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ABSTRACT

This technical report summarizes the image wunderstanding, image
processing, and smart sensor research activities performed by the USC
Image Processing Institute during the period of 1 October 1978 through
31 March 1979 under contract number F-33615-76-C-1203 with the

Advanced Research Projects Agency, Information Processing Techniques
Office, and monitored by the Wright-Patterson Air Force Base, Dayton,

Chio.

The research program has, as its primary purpose, the development
of techniques and systems for understanding images. Methodologies
range from low level image processing principles, smart sensor CCD LSI
circuit design, up to higher level symbolic representations and
relational structure manipulations.

g sy ———————eee = -



PROJECT PARTICIPANTS

Project Director Affiliation

Harry C. Andrews Computer Sciences & Electrical
Engineering

William K. Pratt Electrical Engineering

Research Staff Affiliation

Ramakant Nevatia Computer Science

Keith E. Price Image Processing Institute

Alexander A. Sawchuk Electrical Engineering

Timothy C. Strand Image Processing Institute

Visiting Scientist Affiliation

Jean-Francois Abramatic I.R.I.A. - FRANCE

Support Staff )

Ted Bleecker Mary Monson
Gary Edwards Michael Muha
John Horner Ray Schmidt
Eileen Jurak James Ter tocha
Hilda Marti Thomas Tertocha
Toyone Mayeda Amy Yiu

Charles McManis

-ii-



ABSTRACT

This technical report summarizes the image understanding, image
processing, and smart sensor research activities performed by the USC
Image Processing Institute during the period of 1 October 1978 through
31 March 1979 under contract number F-33615-76-C-1203 with the
Advanced Research Projects Agency, Information Processing Techniques
Office, and monitored by the Wright-Patterson Air Force Base, Dayton,
COhio.

The research program has, as its primary purpose, the development
of techniques and systems for understanding images. Methodologies
range from low level image processing principles, smart sensor CCD LSI
circuit design, up to higher 1level symbolic representations and
relational structure manipulations.



Ahmad Armand
Behnam Ashjari
K. Ramesh Babu
Bir Bhanu
Chung-Ching Chen
Peter Chuan
Fabrice Clara

Students

David Garber
Chung-Kai Hsueh
Kenneth I. Laws
Sang Uk Lee

Chun Moo Lo

Howard Shao
Felicia Vilnrotter

-iii-



TABLE OF CONTENTS

Page

Research OVerVieW. cuieeeeeeecesescecaacccoasososnossssossssnnsses 1

Image Understanding Projects

2.1

2.2

2.3

2.4

2.5

2.6

Decorrelation Methods of Texture Feature Extraction

- William K. Pratt and Olivier D. FaAauUgeraS....ceceeeees . 3
Stochastic Texture Characterization

— Kenneth I. LaWS.eeeeesornscessoscssesccsscsscssscsccsscscs 17
Describing Natural Textures

- Ramakant Nevatia, Keith Price and Felicia Vilnrotter.. 29
Supervised Classification with Singular Value

Decomposition Texture Measurement

- Behnam Ashjari and William K. Pratt..ccceceeecceccccceee 52
Use of Linear Features in Road Detection

- K. Ramesh Babu and Ramakant Nevatid..eeececececeececeees 62
Model Matching and Acquisition of Images

— Keith PricCe.ceeeeceeccseccrssccsssssosassesssssccscccce 68

Image Processing Projects

3.1

Two-Dimensional Small Generating Kernel Convolution
- William K. Pratt, Jean-Francois Abramatic and

SanNg UK LEC.ueveeceesascosesssasessssscsssncssssscsscssce 16
Wiener Image Restoration Condition Number
- Sang Uk Lee and William K. Pratt..ccececceccessceccsss 85
Estimation of Blurred Image Signals with Poisson Noise
- Chun Moo Lo and Alexander A. SawChuk....eoeeeeeeeeeese 90
The Quality of MAP Restoration Filter for Poisson Noise
~ Chun Moo Lo and Alexander A. Sawchuk.....eceeeeeeesaaal05
An Approach of A Posteriori Image Restoration
- David D. Garber and John B. MOrton.....ceeeeesesesesssll8
Errors in Polar Coordinate Sampling
- Yeh-Hua Peter Chuan....ceecieeeeccecssssccossssssssossesslb

-iv-



Research OverviewWe.eeeoe o 6t et s eeceesesssess s s s eserssenseene

TABLE OF CONTENTS

Image Understanding Projects

2.1

2.2

2.3

Decorrelation Methods of Texture Feature Extraction

- William K. Pratt and Olivier D. FaugeraS..ceceesceeoes
Stochastic Texture Characterization

- Kenneth I. LaWS.seeseeecscoscesssssosossnsossossscscnsssns
Describing Natural Textures

- Ramakant Nevatia, Keith Price and Felicia Vilnrotter..
Supervised Classification with Singular Value
Decomposition Texture Measurement

- Behnam Ashjari and William K. Pratt.....ccceeeeeecceene
Use of Linear Features in Road Detection

- K. Ramesh Babu and Ramakant Nevatiad...cecceeeecceccens
Model Matching and Acquisition of Images

-Keith Price....-......-ooo..........................--

Image Processing Projects

3.1

Two-Dimensional Small Generating Kernel Convolution
- William K. Pratt, Jean-Francois Abramatic and

Sang UK LEC.ceiececescccossencssccsosssssssssccssscsns .o
Wiener Image Restoration Condition Number
- Sang Uk Lee and William K. Pratt.......... csseccssssns
Estimation of Blurred Image Signals with Poisson Noise
- Chun Moo Lo and Alexander A. SawChuK....c.ccceeeecocens
The Quality of MAP Restoration Filter for Poisson Noise

Page

17

29

52

62

68

76

85

90

- Chun Moo Lo and Alexander A. Sawchuk.....eeeeeceseeeeeall5

An Approach of A Posteriori Image Restoration

- David D. Garber and John B. Morton.....eeeccecccccsccs .118

Errors in Polar Coordinate Sampling

-Yeh-Hua Peter Chuan.-o.-o-....-.o.................---0126

—-iv-




3.7 Reconstruction of Rotating Targets
-~ Yeh-Hua Peter Chua@n..ceeeeceeeces N Y X

Smart Sensor Projects
4.1 Implementation of Advanced Real-Time Image Understanding
Algorithms
- G.R. Nudd, P.A. Nygaard, S.D. Fouse
and T.A. NUSSMELer.eeeveeesscosocescsasasssasassoansssalb0

Recent Institute Personnel PublicationS...cceeeeeccccccccessse2ld

—V—



1. Research Overview

This document presents results of research over the past six
months at the USC 1Image Processing Institute. Research has been
devoted to 3 major areas: image understanding, image processing, and
smart sensor design. These areas are abstracted below.

Image Understanding Projects

The image understanding projects investigated during the past
research period fall into two categories: texture analysis and image
analysis. Pratt and Faugeras report on a method of texture feature
extraction in which an image is first decorrelated, and large area
spatial moments are formed as texture features. Laws presents an
extension of this work concerned with an investigation of generalized
spatial operators performing pseudo-decorrelation. A method of
structural texture description based upon an edge representation of an
image field is presented by Nevatia, Price, and Vilnrotter. Ashjari
and Pratt discuss texture feature extraction from another viewpoint in
their report of the use of singular values of a texture field as

texture vector components.

Babu and Nevatia describe the use of linear features derived from
image edges as a means of detecting roads in aerial imagery. Price
reports on another image analysis project involving model matching at
the symbolic level.

Image Processing Projects

The image processing projects reported during the research period
are concerned with image processing system architecture, image
restoration, radar image formation, and computer holography.

Fratt, Abramatic, and Lee describe a novel architecture for
performing two-dimensional convolution with a minimum amount of
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hardware using the concept of sequential convolution with small
generating kernels. Lee and Pratt present an algorithm for computing
the condition number of a Wiener image restoration operator as a means
of predicting the numerical accuracy of the restoration process. Two
reports by Lo and Sawchuk describe image restoration for blurred
images subjected to Poisson sensor noise. Garber and Morton describe
a method of a posteriori image restoration. Chuan presents two
reports; the first 1is concerned with errors associated with data
sampling in the polar domain, and the second report is an application
of the theory involving synthetic aperture radar imaging.

Smart Sensor Projects

The Hughes Research Laboratories present a section describing
research progress on the development of smart sensors for image
processing. Hughes is presently completing construction of a new CCD
chip that performs the following functions:

3x3 Laplacian

5x5 median filter

5x5 programable weight convolver
7x7 bipolar convolver

26x26 edge detection convolver.
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2. Image Understanding Projects

2.1 Decorrelation Methods of Texture Feature Extraction

William K. Pratt and Olivier D. Faugeras¥*

Introduction

Previous studies [1-7] have helped to establish bounds for
developing stochastic~-based methods of visual texture feature
extraction. It has been demonstrated that second order statistical
meaures on stochastic texture fields are sufficient in the sense that
human observers cannot distinguish between texture field pairs
differing only in third and higher order statistics. Furthermore, it
has been shown that mean, variance, and autocorrelation measures,' by
themselves, are not sufficient. These results have led to a new
method of texture feature extraction based on spatial moment
measurements of a decorrelated versin of the texture field [8].

Texture Feature Extraction Method

Stochatic texture fields can be computer generated by the system
of Figure 1. An array of independent random numbers W(j,k) with
probability density P(W) is input to a spatial operator with transfer
functionC®{-} to produce the correlated texture field F(j, k).

Texture fields generated by the model of Figure 1 can be
compactly specified by P(W) and C{-}. This observation has led to a
texture field description method by which F(j,k) 1is decorrelated to
estimate W(j,k) and a histogram of the decorrelated field is formed as

an estimate of P(W). The spatial operator C{+}can be described by
measurement of the autocorrelation function

*Dr. O.D. Faugeras is with Institut de Recherche d'informatique et
d'automatique, Domaine de Voluceau, Le Chesnay, France.
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extraction. It has been demonstrated that second order statistical
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AF(m,n) = Z Z F{u,v)F (u-m,v-n) (1)

u=j-W v=k-W

of F(j,k) computed over a (2W+l) by (2W+l) window.

Figure 2 contains a block diagram of the exture feature
extraction method. In this system, the texture field sample is
decorrelated by a whitening filter based on the mesured
autocorrelation function AF(m,n) or by a fixed Laplacian or Sobel
operator. A histogram P(b) for 0 < b < L-1 amplitude levels is formed
over a window of the decorrelated field and the first four moments of
the histogram, defined below, are computed.
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L-1
_ 1 14 - 5
bK-;I (b-b,) P (b) -3 (5)
D b=0

The autocorrelation function is characterized by a set of
two-aimensional spread measures defined by

T T
Sw,v) = 25 2 (men) %(a=n A, (m,n) (6)
m=0 n=-T n

where
T T
N = 2o 24 mAL(m,n) 7
m=0 n=-7
T T
- (8)
nn - Z Z nAF(mrn)
m= 0 n=-p
Evaluation

The decorrelation method of texture feature extraction previously
described has been evaluated by measurement of the Bhattacharyya
distance of texture features measured on pairs of the Brodatz [9]
natural texture fields of Figure 3. The B-distance measure is

1

B(S s)—l( - )’r"l“]—l( - 2
1755) = gy -1, ) u;-u,)+5in Lo 1%
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Figure 3. Examples of Brodatz Texture Fields.



where u, and g . represent the feature mean vector and the feature
covariance matrix of the classes, respectively. For equally likely
texture field pairs, a B-distance of 4 or greater «corresponds to a
classificaton error bound of about 1%.

In the experiments, the Brodatz texture fields have been
subdivided 1into 64 non-overlapping prototype regions of 64x64 pixels.
Texture features have been extracted from each region and formed into
a texture feature vector. Next, the mean and covariance of the
feature vector have been computed and substituted into eq.(9) to
obtain the B-distance for pairs of prototype fields. 1In order to
create a stringent test, the natural texture fields have been
normalized to zero mean and unit standard deviation by independent
point-by-point 1linear re-scaling. This operation insures that
luminance bias and contrast differences between the texture pairs do
not influence the discrimination.

Table 1 contains a 1listing of B-distances for three texture
feature sets that measure the shape of the autocorrelation function of
each prototype field for 20 spatial lags in each coordinate. With
feature set 1, containing four features, the B-distances of the
natural texture fields range from 8.70 to 1.49 corresponding to
classification error bounds from about near zero to 11%. The
B-distances are much smaller for feature sets 2 and 3 employing two
features and one feature, respectively. The B-distance measurements
of Table 1 indicate that autocorrelation shape features of texture

fields, by themselves, are marginally adequate for the natural texture
fields investigated.

