USC SIPI Report 115

The SCOOP Pyramid:
An Object-Oriented Prototype
of a Pyramid Architecture for Computer Vision

by
Herbert Scott Barad

December 1987

Signal and Image Processing Institute
University of Southern California, MC-0272
Los Angeles, California 90089-0272

Research Supported in Part by

Air Force office of Scientific Research (AFSC)
Electronics and Materials Science Division
under Grant No. AFOSR-84-0181

The United States Government is authorized to reproduce and distribute reprints for
Governmental purpose notwithstanding any copyright notation hereon.

THE SCOOP PYRAMID:
AN OBJECT-ORIENTED PROTOTYPE OF A
PYRAMID ARCHITECTURE FOR COMPUTER VISION

by

Herbert Scott Barad

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOHY
(Electrical Engineering)

December 1987

Copyright 1987 Herbert S. Barad

UNCLASSIFIED

| N PAG
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

T S S e S e R T T e s gy oy ===
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3% DlS'?RIBUTIONIAVAiLABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE UNLIMITED
BT T T T TP TV I T T i N U e v e e y~r R e e
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

USC-SIPI Report # 115

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University of Southern Calif, 4 appiicable) Air Force Office of Scientific Research

Signal and Image Processing Instj

= e e S “I'

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

University Park/MC-0272 AFOSR/NE

Los Angeles, CA 90089 Bolling AFB
Washington, DC 20332

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
AFOSR AFOSR-84-0181

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS —
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. IACCESSION NO.

11. TITLE (Include Security Classification)
The SCOOP Pyramid: An Object-Oriented Prototype of a Pyramid Architecture for Computer-Vision

12. PERSONAL AUTHOR(S)
Herbert Scott Barad

13a. TYPE OF REPORT 13b. TIME COVERED 14, DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Technical Report FROM _1986 101987 87/08/08 173
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS _(Conﬁnun on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Pyramid architecture, SCOOP pyramid, computer vision,

LANDSAT aerial data

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes a working software prototype of a pyramid architecture, known as the
SCOOP pyramid, to investigate its use and effectiveness in computer vision. The pyramld archi -
tecture’is shown by simulation to be an effective architecture for a wide range of computer
vision tasks from low level pixel-oriented operations to segmentation to high level symbolic
operations. Results also show that processing overhead for a task can take more time than the
task itself, This processing overhead includes the loading of convolution kernels and morpho-
logical look~up tables. An object-oriented methodology for modeling the individual processors
and ports is used. The method of modeling and constructing the prototype is efficient and
flexible, This encourages the fine-tuning of the architecture design. The prototype is used
as as a testbed for simulations of computer vision tasks and the results of these simulations
are presented. The simulations include isolated tasks: convolution, edge detection, and seg-
mentation, Also, a complete scenario to find bridges in LANDSAT aerial data is studied. This
scenario is controlled by a simple knowledge base. The SCOOP architecture provides an environ-

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uncLassiFieounuMiTED [SAME As RPT. [J oTic USERS
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

ment to model architectures of arbitrary topology, complexity, and compo-
sition.

Dedication

The use of technology without careful thought as to its ultimate purpose
and effect upon all is irresponsible and must be avoided. It is the
responsibility of all engineers, scientists, and others who work in

technological fields to insure that their work be productive and peaceful.

This dissertation is dedicated to those individuals who work for a peaceful

and just world.

They shall beat their swords into ploughshares,
and their spears into pruning hooKs;
nation shall not lift up sword against nation,

neither shall they learn war any more.

Isaigh 2:4

i1

Acknowledgments

I would like to start by thanking my thesis advisor, Alexander Sawchuk,
for his guidance during the years of preparation, research, and writing. I
would also like to thank my thesis committee, Alexander Sawchuk
(chairman), Cauligli Raghavendra, and Russell Johnson for their help in

the preparation of this thesis.

