field pairs
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with common mean and variance.
5. Discriminable texture field pairs can be produced
that possess the same mean, variance, and

autocorrelation function,

These experimental conclusions establish useful bounds
for developing stochastic-based visual texture features.
Second order statistical measures should be sufficient, but
the mean, variance, and autocorrelation function measures,
by themselves, although directly or indirectly necessary,
are not sufficient. The task then is to determine those
stochastic features that are perceptually sufficient.

Stochastic-Based Texture Features

The most general second order stochastic description of
a texture field 1is, of course, the second order joint
density between all pixel pairs of a texture block. The
joint density can be approximated by Jjoint gray scale
histograms of a texture block. The difficulty with this
approach 1is its enormous dimensionality; N2 two-dimensional
histogram are produced for each N x N array of pixel
neighbors and each histogram is an L x L array for L
luminance levels. Thus, the raw feature contains on the
order of N2L2 components! Clearly, some form of feature

selection is necessary.

Haralick et. al, [11,12] have suggested texture
features based on the spread of the joint histograms about
their diagonals. 1If a textured region is highly correlated,
the histograms values will tend to be concentrated toward
the diagonal, while for an uncorrelated region, the
histogram will tend toward uniformity. The Haralick family
of texture features has proved to be effective in terms of
classification accuracy [13] and stochastic analysis [14].

-10-



However, the feature extraction procedure suffers major
handicaps: enormous computation is required for géneration
of the histograms and feature calculation; and there is an
accuracy limitation in characterizing low contrast texture.
There is a definite need to determine simpler texture
features than those based on two-dimensional histograms.

Texture Field Decorrelation Techniques

From the stochastic texture generation model of
figure 2, it is observed that fields generated by that model
can be described quite compactly by 'specification of the
spatial operator {+} and the stationary first order

probability density p(W) of the independent, identically
distributed generating process W(j, k). Such information
cannot generally be determined from the texture field
observation F(j,k). However, this concept serves as a
useful guide to the development of candidate texture
features.

Consider the stationary ensemble autocorrelation

function

Kp(m,n) = E{F(j,k)F(j+m, k+n)} (1)

defined for lag values m,n = 0, +1, +2,..., +T where E{-}
denotes the expectation operator. The ensemble

autocorrelation function can be estimated by the spatial
autocorrelation function

J+W kW

Ap(m,n) = Z Z F(u,v)F(u-m,v-n) (2)
E;j—w v=k-W

-11-



where computation is over a (2W+l) x (2W+l1l) window. It is

possible to perform a whitening transformation [15,p.556],
based on the measured autocorrelation function of eq. (2),
to produce an uncorrelated, identically distributed field

W(3,k) = H(3,K)8H(j,k) (3)

where H(]j,k) is the whitening operator and the symbol &
denotes convolution. By definition, the autocorrelation of
the whitened image field is

1l ifm=n

K&(m,n) = ' (4)
0 otherwise

The whitened field ﬁ(j,k) can be utilized as an estimate of
the independent, identically distributed generating process
W(j, k).

If W(j,k) were known exactly, then in principle, system
identification techniques could be employed to estimate the
spatial operator O{-} from the textgre observation F(j,k).
But, the whitened field estimate W(j,k) will only identify
the spatial operator in terms of the autocorrelation
function of F(j,k), which is not unigue. Thus, it is
concluded that the probability density of the whitened field
p(ﬁ) and the spatial autocorrelation function of the texture
field KF(m,n) are, in general, incomplete descriptors of the
stochastic process F(3j,k). But, it may be possible that
they are sufficient descriptors of its texture from the
standpoint of visual texture discrimination.

-12-



Figure 3 provides examples of the measured spatial
autocorrelation function of the natural texture fields of
figure 1. Whitened fields corresponding to these texture
fields are presented in figure 4 and first order amplitude
histograms of the whitened fields are shown in Figure 5.
Examination of the histograms indicates that they are all
different. These experiments qualitatively support the
contention that the spatial autocorrelation function of a
texture field plus the first order amplitude histogram of
its whitened texture field provide sufficient information
for texture discrimination.

An obvious disadvantage of the whitening operator
method of texture field decorrelation is the large amount of
computation involved in the process. The experimental
autocorrelation function of a texture block must first be
formed, then the whitening operator must be generated, and
finally the block must be processed. An alternative to this
procedure is to utilize a gradient operator, such as a
Laplacian or Sobel operator, that approximates the whitening
operator. This topic is presently under investigation.

Feature Extraction

The previous sections have provided qualitative
evidence that the autocorrelation of a texture field plus
the first order amplitude histogram of its decorrelated
field contain sufficient information for texture
discrimination. Consideration must now be given to means of
extracting this information and forming texture features
useful for classification and analysis.

Figure 6 contains a block diagram of the

stochastic-based feature extraction method. Quantitative
techniques are now developed for representation of the

-13-
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Figure 4. Whitened natural texture fields
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spatial autocorrelation function and the decorrelated field
histogram. The potential performance of these features for
texture classification is «considered in the following
section.

A first order histogram P(b) of L 1levels can be
represented rather compactly by its central moments. The

first four moments are defined below [15,p.472]:

average
L-1
b, = Z bP (b) (5a)
b=0
deviation
L-1
) 1
by = (b—bA)ZP (b)]2 (5b)
b=0
skewness
L-1
1 3
% T L3 2. (b-by) e (o) (5¢)
D b=0
kurtosis
L L-1 4
= = (b=b,) "P(b)-3
bg i3 ; A | (5d)
p b=0

The factor 3 in the kurtosis expression is included so that

-18-



the kurtosis of a Gaussian histogram is zero.

The histogram moment called average tends toward zero
for the whitening and Laplacian operators. For the Sobel
gradient operator, it is a measure of the average dgradient
amplitude. The deviation parameter 1is near unity for a
whitening transformation since this operator is designed to
produce a wunit variance decorrelated field. The skewness
parameter measures the asymmetry of the histogram, and the
kurtosis parameter provides an indication of the departure
of the histogram from a Gaussian shape.

There are a number of methods that could be used to
represent the spatial autocorrelation function. The method
chosen, because of its -simplicity, is representation by
two-dimensional spread measures analogous to eq.(5). The
general form of the autocorrelation function spread measure

is
‘ T T .
S(u,v) = m§ n}:,o (m-n_)™ (n-n_)VE_ (m,n) (6}
where
T T N
n_ = ;g% Eg% mA (m,n) (7a)

T T |
n = 2, 2, pAg(m,n) (7b)

n m=0 n=0
AF(m,n) = T _ :
Z (7¢c)
AF(m,n)
m=0 n=0



Features of potential interest include: the profile spreads,
S(2,0) and S(0,2); the cross-relation, S(1,1): and the
second degree spread, S(2,2).

Bhattacharyya Distance Figure of Merit

In this study, texture features have been evaluated
according to their Bhattacharyya distance [16,p.268] figure
of merit for texture prototypes. The Bhattacharyya distance

(B-distance for simplicity) is a scalar function of the
probability densities of features of two classes defined as

LS
B(S;,S,) = -En{f[p(gglsl)p(gc_lsz)]2d§} (8)

where x denotes a feature vector with conditional density
p(§|si) for class Si' It can be shown [16,p.267] that the
B-distance is monotonically related to the Chernoff bound of
the probability of classification error using a Bayes
classifier. The bound on the error probability is

P < [P(S;)P(5,) ] %exp{-B(s,,S,) ) (9)

where P(S;) represents the a priori class probability. For
future reference, the Chernoff error bound is tabulated in
Table 1 as a function of B-distance for equally 1likely
texture classes.

-20-



Table 1

Bhattacharyya Distance Versus Error Bound

B(Sl,Sz) Error Bound
1 1.84 x 1071
2 6.77 x 1072
4  9.16 x 1073
6 1.24 x 1073
8 1.68 x 1074
10 2.27 x 10°°
12 3.07 x 107°

For Gaussian densities, the B-distance becomes

1
I+ 1 |3(2,+2,) |

-1
_ 1 T
1Z;1%12,1

where u and D represent the feature mean vector and the
feature covariance matrix of the classes, respectively.
Calculation for other densities 1is generally difficult.
Histogram measurements of the texture feature components

-21-



indicates that the Gaussian model is reasonable.

The B-distance has been computed for several feature
vector sets of prototype texture fields. In these
experiments, the natural stochastic texture fields of
figure 1 have been subdivided into 64 non-overlapping
prototype regions of 64x64 pixels. Texture features have
been extracted from each region and formed into a texture
feature vector. Next, the mean and covariance of the
feature vector have been computed and substituted into
eqg. (10) to obtain the B-distance for pairs of prototype
fields.

Table 2 contains a listing of B-distances for three
texture feature sets that measure the shape of the
autocorrelation function of each prototype field. With
feature set 1, containing four features, the B-distances of
the natural texture fields correspond to misclassification
error bounds from about 6% to 20%. The B-distances are much
smaller for feature sets 2 and 3 employing two features and
one feature, respectively The B-distance measurements of
Table 2 indicate that autocorrelation shape features of
texture fields, by themselves, are probably not adequate for
texture classification.

Table 3 contains listings of B-distances for texture
features consisting of histogram moments of whitened texture
fields (set 1 to set 3) plus the texture field
autocorrelation function shape (set 4 to set 7). For
feature set 1, consisting of the first four histogram
moments, the classification error bounds are less than 16%
for the natural textures. The error bounds increase
slightly for feature set 2 which uses only the skewness and
kurtosis histogram moments. The error bounds using only
kurtosis are gquite high. These examples indicate that
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Table 2
Bhattacharyya Distance of Texture Feature Sets for Prototype

Texture Fields Autocorrelation Features

_ SET #1 SET #2 SET #3
FIELD PAIRS

(4) (2) (1)

GRASS SAND 1.15 0.72 0.70
GRASS RAFFIA 2.10 1.65 1.18
GRASS WOOL 0.97 0.52 0.01
SAND RAFFIA 0.92 0.65 0.21
SAND WOOL 1.72 0.67 0.61
RAFFIA WOOL 2.78 1.70 1.09
AVERAGE 1.61 0.98 0.63

SET #1: S(2,0), S(0,2), S(1,1), S(2,2)
SET #2: S(1,1), S(2,2)

SET #3: 8S(2,2)
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Table 3

Bhattacharyya Distance of Texture Feature Sets

for Prototype Texture Fields-Whitened Field

Histogram and Autocorrelation Features

TEXTURE FEATURE SETS
FIELD PAIRS Set #1 | Set #2 |Set #3 |Set #4 |Set #5 |Set #6 |set #7
Grass | Sand 4.394 | 4.285 | 0.713 | 5.647 | 5.528 | 5.075 | 5.025
Grass |Raffia | 1.154 | 1.042 | 0.525 | 3.332 3.221 | 2.710 | 2.255
Grass | Wool 1.682 | 1.595 | 0.144 | 2.773 | 2.614 | 2.195 | 1.632
Sand |Raffia |12.089 |[11.936 0.264 113.698 {13.523 {12.965 |12.358
Sand Wool |[11.758 [11.617 | 1.911 {13.391 [13.264 |12.341 |12.229
Raffia| Wool 4.027 | 3.890 | 1.476 | 7.302 | 7.140 | 5.769 | 5.133
AVERAGE 5.85 5.73 0.84 7.69 7.55 6.84 6.44
(EXCLUDING :
1A-1B)
SET #1: by /by, bg, by
SET #2: bg,b,
SET #3: bK
SET #4: bA,bD,bS,bK,S(2,O),S(0,2),S(l,l),S(2,2)
SET #5! bs,bK,S(z,O),S(O,z)Is(lil)ls(zlz)
SET #6: bg,by,S(1,1),5(2,2)
SET #7: bS,bK,S(Z,Z)
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texture features based upon the histogram shape of a
whitened texture field, by themselves, may be adequate for
natural texture fields.

Feature sets 4 to 7 of Table 2 combine histogram and
autocorrelation shape measures. Set 4 containing four
histogram and four autocorrelation features provides quite
high B-distances for the natural textures. The B-distances
are still quite high for the three element feature set 3
containing shape measures bs, bK and S(2,2). Therefore, on
the basis of these experiments, the texture feature

extraction method of figure 6 combining autocorrelation
function measurement of a texture field coupled with
histogram measurement of the whitened texture field, offers
a viable means of texture classification.

Summary

Bounds have been established for necessary and
sufficient parameters for characterization of stochastic
texture fields. This information, coupled with a stochastic
model of texture field generation, has 1led to the
development of a texture feature extraction method based on
representation of the autocorrelation function of a texture
field plus the gray scale histogram of a decorrelated
version of the texture field. Feature representationijg in
terms of central moments of the autocorrelation function and
the histogram. The feature vector so obtained has been
evaluated by Bhattacharyya distance measurements. Testing
with prototype texture fields indicates that large
Bhattacharyya distances can be obtained between texture -
field pairs with the stochastic-based feature extraction
method.
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2.2 Quantitative Design and Evaluation of
Enhancement/Thresholding Edge Detectors

Ikram E. Abdou and William K. Pratt

Introduction
Quantitative design and performance evaluation
techniques - have been developed for the

enhancement/thresholding class of image edge detectors. The
design techniques are based on statistical detection theory
and deterministic pattern recognition classification
procedures. The performance evaluation methods developed
include: (a) deterministic measurement of the edge gradient
amplitude; (b) comparison of the probabilities of correct
and false edge detection; and (c) figure of merit
computation.

Enhancement/Thresholding Luminance Edge Detectors

The edge enhancement/thresholding edge detection method
is described in figure 1 [1]. In this method, the discrete
image array F(j,k) is spatially processed by a set of N
linear operators or masks Hi(j,k) to produce a set of
gradient functions

where @ denotes two-dimensional spatial convolution. Next,
at each pixel, the gradient functions are combined by a
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linear or nonlinear point operator O®{.} to create an edge
enhanced array

A(j,k) = O{Gi(j,k)} (2)

Typical forms of the point operator include the root mean
square, magnitude, and maximum. The enhanced array A(j,k)
provides a measure of the edge discontinuity at the center
of the gradient mask. An edge decision is formed on the
basis of the amplitude of A(j,k) with respect to a threshold
(t). If A(j,k) > t, an edge 1is assumed present, and if
A(j,k) < t, no edge is indicated. The edge decision is
usually recorded as a binary edge map E(j,k) where a one
value indicates an edge and a zero value, no edge. There
are two types of spatial edge enhancement operators: the

differential and the template matching operators.

Differential Operators. The differential operators
perform discrete differentiation of an image array to
produce a gradient field. This group includes the Roberts
[2], Prewitt [3], and Sobel [4,p.271] operators. The
Roberts operator is a 2 x 2 pixel mask in which

0 -1

»Hl = , o] (3a)
1 o7

Hy = o0 1 (3b)

The Prewitt and Sobel operators are 3 x 3 pixel operators

where
1 0 -1
Hl = c 0 -c (4a)
1 0 -1
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1l ¢ 1
H = 0 0 0 (4b)
-1 -¢c -1

With the Prewitt operator, ¢ =1 and with the Sobel
operator, ¢ = 2. These operators usually utilize a root
mean square point nonlinearity to produce an edge enhanced
array '

5
A(jrk) = [[Gl(jrk)]z + [Gz(jfk)lz] (Sa)

A magnitude point nonlinearity yielding

A% = 16,G,x | + 16,3k | (55)

is often used for computational simplicity.

Edge orientation can be obtained from the relationship
between the horizontal and vertical gradient functions. For
the 2 x 2 operators, the edge orientation angle g(j,k), with
respect to the horizontal axis, is defined to be

Gz(j'k)] (6a)

. T -1
= —_ + ——————
0(j,k) Z tan [Gl(J,k)

and for 3 x 3 operators

_ Gz(jrk) (6b)
O(J!k) = tan Gl(j,k)

Template Matching Operators. The template matching
operators are a set of masks representing discrete

approximations to ideal edges of  various orientation.
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Figure 2 gives several examples for two of eight possible
compass orientations. These operators include the compass
gradient introduced by Prewitt [3], the Kirsch [5], and the
3-level and 5-level template masks. The latter two
operators are related to the Prewitt and Sobel differential
operators, respectively. With these operators, the
enhancement is formed as the maximum of the gradient arrays.
Thus

. - 0 I
A(j,k) = mix{IGi(j,k),} (7)

The edge orientation 6(j,k) corresponds to the compass
direction of the largest gradient.

Edge Detector Sensitivity Analysis

Simple geometric calculations can be performed to
determine the edge gradient and detected edge orientation
response as a function of actual edge orientation. Results
of these calculations are presented in figures 3 and 4. The
curves indicate that the Prewitt and Sobel square root
differential operators and the template matching operators
all possess an amplitude response relatively invariant to
actual edge orientation. The Sobel operator provides the
most linear response between actual and detected edge
orientation.

Statistical Design Procedure

Edge detection can be regarded as a hypothesis testing
problem to determine if an image region contains an edge or
contains no edge. Let P(edge) and P(no-edge) denote the a
priori probabilities of these events. Then, the edge
detection process can be characterized by the probability of
correct edge detection
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Figure 3. Edge gradient amplitude response as a function of
actual edge orientation for 2 x 2 and 3 x 3 operators
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PD = P(A > tledge) =./[ p(Aledge) da (8)
't

and the probability of false edge detection

(-]

PF = P(a > t|no—edge) =./[ p(Alno—edge) da (9)
t

where (t) is the edge decision threshold and p(A |edge) and
P(A |no-edge) are the conditional probability densities of
the edge enhanced field A(j,k).

The detection performance of edge detectors can be
readily compared by a parametric plot of the correct
detection probability P, versus false detection probability
Pp in terms of the detection threshold (t). Figure 5
presents such plots for square root differential operators
and template matching operators for vertical and diagonal
edges and a signal-to-noise ratio (SNR) of 10.0. From these
curves, it 1is apparent that the Sobel and Prewitt 3 x 3
operators are superior to the Roberts 2 x 2 operators. The
Prewitt operator 1is better than the Sobel operator for a
vertical edge. But, for a diagonal edge, the Sobel operator
is superior. In the case of template matching operators,
the 3-level and 5-level operators exhibit almost identical
performance that 1is superior to the Kirsch and compass
gradient operators. Finally, the Sobel and Prewitt
differential operators perform slightly better than the
3~level and 5-level template matching operators.

Pattern Classification Design Procedure

There are two difficulties with the statistical design
procedure described in the previous section: reliability of
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the stochastic edge model and analytic problems associated
with complex edge models such as non-Gaussian
signal-dependent noise. The pattern classification design

procedure described in this section avoids these
difficulties.

Edge detection can be viewed as a classical pattern
recognition or classification problem. A pattern consisting
of the pixels encompassed by an edge detection operator is
classified as a region containing an edge or no-edge on the
basis of an extracted region feature, the amplitude A(j,k)
of the edge enhancement. Classification can be accomplished
by the linear discriminant function method [8] in which the
edge hypothesis is selected if

wx > 0 (10a)

and rejected if

T
wx <0 (10b)
w = [w(l),w(2)] where w(l) and w(2) are weighting factors
of the weight vector and x = [A,1] . The weight factors are

related to the decision threshold by

£

—~
N
~

t = - oAy (11)

g
|
e

Components of w can be determined by the Ho-Kashyap training
procedure [6,9] using a set of prototype pixel regions
containing edges or no-edges.

An experiment has been performed to evaluate the

pattern classification edge detector design procedure. 1In
this experiment, sets of 20 edge prototypes and 20 no-edge
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prototypes have been generated for vertical and diagonal
edges embedded in independent Gaussian noise at
signal-to-noise ratios of 1.0 and 10.0. This prototype data
has then been used to determine the optimum threshold.
After the training phase was completed, the edge detectors
were tested with 250 other prototypes. Optimum thresholds
and detection probabilities are tabulated in Table 1 for
various edge detectors. It is interesting to note, that in
most cases, the optimum threshold converged to a value for
which the error probabilities were approximately equal
(PF & l-PD). This is the same result that is obtained by
the Bayes minimum error design procedure if edges and no
edges are equally probable. Thus, in the Gaussian noise
case, similar design results are obtained with the
statistical and pattern classification design approaches.

Figure of Merit Comparison

The probabilities of correct detection and false
detection, obtained analytically or experimentally, are
useful performance indicators for edge detectors. However,
these detection probability functions do not distinguish
between the various types of errors that can be introduced
by an edge detector. Pratt [1,p.495] has developed a simple
figure of merit for edge detectors that provides a relative
penalty for fragmented, smeared, and offset edges.

Pratt's figure of merit measurement procedure utilizes
@ square array of pixels with a vertically oriented ramp
edge in its center. The edge parameters and noise level can
be varied to generate test edges which are then processed by
an edge detector to produce binary edge maps. The figure of
merit is defined as
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I

A
e oo 1 2: N
max{I;,I,} £ 1+mdz(i) (12)

where II and I, are the number of ideal and actual edge
points, d(i) is the pixel miss distance of the i-th edge
detected, and o is a scaling constant chosen to be a = 1/9
to provide a relative penalty between smeared edges and
isolated, but offset, edges. This technique can be extended
to diagonal edges.

Figure 6 contains a figure of merit comparison between
the best differential and template matching operators.

Photographs of detector edge maps corresponding to several
of the data points are presented in figure 7. The curves
indicate that among the class of differential operators, the
Prewitt and Sobel operators provide a substantially higher
figure of merit than the Roberts operator. The Prewitt
operator exhibits a somewhat larger figure of merit than the
Sobel operator for a vertical edge, while for a diagonal
edge, their performances are nearly the same. For the
template operators, the 3-level, 5-level, and Kirsch
operators are clearly superior to the compass gradient
operator. The 3-level operator is dominant by a slight
margin at all signal-to-noise ratios for diagonal edges, but
for vertical edges the relative dominance changes with
signal-to-noise ratio. The Prewitt square root differential
operator gives a slightly higher figure of merit than the
3-level template matching operator for vertical edges. For
diagonal edges, the reverse is true.

Summary

On the basis of quantitative design and evaluation
techniques presented, the following conclusions have been
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(a) Prewitt square root (b) Prewitt square root (c) Prewitt square root
vertical edge, SNR=1 vertical edge, SNR=10 vertical edge, SNR=100

(d) Prewitt magnitude (e) Prewitt square root (f) Sobel sguare root
vertical edge, SNR=10 diagonal edge, SNR=10 vertical edge, SNR=10

(g) Roberts square root (h) 3-level (i) Kirsch
vertical edge, SNR=10 vertical edge, SNR=10 vertical edge, SNR=1l0

Figure 7. Edge maps for 2 x 2 and 3 x 3 operators.
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formulated.

l. The 3 x 3 differential edge detectors perform
appreciably better than the 2 x 2 differential edge
detectors.

2. The 3 x 3 Prewitt and Sobel differential edge
detectors are the best of the 3 x 3 pixel
differential class of edge detectors.

3. The 3-level edge detector is the best of the 3 x 3
pixel template matching class of edge detectors.

4. The 3 x 3 pixel 3-level template matching edge
detector and the 3 x 3 pixel Sobel and Prewitt
differential edge detectors perform almost equally
well as a function of edge orientation and
signal-to-noise ratio. It should be noted that
differential edge detectors require fewer
operations than template edge detectors.
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2.3 Optical Psuedocolor Encoding of One-Dimensional Texture
Patterns

Timothy C. Strand and David D. Garber

Introduction

Another paper [2] in this report illustrates the method
by which various one-dimensional binary textures may be
generated. These texture patterns may be color encoded
according to their 1local spatial frequency contents. The
results indicate that an optical spatial filtering system
can be wused to perform a simple type of texture-to-color
conversion. Such a system could be used to enhance textural
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differences for a human observer in general image scenes.

Basic Concepts

The application of pseudocolor to an image involves the
introduction of color into a monochrome image where the
color is used to encode additional information related to
the image [1]. In the past it has been used almost
exclusively to encode gray-level information. The advantage
of this particular application is that the number of colors
a human observer can differentiate is much larger than the
number of intensity levels he can distinguish. Thus the
addition of color can be used to effectively increase the
amount of gray-level information available to the observer.
Color encoding of local spatial frequency content is done
using an optical spatial-filtering setup with a color filter
placed in the spatial frequency plane. The system can be
thought of as a multi-channel filtering system, where the
separate channels are color coded. The advantages of the
use of color to encode the spatial frequency information is
that the output is in a form easily interpreted by either a
human observer or a machine. Previous research {l1], [3] has
shown that spatial frequency pseudocolor could be a useful
technique in digital image processing. However, this
process is quite cumbersome to carry out on a computer since
it typically requires one forward Fourier transform and
three inverse Fourier transforms, one for each color. Thus,
an optical processing system encoding spatial frequency
content in real time provides many advantages over a digital

approach.

