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New Algorithms For Reconstruction Of A 3-D Depth Map
From One Or More Images

Abstract

New algorithms are developed to recover the depth and orientation maps of a surface from
its image intensities. They combine the advantages of stereo vision and shape-from-shading
(SFS) methods. These algorithms generate dense surface depth and orientation maps ac-
curately and unambiguously. Previous SFS algorithms can not be directly extended to
combine stereo images because the recovery of surface depth and that of orientation are
separated in these formulations. A new SFS algorithm is proposed to couple the generation
of the depth and orientation maps. The new formulation also ensures that the reconstructed
surface depth and its orientation are consistent. The SFS algorithm for a single image is
next extended to utilize stereo images. The correspondence over stereo images is estab-
lished simultaneously with the generation of surface depth and orientation. An alternative
approach is also suggested for combining stereo and SFS techniques. This approach can be
used to combine needle maps which are directly available from other sources such as pho-
tometric stereo. Finally we present an algorithm to combine sparse depth measurements
with an orientation map to reconstruct a surface. This algorithm, based on transform
methods, obtains the solution in O(NZ%logN) operations for an N x N lattice. The same
algorithm can be combined with the above algorithms for solving SFS problem with sparse
depth measurements. Thus various information sources can be used to reconstruct a surface

accurately.



1 Introduction

One of the goals of a computer-vision system is to recover the three dimensional shape
of a surface from its image intensities. There exist several approaches to this problem.
Conventional stereo methods [1] are characterized by matching certain feature points in
stereo images. As stereo vision can determine only a sparse set of surface depths, it is
often followed by a surface interpolation process [2]. The surface orientation can not be
recovered directly from matching. The most difficult problem with this method is that of
identifying corresponding feature points. Algorithms for recovery of shape from shading
have been investigated extensively [3,4,5,6]. Shape-from-shading (SFS) techniques exﬁlore
the information contained in image intensities by reconstructing a surface that is consistent
with observed image intensities. The SFS techniques are formulated for a single image so
correspondence is not necessary. The results of SFS algorithms for a single image may not
be accurate or robust. Sometimes it is ambiguous to recover a surface from a single image
[7]. Thus stereo images are often needed to recover a surface accurately and unambiguously.

In this paper new algorithms are proposed to fill the gap between conventional stereo
and SFS techniques. They combine the advantages of stereo vision and SFS methods.
SFS techniques are used to recover the depth and orientation maps of a surface from its
stereo images which are taken from different viewing directions with fixed light source.
Uniform matching is performed over these stereo images in order to obtain dense depth
and orientation maps. Both the stereo correspondence and surface depth are established
simultaneously under two constraints. The first is the geometrical constraint of stereo vision.
The second constraint is provided by the irradiance equations so that the reconstructed

surface is everywhere consistent with observed image intensities. These algorithms ensure



full use of shading information and recover both surface depth and orientation. Because
stereo images are used in recovering shape from image intensities the solution is aclcurate,
and can not be ambiguous as it can be when a single image is used.

Stereo vision and irradiance equations in SFS problem provide constraints on surface
depth and orientation respectively. In order to combine these two methods we need a natural
way of incorporating surface depth into orientation constraints. Existing SFS algorithms
can not be used for this purpose because all these algorithms recover the orientation map
in a separate step, prior to recovering the surface depth. Also some of them do not even
enforce the integrability constraint so that the reconstructed surface orientation and depth
may not be consistent [6]. Consistent surface reconstruction requires that the reconstructed
needle map always correspond to the orientation map of the reconstructed surface depth.
In this work we first suggest a new SFS algorithm which provides a novel solution to these
two difficulties. It allows a natural incorporation of geometric stereo into SFS methods.
The SFS problem is formulated here as that of solving a coupled set of first-order partial
differential equations. The first one of these equations is the irradiance equation. The
other two enforce the consistency between the reconstructed surface depth and orientation.
Because surface depth and orientation are reconstructed simultaneously, stereo images can
be easily incorporated.

An alternative algorithm is also suggested to generate surface depth and orientation
maps from stereo images by combining stereo method and SFS techniques. In this approach,
different needle maps are generated for each image, using the SFS technique proposed in [7].
The depth map can be generated from these needle maps by establishing the correspondence

so that the disparity over these needle maps is minimized. The integrability constraint is



also enforced. This approach is related to Ikeuchi’s work of combining needle maps [8].
However Ikeuchi’s formulation of combining needle maps has some errors. First of all, the
orientation of a surface is different with respect to different coordinate systems. The needle
maps reconstructed from different images can not be compared directly. Instead they should
be mapped into the same coordinate system. Secondly the derivatives of the needle maps
used in the formulation should be obtained before the transformation of the needle maps.
Although the transformation of needle maps between different coordinates is independent
of the position of surface points, the transformation of the derivatives of needle maps is
a non-linear function of the surface heights. We will show how to combine needle maps
correctly.

Photometric stereo seems to be the only practical solution for obtaining an orientation
map for surface with varying albedo. The result may not be accurate because of modeling
problems associated with the imaging process. One can improve in accuracy by using
sparse depth measurements from geometric stereo . In this paper we show how to combine
photometric stereo and geometric stereo information to improve the reconstruction of the
surface height.

The organization of the paper is as follows:

Section 2 introduces a new method to recover the depth and orientation maps of a
surface simultaneously and consistently. In Section 3 we show how the needle maps of a
surface viewed from different directions are related, and extend the results in Section 2 and
the algorithm presented in [7] to combine stereo images. The use of sparse information to

recover surface is discussed in Section 4, followed by summary in Section 5.



2 Recovery of Depth and Needle Maps From A Single Im-

age

The SFS problem is to extract the shape information from image intensities. Formally, given
a 2-D intensity distribution E(z,y), and a reflectance map R(p,¢) with constant albedo,

it may be regarded as a problem of recovering a surface, Z(z,y) , satisfying the image

irradiance equation :

E(z,y) = R(p,q) (1)

where
p=12; )
q=2, (3)

and (—p(z,y), —q(z,y),1) is the surface orientation at (z,y, Z(z, y)).