Table 2 contains listings of B-distances for texture features
consisting of histogram moments of decorrelated texture fields 'using
whitening, Laplacian, and Sobel decorrelation operators. For the
whitening operator, the average distance for the natural texture pairs

o o o e et gy o w8



Table 1

Bhattacharyya Distance of Texture Feature Sets for Prototype

Texture Fields Autocorrelation Features

FTELD PAIRS SET #1 SET #2 SET #3
GRASS SAND 5.05 4.29 2.92
GRASS RAFFIA 7.07 5.32 3.57
GRASS WOOL 2.37 0.21 0.04
SAND RAFFIA 1.49 0.58 0.35
SAND WOOL 6.55 4.93 3.14
RAFFIA WOOL 8. 70 5.96 3.78
AVERAGE 5.21 3.55 2.30

SET #2: s(1,1), S(2,2)
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where u, and L ; represent the feature mean vector and the feature
covariance matrix of the classes, respectively. For equally likely
texture field pairs, a B-distance of 4 or dgreater «corresponds to a
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whitening operator, the average distance for the natural texture pairs
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is quite large when all four moment features are utilized, but some
texture pairs, e.g. grass-raffia, exhibit small distance. There is
relatively little drop in B-distance when only the third and fourth
order histogram moments, bS and bK’ are used. This is to be expected
since the whitened texture fields have been forced to 2zero mean and
unit variance by the whitening operator. Use of only the kurtosis
gives small distances.

With a Laplacian decorrelation operator, the B-distances of
Table 2 are somewhat lower on average than for a whitening operator.
However, there are some anomalies. Compare, for example, the

grass-raffia distances for whitening and Laplacian decorrelation.

Decorrelation with the Sobel operator, as indicated in Table 2,
gives quite large B-distances for natural textures using four
histogram moments. Since the Sobel operator output is wunipolar, the
mean and standard deviation moments are meaningful, and in fact,
contribute significantly to the B-distances. 1In the worst case of the
grass-raffia pair, the B-distance of 2.20 corresponds to a
classification error bound of about only 5% using feature set 1.

The conclusions obtained from Table 2 are that histogram moment
features of decorrelated texture fields, by themselves, provide a
reasonably good means of discriminating the natural texture fields
investigated. The whitening operator is superior, on the average, to
the Laplacian operator in terms of distance. But, the Sobel operator
yields the 1largest average and largest minimum distances. This is
particularly interesting since use of the Sobel operator obviously
obviates the need to compute the autocorrelation function and generate
the whitening filter.

Table 3 lists the B-distances obtainable using a hybrid feature
set of autocorrelation shape and histogram moment features. In all
cases, the B-distances are larger than obtained using only
autocorrelation shape or histogram moment features.
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The previous results seem to indicate that the histogram of a
decorrelated texture field provides a substantial amount of
information for texture discrimination. But, how important is the
decorrelation process? What performance could be achieved if no
decorrelation were to be performed, and the histogram were made
directly on the texture field? Table 4 provides some answers to these

questions.

Table 4 contains B-distances obtained with four histogram moment
features using whitening, Laplacian, and Sobel decorrelation operators
and with no decorrelation at all. This data, presented in the first
four columns of Table 4, has been obtained by processing texture
fields normalized to zero mean and unit standard deviation. The
results show that, without decorrelation, fairly large B-distances can
be obtained for most of the natural texture field pairs. Thus, the
first order histogram of a texture field seemingly provides
information important for texture discrimination. But, is this really
so? Probably not, because the first order histogram of an image is
dependent upon luminance point response of the imaging system in
addition to the point reflectivity of the texture object. It is
possible to nonlinearly scale the prototype texture fields such that
their histograms are all identical. Yet the fields will retain visual
texture differences. The B-distances obtained using such images as
prototypes are presented in the last four columns of Table 4. It is
observed that the B-distances for no decorrelation have become
extremely small as expected, but the distances for the other
decorrelation operators are not affected nearly so much. Moreover,
the whitening operator yields the largest average and largest minimum
distance. Thus, the justification for the decorrelation operation is
strongly enforced.

Summary and Conclusions

A stochastic model of texture field generation has 1led to the
development of a texture feature extraction technique. The method is
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based on representation of the autocorrelation function of a texture
field plus the gray scale histogram of a decorrelated version of the
texture field. Feature repesentation is in terms of shape measures of
the autocorrelation function and moments of the histogram. The
feature vector so obtained has been evaluated by Bhattacharyya
distance measurements. Testing with prototype texture fields
indicates that large Bhattacharyya distances can be obtained between
texture field pairs with the stochastic-based feature extraction
method.
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2.2 Stochastic Texture Characterization

Kenneth I. Laws

Visual textures arise from many sources. Cellular textures are
composed of repeated similar elements called primitives. Examples are
leaves on a tree or bricks in a wall. Other texture types include
flow patterns, fiber masses, wood grains, and stress cracking. A
complete analysis of any texture would require modeling of the
underlying physical structure.

The human visual system, however, is capable of discriminating
and classifying all of these textures. It is obvious that spontaneous
recognition does not require built-in models of physical texture
generators, although such models may be used by trained observers.

The eye must use the same feature extraction methods on each
texture field, regardless of its source. We do not know what these
methods are, although there is indirect evidence that edge detection
is involved. We do know that any retinal transform must retain enough
information to distinguish different textures (as identified by human
observers). Information which would distinguish equivalent textures

must be suppressed or ignored.
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The <chief characteristic of texture is shift-invariance.
Perception of a texture does not change as its position on the fovea
changes. This seems to be the very definition of a texture field: an
image which is not significantly changed by shifting. A region or
object, on the other hand, is position dependent.

Textures are often composed of identifiable sub-regions. Texture
perception is not invariant to all rearrangements of these regions.
Whether an image is seen as a uniform texture field or as an
arrangement of regions seems to depend on two factors: scale and
discontinuity. Large regions with closed boundaries are seen as
separate objects. Small regions with indistinct edges are seen as a
texture field.

We shall define texture to be that which remains constant as a
window (or fovea) is moved across an image. This presupposes that the
image is a single texture field. The definition does not explicitly
include the closed boundary effect, but does include the resolution
ambiguity: texture may change as a function of window size.

There is another ambiguity in the common meaning of texture. Let
two texture fields be identical except for a difference in luminance.
Most observers will say that the textures are identical, although the
two fields are easily distinguished. Similar results will be obtained
with texture fields differing in contrast, color, size, rotation, or
geometric warp. Texture is thus perceived to be invariant to changes

in illumination or camera position.

We shall consider all of these differences to be differences 1in
texture, although ones which are easily measured or compensated.
Experimental work for this study uses monochrome images quantized to
have nearly uniform gray-level histograms. This compensates for any
differences in illumination, sensor type, or film developing
parameters. We will also attempt to measure and adjust for camera
orientation parameters, although it is not clear whether these differ
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from texture parameters.

Structural and statistical approaches to texture description have
been proposed. Structural methods first locate primitive regions,
then analyze the spatial relationships. This requires that the
texture have identifiable primitives, and that the vision system be
able to determine which primitives are present. This is probably the
correct way to analyze regions and objects, but 1is too
knowledge-dependent for a preliminary texture segmentation system.
The most promising general approaches measure the relationships
between edge elements or small regions. This is similar to the

statistical approach described below.

Texture is both spatial and statistical. It' is spatial since
texture is the relationship of groups of picture elements. Nothing
can be learned about texture from an isolated pixel, or from a
histogram of pixel values. Monotonic transformations leave texture
largely wunchanged. This is why we are able to use histogram

equalization.

Texture perception is largely unchanged by random variation in
the shape, orientation, structure, or relative position of texture
elements. While it is true that a highly regular texture can be
disrupted by the introduction of a few irregularities, irregular
textures are nearly immune to noise or variation. It seems that
variability is an important texture dimension, and that changes in
other texture measures must be interpreted relative to variability.

Statistical features are non-spatial. The most powerful and
appropriate Statistics for a particular type of texture are those
which estimate parameters of the generating process. A general vision
system, however, must use features which are common to many types of
texture. One way to find such features is to model the human visual
system. We have yet to develop a system which works as well. If we
find such a system, however, we can undoubtedly improve upon it for
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particular applications.

Natural texture dimensions can also be discovered by studying
homogeneous texture fields. Each field contains variation inherent to
that texture type. Different fields have different types of
variation. Discriminant analysis is an appropriate tool for
identifying the significant variations. It is only necessary that we
propose a set of texture measures; the analysis determines which
combinations are useful.

Traditional Texture Measures

There is good evidence that the human visual system does not
respond to spatial dependencies of higher than second order. The
relationship between any two pixels may be significant, but their
joint relationship with any third pixel in an image field is not.
This suggests the autocorrelation function as a matrix of texture
descriptors. Unfortunately the autocorrelation function is very
similar for most images. It 1is neccessary’ to consider large 1lag
values before significant differences occur. These differences tend
to be regularly spaced regions of high correlation energy
corresponding to repetition frequencies within the texture fields.
Such pockets of energy are not easy to identify and analyze. About
the best which can be done cheaply is to describe the correlation
function by its first few spatial moments. Clearly this method will
have 1little power unless correlations are measured over very large
windows. This would be inappropriate in image analysis, since
relatively small regions of texture must be identified.

One way to gather the significant energy in the <correlation
function 1is to compute its Fourier transform. Equivalently, one may
transform the original image window, discarding the phase information.
Although this takes a 1large amount of computation, moving window
transforms may be wupdated without too much trouble. The chief
difficulty with transform methods is that they must be computed over
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large windows. Small window transforms reveal only high-frequency
information, negating the theoretical justification of the transform.
Further, single frequencies are seldom important or reliable. The
spectrum may be reduced to a smaller number of features by computing
the cepstrum, or Fourier transform of the spectrum. Another way to
extract significant energy is to compute moments of the spectrum.

The co-occurrence matrix measures more general second-order
properties. It is an estimate of the joint probability density
function for pixels separated by a particular row and column shift. A
diffierent matrix must be computed for each of severél row and column
shifts, although there is some reduction if rotational isotropy can be
assumed. For texture segmentation by image classification, each of
these matrices must be computed around each image pixel. It 1is not
feasible to compute full 256x256 co-occurrence matrices for an 8-bit
image. Images are typically requantized to 16 levels before joint
probabilities are estimated. This leads to poor performance on
low-contrast textures. The co-occurrence matrices must also be
reduced to a reasonable number of features. This is best done by
computing moments around the matrix diagonals. Many weighted moments

have been suggested, but none has yet proven effective.

It has been seen that spatial moments are a good way to measure
the distribution of energy in a correlation, spectral, or
co~occurrence matrix. Spatial moments can also be used to measure
texture directly, as described below.

Spatial Moments

Since texture is a locally spatial phenomenon, we must use local
spatial operators to generate our feature planes. Computation of
spatial moments is equivalent to multiplying an image window by a mask
and then summing. This is exactly what is done in convolution. It
seems reasonable to convolve small spatial moment masks with an image
to produce a set of feature planes. Then statistical measures can be
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computed over large moving windows in each plane. These measures form
the texture features for the point at the center of each large window.

The spatial moments of a local window are

Miy = (/W) Z Z riel1(r,c) (1)
r C

where N is the number of pixels in the window, r and ¢ are row and
column indices, and I(r,c) is the image function. It is assumed that
row and column indices are relative to the window center, and that the
computed moments are assigned to this center point as a feature
vector.

When spatial moments are computed over a probability density,
such as a co-occurrence matrix, it 1is desirable to relate higher
moments to the center of the probability mass, (MlO/MbO,MOl/MbO). For

instance,

My = /) 20 25 (e-my o/ )T, 0)

r C
(2)
= M, -M2 /M
207107700

For small image windows, however, this standardization makes 1little
difference. It 1is not worth the extra computation, and may not even

be appropriate.

Other types of standardization may be more useful. We can make
our texture measures invariant to the affine transformations
r' = sr +u, ¢' = tc + v by dividing the higher moments by the row and
column standard deviations,/ﬂqrga7ﬁggr and/%M'oz/MOO). This removes
the effect of camera zoom or texture coarseness. Other geometric
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warps can be removed by standardizing with respect to the row and
column correlation.

Rotational invariance can also be achieved. Suppose that the
image texture has a dominant direction, such as a gradient or major
Fourier component direction. Let the camera or texture field be
rotated through an angle A, and let a = cos(d), b = sin(A). The new
moments can be computed from the original window as

Mij (a) = (1/N) Z Z (ar+bc)i(-br+ac)jI(r,c) (3)
r c

Haralick computes several features of this form to measure energy
along co-occurrence matrix diagonals. Using the binomial expansion it
can be seen that these moments are linear combinations of the Mij'
For instance,

My, (A) = -abM, + (a2—b2)Mll+abM (4)

02

Haralick and other investigators have also suggested that spatial
moments be computed over non-linear functions of the co-occurrence
probabilities. These can be duplicated as closely as desired by
combinations of the spatial-statistical moments to be introduced
later.

Statistical Moments

A texture field is an extended entity composed of repetitions of
similar local primitives. We require, therefore, global measures of
local properties. These global measures must be statistical since
they must be shift-invariant and insensitive to random texture
variations. They should also be easy to compute since large windows
are involved.
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The set of statistical moments are particularly good global
measures. Consider a window placed on an image, or on any feature
plane computed as a transform of the image. One 1likely texture
measure 1is the average value of the feature within the window.
Another is the standard deviation of the feature. Skewness and
kurtosis are also good candidates, although somewhat harder to
explain. It is known that the histogram of an 8-bit feature plane can
be completely characterized by a set of 256 such statistics.
Statistical moments above the fourth, however, are 1likely to be
unreliable and to have little energy or importance. Initial results
suggest that even the skewness and kurtosis are of little use.