I would also like to thank many other staff members of the Signal and
Image Processing Institute: Allan Weber, Jerene Brooks, Gloria Bullock,
Linda Varilla, Toy Mayeda and Ray Schmidt, whose help was invaluable.
Also, I would like to thank the Data Systems Lab of TRW, Inc. for their
financial support during much of the work. I would also like to thank the
following for their help during the work: Richard Leahy, Rama Chellappa,
Mark Thomsen, Dan Antzoulatos, Dimitrios Kalivas, Shankar Chatterjee,
Ted Broida, Kung Huang, Keith Jenkins, Keith Price, and Bob Frankot.

I also cannot forget to mention the people of ParcPlace Systems: Nanette
Harter, Ted Goldstein, Glenn Krasner, and Ron Carter, for their
tremendous assistance with Smalltalk-80. I must also thank Evelyn Van
Orden of Xerox Special Information Systems for the use of the HUMBLE
expert system shell.

I would like to thank my sister, Karen Barad, and my cousin, Steven
Sandler, for their advice during much of the final months. Finally, I
would mostly like to thank my parents, Harold and Edith Barad, for their

complete and unwavering support and love.

iii

Table Of Contents

Dedication om0 ot s s i1
ACKNOWICBEINEIIES c.sumussmsnmonss ssuosssssmssessssssmssmss s ssemm s om i pinss SRR snsReEsss iii
BIETS1 0 o= 0L ——— iv
LSt OF T BUTO8 sucusssumsmmssssovussss ronssonsnsns s msss v isss v s s S s aies S s savsains viii
List Gf Tablas. s s s i e s s X
e o1t o S —
Chapter']l INrOCUCTION . s R R s Tons s s 1
Ll Computer ViSion.auusmesssssm s aumsonsstis rssmas g

141 Tow Lewvel Tasks commusensmsmmmmmmimsmmmw s amamiv 4

1.1.2 Tmage ANALYSIS .ummmmemsmvomansnsosmproersseassssgsmnsmmries 4

1.1.3 High Level Taskscccoveiiiiciiicciiiicecnicecceisienns B

(o i e e O ——— 6

1.2.1 Mapping of Algorithms onto Architectures..................... 7

Index TransformMation o ereamii 7

Alvorithm Modifcalion. . uussmsmmimammmmmsesins 8

P ar B OTUTE, coverveassesummmosimmsmioson s o s B s oM TSRV 8

L22 Atchitectite DEESIEN «owwmmmmnnmmssmsosssasaavmesons 8

1.2.3 Data StrucCtureS.....oiiiceciiiiiiinienicices i 9

1.2.4 Parallel Architectures.......cenvnniciirniniceiccninceinn 10

SIBLY st B R S R 10

< 11

MIS Y. suonsssmvmsmmomumssusmmm i s S RS 11

IVTEINEID) vsssuvcumsacumnasunsusns sonsassmsssssinssssms s s seaninsbossss sonssisnntsns 11