Almost all SFS algorithms recover the needle map (p,q) in a separate step, prior to
recovering the depth map. The needle map (p, ¢) is obtained by minimizing the brightness
error under the constraint that the surface is smooth. Then the depth Z is recovered from p
and ¢ [5]. As p and g are treated as independent variables, the recovered surface needle map
(p,q) may not correspond to the orientation of the underlying surface. The integrability
constraint [6,9,7] is needed to ensure the solution to the SFS problem is the correct one.

This constraint is often expressed in terms of the gradient space as

Py = 4z (4)

Horn and Brooks [6] used the constraint as a penalty term in their formulation to enforce the

integrability constraint. This formulation is not satisfying for our problem. Mathematically



(2) and (3) do not always imply (4). Most of all, the depth information contained in stereo
images is not coupled into the recovery of a needle map. This makes it difficult to generalize
the algorithm to combine stereo images.

Instead of using the integrability constraint p, = ¢, as a penalty term, we formulate the
SF'S problem in a different way so that surface depth and needle maps are coupled and the
recovered needle map is always consistent with the reconstructed surface depth.

The above equations (1), (2) and(3) can be considered as a coupled set of first-order
differential equations of independent unknown functions p(z, y), ¢(=,y) and Z(z,y). Equa-
tion (1) is the irradiance equation which enforces the recovered surface to correspond to the
given image intensities. Equations (2) and (3) are called consistency constraints. Consis-
tency constraints ensure that the reconstructed needle map (p, ¢) always corresponds to the
orientation map of the reconstructed surface depth. Thus the SF'S problem is now reduced
to solving equations (1), (2) and (3) for orientation p and ¢, and depth Z.

Unfortunately we are not aware of numerically stable methods for solving these non-
linear partial differential equations. So we reformulate the problem as one of finding p, ¢
and Z such that equations (1), (2) and (3) are satisfied under some criterion. Specifically

P, ¢ and Z should be chosen to minimize the error functional:

f fQ[(E(m, y)— R(9,9))* + (Zz - p)* + (2, — q)*]dzdy (5)

Solving for Z, p and ¢ is still an ill-posed problem in the sense of Hadamard [10] as there
is no unique solution. To overcome this difficulty we regularize it by assuming that the

surface is smooth. According to Ikeuchi and Horn [5], the measure of “lack of smoothness”



is given by

] f(pf, + 0l + ¢ + ¢2)dzdy

(6)

Adding this term to the error functional term, one has the following functional to be mini-

mized with respect to p, ¢ and Z:

ffn[(E(w, y)— R(2,9)* + (Zz — )’ + (2, — 0)* + A% + P + @2 + ¢2)]dzdy

Here A is a weighting factor for the smoothness term.

Using Euler formula [11] one obtains the following equations:

Vip = -3[(Z: - p) + (E - R(p,q))R,)
Vig = “%[(Zy —q) + (E - R(p, Q))Rq]
V2Z =p:+qy

where R, and R, are the partial derivatives of R(p,¢) with respect to p and q. And

o? 8?
2—--—_- —
Ve dz? +3y2

is the Laplacian operator.

(7)

(8)

Thus we get a coupled set of non-linear Poisson equations. In order to solve these

equations, boundary conditions for p, ¢ and Z are needed. The boundary conditions can

be obtained in two steps. First the surface depth along the zero crossing boundaries can

be found by Marr-Poggio-Grimson [2] stereo algorithm. Then derivatives of the depth and

image intensities can be used to find the surface orientation along the boundaries [8,12].

Because of the non-linear nature of the equations one can not get a closed-form solution.



o

They are solved by using Jacobbi Picard iterations :

V2l = —3((Z2 - p*) + (E - R(p",¢")) Rp(p", ¢)]
Vigrtt = =327 - ¢") + (E - R(p", ¢"))Ro(p", ¢™)] (9)
V2ZnHl = pn oy gn
The iterations can be continued until there is little change in p, ¢ and Z between two
consecutive iterations.

At each step of the iterations three Poisson equations have to be solved. We used direct
methods [7] to solve these Poisson equations. Experiments with synthetic images show
that the direct methods are fast and accurate and that they work on both re;:ta.ngula.r and
irregular regions. Due to space limitations, we have not included these results.

In this formulation of the SF'S problem the integrability constraint is enforced implicitly.
The reconstructed surface depth and orientation are always consistent. As the depth Z and
the orientation p and ¢ are coupled at every step, it is easy and natural to generalize this

algorithm to combine stereo images as described in the following section.

3 Combining Stereo Images

Recovering a surface from a single image is sometimes ambiguous [7]. And the solution
of SF'S problem is not accurate and robust. Stereo methods use multiple images to over-
come these difficulties. They do not make full use of the shading information. Instead they
establish correspondence at certain feature points and use geometric relation over stereo
images to recover the surface depth. Thus only a sparse set of surface depths can be recov-

ered. In the following we show how SFS techniques can be combined with stereo methods



to overcome the above difficulties. The coupling between surface depth and orientation in
the SFS formulation given in Section 2 enables us to combine the geometric constraint on
surface depth and the irradiance constraint on orientation. Thus global correspondence
can be established over stereo images. Furthermore the surface orientation and depth are
recovered simultaneously with the global correspondence.

In the following we first show how the needle maps from stereo images are related.
Then a method is presented to combine multiple needle maps to obtain an accurate surface
depth. It is found that this technique can be applied to recover surface orientation and
depth directly from stereo images by combining the SFS algorithm presented in [7]. As this
formulation is highly non-linear we present a simple and elegant algorithm for combining
stereo images by extending the results in Section 2. For simplicity all the formulas are
derived for the case of two images. They can be easily extended to the case when more

than two images are available.