The Experiment

The experimental setup is basically that of Fig. 1.
For the texture experiments described here the illumination
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Figure 2. One-dimensional, three-color filter in the pupil plane.
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used was derived from a tungsten filament lamp. Figure 3
shows the filter used for one-dimensional processing. It
consists of the blue Wratter 47B, the green Wratten 58, and
the red Wratten 92. This combination was selected after
limited experimentation because it gave a good visual color
balance. The optimal choice of colors depends upon the
illumination, the detector, the application, and the texture

spatial frequencies.

In order to confirm the theoretical concept of the
system, (additional details concerning the system are given
by J. Bescos and T.C. Strand [4]) the one-dimensional
filter of Fig. 3 was made to correspond to the theoretical
filter in Fig. 2. Color 1, the low frequency filter, was
blue. The intermediate frequency region corresponding to
color 2 was green. The high frequency region of color 3 was
red.

Results

Texture is a complex image attribute that is difficult
even to define precisely. Texture has been the subject of
much research both in the fields of image processing and in
visual perception. Although no simple method has been found
to characterize all the facets of texture, it is generally
recognized that there is a close connection between the
texture and the spatial frequency content of a given image
segment. This connection has been most recently studied by
Purks and Richards [5]. They generated a series of binary
texture patterns. They varied the different parameters
controlling their artificial textures and measured the
visual discriminability of these various textures. From
this work Purks and Richards conclude, among other things,
that differences 1in the spatial frequency content of their
binary patterns correlate closely to the relative visual
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Figure 3. One-dimensional color filter corresponding to figure 2.
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discriminability of these textures. Examples of binary
textures similar to those of Purks and Richards are shown in
Figs. 4-7. The black and white non-encoded versions of
these textures are shown in Figs. 1-4 in another paper [2]
in this report. Each texture field was formed by generating
a string of binary pulses with carefully controlled
statistics. Each string was then broken up into shorter
strings which were stacked to form the two-dimensional array
which served as the texture pattern. Thus the derived
textures are only controlled in one dimension. The texture
patterns of Figs. 4-7 were processed with the
one-dimensional filter described earlier. The large texture
differences result in dramatic color differences between the
two halves of the image. Examples of this are shown in
Figs. 4-6. 1In Fig. 7 the color difference is present, but
is not nearly so pronounced as in the previous example.
This 1is the expected result since the textures are more
difficult to discriminate.

A sinusoidal text target was generated and introduced
into the <color-encoding system. The results are shown in
figure 8. The progression of color is exactly as would be
expected. A set of filters was also made with circular
symmetry for two~dimensional filtering. The filter
used had a blue central disc surrounded by a red annular
section with a green ring on the outside. Note that this
color ordering 1is not the same as for the one-dimensional
filter. A three-bar chart was imaged using the system. The
results are shown in figure 9.

It should be noted that the resultant color in these
images represents the spatial frequency distribution in a
small, 1localized area of the textures. This area

corresponds roughly to the size of the point spread function
of one color segment, say the low frequency segment, of the

-51-



~
p g% W
= 2 o i
g 2§

SEM
s+ Em

Figure 8

~-52~



color filter. If it were desirable to determine the spatial
frequency content on a coarser scale, a second incoherent
imaging step could be added with the appropriate low-pass
filter to effectively average the color over a large area.
This might be wuseful if one were interested more in the
spatial frequency distribution over large areas of the image
and not in fine details in the image.

Conclusion

We have presented a system that color encodes the local

spatial frequency content of an image. The system has been
shown capable of color coding certain artificial textures.
Such coding could be useful either for making small texture
differences more readily detectable for a human observer or
it could serve as preprocessor which provides information of
spatial frequency content to an electronic or optical
processing system.

References

1. H.C. Andrews, A.B. Tescher and R.P. Kruger, 1IEEE
Spectrum, 9, 7, 20 (1972).

2. D.D. Garber, "Generation and Discrimination of
One-dimensional Binary Textures," University of Southern

California, USCIPI Report, Sept. 1978.

3. J.J. Burch, J. Opt. Soc. of am. 60, 709A (1970).

4. J. Bescos and T.C. Strand, Applied Optics, 17, 2524

(1978), (accepted for publication)

5. S.R. Purks and W. Richards, Opt. Soc. Am.,Vol. 67,
pp. 765 (1977).

-53-



2.4 One-Dimensional Texture Pattern Generation and
Discrimination

David D. Garber

Introduction

Texture is a complex image attribute that is difficult
to define precisely and has been the subject of much
research. The relationship between discrimination of
textures by human observers and the mathematical attributes
of textures has also been extensively researched. Models
~have been proposed to allow computer discrimination based on
statistical parameters considered in some aspects to be
primary texture measures.

Julesz [1] created computer generated patterns with
controlled high-order statistical properties. A conclusion
drawn from his work is that texture fields differing only in
third and higher order statistics cannot be discriminated by
a human viewer. Pollack [2] has shown later that textures
whose first and second order nearest neighbor probabilities
are equal may be discriminated by varying the third order
nearest neighbor probabilities. Purks and Richards [3]
extended this concept to create texture patterns that differ
only in their statistics for four adjacent points. This
study indicates that such textures can also be easily
discriminated.

However as was pointed out by Pratt (4], the second
order probability pairs of the two fields are not
constrained to be equal for an arbitrary pixel along an
image 1line. Thus there is some question still as to the
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relationships between measured mathematical parameters and

human discriminability.

We have studied in detail the mathematical
relationships of parameters involved in binary
computer-generated one-dimensional texture patterns,

Texture patterns in this paper have been generated with
specific goals in mind using the mathematical relationships
derived. Methods have been developed to control texture
statistics for both nearest neighbor and non-nearest
neighbor cases and corresponding textures are presented.

Generation Procedure

One-Dimensional binary textures represent the simplest
form of texture possible. It is believed that such binary
patterns force human observers to utilize primitive visual
mechanisms in discrimination. They are not designed to
replace or imitate natural textures but are experimentally
valuable in deriving concepts concerning texture attributes
due to their mathematical non-complexity.

In this experiment, binary sequences with
carefully-controlled transition probabilities dependent on
the last 4 points were generated and transferred to an image
texture file. Each sequence was then broken up into shorter
strings which were stacked to form the two-dimensional array
which served as the texture pattern. Thus, the derived
statistics are only controlled in one dimension.

We can allow the a priori probability of a binary
sequence of length N to be defined by P(Vl,Vz,...,VN) where
each VI’ I =1, N is either 0, or 1. As our binary sequence
is controlled, in fact, determined, by generation
probabilities we need to define a set of parameters
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G(Vl,Vz,...,VN) which represents the probability of
generating a 0 after the binary sequence V1'V2""’VN' It
follows that the probability of generating a 1 after the
sequence Vl,VZ,...,VN is l-G(Vl,Vz,...,VN). Illustration of
this commonly-used texture generation method is given by
Purks and Richards, however, it should be pointed out that
this generation parameters were in many cases constrained to
provide equal N-gram statistics, P(Vl'vz""’VN)' A more
general procedure is detailed here.

Mathematics

We are concerned here with a probabilistic approach to
generating textures beyond that presented in the Purks and
Richards article. This interest is motivated by the desire
to generate any pattern according to a set of given
probabilities P(Vy,V5,...,Vy) which may be named the ' N-gram
statistics of a specific pattern. We must therefore deal
with the relétionships that exist between these N-gram
statistics and their generation parameters denoted by
G(Vy/Vyse..,Vy). Examining these relationships and also
those between N-gram statistics of different lengths, that
is the relationships between P(V1,Vo,...,VT) and
P(Vl,Vz,...,VJ) for all I and J, 1leads us to an
understanding of the probabilistic system involved and
thereby a method of generating desired texture patterns.

Considering the nature of the experiment, generating
random textures, rather than rigorously define a probability
function on a sample space,it is just as informative to draw
a simple analogy to our generation process and from this
draw some basic concepts and conclusions. We recall that
Gl(vl'VZ""'VN) was defined as the probability of
generating a "1" following the sequence (Vi/Vor...,Vy) where
each v, is either a "0" or "1". We also recall that
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Go (Vs Vyrenes Vi) = 1-Gy (V),Vy, ...,V

N -

(The modification of the sequence (Vl,Vé,...,Vﬁ_l) to
(Vl,Vz,...,VN) from the Purks and Richards paper does not
change their validity as these relationships hold for all
N.) G (Vl,V ,...,Vﬁ) is the probability of generating a "0"

2
following the sequence Vi ,V2,...,%.

We might regard this generation process to be
equivalent to the experiment consisting of tossing a "smart"
coin that has a finite memory. In this case,
G (Vl,Vz,...,VN) might represent the probability of tossing
a "heads" given the previous sequence of N tosses was
\Y ,VZ,...,V . The resulting string of "1's" and "0's" (0 is
the random variable denoting heads, 1 denotes tails)
recorded from this experiment is our “"texture". We realize
immediately that the texture is "determined" by a set of
generation parameters Gg(Vy,Vy,...,Vy). Using the concept
of conditional probability where P(A/B) is the probability
of A given B we notice that

GO(vl’VZ”"’VN) = P(O/Vl,Vz,...,VN)

Perhaps the most important concept derived from these
generation parameters is that of the finite memory of the
system. As is indicated by the notation GO(Vl,Vz,...,Vﬁ),
the probability of generating a zero depends on the string
of binary values Vy,Vy,...,Vy and not those "preceeding" Ve
It is thereby suggested that our system has an N-gram memory
and we will define such a system N-dimensional. For
example, returning to our coin tossing experiment, if we are
in a four-dimensional system, the probability of tossing a
head depends on the four previous tosses only and all these
conditional probabilities are determined by the sixteen
parameters Gy (Vy,Vy,V3,Vy).
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With these concepts in mind we return to our initial
problem, find these generation parameters GO(V]!VZ"“'VN)
given the desired probabilities P(Vl, 2,...V'N) and vice
versa. The approach taken by Purks and Richards [3] in
finding these N-gram statistics seems to be based on
sampling the generated textures. This may be seen by
examining the entries in their Table I. The entries seem to
correspond to the number of each N-gram counted in the
texture generated and the accuracy of such probabilities
depends on the 1law of 1large numbers. So the true
probabilities P(Vl'VZ"°"VN) are only approximated by the
output textures and this approximation is poor when the
physical size of the textures is small, that is the number
of N-grams output is small, the probabilities are close to
zero or one, the length of the N-gram string, is large.
Therefore it is desirable to compute the exact probabilities
given the generation parameters of the system.

Before proceeding further it is wuseful to prove an
identity:

P(Vllvzl' . IVN_l) = P(Vllvzl' L IVN_1I0)+P(V11V2I° °'IVN_111) .
P(Vy/Vyreen Vg 1o1) = PAV Vo e N 1) %6 (V) Vo, 0u, Vo)

- ¥*
P(Vl,vzlnoo'VN_l,O) - P(Vl,vz,...,VN_l) GO(Vl,Vz,...VN_l)

* -
PV Vo rene Vo 1) *(1=6y (V) Vo oo,V o

therefore

PV Vyreee Vg 1, 0)+P(V,,Vy, .o,V

N-1'1)=P (Vl ,V2 Poo .VN_l)
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As a result we have the following three sets of
equalities
P(vl,vz,;..,vN_l,O) = P(vl.Vz,--.,VN_IVGOCVI.Vz.---.VN_l) (1)

-~

P(Vl,Vz,...,VN~l,l) = P(vl,vz,...,VN_l)*(l-Go(vl,vz,...,VN_I»

P(Vl'VZ""'VN—l) = P(Vl’vz""’VN-1’0)+P(V1’VZ'""VN—l'l) (2)

= ceesV .0
Go(vl'vzl...,VN_l) - P(Vl,VZI ’ N_l )/ (3)

(P(Vl'VZ' cee ,VN__l,O)"'P (Vl IVZI' .- lVN_l'l))

(3) results from (1) and (2) and is essentially a statement
of Bayes theorem for our problem. It should be noted that
equation (4) of Purks and Richards [3] article is not
included in the above as such an equation may be used only
when comparing (generating) patterns with different N-gram
statistics where the shorter (n-1) transition probabilities
are fixed. We are producing a more general system, One
should also notice that equality (2) is reflected in the
entries in Table I of Purks and Richards article (except for
column 2 which the author of this paper believes to be in
~error). Naturally, the numbers in these columns must first
be scaled by a common denominator such that the sum of
P(Vl,...,VN) is equal to one for any N before this is
clearly seen.

Let us then consider the problem of obtaining the
generation parameters (G's) from the probabiiity parameters
(P's). Immediately we come to the conclusion that this is a
trivial problem, One might merely use equality (3) to
deduce the generation parameters. For example, consider the
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problem where we desire to generate a texture with the
following 3-gram statistics

P(0,0,0) = 0.0125 P(1,0,0) = 0.2375
P(0,0,1) = 0.2375 P(1,0,1) = 0.0125
P(0,1,0) =-0.0125 P(1,1,0) = 0.2375
P(0,1,1) = 0.2375 P(1,1,1) = 0.0125

Using (3) we obtain

G4 (0,0) = 0.05
GO(O,l) = 0.05
Gy(L,0) = 0.95
Gy(1,1) = 0.95

Recall that the G1(V1,Vy) are defined also as
Gl(Vl,V&r=l—G0(Vl,Vé). And we could generate textures using
generation parameters derived in this way but we will soon
find out why this is an incorrect approach. For example,
consider the following set of 3-gram statistics.

P(0,0,0) = 0.015 P(1,0,0) = 0.19
P(0,0,1) = 0.285 P(1,0,1) = 0.01
P(0,1,0) = 0.01 P(1,1,0) = 0.285
P(0,1,1) = 0.19 P(1,1,1) = 0.015

Using (3) we obtain the exact same set of generation
parameters! We arrive at a contradiction as we can not use
the same generation parameters GO(Vl'Vz) and obtain two
different sets of N-gram statistics P(Vl’VZ'VB)' That is,
once we have set our generation parameters it follows
logically that our texture and its associated P(Vy,Vy,...Vy)
are determined for all N.

Observing the equality that we used to obtain these

generation parameters (3) we see that the P's do in fact
determine the G's but there is no indication that given the
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G's, the P's will be returned in the generation process. 1In
other words, the mapping from the set of P's to G's is not
one-to-one. In fact the mappings between the N-gram
statistics and generation parameters of the texture
generation system are rather complex. We will examine those
relationships in more detail.

As was stated above, once the generation parameters are
defined, a texture may be generated using those parameters
and the N-gram statistics are determined. We also know that
once a complete set of N-gram statistics P(V] ,Vy,...,Vy) are
defined for some N the N-gram statistics P(Vi,V2,...,VM may
be resolved using (2) for all M<KN. Again we restate the
problem. Given the generation parameters of a system,
GO(Vl’VZ""VN)’ determine the N-gram statistics,
P(Vl,Vz,...,VN) of the resulting texture.

The solution to this problem may be found by
considering the generation procedure as a discrete Markov
process. This approach is readily seen when considering the
generation parameters GO(Vl'VZ""VN) as transition
probabilities. If we consider a two-dimensional system with
p(0,0),pP(0,1),P(1,0) and P(1l,1) and generation parameters
G (0,0),6 (0,1),G (1,0) and G (1,1) we may define our system
as composed of four possible states (0,0),(0,1),(1,0) and
(1,1). If the system is in state i at the Kth observation
and in state j at the (K+1)th observation then we say that
the system has made a transition from state i to state j at
the Kth stage of the generation process. 1In our example an
observation is taken at each generation of a single new
binary value and the state is determined by the values of
the last two binary numbers generated As an example,
consider the sequence 0,1,1,0,0 We might consider the system
to be in the (0,1) state at the start which may represent
the Kth stage of our generation process then a transition is
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made to the (1,1) state at the (K+1)th stage. These
transition probabilities are determined by the generation
paraméters of the system. We also note that our
n-dimensional system has 2 possible states. As the
transitions from each of these 2 possible states to each of
the the 2 possible states is fixed by our generation
parameters we may form a transition matrix T whose elements
t(i,j) represent the probability of a transition from the
ith state to the jth state. If T is the transition matrix
of a regular Markov chain, then there 1is a unique
probability vector p which has positive coordinates and

satisfies T
T'p=0p

This same vector p may be computed by taking any row of the
matrix
79

as q approaches infinity [5]. The vector p represents the
vector of steady state probabilities. In our case it
contains the desired probabilities P(Vl,Vé,...VN).

It is important to realize that this theorem holds for
regular Markov processes. There is a set of absorbing
Markov chains which are formed when any element of the
transition matrix is equal to one along the diagonal. This
could happen if G0(0,0)=l for example ( a series of O0's
would be generated in this case). For the purposes of our
discussion we will assume that

0 < Go(Vl,sz---,VN) <1

for all Vi’ This is a sufficient but not necessary
condition for the process to be non-absorbing.

Applying these concepts to a two-dimensional system we
obtain the transition matrix
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- 0
GO(O,O) 1 GO(O,O) 0

0 0 GO(O,l) 'l—Go(O,l)
- 0
Go(l,O) 1 Go(l,O) 0 |
0 0 Go(l,l) 1—G0(1,1L

.

The first row contains the transition probabilities
from state (0,0) to states (0,0), (0,1),(1,0) and (1,1) in
that order. The following set of equations results

N i ]
Gy(0,0)-1 0 Gy(1,0) 0 £(0,0) 0
1-G, (0, 0) -1 1-G4 (1,00 0 <« lro,mf- |o
0 Gy (0,1) A Go(1, 1| | e@1,0) 0
0 1-Gy (0,1) 0 -Gy (1,1) P(1,1) 0

As the above system is singular, we may form an
equivalent non-sinqular set by replacing any equation with
P(0,0)+P(0,1)+P(1,0)+P(1,1) =1 .
by using the fact that p is a probability vector. Solving
this system gives the desired N-gram statistics P(Vi,Vé).

Examining these generation parameters further we find
that the same N-gram statistics may be generated by

generation parameters of a different dimension. For
example, the following two sets
GO(O,O) = 0.05 GO(O,O,O) = 0.05 G0(1,0,0) = 0.05
GO(O,l) = 0.07 GO(O,O,l) = 0.07 Go(l,O,l) = 0.07
Go(l,O) = 0.92 Go(O,l,O) = 0.92 Go(l,l,O) = 0.92
Go(l,l) = 0.75 GO(O,l,l) = 0.75 Gy(1,1,1) = 0.75

The values, GO(Vl'VZ’VB) of the second set 1indicate
that the system is memoryless beyond 2 previous generations
that is the probability of generating a zero following a
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Vl,Vz,V3 does not depend on Vi. We may write

Go(VyrVy,V3) = P(0/V,,V,,V,) = P(0/V,,V,) = Gy(V,,V,)

for all V2 and V3.

It follows that, according to equality (1), the

P(Vl,Vz,...,VN) are also determined in our example for N>2
given P(Vl’VZ) and GO(Vl,Vz). These would be
P (Vl’vz ,V3,V4)= P (Vl ,Vz ,V3) *GV4 (Vl 1V2 IV3)
= P(V,,V,,V.,)*G_ (V,,V,) etc.
17°2°°3 V4 2"°3 | |
We conclude that given any set of generation parameters
GO(Vl, 2,...,V’N) we may form a set of generation parameters
GO(Vl, 2,...,V‘M), M greater than or equal to N, according to

the rule
v,,)

GO(Vl'VZ""’VM?N’ VM—N+1””AGH = GO(VM—N+1""’ M
that generate an equivalent set of N-gram statistics and
therefore equivalent textures.

Thus far we have solved one half of the problem of our
system, Given a set of generation parameters
GO(Vl'V2'°"'VN) we may determine the N-gram statistics of
the resulting pattern. We now seek to form a method whereby
a set of generation parameters may be found which generates
patterns according to an input set of N-gram statistics.

When desiring to generate textures according to a given

set of N-gram statistics, P(Vl,v ,...,VN) we must realize

2

the set of constraints imposed on the set. For example, the

sum £ e \)
u o] th P(Vl, 2

Returning to the set of equations used to determine the

,...,VN) must equal one for all N.
2-gram statistics in matrix form we realize that, by adding

the first two rows P(0,1)=P(1,0). 1In fact, by considering
the set of equations arising from the set of equations
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derived from the generation systems of higher dimensions we
find

PV Yy VysVgsee ¥y V) = P(V3, V), V)V, Vo V)

This implies that many constraints are present on the N-gram
statistics. For example, in the 3-dimensional system
containing P(Vi,Vé,Vé)

P(0,0,1) P(1,0,0)

P(0,1,1) P(1,1,0)
but also by (2) and the fact that P(0,1)=P(1,0)

nn

p(0,1,0)+P(0,1,1) = P(1,0,0)+P(1,0,1).

Returning to the simple 2-dimensional case we find that
the equations arrising from .the Markov process give rise to
- -

the following set of equations GO(O,O)
P(0,0) 0 . P(1,0) 0 G0(0,1) P(0,0)
X = lp(1,0)
0 P(0,1) 0 P(1,1) Go(l,O) !
Go(l,l)

A similar matrix is obtained in systems of a higher
dimension. This implies that any set of Go(Vl,Vz) satisfying
the above system of equations given that the P(V4,V,)
satisfy the constraints discussed earlier will generate a
texture exhibiting the 2-gram statistics P(Vl,Vz). One
might also notice a further constraint on the P(Vl'V2)° As
0 < GO(Vl'VZ) <1, pP(0,1)+P(1,1)>P(1,0). The general form
of this inequality in an N-dimensional system is

P(O'vl’vzl...,VN)‘l"P(l,Vl’Vzlo.-JVN) >P(Vllv2""lVN'o) (5)

Similarly the general form of the equations used to
determine the generation parameters from the N-gram
statistics is
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*
PO,V Vyreee sV 1) %G (0,V,Vy,unn V1)

*
+P(1'Vl’v2'.--’VN_l) Go(l'vl'VZ"'.’VN—l) (6)

= P(Vl,V 0)

2,-..,VN_]-'

For simplicity this may be rewritten as
Pl*Gl+P2*G2 = P3

This implies Gl=(P3." Pz*Gz)/Pl and G2=(P3— Pl*Gl)/PZ' And

so

d
an (P3—P1)/P2 < G2 < P3/P2

But also 0 < Gy <1l and 0 <G, < 1. so finally

and max(O,(P3—P2)/Pl)) <Gy < min(l,P3/P1)

max(O,(P3—P1)/P2) <G, < min(l,P3/P2)

Thus we can pick any Gy in the above range and G, |is
then determined or vice versa. 1In this manner given a set
of N-gram statistics we may determine a set of generation
parameters which generate a statistical pattern exhibiting
those N-gram statistics.

, As a last note, consider the p vector whose elements
are P(Vl'VZ""'VN) which does not adhere to the equality
and or inequality constraints (4) or (5). It might be
desireable to generate a texture whose N-gram statistics are
"close to" the input vector p as a texture having the exact
statistics of p can not be generated. Equations (4) and (5)
define a - subspace of possible probability vectors.
Therefore an optimal approach to the problem might be to
select a newp vector in this subspace such that
norm(newp-p) = min(norm(g-p))
for all q in the subspace. Using the Euclidean norm, this
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becomes a quadratic programming problem and could be
approached using those techniques. Such techniques will not
be 1illustrated here, Once the newp vector is found we

solve for the generation parameters in the usual way.

In conclusion, a method of determining N-gram
statistics from generation parameters using the concept of a
Markov chain was determined and an underdetermined system of
simple 1linear equations 1leading to generation parameters
given N-gram statistics was derived. Using this approach to
generating texture patterns a large variety of textures may

be easily generated and examined using a minimum amount of
effort. By these means further understanding of texture

perception may be attained.