The basic statistical moments of a window are

M= (1/N) 2 2 Ko (5)
r C

It is convenient, however, to standardize thé higher moments to remove
the effect of mean and standard deviation. The statistics used in our
study are of the form
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warps can be removed by standardizing with respect to the row and
column correlation.

Rotational invariance can also be achieved. Suppose that the
image texture has a dominant direction, such as a gradient or major
Fourier component direction. Let the camera or texture field be
rotated through an angle A, and let a = cos(dA), b = sin(A). The new
moments can be computed from the original window as
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Haralick and other investigators have also suggested that spatial
moments be computed over non-linear functions of the co-occurrence
probabilities. These can be duplicated as closely as desired by

combinations of the spatial-statistical moments to be introduced
later.

Statistical Moments

A texture field is an extended entity composed of repetitions of
similar 1local primitives. We require, therefore, global measures of
local properties. These global measures must be statistical since
they must be shift-invariant and insensitive to random texture
variations. They should also be easy to compute since large windows

are involved.
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AVE = Ml (6a)

sov = 7 (u,-M; %) (6b)
SKW = (M.=3(M,*M.)+2 (M, 3))/SDV> (6¢)
373 (M ™M) 1
2 4 4
KRT = [(M, -4 (M;*M;)+6 (M) “*M,-3 (M) ")) /SDV"]~3.0 (64)

The kurtosis has been reduced by 3.0 so that a Gaussian distribution

will have zero skewness and kurtosis.

Computation of the four moments at every picture point can be
done in a single pass. On our PDP-10KL this takes two minutes for a
512x512 image, regardless of the moving window size. The number of
image rows which must be kept in core is equal to the number of rows
in the window. Each pixel is examined only twice, once as it enters

the moving window and once as it leaves.

Experimental Results

Two sets of textures have been used to test the discriminating
power of these features. The first set consists of the Brodatz
pictures of grass, raffia, sand, and wool. These pictures were chosen
for their strong, uniform structures and for their similarity. They
have been made more similar by histogram equalization. The second set
includes the first and the Brodatz pictures of bark, straw,
herringbone cloth, pressed calf leather, water, wood, and plastic
bubbles, each histogram equalized.

Feature vectors are computed for 240 non-overlapping 32x32
windows in each picture. These vectors are then passed to the SPSS
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analysis system, where discriminant analysis is performed. The
analysis involves stepwise inclusion and deletion of features to
identify significant eigen-dimensions in the feature space. Each
feature 1is adjusted to have zero mean and unit standard deviation
across the total population of sample vectors. This corresponds to a
Fisher 1linear discriminant analysis. Classification functions are
then computed from the principal texture axes. The accuracy of
classification on the training set will be reported here as the

primary quality measure for a set of texture features.

Co-occurrence features have been computed for the first texture
set. These can be used as a reference for evaluation of later
results. Let Pnuyij be the moment M;. computed on the joint
probability matrix for row and column shifts m and n. These features
have been computed for all subscript values 0, 1, and 2. All of the
MOO features are equivalent, 1leaving 73 independent features.
Computing time was approximately 4.5 minutes for 32x32 image blocks
requantized to 32 levels.

Of the 73 features, only the M1l moments showed strong individual
discriminating power. The strongest were P22Mll and P02Mll‘
Discriminant analysis with all of the features identified two dominant

texture dimensions. The first may be approximated by

- 7a
—l.5P11M21+1.3P01M12—1.2P00M22 1.2P20M12+1.2P00M22 (7a)

the second by

—2.4P10Mll+l.9P11M11--1.7P01Mll—l.5PloM22+l.5P20Mll (7b)

- Together these provide 98% classification accuracy, which seems to be
about what a trained human observer could achieve on 32x32 blocks.

The classification errors are mainly between grass and sand.
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The same spatial moment subroutine has been used to compute 3x3
spatial moments for the first texture set. It took ten minutes to
extract 32x32 window statistics from the original image and the nine
spatial moment feature planes. We believe that a moving-window update
algorithm will reduce this to 1less than five minutes per 512x512
image. Using special techniques for low-order moments might cut this
time in half.

The most significant spatial statistics are MllSDV' MOlSKW,

KRT, ana MZlSKW' Other strong measures are MlOSDV’ MOlSDV’ MOlKRT’

11
MlZSDV' MZlSKW' MlOSKW’ and MllsKw’ Conspicuously absent from this

list are any of the AVE statistics. For 3x3 convolutions, at least,

M

the convolution sum is not as important as its variability.

Two dominant texture dimensions were again found. The principle
axes appear to be the same as found with co-occurrence statistics,
although the second axis is reversed in sign. These components may be

approximated by

SDV-.84M.. . SDV-.77M, ,SDV (8a)

0l

and

SDV+2.4M. .SDV-2.4M

4-6M SDV‘4.1M b 10 12

01 21 Sbv (8b)

Notice that only SDV features are important.
. I3
The classification accuracy using these principle components is
9%, the same as for co-occurrence statistics. The error pattern is
slightly different, however. Grass and sand are still confused, but
so are wool and sand. The errors are distributed more evenly.

Another approach is to substitute 3x3 statistical moments for the
3x3 spatial moments. We have computed these texture measures for both
the first and second texture sets. The image was again sampled at 240
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non-overlapping 32x32 blocks. Computing time is 2.5 minutes for 240
non-overlapping 32x32 samples.

The strong features over the first set of four textures are
SDVSDV, SKWSDV, SDVAVE, SDVSKW, and SDVKRT. (The local operation is
mentioned first, then the global one.) Again the standard deviation

features are dominant. Classification accuracy with these features is
87%. The principle components are

1.5AVESDV-1. 5IMGSDV-, 8SDVSDV

1.7IMGSDV-1.0SKWSDV

where IMG statistics alone have no classifying power because of the
histogram equalization. The statistics do differ from window to
window, however, and may be useful in combination with other features.

Over the full set of 11 textures the strong features are SDVAVE,
SKWAVE, SDVSKW, and SDVKRT. SDVSDV, which 1is primarily an edge
measure, is much less important than for the first set of textures.
Classification accuracy drops to 84%, with the three dominant
components

-1.5SDVAVE+.8IMGSDV-. 7AVESDV

1.5IMGSDV~1. 3AVESDV-1.3SDVAVE+1l.1IMGAVE

-1.2IMGAVE-1.1SKWAVE

Notice the relative unimportance of the skewness and kurtosis

features.
Variations of the local statistical features have also been

tried. Adding the 3x3 Sobel edge detector increases classification
accuracy on the first set of textures to 99%. SBLSDV and SBLAVE are
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The same spatial moment subroutine has been used to compute 3x3
spatial moments for the first texture set. It took ten minutes to
extract 32x32 window statistics from the original image and the' nine
spatial moment feature planes. We believe that a moving-window update
algorithm will reduce this to less than five minutes per 512x512
image. Using special technigques for low-order moments might cut this
time in half.

The most significant spatial statistics are MllSDV' MOlSKW,
MlIKRT, and M21$KW. Other strong measures are MlOSDV, MOlsDV' MOlKRT,
M,,SDV, M, SKW, M,,SKW, and M, {SKW. Conspicuously absent from this

list are any of the AVE statistics. For 3x3 convolutions, at least,
the convolution sum is not as important as its variability.

Two dominant texture dimensions were again found. The principle
axes appear to be the same as found with co-occurrence statistics,
although the second axis is reversed in sign. These components may be
approximated by

- - (8a)
- 91M,, SDV-.84M,, SDV-.77M, , SDV

and

4.6M,,SDV-4.1M,.SDV+2.4M, .SDV-2.4M

125DV (8Db)

0l 21 10

Notice that only SDV features are important.
/
The classification accuracy using these principle components is
96%, the same as for co-occurrence statistics. The error pattern is
slightly different, however. Grass and sand are still confused, but
so are wool and sand. The errors are distributed more evenly.

Another approach is to substitute 3x3 statistical moments for the
3x3 spatial moments. We have computed these texture measures for both
the first and second texture sets. The image was again sampled at 240

-27-



both strong features. Normalizing each image block (to zero mean and
unit standard deviation) prior to computing local features has 1little
effect: classification accuracy drops to 98%. Use of 5x5 instead of
3x3 local statistics reduces accuracy to 82%, even with the 3x3 Sobel.

Spatial-Statistical Moments

The effectiveness of both spatial and statistical moments as
local texture measures suggests the use of combined
spatial-statistical moments. Let

M. = (w2, 2o riddi®r, e (9)
1Jk r c

This reduces to the spatial moments when k = 1 and to the statistical
moments when 1 = j = 0. It may be, however, that the joint moments
are more powerful local descriptors than the spatial and statistical
features together. We are now setting up discriminant analyses to
test this hypothesis.

2.3 Describing Natural Textures

Ramakant Nevatia, Keith E. Price and Felicia Vilnrotter*

Introduction

Many times, areas of an image are best characterized by their
texture rather than purely intensity information. Texture is most
easily described as the pattern of the spatial arrangement of
different intensities (or colors). The different textures in an image

*Felicia Vilnrotter is supported by a Hughes Aircraft Company Doctoral
fellowship.
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are usually very apparent to a human observer, but automatic
description of these patterns has proved to be very complex. We are
concerned with a description of the texture which corresponds, in some
sense, to a description produced by a person looking at the image.

Many statistical textural measures have been proposed in the past
[1-4], therefore one can use some of their results indicating what
measures may be useful. Among the statistical measures which have
been discussed, and used, are analysis of the discrete Fourier
transform to find indications of the structure [4], analysis of
generalized gray-level co-occurence matrices [l], and analysis of the
edges (or micro-edges) in a subwindow [3]. We are not interested. in
finding one texture measure which will distinguish between all regions
(this is the ultimate, but extremely difficult problem) but in finding
a texture measure to use in conjunction with many other features of
the region [9].

The work in what can be called structural texture description has
been more limited [5-7]. Maleson [5] used simple regions as the basic
elements and used relations between regions and shape properties of
the region in his analysis. Tamura et al. [6] tried to develop a set
of operators which would rate textures on several scales, comparable
to their ratings by human subjects. The proposals of Marr [7] for
texture analysis based on the primal sketch are similar to some of the
analysis which we perform.

Analysis of Texture

One of the most striking patterns seen in aerial images of a
certain scale is the regular street or housing pattern of many cities
(see Fig. 1). The appearance of this regularity is its . most
distinguishing characteristic, and because the pattern is so clear in
the image it should be easy to extract. An obvious method to extract
this regular pattern is the use of a 2-dimensional discrete Fourier
transform. We computed this for various subwindows from the image in
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both strong features. Normalizing each image block (to zero mean and
unit standard deviation) prior to computing local features has 1little
effect: classification accuracy drops to 98%. Use of 5x5 instead of
3x3 local statistics reduces accuracy to 82%, even with the 3x3 Sobel.

Spatial-Statistical Moments

The effectiveness of both spatial and statistical moments as
local texture measures suggests the use of combined
spatial-statistical moments. Let

M5k

= am 2, 2 ridi*e,o (9)
r c

This reduces to the spatial moments when k = 1 and to the statistical

moments when i = j = 0. It may be, however, that the joint moments

are more powerful local descriptors than the spatial and statistical

features together. We are now setting up discriminant analyses to
test this hypothesis.

2.3 Describing Natural Textures

Ramakant Nevatia, Keith E. Price and Felicia Vilnrotter*

Introduction

Many times, areas of an image are best characterized by their
texture rather than purely intensity information. Texture is most
easily described as the pattern of the spatial arrangement of
different intensities (or colors). The different textures in an image

*Felicia Vilnrotter is supported by a Hughes Aircraft Company Doctoral
fellowship.
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Fig. 1 and other images (subwindows are given in Fig. 2). 1In the
Fourier transform results shown in Fig. 3 there is some indication of
the regular structure in the urban area windows, but it is not as
apparent (visually) as it is in the image. Other attempts to derive
much of the structural information from the Fourier transform were
only partially successful [4], so we felt other methods should be
attempted.

The individual textural elements could be located and analyzed
[5], but the simple regions seem to be unreliable when the textural
elements are very small, which is the case in the wurban areas.
Another option is to analyze an edge image to find the structure. The
patterns in the original image will cause related patterns to appear
in the edge image, and those patterns should be more consistent and
easier to analyze than the original image data.

To study textures which are composed of small basic elements, a
small window size edge detector must be used. We are interested in
the edges between adjacent textural elements and not so much in edges
between adjacent textural patterns. The edge operator which we use
has been used successfully for other types of analysis [8]. The
operatof is applied over a 3 x 3 window and generates an edge
magnitude and direction (1 of 8 directions). The direction is defined
so that the brighter side is to the right when facing in the direction
of the edge. Figure 4 shows the result of applying this operator to
each of the subwindows in Fig. 2. The edge data must be further
processed before it is in a form useable in texture analysis. Since
an edge in the 1image appears as a broad peak in the edge detector
output (the width in this case is two for a perfect step edge), the
edges must be thinned. For the experiments here a simple non-maximal
suppression was applied in 2 directions (horizontal and vertical), but
a more sophisticated suppression which considers the directions of the
edge elements could also be applied [8].
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Fig.l. Aerial View of Fig. 2. 16 Subwindows for
San Francisco Area. Texture Analysis

Fig. 3. Fourier Transforms of Fig. 4. Edge Magnitude for
Subwindows in Fig. 2. Subwindows in Fig. 2.
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The suppressed edge images retain the regularity of the initial
image, but now the regularity is in the spacing of edge elements not
texture elements. A Fourier transform applied to this binary edge
image would indicate the repetitive nature of the binary image, but is
obscured by the degeneracies introduced by the binary nature of the
input. Generalized gray 1level co-occurrence computations [1] have
been studied for texture analysis, and were intended to indicate sizes
of textural elements involved in the pattern. These can be applied
more easily to a binary image than a general intensity image to
indicate the spacing of edges.