3.1 Camera Set-up and Needle Map Transformation

We use the same camera set-up as in Ikeuchi [13], see Figure 1. The left image plane is
perpendicular to the spatial z axis, while the right image plane is inclined with respect
to z-axis so that the two optical axes intersect with each other at the origin of the global
coordinate system, which is fixed on the surface. Let (u’,v‘,w‘) and (u",w",w") be the left
and right camera coordinate systems and (z, y, z) be the global coordinate system. Assume

the object is far away from the cameras so that orthographic projection can be used. Using



the parameters in Figure 1, one has the following coordinate transformations:

ul 1 00 T 0
o |l=1l01 0 y |+ 0 : (10)
wt 0 0 1 Z —d'
u” cosl 0 —sgind T 0
v |=] 0 1 o0 y [+ o (11)
w” sinf 0 cosh z —dr
u’ cosd 0 —sind ul —d'sing
o [=] 0o 1 o o |+ 0 (12)
w’ sin@ 0 cosé w' —d" + d'cosh

By defining a=cosf, b=sind, c=—d' sinf, d=—d" + d' cosh, one obtains

u’ a 0 -b z 0
v |=]101 0 y | + 0 (13)
| b 0 a 2 I —dr
and i i
z a 0 b u" bd"
y|=]0 10 o |+ 0 (14)
| 2 -b 0 a w” | ad’ |

Suppose the underlying surface can be expressed in the global coordinate system as:

Z = 2Z(zy)

10



and the gradient map is

p=Zy(z,y)
q=Zy(z,y)

Then the orientation of the surface at (z,y, Z(z,y)) is (—p, —¢, 1).

As the left camera coordinate system is identical to the global coordinate system except
the translation along the z-axis, it is easy to see that the gradient in the left camera
coordinate system is
pP=p (15)

¢ =q (16)

In the right coordinate system, the orientation at the same point corresponds to different
p and g because of the relative rotation of the coordinate systems. The relation between
(p",¢") and (p, q) can be found using the coordinate transformation.

Vector (—p",—¢",1) in the right coordinate system is transformed into a vector in the

global coordinate system by

-p* a 0 b —p" —ap” +b
z* -b 0 a 1 bp" +a

Comparing with the standard orientation expression (—p, —g¢,1), one can find that in the

global coordinate system the needle map from the right image can be expressed as

-,.=p_‘=ap—b (18)
z* a+bp

”r=q—= q (19)
z*  a+bp

11



Note the surface point (z,y, Z(z,y)) is imaged in the right image plane at

u" =ax - bZ
(20)
v =y

As the left camera coordinate system is parallel to the global coordinate system, we

prefer to use the global coordinate system instead of the left camera coordinate system in

the following subsections.

3.2 Combining Needle Maps

Suppose multiple needle maps for stereo images are available from photometric stereo,-how
can they be combined into a consistent and accurate depth map? We start from the cost

function suggested by Ikeuchi [8,13]:

B /fs + A(dp + d,)dzdy (21)
where
s=(Z:-p')’ +(Zy - ¢
dp = (" (az +bZ + ¢,y) - p'(2,y))’
dg = (§'(az +bZ + c,y) - ¢'(=,9))’
Values of " and §" can be obtainted from the needle map for the right image by using the
transformations (18) and (19). Thus

ap™(ax — bZ,y)—b
bp'(azx — bZ,y)+ a

qr(ax - bZa y)
bp (az — bZ,y) + a

dp = {p'(z,y) — §"(az — bZ,9)}* = {p'(z,y) - )2 (22)

dq = (QI(L y) - ér(am - bz? y))2 = (q{(xﬁ y) - )2 (23)

12



Tkeuchi [8,13] used p™ and ¢" instead of 5" and ¢ in (22) and (23). This is not correct,
because the needle maps of a surface in different coordinate systems are generally different.

Note that d,, and d, are functions of Z(z,y) , s in (21) corresponds to the integrability
constraint , d, and d; couple the information from the two needle maps so that they match

each other . The Euler term corresponding to d, and d, is :

2p! — ap” — b}ab(bp' + a)§Br — b%(ap” — b) 3B + 2 - q }b(bp" +a)3% — b2q 3B
bp™ + a (bp™ + a)? bp™ +a (bp™ + a)?
The Euler equation corresponding to (21) is
" —b. (a% +b%) 32,
v? = l ! A I _ ap ur
Z=(p+q) + A{p b T =} 7 T a)? ]
¥ A[{q: _ q'l" }b(bpr + a)g_i; — 529’?3%:]
bp" + a (bp™ + a)?

This is an asymmetric formulation based on the left needle map with a correction term from
the right needle map. The quantities p” , ¢" , p- and ¢J, are functions of Z(z,y) and make
up the nonlinear part of the equation. A similar equation can be found to reconstruct the
surface depth from the right needle map with a correction term from the left needle map.
If the stereo image intensities are directly available we can couple the needle maps and
depth maps at every step. In this case one needle map and one depth map are generated in
each coordinate system. But these needle and depth maps are coupled. We follow the ideas

presented in [7] , and solve for the right and left depth maps using the algorithm given below:

1. calculate pl ., , ¢/, and p},; , ¢,,, using Lee’s [14] algorithm independently for

the left and right camera

13



. reconstruct the depth in the global coordinate system by solving

ap” — b, (a2b + b3) 32

v2233+1 =(ps+q) + )‘[{i‘f’I = }

]

bp"+a” (bp" + a)?
r b(bp" 8 : — b2 r 9p"
+ A[{qf_ q } ( P +a)§3_ q au"]
bp" + a (bp™ + a)?
- reconstruct the depth in the right camera coordinate system by solving
b (025 +- 33)%&
VZia=0.+q) + A{p - h E
+1 =, + ) [{r bp,+a} (b9l +ay? ]
. I ggp:_f_aa‘_nga‘
+ Mg - s ey
bp! + a (bp! + a)?

where

b= —sinb,p' = p(au” — bZ" + ¢, y), é=d sinb

- use the central difference approximation to determine f,,, and &, from Z}_,, and

replace pf, ., and ¢}, by p},; and dhr-

. use the central difference approximation to determine 7, +1 and @7,y from Z7 ., and

replace p; ., and g, by p, ., and g ,.

. return to stage 1

The suggested algorithm is symmetric, enforces integrability , and couples the informa-

tion from the two cameras in an early stage . All the steps in the algorithms which involve

solving a Poisson equation are implemented using the direct methods [7] .

3.3 A New Method for Coupling Stereo Images

In this section we look at the coupling problem differently. In the previous algorithm two

needle maps and two depth maps were generated. And the formulation is highly non-linear.