Systolic Arrays and Wavefront Processors.............c....... 11

L B s smusmseassomesssmmn s 12

1.2.5 Hybrid and Hierarchical Systems..........cocooveeevivieciiiniennnas 12

2-D MCN with Broadcastingccococeuvvmuvivennniirninininnnns 12

Hierarchical Mesh Architechare s 15

Digital Optical Architectures..ewwmmrmammmmmpsmsssames 13

Pyraiftic APChITECEHTE «cummrmmmmn sommsmmcsimemiesrnsnssess 14

1.2.6 Data Routing via Interconnection Networks................ 14
Pt b O TN S s ssammensnimamon o N A S ST S ve s it 1D

Broad eastinig s o e RS 15

Fixed ConNecHONS owwmmsmmimmsnmmseasivessosvssmmsees 15

Optical Interconnection Networks ..., 15

1.2.7 Performance Evaluation..........cnninvnnninniiinnes 17

L3
1.4

Chapter 2
2.1
2.2
2.3
2.4

Chapter 3
31

8.2

33

3.4

8.5

U LA OT assvessimns s s iin e o iy 17

Benchmarks ..o st isrmso s 18
128 Considerations s umsmmsssisimsisssmsmuassssimmas 19
MOotivalon wuumimwanirmamasssimnasmmiisssms s 21
Research Contributions.......cooeerieicnieeininiieicreesesieneses 23
L R 25
The SEIUCEUTE..c.covvireiieiciicccct st eere e ane 25
Pyramid Data Structure......coceiviiniiiniiccnins 28
Processing anil. Recopniion CONBE . coumsmessismmbiimiatsimness 30
Hierarchical Processing and Multiresolution
P OICBSBATIE i auamevsssantonsosnaboum ansass o 5V n ¥ RN A TSSO BAE NE s 32
The FrofolyPe sanwimsasmmsmsmmmmmsimms s s s 36
Building a Profotype oo n e sy i 36
3.1.1 Theoretical Analysis Method.....wnenummmmsnsmspssss 37
3.1.2 Software Simulation......c.cccoevrevnrrenennenrnenrereereerenn. 38
3.1.3 Software Prototypeciiiiciiciesiecneceisscsesesenenene 38
3.14 Hardware Prototypecooeveviiivvereiinicicciccceccinnee, 39
3.1.5 The Actual Architecture........ccomiivnccincencencecnnn. 39
Obiject Orierited ProgratrtmMing . iusssmississiimissismrasnsaes 40
3.2.1 What is Object Oriented Programming?...........cccoeeeuennes 40
3.2.2. Message Passing ...cawumssmsspiverm s 43
3.23 Overriding Inhetfited Methods...qnussmvesssmnmnsss 44
3.24 Advantages of Object Oriented Programming............... 45
Protocols for Multiple Processes and Simulations.................... 46
381 Class PHOTESE it sasssmmsssasmsmsssssmanmmpprssmems s sesssnm 47
832 Cloms SRmETOT st aaemaiis ssshisssdmmnsss 47
883 Class Delay..aummemmsmmmasmmammsamasiss i 47
3.34 Class SharedQUEUE........cocvieeeeiurieiiiiiccciie e ecnae e 47
88,5 ClEsS BITHEHBI. .ommmusamnsmssomnamasssamssynsmm 48
adfe LHHeh SIFIBHGREIDIBEE. ..o s s 49
3.3.7 Class EventMOnItOrcoeeierinnnnreeceiineeeee i 49
S5CO0OP Class Prototols i seamuwsiismmamsssmsmistssmsnsisessansnss 49
34.1 Class UnidirectionalPort. - smmmmnommmnsossmsi 52
342 Clags PyranmddByentMonitor. . iwssssmssasmssmiss 53
343 Class PTOCESEONS usmmmmsmssinsnsevisisimsesssvsoronasmissivsissssigisio 53
3.4.4 Class LowLevelProCessorccoeiiiiiinenesiciiinenanns 56
3.4.5 Class TOpLevelProcessor.....ccoiviiniiiriniiiniieeecieeeineinas 59
L B 4 R 62
347 Class ConvSimulation csswesimsusessamasassissssis 64
348 Clags NBSHRAULAHON «.comscmmmmm s 65
3.4.9 Class OPRSIMuUlation ..., 66
EIE WESEINOIIR. 1 4 500ies i s i a 4555ttt s A S A S A TR AR AT RE 66