Edge Co-occurrence Analysis

Generalized gray level co-occurrence matrix analysis is a basis
for much of the statistical texture analysis. Basically, a set of
matrices are computed for a portion of the image one for each selected
spacing and angle. The entry in the matrix at row I and column J is
incremented each time the first image point has the value I and the
point at the given spacing and direction has the value J. Usually the
image values are partitioned into a small set of values (8 rather than
256) , so that it is even possible to compute the initial matrix. Also
the computation is applied for many spacings (1,2,3,8, etc.) and
several directions (0°,45°,90°,etc.) as shown in Fig. 6. Because of
the large number of large matrices that are generated by this method
various measures are computed on the matrix values, and the
classification is performed using these measures [l1]. The common and
useful measures do not seem to capture the important feature in the
edge images: the regular spacing of edge elements, but this is
available in the co-occurrence matrix itself.

When binary edge images are used for co-occurrence analysis, many
simplications in the computation can be made.. We will use a 1 to
indicate an edge at a given point, and 11 to indicate edges occurring
at both the first point and the second point which is at some distance
and angle from the first. The edge/no edge pair is indicated by 10
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Fig.

Fig.

5. Non-maximal Suppressed Edges from Fig.

r,c c+2 c+3 c+l
° .

6. Co-occurrence Matric Computation.
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and no edge/edge by Ul. Finally 00 means no edges at either point.
The 1U and 01 combinations mean the same thing in terms of the image
and thus are combined. The most important numbers are the 11l totals.
The absolute magnitude is not very meaningful since this depends on
the total number of edges and on the spacing being used (within a
given image there are more opportunities for a co-occurrence edges
with a small spacing than a large spacing) in addition to the actual
frequency of occurrence of 1l's. One good way to normalize the
numbers seems to be to use the total of 10, 01, and 11. This gives
the proportion of potential edges for co-occurrence that actually
co-occur. We computed these values for 4 directions and spacings from
2 to 32 (at 45° ana 135° a spacing of 2 is plotted at a distance of
2/7). Some of these results are given in Fig. 7.

There are several ways to compare edges at two points, with
different features indicated by the different comparison methods.
Using all edges for every direction presents severe problems in the
analysis of the output since long lines running in the same direction
as the co-occurrence computation will be included along with lines
running perpendicular to the direction. (Tamura et al. [6] used this
feature to determine linear patterns in their texture experiments.)
But, the edge element directions are availalbe and can be used to
separate these two different patterns. The first step is to consider
only those edge elements perpendicular to the direction of search,
that is in the computation of co-occurrences in a horizontal direction
only vertical edges are considered. There are an almost unlimited
number of variations on this basic restriction which can either be
derived. from other variations or computed in a manner similar to the
simple cases. The variations include: allow some freedom in the edge
direction (45° either way), accept only perfect matches (up and up,
down and down), accept only opposites (up and down, not up and up),
and allow some freedom in the direction of the last two. The diferent
combinations will all produce results with different information, so
that several different ones can be computed.
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Discussion

None of this analysis would be worthwhile if it did not make the
Job of describing regular textures any easier. The highly regular
patterns of the San Francisco urban area (the top row of Figs. 2-5 and
Fig. 7a, 7b) and raffia (the bottom row and Fig. 7c, 7d) produce
strong periodic patterns in the plot of the co-occurrence measure. A
high value 1in the graphed measure indicates that edges frequently
occur at that particular spacing. This spacing information can be
used to determine the size and spacing of the textural elements, and
the overall strength of the peak can be used to determine how regular
the pattern is.

The spacing of pairs of textural elements is given by the peak to
peak spacing using the measure which matches edges only in the exact
same direction (as in Fig. 7a,c). The size of individual elements is
best given by the measure which allows only edges in the opposite
direction (as in Fig. 7b,d). The solid line in the graph indicates
the size of dark objects and the dotted line the size bright objects.
The size is from the first major peak, the succeeding peaks are caused
by the repeated pattern. By comparing the results from the 4
airections, the orientation of the texture can be predicted. Since
patterns wusually do not 1line up with one of the 4 directions there
will be some contribution to 2 of the directions. When these
directions are 45° apart the dominant direction is probably between
them (as in San Francisco, Fig. 7a,b). But when they are 90° apart
there should be a regular pattern in two directions (as in Raffia,
Fig. 7c,d). Thus, from the data we can say that the San Francisco
subwindow has a regular pattern of bright and dark regions oriented in
one direction, near 45°, with the bright regions being 1larger (width
about 1lu pixels) than the dark ones (width about 4). Note that the
size of the blocks in the other direction is near the size 1limit of
the co-occurrence computation and also that very few of the edges at
the ends of the blocks are detected.
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and no edge/edge by Ul. Finally 00 means no edges at either point.
The 1U and 0l combinations mean the same thing in terms of the image
and thus are combined. The most important numbers are the 11 totals.
The absolute magnitude is not very meaningful since this depends on
the total number of edges and on the spacing being used (within a
given image there are more opportunities for a co-occurrence edges
with a small spacing than a large spacing) in addition to the actual
frequency of occurrence of 1l's. One good way to normalize the
numbers seems to be to use the total of 10, 01, and 11. This gives
the proportion of potential edges for co-occurrence that actually
co-occur. We computed these values for 4 directions and spacings from
2 to 32 (at 45° and 135° a spacing of 2 is plotted at a distance of
2v2). Some of these results are given in Fig. 7.

There are several ways to compare edges at two points, with
different features indicated by the different comparison methods.
Using all edges for every direction presents severe problems in the
analysis of the output since long lines running in the same direction
as the co-occurrence computation will be included along with 1lines
running perpendicular to the direction. (Tamura et al. [6] used this
feature to determine linear patterns in their texture experiments.)
But, the edge element directions are availalbe and can be used to
separate these two different patterns. The first step is to consider
only those edge elements perpendicular to the direction of search,
that is in the computation of co-occurrences in a horizontal direction
only vertical edges are considered. There are an almost unlimited
number of variations on this basic restriction which can either be
derived from other variations or computed in a manner similar to the
simple cases. The variations include: allow some freedom in the edge
direction (45° either way), accept only perfect matches (up and up,
down and down), accept only opposites (up and down, not up and up),
and allow some freedom in the direction of the last two. The diferent
combinations will all produce results with different information, so
that several different ones can be computed.
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Fig. 7. Co-occurrence Results Highly Regular Patterns.
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The irregular textural patterns (e.g.the suburban areas of the
second row of Fig. 4, and the grass and sand of the third row, first
and second windows) do not produce the same clearly periodic patterns
of raffia as shown by Fig. 8a,b (for grass and suburban,
respectively). But it is possible to derive certain useful features
from these results, primarily that of the size of the textural
elements. The strong peak near 3 for grass and 4 or 6 for suburban
indicates a dominant size for textural elements (in the case of
suburban probably 2 different sizes). The graphs indicate that the
grass has thin dark and bright textural elements, predominately
vertical and to a lesser extent, horizontal. The suburban area has
only bright regions somewhat larger. These descriptions still leave
open the question of whether the texturall elements are long and thin
or small and round. The lack of a substantial peak in the 45° or 135°
direction for grass indicates that it is probably long and thin and
the small, though readily apparent peak in the graphs for the suburban
windows indicates that the regions are probably small and round or
more likely,rectangular).

Adaditional results are shown in Fig. 9-16. The first set are
close up views of uniform texture patterns from [10], and the second
set are aerial views.of a variety of terrain. The results on these
additional texture windows show that the procedure is robust enough to
extract useful descriptors from a variety of textural patterns. There
are some unexpected similarities in the case of a water and wood
pattern (second and third rows in Figs. 9-11 and 1l2a,b). The edge
images are very similar and there are only minor differences in the
results of our processing. Structurally, the major differences
between the two appears to be that the wood has its edge points in
longer straight lines, a feature which may be derived through other
processing. The herringbone (bottom row) cloth pattern is dominated
by the regular pattern of the cloth and not the herringbone structure
(Fig. 12c). The farmland (top row Fig. 13-15) does not have a
repeated structure (at this resolution), so that the only results are
the dominant sizes for the fields (i.e. the textural elements) as
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The irregular textural patterns (e.g.the suburban areas of the
second row of Fig. 4, and the grass and sand of the third row, first
and second windows) do not produce the same clearly periodic patterns
of raffié as shown by Fig. 8a,b (for grass and suburban,
respectively). But it is possible to derive certain useful features
from these results, primarily that of the size of the textural
elements. The strong peak near 3 for grass and 4 or 6 for suburban
indicates a dominant size for textural elements (in the case of
suburban probably 2 different sizes). The graphs indicate that the
grass has thin dark and bright textural elements, predominately
vertical and to a lesser extent, horizontal. The suburban area has
only bright regions somewhat larger. These descriptions still leave
open the question of whether the texturall elements are long and thin
or small and round. The lack of a substantial peak in the 45° or 135°
direction for grass indicates that it is probably long and thin and
the small, though readily apparent peak in the graphs for the suburban
windows indicates that the regions are probably small and round or
more likely,rectangular).

Aaditional results are shown in Fig. 9-16. The first set are
close up views of uniform texture patterns from [10], and the second
set are aerial views of a variety of terrain. The results on these
additional texture windows show that the procedure is robust enough to
extract useful descriptors from a variety of textural patterns. There
are some unexpected similarities 1in the case of a water and wood
pattern (second and third rows in Figs. 9-11 and 1l2a,b). The edge
images are very similar and there are only minor differences in the
results of our processing. Structurally, the major differences
between the two appears to be that the wood has its edge points in
longer straight lines, a feature which may be derived through other
processing. The herringbone (bottom row) cloth pattern is dominated
by the regular pattern of the cloth and not the herringbone structure
(Fig. 12c¢). The farmland (top row Fig. 13-15) does not have a
repeated structure (at this resolution), so that the only results are
the dominant sizes for the fields (i.e. the textural elements) as
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Fig. 13. Aerial Image Subwindows Fig. l14. Aerial Image Subwindows,
(Farm, Mountains,Desert and Clouds). Fourier Transform.

Fig. 15. Aerial Image Subwindows,
Non-maximal Suppressed Edges.

-48-



Bt LR

-
-,
PN
e
b
v
re

P W G G S

2 7 1217 2227 32T A2 AT ST R ET 2 7 1217222732374247 52576267
HIRZ S12 4s52 p3s 2= =3
1 13
S SL
Q2 7 12172227 32374247 5257 €267 2 7 121722273237424732576267
UERT 462 S92 D135 32 33
COURILE FARM . SUUFL S

a) Farmland Opposite Edge Direction Matches Only.

Fig. 16. Aerial Image Subwindows, Co-occurrence Results.

-49-



% | 5
= 7 12 1y 22 Zv 3z IT 4z 2 7 12 17 22 27 32 3I? 42
HORZ =59 570 G435 £56 883
l . |
< b
[ r
5 L 3 3 -
® b
2 7 12 1?7 22 27 32 37 42 2 7 12 17 22 27 32 37 42
VERT 124¢€ 1469 D135 7 e
COURILE MTS . SUPS S

b) Mountains Opposite Edge Direction Matches Only.

Fig. 16. Continued.

-50-



re
-,
2
Piary
[y
-
e

1
(R |

7 121722273237424752 57 62 67

1 2 2
HORZ S12 45% bas 32 33

(LI

2 7 121722273237 4247 5257 6267 2 7 121722273237424735257 6267
UERT 462 592 D135 32 33

COURILE FARM SUPL S

a) Farmland Opposite Edge Direction Matches Only.

Fig. 16. Aerial Image Subwindows, Co-occurrence Results.

-49-



shown in Fig. l6a. The mountains do not have a dominant size for the
textural elements, except for some of the narrow dark (shadow) areas
(Fig. 16b). The bottom row has so few edges that it can be simply
described as a uniform region.

This is not a complete description of the textures, but serves as
a good initial description of the patterns. There are still other
important features of the textures which are not derived by this
method, but could be computed by other techniques.

Conclusions

General texture analysis is a very difficult problem, but this
analysis of edge images appears to be an effective method to extract
many important structural features from the textural patterns. One
major unanswered question is whether or not all of the information
derived by the human user can be reliably derived by a -program. We
are still working on the automatic extraction of this information from
the data which is produced by this textural analysis method.
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2.4 Supervised Classification with Singular Value Decomposition
Texture Measurement

Behnam Ashjari and William K. Pratt

In a previous report [1] on this subject, four facts about

singular values were established:

i) The singular values of a matrix are measures or descriptors of
inter-relationships of the matrix elements.

ii) The singular values can be considered measures of the pattern
variation of image texture.

iii) The SVD is not useful as a measure or feature of structure.