14



One can use the global coordinate system as a reference coordinate system to recover the

surface orientation and depth from stereo image intensities.

Suppose two images are taken from the left and right cameras respectively, resulting in

two irradiance equations. The irradiance equation for the left image is:
E'(u!,v') = R(p, ) (24)
By using (10), (15) and (16) one obtains:
E'(z,y) = R'(p,q) (25)
And the irradiance equation for the right image is:
E"(w",v") = R'(p",q") (26)

From (18), (19) and (20) the irradiance equation for the right image can be written as:

ap+b ¢

E(az —bZ,9) = R'(32 ety

) (27)

Note that R!, R™ are the same surface reflectance map, except that the viewing direction
is different. In the Lambertian case the reflectance map is independent of the viewing

direction so

ap+b ¢ !
7 . = 28
B ) = B0 = Rip,9) (28)
Thus (27) can be reduced to
E'(az - bZ,y) = R(p,q) (29)

For simplicity, in the rest of this section we only consider the Lambertian case. But the

formulation can be readily applied to non-Lambertian cases.
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Following the algorithm described in Section 2, one formulates the following cost func-

tional:
| [(E'@,9) - Bp,0))? + a(E (a2 - 82,9) - R(p, )" +
(Zz = )’ + (Zy ~ 0)* + A(2 + P} + & + 0} dady
Note that another weighting factor a is introduced which can control the use of information

contained in the other images. For example, when the correspondence is not accurately

established we prefer to keep o small.

Using the variational principle one obtains the following Euler equations:

Vi = —}[(zx - p) + (E'(z,y) - R(p,9)) Ry + a(E" (az — bZ,y) — R(p, q))R,} (30)
Vi = —%[(zy —9) +(E'(2,9) = R(p,9)) Ry + a(E"(az — bZ,y) - R(p,9))Ry] (31)
VzZ = pr+ qy + abE;r(aI - bZa y)(Er(a.?: - bzs y) = R(p, Q)) (32)

These equations are also solved using Jacobbi Picard iterations. If there is no correspon-
dence between two images one simply leave out the term (E™ — R).

The correspondence between the two images is established during the generation of
the depth map and at the same time it is used to compute the depth map. A good initial
estimate is required for the iterative solution. It can be computed by applying the algorithm
described in section 2 to the left image to generate the initial depth and needle maps. Thus
one can increase « in (30),(31) and (32) from 0 to 1 as the correspondence is increasingly
accurate, to control the coupling of stereo images. If the images are too noisy to compute
the derivatives of the image intensities, the weighting factor « in (32) can be set to zero.
That is, the depth map can be recovered from p and ¢ without directly coupling the stereo

images. But a in (30) and (31) need not be zero.
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4 Combining Photometric and Geometric Stereo Informa-

tion

Photometric stereo seems to be the only practical solution for obtaining the orientation map
for a surface with varying albedo. Still error occurs in orientation map due to modeling
problems of the imaging process. In order to improve the reconstruction of the surface from
the needle map, additional information is needed. Sparse measurements obtained from
geometrical stereo can serve this purpose [2]. The sparse measurements are available in
arbitrary locations on the surface. We use the concept of direct minimization to solve this

problem. First the following functional is introduced:

[ [Z-p* + (2,- 0 + Nz~ 27Yldzdy (3)

where Z™ represents the known depth values obtained from geometric stereo, and

)‘(:c'!y) = CZ 6(3 —Ts5,Y— ys)
s€S

where S is the set of points where measurements exist.

The function that minimizes (33) is chosen as the solution. The presence of the delta
function in the integral creates problems in the formulation of the Euler equation. Hence
we choose to use a direct method for minimizing the functional. We discretize the integral

using finite differences:

7, = Zivi = Zij
Az

¥ Zij+1 — Zi;
Ay

17



The delta function becomes a Kroneker delta function and one obtain the following cost

function:

Z; Zij i+ pit1i]’ Zij+1 — Zi i + %]

Z {/\; i(Zij — Z 3)2}

where

. ¢ if ZT exists
0 otherwise
Taking the derivative of the cost function (34) with respect to Z; ; , 4,5 = 1---n one obtains

a set of linear equations of the form:
o*(Zie1,j = 2Zi + Zivr,5) + Zijj1 — 2+ 0hij) Zij + Zijyr = fij (35)

where

Fo_ [Pi+1,j — Pi-14 %ij+1 — Gij—1 2
fi ‘( 2Az T 2Ay )(Ay) et

where o® = (Ay/Az)?. We now show that Neuman boundary conditions [7] are available
for this problem. The normal derivative on the boundary is a linear combination of the Z,
and Z,. In the case of rectangular boundary contours (like in images), %% = Z, along the
contours z = constant and %‘% = Z, along the contours y = constant. Brooks and Horn
(6] show that using the variational principle on the boundary, we simply have to replace Z,
by its estimate p and Z, by ¢. Thus, f is modified for the Neuman boundary conditions.
An efficient algorithm, based on transform methods is now derived for solving the set of
equations in (35) with Neuman boundary conditions.

Expanding Z;; in terms of sinusoidal basis functions one gets:

18



X inm
Zij = Z Ay jCOS——
= N
n=0

Assuming Az = Ay and substituting (36) into (35) we get

T pe

24 nmw 2 mn
Z[(?cos— = 2)an; + anjy1 — (2 + Aij)an; + @nj-1]cos— = f;;

N N

n=0
Expanding f;; in terms of sinusoidal basis functions
= 2 nmi
Ji = Z Fhjcos—
n=0 N

and substituting (38) into (37) and equating coefficients of the cosine terms

nmw

(2(.‘03 N 2)&,1_-'.' + Qnjt1 — (2 + .i,'j )am' + apj-1 = Fyj

(36)

(37)

(38)

(39)

The tri-diagonal system of equations in (39) can now be solved using LU decomposition.