Chapter 4
4.1

4.2

4.3

44

Chapter 5
bl

5.2

5.3

5.4

2.5

5.6
57

The AIGOTItRMS oottt e 68
Low Level Image Processing..........cccoveveeeecenineeririereneesseneseeseesnsens 68
41,1 COnVOIUHOMmmmsmmmiminimismmissmmnmsssmrmmmmmesssrvsoss 69
4.1.2 Morphological Operations..........c.cccoververeerreernreerererererennn. 74
4.1.3 Nevatia-Babu edge detector.u.cumssimmmmniminiimsmms 76
Iifiage Sepmentation ... 77
421 Colot SEEMENTATON «.wwssiswmssmasmmmssssmsm 79
4.2.2 Ohlander-Price-Reddy Segmentationc....ceveuerennnee. 80
423 Phoenix Segmentation..........cceeerenrrrenressessseennns 82
424 Histogram of Arbitrary Shaped Regions.........cceveerrunns 83
High Level Symbolic Computation...esssmssnsasmamssimsss: 87
4.3.1 Rule Chaining within a Production System.................. 87
4.3.2 Parallelism During Chaining Process.........c.cccoerererrerneenes 89
Sequence Of tasKS ..ot s 92
RESUIES. 1ottt e 94
The ProtOfyPe .ot inisiseressssesesssesssssssssssssesssssessesesnsans 94
5.1.1 Prototype Construction.........ccevevenicicnrenesesessnenninins 95
5.1.2 Monitoring of Prototype During Execution..........c........ 96
513 Limitations of SCOOP s wsmmmsesmssssmmmssissmis 102
5.14 Algorithm Setup Considerations. .. 104
OV MU SO cccovsumimarsvonovervusnsymsvmymms s sssmssimesssss s sss s i 105
521 Algorithin PerfOTMance. ... uaomssmimmssmesmisisivssins 105
522 Setup Overheadoiciiviinvniccninceniesensnnns 106
5.:2.3 RESULLS...comissmsersssmsemmrsmmessissmensssssssssssssssssssssnssassmsssronssrsenss 107
Nevatia-Babu Edge Algorithm........ccevvevvenenenecnnennnnns 109
531 Algarithm Performants. vusimassusisimmesmessemmsmmsssss 109
532 Betup Overhead wummumsamussmusassspassmsanimar 110
533 ResUliSawmmsenranssorspsss i 110
Segmentation ... 111
5.4.1 Simultaneous Histogram Computation of

Arbitrary Shaped Regions..........ccccoevrnirncercenrncrcncrnnnn, 112
5.4.2 Ohlander-Price-Reddy Segmentation (Phoenix

5 L 1 e 114
e T — 118
544 Bpace Tradeos. v 119
The Expert System Shell ..., 120
A Scenario: Finding Bridges in Aerial Scenes.........cccccceuvuneee. 121
Seenario: RESUIES oo s sl st 124
B7.0 MBS Brenarions s e s saesise 125
5722 MSS Timing Data .. ouesmsssmnsissmssssmsvmssimss 129
5.7.3 TM SCENATIO.....coiemitiiiiiiiiiesic ittt sisss e resaone 130
574 TM Timing Data.......ccccveimecinivicinincinieicsesnenes 135
575 Processing Overhoatluuciimssimssssrmmmsmsmamb s 137

5.8

Chapter 6
6.1

6.2

6.3

Bibliography

Comparison to Other Architectures.........ccccoeviciiiccinccinns 138

| B TbicT 1 o - MO e R oy 139
Methodology of Constructing Prototypes..........ccocovvveiniinininn. 139
6.1.1 Aid in Hardware Implementationcccevueueuinsisunen. 141
612 Modelling Other TopPOlOgies....ccuuumesmsusmmsammssesssessos 142
6.1.3 Optical Architectures........ccccvviivvinvniinciciccisinine, 146
6.1.4 Aid in Programming Architectures.........cccouvurrerviennes 149
Comparison of Pyramid to Other Architectures for

b T P Ty A S SR 150
Conclusion and Puture Work esawisunvismmsemsmissms 151
... 158