-52-




shown in Fig. l6a. The mountains do not have a dominant size for the
textural elements, except for some of the narrow dark (shadow) areas
(Fig. l6b). The bottom row has so few edges that it can be simply
described as a uniform region.

This is not a complete description of the textures, but serves as
a good initial description of the patterns. There are still other
important features of the textures which are not derived by this

method, but could be computed by other techniques.

Conclusions

General texture analysis is a very difficult problem, but this
analysis of edge images appears to be an effective method to extract
many important structural features from the textural patterns. One
major unanswered question is whether or not all of the information
derived by the human user can be reliably derived by &a ‘program. We
are still working on the automatic extraction of this information from
the data which is produced by this textural analysis method.
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iv) The singular value distribution tends toward uniformity for a
less correlated image and toward skewness for higher correlation among
pictorial data.

The above mentioned facts were supported by theoretical and
experimental results. The experiments performed were on artificially
generated, two dimensional, zero mean, unit variance, separable, first
order Markov, Gaussian random fields. It was also shown that similar
looking textural images possess relatively identical singular value

curves.

In the present study, experiments on artificial texture are
continued and a2lso new experiments on natural texture are performed in

order to pave the way for the application of the SVD as a means for an
efficient texture measurement.

Experiments on Artificial Texture

Artificially generated, separable random fields, F, have been

used for three sets of experiments, let
F = uAPvT

For each value of the spatial correlation p, there is a
corresponding generated matrix F, and for each F, there are
corresponding U, V, and UVT: By transforming the U's, V's, and their
outer products uvT's  to pictures, it is possible to visually detect
any trend among each group.

The experiments are performed with considering different values
for p i.e.,; 0.0, 0.5, 0.55, 0.6, ... , 1.0. The results show that
most of the information is concentrated in the singular values rather

than in the U and V or UVT matrices.
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Experiments on Natural Texture

In these set of experiments, four types of similar appearing
natural textures are chosen from the Brodatz Texture Album [2], Grass,
Raffia, Sand, and Wool. Fig. 1 shows the four texture fields. The
original data is stored in a 512 x 512 array of pixels. By performing
a "neighborhood averaging" operation on the 512 x 512 data, it is
possible to obtain 256 x 256 and 128 x 128 version of the data. At
this stage, the goal is to determine the best window size versus
resolution. The windows are 16 x 16 or 32 x 32 non-overlapping
squares taken from the 128 x 128, 256 x 256, or 512 x 512 images.
With the help of the within class and between class plots of the
singular value distributions, it is determined that the best window
size is 32 x 32 and for the purpose of this study, the best resolution
is in the 512 x 512 array. There are 256 non-overlapping blocks of
32 x 32 windows in a 512 x 512 picture. Through a random integer
generating mechanism, 64 of the 256 possible windows are randomly
chosen. Figure 2 contains sixteen 32 x 32 sample windows for Raffia
and Wool. Each of these 32 x 32 squares has 32 singular values which,
when arranged in descending order, can be considered as elements of a
32-dimensional vector. Therefore, the prototypes consist of 64

32-dimensional vectors for each of the 4 texture images.

Histogram Modification

To avoid any sort of bias in our 4 texture images, they must have
the same mean and variance. This is achieved by subtracting the mean
value of each 512 x 512 picture from each of its elements and then
dividing the result by the standard deviation of the picture. Through
this operation, the texture images become zero-mean and unit-variance.
In order to eliminate any miscalculation due to the brightness levels
of the pixels or biases due to the background lighting at the time of
photography, a histogram Gaussianization is performed on all 4 texture
images. After performing Histogram Gaussianization on the textures, a
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Fig. 1. 4 original 512x512
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complete homogeneity on the data is reached and any result from the
computation is solely due to the structural inter-relationship of the

texture elements rather than unwanted biases.

Experimental Mean of Singular Value Vectors

As was previously mentioned, there are 64 32 x 32 sample windows
from the zero-mean, unit-variance, Gaussian histogram version of each
image. This, in turn, provides us with 64 32-dimensional S.V.
prototype vectors. For each texture, therefore, there is a sample or

experimental mean vector. Figure 3 shows the relative locations of
the experimental-mean-singular value vector of the 4 texture fields.

Feature Extraction

Dividing each of the 64 32-dimensional S.V. prototype vector by

the sum of its elements, will not change the relative size of each
elements with the other; however, the result will be 64 32-dimensional
first order S.V. histogram vector for each texture. A first order
histogram vector has the property that the sum of its elements is one,
and it can be concisely represented by its first 4 moments [3, P.472].
For a SV histogram vector S whose ith element is S(i), the first four

moments, as explained thoroughly in [4], are as follows:

Average (First moment)

32

M= D AS(i)

i=1

Deviation (square root of variance)

32 3
M, = [ Z (i—Ml)ZS(i)]
i=1

Skewness (third moment)
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complete homogeneity on the data is reached and any result from the
computation is solely due to the structural inter-relationship of the

texture elements rather than unwanted biases.

Experimental Mean of Singular Value Vectors

As was previously mentioned, there are 64 32 x 32 sample windows
from the zero-mean, unit-variance, Gaussian histogram version of each
image. This, in turn, provides us with 64 32-dimensional S.V.
prototype vectors. For each texture, therefore, there is a sample or

experimental mean vector. Figure 3 shows the relative locations of
the experimental-mean-singular value vector of the 4 texture fields.

Feature Extraction

Dividing each of the 64 32-dimensional S.V. prototype vector by
the sum of its elements, will not change the relative size of each
elements with the other; however, the result will be 64 32-dimensional
first order S.V. histogram vector for each texture. A first order
histogram vector has the property that the sum of its elements is one,
and it can be concisely represented by its first 4 moments [3, P.472].
For a SV histogram vector S whose ith element is S(i), the first four
moments, as explained thoroughly in [4], are as follows:

Average (First moment)

32

M, = Zis(i)

i=1

Deviation (square root of variance)

32 Y
M, = [ > (i-Ml)ZS(i)jl
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M,= —13- ‘ (i—Ml)3S(i)
M
2 i=]1
Kurtosis 37
- 1 . 4_,.
M= o (i-M,)"s(i)~3
2 i=]1

The factor 3 in the kurtosis makes the kurtosis of a Gaussian
histogram zero [4].
Ml, M2, M3 and M4 features representing a SV histogrm vector can
be utilized to give 64 4-dimensional feature vectors for each texture.
From each set of these feature vectors, an experimental feature mean
vector and an experimental feature covariance matrix can be computed

for each texture field.

Evaluation of SVD Texture Measurement

In texture analysis, a set of measurements on texture is tested
according to a 'goodness' criteria [5]. There are two quantitative
methods for evaluation of statistical texture measures: the first is a
classification method which involves measurement of classification
error in classifying texture fields, and the second is the figure of
merit method, which usually involves a distance function to provide a
measure of separation between two texture classes [4]. The metric
used for distance is usually related to classification accuracy. The
larger the distance, the higher the classification accuracy.
ClassifiThe cation method of evaluation will be used in future
experiments to verify our figure of merit evaluation. The figure of
merit technique 1is used in our experiments and will be described in

the following section.

Bhattacharyya (B-) Distance
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Using a Bayes classifier, B-distance is monotonically related to
the Chernoff bound ., The Chernoff bound is an upper bound on the
probability of classification error [6].

For two classes with gaussian densities and equal likelihood, the
B-distnace is

1
C.+C..) |5(c,+C,) |
_1, _.rl=1Te —m y+igp 2 =1 =2
B(classl,classz) = B(ﬁl ﬁz) [‘7?“](m1 m2)+82nlc ]%IC 'i
= =2

where, ms and CJ represent feature mean vector and feature covariance
matrix of Jth class.

Table 1 contains the B-distances between 6 possible pair of the 4
texture images; Grass, Raffia, Sand and Wool. As can be seen in the
table, Grass and Sand have the minimum distance. Hence, for this
pair, the highest probability of classification error exists, and the
Chernoff bound to this probability is about 10%.

o M3 and M4
features which gives maximum B-distance. When such a combination is

It is possible to find a combinations out of Ml’ M

found, the features in the combination are the best ones to be
utilized, in our experiments, for classification.
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32
M= % | (i—Ml)3S(i)
M .
2 i=1
Kurtosis 32
- 4 . 4_,.
My= " (i-M,)"s(i)-3
2 i=1

The factor 3 in the kurtosis makes the kurtosis of a Gaussian
histogram zero [4].

Ml’ M2, M3 and M4 features representing a SV histogrm vector can
be utilized to give 64 4-dimensional feature vectors for each texture.
From each set of these feature vectors, an experimental feature mean
vector and an experimental feature covariance matrix can be computed
for each texture field.

Evaluation of SVD Texture Measurement

In texture analysis, a set of measurements on texture is tested
according to a 'goodness' criteria [5]. There are two quantitative
methods for evaluation of statistical texture measures: the first is a
classification method which involves measurement of classification
error in classifying texture fields, and the second is the figure of
merit method, which usually involves a distance function to provide a
measure of separation between two texture classes [4]. The metric
used for distance is usually related to classification accuracy. The
larger the distance, the higher the classification accuracy.
ClassifiThe cation method of evaluation will be used in future
experiments to verify our figure of merit evaluation. The figure of
merit technique is wused in our experiments and will be described in
the following section.

Bhattacharyya (B—-) Distance
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Table 1

Field Pairs B-Distance
H;;AQ;VM m“Réffia | é;;790
Grass Sand 1.4358
Grass Wool 3.6898
Raffia Sand - 7.3492
Raffia Wool 11.2446
Sand Wool 3.8368

Bhattacharyya Distance of Texture
Feature Sets for Average, Deviation, Skewness, and Kurtosis.
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2.5 Use of Linear Features for Road Detection

K. Ramesh Babu and Ramakant Nevatia

Previously, we have described an edge detection and line finding
technique that gives piecewise linear boundary segments [1]. Use of
these linear features for extraction of roads and similar structures
(e.g. airport runways and rivers) is described here. The described
techniques are intended to be general and may be viewed as describing
2-D deneralized cones [2]. This is in contrast to special technigques
for road detection, such as in [3,4]. No attempt to compare the two
approaches has been made here.

Basically, a 2-D generalized cone may be viewed as being bounded
by locally 1linear and 1locally parallel boundaries of opposite
orientations. We call such pairs of line segments as “"anti-parallels"
or "apars". The first step in our road detection techniques is to
compute apars of a given maximum width (known from approximate scale
of the image). The apar detection technique has been described
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Table 1

Field Pairs B-Distance
g::;;;ﬁ?ww»'Réffi;' 2;4790
Grass Sand 1.4358
Grass Wool 3.6898
Raffia Sand 7.3492
Raffia Wool 11.2446
Sand Wool 3.8368

Bhattacharyya Distance of Texture
Feature Sets for Average, Deviation, Skewness, and Kurtosis.
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previously [1]. A line segment may form more than one apar with
different pairing segments.

The above process generally leads to broken fragments of a road

(and other structures), as many boundary segments are absent due to
inadequacies of edge detection, sharp bends, road intersections and
other causes. An example of detected segments and apars from
fig. 1l(a) is shown in fig. 1(b) and 1(c) respectively. Fortunately,
some of the apars can be connected to form larger fragments, utilizing
the connectivity apparent in the detected segments.

The connectivity criterion for connecting apars is that one of
the segments of the apars be part of the same chain of connected
segments, called the supersegment. In Fig. 3(a), the "curve" ABCDE is
a supersegment while AB, BC, CD and DE are segments. The apars formed
by these segments are connected and the <collection is called
"sap"-short for super antiparallel. The component apars occur in
order, i.e., <1,2,3> or <3,2,1>. Note tﬁat, in Fig. 2(b), all 5 apars
would be connected to form a single sap. The "color" (bright or dark)
of the apars in a sap is also recorded. Fig. 1(d) shows the resulting

saps from fig. 1l(a).

The implementation of connecting apars for display purposes is
complicated due to the presence of overlapping apars. The details are

not described here.
Results

Results of processing another image, a 2048x2048 image of the
Stockton, California area, are shown in Figs. 3(a)-(d). Note that
fig. 3(4) shows saps, not all of which correspond to roads. The
processing time to generate ordered saps is about 10% of the time

required for previous processing to compute linear segments.
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Figure 4. Detected road fragments from Fig. 1l(a)
after bridging

Figure 5. Detected road fragments from Fig. 3(a)
after bridging
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The detected roads in figs. 1 and 3 are fragmented. It was
observed that a large number of gaps are due to a single missing edge.
We bridge gaps between two segments if there exists a pixel between
them that could be a predecessor of one segment and a successor of the
other. Improvement in detected roads after bridging is easily
discernible, compare figures 1(d) and 4. In the Stockton image, the
results after bridging (Fig. 5) are less noticeable because of the
scale of display.
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2.6 Model Matching and Acquisition of Images

Keith Price

This note gives the current status of a system to locate complex
structures in an image. Portions of the earlier wok have appeared in
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previous semi-annual reports, but a complete description will appear
in a forth'coming, separate USC IPI report.