Since sparse measurements are available the system is no longer singular. The algorithm

can now be stated as follows:

1. calculate f,-j using p and ¢ and the measurements Z™ modifying f for the Neuman

boundary conditions

2. get Fy; from f;; using discrete cosine transformation

3. solve the system of tri-diagonal equations for the a,;s, taking the additional term in

the diagonal element into account when a measurement of Z is available

4. back transform ¢ — Z

The algorithm solves the problem directly in O(NZ%logN) operations.
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5 Summary

Several new algorithms have been presented to recover 3-D surface depth and orientation
from image shading information. The SFS algorithm proposed in the paper works in the
single image domain. It has several advantages over earlier SFS algorithms. This algorithm
can be easily combined with conventional stereo method to utilize stereo images. Starting
with the idea of combining multiple needle maps we derived another method to combine
stereo vision and SFS techniques. These algorithms have all the advantages of stereo and
SFS methods to recover a surface from image intensities. The accuracy of these algorithms

can be improved by using sparse depth measurements.
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Abstract

New algorithms are developed to recover the depth and orien-
tation maps of a surface from its image intensities. They com-
bine the advantages of stereo vision and shape-from-shading
(SFS) methods. These algorithms generate dense surface depth
and orientation maps accurately and unambiguously. Previ-
ous SFS algorithms can not be directly extended to combine
stereo images because the recovery of surface depth and that
of orientation are separated in these formulations. A new SF'S
algorithm is proposed to couple the generation of the depth
and orientation maps. The new formulation also ensures that
the reconstructed surface depth and its orientation are consis-
tent. The SFS algorithm for a single image is next extended to
utilize stereo images. The correspondence over stereo images is
established simultaneously with the generation of surface depth
and orientation. An alternative approach is also suggested for
combining stereo and SFS techniques. This approach can be
used to combine needle maps which are directly available from
other sources such as photometric stereo. Finally, we discuss
the use of embedding techniques to combine sparse depth mea-
surements.

'1 Introduction

One of the goals of a computer-vision system is to recover the
three dimensional shape of a surface from its image intensities.
There exist several approaches to this problem. Conventional
stereo methods (1] are characterized by matching certain fea-
ture points in stereo images. As stereo vision can determine
only a sparse set of surface depths, it is often followed by a
surface interpolation process [2]. The surface orientation can
not be recovered directly from matching. The most difficult
problem with this method is that of identifying corresponding
feature points. Algorithms for recovery of shape from shading
have been investigated extensively (3, 4, 5, 6]. Shape-from-
shading (SFS) techniques explore the information contained in
image intensities by reconstructing a surface that is consistent
with observed image intensities. The SFS techniques are for-
mulated for a single image so correspondence is not necessary.
The results of SFS algorithms for a single image may not be
accurate or robust. Sometimes it is ambiguous to recover 2
surface from a single image [7]. Thus stereo images are often
needed to recover a surface accurately and unambiguously.

*Partially supported by the NSF Grant MIP-84-51010 and matching
funds from IBM and ATLT Information Systems.

In this paper new algorithms are proposed to fill the gap be-
tween conventional stereo and SFS techniques. They combine
the advantages of stereo vision and SFS methods. SFS tech-
niques are used to recover the depth and orientation maps of
a surface from its stereo images which are taken from different
viewing directions with fixed light source. Uniform matching
is performed over these stereo images in order to obtain dense

“depth and orientation maps. Both the stereo correspondence
and surface depth are established simultaneously under two

constraints. The first is the geometrical constraint of stereo vi-
sion. The second constraint is provided by the irradiance equa-
tions so that the reconstructed surface is everywhere consistent
with observed image intensities. These algorithms ensure full
use of shading information and recover both surface depth and
orientation. Because stereo images are used in recovering shape

from image intensities the solution is accurate, and can not be
‘ambiguous as it can be when a single image is used.

Stereo vision and irradiance equations in SE'S problem pro-

vide constraints on surface depth and orientation respectively.

In order to combine these two methods we need a natural way of
incorporating surface depth into orientation constraints. Exist-
ing SFS algorithms can not be used for this purpose because all .
these algorithms recover the orientation map in a separate step,
prior to recovering the surface depth. Also some of them do
not even enforce the integrability constraint so that the recon-
structed surface orientation and depth may not be consistent -
[6]. Consistent surface reconstruction requires that the recon-
structed needle map always correspond to the orientation map
of the reconsiructed surface depth. In this work we first suggest
a new SFS algorithm which provides a novel solution to these
two difficulties. It allows a natural incorporation of geometric
stereo into SFS methods. The SFS problem is formulated here
as that of solving a coupled set of first-order partial differential
equations. The first one of these equations is the irradiance
equation. The other two enforce the consistency between the
reconstructed surface depth and orientation. Because surface
depth and orientation are reconstructed simultaneously, stereo
images can be easily incorporated.

An alternative algorithm is also suggested to generate sur-
face depth and orientation maps from stereo images by com-
bining stereo method and SFS techniques. In this approach,
different needle maps are generated for each image, using the
SFS technique proposed in (7]. The depth map can be gener-

" ated from these needle maps by establishing the correspondence
' ?3 that the disparity over these needle maps is minimized. The
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integrability constraint is also enforced. This approach is re-
lated to Tkeuchi’s work of combining needle maps [8]. However
Tkeuchi’s formulation of combining needle maps has some er-
rors. First of all, the orientation of a surface is different with
respect to different coordinate systems. The needle maps re-
constructed from different images can not be compared directly.
Instead they should be mapped into the same coordinate sys-
tem. Secondly the derivatives of the needle maps used in the
formulation should be obtained before the transformation of
the needle maps. Although the transformation of needle maps
between different coordinates is independent of the position of
surface points, the transformation of the derivatives of needle
maps is 2 non-linear function of the surface heights. We will
show how to combine needle maps correctly.

Photometric stereo seems to be the only practical solu-
tion for obtaining an orientation map for surface with varying
albedo. The result may not be accurate because of modeling
problems associated with the imaging process. One can im-
prove in accuracy by using sparse depth measurements from
geometric stereo . In this paper we show how to combine pho-
tometric stereo and geometric stereo information to improve
the reconstruction of the surface height.