Further Observations

The above equalities and inequalities provide a full
understanding of the texture generation system in
probabilistic terms. Still further conclusions can be
derived from them. From the above we see more clearly that

the generations parameters G(V ,...,VN) determine

Y
the texture completely and thus defi%e Ehe N-gram statistics
P(Vl,...,VM) for all M. Also for a given set of
P(Vl,...,VM) there can exist an infinite number of
generation parameters which would generate a texture with
such statistics or perhaps none at all depending on the
relationships derived earlier. Thus textures with equal
first, second, third and fourth nearest neighbor
probabilities can be generated. Figures 4-6 and their

accompanying statistics illustrate this fact.
Parameters thought to be useful in texture

discrimination may also be easily developed. For example,
joint moments about the mean defined as |
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E[(xl-ul)rl(xz—uz)r;(x3-u3)r3...(xk-uk)rk]

where z; r, is the order of the moment [6]. The rth moment
of x, is defined as )

E(xi) }E:Z: :E:x £(x .- %,

X1 *2
From our binary textures we could define +the following

parameters.

u= Blxg} =D x;£0x;) = D x;Plx)

0-P(0)+1-P(1)

P(1)

o2 = BElixy-) 2} = 3o (x-m) 2£(x) =(0-2(1)) %R (0)+(1-2 (1)) P (1)
P(1)-P(1)°

(0-p (1)) 3P (0)+(1-P (1)) >P (1)

E{(xo‘U)3} = Z(x'“)3f(X)
- 2p(1)3-3p(1) 24P (1)

B{(xgw) (=0} pay)-p(n)?

o= o2 p(1)-P(1)2

E{ (xg-u) (x1-0) (X~} p(433) 3p(11). p(};+4p(1)
3

o= o3 (P(1)-P (1)

where P(1), P(11), P(1l1ll) represent nearest-neighbor
(N-gram) statistics although this can be changed to include
non-nearest-neighbor statistics thus creating new texture
parameters. The above parameters are useful in
discrimination therefore only when textures differ in their
(3-gram) or shorter statistics.

We can also investigate a method which would allow
non-nearest neighbor statistics to be controlled using the
relationships developed in the last section. As

second-order probabilities have been of interest we might
investigate the conditions required to assure equality of
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second-order statistics for non-nearest-neighbor statistics.
If we denote G(Vl,V2,...,VM) as our generation parameters
and P(Vl,vz,...,VN) to be their associated N-gram statistics
then it may be shown that in order for the 2nd order
statistics of one texture to be equal to another for the

(N-1)st neighbor distance,
PV VeV Ve V) =:E:P2(V1,V2,...,VM,VM+1,...,VN)

v, Vi
i=2,N-1 i=2,N-1
for Vl,VNS{O,l} where P, /P, represents the N-gram statistics

2
for the first and second texture respectively. It can also

be shown that

n
Zp(vl,vz,.. Ve e e 1Y) =Zp(vl,v2,...,vM) I
v v, K=M+1
3 i (7)
i=2,N-1
i=2 'N-l
- v
where Z = Z [Vk+(_'l) k G(Vk—-M’Vk—M+l"' 'Vk-].)']
vu uj=0

Recall that the N-gram statistics, P, are a function of
the generating parameters G. If the 2nd order statistics
are to be equal for two statistics regardless of neighbor
distance then relationship (7) must hold for all N. But
examination of these non-redundant non-linear equations
indicates that either the two textures have the exact same
generation parameters or the memory of the generation
parameters, M, is infinite. Therefore it may be postulated
that two binary-one-dimensional textures that are unequal
must differ in these 2nd order statistics for some neighbor
distance.

Experimental Results

Some of the figures generated using these concepts are
shown in Figures 1-12. A set of texture statistics
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Figure 11
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including first, second, third, fourth and fifth-order
nearest-neighbor statistics and second-order statistics for
non-nearest neighbors was also computed. (These are not
included in the report due to their length). The generation
parameters from which all other statistics using the ideas
presented in the mathematics section may be found are shown
in Tables 1-12.These generation parameters represent the
GO(Vl,Vz,V3,V4). They are ordered from the top of each
column to the bottom as GO(O,O,O,O), GO(O,O,O,l),
GO(O,O,l,O),...,Go(l,l,l,l). The left column corresponds to
the top texture, the right corresponds to the bottom in each

figure.

Figures 1, 2, 3 and 4 are shown 1in another paper in
this report to illustrate the wusefullness of a spatial
frequency color-encoding system. Figure 1 contains two
textures whose 3-gram statistics are equal. Also the
various 3-gram statistics are equal within each texture. 1In
Figures 2 and 3 the same 1is true for only the 2-gram
statistics while the 3-gram statistics are shuffled in
pairs. Figures 4, 5, and 6 contain textures whose 4-gram
statistics are equal between and within but whose 5-gram
statistics differ by varying degrees. Figure 7 shows two
texture whose 4-grams statistics are equal but neither has
equal 4-gram statistics within the texture. Figure 8 shows
two textures whose 2-gram statistics for nearest neighbor
differ by a fair amount but little visual difference (if
any) exists. This texture is one of the more interesting
for this reason. Figure 9 contains textures whose 3 and 4
gram statistics differ but whose first, second and third
neighbor second-order statistics do not differ. Figure 10
contains two textures whose generation parameters differ in
GO(O,O,O,O) but whose second-order non-nearest neighbor
statistics are close to equal and discrimination is not
possible. Figure 11 contains two textures whose 5th order
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statistics are unequal and whose second order non-nearest
neighbor statistics differ, although not severely, but
discrimination is not possible. Finally Figure 12 shows two
textures whose generation parameters differ almost
drastically in GO(O,O,O,O), the parameters which wusually
causes a long string of black (0's) to be generated.

Examining the second-order statistics for non-nearest
neighbors it is observed that some textures such as those in
Figures 4, 5 and 6 have equal statistics except for some
certain neighbor distances. That is to say, where we define

P(V),Vy) = 3 PV Vg Vapee s V)

j
Vi

i#l,]
to be the (j-1)st neighbor second-order statistic, first

(P(Vlvz))' second (P(VlV3)), third...to fifth (P(V1V5))
neighbor statistics must be observed to detect differences.
In fact, for two general binary textures, second order
statistics may be constrained to be equal for up to any
arbitrary neighbor, then allowed to differ for further
neighbors and visible differences can be noted.

There also seems to be a relationship between the
amount of difference exhibited by two textures visually and
numerically in their second-order statistics. Without
mathematical norms and visual measures as a guide it may be
generally concluded that the greater the numerical

second-order difference is the greater the visual difference
is.

But most importantly these textures indicate that
second-order statistics for not only nearest neighbors but
also non-nearest neighbors must be used in the
discrimination of several one-dimensional binary textures
and to what neighbor-distance these measures are to be taken
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depends on the textures of interest.

Conclusions

The one-dimensional binary patterns generated give rise
to some basic concepts concerning textures and their
discrimination. First of all they indicate the use of
moments and similar statistics is not optimal at least in
the nearest-neighbor sense as many textures have equal
moment but are visually quite different. However, it should
be pointed out that this may only be characteristic of some
artificial textures and that moments could serve as good
discrimination parameters in many real-world applications.
Secondly the results indicate a close relationship between
second order non-nearest neighbor statistics and human
discrimination. Further, N-gram statistics could provide
even more precise texture separation beyond that allowed
through use of second-order statistics alone although
information content overlaps considerably. Use of these
texture measures depends on factors such as discrimination
accuracy desired, cost factors for statistics measure and
the nature of the textures involved.

If the purpose of texture analysis is to discriminate
textures then we must also ask whether our discriminator may
be our improvement over the human visual discriminator.
That 1is, do we wish to mimmick human analysis or excell it?
If the goal is human simulation then the texture study
becomes a human visual system and analysis study. If not,
the object is texture analysis and discrimination whose
results are not necessarily desired or expected to agree
with human interpretation of texture. In this case,
separation of textures can best be accomplished by
statistical measurements on the patterns involved. In
either case, success depends on results in the application
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of interest. For this reason, no discrimination system will
be presented here based on N-gram statistics or non-nearest
neighbor second-order statistics.

In future work investigation of two-dimensional
textures should be pursued as these correspond more closely
to natural scene textures. Still, as is illustrated by the
examples here, conclusions drawn from such
computer-generated textures may not correspond directly to
those drawn from study of natural-scene textures as in most
cases computer-generated textures include a far more general

class of textures. For this reason, discrimination
procedures drawn from computer-generated textures should be

more robust and also more mathematically complicated
especially if the generation technique allows simulation of

natural textures.
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2.5 Experiments in Natural Texture Description

Keith E. Price and Ramakant Nevatia

While exploring aerial image analysis we undertook
several experiments in the use of textural information in
the analysis of machine segmented images. When looking at
the images (e.g., Fig. 1) it is clear that many areas are
characterized by fairly uniform textural patterns. The
experiments presented here have not yet provided conclusive
results, and do not represent a complete exploration of the
texture problem domain, thus no hard conclusions will be
drawn, but it was felt that the results should be presented
at this time.

We have started with a high resolution aerial image
(Fig. 1) (2048 x 2048 points, 3 colors ~ 8 bits each) and
have segmented the image by a machine segmentation method
[1] (results in Fig. 2). This initial segmentation locates
many of the large areas of the scene, but further analysis
will involve recognition of these areas and possible
subdivision of the regions. Our interest is in developing
texture measures useful for segmentation and recognition of
specific regions, such as urban or forest areas, perhaps
guided by a priori knowledge of the scene.

From the segmented scenes,windows (64 x 64 or 32 x 32)
are selected so that the entire window falls within one
segment (a few do overlap 2 different regions) no other
selection criteria is applied, except to get a
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Fig. 1. Green Image of San Diego Area

Fig. 2. Initial Segmentation
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representative sample of the type of windows which may occur
(in the actual display of results, similar windows are
grouped for a better comparison of the results).

Many textural measures have been proposed in the past
[2-4] (here 1limited to statistical rather than structural
analysis), therefore one can use some of their results
indicating what measures may be useful. Several general
techniques will be applied to the original windows and to
the windows resulting after various processing steps (some
of the operations are included more for completeness than an
expectation of useful results).

Among the statistical measures which have been
discussed, and used, are analysis of the discrete Fourier
transform (61, analysis of generalized gray-level
co-occurence matrices [2], and analysis of the edges (or
micro-edges) in a subwindow [5]. We are not interested in
finding one texture measure which will distinguish between
all regions (this would be the wultimate, but extremely
difficult problem) but in finding a texture measure to use
in conjunction with many other features of the region [7].

The initial goal of these experiments was to easily
distinguish between the regular street pattern of the urban
areas and other patterns in the rural (in this case hill
sides covered with brush, other cases would include "farm"
patterns), water and other regions. This means that we have
concentrated on textural measures which give some indication
of regular patterns.

Since we have not yet performed detailed analysis on
the results, we will Jjust present some of the output and
discuss how it was derived and how the results may be used.
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Fig. 3 shows the subwindows which were used. There are
a total of 64 windows, each is 64 x 64 points. Generally
urban areas are in the top left, rural areas in the top
right and the bottom half has a mixed collection of windows.
These are all from the green image (the original was scanned
in color).

Fig. 4 is the magnitude of the Fourier transform [6]
for each window. Some structure is visible in the
transforms of some of the wurban areas, but the same
structure may appear in non-urban regions also.

Fig. 5 is the output of an edge detector (magnitude)
(8]. Fig. 6 is the Fourier transform, Fig. 7 is the edge
directions (8 possible values) and Fig. 8 in its Fourier
transform. These seem to be "noise" images, but the
structure is very evident in the direction images.

Fig. 9 is the supressed edge data. Non maximal points
(along rows or columns) have been set to 0, therefore edges
in the image are represented by only one liné. The origin
of this supression method is unknown but is probably due to
Rosenfeld. Fig. 10 is its Fourier transform which exhibits
more high frequency components than the others, but has
stranger patterns when there are few edge elements in the
window.

The supressed data was used for other analysis -~ number
of edges (total number for each window is given in Fig. 11)
and binary co-occurence analysis. Because we are only using
binary data the co-occurence computation can be simplified
and only a few measures on the co-occurence matrix seem
potentially useful. The numbers shown in Fig. 12 are for:

(Zedge AND edge)/(Zedge OR edge) and (Zedge AND
edge)/(all possible pairs) for separation = 1,2,4, and 8,
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Fa 3. Texture areas for study

Fig. 4. Fourier Transforms of image window in Fig. 3
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Fig. 5. Edge operator output (Magnitude) of
window in Fig. 3 :

Fig. 6. Fourier Transform of edge
windows in Fig. 5
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Fig. 7. Edge Detectors output (Directions) of
windows in Fig. 3

Fig. 8. Fourier Transform of directions
window in Fig. 7
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Fig. 9. Non Maximal Supressed Edges from Fig. 5

Fig. 10. Fourier Transforming of Binary
supressed edges
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pixels and angle = 0°,45° and 90°.

These results are from preliminary experiments which
are being carried out to aid other research in dgeneral
analysis of aerial images. The initial results seem to
indicate that the number of threshold edge (Fig. 11) would
distinguish between the rural and urban areas better than
the others presented - but there is not sufficient data to
make any general statement yet.
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2.6 Representation and Acquisition of High-Level Image
Descriptions

Keith E. Price

In a high 1level image analysis 'system the image
description facility becomes very important and influences
decisions on how the analysis should be performed. The
ideas behind the description are the same as many others
have had for representing general high level image
descriptions, and the major differences would be in the
details of the implementation or the actual language used.

These description facilities are used for many analysis
operations and thus must be general, extendable, and capable
of being stored as text files. The descriptions are
initially generated by an automatic segmentation procedure
(or a combination of 2 segmentation procedures, one for
region like objects and one for line-like objects) or the model
description system (described later in this paper) . The
information 1is then augmented by feature extraction systems
to produce a general feature based symbolic description of
the image. The descriptions are also used for object
location [1] and image matching systems ([2], both for
description of the input images and for communications of
the results to other programs.
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The language being used is SAIL [3] which .provided
certain language constructs that determined the actual
implementation. SAIL is originally based on Algol-60 with
many added features. The important additions (for this
discussion) are lists and relational triples. The lists are
an ordered set of elements (of arbitrary length) so that an
element can be refered to by where it occurs in the list
(i.e. the 17th element). Relational triples are a method
of storing relations between elements. The 3 parts are
referred toas property, object, and value (i.e. property OF
object IS value, or color OF box IS red, part OF house IS
door, intensity OF box IS 121). One of the important
features of this relational storage 1is the ease in
programming searches of the relations. For example a list
with all the neighbors of a region would be denerated by:
Neighbors OF Region. This expression can be assigned to a
list variable or used as a 1list expression depending on
which 1is needed. This brief outline of features of SAIL is
intended to give enough background so that the later
descriptions of the representation will be clear.

The image 1is represented as a 1list of elements
(regions, 1lines, objects, group of objects, and partially
segmented regiops). The properties of the elements and
relations between them are stored as relational triples.
The list is wused primarily for communication to other
programs or for separation of several images and would not
be necessary if only one image were ever used and there was
no need to save the results of the program. The region
numbers (i.e. the position in the 1list) are used to
describe relations between regions in the text file
representation and to store and refer to information about
elements in other images. With the relations between
regions, the representation can be expressed as a graph
structure with the elements as nodes and relation as arcs.
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Each property that is to be saved must be entered in a
list of properties. There are many which are available
initially but others can be generated and saved at any time.
The type of values is varied so that a property type must
also be indicated. Properties may be in the form of
character strings, integers, real numbers, arrays, and other
regions. Additionally the values in integers may be packed
1, 2, or 3 values per word. The property type is important
for reading and writing the description file and for
accessing the property values. Because of the relational
triples, it is possible to allocate the space for features
and relations only when needed rather than having a fixed
size structure where the existing properties are filled in.
The total size is important since an image can easily have
100-200 elements (i.e., in large scale aerial images with 4
miillion pixels, 200 elements would be a coarse
segmentation), and 2 or 3 image descriptions may be needed
at one time. Also many feature values or relations may not
exist or may not be needed for many elements. Fig. 1 gives
an example of 2 regions as they may be printed for the user,
in this case other regions are referred to by their region
number.

This description system is used both for images and
user specified models. The descriptions for an image can be
easily derived, but it could be very tedious for a user to
specify all the information in the model description. We
have developed a program which can facilitate this process.
The program was initially designed to interface a naive user
to several image analysis programs by asking a sequence of
questions where the answer would determine the next questions

and the actions by the program.

The set of questions and actions is read into the
program at the beginning and can be changed according to the
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[15] ISLAND-2

NEIGHBOR OF 15 1Is 3
ANCESTORS OF 15 1S 13 7
RED OF 15 1s 190.00 STD.= 10.00
GREEN OF 15 IS 175.00 STD.= 10.00
BLUE OF 15 1Is 185.00 STD.= 10.00
TORIENT OF 15 18 -.95
TSHHTWR OF 15 18 .40
TFRACT OF 15 18 1.20
TSQFRACT OF 15 1s .30
TOLEFT OF 15 18 2
TABOVE OF 15 1Is 19
TNEARBY OF 15 1IS 16 14

[16] URBAN-AREA
HUE OF l6é 1Is 3191 DEGREES STD.=100
SAT OF 16 1Is .0566960 STD.= .0977517
INTENSITY OF 16 IS 183.30 sSTD.= 10.00
NEIGHBOR OF 16 1Is 18 19 21
ANCESTORS OF l6 1s 7
RED OF 16 1s 190.00 sTD.= 10.00
GREEN OF 16 1Is 175.00 sSTD.= 10.00
BLUE OF 16 1s 185.00 STD.= 10.00
YINTENSITY OF 16 1S 307.60 sTD.= 10.00
IINTENSITY OF 16 1Is 265.60 STD.= 10.00
QINTENSITY OF l6 1Is° 268.00 sTD.= 10.00
TCOUNT OF 16 1s 390 -98304
TBDRLEN OF 16 1Is 2000 0
TORIENT OF 16 1Is -.50
TSHHTWR OF 16 IS .60
TFRACT OF 16 1Is .20
TSQFRACT OF 16 1s .10
TOLEFT OF 16 1S 2
ILOCV OF l6é 1Is 1 180
JLOCV OF 16 1S 45 250
TBELOW OF l6 18 17
TNEARBY OF 16 1Is 3 14 15 19
REGINNEX OF 16 1S -234 47
REGSECNEX OF 16 1Is -1100 51

Figure 1. Two sample region definitions showing several of the possible data
types.
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actual task. Rather than limiting the actions to a small
set of specific operations, the actions can be any command
level (program command level, not operating system command
here) operation. Operations at command 1level are very
general with easy access to variables to use as arguments
to commands or to return values of commands (also commands
which return values can be used as arguments to other
commands) . There are also commands for controlling other
running programs (using features of the TENEX operating

system).

The questions are structured in the following way: Each
question has an ID by which it is refermred to in the text
file representation and by the user in all references to
guestions. Each question also has the text string that is
printed out when this question is asked. The question may
contain any variables accessible at command level so that
the question can be tailored to the current state of the
program description (e.g. to refer to objects or relations
by name). There is a help entry to provide some guidance on
the meaning of the answers (the list of valid responses is
obtained directly from the internal representation). A
conditional is also included-if it is true the question need
not be asked. The conditional, in the case of acquiring
model descriptions, 1is a check of whether the feature has
already been defined. This conditional expression may use
the command level operations and variables. Finally there
is a list of valid answers to the question with special
indicators for arbitrary numeric and string responses
(string response require a confirmation from the user).
Each answer has two entries: a list of the questions to ask
next when this answer is given, and the action to take
(i.e., the sequence of commands to execute, such as a
command to add a feature value or a relation between
regions, or send a message to another program). Fig. 2
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REDQ:What is the RED value of !FIRREG!
ANS: #
NQU:
PRO:ALPHA_XWORD(MULT(NUMBER,lO),lOO)\DWRITE("RED",FIRREG,DNEW(ALPHA),2)
ANS : NONE
NQU:
WHY:Why not.
HELP:This is the RED color parameter, the value is a number
COND:PROPTEST("RED",FIRREG,Z)
FEATYP:What is the feature value type
ANS:1
NQU:FEASTY
ANS:2
NQU:FEAITY
ANS:4
NQU:FEARTY
ANS:8
NQU:FEAGTY
ANS : STRING
NQU:FEASTY
ANS : INTEGER
NQU:FEAITY
ANS :REAL
NQU:FEARTY
ANS : REGION
NQU:FEAGTY
WHY:
HELP:Numeric feature type
COND:
FEARTY:What is the feature value (real)
ANS: #
NQU: v
PRO:DADD(FTYP,FIRREG,DNEW(NUMREAL),4)
ANS : NONE
NQU:
WHY :
HELP:
COND:

Figure 2. Three sample questions from the set used to describe image models.
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@<ZPRICE>PIC
>>QUEST
What is the QUESTION file name: QUERY.MODEL

Describe a region, a model or an object? MOD

Do you want to use an o0ld or new model? OLD SAN-MODEL
SAN-MODEL OK (Y or N)[Y]

4+ttt

Describe a region, a model or an object? REG

Which region do you want to use? ISLAND-2

ISLAND-2 OK (Y or N)][Y]

Do you wish

What
What
What
What
What
What
What
What

is
is
is
is
is
is
is
is

the
the
the
the
the
the
the
the

Do you wish
Which relation do you want for ISLAND-2? NEARBY ISLAND-1 NONE
ISLAND-1 OK (Y or N)[Y]

Which relation do you want for ISLAND-2? NONE

Do you wish feature values or relations of ISLAND-2? NONE
Finished with the region Wwhich region do you want to use? NONE

feature values or relations of ISLAND-27? FEATU

intensity value of ISLAND-2? RED 190 GREEN 175 BLUE 185 NO
size of ISLAND-2? NO

I location of ISLAND-2? NO

length of ISLAND-2's border? NO

orientation of ISLAND-2? -0.95

height/width ratio of ISLAND-2? 0.4

fractional fill of ISLAND-2? 1.2

fractional £fill of the MBR of ISLAND-2? 0.3

feature values or relations of ISLAND-2? REL

Figure 3. Sample Question/Answer session to define Island-2.
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shows 3 sample questions in the format used to save the
qguestion in a text file.

The question interpreter also has commands for editing
the questions. Questions can be added or deleted and
individual fields can be changed. For all these commands
the questions are referred to by the ID name. The ID name
(and indeed the answers to all questions) can be abbreviated
to the minimum wunique string. Fig. 3 illustrates a short
sequence of questions and reponses which result in the
description if Island-2 (which may be seen in Fig. 1).
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2.7 A Proposed Class of Picture Operators

Kenneth I. Laws

This paper proposes a new class of local operators for
processing textured images. The operators are based on a
window segmented in much the same way that entire images are
now segmented. The segments are analyzed and some of their
properties are assigned to pixels within the window. The
pixels thus take on values or feature vectors which are more
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representative of their image regions than were the original

values.

Advantages of local operations are rapid processing,
independence from unrelated scene components, and mimicing
of biological vision systems. The chief disadvantage is
lack of global perspective. However global information can
be introduced at a later stage after local processing has
identified region seeds and other structural properties.

Segmented windows can be used anywhere that unsegmented
windows or convolution masks are now being used. Aadditional
power and flexibility are made available by the region
knowledge. Applications of this power are suggested in the
following sections.

Noise Cleaning

Median filtering is a successful method of removing
salt and pepper noise. It is based on the premise that more
than half of the pixels in a window will belong to the same
region as the center pixel. The center pixel can thus be
replaced by the window median with very little degradation
in image structure.

I propose an extension which may work well even in
textured or colored images. Begin with a large window, say
7x7, and segment it by any of the common image segmentation
methods. There may be only one region present or there may
be several. Assign a new value or feature vector to the
window's center pixel based solely on the statistics of the
region to which it belongs. This value may be the median or
average of the region, or perhaps a linearly weighted
prediction. 1In any case it will be uncontaminated by other
regions within the window. This segmentation filter should
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effect considerable edge sharpening since it forces each
edge pixel to be adjusted toward one region or the other.

Figure 1 illustrates the use of a segmentation filter
on an image with two distinct regions. The filter assigns
to the center pixel the median of its region. It is assumed
that each window is segmented perfectly. Results are also
shown for unsegmented mean and median filters. In both the
3x3 and 5x5 cases the segmented filter produces a sharper
boundary.