This system uses both region based and edge based segmentation

techniques. The edge based method is applied to extract the prominent
linear objects. In the case of aerial images these would include

roads, narrow rivers, etc. The region based method is used to segment
the other objects in the image, those which should be easily used to
segment the other objects represented as connected regions.
Previously, regions and line based segmentations had not been
effectively combined. These segments, lines and regions, are used as
the basic elements in the symbolic description of the image. The
symbolic description 1is completed by extracting features of the
segments such as size, orientation, neighbors, etc.

The user describes the scene model through a dialog with the
computer system. The various objects in the model are described in
the same terms as the segments extracted from the image. This model
is a general segment based description rather than a detailed pixel
specification such as used in [1]. Additional information may be
included in the model descriptions to account for the variability of
the image data. For example, the size of objects may be reduced by
segmentation errors, occlusions, and the location of the objects near
the edge of the image. To handle this, and other similar problems,
most features can be given as greater than (or less than) some value.
The hand to locate (or hand to describe) objects which this system is
intended to aid in finding are specified by the size of the object
(either absolute size, in meters, or a percentage of another known
object), and the location relative to known objects.

The automatically generated image description and the user
derived scene model are used by the matching and location program to
identify segments in the image as objects given in the model and to
determine where in the image the hand to locate objects may be found.
This model-image matching program is based on a general image-image
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matching system [2], but has several extensions to handle the special
properties of model descriptions (e.g. approximate feature values and
the fact that some features are available only for a few objects).
The matching procedure locates the segment in the image which most
closely matches the description given in the model. These
correspondences are then used by the 1location specifier for the
structures whose 1locations are given as areas of the image. When
these locations are known, the smaller area in the image can be
further analyzed to extract detailed information.

Figure 1 is an image to illustrate how this system performs on a
medium scale aerial image. The image is of San Francisco and covers
about 15 by 15 miles, with 3 airports which we wish to locate.
Figure 3 is a sketch of the scene from which much of the information
required for the scene model can be extracted. Fig. 3 is a graph
representation of the scene which illustrates the internal description
of the model. Figure 4 shows the segmentation of the image-with
regions outlined in white, and 1long lines features also marked in
white. Figure 5 shows the results of applying the matching procedure,
with the matched regions and road labeled. Figure 6 has the located
areas (the airports) marked.
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Figure 1. San Francisco Image
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Figure 4. Segmented Regions and Linear Features of
San Francisco

Figure 5. Recognized Regions
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Figure 6. Airport Regions Located
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3. Image Processing Projects

3.1 Two-Dimensional Small Generating Kernel Convolution

William K. Pratt, Jean F. Abramatic and Sang Uk Lee

Introduction

Small Generating Kernel (SGK) convolution 1is a processing
technique for performing convolution on two-dimensional data arrays by
sequentially convolving the array with small size convolution kernels.
The processed output of the SGK system closely approximates the output
obtained by convolution with a large Kkernel.

SGK Processing

Conventional discrete two-dimensional convolution is a linear

computation defined by

G(j,k) = F(j,k) @ H(j,k) = :E: :Z:F(m,n)H(j-m+l,k—n+l) (1)
m n

where G(j,k) is an MxM output array, F(j,k) is an NxN input array, and
H(j,k) 1is an LxL convolution kernel array called an impulse response
function. The array dimensions are related by M=N+L-l. The number of
m;lgiplications required for conventional computation, in general, is
N'L .

In the SGK concept, the computation of eq.(l) is replaced by a
sequential convolution operation. Referring to Figure 1, let

Ay(3,K) = A (3,K) & K_(3,k) (2)

represent the convolution output of the g-th stage of the process
where Kq(j,k) is the g-th KxK small generating kernel, (typically
3x3). At the zeroth stage, Ao(j,k)=F(j,k). In the basic SGK
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3. Image Processing Projects

3.1 Two-Dimensional Small Generating Kernel Convolution

William K. Pratt, Jean F. Abramatic and Sang Uk Lee

Introduction

Small Generating Kernel (SGK) convolution is a processing
technique for performing convolution on two-dimensional data arrays by
sequentially convolving the array with small size convolution kernels.
The processed output of the SGK system closely approximates the output
obtained by convolution with a large kernel.

SGK Processing

Conventional discrete two-dimensional convolution 1is a 1linear
computation defined by

G(j,k) = F(j,k) & H(j, k) = > ZF(m,n)H(j—m+l,k—n+l) (1)
m n

where G(j,k) is an MxM output array, F(j,k) is an NxN input array, and
H(j,k) 1is an LxL convolution kernel array called an impulse response
function. The array dimensions are related by M=N+L-1l. The number of
mgl;iplications required for conventional computation, in general, is
NL™.

In the SGK concept, the computation of eq.(l) is replaced by a
sequential convolution operation. Referring to Figure 1, let

Aq(j,k) = Aq_l(j,k) B Kq(j,k) (2)
represent the convolution output of the g-th stage of the process

where Kq(j,k) is the g-th K=xK small generating kernel, (typically
3x3). At the zeroth stage, Ag(j,k)=F(j,k). In the basic SGK

-76-



convolution system, the convolution output is
G(J,k) = A5(3,k) = [K;(j,k) @ K,(],k) ®...8K,(j,k)18F (], k) (3)

An alternate system, shown in figure 2, produces a convolution output

from the cumulative sum of the SGK stages. In this top ladder
configuration

0
G(3,k) = 2, AA (i,k (4a)
—~  “a'q
T
or equivalently
0
35,k = 20 AIK; (G,K) @ Ky(3,K) @...8K (3,k) 16F (5, k) (4b)

q=0

Figure 3 contains a dual formulation, called the bottom ladder
configuration in which the convolution and weighting stages are
reversed in order. The cumulative formulations offer more convolution
design freedom through independent specification of the weighting
constants A .

q

The values of the Q small generating kernels Kq(j,k), and in the
case of the cumulative SGK system, the Q weighting constants Aq, are
found by an optimization procedure that seeks to minimize the error
between the conventional output G(j,k) of eq.(l) and the SGK output
given by eq.(3) or (4). Techniques have been developed for mean

square error and absolute error (Chebyshev error) minimization.

With SGK convolution, a total of

t
§
o

(5)

J

=
i
[
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convolution system, the convolution output is

G(3,K) = By(3,%) = [K;(3,K) @ Ky(3,%) ®...8K (3,k)16F (3 k) (3)

An alternate system, shown in figure 2, produces a convolution output
from the cumulative sum of the SGK stages. In this top ladder
configuration

Q
G(3,%) = 2, AA (3,% (4a)
=0 qaq
or equivalently
Q
G(3,k) = 2 A Ky (5,k) 8 Ky(3,k) @8...8K_ (], k)]I@F (], k) (4b)
=0 9 q

Figure 3 <contains a dual formulation, called the bottom 1ladder
configuration in which the convolution and weighting stages are
reversed in order. The cumulative formulations offer more convolution

design freedom through independent specification of the weighting
constants A .
q

The values of the Q small generating kernels Kq(j,k), and in the
case of the cumulative SGK system, the Q weighting constants Aq, are
found by an optimization procedure that seeks to minimize the “error
between the conventional output G(j,k) of eq.(l) and the SGK output
given by eq.(3) or (4). Techniques have been developed for mean
square error and absolute error (Chebyshev error) minimization.

With SGK convolution, a total of

0=t (5)
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stages of SGK convolution with an KxK kernel producing the equivalent
of an LxL kernel conventional convolution. Thus, 15x15 convolution
requires 7 stages of convolution with a 3x3 SGK. The number of SGK
operations required is QK2N2. The saving in computation over

conventional convolution is by the ratio

’n?
2.7 " (6)
QKN K L-1

S =

For the 15x15 convolution example using a 3x3 SGK, the computational
saving is by a factor of about 3.6:1.

SVD/SGK Processing

If an impulse response operation matrix H is orthogonally
separable such that is can be expressed in the outer product form

H=ab' (7)

where a and b are column and row operator vectors, respectively, then
the convolution operation of eg.(l) can be performed by sequential
convolution on the rows and columns of F(j,k). This reduces the
number of computations to 2NL instead of N2L2 in the two-dimensional

case.

Any impulse response operator can be expressed as a sum of
sepai able operators by a singular value decomposition (SVD) by which

R
H= 2, yia,b7 (8)
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stages of SGK convolution with an KxK kernel producing the equivalent
of an LxL kernel conventional convolution. Thus, 15x15 convolution
requires 7 stages of convolution with a 3x3 SGK. The number of SGK
operations required is QKZNZ. The saving in computation over

conventional convolution is by the ratio

S =

22 6
) ) (6)

OK™N K L-1

For the 15x15 convolution example using a 3x3 SGK, the computational
saving is by a factor of about 3.6:1.

SVD/SGK Processing

If an impulse response operation matrix H 1is orthogonally
separable such that is can be expressed in the outer product form

H=ab' (7)

where a and b are column and row operator vectors, respectively, then
the convolution operation of eg.(l) can be performed by sequential
convolution on the rows and columns of F(j,k). This reduces the
number of computations to 2NL instead of N2L2 in the two-dimensional
case.

Any impulse response operator can be expressed as a sum of
sepa: able operators by a singular value decomposition (SVD) by which

R
T
H = z; ¥ia;b; (8)

1= .
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where R/(RKL) is the rank of H, ¢i is the i-th eigenvalue of ggT(ng)}

T

and a; and b, are the i-th eigenvectors of HH™ and g?ﬁ respectively.

If H is of full rank, the number of operations required to perform the
convolution 1is of the order of 2NL2. In many practical cases, the
rank R of H is much less than L, and the number of operations can be
reduced accordingly. Also, it is possible to truncate the expansion

of eq.(8) if the ¢& are small.

It is possible to perform a two-dimensional SGK expansion on each
submatrix §i=§i9iT of eq.(8). Another approach, shown in figure 4, is
to sequentially expand each one-dimensional operator 3y and Ei by the
SGK method into a sequence of Kxl kernels. The latter approach is
particularly attractive for two reasons. First, large kernel size
two-dimensional convolution can be performed by sequential
one-dimensional convolution with small operators, say 3x1, resulting
in considerable savings in processing complexity. Second, there is no
approximation error associated with the one-dimensional SGK expansion,
and therefore, the convolution operation is theoretically perfect.

Experimental Results

Several experiments have been performed to evaluate the SGK
design procedure. Figure 5 contains an example of image deblurring by
conventional and SGK processing. The original image before blurring
is shown in figure 5a and after blurring in figure 5b. Figure 5c¢c
shows the result of convolution with a 15x15 prototype deblurring
operation. The result of deblurring with seven stage 3x3 SGK
processing 1is presented in figure 5d. There are no observable
difference between the conventional and SGK processing methods.
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where R/(RKL) is the rank of H, ¢i is the i-th eigenvalue of EET(QTQ)}
and a,; and b, are the i-th eigenvectors of EET and gTh respectively.
If H is of full rank, the number of operations required to perform the
convolution is of the order of 2NL2. 1In many practical cases, the
rank R of H is much less than L, and the number of operations can be
reduced accordingly. Also, it is possible to truncate the expansion
of eq.(8) if the U& are small.

It is possible to perform a two-dimensional SGK expansion on each

submatrix H.=a.b T of eq.(8). Another approach, shown in figure 4, is

to sequentiglli-;xpand each one-dimensional operator a; and Ei by the
SGK method into a sequence of Kx1 kernels. The latter approach is
particularly attractive for two reasons. First, large kernel size
two-dimensional convolution can be performed by sequential
one-dimensional convolution with small operators, say 3xl1l, resulting
in considerable savings in processing complexity. Second, there is no
approximation error associated with the one-dimensional SGK expansion,
and therefore, the convolution operation is theoretically perfect.

Experimental Results

Several experiments have been performed to evaluate the SGK
design procedure. Figure 5 contains an example of image deblurring by
conventional and SGK processing. The original image before blurring
is shown in figure Sa and after blurring in figure 5b. Figure 5c
shows the result of convolution with a 15x15 prototype deblurring
operation. The result of deblurring with seven stage 3x3 SGK
processing is presented in figure 54. There are no observable
difference between the conventional and SGK processing methods.
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(a) original before (b) original after
blurring blurring

(c) deblurring with 15x15 (d) deblurring with seven
prototype operator stage 3x3 SCGK

Figure 5. Examples of image deblurrina with
conventional and SGK convolution
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Conclusions

The SGK and SDV/SGK convolution methods are attractive techniques
for simplifying the computational requirements of two-dimensional
convolution. Studies are now underway to assess the effects of
computational errors of the processing procedures.

3.2 Wiener Image Restoration Condition Number

Sang Uk Lee and William K. Pratt

In a previous paper [l], Pratt has introduced an easily computed
formulation of the condition number of a finite length convolution
operator. operator. This formulation is extended here to the Wiener
filter operator.

Problem Statement

Assume a linear, signal-independent noise model of image
formation and recording. Also for simplicity, initial consideration

will be given to the one-dimensional overdetermined model

g=Hf+n (1)
where g and n are mxl vectors of the observed image with M=N+L-1l, L is
the 1length of the impulse response length, £ is a Nxl vector of the
ideal image and H is an MxN blur matrix associated with the impulse
response h(n), for n=0,1,...,L-1.