The organization of the paper is as follows:

Section 2 introduces a new method to recover the depth and
orientation maps of a surface simultaneously and consistently.
In Section 3 we show how the needle maps of a surface viewed
from different directions are related, and extend the results in;
Section 2 and the algorithm presented in (7] to combine stereo.
images. The use of sparse information to recover surface is
discussed in Section 4, followed by 2 summary in Section 5. |

2 Recovery of Depth and Needle Maps
From A Single Image

The SFS problem is to extract the shape information from im-
age intensities. Formally, given 2 2-D intensity distribution
E(z,y), and a reflectance map R(p,g) with constant albedo, it
may be regarded as a problem of recovering a surface, Z(z,9)
, satisfying the image irradiance equation :

E(z,y) = R(p,9) (1)

where
p=2- (2)
=12 (3)

and (—p(z,y), —q(z,v),1) is the orientation of the surface at
(=9, Z(z, ¥))-

Almost all SFS algorithms recover the needle map (p.q) in
a separate step, prior to recovering the depth map. The needle
map (p, g) is obtained by minimizing the brightness error under
the constraint that the surface is smooth. Then the depth
Z is recovered from p and ¢ [3]. As p and g are treated as
independent variables, the recovered surface needle map (p,q)
may not correspond to the orientation of the underlying surface.
The integrability constraint (6, 9, 7| is needed to ensure the
solution to the SFS problem is the correct one. This constraint
is often expressed in terms of the gradient space as

Py =14z (4)

Horn and Brooks [6] used the constraint as a penalty term in
their formulation to enforce the integrability constraint. This
formulation is not satisfying for our problem. Mathematically
(2) and (3) do not always imply (4). Most of all, the depth
information contained in stereo images is not coupled into the
recovery of a needle map. This makes it difficult to generalize
the algorithm to combine stereo images.

[nstead of using the integrability constraint py = 7- 35 a
penalty term, we formulate the SFS problem in a different way
so that surface depth and needle maps are coupled and the re-
covered needle map is always consistent with the reconstructed
surface depth.

The above equations (1), (2) and(3) can be considered as a
coupled set of first-order differential equations of independent
unknown functions p(z,y), ¢(z,y) and Z(z,y). Equation (1)
is the irradiance equation which enforces the recovered surface
to correspond to the given image intensities. Equations (2)
and (3) are called consistency constraints. Consistency con-
straints ensure that the reconstructed needle map (p, q) always
corresponds to the orientation map of the reconstructed sur-
face depth. Thus the SFS problem is now reduced to solving
equations (1), (2) and (3) for orentation p and g, and depth
Z.

Instead of directly solving these nonlinear equations, we
reformulate the problem as one of finding p, g and Z such that

equations (1), (2) and (3) are satisfied under some criterion.

Specifically p, ¢ and Z should be chosen to minimize the error
functional:

[ [(EG») ~ R0 + (2= 2 + (2~ Mz ()

Solving for Z, p and ¢ is still an ill-posed problem in the
sense of Hadamard [10] as there is no unique solution. To over-
come this difficulty we regularize it by assuming that the sur-
face is smooth. According to Ikeuchi and Horn (5], the measure
of “lack of smoothness” is given by

f / (9% + P} + @2 + g3 )dzdy (6)

Adding this term to the error functional term, one has the
following functional to be minimized with respect to p, ¢ and

Z:
[ [(Een-Reaf + (Z-pF+@E=0
+ MpE+7 + @ +q)ldzdy

Here A is a weighting factor for the smoothness term. :
Using Euler formula (11] one obtains the following equa-
tions:

Vp=-}(Z: - p) + (E - R(p,0))Ry]
Vg = -1{(Z, - q) + (E - R(p,9)) Ry} (8)
ViZ=p-+ 9y

where R, and R, are the partial derivatives of R(p,q) with
respect to p and ¢. And



is the Laplacian operator.

Thus we get a coupled set of non-linear Poisson equations.
_I.n order to solve these equations, boundary conditions for p, ¢
and Z are needed. The boundary conditions can be obtained
in two steps. First the surface depth along the zero crossing
boundaries can be found by Marr-Poggio-Grimson (2] stereo
algorithm. Then derivatives of the depth and image intensities
can be used to find the surface orientation along the boundaries
(8, 12).

Because of the non-linear nature of the equations one can
not get a closed-form solution. They are solved by using Jacobi
Picard iterations :

gzp::: = —% e e R(P:r'?:))R?(p::Q:)}
o =—gl(2)~q") 4+ (B~ R(p™,q™)Ry(p", 0")]
ViZrtl=pi+qp
(9)
The iterations can be continued until there is little change in
p, ¢ and Z between two consecutive iterations.

At each step of the iterations three Poisson equations have
to be solved. We used direct methods 7] to solve these Poisson
equations. Experiments with synthetic images show that the
direct methods are fast and accurate and that they work on
both rectangular and irregular regions. Due to space limita-
tions, we have not included these results.

In this formulation of the SFS problem the integrability con-
straint is enforced implicitly. The reconstructed surface depth
and orientation are always consistent. As the depth Z and the
orientation p and g are coupled at every step, it is easy and
natural to generalize this algorithm to combine stereo images
as described in the following section.

3 Combining Stereo Images

Recovering a surface from a single image is sometimes ambigu-
ous [T]. And the solution of SFS problem is not accurate and
robust. Stereo methods use multiple images to overcome these
difficulties. They do not make full use of the shading informa-
tion. Instead they establish correspondence at certain feature
points and use geometric relation over stereo images to recover

the surface depth. Thus only a sparse set of surface depths can
be recovered. In the following we show how SF'S techniques can
be combined with stereo methods to overcome the above diffi-
culties. The coupling between surface depth and orientation in
the SFS formulation given in Section 2 enables us to combine
the geometric constraint on surface depth and the irradiance
constraint on orientation. Thus global correspondence can be
established over stereo images. Furthermore the surface orien-
tation and depth are recovered simultaneously with the global
correspondence.

In the following we first show how the needle maps from
stereo images are related. Then a method is presented to com-
bine multiple needle maps to obtain an accurate surface depth.
It is found that this technique can be applied to recover surface
orientation and depth directly from stereo images by combin-
ing the SFS algorithm presented in [7]. As this formulation is
highly non-linear we present a simple and elegant algorithm for
combining stereo images by extending the results in Section 2.