Texture Measurement

Many researchers have used windows to gather texture
statistics. This makes sense only if the window contains a
single texture. The segmented window allows statistics to
be calculated over just the region to which the center pixel
belongs. These statistics (e.g. mean, variance,
co-occurrence) are then assigned to the center pixel as
texture features. This is a multivariate application of the
previously discussed segmentation filter,

Region Seed Identification

Some algorithms seek "quiet" windows over which to
compute texture measures. This edge avoidance not only
simplifies texture computation, but also 1locates uniform
areas which make better region seeds than areas near region
boundaries. 1Identification of uniform areas is trivial with
segmented windows: Jjust use the windows which consist of
single regions. These windows can be further screened if it
is desired to have only one seed from each large region.

The segmented window allows seeds to be found for
smaller regions as well. For each new window region a
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representative pixel or feature vector can be stored. Seeds
can then be chosen by spatial or cluster analysis of the
stored data.

Edge Detection

The segmented window can be adapted to identification
of edge elements within an image. 1In a segmented window the
boundaries between regions have been located. These
boundaries are less certain toward the edges of the window,
but only the information at the center is to be kept as the
operator output.

The simplest edge measures assume that edges pass only
between pixels and only at particular orientations. It is
easy to keep track of such edges, say above and/or to the
right of the center pixel. (For this application it would
be better to use an even-length window centered over an
inter-pixel gap.) After one image pass every inter-pixel gap
will be classified as edge or non-edge. Edge strength and
direction can also be recorded.

A more sophisticated edge detector would allow for
region boundaries passing through pixels. An edge element
would be fitted through the center pixel if a region
boundary was found near it. Region statistics on each side
of the boundary could be used to measure edge strength.
Sharp corners or trihedral vertices could also be identified
in this manner. It is difficult to store and work with such
high resolution edge data, but methods have been developed

[171.
Edge following is also made easier by segmented

windows. To extend an edge, simply create the next window
along the edge direction. It contains sufficient
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information to determine the behavior of the line at the
next pixel. The fact that a line is being followed may even
help in properly segmenting the window. N

Some algorithms, notably Yakimovsky's [2], require a
measure of edge strength between every pair of adjacent
pixels. The segmented window increases the information
available for measuring edge element strength. It is
possible, for instance, to include measures of the
straightness or average strength of the boundary between two
regions. Region statistics can also be used in hypothesis
testing and strength measurement.

Implementation

Segmenting a window differs from segmenting an entire
image in that fewer pixels are available. This speeds
computation but reduces the amount of information available.
If the window is large enough there will seldom be an error.
affecting the center pixel. Even these errors should have
little effect if the window operation is only a preliminary
to global image segmentation.

The optimal window size will depend on the application
and the image, and may even vary within an image. One
method of choosing a window size is discussed by Deguchi and
Morishita [3]. For ad hoc operators it is probably
necessary to try several sizes to see which works best.

There are many methods of segmenting images. It is not
known which is best for window segmentation, but some
opinions can be offered. The key problems seem to be
identifying the number of window regions and finding good
seeds from which to grow them. One-pass algorithms are
probably crude, but may be adequate for some purposes.
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Pyramid or planning methods are of doubtful use since the
window resolution is so coarse. Non-spatial methods such as
histogram segmentation [4] or cluster analysis should be
sufficiently fast, and the window size limits the likelihood
of disconnected regions.

Global information can be used to speed up segmentation
even at this early stage. One way is to use global seeds to
initiate cluster formation. The seed textures can be taken
from an application-dependent database or simply from region
textures found in previous windows. For real-time or

filmstrip analysis the seeds can be retained from one frame
to the next.

Another speedup technique is to retain segmentation
data when the window is shifted. Only the pixels in the new
row or column need to be <classified. Unfortunately this
reduces the amount of information contributed by each
window. It is adviseable to reclassify each pixel using the
updated region statistics.

Processing time can also be saved by using less window
overlap. One could, for instance, use 6x6 windows shifted
two spaces, and keep the center 2x2 element. This would
require complete restructuring of the operational
algorithms.

If the segmented window proves sufficiently wvaluable,
it could be implemented in real-time hardware. This would
greatly increase the computational power of smart sensors
and image processing equipment.
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2.8 An Edge Detection, Linking and Line Finding Program

Ramakant Nevatia and K. Ramesh Babu

The goals of this work are to develop 1low 1level line
finding programs adequate for processing complex images of
interest for higher level image understanding tasks. In
spite of the large amount of previous research in this area,
no "algorithms suitable for complex imagery are apparent. In
particular we found the widely used Hueckel operator to be
‘deficient for images with fine detail and texture. In this
section we describe an edge detection and line finding
technique with superior performance. These algorithms are
presented as pragmatic solutions to the low level problems
of image wunderstanding with 1little discussion of their
optimality or novelty.
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The described algorithms exhibit good performance on a
variety of images and are already being used by Hughes
Research Laboratories on an independent program and being
considered for use by Tom Binford's group at Stanford.
These algorithms are largely local in nature and can be
applied to 1large images without difficulties of storage
(but, of course, requiring proportionately larger computing
time). The process of line finding consists of determining
edge magnitude and direction by convolution of an image with
a number of edge masks, of thinning and thresholding of
these edge magnitudes, of the linking of the edge elements
based on proximity and orientation, and finally of
approximation of the linked elements by piecewise linear
segments,

Edge Detection

Edge detection is done by convolving a given image with
masks corresponding to ideal step edges in a selected number
of directions. The magnitude of the convolved output and
the direction of the mask giving the highest output at each
pixel are recorded as edge data. (The edge data are two
files, one containing the magnitude and the other, a coded
direction). We have found 5 x 5 masks in six directions as
shown in Fig. 1 to be suitable for most images of interest.
The choice of mask sizes needs to be investigated further.
In general, the small masks are more sensitive to noise
whereas the larger masks cannot resolve fine detail and may
have difficulties if the texture elements are of similar
size. We have chosen not to use the techniques of adaptive
mask size selection by comparing the outputs of a large
number of masks of varying size as suggested by Rosenfeld
and Thurston (1] and by Marr [2] , due to unacceptable
computational requirements for large images. The criteria
for choosing from among the many sizes are also unclear in
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presence of texture. However, use of more than one mask
size may be necessary for certain applications.

Thinning and Thresholding

The presence of an edge at a pixel is decided by
comparing the edge data with some of the 8 neighboring
pixels. An edge element is said to be present at a pixel
if:

1. the output edge magnitude at the pixel is larger

than the edge magnitudes of its two neighbours
in a direction normal to the direction of this
edge. (The normal to a 30 degree edge is

approximated by the diagonals on a 3 x 3 gqrid);

2. the edge directions of the two neighboring pixels
are within one unit (30 degrees) of that of the
central pixel and

3. the edge magnitude of the central pixel
exceeds a fixed threshold.

Further, if the conditions 1 and 2 above are satisfied,
the two neighboring pixels are disqualified from being
candidates for edges. This algorithm produces results
independent of the order in which the pixels are examined.

A more judicious decision could be based on examining
the shape of the profile of convolution output, e.g., an
ideal step edge should produce a triangle-shaped output.
Such techniques have been used by Herskovitts and Binford
[31 and by Marr [2]. Our experiments with requiring the
neighboring pixels to have edge magnitudes that are at least
a certain fraction of the central pixel magnitude resulted
in poor performance perhaps due to variations caused by fine
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texture in the test images. More complex decision
strategies hold promise for improved performance.

Linking

A boundary in a digital plane is a collection of points
where each point is connected to two of its 8-neighbors.
(Except for edge points and where "forks" exist). One
approach to connect up such points, therefore, is to
determine the two neighbors for each edge point. The two
neighbors can be further distinguished as a predecessor and
a successor. The boundary is then a threading through these
edge points using this information.

The primary aspect of the 1linking process 1is the
determination of a predecessor and a successor, if any, at
each edge point. We produce two matrices - p and s - of the
same physical dimensions as the image. (We have stored them
as p and s files on the disk). Our criteria for connecting
two edge points is that they be neighbors, in the 8-neighbor
sense, and that they have edge directions differing by not
more than a certain value, currently set at 30 degrees for
masks described previously. Due to the nature of thinning,
only three locations are potential candidates for
predecessor or successor elements as shown in Figs. 2(a) and
(b) for edges of 0 and 30 degree directions respectively.
The determination of successor (predecessor) pixels is
elaborate due to the several cases that are possible at each
pixel:

1. Only one element is an acceptable successor.

In this case the successor (predecessor) is
recorded in the s(p) file as an integer between
0 and 7 corresponding to its location.

2. Two candidates are acceptable successors. If
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(a) 0° edge (b) 30° edge

Fig. 2 Possible successor locations for two edges
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they are not 4-neighbors, a fork is present as
shown in Fig. 3(a). 1If they are 4-neighbors, a
fork exists only if their directions differ by more
than 2 units (60 degrees), as in Fig. 3(b).
Otherwise no fork exists and the nearer of the two
(using Euclidean distance), forms the successor
(predecessor), as shown in Fig. 3(c).

These rules are for smooth continuation of
lines and were derived by complete enumeration
of such configurations.

In case of a fork the stronger of the two
candidates in edge magnitude forms the main stream.
The fact that a fork exists is noted in the s(p)
file. This information is sufficient to trace
both streams of a fork by examining the p and s
files simultaneously.

3. Three candidates are acceptable successors.
Fig. 4 shows all possible such configurations for a
vertical edge (no three successor configurations
occur for 30 degree edges). 1In these cases, a fork
exists. The main stream is formed by the nearer
of the two edges having the same direction, and the
other candidate with different direction forms the
other branch.

Note that this representation of the 1linked edge
elements is in contrast to explicit 1lists of elements
forming a connected segment. For large images, not entirely
resident in core, it is more convenient to form predecessor
and successor matrices as the processing requires only o
seguential scan of the image file. Further, certain
proximity computations can be more easily performed using
the predecessor and successor files.
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(a) Non-neighboring successors

(b) Successors directions differ by 60°

e )! o

b

(c) Successors of same direction

Fig. 3 Three instances of two successors
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(a)

Fig. 4 All instances of three successors
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We now describe briefly how we can make use of the p
and s matrices to produce a one-time traversing of all the
curves in the picture. Such a traversing is necessary both
to obtain a display on a suitable device and in fitting
linear segments to the curves as described 1later. The
general scheme 1is a TV raster scan which looks for the
condition for starting a traversal: |

var rscan: l..noofrows;
cscan: l..noofcolumns;
for rscan := 1 step 1 until noofrows do
begin
for c¢scan := 1 step 1 until noofcolumns do
begin
if start(rscan,cscan) then
repeat
visit this pixel;
compute next pixel;
until cannot proceed;
end;
end;
The above algorithm is applied to the p and s files in three
passes, with a different predicate "start" to decide if
traversing should start at a pixel. 1In the first case, a
traversing starts when a pixel does not have a predecessor
but has a successor, The second pass examines if the
predecessor was a fork point, and thus picks up the
secondary branches. The final pass starts traversing at
those pixels that have not been "visited" previously and
picks out circular segments. Information about previous
visits 1is stored in a temporary binary file. During any
pass, we "cannot proceed" if we come to a pixel that has

already been visited.
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Fitting Piecewise Linear Segments

If we are looking for straight edges in the picture, we
need to fit piecewise linear segments to the (digital)
curves that we obtain after linking, as described above. We
have used a version of the iterative end-point fits
algorithm of Duda and Hart [4]. A point on a digital curve
is a corner if it is the most-removed from the endpoints.
The first corner in a curve thus produces two segments both
of which can contain more corners and so a recursive
application of the same procedure is appropriate:

type point = record
r: rowcoordinate;
C: columncoordinate;
end;
procedure cornersinwindow(pl, p2 : point);

var p: point;

begin
p := pl;
repeat

P := next(p);

if p is a corner then

begin
mark p as a corner;
cornersinwindow(pl,p);
cornersinwindow(p,p2);

end;

until p = p2;
end;

A straightforward application of such a recursive
procedure can be inefficient. On an average, it takes o(nz)
time to process a curve which is n points long. Hence, a
variation which embodies the above mentioned qualities but
is superior is employed. 1Instead of considering the entire
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curve and then applying the above procedure we apply it on a
smaller portion of the entire curve, say m points long. For
the next part of processing, the curve begins at the
farthest corner found, and ends m points later and so on,
until the end of the original curve is reached. To avoid
the possibility of the algorithm missing some corners
because the end point of an m-long portion was at or around
a genuine corner, we consider 2m-long chains in case no
corners are found, then chains 3m-long...and so on, until
either we find a corner or come to the end. A typical value
for m is 32 -elements. We believe this algorithm to
substantially faster on the average, but have not yet
performed a detailed analysis or comparison.

On output a segment is described by a unique id, its

predecessor or successor segments along the flow of the
curve, coordinates of the end points, length and direction.

Results

Results of processing an airport image at various
stages of processing are shown in Figure 5. The computation
times for various stages of processing are as follows (for a
128 x 128 image, on a PDP-10, KL-10 processor):

Convolution with edge masks 17 secs.
Thinning and Thresholding 2.3 secs.
linking (p and s files) 2.2 secs.

Segment tracing and linear
approximations (maximum error-
2 pixels) 4.8 secs.

All computation times, except for 1linear segment
fitting, scale linearly with the number of points to be
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(a) Digital image (b) Edge magnitude

(c) Thresholded edges (d) Thinned and Thresholded
(not thinned) output

A T ‘*-)M”f
(e) Linked segments (f) Linear segment

approximation

Fig. 5 An airport image and various stages of processing
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processed. Also, except for the linear segment
approximation, the storage requirements are limited to only
a few lines of an image at a time.
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2.9 Descriptions of Linear Segment Objects

K. Ramesh Babu and Ramakant Nevatia

An earlier section describes extraction of linear line
segments from an image. These linear segments may suffice
for isolating and recognizing certain useful objects, even
in complex, natural imagery. We have chosen the problems of
airport and road detection as test examples.

An airport can be modeled essentially by a set of its
runways, taxiways and their relative dispositions. These
runways and taxiways, and long segments of roads are bounded
by long, parallel and piecewise linear segments of boundaries,
and can be conveniently represented as "2-D generalized
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cones", with axes along the elongated direction and
cross-sections along the width (see [1,2]).

In this section, we describe early attempts at
computing generalized cone descriptions of elongated objects
from the extracted boundary segments. Previous work on such
descriptions has assumed availability of complete and
perfect boundary information [1,3]. As objects of interest
are thin and elongated we simply look for nearby parallel
line segments of opposite directions, called antiparallel
lines or apars, as potentially bounding a generalized cone
of interest. Further selection of these cones may be based
on their interrelationships and alternative descriptions may
have to be carried through the matching process. In this
section, we concentrate on the process of finding
antiparallel line pairs.

Finding Antiparallel Pairs

The first thing that we do before pairing is to sort
the segments by their orientation. This sorting collects
together segments that are potential matches to a given
segment and hence avoid looking through the entire list in
finding a match for the given segment. However, due to
errors in the orientation of segments, sorting based on
exact angles is unnecessary, and the segments with the same
angles correct to the nearest integer are grouped together.

In finding a pair of segments of antiparallel
orientation we 1look for those whose angles are (180+q)°
apart, where ¢ is a tolerance factor. Further, we require
that the segments overlap and that they be within a certain
distance of each other. These antiparallel pairs are then
described as 2-dimensional generalized cones, with an axis
and a width and an additional attribute of relative

-117-



brightness. A unique identifier is associated with each
apar.

An output of the process of finding apars is given in
Fig. 1(b) in which each apar is depicted as a 2-dimensional
generalized cone (a rectangle). Fig. 1(a) is the input of
line segments.

Selection among Antiparallels

Not all antiparallels necessarily correspond to
objects. 1In Fig. 2(a), for example, we have bc, ac, cd, and
ad as apars. We retain only bc as a useful apar on the
assumption that objects do not have an edge along their
length.

If information about the relative brightness of the
objects 1is known a priori, we can effect further reduction
in the number of apars to be used for later, higher-1level,
processing. As an example, in Fig. 2(b), ef, gh and eh are
bfightertﬂuu1thebackgroundaccording to our convention while
fg is darker. In fact, fg lies in the region of eh. Now, if
we know that our objects are brighter than the regions
surrounding them, fg as an apar representing an object is
ruled out. Further eh can be distinguished from ef and gh
as being bounded by segments closest to each other. This
distinction may be useful for locating runways, taxiways and
roads.

In general, proper choice of apars is 1like resolving
the figure-ground relationships. The difficulty is
compounded if some of the line segments are missing due to
inadequacies of lower level algorithms.
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(a) (b)

Fig. 2. Some antiparallels, illustrating difficulties
of object isolation
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At this point in the chain of processing the image, we
have a 1list of apars which potentially correspond to
portions of runways and taxiways. We now group the apars
which are collinear, within certain angular and spatial
tolerances, and where the gap between axes is 1less than a

certain value. Such gaps are caused by intersecting runways
and by errors of previous processing. ‘

At the time of writing, the implementation of finding

collinears is in progress.
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3. 1Image Processing Projects

A variety of image processing projects are reported
herein. They fall into three general areas of computational
procedures, restoration methodologies, and inverse SAR
imaging. A presentation is made on the computation of the
condition number of a matrix to predict the degree of
ill-conditioning and subsequent potential degrees of freedom
in such a process. Such computations become extremely
useful for large matrix processes as found in most imaging
applications. In the generation of computer hologram
interpolations, a special computational savings is developed
to avoid the inefficiencies of zero padding traditionally
used in most Fourier image filtering techniques.

In the arena of image restoration two technigues are
reported upon, Results from the method of blind a
posteriori restoration are presented in pictorial form. A
new method of Poisson MAP restoration is also developed and
analysis presented in which improved sensor models for

imaging result.

Finally, two papers on inverse synthetic aperture radar
imaging are presented. One is formative in is presentation
and proposes to image shadowed regions via RATSCAT turntable
data. The second represents processing results from an
inflight aircraft in both a straight flight and a turn set

of geometries. Resulting imagery is presented.
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3.1 Condition Number Computation of A Discrete

Deconvolution Operator

william K. Pratt

Introduction

In many digital signal processing operations, it is
necessary to deconvolve an observed signal that has been
previously convolved with a known impulse response. The
more dgeneral task is to estimate the original signal by
linear or nonlinear processing of the observation. The
accuracy of the deconvolution or estimation process is often
dependent upon the "condition" of the deconvolution operator
in the sense that small perturbations in measuring or
modelling the impulse response in conjunction with
observation uncertainty may lead to very large perturbations
of the output signal. Signal processing accuracy is often
expressed in terms of the condition number of the
deconvolution operator. Conventional formulations of the
condition number are of theoretical interest, but, in
practice, are often useless because of the great amount of
computation required for their calculation. 1In fact, the
condition number computation itself is subject to inaccuracy
as a result of ill-conditioning!

This paper introduces an easily computed formulation of
the condition number of a deconvolution operator. Examples
are given for one-dimensional and two-dimensional
convolution.

Convolution operators

There are a variety of convolution operators used in
digital signal processing [1,2]. The most basic is the
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finite length operator defined by
m
q(m) = > fmh(m-n+1)+e(m) (1)

n=1
where f is an N element input sequence, g is an M element
output seqguence, and h is an L element impulse response
sequence with M = N+L-1, and € (m) represents noise or
measurement uncertainty at the m-th observation. This
operation can also be cast in the vector space form

(2)
9=Df+e

where g and € are M x 1 column vectors, f is an N x 1
vector, and D is an M x N matrix with general element

D(m,n) = h(m-n+1) (3)
A two-dimensional formulation of the convolution operator is’
easily obtained by column-scanning the input and output
arrays F and @ to produce the corresponding linked vectors f

and g for direct entry into €g.(2). The two-dimensional
convolution matrix D is a partitioned matrix defined as

sz,nz(ml’nl) = H(ml-nl+l,m2—n2+1) (4)

where H is the L x L impulse response matrix.

Deconvolution

Deconvolution is the inversion process in which an
estimate

=Wgqg ()

Ith>

is formed by linear processing of the observation of eq.(2)
with an N x M matrix W. 1In general, f # f because W is not
a left inverse of D and because of the noise residual W €.

A minimum norm, least squares error estimate can be obtained
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with a generalized inverse operator [3-5] W = D satisfying
the relations '

=D (6a)

DbD

DDD =D (6b)
DD = (@D (6c)
DD= (DT (6d)

The accuracy of the deconvolution estimate can be
bounded in terms of the noise perturbation €. It can be
shown [6] that

lag]l _. el
< liofkio™ Il — (7)
el gl
where || represents a vector or matrix norm and Af
denotes the perturbation of the correct solution. Eguation
(7) also suffices as an error bound for a perturbation AD in
the convolution operator by replacing € by AD £. The term
(8)

cm) = [Ip” |inll

in eqg.(7) is called the condition number of the operator.

Basically, it represents an undesired amplification of

system errors.

There are several definitions of the condition number
in common usage that are based on different specifications
of the matrix norm [7]. O©Cne of the most common is the least
squares definition for which the matrix norm is given by

M N :
% % ' %
ol ={ 2 Ziom,m?|” - [t’{.lz Q*T}] - [t‘{B*T.D.}]z )

m=1 n=1
Another useful formulation of this norm can be obtained by a
singular value decomposition of the matrix
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*
D=USV T (10)

where U and V are unitary matrices and S 1is a diagonal
matrix  whose elements S(1) > S(2) > ... > S(R) > 0 are
singular values of D. Since the trace operation of eg.(9)
is invariant to the unitary transformation of eg.(10), the
matrix norm can be rewritten as

R
2 11
Ioll = 22 |s(m| (11)
n=1
where R is the rank of D. Then, since
(12)
- *
D =VSU
the matrix norm of D can be immediately expressed as
R
- -2
Il = 3 s (13)
n=1
This leads to the conventional formulation of the condition
number
R . R %
2 -2
cm = |3 Isml® Y |stm] (14)
n=1 n=1

This definition of condition number deliberately avoids the
occurrence of an infinite value caused by a zero valued
singular value. The rationale is that the deconvolution
processor should be designed so that it avoids direct
inversion when D contains zero-valued singular values.

Deconvolution operator condition number

The condition number of eqg.(8) can be computed in a
brute force manner by first generating the generalized
inverse D  from D and then computing the matrix norm from
eg.(9). But, if D is large, generation of Q- directly can
be extremely time-consuming on a general purpose computer.
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(Note that the actual deconvolution operation can often be
accomplished by indirect means that do not require explicit
generation of D .) Alternatively, the condition number can
be computed in terms of the non-zero singular values of D.
But, singular value generation by computational methods is
also impractical for large size operators. This has been
the motivation to develop a more easily computed formulation
of the condition number of deconvolution operators. The
concept 1s quite simple: the singular value expansion of
eq.(10) 1is replaced by an analytic Fourier transform
expansion [8].

The Fourier domain representations of a convolution

matrix D and its generalized inverse D are defined as [1]

-1
b =A A

= —M= -N (15a)
- - = 15b
,_Q = A.D A 1 ( )
where, for a one-dimensional operator, is an N x N matrix
with a general term A(u,3) =%N(3'1)(u'1) with
% = eXp{-2mi/N} for 1 < j, u < N. For a two-dimensional
operator, A is replaced by A ® A where @ denotes a
left-direct product. Matrix p can be represented

analytically as [1]
b =¥y (16)

where ¥ is an M x M diagonal matrix whose diagonal terms
are elements of the transfer function

1 L

nw) = 5 2 h(i)exp]
j=1

2171 .
Ml(u—l)(J—l)} (17)

defined as the one-dimensional Fourier transform of the
impulse response for 1 < u <M. For two-dimensional
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convolution, the terms of Ehdare the column-scanned elements
of the two-dimensional Fourier transform ¥ of the impulse
response H. The interpolation matrix is given by [1]

-(u-1) (L-1)
L% 18)
= _q (u=1), -(v-1)
1 %M :VN

For two-dimensional convolution, € is replaced by ¢ @ . It
is important that the length M of the convolution output and
the length L of the impulse response be properly chosen to

avoid zero-valued terms in 2 or ¥ caused by truncation of
the impulse response. This can be accomplished by setting L

to an odd integer and zero padding the input data f or F, if
necessary, such that M = 2® where m is an integer.