The Wiener filter deconvolution operator for this model is [2]

w= @+ K TE (2)

where K and K . are covariance matrices of the noise and ideal image,
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respectively. In numerical analysis, the accuracy of the
deconvolution estimate can be bounded in terms of the noise
pertubation n. It has been shown [3] that

llag |l |In]|

and the condition number of Wiener filter operator is

c = |lullwl (4)

where || *|| denotes matrix Euclidean norm defined as

M N %
DYDY [lh(i,j)lz] (5)
i=1 =1

Computation of W 1is not simple because of the matrix inversion

operation in eq. (2).

Pratt [1] shown that a close approximation can be obtained by
replacing the generalied inverse norm by the 1less restrictive

coigitional inverse norm. So our problem leads to the computation of
llw "1l

Formulation

A finite-length operator D can be extracted from the circular
superposition operator C by use of a selection matrix according to the
relation

= N M. T
D = [$1]] C [s1}]

(6)

. . K, . .
where the selection matrix [Slj] is defined as
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Conclusions

The SGK and SDV/SGK convolution methods are attractive technigues
for simplifying the computational requirements of two-dimensional
convolution. Studies are now underway to assess the effects of
computational errors of the processing procedures.

3.2 Wiener Image Restoration Condition Number

Sang Uk Lee and William K. Pratt

In a previous paper [1], Pratt has introduced an easily computed
formulation of the condition number of a finite length convolution
operator. operator. This formulation is extended here to the Wiener
filter operator.

Problem Statement

Assume a linear, signal-independent noise model of image
formation and recording. Also for simplicity, initial consideration

will be given to the one-dimensional overdetermined model

g=Hf+n (1)
where g and n are mxl vectors of the observed image with M=N+L-1, L is
the 1length of the impulse response length, £ is a Nxl vector of the

ideal image and H is an MxN blur matrix associated with the impulse
response h(n), for n=0,1,...,L-1.

The Wiener filter deconvolution operator for this model is [2]

T -1 -1,-1_T -1
W= (HK "H+ K "HEK, (2)

where En and‘gf are covariance matrices of the noise and ideal image,
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(1% = (17 01K 7)

K J-K

It is easily verified that the conditional inverse of matrix D is

 _ N, ~-1
D" = [Elq] c

M. T
[§LJ] (8)
but the generalized inverse D does not sétisfy such a relation. That
is,
1

- N - M, T
D™ # [SLy) € [SLg]

(9)

The conditional inverse norm D can be computed in terms of C
which can be computed easily by Fourier methods since C is also a
circulant matrix. Pratt shown that the conditional inverse norm ]Q#H
is

M-1 -
liot|? = uZ_% ff [ |?1” (10)

where h(u) is the Fourier transformation of h(n), n=0,1,...,L-1.

The next step is to use an adjoint Wiener model, which was
proposed in the development of a fast Wiener restoration algorithm
[4]. The resulting adjoint Wiener model estimate is

A M.T
£= (sl v, 81507 g (11)
and
_ T.,-1 -1,-1 T -1
Y.x - [9. .ISnx(_:_ + I_<.fx] 9. Efx (12)
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where grn{and 515<are extended covariance matrix of noise and ideal
image, respectively. The adjoint Wiener model operator is

T.,-1 1

Ex=[Sl][CK C+Kf] C [sl] (13)

Assuming a white noise process with noise energyOﬁz, a Markov process

with image energy ofz, and also wusing a fact that matrix !x is a

circulant matrix, leads immediately to

M- M-1 ~
llw,| Z —2— [va(u,u)lzl > % = g(u) il I (14)

where h(u) is a Fourier transform of impulse response, R is the signal

to noise ratiocf%bn% and

(1-p2) [1-(-1) ¥ 1Ny (15)

1-2pcost + p2

Afu) =

with the approximate condition number for the adjoint Wiener model
operator then becomes

caw = llull liull (16)

where the norm of the condition operator is given by eqg. (5) and the
norm of the condition inverse of the operator by eq. (14).
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s151 = (147 013K (7)

K J-K

It is easily verified that the conditional inverse of matrix D is
3o N, -1 M, T
p¥ = [s1]) C* (S1]] (8)

but the generalized inverse D does not satisfy such a relation. That
is,
1

- N - M, T
D # [s1)) ¢ (814]

(9)

The conditional inverse norm D can be computed in terms of C
which can be computed easily by Fourier methods since C is also a
circulant matrix. Pratt shown that the conditional inverse norm |Q#H
is

M-1 ~
IfIE = 2 & thhw %17 (10)
- u=0 M

where h(u) is the Fourier transformation of h(n), n=0,1,...,L-1.
The next step is to use an adjoint Wiener model, which was

proposed in the development of a fast Wiener restoration algorithm
[4]. The resulting adjoint Wiener model estimate is

- N M, T
£=1Isl31 v, Isl51" g (11)
and
= eTe-1 -1.-1 T -1
Ve = [CK €+ Kl 7 C° Keo (12)
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Figure 1. Comparison of approximated and exact condition
number for Wiener filter.
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Evaluation and Summary

Equation (16) has been evaluated and compared with an exact
condition number of the Wiener filter deconvolution operator given by
edg.(2) using the singular value decomposition formula of a previous
report [l]. A typical result for Gaussian blur (02=l.0), M=64, N=50,
and L=15 is presented in Figure 1. Two correlation coefficients,
p=U.9, 0.1, are chosen in this experiment. As the ratio of image
energy to noise energy (O%/Gi) approaches infinity, the Wiener
operator norm of eq.(14) becomes equivalent to the conditional inverse
norm of eq.(10) as shown in Figure 1.
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Introduction

This report discusses more general, realistic, and interesting
cases of restoration which include degradations due to blurring and
Poisson noise. 1In many practical problems of interest, the detected
image data arises from a blurred image of the object. Examples
include 1linear motion degradation in which the object suffers
significant motion during the detection interval T, Gaussian blurring
degradations in which the detected image is seriously degraded by the
spatial and temporal fluctuations of refractive index of the
atmosphere, and aberrations, which arises in focusing error or in
inherent properties of spherical lenses. These blurring effects can
be lumped tagether as a blurring matrix H. The block diagram of this
system is shown in Fig. 1. A

The formulation of MAP estimation equation and its solution is
derived in section 2. The implementation of the MAP filter with one-
and two-dimensional blurring and their experimental results will be
illustrated and discussed in section 3 and section 4, respectively.

MAP Estimation Equations with Blurring Matrix H

As derived previously [17], the estimation equation for the MAP

estimate 1is

AT (g-1) -Rp (£-E) = 0 0
where
Vd' d- . .
a=la:9p--917 9 T 5T T (2)
1 ..
y 1] 3
and
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Introduction

This report discusses more general, realistic, and interesting
cases of restoration which include degradations due to blurring and
Poisson noise. 1In many practical problems of interest, the detected
image data arises from a blurred image of the object. Examples
include 1linear motion degradation in which the object suffers
significant motion during the detection interval T, Gaussian blurring
Gegradations in which the detected image is seriously degraded by the
spatial and temporal fluctuations of refractive index of the
atmosphere, and aberrations, which arises in focusing error or in
inherent properties of spherical lenses. These blurring effects can
be lumped together as a blurring matrix H. The block diagram of this
system is shown in Fig. 1.

The formulation of MAP estimation equation and its solution is

derived in section 2. The implementation of the MAP filter with one-
and two-dimensional blurring and their experimental results will be
illustrated and discussed in section 3 and section 4, respectively.

MAP Estimation Equations with Blurring Matrix H

As derived previously [17], the estimation equation for the MAP
estimate is

1

AHT (g-1)-Rg (£-E) = 0 (1)

where

T

d. )
1 i
g = [qllqzl"'qN] ’ qi = b_- S eee—— (2)
1

and
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Hyp Hpp -~ 77~ Hin
H H,, - - - - - H
21 22 2N .
A and 1 = [1,1,...,11F (3)
LHNl Hy2 HNN4

Here the H matrix is not necessarily a square matrix, but depends on
the model of blurring degradation. For simplicity, we assume here
that the H matrix is square matrix.

Equation (1) is the most important key equation of MAP estimation
with a blurring matrix. The first term is the ML solution and the
second term is an a priori solution. Thus, the MAP filter tries to
balance the inverse solution with some smoothness contraint. However,
Eq. (2) is a nonlinear MAP estimate equation. The nonlinearity is
buried in the g function.

Due to the larger dimensionality and nonlinearity of the MaP
estimate equation it uses a sectioning method with a Newton-Raphson
technique to obtain a suboptimal solution [10,12,21]. There are two
sectioning methods, one 1is the overlap-add sectioning method, the
other is the overlap-save sectioning method. Sectioning methods
generally give rise to boundary edge effects, hence, it is necessary
to investigate which method will be applicable to this MAP estimate
equation. From equation (1), we have
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\aT(q + 1) - Rg (£ - B) =0 (4)
where
a.
1
q; = ——— (5)
L Hy £y

In the overlap-add method of sectioning filtering the mth and (m+l)th
section are added together in the region of overlap to create the
final correct output. This method will be suitable only for the
linear function case. However, the convolution with H is imbedded
inside of the g function of equation (4). Since g 1is a nonlinear
function of (Hf), then

(m)

q g ™ g T 2 g g™ ) 4g g (04D (6)

(m)

belongs to the overlapped portion of a section m, and E(m+1)

If £
belongs to the overlapped portion of an adjacent section m+l, then
obviously overlap-add section method is not valid in the presence of
the nonlinear function in the MAP estimate equation. Fortunately, the
overlap-save method remains valid for the nonlinear case and can be
used in our MAP estimate equation. Since incorrect points in the
overlap region are discarded, rather than being corrected by addition,
the overlap-save sectioning method with the Newton-Raphson technique
can reduce the boundary edge effects because it discard erroneous
processed data of the overlapped region.

Implementation of MAP filter with One Direction Blurring Degradation

and its Experimental Results

The most interesting blurring degradations are 1linear motion
blurring and atmospheric turbulence blurring. The linear blurring is
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Lot
L

Hyg Hyp =~~~ -~ Hin
Hy; Hyp == - =~ Hon . -
Hé and l= (1,1,...,1] (3)
* L] H.
| B P2 NN

Here the H matrix is not necessarily a square matrix, but depends on
the model of blurring degradation. For simplicity, we assume here
that the H matrix is square matrix.

Equation (1) is the most important key equation of MAP estimation
with a blurring matrix. The first term is the ML solution and the
second term is an a priori solution. Thus, the MAP filter tries to
balance the inverse solution with some smoothness contraint. However,
Eg. (2) is a nonlinear MAP estimate equation. The nonlinearity is
buried in the g function.

Due to the larger dimensionality and nonlinearity of the MAP
estimate equation it wuses a sectioning method with a Newton-Raphson
technique to obtain a suboptimal solution [10,12,21]. There are two
sectioning methods, one 1is the overlap-add sectioning method, the
other is the overlap-save sectioning method. Sectioning methods
generally give rise to boundary edge effects, hence, it is necessary
to investigate which method will be applicable to this MAP estimate
equation. From equation (1), we have
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models as a square blurring, while atmospheric turbulence blurring is
modeled as Gaussian blurring for a long exposure time. This section
will implement the MAP filter with one directional 1linear motion
blurring case. The linear motion blurring is most general and complex
case of the blurring degradation, because its amplitude response has
singularities and phase reversal. We also assume that R¢ has a first
order Markovian covariance matrix.

Using the overlap-save section method with the iterative
Newton-Raphson technique obtains the solution to the MAP estimate Eq.
(4). The convergence is very fast; about 2 to 3 iterative steps. The
detailed Newton-Raphson method is described in [18]. The discrete
point spread function of h(x,y) is 5 pixels width of linear motion
blurring degradation. The simulation is same techniques as previous
report. The nonstationary mean is estimated by a l-dimensional moving
average on 11 pixels of observation data and its variance is estimated
globally by an unbiased estimate of population. The linear system
equations of gradient function of Eg. (4), which obtains increment
value of iterative roots, is heavily dependent on structure of the
blurring matrix H.

When H matrix is symmetrical matrix, the computing time of Eq.
(4) with Newton-Raphson technique can be lesser since it uses the
symmetrical properties of linear system equation. This simulation is
done with one directional linear motion blurring (5 pixels blurring)
and different (§ﬁ§)rms. The processing of sectional MAP filter is
done by a section size 36 pixels with overlapping 8 pixels. The
restored images of MAP filter are shown in Fig. 2 for different
(§ﬁ§)rms. The layout of the result pictures are as follows:

The upper left picture is an original image.
The upper right picture is a Poisson noisy image.

The lower left picture is the restored image with p = 0.
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Fig. 2a. The restored image
of the MAP filter with
(SNR) . = Y10.

H
:
:

e

Fig. 2b. The restored image
of the MAP filter with
(SNR) . = /15.
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The lower right picture is the restored image with p = 0.9

From Fig. 3, it is clear that the 1ill-condition of restored
image with p = 0 more severe for the higher (gﬁﬁbrms image signal.
The reason why is more correlation between pixels for higher (gﬁﬁ)rms
and the singularity of amplitude response of blurring matrix H which
amplified the Poisson noise.