For simplicity all the formulas are derived for the case of two
images. They can be easily extended to the case when more
than two images are available.

3.1 Camera Set-up and Needle Map Transforma-
tion

We use the same camera set-up as in Ikeuchi [13], see Figure
1. The left image plane is perpendicular to the spatial z axis,
while the right image plane is inclined with respect to z-axis so
that the two optical axes intersect with each other at the origin
of the global coordinate system, which is fixed on the surface.
Let (v!,v*,w') and (u",v",w") be the left and right camera co-
ordinate systems and (z,y,z) be the global coordinate system.
Assume the object is far away from the cameras so that ortho-
graphic projection can be used. Using the parameters in Figure
1, one has the following coordinate transformations:

P il

u E 0 0 z 0
di=]o1of|{y(+]| O (10)
| w! 001]|= —d!
u ] cosf 0 —sind z 0
ot | = 0 1 0 y|+] 0 (11)
w” sinf 0 cosf z —d”
u” cosd 0 —sind uf —dlsind
v {=] 0 1 0 o |+ 0
w” sind 0 cosd w! —d" + d'cosb

(12)
By defining a=cosd, b=sinf, c=—d' sind, d=—d" + d' cosd,
one obtains

u” a 0 =b z 0
o [=]l01 0 y|+]| o (13)
w” b 0 a z —dr

and
z a 0 b u” bd™
¥ = 0 10 v" + 0 (14)
z -b 0 a w’ ad”

Suppose the underlying surface can be expressed in the
global coordinate system as:

Z = Z(z,y)
and the gradient map is
p = Zz(z,9)
g = Zy(z,y)

Then the orientation of the surface at (z,y,2Z) is (=, —¢,1). .

As the left camera coordinate system is identical to the
global coordinate system except the translation along the z-
axis, it is easy to see that the gradient in the left camera coor-
dinate system is

P=p (15)
q: =q (16)

In the right coordinate system, the orientation at the same
point corresponds to different pand g because of the relative ro-
tation of the coordinate systems. The relation between (p",q")



and (p,q) can be found using the coordinate transformation.
Vector (—p", —q", 1) in the right coordinate system is trans-
formed into a vector in the global coordinate system by

-p" a 0 b - —ap” + b
—-q"|=|0 10 -q" | = -q" (17)
2" -6 0 a 1 bp" +a

Comparing with the standard orientation form (—p, —q, 1), one
can find that in-the global coordinate system the needle map
from the right image can be expressed as

_,_p_'._ap-b

P _."‘_G‘f'bp (]‘8)
T _ 1

? Tz a+bp (1)

Note the surface point (z,y,Z(z,y)) is imaged in the right
image plane at

u" =az — b7
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As the left camera coordinate system is parallel to the global

coordinate system, we prefer to use the global coordinate sys-

tem instead of the left camera coordinate system in the follow-

ing subsections.

3.2 Combining Needle Maps

Suppose multiple needle maps for stereo images are available
from photometric stereo, how can they be combined into a
consistent and accurate depth map? We start from the cost
function suggested by Ikeuchi [8, 13]:

e=]fa+A(d,+dq)dzdy - (21}|

where
s=(Z:— 9V +(Zy- ')
' dy = (7 (az + b2 +¢,9) - #(z,9))*
dy = (§"(az + b2 + ¢,3) — ¢'(z,9))’

Values of # and §" can be obtainted from the needle map for
the right image by using the transformations (18) and (19).
Thus

b = {Hz9)-Flaz-sZ))
= G- EEIZEE @)
& = (d(z9)-Floz~52,9))

qr[ax = bz? y]
b(az 57,5+

(¢'(z,9) - )? (23)
Tkeuchi 8, 13] used p” and " instead of 7 and §" in (22) and
(23). This is not correct, because the needle maps of a surface
in different coordinate systems are generally different.

Note that d, and d, are functions of Z(z,y) , s in (21)
corresponds to the integrability constraint , dp and d; couple
the information from the two needle maps so that they match
each other . The Euler term corresponding to d, and d, is :

25 apf-b}abtbp-'+a)§:’—f—bztap’-b1-?‘i:—i .
P v+ (b7 +a)? '
PN )
bp" +a (bp" + a)?

The Euler equation corresponding to (21) is

do"

P S e oy _ap’—b.( 2b+63)f7;’ il
ViZ = (p:+Qy}-)"[{P’ bp"+a} (bp _'_a)g o
7 (bp'+a},% q’izr]

bo"d-a (bp” + a)?

A{d -

This is an asymmetric formulation based on the left needle
map with a correction term from the right needle map. The
quantities p” , ¢” , p}- and g7 are functions of Z(z, y) and make
up the nonlinear part of the equation. A similar equation can
be found to reconstruct the surface depth from the right needle
map with a correction term from the left needle map.

If the stereo image intensities are directly available we can
couple the needle maps and depth maps at every step. In this
case one needle map and one depth map are generated in each
coordinate system. But these needle and depth maps are cou-
pled. We follow the ideas presented in [7] , and solve for the
right and left depth maps using the algorithm given below:

1. calculate gy, , ¢hyy and Ph,, , G4y using Lee’s [14]
algorithm independently for the left and right camera

2. reconstruct the depth in the global coordinate system by
solving

: ap™=41 ( 2h45%) &
ViZh =(p+a)+ M - sf”—}-“n;:?-?'-

by a) 200 —p2qr 82

A - r"—}'(—W—E]

3. reconstruct the depth in the right camera coordinate sys-
tem by solving

* r r un‘— (3354'53)'!.?
Y2z, =+ @)+ M0 - BRI+

2 18et
r_ gt b +a)3‘1-4, b4
Mo ~gt—pry )

where

b= —sind,p = paw” - 82" + &,y) , &= d sind

4. apply the central difference approximation to determine
#1 20d Gy from Z} 41, and replace Phyy 20d ghs1 bY-
ﬁ’n+‘l and !fn-a-l.-

5. apply the central difference approximation to determiae
#.q and ¢, from Z7,, and replace p},, and g7, by
Prgr 2nd g

6. return to stage 1

The suggested algorithm is symmetric, enforces integrabil-
ity , and couples the information from the two cameras in an
early stage . All the steps in the algorithms wiich involve
solving a Poisson equation are implemented using the direct




methods [7] .