The next step is to compute the norms of D and its
generalized inverse D~ in terms of the Fourier domain
representations # and # . Since the Fourier transform is
unitary, the norms become

* * *p %
IDIf = trigy @ & Ky) = trie iy o)

- .2 *xp * *xp  * -
D f|” = tr{(dy € @ %) } =tr{le ~ % ¥y ) } (19p)

The matrix norms can be expressed in terms of the
interpolation matrix products =& &#*T | 1t can be shown

that for one-dimensional convolution

s (u,w) = exp{—%% (N-l)(u_w)} S%n%??((u-ﬁﬂ (20)
sinj o u-w)

For two-dimensional convolution, & 1is replaced by its
self-direct product.
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From these expressions the matrix norms of D is

immediately found to be
M
2
IDIf =~ 2. | %, (m,m) | 2 (21)
m=1

But, from the discrete form of Parseval's theorem, the
matrix norm can be trivially evaluated from the convolution

impulse response. Thus, for one-dimensional convolution

L
io® = (22a)
j=1
and for two-dimensional convolution
L L
InIP=8* 3" 3 [m(5,00 |2 (22b)
j=1 k=1

Computation ofHQ_H2 is not so simple, unfortunately,
because of the generalized inverse operations of eq.(19b).
No exact closed form expression has been found for this
equation. But, a closed form approximation can be obtained
by replacement of the generalized inverse normllg-ll2 by the

less restrictive conditional inverse norm ll_#Hz. It is
easily verified that
*T # _ *x . -— -—
My & 2y ) = ) o2 (g (23)

is a conditional inverse satisfying conditions A and B of
eqg.(6), but not conditions C and D. Furthermore, it is
observed that # is an imdepotent matrix to within a scale
factor. Hence, the generalized inverse can be written
immediately as

-129-



Y =_17£ (24)
As a consequence, the <conditional inverse norm for

one-dimensional convolution can be directly computed
according to the formula

M-1
fl = 3 X [lmnz] (252)

u=0 M

and for two-dimensional convolution

M-1 M-1
IfIf =3 X [w(u,vuz] (25b)
u=0 v=0 M

The approximate condition number formula then becomes

(26)

¢ = |lpJ-|p*

where the norm of the convolution operator is given by
eg.(22) and the norm of the conditional inverse of the

operators by eg.(26).

Evaluation

The condition number formulation given by eq.(26) is an
approximation to the standard definition of eg.(8) because
of the use of the conditional rather than the generalized
inverse. Consideration 1is now given to the effects of the

approximation.

The usefulness of any matrix condition number is its
ability to predict numerical errors that may occur in
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computation. Condition numbers are rarely used as precise
metrics of the ill-conditioning of a matrix, but rather as a
rough indication of potential 1ill-conditioning problems.
Accordingly, the procedure taken to evaluate the conditional
inverse formulation has been to calculate the generalized
inverse and conditional inverse forms for several impulse
response operators, and then to relate the condition number
values to the observed computational error in some

deconvolution experiments.

The simplest type of convolution operator is the moving
window average for which the one-dimensional impulse
response is h(j) = 1/L for 1 < j < L, and in two dimensions,
H(j,k) = l/L2 for 1 < j,k < L. The corresponding transfer
functions are

| sin[™E (u-1)]

Sin[ﬂ(%;l)] (27a)

nu) = = exp {-M(u‘l)}

J

Q-

v(u,v) = hlu) h(v) (27b)

for 1 < u, v < M. The separable Gaussian-shaped impulse
response is another simple, widely used convolution
operator. Even in these simple cases, no simple closed
forms have been found for the generalized inverse condition
number; evaluation must be performed either directly by
eq.(8) or indirectly by the singular value decomposition
formula of eqg.(l14). The latter approach has been taken to
evaituate the exact condition number for one-dimensional
convolution with an impulse' response length of L = 5 for
various lengths of the input seguence. Results are plotted
in figure 1 for the generalized and conditional inverse
formulations. The agreement is seen to be reasonably good.
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Figure 2 presents examples of the conditional inverse
condition number of several two-dimensional deconvolution
operators, as a function of the size of the impulse response
for an output image of 64 x 64 samples. The impulse
responses tested are: L x L square and square annular
apertures and circular and circular annular apertures of
diameter L. The annular apertures are of one pixel width.

Conclusions

A new formulation of the condition number of a discrete
convolution operator has been introduced. This formulation,
based on the conditional inverse of a deconvolution
operator, is extremely simple to compute. Computation
requires a weighted summation of a single K-dimensional
Fourier transform of a K-dimensional impulse response.
Examples presented show that the conditional inverse
condition number 1is in reasonable agreement with the
conventional formulation based on the generalized inverse of
a deconvolution operator.
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3.2 Estimation of Image Signal with Poisson Noise - I

Chun-Moo Lo and Alexander A. Sawchuk

-135-




Introduction

The objective of this work is to develop an optimal
filter (in the sense of maximum a posteriori probability
(MAP)) for the output of an optical photo detector with
photo electron shot noise. Since Hunt [6] introduced MAP
estimation to image restoration, more researchers have used
MAP estimation in image restoration. The MAP method can be
generalized to linear or nonlinear image models and to noise
models different from additive Gaussian noise. 1In addition,
the MAP estimation can be a 1local adaptive processing
method. The MAP filter contains a ML (maximum likelihood)
term and an a priori nonstationary mean term based on the
local nonstationary statistical properties of the images.
Also the MAP filter can be extended to the case of
space-variant degradations. Detailed results for additive
Gaussian noise models have been given in [7] [8]. The most
basic source of photo detector shot noise (poisson noise)
lies in the photon fluctuations associated with the
detection of the finite amount of light energy available to
the imaging system. Thus photon fluctuations pose a
fundamental 1limitation to the restoration of a degraded
image. Of course, the statistical properties of poisson
noise are quite different from additive noise or
multiplicative noise. Hence conventional linear filtering
can not be directly used. It is the purpose of this work to
develop a MAP filter to process images with the Poisson
noise model. This report describes the restoration
non-blurred image signals with a Poisson noise model.
Additional results for blurred images will be given later.

MAP Estimation for Non-blurred Image Signals with a Poisson
Noise Model

Bayes' law leads immediately to the description of the
a posteriori conditonal density
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| (d| P (£)
PI£]D) = P—v—r (1)
P(d)
where f is original image which we want to estimate, and 4
is the display intensity.

The use of the posterior density for estimation is well
known. Minimum mean-square error (MMSE) estimates are the
mean of the posterior density. Maximum a posteriori (MAP)
estimates are the mode of the posterior density. Maximum
likelihood (ML) estimates may be viewed as a special case of
MAP estimate when a posterior density is equal to the a
priori density [3]. However, MMSE is a nonlinear estimator.
It needs to know the probability density of the observation
data p(d) which is usually impossible to get in practice.
Usually linear minimum mean-square error (LMME) estimates
are used. Goodman has worked on Poisson models with LMME
estimate in [10]. PRurke uses ML estimation on the Poisson
model in [11}. The MAP estimate tries to find the value of
f which maximizes the posterior density p(flg). It does not
need p(d) at all but does need p(glg) and p(f). To simplify
problems of dimensionality, we first describe a single
counter and later extend it to the whole array.

Single Counter

The model of a single counter is shown as fig. 1.
According to the semi-classical theory of photo detection,
the probability that g photon events occur given intensity

f.

llS

(A£) 91 e My
P(q.|£.) =
(g, 1£,) G 2)

From (2) we can get
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g. =Af, 2

i i 0g,= Afi
_g_i =) = average # of count
fi intensity unit

Here g; is the photon counts, having no wunits, and we
display an intensity d; = agj , where a is a scale factor.
We usually choose @A = 1 in order to keep the mean value of
the processed displayed signal the same as the observed
noisy image. So

) L (Afi)di/ae_xfi
ilti’ T F {/%1L:) = 3a
P(d;[£;) = 3P(a;/alf,) (3a)

and we find that

di = ag; = a)\fi
2

2 2 _ zkf
(0] = = Q0 .
di ¢ Ogi 1
so that
di axfi N
(s/N) = = T = (Afj)%
rms odi a(lfi)z 1

Thus, the (S/N)rms is proportional to the square root of the
signal (fi%), and is signal dependent.

If f; is a random variable as it is in an image then
the mean of (S/N)rms given by 7§7ﬁ7rms = ()\fi);i makes more
sense. Thus Poisson noise is quite different from additive
noise or multiplicative noise in its statistical properties
as shown in Fig. 2. Here the upper left picture is the
original image, the upper right picture is a Poisson noisy
picture with"ﬁiﬁﬂims = 6 db. The lower left picture is a
linear additive Gaussian noisy picture (S/N)rms = 6 db.
Lower right is linear additive Gaussian noisy picture with
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(S/N)rms = 0 db. From these 1images it can be seen that
Poisson noisy pictures are degraded more severely than
linear additive noisy pictures, even though the (S/N)rm is

s
6 db lower than that of Poisson noisy picture.

Array Counters

An array counter model for non-blurred image signals
with Poisson noise 1is shown as Fig. 3. For one single
counter the conditional density is

. =-Af.
(Xf.)gl e i
P(gilfi) = lg.! (3b)
i

For array counters, we assume that all gy are independent
for given f (i.e. every Poisson generator is independent)

and each g; depends only on its corresponding fi where
T 4T
] e o ch]

g = [gllgzl""gN and £ = [flrf

2
Hence

P(g|f) = P(g|E)P(g,lE).....P(gy|E)

also each g; depends only on its corresponding f; , then

P(g[{) =, - (4)

now from before we know

P(alf)

P(4,|f)P(a,]|f) .- P(AL]£)

P(d, | £)P(4,|£)..... P(d.|£)
then
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L3l

[(lfi)di/ae—)\fi

_T (5)
P(Ql—f—)'it

a(di/a)!

A Priori Density of Image p(f)

From [6], it is shown that a multivariate normal
probability density with a non-stationary mean but with
stationary covariance for p(f) can still 1lead to useful

results in processing real image signals, even signals which
are non-Gaussian. Hence we assume

P(f) = kfeXP{—%[ (£-B TR (£-D) 1} (6)

where f is non-stationary mean vector and R 1is covariance
matrix. ’

MAP Estimate Equations

From (1), we maximize (1) with respect to f

sz P(£]d)= P(d|£)P(f)
£ B (d)

As is conventional, we work with the 1logarithm of the
posterior density.

Max

7 nP(£]d) = nP(d|£)+2n P(£)-2n P(d)]

Since the last term 1ln p(d) on the right does not depend on

£, we neglect it in maximization with respect to f. Thus
MAP estimate equation is given by

-141-



34nP (£ |d) aenP(d |f)  3anP(£)
of 7 CF of T = (7)

O

From (5), we have d. /a -Af

tn P(d|£) —:E:Rn

(af. )

a(——) !

%1 %0
=Z —Lon (A£;) -AE;-na-gnl (5o !

i
From (6), we have

' = To-1 o =
tn P(£)= &n k-%(£-F) "Re (£-)

Differentiating the above two equations individually with
respect to f we get

aen P(d|E) [d&; a, 9 _,
= -)\, T —)\, ...... ’ ——G.f (8)
and
= = L. - = - (f- 9
——— = %:2(£-f) "R (£-£) "R (9)

Substituting (8) and (9) into (7), we get

dc d | d
i 2 N Glo(emy Tl _ 4T
[(!T. “Ay = A, of A] (£ i) Rf; 9_

1 af, N

Taking the transpose on both sides of above equation and
assuming Rf is a symmetric matrix, (i.e. ﬁg' = (R -lfr)

then we get
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et (10)

From equation (10), we know if the norm of Rflef”) is very
large, then
f .

fune 2 0 = 5,

where d is an observation data vector and fyy, is the maximum

likelihood estimates vector. In the blurred image case, the
fmp, is the inverse solution instead of the observation data.

On the other hand, if the norm of R is very small then

fvap= £

where f is an a priori non-stationary mean of the image.

Therefore, fy,, is a method which tries to move the
solution of f from the a priori non-stationary mean f to a
maximum likelihood estimate f . Here Rf is a measure of
our confidence in the non-stationary mean f and maximum
likelihood estimate as a solution to the restoration
problem. Equation (10) appears very simple, but the
complexity of the estimate implementation depends heavily on
the structure of the Ry covariance matrix. Thus we will
discuss in the two following sections methods of
implementing equation (10). One assumes Rf is an identity
matrix, and the other assumes that Re is a Markovian matrix.
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MAP Estimate Implementation with an A Priori Covariance

Matrix of Image - Identity Covariance Matrix

For simplicity, we assume R = 021, thus each pixel of the
picture 1is wuncorrelated. Indeed, each:  pixel 1is highly
correlated with its neighbors in realistic picture data, so
we treat this agsumption in the next section. From Equation
(10) and R = Ol then we have
! _ 1- -fl-fi-

-

H
et

a

|

= (11)

=
Hh

NN
Q

ol

N

&

o

R
Hh

L N J L . L

From equation (11), we see that the MAP estimate becomes a
very simple point process instead of vector process because
there is no coupling between pixels. Hence we can get a
closed form solution

= 2 = 2.2 2
_ (fi-xof)iVin—Aof) +410fdi
£5= ) (12)

We take the positive root because intensity is always non
negative

Implementation

We need observation data in simulations and also must
estimate the wvariance O and non-stationary mean f from

the observation data in order to implement enuation (12)
because the observation data is the only available data in

practice.
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The observation data are photon counts with some
amplification gain . The photon count is simulated from an
original picture (256x256) through a Poisson random
generator. The Poisson random number generator used is a
very fast, accurate algorithm which will be described in
detail elsewhere. This algorithm is also available in the
IMSL subroutine package (GGPOSH).

The non-stationary mean is estimated by a l1-dimensional
moving average on 11 points of observation data and its
variance 1is estimated by an unbiased estimate of the

population variance.

The restored pictures are shown in Fig. 4 for different
T§7ﬁT}ms. Where (S/N), g = Mean r.m.s. Signal to Noise
Ratio. The upper left picture of each picture is the ideal
picture. The wupper right picture of each picture is the
Poisson noisy picture. The 1lower left picture of each
picture is an estimated non-stationary mean picture. The
lower right picture of each figure is the MAP restored
image. From Fig. 4 it can be seen that the restored
pictures are improved compared to the noisy pictures.

MAP Estimate Implementation With An A pPriori Covariance

Matrix Of The Image - Markovian Covariance Matrix

In this section, we assume R¢ is Markovian covariance
matrix with correlation coefficient p. The Markovian
covariance matrix is a very good approximation for real
image signals. It is hoped that this more complicated model
will produce better results.

If Rf¢ is Markovian covariance matrix
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Fig. 4b Restored Picture for Fig. 4c Restored Picture for
(S/N) o = V5 (S/N) o = VIO

Fig. 5a Restored Picture for Fig. 5b Restored Picture for
overlapped—-Add method overlapped-Save method
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1 o o2... pNﬁlﬁ

Rf=0§ p 0 ve.. pN2
(13a)

pN—le—Z . 1 |

where |p| < 1. p 1is correlation coefficiency between pixels

then

[~ 1 h
3 -8
1+p
-8 1 -B
-1_ (13b)
Rf =Y
-B 1 -8
1
..B 2
1+p
L i
2
where 1+p 1
Y=ET32 3
1-p ]
f
B = p2 ol<1 and |B]<%
1+p

Substituting equation (13b) into equation (10) we get three
types of equations with N unknowns.
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dl Y - —
= A= — Lo (£, -F ) +BY (£,-F,) = 0

aE, T (8a)
a, B o ~
(G, ~AHBYUE g E ) Y D HB(E o E ) = 0
(8b)
i=2,3,... 8-1
dy T o)- —Y (£-F) =0 (8c)
(N -0 4By (£, -Fy ;)= —Tp(EFy) =
5E, N-1"N-1) " T e

These N equation are nonlinear.

Due to the larger dimensionality and nonlinearity of
the above system equations,ordinary linear signal processing
techniques are of no use and the usual fast algorithms of
linear signal processing cannot be wused. The following
strategy has been adopted for solution: First, we wuse a
suboptimal sectioning method in order to reduce the
dimensionality of the equations. We use two sectioning
techniques [9]. One is the overlapped-add method (suitable
for linear <case), the other 1is overlapped-save method
(suitable for 1linear or nonlinear cases). Second, we are
seeking a good numerical method to solve the nonlinear
equations. After trying several techniques for nonlinear
equations, we have found that the Newton-Raphson iterative
method 1is best. This method converges very fast in about 3
to 4 iterative steps. The detail of applying the
Newton-Raphson iterative method to MAP estimation will be

described in forthcoming reports.
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Implementation

The estimates of the variance«s% and the non-stationary
mean E are done by the same technique as in the last
section. We have tried Newton-Raphson methods in both
sectioning tecniques (overlapped-add method and
overlapped-save method). The results are shown as Fig. 5
for (S/N)rpmg = 6 db. Fig. 5a uses the overlapped-add method
and Fig. 5b uses the overlapped-save method. Of course, the
overlapped-save method requires much more computing time
than that of the overlapped-add method. However, from the
Fig. 5 results, we can conclude that the two restored
picture are perceptually the same. Thus, all the following
Processed pictures use the overlapped-add sectioning method.
The restored pictures are shown in Fig. 6 for different
(S/N)rms and p=0, p=0.95.

A Local Adaptive Processing

Because the MAP estimate contains an a priori
non-stationary mean term and maximum likelihood term based
on the local non-stationary statistical properties of the
image, the local MAP estimate of the ith section is

Qi*(ML Term)i+(1—Qi)*(A priori term) = 0
i=1,2,...L L=Total # of sections

Q; can be adaptively varied in different sectiqfs depending
on local statistical properties such as Gfi, and it is
expected that this will improve the restored picture. For
demonstration and simplicity, we have set Q; = Qj = ¢ for
all sections and the resulting pictures are shown as in Fig.7.

From Fig. 7 we still can see that the restoration
quality of Fig. 7a, Fig. 7b is better than that of Fig. 7c,
Fig. 7d, even though Fig. 7a and Fig. 7b are globally
weighted. (i.e. global adaptive processing) .
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Fig. 6a Restored Picture for Fig. 6b Restored Picture for

(S/N)rms=/2.5 p=0 (S/N)rms=/2.5 p=0.95
with Newton-Raphson Method with Newton-Raphson Method

Fig. 6c Restored Picture for Fig. 6d Restored Picture for
(S/N)rms=/§ p=0 (s/N)rmS=/§ p =0.95
with Newton~Raphson Method with Newton-Raphson Method
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6e

Restored Picture for
(S/N)rms=¢10 p=0
with Newton-Raphson Method
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Fig.

6f

Restored Picture for
(S/N)rms=/10 p=0

with Newton-Raphson Method



Fig. 7a Restored Picture for Fig. 7b Restored Picture for

(S/N)rms=/§, p=0, 0=0,8 (S/N)rms=/§, p=0.9, 0=0.8

Fig. 7c Restored Picture for Fig. 7d Restored Picture for
(8/N)_.=V5, p=0, 0=0.5 (S/N) . o=V5,0=0,0=0.5
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Conclusion

From this work, we have found that the estimated
non-stationary mean carries most of the information in MAP
estimation, and that the covariance carries much less
information. However, the variance 1is a very important
weighting factor in sectioning suboptimal MAP estimation
because the 1local adaptive MAP processing method is very
much dependent on the local non-stationary variance. So
far, we have achieved very good preliminary results and a
solid framework of MAP estimation in a Poisson Model. These
results will encourage us to further investigate in blurring
cases, in the local adaptive processing method and in
space-variant blurring cases.
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3.3 Computer Hologram Interpolation with the DFT

Chung-Kai Hsueh and Alexander A. Sawchuk

Introduction

When making a computer generated hologram we usually
embed the object in a zero array in order to further
separate the reconstructions in adjacent orders. If the
hologram is used as a filter then the size of the zero array
may be very large compared to the impulse response in order
to leave enough space for the object to be filtered. This
process is actually an oversampling in the transform domain
and does not provide any further information at all. 1If
certain intermediate processes are to used (for example an
iterative phase coding method [1]), then the use of a large

zero array not only wastes computation time but also
requires more core as working space.

Thus it is desirable to work on the original object

. . . . 2
array of size N2 and obtain a reconstruction of size (MN)
with the object embedded in a =zero array. Note that
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embedding the object in a zero array does not change the
original sampling values in the transform domain. it simply
fills in more points between the original sampling points.
Since the zero array does not provide any new information
the new points in the transform domain should be determined
by the original sampling points. This suggests that our
goal can be achieved by certain interpolation in the
transform domain. One intuitive way 1is to use the
translation property of the Fourier transform [2]. The
object can be multiplied by a linear phase in order to get a
translated Fourier transform. However, the reconstruction
from this method has an object slightly off-axis. We found
that instead of multiplying the object by linear phase, a
modulated linear phase will produce the desired result. We
also realized that this new method is actually a sinc
function interpolation which has been claimed to be time
consuming and not rigorous because of the infinite number of
terms involved.

In section II we present our new method and show how it
works. In section III we discuss its relationship with sinc
function interpolation and show that they are indentical.
Finally, in section Iv, computation time and core

requirements are compared and section V is the conclusion.

Theory

To simplify the mathematics we use a one dimensional
object in this section. Extension to the two dimensional

case is straightforward.

Suppose the original object has length N as shown in
Fig.l(a). The input sequences, hn n=0,1,...,N-1, are shown
in Fig.l1(b). Both figures are shown in continuous form
although they are actually sampled. Now we want to make a
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(a) Object

~

(b) Input sequences to DTF, hn’ n=20,...,N-1

Figure 1

-158-



hologram such that the reconstruction has the same object
surrounded by an MN zero array.

Step 1
Form Hk(m) as follows:
() _ 132, () _-j2mkn/N X=0, ...,N-1
k —/ﬁzo n m=0,...,M-1 (1)
=
where
. N
hém)=hne_32"m(n+5)modN/MN (2)
Step 2
Let -« ' )
Hém)=Hém)eJ"m/M k=0, ... N-1
m=0,...,M-1 (3)
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Step 3

Form a new sequence Py £=0,...,MN-1

pz=Hf?1m)/M if Mod(%,M)=m (4)

Then Pk has the desired property.
Proof:

Let Qn be the inverse discrete Fourier transform of Pz'

| -1
| Qn—(DFT) P
MN-1
1 p o32Ten/MN (5)
/MR £t Py

Substituting Egs.(4) and (3) we have

(6)

-4 vMN -
m=0 =
-M-lejﬂm/M[_i H(m)ejZHkn/ﬁ]ejZHmn/MN
- k
m= /ﬁ /ﬁ k=0
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Let n=pN+n' n'=0,...,N=1 (7)
p =0,...,M-1
Qn B QpN+n'
M-1 . N-1
- ™M 1§ () _j2mk (pN+nt) /N
k
m=0 M N k=0
(8)
ej21Tm (pN+n') /MN
M-1 N-1
= S e eI™M 1§ L (m)_j2mkn' /n
k
=0 /ﬁ /N k=0

. . .
ejZﬂmn /MNe32nmp/M

Using the inverse transform relationship of Eq. (1) and

Eg. (2) we get

M-1 .
0., = }E: eIT/M h(?)ejZHmn'/MNejZﬂmp/M
EN+n /M n
. =0

M-1 . .
jTm/M s . (9)
_ Z e [hn'e j2mm(n'+N/2) /m]

m=0 VM

. , .
.eJann /MNeJanp/M
Let us consider two cases of n'
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- jmm/M

0 = e
VM

- ' I
‘pPN+n' [hn-e 32mmn /MNe Jnnvwg

M
m=0
,ej2wmn'/MNej2nmp/M (10)

M-1
=/% hn':E: e321rmp/M
M

Since

1-x (11)

we have

M-~1 o
S = § : ej211mp/M - 1-eJ<™OP

If p=l,2,.-o,M—l
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- 1-1 -
S = l_ej21rmp/M =0 (13)

If p=0, we substitute p=0 in the original expression

s = 2{: 1=M (14)

Therefore Eq. (10) becomes

pN+n' * : (15)
0 p=1,2,...,I-1

(II) n' = g,--o,N—l

M-1 .
- eJTm/M [h e-jZﬂm(n'—N/Z)/Mﬁl
n'

Tewent T Ly Ty

. y :
.e32nmn /MNeJZﬂmp/M
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M-1
. . , .
1 hn' ejnm/Me j2mmn /MNejﬂm/M
& n=0  j27rmn'/MN j2mmp/M
-e e ‘

M-1
hn'jE: e321rm(l+P)/M

m=0

SN

(16)

I-1

R
o Zi
k=3
o]
g o]
1l I

o'l,o--,I—z

Figure 2 shows the sequences Q, and the reconstruction from
the hologram, Figure 3 further shows the computer
simulation of a two dimensional case. Figure 3(a) 1is the
original object (letter 'P') and (b) is the reconstruction
when the array is expanded by four times in each direction.
Note that if the holograms are of the same size (before and
after interpolation), then the object in (b) is of the same
size as the object in (a) except that it is surrounded by a

zero array.