For a local adaptive MAP filter, the equation is

W- (BT (g-1)]+(I-W) - [-R;"

(£-£)1 = 0 (7)
Where W = { diag Wi}. W is called weighting matrix. w, is the weight
of ith section which can be varied on the first moment and second
moment of local properties of image. The local adaptive MAP filter
also can be used for the restoration of image degraded by spatially
variant point spread function. This has long been a problem for real
world of image processing. For instanée, the point spread function of
each photon detector is not identical in the whole array detectors.

Since the image can be divided into section image and treat each
section with space invariant assumption. For simplicity, it will
simulate the global adaptive MAP sectioning filter which set Wi =Wh
for any i,j.

The simulation is done with p = 0.95 for different weight of
section and for different (SNR)ypg-. The experimental results are
shown in Fig. 4. The layout of picture is as follows:

The upper left picture is an original image.

The upper right picture is a noisy image.
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Fig. 3a. The restored image of Fig. 3b. The restored image of
global adaptive MAP filter global adaptive MAP filter
with weight Wi = 0.3. with weight Wi = 0.6.
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Fig. 3c. The restored image of Fig. 3d. The restored image of
global adaptive MAP filter global adaptive MAP filter
with weight Wi = 0.8. with weight Wi = 0.9.
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The lower left picture is the restored image of MAP Filter
with Wi = 0.5.

The lower right picture is the restored image of MAP Filter
with different W, value.

The W, = 0.5 is equal weight between maximum likelihood (ML) solution

and a priori solution.

From the experimental results, it is illustrated that the more
weight on the ML term, the higher frequency information can be
extracted. Also, the overweight on the ML solution results in
ill-conditioning of some solutions of the MAP estimate. Since the
overweight on the ML solution, the MAP estimate will be asymptotically
approached to ML estimate. The ML estimate indeed, is the inverse
filter of the image restoration with blurring degradation case. Since
the amplitude response of PSF of a linear motion blurring has the
singularities and also it seriously distorted by the Poisson noisy
degradation. Therefore, the global adaptive filter has an optimal
weight filter. Consequently, the local adaptive filter has an optimal
weight filter in the blurring degradation cases, too.

Implementation of the MAP Filter with 2-Dimensional Blurring

Degradation and its Experimental Results

This section will discuss the implementation and experimental
results of the MAP filter with 2-dimensional blurring degradation
which often encounters in many practical interested cases. The
overlap-save sectioning MAP filter will be implemented with separable
assumption and nonseparable assumption, respectively. The blurring
degradation is simulated by 3 x 3 pixels blurring. The non-stationary

mean is estimated by 2-dimensional moving average with window size
7 x 7 pixels over the detected image intensity. The separable of H
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Fig. 4a. The restored image of Fig. 4b. The restored image of
the MAP filter with (SNR),po = the MAP filter with (SNR)yms=

VY15 for separable 2-D MAP filter. Y20 for separable 2-D MAP filter.

Fig. 5a. The restored image of Fig. 5b. The restored image of
the MAP filter with (SNR)yms=v15 the MAP filter with (SNR)ppg=v20
for nonseparable 2-D MAP filter. for nonseparable 2-D MAP filter.
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mat;ix means space-invariant separable. When this is the case, the
MAP estimate Eg. (4) can be implemented as a column processor first
and then implemented as a row processor. The solution to this MAP
estimate 1is employed the same sectioning method with Newton-Raphson

technique as before. Of course, the processing time of 2-dimensional
MAP filters is twice as much as that of 1-dimensional case. The
experimental results are shown in Fig. 5 for different (§ﬁ§)rms and

P = 0.95. The layout of resulting picture is as follows:
The upper left picture is an original image.
The upper right picture is a blurred and noisy image.

The lower left picture is the restored image of l-dimensional
MAP filter.

The lower right picture is the restored image of 2-dimensional
separable MAP filter.

Figure 4 illustrates that the restored image of 2-dimensional
separable filter 1is overly smoothing the Poisson noise degradation.
The restored images are some improvement over blurred and noisy image.
Although the separable assumption 1is probably good first-order
approximation of well-correct linear system, the image field itself is
not separable at all. Therefore, it is necessary to try 2-dimensional

nonseparable MAP sectioning filter

When the PSF is a nonseparable space-invariant function and
assuming Rf is the identity matrix. Using 2-dimensional nonseparable
sampled infinite area superposotion operator H models 2-dimensienal
2 2

X N

the observed data size, the processed data size of sectioning MAP

blurring degradation. H matrix is M matrix. Where M and N are

filter, respectively. Thus, it needs solve N2 order linear system

equation of Eq. (4) in order to find the incremental value of the
root 1in each iterative step. In spite of the small size of the
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section, it needs tremendous amount of computing time for this
sectioning MAP filter.

The simulation is done with a 9 x 9 pixel section size with
overlapping 4 x 4 pixels. Since blurring degradation is 3 x 3 pixels
blurring, the wraparound data is 2(L-1)x2(L-1) pixels which 1is 4 x 4
pixels. The nonstationary mean is estimated by Rolling Window Moving
Average (RWMA) method which is a very easy, fast algorithm for the
2-dimensional moving average over any size of rolling window. Because
the cpu time of this sectioning MAP filter takes about 100 minutes for
processing the 256 x 256 size picture, it only processes the last half

size of noisy picture with two different (SNR%mu; signals for
demonstration. The experimental results are shown in Fig. 5. The
layout of pictures is as follows:

The upper left picture is an original image.

The upper right picture is a blurred and noisy image.

The lower left picture is a nonstationary mean image.

The lower right picture is a restored image of MAP filter.
From Fig. 5 it is clearly seen that the noticeable better results
over the restored image of Fig. 5. However, the cpu time of the
nonseparable assumption is about 2 order longer than that of separable
assumption. Therefore, it 1is trade-off between performance and

computing time.

Conclusion

The MAP filter with blurring degradation for Poisson noise model
has been developed. The implementation and solution to the MAP filter
are heavily dependent on the scheme of blurring degradation matrix H
and covariance matrix of the object image. It has been shown that the
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matrix means space-invariant separable. When this is the case, the
MAP estimate Eg. (4) can be implemented as a column processor first
and then implemented as a row processor. The solution to this MAP
estimate is employed the same sectioning method with Newton-Raphson
technique as before. Of course, the processing time of 2-dimensional
MAP filters 1is twice as much as that of l1-dimensional case. The
experimental results are shown in Fig. 5 for different (§ﬁ§)rms and

P = 0.95. The layout of resulting picture is as follows:
The upper left picture is an original image.
The upper right picture is a blurred and noisy image.

The lower left picture is the restored image of l1-dimensional
MAP filter.

The lower right picture is the restored image of 2-dimensional
separable MAP filter.

Figure 4 1illustrates that the restored image of 2-dimensional
separable filter 1is overly smoothing the Poisson noise degradation,
The restored images are some improvement over blurred and noisy image.
Although the separable assumption 1is probably good first-order
approximation of well-correct linear system, the image field itself is
not separable at all. Therefore, it is necessary to try 2-dimensional
nonseparable MAP sectioning filter

When the PSF is a nonseparable space-invariant function and
assuming R_ is the identity matrix. Using 2-dimensional nonseparable

£
sampled infinite area superposotion operator H models 2-dimensienal
blurring degradation. H matrix is M2 x N2 matrix. Where M and N are

the observed data size, the processed data size of sectioning MAP
filter, respectively. Thus, it needs solve N2 order linear system
equation of Eq. (4) in order to find the incremental value of the
root in each iterative step. In spite of the small size of the
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overlap-save sectioning method with Newton-Raphson technique is a good
fast approach to find the suboptimal solution of MAP estimate. The
l-dimensional blurring and 2-dimensional blurring degradation with
different Poisson noise degradations have been simulated.

From the experimental results, it has been found that the
estimate nonstationary mean carries the most structured background low
frequencies information and also the covariance matrix gives the
higher frequency information and the stable solution of Newton-Raphson
iterative method specially in the higher (gﬁi)rms of image signals.
It also has been known that the global adaptive MAP filter has an
optimal weight over the best gquality of image criterion, since
overweight on the ML term solution will give rise to the
ill-condition. From Fig. 7, it can be concluded that the quality of
the restored image of MAP filter for nonseparable case is better than
that of MAP filter for the separable case. However, the cpu time of
the nonseparable case is much longer than that of the separable case.
It is hope that the fast algorithm by the same concept of RWMA method
can be developed in the future.

Nevertheless, this report has built the solid framework for image
restoration of blurred images with the Poisson noise model. It has
been learned that the overlap-save sectioning MAP filter with
Newton-Raphson iterative technique can be used for solving larger
dimensionality and nonlinearity MAP estimate equation, and that the
nonstationary mean and variance cam be accurately estimated from the
observation data-photon counts.
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overlap-save sectioning method with Newton-Raphson technique is a good
fast approach to find the suboptimal solution of MAP estimate. The
l-dimensional blurring and 2-dimensional blurring degradation with
different Poisson noise degradations have been simulated.

From the experimental results, it has been found that the
estimate nonstationary mean carries the most structured background low
frequencies information and also the covariance matrix gives the
higher frequency information and the stable solution of Newton-Raphson
iterative method specially in the higher (gﬁi)rms of image signals.
It also has been known that the global adaptive MAP filter has an
optimal weight over the best quality of image criterion, since
overweight on the ML term solution will give rise to the
ill-condition. From Fig. 7, it can be concluded that the quality of
the restored image of MAP filter for nonseparable case is better than
that of MAP filter for the separable case. However, the cpu time of
the nonseparable case is much longer than that of the separable case.
It is hope that the fast algorithm by the same concept of RWMA method
can be developed in the future.

Nevertheless, this report has built the solid framework for image
restoration of blurred images with the Poisson noise model. It has
been 1learned that the overlap-save sectioning MAP filter with
Newton-Raphson iterative technique can be used for solving larger
dimensionality and nonlinearity MAP estimate equation, and that the
nonstationary mean and variance cam be accurately estimated from the
observation data-photon counts.
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3.4 The Quality of an MAP Restoration Filter for Poisson Noise

Chun Moo Lo and A. A. Sawchuk

Introduction
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We have developed the MAP estimate for image restoration with a
Poisson noise model in previous reports [15]. In this report we try
to investigate the quality of this MAP estimate. The quality of
estimate depends on the performance criterion chosen. There are two
types of performance criterion. One is that criterion used specifies
the estimator structure and the other is the performance itself. The
MAP estimate and MLE estimate belong to the former one. Since the MAP
estimate is the mode of the a posteriori probability density and the
MLE estimate is the mode of the a priori density probability. The
Bayes estimate belongs to the latter one because it minimizes the risk
of the estimate. Of course, the MMSE (minimize mean square error)
estimate is a special case of Bayes estimate when the cost function is
proportional to mean square error of the estimate. However, it 1is
customary to choose the conditional or unconditional expected square
error of estimate as an universal measure of "quality" of all
estimates. Unfortunately, the expectation operation leading this
measure is, in general, very complicated owing to the complexity of
various estimate. However, it is possible to derive an expression for
a lower bound on the variance 1in terms of only the statistical
properties of the observed signal and estimate bias. This qguality
measure of any estimate without having any knowledge of the estimate
itself except that it is unbiased estimate. This lower bound for the
estimate error variance 1is well known as Cramer-Rao 1lower bound
(CRLB) .

In short, there are two quality measures of the estimate which
are the expectation of the estimate and variance of the estimation
error. In general, we try to find an wunbiased estimate with small
estimate error variance.

Biased Estimate and Unbiased Estimate

A conditional unbiased estimate is one whose expected value is
equal to the true value of the quantity being estimated. An
unconditional unbiased estimate is one whose expected value is equal
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We have developed the MAP estimate for image restoration with a
Poisson noise model in previous reports [15]. In this report we try
to investigate the quality of this MAP estimate. The quality of
estimate depends on the performance criterion chosen. There are two
types of performance criterion. One is that criterion used specifies
the estimator structure and the other is the performance itself. The
MAP estimate and MLE estimate belong to the former one. Since the MAP
estimate is the mode of the a posteriori probability density and the
MLE estimate is the mode of the a priori density probability. The
Bayes estimate belongs to the latter one because it minimizes the risk
of the estimate. Of course, the MMSE (minimize mean square error)
estimate is a special case of Bayes estimate when the cost function is
proportional to mean square error of the estimate. However, it is
customary to choose the conditional or unconditional expected square
error of estimate as an universal measure of TMquality" of all
estimates. Unfortunately, the expectation operation leading this
measure is, in general, very complicated owing to the complexity of
various estimate. However, it is possible to derive an expression for
a lower bound on the variance in terms of only the statistical
properties of the observed signal and estimate bias. This quality
measure of any estimate without having any knowledge of the estimate
itself except that it is unbiased estimate. This lower bound for the
estimate error variance is well known as Cramer-Rao lower bound
(CRLB) .

In short, there are two quality measures of the estimate which
are the expectation of the estimate and variance of the estimation
error. In general, we try to find an unbiased estimate with small
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