3.3 A New Method for Coupling Stereo Images

In this section we look at the coupling problem differently. In
the previous algorithm two needle maps and two depth maps
were generated. And the formulation is highly non-linear. One
can use the global coordinate system as a reference coordinate
system to recover the surface orientation and depth from stereo
image intensities.

Suppose two images are taken from the left and right cam-
eras respectively, resulting in two irradiance equations. The
irradiance equation for the left image is:

E'(d,v) = B(#',0) (24)
By using (10), (15) and (16) one obtains:
El(z,y) = R{(p9) (25)
And the irradiance equation for the right image is:
ET(uv",0") = R'(7",q") (26)

From (18), (19) and (20) the irradiance equation for the right
image can be written as:

ap+b ¢ (27)

E"(a:-—bZ,y)=R'{a_bp,ﬂ_bp 2

Note that R, R are the same surface reflectance map, ex-
cept that the viewing direction is different. In the Lambertian
case the reflectance map is independent of the viewing direction
50

Ep‘i"b q _ ol »
2 Lo)=Reo=ed (9

Thus (27) can be reduced to

R(

E"(az - b2Z,y) = R(p,9) (29)

For simplicity, in the rest of this section we only consider the
Lambertian case. But the formulation can be readily applied
to non-Lambertian cases.

Following the algorithm described in Section 2, one formu-
lates the following cost functional:

[ [(8 @) - Rip ) + ol B (o = 52.5) - R0l +
(Z2 = ) + (2, - 0 + A(#2 + 7y + G2 + g5)ld=dy

Note that another weighting factor a is introduced which can
control the use of information contained in the other images.
For example, when the correspondence is not accurately estab-
lished we prefer to keep a small.

Using the variational principle one obtains the following
Euler equations:

Vi = —H(Z - B+ (EE) - Rea)R +

o(E"(az = bZ,3) - R(p0)Rs] (30)
Vi = 32, - 0)+ (B0 - Rea)E+
a( E"(az = bZ,y) = R(p,q)) Ry (31)

ViZ = obEl(az—=bZ.y)(E(az -bZ,y) - R(p,q)) +
Pz + 4z (32)

These equations are also solved using J acobi Picard iterations.
If there is no correspondence between two images one simply
leave out the term (E™ — R).

The correspondence between the two images is established
during the generation of the depth map and at the same time
it is used to compute the depth map. A good initial estimate
is required for the iterative solution. It can be computed by
applying the algorithm described in section 2 to the left image
to generate the initial depth and needle maps. Thus one can
increase & in (30),(31) and (32) from 0 to 1 as the correspon-
dence is increasingly accurate, to control the coupling of stereo
images. If the images are too noisy to compute the derivatives
of the image intensities, the weighting factor & in (32) can be
set to zero. That is, the depth map can be recovered from p
and g without directly coupling the stereo images. But a in
(30) and (31) need not be zero.

4 Combining Photometric and Geomet-
ric Stereo Information

Photometric stereo seems to be the only practical solution for
obtaining the orientation map fora surface with varying albedo.
Still error occurs in orientation map due to modeling problems
of the imaging process. In order to improve the reconstruction
of the surface from the needle map, additional information is
needed. Sparse measurements obtained from geometrical stereo
can serve this purpose [2]. The sparse measurements are avail-
able in arbitrary locations on the surface. We use the concept
of direct minimization to solve this problem. First the following
functional is introduced:

[ [i@a=9 + (Zy-aF + NZ=2"Fldzdy (39

where Z™ represents the known depth values obtained from
geometric stereo, and

Az y)=c) 6(z =25y —Us)
IES

where S is the set of points where measurements exist.

The function that minimizes (33) is chosen as the solution.
The presence of the delta function in the integral creates prob-
lems in the formulation of the Euler equation. Hence we choose
to use a direct method for minimizing the functional. We dis-
cretize the integral using finite differences:

_ Zigj—Zij

Zz
Az
- Zijer— Zij
Ay

The delta function becomes a Kroneker delta function and one
obtain the following cost function:

PR {:\i.j(z.',j —IZI"‘,-}Z} + T [{z'“.'_{;z"ﬂ = P-‘,;‘+;-‘4-\_.;_]2

Azay + T (Bt _ suttian] Azay  (34)




where

71 0 otherwise

: { ¢ if 27 exists

Taking the derivative of the cost function (34) with respect to
Zij , i, = L---n one obtains a set of linear equations of the
form:

a?(Zie1,; =225+ Ziv1,)+ Zij-1—(2 +adij)Zij+Zijer = i
(33)
where

5. _ [P+l = DPi-1j , Qig+l = Fig-1 2 S
fii= ( 24z 1 248y )(Ay} - a)\..JZ;:-

where o> = (Ay/Az)? . We now show that Neuman bound-
ary counditions (7] are available for this problem. The normal
derivative on the boundary is a linear combination of the Z-
and Z,. In the case of rectangular boundary contours (like
in images), {-‘;1 = Z. along the contours z = constant and
%—Z,; = Z, along the contours y = constant. Brooks and Horn
(6] show that using the variational principle on the boundary,
we simply have to replace Z: by its estimate p and Z, by g.
Thus, f is modified for the Neuman boundary conditions. The
solution to (35) may be obtained using embedding techniques
discussed in [7].

5 Summary

Several new algorithms have been presented to recover 3-D sur-
face depth and orientation from image shading information.
The SFS algorithm proposed in the paper works in the sin-
gle image domain. It has several advantages over earlier SFS
algorithms. This algorithm can be easily combined with con-
ventional stereo method to utilize stereo images. Starting with
the idea of combining multiple needle maps we derived another
method to combine stereo vision and SFS techniques. These
algollrithms have all the advantages of stereo and SFS methods
to recover a surface from image intensities. The accuracy of
these algorithms can be improved by using sparse depth mea-
surements.
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