Relationship with Sinc Interpolation

Let us consider the following Fourier transform pair
h(x}e»H(f) (Fig.4) where h(x) is space-limited (width X) and
H(f) is not band-limited although |H(f)| may be very small
when |f| goes beyond a certain frequency. Note that the
word 'band-limited' used here has a slightly different
meaning from its common use, but is self-explained in
Figure 4. Suppose h(x) is sampled at intervals X, then
aliasing error occurs due to the fact that no Nyquist rate
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(a)

Output segquences Qn, n=20,...,MN-1

{b) Reconstruction

Figure 2
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Fig. 3 (a) Two dimensional object (letter 'P')
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Fig. 3(b) Reconstruction (M = 4)
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h (x) ’—/’///’~\\\\f:fj

Figure 4. Fourier transform pair h(x)<=>H(f)

H' (f)
h' (x)
-l k- - 3
AX F =13

Figure 5. Fourier transform pair h' (x)<=>H' (f)
where h' (x) is the sampled version
of h(x)
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exists. Figure 5 shows the sampled function h (x) and its
Fourier transform H'(f). The period of H'(f) is given by

1
F =5z (17)

and there are N samples in h'(x).

When using the discrete Fourier transform, we have to
sample H'(f) for the same number of points. The interval is
then given by

Figure 6 shows the new transform pair h"(x)<H"(f) and one
period from each of them are what we actually get from the
discrete Fourier transform.

If we use continuous sinc function interpolation for
H"(f) then we are equivalently filtering h"(x) by a rect
function and we get back to the relationsh%F in Fig.5. Now
if we sample H'(f) at the intsfval of,ﬁf_ instead of 3’
then we get a new transform pair h"(x) H"(f) as shown in
Fig.7. All of the MN points are the result of the sinc
interpolation, since they are the sampled values of the
continuous sinc interpolation. Notice that E"(x) is the
sampled h(x) embedded in a zero array of size MN, This is
exactly the same result obtained from the method we proposed
in section 1II. Since the Fourier transform uniquely
determines the relationship between the object and the
Fourier transform we can conclude that our method actually
does the sinc function interpolation on finite points. It
is also noted that by embedding the object in a =zero array
and performing Fourier transform we also perform the sinc
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F = 3%

Figure 6. Fourier transform pair h" (x)<=>H" (f) where
both h(x) and H(f) are sampled.

AX h" (x)
_ -
“_dﬁfffIIII!== L ==££fEfEEIII==- J : =11IIIIII§5-____

— 1
X = 3F

;I'n (f)

1
AF = 2%

1
AX
Figure 7. Fourier transform pair E"(x)<=>§"(f) where

H(f) is sampled finer. (M=2)
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interpolation.

However, it requires more

core as working

space as discussed in the next section.

Comparisons

To illustrate the advantage of the new method

consider the

space-transform iterative phase coding method

times. The original

a MNxMN zero array.

case

let
through the
[3,4] for n
array size is NxN and is to be put into

us

when array 1is gone

Here we assume that M,N are power of 2.

When we use (MN)2 points directly we need CPU time to

do the
polar coordinate and

Fourier

‘-’-
Il

Where 2 accounts for

each iteration and

transform

(tl) and the conversion between
Cartesian coordinate (ti).

(2n—1)[(Mn)210g2(MN)2]

2 (2n-1)4°N1og,

(19)
(MN)

in
accounts for the fact that we need

the two Fourier transforms required
-1

only one Fourier transform in the first iteration.

To compute ti, let us assume t,c and top be

required for one

coodinate to Cartesian

assume that the original object is in polar form.

Then [}
t

I

where

the time
component to do conversion from polar
coordinate and vice versa. Also
(2n-1) (MN) % (£__+t )
pc c¢cp
(2n—1)M2N2t0 (20)
tpc+tcp (21)
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When using the new method we need CPU time for the iterative
1
method (t,;), interpolation (ty;) and conversion (tj).

2

t (2n-1)N210g2N

21
(22)

2 (2n-1)N%1og,N

To interpolate the points between the original points we
have to go through Egqs. (1)-(4). The multiplication of an
exponential term is simply an addition in phase and can be
neglected. However, in Eq. (2) we do need 2
multiplications for each component and therefore we get

(Mz-l)(NzlogzN2+2N2)

t =
22
(23)
= (M%-1) 287 (1og,N+1)
Let t; be the sum of t;, and t,,, we have
ty = B1otty;
2 2 ‘ (24)
= 2N [(2n—l)1ogzN+(M —l)(log2N+1)]
The conversion time té is given by
e L 2 2 .2
té = (2n-1)N t0+(M -1)N t0 (25)

(2n+M2—2)N2t0

Let us consider some typical values of M,N, and n and see

what is the difference between these two methods.

Suppose n=20, N=32, M=4, then
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t) = 28%+39-16-7 = 2N%-4368 (26)
£ = 2N%[39-5+15-6] = 2N2-285

2 (27)
t

1 _ 4368 _
£ = 785 - 15.3 (28)

The saving of the CPU time for the non-conversion part is
about a factor of 15.3.

— . 2 - 2 (29)
t] = 3916 Nt = 624 Nt
t) = (40+16-2)N%t. = 54N°t
2 0 0 (30)
t1 624
-Eé— = —5—4- = 11.6 (31)

Again the saving in data conversion is about a factor of
11.6.

For other 1larger values of n,M,N we can use the
following approximations.

- 2.2
t, = 4nM°N log,N (32)
2 2
t, = 2N [2nlog.,N+M"1log,N] (33)
2 2 2
o 2N2(2n+M2)logzN
(34)
2.2
' o~
tl ~ 2nM™N to
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(2n+M2)N2t0 (35)

+
14

i_ %  onm (36)
e S
ty Y onim?

It is obvious from Eq. (36) that the new method always
takes less CPU time for large n and M.

There is one other way to save CPU time in making the
hologram mentioned above. That is to perform the iterative
phase coding method on N 2 points then embed this result in a
(?N) zero array and perform Fourier transform. Let t3 and
t3 be the CPU time required for Fourier transforming and
data conversion, respectively.

_ 2 2 2
t3 = (2n-1)N“log,N°+(MN) logz(MN)z (37)

2(2n-l)N210g2N+2M2N210g2(MN)

Compared with t, in Eq. (24), t3 is larger but

]
approximately equal to ty. The conversion time t3 is given
by

2. 2
t! = (2n-1)N%t_+(MN
3 ot (N tep (38)

t3 is smaller than té. However, this method requires large
core to do the computation when M is large.
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Conclusion

We have introduced a new method to perform
interpolation which utilizes the translation property of the
Fourier transform. This method has reduced the amount of
CPU time and core size in making a computer generated
hologram which reconstructs an object embedded in big zero
array. We also showed that this method is a practicsal
implementation of sinc function interpolation without any
error caused by the truncation of the impulse response. Due
to the property of performing sinc interpolation this method
may find other applications in other areas.
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3.4 Spotlight S.A.R. 1Imaging Using RAT-SCAT Site Date

Peter Chuan
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Introduction

It has been known [1], [5], [6] for more than a decade
that the shape and size of perfectly conducting targets can
be reconstructed by relating the target's three dimensional
Fourier transform to the monostatic data collected for all
carrier frequencies and target aspect angle.+ Two
dimensional reconstruction of rotating targets [2] have
however been more successfully demonstrated using
Range-Doppler Principle [31, [10]. Two dimensional
reconstruction not explicitly using the Range-Doppler
Principle has also been used in radar astronomy to map
planetary objects [4]. Two dimensional mapping technigues
used in radar astronomy collects reflected data as a
function of the aspect angle of the rotating body rather
than as functions of time. Therefore the target angular
velocity dependence of the data becomes invisible in the
model. Despite this flurry of activity, it was not until
recently that RAT-SCAT data was used for target mapping [7].
The imaging equations will be rederived, but here the
effects of shadowing and reflectivity change will be

considered.

The RATSCAT (KAdar Target SCATtering Site) recording
geometry is shown in Figure 1. The radar R transmits
CW (continuous wave) sinusoidal signal of frequency f while
the target T is fixed at a certain aspect angle 6j. At
the receiver , the signal directly from S and the
signal reflected from T are mixed and integrated. This
integrate and dump output forms one sample complex data
which is recorded on a magnetic tape. The same process is
repeated for all possible aspect angle ei, and all possible

+Aspect Angle is the angle between the line of sight of the
radar beam and a coordinate axis frame fixed on the target.
See fig. 2.
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carrier frequencies fk'

Formulation

A. Small Target Assumption

The basic assumption on the recording geometry is that the
target T, reference sphere S, and radar transmitter R are all
approximately collinear and non-collinear effects [7] will Dbe
negligible. Let

r0=distance between target center and
transmitter,

ry=distance between reference sphere and
transmitter,

r2=distance between target center and reference
sphere.

- Lines of constant range as
seen by the receiver are shown in Figure 2. Ideally, these
lines should have no curvature and the maximum error
suffered from this assumption is the well known range
walking problem [8], [9].

™
H
n
{m ¢11
X o
N
+
=
oN
I
R
o

2]
n
)
i

(Taylor's expansion)

where a is half the maximum linear extent of the target and

DR is the desired linear target resolution. Therefore
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a < /ZpRro
must be satisfied. 1In less exact terms, this is the small
target assumption

a << rj

B. Specular Assumption

The second fundamental assumption is that only specular
radar returns are involved, since signal wavelength Ax is
much smaller than the curvature of the target surface. This
is the fundamental assumption that will be used here. Other
processes like creeping wave returns [10] and reverberative
returns (multiple interval reflections within the target)
are also known to contribute to radar return signal, but
these considerations will be ignored here.

C. Consideration on Changing Reflectivity

Figure 3 shows the illumination pattern on the target.
Let (&,n) be the coordinates of the target body and (x,y) be
the coordinates of the ground reference frame. Both radar
and receiver are on the x-axis.

Let a unit length normal vector n(g,n) be associated
with each point (&,n) on the target surface. Define
= angle between £ axis and n(&,n)

ai,n
Then the reflectivity of the target is

O(E,n;ei) = Uo(E,n)COS(aE n-ei)

14

where 00(€,n) is the maximum reflectivity of a target point
over allé,.
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D. Representation of Recorded Data

Figure 3 also shows the illuminated region Rt and the
shadow region Rg which is in the shadow. Let the sinusoidal
wave transmitted at T be

£(t) = cos(2mf, t+d)

where ¢ is some unknown but fixed phase. From Appendix A,
the recorded data at S is

2f Xn = r
. k 0 1
. +527 ( )y (= )
= A 2
DI(l,k) De c ZI(eiffk)
where
. 2fk
ZI(ei'fk) = ﬂd(&:ﬂ;ei)e-JZN(T) (Ecosei+n51nei)dgdn_
R

I
and D__is a complex constant. The extra phase factor

ej2"(;55)'(ro—rl) can be estimated and compensated for,
thus we are left with Zr (655.) .

ZI(ei,fk) becomes the Fourier transform of the target
reflectivity if two previous assumptions can be relaxed.

1. The reflectivity is independent of the aspect angle of
the target;

o(E,n;Bi) =3 oo(E,n)

2. There is no shadowing effect;

Ry = entire target area.
Then
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2,(8,,£) = 2(6,5)

2f (1)

where 1 j2mE(E 8+nsing)
z(0,£) =J];O(a,n>e Jentibeostm dgdn

-— 0

Condition 1 holds when the target consists of a distribution
of point scatterers. Condition 2 holds when the target is a
convex object. Both conditions 1 and 2 were satisfied for
the targets used by Walker [5] in his reconstruction and as
a consequence, the recorded data were an exact Fourier
transform of the target reflectivity. 1In practice, targets
of interest usually do not satisfy these conditions and
therefore direct Fourier transforming the data without
further consideration may fail to produce good
reconstructions.

Due to physical optics approximation and propagation
problems, fk is bounded below and due to device limitations
£y is bounded above. Therefore, the data 127(8i,fy) is
bandlimited, or it is confined to a ring. This is shown in
Figure 4. 1If only a small segment (see [7])

]

£, e [£f

. +F
k min’ “max

- 6 = mean aspect angle)
ei € [Bn A6,9n+A6] { n P g

is used to reconstruct the target, target resolution will
suffer, but nevertheless both conditions 1 and 2 can be

neglected without great error. First note that
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5AQ Segn}en’f of data processed

Fig. 4. 2-Dimensional representation of complex data Dy (i, k)
for the RAT-SCAT system. After compensating for the
term exp[+32ﬂ(fk/c)(r -t )], D (i,k) is the F.T.
of the target if:
1. the target reflectivity is independent of 6
2. there is no shadowing,
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O(E,n;ei) = GO(E,n)cos(ag'n—Gi)
=4 00(5'”)°°S(“g,n'en)
over eie[en_Ae'en+Ae] ’ SO that 0(£'n;ei) is

approximately independent of 8. Also, because the target
is now observed for only such a small angular extent (2a0),
the shape of Ry and Rg will remain essentially constant and
hence shadowing effect poses no great problem. This was in
fact the case for the segment processing method used by Chen
[71.

Shadowing Effect

Since only data from the illuminated side of the object
are available, one method to solve the shadowing problem is
to combine two or more looks on the target. For Dbetter
insight into the problem we will make use of the line

projection integral of Equation (2) in Appendix A.

gI(X,Gi)=i[];0(€,n)6(£cosei+nsin6i—x)d£dn
RI
where we have assumed that the target reflectivity

distribution 1is independent of 0;. The projection slice
theorem can then be used to rewrite the RAT-SCAT Data.

a 2f

-j2n(—) x
2p (9505 =j grix.9;)e ¢ dx (2)

-a

where Z; is defined in (1) and a is half the maximum spatial
extent of the target. Then
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. 2f,
e+32n(-3—) (x

N -r
D (i,k) = D 071! z_(6,,£)

For a given object and illumination angle 8;, the object

field can be partitioned into two non-overlapping regions Ry
and Rg where

R; represents target field illuminated
Rg represents target field in the shadow.

9g(x,8;) Q_[[oo(i,n)G(Ecosei+nsinei—x)d€dn
R
S

Then

gI(xfei+n) = J];o(g,n)6(£cos[6i+ﬁ]+nsin[ei+n]—x')didn

R

Where Ri is the region illuminated after rotating the target
180°. If Ri=RS=the shadow region prior to rotating the
target 1800 (see Figure 5) then

gI(x76i+ﬂ) =.[[00(E,n)6(Ecos[ei+n]+nsin[6i+n]-x’)dEdn
R

S

Therefore

gp(-x,8,+m) =1L[QO(€,H)6(~£cos6i-nsin6i+X)d€dn (3)

S

i.e. gy (-x,08;4m) = gg (x,0;)
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Fig. 5. Shadow and illuminated regions of the target field.
The heavy lines show the "double" shadow part of the
target which cannot be reached by the radar waves
(because of specularity assumption) from both -
directions 6 and 6+w. '
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Thus, the line integral taken by rotating the target 180o is
the "shadow" 1line integral. However, the desired line
projection integral is

g(x,0;) A .[f 09 (€,n) 6 (Ecosb +nsinb ~x)dEdn

RIURS
4
g(x,08;) = gp(x,0,)+g (-x,0,+T) (4)

We have available only the data (after compensation for the

extra phase factor)
a 2f

= ( 9 )e_jzn( ék)xdx
-a

and we wish to get (from applying (4))

2 25
20;,5) = | g0x,0)e 2%y
o
-a
-2 ' 2f, a 4 ka
= gI(x,ei)e-JZH( c )xdxfs gI(-x,ei+w)e-Jzn( c )xdx
-a ~a
= ZI(ei/fk)""ZI(ei“"‘n’l_fk)
But
Z2;(8,4m,-£,) = Z;(ei+n,fk) (5)

where * represents complex conjugate. Therefore
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Z(ei'fk) = ZI(ei,fk)+Z}(9i+7T,fk) (6)

and shadowing can be taken care of by recomputing the data
with equation (6). We also notice from (6) that
z2(6,-£) = 2.(0,-£)+2%(0+m,-£)

== z;(e,f)+z;(e,+u,—f)
= [ZI(B,f)+ZI(9+ﬂ,-f)]*
= [ZI(e,f)+zf(e+v,f)]* Relation (5)

= 2*(0,f)

2(8,-f) = 2*(0,f)

i.e. the data Z(6,f) has conjugate symmetry and
reconstructing the target by taking the F.T. of Z(o,f) will
give real numbers, which is consistent with intuition.

Finally, because the target is usually not convex in
which case some regions in the target field will not be
covered by both Ry and Rg and will éonsequently represent an
error in the initial assumption that the entire target field
is partitioned into Rg and R; regions only. We will call
this effect "double shadowing." Let

9pg (X:6) A oo {€,n) 8 (gcosp+nsing-x)dgdn
-~ R
D
where Rpg is the doublefﬁhadow region. Then ideally, the

line integral is

g(x,0) = _[I oo(E,n)6(£cose+nsin9—x)d£dn

RIURSURDS

and the ideal phase corrected data is
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Z'(Bi,fk) = Z(Bi,fk)+€(ei,fk)

where e(%,fk) is the error due to double shadowing

a ka
_'2 e
s(ei'fk) = J‘ gDS(X.Gi)e 32m( (o] )de
-a
and Z(Qi,fk) is defined in equation (6).

The next obvious step to correct e(6; f) error is to
infer gpg(x,6;) from gDs(x,ei+%) which is the line integral
at an aspect angle turned 90°. The problem becomes clear in
the Fourier domain. By the line projection theorem e(e,ﬁk)
is the F.T. of g5 (&, n) restricted to region Rhg with aspect
angle 6. €(8+3,6) is the F.T. ofoyt ) restricted to
region Ryg with aspect angle 9+§; This is sh%yn in PFigure
6. Now it is obvious that e(e,qc) and e(e+5;fk) represent
distinct spatial frequency components of the target in Ryg +
except for the nonexisting DC term. Hence, 8(9,fk) cannot
be inferred from e(9+%;q<) which means that wunder the
constraints in this model, double shadowing cannot be
corrected.

Conclusion

The RAT-SCAT site data has been rederived with
reflectivity change and shadowing effect considerations
being taken into consideration. The reflectivity change
brings about a relation between the target reflectivity and
the data, which is not really a Fourier Transform relation.
Consequently, solving it is a difficult analytic problem.
The shadowing effect has been partially solved by combining
data with aspect angles T radians apart. Further correction
due to double shadowing is believed to be impossible under
the constraints of this model.
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Fig. 6. F.T. €(8,f) of the target reflectivity restricted
to the double shadow region RDS'
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Appendix A. Formulation of received data for RAT-SCAT
system.

The Waveform transmitted from the radar R is assumed to
be of the form f(t)=cos(2nfkxt+¢) where £ 1is the carrier
frequency. Waves hitting target points lying at range
(fg-x) and reflected back towards R will have the form

2r .=-2X%
0
f("ﬂ:“) )

where (2r0—2x)/c is the path delay. Because of the
specular reflectivity o misi) of the target, the signal
reflection will be modulated by the following line
projection integral gI(x,ei) of points lying on the line of
constant range rg-X%,

gI(x,ei) = A.I];(E,n;ei)6(€cosei+jsinei—x)d£dn (2)
R

I

where A is a constant representing propagation attenuation
and far field illumination pattern. Besides the target
reflected signal, a reference signal is also receiwed reflected
from the reference sphere. This real signal (called)
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in-phase component) and its % radian delayed version (called
quadrature component) together called the reference signal

will be written in a compact complex form
2r1 ]
+5 t-—)+

The signal received from target reflection over all ranges
is

2r€2(§cose.+nsin6.) ‘

S;(i,k,t) = ffAf t- = l)O(E,n:e-)dEdn
c i

RI

' a
. ( .2r0r2x
SI(l,k,t) = J.dx IIAf t- —e g(E,n;ei)
-a RI

olEcosB;+nsind-x)a&dn

Mixing Sy (i,k,t) with (3) and integrating over time to get
only the temporal D.C. term, we get

T
. 1 .
DI(l,k) = Tsr(t)'SI(l,k,t)dt
0 o
where T is the dwell time of the signal at fy.
T | 2r1 ] 2r . -2 (Ecos9.+nsinb )
j - =)+ 0 1 i .
%S UABe"J [2“fk‘t c )t f(t- . AE,n:0,)dEAndt
0 RI
e 2r - 6.+nsingd.
. 1 ] 2r, -2 (&cos j+nsiné
S dthABe-'-J[z“fk(t— g * ] cos [ank(t— 0 . 44
=00 R
I » 0(g,n;6,)dEdn

. 3 -jo
Using the relation coso= %(el®+e 3%)
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Dp(i,k) = j]%ABo(g.n;ei)-
RI

2r0+2r1.-2(£cosei+n31n6i

: )
%j o HI2TE, [Zt- - ]e32¢dt
0

- 2r0-2r1-2(£cosei+n51nei)]
+ e3¢y c dgdn

Note that the second term in the square brackets 1is the
temporal DC term unaffected by the integration. Assuming
that T is long enough so that the first term is averaged out
we are left with

2f ka
Dr(i,k) = e?T (K (rj-rp) Jé(a,n;ei)éjz"“a“"€C°Sei+”51“9i’dgdn

Ry

2f .
Let ) ) k . 9
Z (8 ,£) = ffo( £ n; 0)e %" (—5) (Ecosb ;+nsind 1) 4eqy
R

I

Then the recorded data is in this form

2fk

32m(—=) (rg=rp)  2,(0,,£,)

DI(l,k) = e I

Earlier, we have used a complex reference signal to beat
against the target reflected signal. As a result, we get a
complex factor in the integrand of ZI(ei,fk) which becomes
the Fourier Transform of the target reflectivity if
o(E,n;:0 j) =0¢gl&,n).
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3.5 Blind OTF Restoration

John B. Morton and Harry C. Andrews

The methods of Cannon and Cole for finding the
magnitude of the OTF have been extended to obtaining the
phase of the OTF as well. The progress of this research has
been reported on in several preceeding semiannual reports
(USCIPI 800,770,740). The technique utilizes the method of
Knox to extend his results of finding the complete Fourier
description of an object from its autocorrelation and other
information. In our method, an image is partitioned into
subsections which are then Fourier transformed, subsequently
autocorrelated in the frequency domain, and then
statistically averaged. Under certain conditions both
magnitudes and phases converge for the complete OTF
description. Results of this technique are then
. incorporated in a Wiener filter for completion of the
restoration. The numerator of the filter is the complex
conjugate of the computed OTF and the denominator is the
computed power spectrum of the blurred image.

Real world (non simulated) in camera distortions are
obtained by various physical acts of violence upon the
camera during exposure. The computed MTF, phases for the
OTF, blurred images and restored objects are presented
below.

This section presents the results for three
photographically induced blurs. To induce the first two
blurs the camers was jiggled and vibrated during exposure.
The third blurred image was obtained from a private source;
the blur was apparently the result of an incorrect use of
the camera.
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The blurred photographs were digitized to 512 x 512
pixels and the estimates of the OTF were made using
512 x 512 blurred images. A 50% overlapping of subimages
gave 225 subimages of 64 x 64 pixels each. The estimate of
the magnitude of the OTF was made via the method of Cannon.
The phase estimate was obtained using a Parzen window and
using recursion.

For the first two blurred images the restorations were
made on each of the four 256 x 256 pixel quadrants of the
512 x 512 pixel blurred image. For the third blurred image

four restorations of 256 x 256 pixels were made; the four
restorations centered prominent features within the

512 x 512 pixel blurred images.

In Figure 1 is the same scene before and after the
photographically induced blur. Note the "before" picture is
earlier in time and 1is not wused in the restoration.
Figure 2 presents perspective plots of the estimates of the
magnitude and phase of the OTF.

Figure 3-6 present the results of the restorations on
the four 256 x 256 pixel quadrants of the 512 x 512 pixel
blurred image. 1In each of figures 3-6 is presented the
degraded gquadrant together with a restoration using the
estimate of the magnitude and phase of the OTF and a
restoration using the estimete of the magnitude of the OTF
and estimating the phase of the OTF to be zero.

Improvement is evident. 1In addition to an improvement
in sharpness, some objects that were not recognizable in the
blurred images are recognizable after restoration. In
Figure 3a the vertical columns of the building in the
northeast guadrant of the image are not resolved. In the
restorations in Figure 3b and ¢ the columns are resolved.

-196-



(b)

Figure 1 Scene before and after photographically induced blur
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(b) 6 (minimum = -1.04 radians,
maximum = 1.04 radians)

Figure 2 Estimates of magnitude and phase of OTF
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(a) degraded

(b) phase of OTF estimated as O (c) phase estimate = Estimate 2

Figure 3  Blurred image and restorations
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In Figure 4a the object on top of the tower is not
recognizable. 1In the restorations in Figures 4b and c it is
seen to be a ball. 1In addition, in Figures 4b and ¢ note
the improvement in definition of the windows and structure
of the building which is in the center of the right-hand
side of the frame.

In the restorations of Figures 5b and ¢ the 1lines of
the crosswalk are now defined. Additionally, there is
better definition in the «cars; it is now possible to
recognize the Volkswagen as a Volkswagen. Note the
increased resolution in the windows of the minibus.

In Figures 7-12 are presented the results corresponding
to the second photographically induced blur. Again, an
improvement 1in sharpness and increased resolution is
observed. In Figures 9b and c note the increased sharpness
and definition in the tree in the south-west quadrant, the
tree in the center of the right-hand side of the frames, and

the trees along the top of the frames. Additionally, note
the increased sharpness in the cars and building.

In Figures 10b and c¢ there is better definition in the
window panes and 1ledges. Note the increased sharpness in
the trees of Figures 12b and c.

Figures 13-15 present the results for the third
real world blurred image. Figures 13 and 14 present
restorations of selected 256 x 256 pixel subimages of the
larger 512 x 512 blurred image. Again, improvement is
evident. For example, in Figure 13b note the increased
sharpness of the edge content compared to Figure 1l3a.
Additionally, in Figurel3b note the better definition in
the rocks.
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(a) degraded

(b) phase of OTF estimated as O (c) phase estimate = Estimate 2

Figure 4 Blurred image and restorations
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(a) degraded

(b) phase of OTF estimated as O (c) phase estimate = Estimate 2

Figure 5 Blurred image and restorations
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(a) degraded

(b) phase of OTF estimated as 0 (c) phase estimate = Estimate 2

Figure 6 Blurred image and restorations
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Figure 7 Scene before and after photographically induced blur
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(a) degraded

(b) phase of OTF estimated as 0 (c) phase estimate = Estimate 2

Figure 9 Blurred image and restorations
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(a) degraded

(b) phase of OTF estimated as O (c) phase estimate = Estimate 2

Figure 10 Blurred image and restorations
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(a) degraded

(b) phase of OTF estimated as 0 (c) phase estimate = Estimate 2

Figure 11 Blurred image and restorations
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(a) degraded

(b) phase of OTF estimated as 0 (c) phase estimate = Estimate 2

Figure 12

Blurred image and restorations
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(a) degraded (b) restored

(c) degraded (d) restored

Figure 14 Blurred images and restorations
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to be
appears to be a

what
example,

In Figure 1lb there are appears degraded
what
degraded point source slightly below the center of the frame
the 1left-hand side of the frame. This affords one with

the opportunity of estimating the magnitude and phase of the

point sources. For note

on

OTF using the degraded point source.

the
techniques forming the basis of the research reported herein

In Figure 16 is a comparison of the results using

and results obtained using a

and b the

respectively, repeated here for convenience.
the degraded image.

using the techniques reported herein.

degraded point source.

Figures 1l6a are same as Figures 5a and c,

Fiures l6a is
Figure 16b is the restoration obtained

3.6 Target Motion Induced Radar Imaging

Chung-Ching Chen and Harry C.

Andrews

Imaging from ground-based

targets is often possible

aperture" developed from the

(stationary) radars of moving

by
target motion

utilizing a "synthetic

itself. an

aircraft is imaged from both a straight flight and & turn

with recognizable results. Analysis shows that two phase
components exist in the radar return, one being gross
velocity induced, the other being interscatterer
interference within the target itself. The former phase
must be removed prior to imaging and techniques are
developed for this task. Coherence processing intervals,

range collapsing, and range re-alignment are all examined

herein.
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Introduction

In order to reconstruct a radar image of some target
from its signal returns, two conditions have to be
satisfied. First, the returned data has to have some kind
of two-dimensional format. Second, the radar imaging
geometry must be such that the return from each pulse or
signature contains different (could be only "slight")
information about the target. Degree of freedom analysis on
the radar returns provides an attempt at evaluating the
capabilities of the imaging system by examining the extent
to which the above conditions are satisfied.

In the usual case of a pulsing radar, the return from a
single pulse contains timing or range information, while the
direction, called azimuth, along which the many pulse
returns are aligned side by side, contains cross range
information, and thus the first requirement for imaging is
readily met. The second requirement demands that each pulse
return be different. To accomplish this it is necessary to
create a relative motion between the target and radar in
such a way that the aspect angles of the target as observed
from the radar are different for different pulses so that
the cross range or azimuth information can be inferred. In
this report, we loék into a ground-based radar system in
which a target aircraft is imaged by its own motion induced
doppler.

Figure 1 shows the flight path of a target aircraft
which has an overall 1length of approximately 80 feet and
wing span of about 70 feet. Two portions of the flight path
along which the data were obtained for imaging will be
called interval 1 and interval 2, as shown in Fig. 1. The
first interval is when the airplane was flying straight, at
angles approximately 30 to 15 off broadside, whereby the
second interval occurs when the airplane was making a
standard left turn.
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Figure 2 is a reproduction of the first interval of
Fig. 1. The aspect angle of the target center viewed from
the radar undergoes a change ¢, which in this case is the
same as the aspect angle of the target body with respect to
the radar line of sight (LOS). 1In fact, it <can be shown
that it is the latter, and not the former angle change,
which provides the azimuthal information. For this reason,
we redraw Fig. 2 using the target center as the origin of
the coodinate system. This becomes Fig. 3. Observe a close
resemblance of Fig. 3 to the rotational geometry of a
turntable system [1]. The flight path of the second
interval is depicted in Fig. 4.

Preprocessing

For most practical purposes, the radar imaging system
which determines the relation between the data returns and
the reflectivities of the target can be considered linear
[2] and the system classification method developed elsewhere
can be wused to decide the ways to reconstruct the
reflectivities directly from the raw data. This situation
is depicted in Fig. 5. 1In other words, the data return
g(x,y) 1is a 1linear transformation of target reflectivity
function £(g,n) through the radar signal radiation and the
echo reception. For ease of presentation we will assume
that both g and £ in Fig. 5 are discrete so that the system
can be represented by a matrix [H] and g and f are vectors
[3]. Depending on the waveforms of transmitted signals,
(e.qg. short pulse, 1linear FM pulse, or step-frequency
waveforms) and the imaging geometries (e.g., shape and size
of target, direction of relative motion, resolution
required, etc.), the radar imaging systems represent a wide
spectrum of the classes. Once the relation [H] between the
reflectivity and data is (precisely) decided by the flight
or radar data, a straightforward reconstruction of £ and g
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can be achieved by applying the pseudoinverse of [H] to g

yielding a minimum square error reconstruction.

The above reconstruction scheme, although
straightforward in theory, usually involves a great deal of
computation because of the complexity of [H]. 1In the worse
case, one would expect to resort to a full singular value
decomposition (SVD) to find [H]-l. Certainly a
decomposition of [H] such that the structure of the imaging
geometry can be better utilized would warrant the efforts in
many cases.

A perceivable way to accomplish this is to do some
preprocessing upon the raw data such that the resultant data
have a much simplified relation to the reflectivity than the
raw data itself. Diagrammatically, [H] can be replaced by a
cascaded system of [H;] and [Hzl_fs in Fig. 6 and g__fan be
estimated by multiplying [H2]  followed by [Hl] , to g
with the hope that [Hl] would be so simplified in structure
or so small in size compared to [H] that the extra effort on
[HZ]—1 would be warranted. For this purpose [HZ]_l is
called preprocessing. Examples of preprocessing are: range
alignment, presumming, de-chirping, and motion compensation.
Some of them will be discussed in the following sections.

Range Curvature and Range Bin Alignment

In general, the radar return of the signal pulse from
the target provides the range information while the history
of the returns along some range bin provide azimuthal
information. These two sources of information could be

coupled such that a separable or even separate processing
would not be adegquate to recover the information to the

extent of accuracy one pursues. There are two major sources
of non-separability in the radar system: range walking and
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data misalignment. We now describe the phenomena and
propose methods to avoid or correct them.

A. Range Curvature

A single radar pulse return contains the information
about the surfaces or lines whose points are equi-distant
from the radar transmitter. These surfaces or lines can be
resolved by the timing (for short pulse) or range
compression (for 1long duration 1linear FM-1like pulse)
techniques. Since the range direction has been compressed
and resolved in our source data, the simplest way to resolve
the azimuth would be to do one-dimensional processing along
cross range direction. This requires that each particular
point have contribution to only those range bins which are
aligned for azimuthal processing. Such is the case for low
or medium resolution SAR imaging with aligned returns. As
the resolution requirement becomes greater and greater
recently, one 1is wusually forced to reduce the range bin
width and/or to increase the azimuthal interval over which
the data are to be processed coherently. Both of these
would eventually create range curvature problems since the
surfaces of constant range as mapped on the target move
further away as the relative motion between the radar and
the target continues.

Since range curvature depends on the range bin width,
ideally one can avoid range curvature by increasing the
range bin width. This means sacrificing range resolution
for the azimuthal resolution in the case of separable
processing. It is not true, though, that the range
curvature limits the width of coherent processing available.
In fact, in the range curvature situation one can do some
limited compensation by the techniques described in [4,5] or
even full compensation by resorting to a non-separable model
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for the 1imaging system [4] and relying on singular value
decomposition (SVD) techniques. However, in all of our
experiments we will always assume separable processing for
ease of computation and implementation.

B. Range Alignment

In addition to the range curvature, there 1is another
problem which hinders the separability of the processing:
range misalignment. As described before, azimuthal
processing operates upon the returns which came from target
points at equal range. Thus precise timing or other schemes
on returns of individual pulses to insure correct range bin
alignment is of ultimate importance to warrant separable
processing.

In the data of our radar system, range tracking is
provided by a Poly/ Kalman estimator which tries to lock the
first strong peak of each pulse return onto a specific range
bin. For example, if the point on the target closest to the
radar is the wing tip, then the wing tip returns of
different pulses hopefully will be locked in the same range
bins. Because of scintillation of the reflectivities, this

range locking method is not always reliable and misalignment
occurs from time to time.

Let ftl(r) and ftz(r) be recorded complex return (or
our source data) from adjacent pulses where ty-t; =At is
the pulse repetition interval (PRI) and r is the range
assumed within one PRI. Because of the tiny aspect angle
change in one PRI, if we consider only the magnitude of the
returns, then

m, (r + Arx) ~m,

(r) , where m_ (r) & |£, (D]
1 2 1 i

for some Ar, the amount of misalignment which we would 1like
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to estimate. Define a correlation function between the two

waveforms mtl(r) and mtz(r):

m_ (r) m_ (r-s) dr
o t2
© © (1)

[/mtf (r) dr/ mti(r)d{,%

-Q0

Then because mtg (r+Ar) = mty(r), from the Schwartz
inequality we have that R(s) will be maximal at s =Ar and

the amount of misalignment can thus be determined. It is
observed from Eq. (1) that since the denominator is
independent of R(s), it can be dropped without affecting the
peak location. Thus we could use

o]

A
' = ) m_ (r-s) dr
R'(s) /; mtl(r t,

which is a straight convolution relation.

Motion Compensation

As described earlier, there are two kinds of phase
variations induced by motion of the target: motion of the
target center relative to the radar and that of the
different target points relative to the target center as
viewed from the radar. Only the latter contributes to the
imaging ability of the radar. It can also be shown that the
relation between the latter phase variation and the target
reflectivity is a simple Fourier transformation in the
azimuthal direction. Thus, a motion compensation of [H2]'l
which removes the effect of the motion of the target center
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is highly desirable.

Two schemes of the motion compensation are proposed for
our imaging.

First scheme: The flight path of the target center can
be inferred from the timing of the pulse returns. For
example, in the first interval after the flight path has
been decided to be a straight line and the azimuth angle has
been determined, the coefficients of the quadratic and other
higher-order phases can be determined to remove the flight
path phases and leave only the phase information relevant to
the imaging.

Second scheme: Since the trajectory of a single target
point 1is very similar to that of the target center, the
returns from that point, if available, can as well be used
as a reference to compensate for the target center motion.
In fact, this is equivalent to considering this target point
as the rotation center of the target. The phases of this
reference point, as a function of azimuthal signatures, can
then be subtracted from those of all the range bins at the
corresponding signatures. Care should be exercised to
assure two things: first, the size of the reference point
must be small enough. This 1is because the size of the
reference point decides the best possible azimuthal
resolution. Second, for each signature, the reference range
bin must correspond to the reference point if the advantage
of a fast separable processing 1is to be taken. This

requires Eange alignment as described before.

Presumming

The purpose of presumming is to remove the factor of
oversampling in the azimuthal direction. Usually the radar
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imaging system is oversampled in the azimuth direction
because of a too high PRF. In the case of terrain imaging,
oversampling is sometimes a result of not processing the
whole antenna illumination pattern along the azimuth
direction. 1In that case, the pattern width utilized or
coherently processed determines the resolution of the image.
In the case of aircraft imaging, the situation is different.
Here the azimuthal width of the aircraft is so small that we
would always like to make full use of the maximum width of
the effective radar illumination pattern, which is the
azimuthal 1length of the aircraft itself. Under this
condition the PRF required is decided by the azimuth
dimension on the aircraft and the azimuth resolution is
decided by the signatures coherently processed. Thus,
assuming other parameters fixed, a larger aircraft would
require a higher minimum PRF to insure that no aliasing will
occur in the final images. Also, since the effective
antenna illumination (i.e., overall aircraft azimuthal
length) is independent of the wavelength,A , the minimum PRF
or the resolution 1in the aircraft-imaging case would be
functions of A, This is in contrast to the ground terrain
imaging cases where the full antenna illumination pattern
width, which is proportional to A, is to be fully wused so
that the resultant resolution is independent of the
because of a cancelling effect. [1,2]

Let fy be the carrier frequency and L the length of the
aircraft along the direction normal to LOS, as shown in
Fig. 7. Let A6 be the orientation change of the target as
observed from the radar between two adjacent pulses, then
the azimuthal frequency change will be

Afz = foAO
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Fig. 5. Linear radar imaging system.
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Fig. 7. Determination of oversampling factor.
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This means a sampling interval of Af, in the azimuthal
frequency domain, which in turn implies a non-ambiguous
» " . 1 : » C
azimuthal time interval of FFor ©OF spatial interval of 78E; !

. . .2
in accordance with the sampling theorem.

The oversampling factor o can be determined by

C
o=5¢ /1L
Z

To remove the oversampling to leave minimum useful
data, a coherent low pass filter followed by sampling at a
corresponding low rate should be applied. The effect of
low-pass filtering is to remove the high freguency noise
which otherwise would appear in the resultant image.

Experimental Results - First Interval

The mode of the radar system in which our source data
was acquired was a wide band high range resolution mode.
The transmitted pulse was a linear FM and the pulse returns
have been compressed using matched filtering techniques in
the radar receiver.

A condensed overall view of magnitude part of the first
interval data 1is shown in Fig. 8 in which each row
corresponds to the logarithm of the magnitude of the return
from a single pulse. Only every 16th signature is shown in
this figure. Recalling that this interval represents the
radar returns when the target aircraft was flying toward a
broadside position (Fig. 1), we presume that the first
high-intensity bins correspond to the left wing tip and the
next distinct strong returns are from the fuselage and nose.
Note that the radar is to the left of this figure.
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Then it can be perceived from Fig. 8 that the fuselage
is at a greater and greater distance away from the wing tip
along the range direction, as a result of
closing-to-broadside during flight. It 1is also observed
that while most portions of Fig. 8 seem pretty well
range-aligned, other portions do need re-alignment before a
separable processing can be implemented.

To present the data in detail all of the first 512
signatures are displayed in Fig. 9. The phase image
(Fig. 9b) indicates clearly that the target points probably
lie in range bin number 50 to 200, where a strong structure
of phase relationships appear as a result of the coherent
radar pulsing. This 1is also shown in the log magnitude
picture Fig. 9a, although with less clarity. There 1is a
transient region where the strength of the returns decreases
gradually with the range or time. This phenomena is
conjectured to be a result of multiple reflections on the
target which took more time before re-radiating to the radar
receiver.

To investigate further the behavior of the returns,
only the regions of strong signal returns are kept and a
sequence of 8192 signatures is shown in Fig. 10 with both
log magnitude and the corresponding phase. Observe the
quadratic-like phases along the flight direction due to the
flight geometry, as analyzed earlier in this report.

Since the radar receiver has range compressed the
signal returns we will need only to perform some azimuthal
processing. For convenience we transpose the data so that
the horizontal direction now denotes the signature or
azimuth direction. Figure 11 shows the log magnitude and
phase of typical signatures (signatures 8001 to 8512). To
remove the quadratic phases from Fig. 1lb, three options
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4

Overall view of first
interval data; log
magnitude of every 1l6th
pulse return.

(a) Log magnitude (b) Phase

Fig. 9. First 512 signatures of first interval data.
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(a) Log magnitude (b) Phase

signature number 1-2048

(¢) Log magnitude (d) Phase

signature number 2049-4096

Fig. 10. First interval data with 128 range bins stacked
side by side.
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(e) Log magnitude (f) Phase

signature number 4097-6144

(g) Log magnitude (h) Phase

signature number 6145-8192

Fig. 10. (continued).
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exist, the first two being similar:

(A) Linear fitting the phase difference and subsequent

integration: since the differentiation of quadratic phases
is linear phases, a linear fit to the phase differences can

be applied to determine the quadratic phase curvature.
Figure 12a shows the azimuthal phase difference of Fig. 1llb.
Note that except for the phase wrap-around in the right half
portion, the intensity, which is used to linearly encode the
phase between -7 to 7, looks quite linear. However, before
a successful linear fit can be obtained, the phase-wrap
problem has to be solved and this is usually not a very easy
task. In fact, it is the rapid phase modulus phenomena in
Fig. 11b that causes unwrapping Fig. 1llb extremely
difficult., We use a simple-minded scheme and the unwrapping
of the phase difference, although not perfect, of Fig. 12a
is shown in Fig. 12b, from which the linear portion of phase
variation was estimated and removed to leave Fig. 12c.
Since Fig 12c is still in the differentiation domain, an
integration brings it back to the azimuthal phase domain, as
depicted in Fig. 124. ’

(B) Linear fitting the phase difference and gquadratic

subtraction: an alternative to applying the estimated

linear-phase-difference is to subtract the estimated
quadratic phase (from integration of estimated linear phase
difference) from Fig. 1lb directly. The result is shown in
Fig. 1l2e. Magnitudes of azimuthal Fourier transforms of
Figs. 12d and 12e are shown in Figs. 13a and 13b, which are

very similar visually.

Since the azimuthal sampling rate has been determined
to be greater than a factor of 50, the data after guadratic
Phase compensation can be reduced by a factor of 32 before
Fourier transformations are applied. The result is shown in
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(a) Log magnitude (b) Phase

Fig. 11. Signature number 8001-8512
(range direction is vertical).

(a) Phase difference of (b) Unwrapped version
Fig. 11b of (a)

Fig. 12. Motion compensation on Fig. 11lb using scheme of
linear curve fitting.
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(¢) Linear phase removed (d) Phase integration
from (b) of (c)

(e) Quadratic phase removed
directly from (11lb)

Fig. 12. (continued).
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Fig. 13c. A comparison of Figs. 13a and 13c confirms the
validity of the coherent presumming. Note that 1in
Figs. 13a, b, and ¢ the azimuthal bin width is much wider

than the range bin width and a subsequent interpolation has
to be done to properly scale the images.

(C) Target point referencing: the above two schemes of

removing phase variation due to target center motion are
based on an assumption that the flight path is relatively
straight during the coherence time. 1In other cases where
the range trajectory is much more complicated than a
low-order polynomial curve, the above schemes are expected
to be more difficult. Another motion compensation scheme
somewhat independent of the flight geometry and very simple
.in implementation is to wuse the signal returns from a
reference point to estimate the history of the flight range
trajectory. This single point can be thought of as the
center of rotation of the target and its phases can be
subtracted from those of all range bins to 1leave only the
phase histories of all target points relative to this
refererice point. This was, in fact, the technique wused in
subsequent imaging.

Figure 14 is a series of processed aircraft images
using the above reference point scheme. Consecutive
pPictures represent abutting 2048 signatures or 20-second
flight time each. The images are linearly interpolated in
azimuth to give the same range and azimuthal bin width such
that the images are correctly scaled. Visually Fig. 144 is
the best probably due to best range alignment of the data in
that time interval.

Ideally, an increase in coherence time should be

accompanied with an equally increased amount of resolution.
This is not the case in Fig. 15, where coherence times of 40
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and 80 seconds are assumed, The conjecture is that the
range curvature and range misalignment which tend to blur
the images outplay the coherence time increase. As
described in the previous section, one way to alleviate the
range curvature problem is to use larger range bin widths.
To test this, we used the same parameters as in Fig. 15b
except the data in range dimension were reduced by a factor
of two by coherent collapsing. The result shown in Fig. 16
is to be compared with Fig. 15b.

The phase variations of target points induced by the
target motion is the key to the coherent radar imaging. As
one can see from Fig. 9, the magnitudes of the radar returns
which provide only range information are very similar from
pulse to pulse and represent a great deal of redundancy.
From the DOF point of view one would 1like to have
approximately equal amounts of input and output data.
Hence, it 1is conjectured that the phase portion of data
alone is sufficient to give an image of a comparable
quality. This would achieve a factor 2:1 in data reduction.
Experimental result shown in Fig. 17 seems to support this
conjecture. Intuitively speaking, the range bins where
there are no strongly reflective target points have a
random-like phase and are likely to spread their energy over
the spectrum after the Fourier transform is taken in the
azimuthal direction. On the other hand, target points of
strong reflectivities give highly correlated azimuthal radar
returns, resulting in clusterings of energy in the fregquency
domain corresponding to different azimuthal target points.
In this way, the magnitudes of the returns do not play an
important role in determining in which range bins 1lie the
strong target points.
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(a) Magnitude of Fourier (b) Magnitude of Fourier
transform of 12d . transform of 12e

(c) Fourier transform of
collapsed version of (b)

Fig. 13. Processing the phase data compensated by
schemes (A) and (B).
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(a) 1st 20 seconds or 2048 (b) 2nd 20 seconds
signatures (®2.5° aspect
change) .

(¢) 3rd 20 seconds (d) 4th 20 seconds

Fig. 14. Aircraft radar images with abutting 20 second
coherence time.
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(a) 1lst 40 seconds (b) 2nd 40 seconds
(*5° aspect change)

(c¢) lst 30 seconds
(*10°)

Fig. 15. Aircraft images with different coherence times.
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Fig. 16. 2:1 range collapsed
coherence time = 40
seconds.

Fig. 17. Same portion as Fig. 1l4d
phase information only.



Experimental Results - Second Interval

The first 8000 signatures of the second interval source
data which were taken when the airplane was making a
standard left turn are shown in Fig. 18 and Fig. 19. Unlike
the straight flight, the phase plot here has a changing
azimuthal structure due to the turning motion of the target,
which creates complicated range and Doppler histories. In
addition, there are several occasions when the range bins
are seriously out of alignment. The overall view of Fig. 18
shows the changes of relative positions of nose, fuselage
and wing tip due to the turn. A portion of data was taken
when the airplane was nose into the radar and a series of
resultant images are shown in Fig. 20 using the
reference-point technique as a phase compensator. In this
case the nose tip serves as a very good reference point as
shown by the degree of sharpness of the nose in these
images. Figure 21 shows images of different coherence
times. Note that in Fig. 21b the shape of the fuselage has
been clearly imaged. A coherence interval of 18° rotation
of the target seems too much to give a satisfactory image as

a result of overwhelming range walking.

The spread patterns close to the nose are due to the
aircraft radar which was constantly scanning during the
flight, presenting an object of changing reflectivity and
violating the assumption that the target was a rigid body in
the processing technique.

Range Re-Alignment Results

As is evident from Figs. 18 and 19 the radar breaks
range lock quite often during the turn of the target
aircraft. This is to be expected as different scatterers
from the aircraft dominate the leading return of the radar
reflection. Naturally when the radar breaks lock, one would
not expect to be able to image without re-alignment
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Fig. 18. Overall view of second interval data;
log magnitude of every 1l6th pulse return.
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(a) Log magnitude (b) Phase

signature number 1-2048

(c) Log magnitude (d) Phase

signature number 2049-4096

Fig. 19. Second interval data with 128 range bins side by side.

~240~



(e) Log magnitude (f) Phase

signature number 4097-6144
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(g) Log magnitude (h) Phase

signature number 6145-8000

Fig. 19. (continued).



(a) 1st 2.5 seconds or 256 (b) 2nd 2.5 seconds
signatures (=4.5° aspect
change)

(¢) 3rd 2.5 seconds (d) 4th 2.5 seconds

Fig. 20. Aircraft radar images with abutting 2.5 second
coherence times.
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(a) 1lst 5 seconds (b) 2nd 5 seconds
(~90° aspect change)

(¢) 1st 10 seconds
(~18° aspect change)

Fig. 21. Aircraft images with different coherence times.
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(a) Broken range lock (b) Aircraft image before
re-alignment

(c) Correlation range re- (d) Aircraft image after
alignment re-alignment

Fig. 22. Range re-alignment.
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processing. An earlier section presented a theoretical
discussion on such re-alignment procedures and this section
will present some experimental results.

Figure 22(a) presents a typical break in the range lock
for a sequence of 512 signatures during the turning portion
of the flight. The first returns, which are not very
distinct in the first 50 and last 200 signatures, are from
the nose tip. The second strong returns are from the 1left
wingtip. Reflectivity of the nose tip scintillated and the
wingtip returns were taken for the nose from time to time.
Fig. 22(b) is the image of the data of Fig. 22(a). As one
would expect, the image looks blurred due to the mixture of
the returns from the wingtip and nose after the azimuth
processing. However, general orientation of the fuselage is
resolved.

A realignment scheme of correlating the magnitude of
the returns as described in an earlier section was applied
on Fig. 22(a) to become Fig. 22(c). While the scheme works
quite well in the neighboring signatures, exponential
weights have been applied to the previous aligned data for
the correlation reference to insure global alignment.

Fig. 22(d) shows the target image obtained from the
religned data. Very much 1like Fig. 20 this image shows
clearly the orientation and the wingtips of the aircraft.
However greater structure is now evident as would be
expected from properly realigned data.
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4. Smart Sensor Projects

The following report from Hughes Research Laboratories
reflects the continuing progress on the CCD smart sensor
design front. As usual we are pleased to see such results
and wish to point out that this represents a classic
illustration of technology transfer as the US Army NVL has
contracted and received one of our earlier circuit chips in
an operating unit. Recent chip design will afford 7x7
processing as well as programmable arrays and limited
feature selection in our ultimate effort for the computation
of a texture CCD circuit.
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4.1 Charged Coupled Device Image Processing Circuitry

Graham N. Nudd

Program Overview

The goal of this project 1is to investigate the
feasibility of performing low-level image-understanding
tasks using charge-coupled device (CCD) technology. We have
developed two CCD test chips which perform preprocessing
functions based on a 3x3 array of pixels. The circuits
developed perform the following functions:

® edge detection

local averaging

e unsharp-masking
e adaptive stretch
® binarization.

The original data rate and accuracy goals were 100 kHz
and six bits. To demonstrate these functions on as wide an
image base as possible, we have developed a computer-based
test facility that wuses a dedicated 8-bit microprocessor.
This system forms the interface between the USC IPI date
base (stored on magnetic tape) and our integrated circuits.
With this system we have been able to demonstrate each of
the above functions at approximately 30 kHz with an overall
accuracy of four bits. The speed and image resolution of
this system is basically limited by the access time of the
random access memory within the microcomputer. An access
time of 1 usec provides for a 128x128 pixel image with 16
gray leads refreshed at standard frame rates. This
combination of image size and resolution results in a
processing rate of approximately 30,000 pixels/sec. The
wide range of available images and the possibility of
generating specific test pattern has permitted us to
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demonstrate and evaluate the performance of our custom-built
circuits on a wide selection of data.

The successful testing of these functions using the
stored imagery has encouraged us to integrate them into a
real-time system. The concept of this program has been to
develop the necessary peripheral circuitry, to permit the
CCD circuits developed to run directly from a commercial
vidicon. The data rate from the Cohu camera is
approximately 7.5 MHz equivalent to high-quality television.
Althought these circuits were not specifically developed to
run at this data rate, the n-channel two-phase technology
used in the circuit fabrication is capable of supporting
this bandwidth. Our results to date with the real-time
system indicate satisfactory operation at 3.9 MHz clock
rates again with a dynamic range and accuracy eguivalent to
four Dbits. Using this system we have tested the processor
on a variety of imagery.

In addition, we have started the initial concept
development, circuit simulation, and preliminary layout on a
third n-channel CCD chip. Some of the functions to be
performed in this case (based on 7x7 array) include
two-dimensional convolution with fixed bipolar weights for
both deblurring and unsharp masking, a programmable 5x5
filter, a cross-shaped median operator and a statistical
different operator. We encountered some delay in our
original schedule for this chip, partly because of results
of the simulation for the deblurring operation. However, we
have developed a circuit concept for each of the functions
(listed previously) and have begun the initial device layout
for some of them.

As part of a parallel program with the Night-Vision
Laboratories, Fort Belvoir, Virginia (Contract
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DAAK70-77-C-0216) we have developed the necessary circuitry
to operate the CCD circuits developed in this program as
part of a real-time image preprocessing system. Details of
this development, as appropriate to the operation of the
circuits, are given in Section 4.

CCD Test Chips Developed

a. Test Chips I and II

We have developed five basic circuit functions, each
operating on the 3x3 kernel shown in Figure 1. The
functions are defined below Sobel Edge Detection:

S(e) = 1/8 [|(a + 2b + ¢) ~ (g + 2h + 1)] + |(a + 2d + g)
(1)
- (c + 2f + 1)|]

Local averaging:
fm(e) =1/9 [a+b+c+d+e+f+g+h+i] (2)

Unsharp masking:

0

su(e) a - q)e - afm(e) (3)

Adaptive binarization:

[

for fm(e) < e
Sb(e) = (4)
0 for fm(e) > e

Adaptive stretch:
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" PIXEL
INTENSITIES

Figure 1. Schematic of the basic
3x3 kernel.
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P S(t)

Figure 2. Block schematic of Sobel circuit.
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2 Min {e,r/2}

§,(e) =
12 Max {(e,r/2),0} for £ (e) > /2

where r is the maximum pixel intensity. These circuits have
been designed and built using two-phase n-channel technology
with approximately 5-ym lithography. To achieve the
required speed and accuracy, we have formulated each circuit
as a two-dimensional transversal filter and an arithmetic
operation. The concept of this approach is also shown in
Figure 2 for the Sobel circuit. This approach allows all
the advantages of the CCD transversal filtering functions
developed over the past five years to be obtained and also
provides one processed pixel output for each input data
cycle. For the 3x3 processing discussed here, each filter
must accept three adjacent 1lines of order and provide a
processed'output at each clock cycle as shown in Figure 3.
The weighting necessary for each pixel (1/8, 1/4, /8, -1/8,
-1/4, -1/8, etc.) is provided by variation in the area of
floating gates.

The accuracy with which this weighting can be achieved
depends to a 1large extent on the resolution of the
lithography used. With standard optical alignment used in
this work, an overall accuracy equivalent to 1% should be
attainable. Details of the weighting necessary for both the
Sobel operator and the 1local averaging are shown in
Figure 4(a) and Fiqure 4(b), respectively.

The CCDs are n channel and are fabricated with a
two-layer polysilicon process. This process requires nine
masks and two ion implantations. The CCDs have a bit length
of 27 yum, and the minimum feature size is 2.5 um. This
results in a total area of 0.7 mm2 for the Sobel (see

2
Figure 5(a)), of which 0.15 mm~ is the transversal filter.
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Figure 3. Detail of the CCD Sobel processor.
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(a)

(b)

Figure 5. Photomicrographs of (a) edge-detection and
(b) the local mean filter.
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This compares with a total area of 0.6 mm? for the mean
filter (Figure 5(b)). To achieve the necessary capacitance
balance between the two difference outputs, additional metal
was added, as Figure 5 shows.

The two basic functions of the CCD
circuits - arithmetic operations (such as absolute magnitude
determination and summation) and transversal
filtering -~ have been tested independently and the transfer
characteristics have been measured. The weighting functions
of the transversal filters for the Sobel edge detection and
local mean evaluation, for example, can be written as:

1 2 1
s =1/8l0 o o
X

-1 -2 -1

1 o0 -1 ]
s =1/8|l2 o =2
y

1 0 -1

[1 1 1
wo=1/9|1 1 1
m

1 1 1

L -

where S, and Sy provide the x and y components of the edge

values, a&and Wn provides the mean. Both the impulse response
and the linearity of these operations have been determined

using the microcomputer-based test setup shown in Figure 6.

Here the microcomputer is used to provide flexible and

programmed data inputs to the CCD circuits. These data are
then clocked through the devices, and the output 1is stored
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in the computer memory. This provides an accurate and rapid
means of characterizing the device performance as a function
of the various input parameters. The speed and accuracy of
this system are basicelly determined by the computer cycle
time and the analog-to-digital converters. The machine
described here has a basic cycle time of =2 lsec and can
provide an 8-bit guantization, resulting in a maximum CCD
clock speed of =30 kHz.

When a single-input pulse with a duration of less than
one-half «clock cycle is used as the input, the output is
equivalent to the impulse response of each component of the
filters. Examples for the Sobel operation are shown in
Figure 7.

An additional benefit of this test setup 1is that a
unique pattern of either analog or digital data can be
generated and used as the input to the CCD circuit, and the
output data can be gated to uniguely determine the operation
of any tap within the array. For example, if an input that
linearly increases with time is clocked into the array and
the output is gated to measure only the nth output pulse in
each «cycle, the weighting W, of the nth floating electrode
in the array can be uniquely determined. Measurements made
in this way are shown in Figure 8, which shows the output
voltage directly as a function of the input for each of the
floating gates in the Sobel filter. The slope of each
input/output characteristic gives the weighting for each
tap. From this 1inputs can be shown to be linear over
approximately a 3~V range, which translates to an accuracy

and dynamic range equivalent to approximately 16 gray
levels.

The CCD absolute value circuit shown in Figure 9, uses
a novel technique which permits a charge storage that is
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Figure 8. Measurement of the weighting
functions for Sobel operators.
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equivalent only to the input signal magnitude and is
independent of signal polarity. During the input phase,
¢INA is pulsed low first (high surface electron potential in
an n-channel CCD) and then settles high (low surface
electron potential). When the signal voltage Vgys; is less
than the reference voltage Vwrer set by the REF gate, the
electrons will fill the potential well under the gates B2
and FZ, as shown in Figure 9(a). During the output phase,
%oura is pulse high, and the charge packet is transferred
to the summing output. This charge is proportional to

(Vg = Veg) (Apg * 8pp) + (Vppp = Vgpg) (Apg + Ap))1 »

where Apy is the rate of the gate FZ, etc. The first term
corresponds to the fat zero charge and the second to the
signal charge. However, if Vgrg is higher than Vggp, the
potential, well wunder Bl, SIG, B2, and FZ, will be filled,
as shown in Figure 9(b). The output charge is proportional
to

[(Vpz = Vppp) (Apg + Apg) + (Vgpo = Vprn) (Agpe + 4,01 o

If the gate areas are fabricated SO that
Agrg*t ANy = Apg + Agy, then the output charge will always
be a fat zero plus the charge proportional to the magnitude
of the signal with Vggpp as the reference point. A charge
output corresponding to the absolute value of the input
signal 1is obtained. After the absolute values of the
differences are obtained, they are summed in the charge
domain and the Sobel operation is completed.

Results of the absolute value circuit test are shown in

Figure 10. The input voltage on the gate SIG has been swept
over a range of 0 to 10 V.
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Figure 10. Transfer characteristic of
absolute value circuit.
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Initially, as the signal voltage is increased, charge
flows over the input gate and is stored under gates FZ and
Bl. This charge is then clocked out as the clock phase
changed. However, as the input voltage is increased beyond
ViNl (Figure 10), the bucket size decreases linearly,
resulting in the 1linear charge in voltage out (AB). when
the input voltage reached VkEF' the bucket size is a minimum
equivalent only to the fat zero. Increasing the input
further, causes some of the charge previously trapped under
Bl to'be clocked out. Thus, the output characteristic again
changes linearly from B to C. Consequently, when the input
signal 1is operated about VREF’ the output changes linearly

in proportion to |VS (when the output polarity is

-V
_ 16”VrEF|
independent of VSIG)' The input voltage swing, as shown in

Figure 10, is®2 V, resulting in an ocutput change of some

400 mV (equivalent to an accuracy of ~4 bits).

b. Performance Evaluation of the Processor

The processor has been tested on true two-dimensional
imagery, using both a stored data base and a real-time input
from a commercial vidicon. The use of a stored data bese
permits most of the problems associated with the
sensor - illumination, resolution, and signal-to-noise
ratio - to be separated from the evaluation of processor
performance. The maximum data rate of this system, however,
is 1limited to 30 kHz. In this mode, the imagery to be
processed is first digitized and stored in the computer
memory (as shown in Figure 6). 1In practice, a very large
data base is available on magnetic tape and has been used
extensively in the performance evaluation. The stored data
are then clocked out of the random access memory in
synchronism with the CCD clocks and converted to analog data
before entering the processor. The processed data from the
CCD are converted again to digital format and stored in the

-265-



computer memory in the form of 128x128 4-bit words. Direct
memory address is then wused to refresh a standard video
monitor.

An example of this operation is shown in Figure 11 for
a two-dimensional test pattern. A comparison of the output
(Figure 11(b)) with the computer simulation (Figure 11(c))
shows that an accuracy of approximately four bits is
preserved.

In addition to the performance evaluation of the CCD
circuits on 128x128 pixel test images, we have tested their
operation on a variety of imagery available both with the
USC IPI data base and at Hughes Research Laboratories.
Examples are shown in Figure 12 and 13. 1In addition to our
work using the microcomputer-based test facility and stored
imagery, we have interfaced the processor directly with a
commercial vidicon camera. The standard operating frequency
of this real-time video is =7 MHz, providing 525x525 picture
elements at 30 frames/sec. At present, we have operated our
CCD processor at a maximum clock rate of 4 MHz, which
provides the full 525 vertical resolution elements but about
a 3:1 resolution 1loss in the horizontal direction. An
example of the performance of the edge detection is given in
Figure 14.

In parallel with this program, Night Vision
Laboratories have funded a program to develop the interface
circuitry for a real-time non-interlaced system which
performs each of the operations defined in Eqgs. 1 through 5.
A schematic of the system is shown in Fiqure 15. It uses
the devices developed in this program without modification
and interfaces these with a Fairchild analog field delay as
shown.
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TEST 1

(a)

CHIP TEST NO. 120
(b)

COMPUTER TEST 1
(c)

Figure 11. Example of processor operation on stored test data
(at 30 kHz and 128x128 pixel resolution).
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ORIGINAL IMAGE

BLURRED IMAGE

SOBEL OF IMAGE

Figure 12. Example of processor overation
on stored imagery I.

-268-



Figure 13.

ORIGINAL IMAGE

BLURRED IMAGE

SOBEL OF IMAGE

Example of processor operation
on stored imagery II.

-269-



s
s
Ehe e
: "’\'ﬁ\z&\\w e

Pt
.

_
.
.
e

.
&
o

%

(b) EDGE DETECTED IMAGE

Figure 14. Example of the CED processor operation when
clocked at 4 MHz using a commercial vidicon
as the sensor.
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The results of this are shown in Figure 16, for 1local
averaging, edge detection, unsharp masking and binarization.
The overall performance of each operation depicted in
Figure 16 is equivalent to four bits or 16 shades of gray.

We have begun work on a third test chip which is aimed
at performing the following functions:

® 7x7 pixel bipolar linear filter

® Operator programmable bipolar linear filter

@& Data programmable linear filter ~

® Texture related 7x7 parameter development.

The goal of the program is to develop circuitry that
will run at the full television rates (=7 MHz) and provide
at least 6-bit (1 part in 64) 1levels of intensity
revolution.

The 7x7 pixel bipolar array suggested by USC IPI has
the weighting elements shown below:

-

-0.05 ~-0.03 -0.04 0.06 0.04 -0.03 -0.05-
-0.03 0.06 -0.02 -0.07 -0.02 0.06 -0.03
0.04 -0.02 -0.06 0.15 -0.06 -0.02 0.04
0.06 -0.07 0.15 0.68 0.15 -0.07 0.06
0.04 ~0.02 ~-0.06 0.15 ~0.06 -0.02 0.04
~-0.03 0.06 ~-0.02 -0.07 -0.02 0.06 -0.03
| -0.05 -0.03 0.04 0.06 0.04 -0.03 -0.05 |

Its purpose is to perform correction for a limited aperture
size, and essentially de-blurr the imagery. Originally, the
weights suggested were given to four significant places
which we feel is impossible to achieve with
photolithographic techniques. Essentially, the accuracy
achievable in a CCD filter will be limited by the minimum
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feature size in proportion to the length of the channel
width as shown in Figure 17. The weighting at each tap is
simply given by Wi/W, where Wi is the length of the floating
gate and W is the width of the channel. Typicelly, the
minimum feature size achievable after full processing using
photolithography, will be on the order of 2 um resulting in
an overall accuracy of about one percent.

We have simulated this function at HRL, and the
performance improvement using the weights shown is slight.
This issue has been raised with the USC group and they
intend to rework the design. Because of the expense
involved in the detailed design layout and processing of the
circuit and the testing, we do not intend to build this
junction until improved performance can be demonstrated.

The second array is a programmable bipolar filter with
the weightings shown below,

r-0.039a -0.00780 ~0,01172c -0.01360 -0.0117a -0,0078a -0.039 ]
-0.0078a ~0,0156a -0.0234a ~0.0312a -0.0234a -0.0156c -0,.0078c
-0.0117a  -0.0234a -0.0312a ~0.04690 -0.0312c -0.02340 -0.0117a
-0.0136a -0.0312a -0.0469 (I - 0.06250) -0,0469 -0.0312a -0,0156a
—0.0117& -0.0234a -0,0312a -0,04692 -0.0312a -0,02340 -0.1170
-0.0078a -0.0156c -0.0234a ~0.0312a -0.0234a -0.0136a 0.0078a
5—0.039a -0.0078c -0.0117a . -0.0156a -0.0117a -0.0078a -0.03% ]

This array is now being designed and laid out. We will be
implementing this operation as a unipolar array and access
to the center pixel. A schematic of this is given in
Figure 18,

The third circuit is a median operator working on a 5x5
(plus-shaped) array. We aim to provide at least four-bit
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Figure 18. Schematic of data programmable array.
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accuracy with a goal of nx bits and provide a complete
calculated output each video clock cycle. This typically
involves ranking the ten pixels in the array and then
performing a further ten comparisons. We are attempting to
organize this as a two-dimensional filtering operation and
limit its automatic operations to a single high-speed
parallel comparator operation.

In addition, we are investigating the possibility of
performing a histogram on a 7x7 array with four-bit accuracy
directly in the analog domain. This circuit could probably
perform a complete histogram in 50 to 100 pysec. We will use
this to perform standard statistical measurements, such as
standard deviations, mode filtering, and dispersion
calculations.

In addition, we are now designing and beginning to lay
out a 5x5 programmable filter with programmable weighting
junctions. It will operate at the real-time video rates,
and the processed data will be fed to a microprocessor that
will change its weights. This will provide the high-speed
operation required for the data processing and a capability
of changing the filter junction with about a 1% accuracy at
the frame rate.

Finally, we are working on a 3x3 Laplacian operator
that operates at real-time video rates.

Each of these circuits will be built using standard
photolithographic techniques and using n-channel two-phase
operations. We expect initial devices to be available by
year end. To support this testing phase of this program, we
are building a test setup that will provide the necessary
access to seven adjacent lines of data and have programmable
clock rates.
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5. Recent Ph.D. Dissertations

One of the Image Processing Institutes' most precious
products 1is its graduate students and it is always a
pleasure to see our students graduate and move -on to
professional positions. This section lists the abstracts of
the dissertations of the three most recent graduates and
represents research in edge detection, restoration, and
radar imaging. We are proud of their work and wish them
well in their endeavors. Details of their disserations
appear as USCIPI technical reports and are available upon
request for those interested.
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5.1 Quantitative Methods of Edge Detection

Ikram E. Abdou

Most local operators used in edge detection can be
modelled by one of two models: edge enhancement/thresholding
and edge fitting. This dissertation presents a quantitative
design and performance evaluation of these methods. The
design techniques are based on statistical detection theory
and deterministic pattern recognition classification
procedure. The performance evaluation methods developed
include: (a) deterministic measurement of the edge gradient
amplitude; (b) comparison of the probabilities of correct
and false edge detection; and (c) figure of merit
computation. The design techniques developed are used to
optimally design a variety of small and large mask edge
enhancement/thresholding operators. A performance
comparison is given between these edge detectors. A new
edge fitting algorithm is introduced. The new algorithm is
derived in the discrete domain, this allows a direct
optimization of the operator's performance. The advantages
of the new algorithm are better performance with real world
pictures and less sensitivity to signal-to-noise ratio.

5.2 An Investigation Into an A Posteriori Method of Image
Restoration

John B. Morton

Two algorithms are developed which address the problem
of estimating the magnitude and phase of the optical
transfer function associatgd with a blurred image. The
primary focus of the research 1is on the estimate of the
phase of the optical transfer function. With the sharpening
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of one approximation, the method affords a reasonable
estimate of the phase of the optical transfer function.
Once an estimate of the optical transfer function has been
made, the corresponding blurred image is Wiener filtered to
estimate the original unblurred image. Results are
demonstrated on computer simulated blurs and also on real
world blurred imagery. Included is a mathematical bound on
the phase of the optical transfer function.

5.3 1Imaging With Radar Returns

Chung-Ching Chen

This dissertation presents both analytic and processing

techniques for various radar imaging systems.

A two dimensional system classification method, which
is very general and hence applies to the special case of
radar imaging systems as well, is proposed to assist 1in
understanding the structure and describing the limitations
of 2-D systems. Once a given system is identified with the
simplest possible class, the specific technigques can be
diréctly utilized to process the data or reconstruct the
images.

Following a review of radar imaging principles, several
coherent radar systems are analyzed and experimented upon.
They include synthetic aperture radar (SAR) ground mapping,
imaging of an aircraft target from turntable data, and
imaging of a flying aircraft target. 1In each case the point
spread function (PSF) of the imaging system is derived or
estimated. Physical considerations are then incorporated in
mathematical PSF's to categorize the imaging systems
according to the aforementioned system classification

-281-




principle proposed. Degrees of Freedom (DOF) under
different imaging geometries are analyzed as a means to
determine the amount of information present in the usually
huge amount of raw radar data for the purpose of efficient

computation and minimal storage requirement. Motion

compensation, range curvature, range alignment, de-chirping,
FFT, registration and side lobe reduction problems are all
addressed and experiments are performed using data from
RAT-SCAT (for turntable imaging) and other facilities. The
results shown suggest the versatility of coherent radar
imaging.

Possible extentions of the current work are discussed.
The understanding of the system characteristics, 1in
particular the formation of the radar image will aid in the

advancement of techniques for radar image enhancement,
encoding, quantization, and restoration.
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