vii

List Of Figures

1.1. Association of Classes of Algorithms to Data Abstraction........ccccceueuueee. 2
1.2. :Optical Interconnection NetWork uuswwussmsumspmssnsssmanpammnens 16
1.3. Separate architectures for separate tasks. . smsmmmienramammmsmmmisse 22
2.1, Pyraiiig ATERIEEHTRE . comumermmmmimcomuomonmmmmessssocsssmonsossmmssvoos s 26
2.2. A Pyramid Data SrUCEUTe.......covmuiimiriiiiccisniscss s sssieaa s 29
2.3, Prooessing COotie MOBRL wournariiitissmmnmmimmsavmntssinstsstrsemaiss st irassisissssssios 31
3.1. Class structure of GeometticPIgUIes. . ummsimmsmmnsissmstisiniio 42
3.2. Abstract representation of objects passing messages.........cecveeurererererenennns Zd
3.8: Class hierarchy of ProCessDIS sty 50
3.4, Class hierarchy of simulabions cuceass s 51
4.1, Roberts gradient Mernels .uusmsannmssms s 70
4.2. Directitnal edge Reelsi . ummumommmmsomusmmsmissomvammssoms e 71
4.3. Knowledge of pixel's 3x3 neighborhood is acquired.......cccocceuereuirnnnneene, 72
4.4. Knowledge of pixel's 5x5 neighborhood is acquired........ccccoeveeveiiinnnnnnen. 74
4.5, Ordering of 3x3 Morphological Coefficients...cumsmumissmmmsmamnmss 75
4.6. Convolution kernels for Nevatia-Babu edge detector.......coouvevuiveuennnee. 77
4.7. Accumulating bin counts in the bottom level processors.........ccceeuruencnes 85
R TR T s o O ——————— 89
5.1. Object table usage in 7 level SCOOP pyramid.......cccocvrnmenseniennucnniinincncnes 98
5.2. Memory usage for a 7 level SCOOP pyramidocovvvsmirsinenniniisninenincinnne 99
5.3. Memory usage for 5 level SCOOP pyramid.ccccoceunsusensisnnearsvossssesssrnnes 102
5.4. Memory usage for 7 level SCOOP pyramid.coueevevenminnsenisesesessssnseneans 102
5.5. Gray level image before convolUtion.civimsmninsssmssnssmismmsmes 108
5.6. Image after convolution with smoothing kernel.c.cccooovvvinicinicac, 108
5.7. Image after convolution with edge enhancement kernel..........c.c.c....... 108
5.8. SMOOthing Kernel. ... 109
5.9. Edge enhancement Kernel....iiimsmuiimmssimmmisisismsssssomnsnsrss 109
5.10. Gray level image before Nevatia-Babu algorithm..........cccoevennnnn. 111
5.11. Processed with Nevatia-Babu algorithm.........cccooviivniininninnnn. 111
5.12. Number of bins each processor is responsible for........ccenininininenn. 115
5.13. Utilization of the pyramid during each iteration of the OPR

AlGOT I cscomsmmmmmssenssarsassarsanrass rsnsassmssansasrssapsssessassonspsoenss pissanoansss 116
5.14. Processing time for each step of OPR iteration—3 data bands, 6

TS I . om0 AU P R OS] 117
5.15. Processing time for each step of OPR iteration—1 data band, 8

51 L7 4 .3 = OO R—— 117
B5, Berd dala Bamil o s 118
5.17. Green data Dand.cceusmnmsmsesmersiseussenesisesssissnonsasssnsnessnsasssssassassssnsssssssses 118
5.18. Bluic data DANCL. wurcorsswsmmssmmmmmssssssiisisisbissiiaommiinsins s momsimmiassosssmnaasang 119
5.19. Region boundaries overlaid with red data band.cooevriiennnace 119
5.20. Region boundaries overlaid with green data band..........cccccouvrninncs. 119

viii

5.21. Region boundaries overlaid with blue data band.cccoovenirvicnis 119
e e T R ol T o O — 125
5.23. MSS data band #5. ..o 125
5.24, MSB dath DAND B0, omommrmemmrsomsisss ivsaiiiiisiiasssssarisssmsvatiisss i asmssssimimaisiiim 125
5.25. Band 5, edge detection; threshpld 32, .suasenssnwanasaisasampmavias 126
5.26. Band 5, edge detection, threshold 32, isolated pixel removal.............. 126
5.27. Barid ‘6, threshold B0, ussssimassrmsimes st s vissssssmsssioissssssneis 127
5.28. Invert pixels:of Previgus. oo 127
5.29. Overlay of processed bands 58t 6. . cuwnunisassissssmsmssssosens 128
5.30. Inverted and magnified image of Fig. 5.29......ccccvviiviiiniiicnncicenns 128
5.31. Isolated pixels remioved from Fig: 5.29 wummmerminssnssisssmssissstnsasissensss 128
5.32. Inverted and magnified image of Fig. 5.31....c.ummmsvumsmssssinsin 128
5:53: M55 utilization (includes overhead)..cemnunsmpsisasmsiming 129
5.34. MSS ufilization (without overbead) suwenvmanssmsvssmysassosi 130
535, TV DB B, ooy mmessssssssvrscueessmessssiasess o s s oy s s oo s ooy seesy 131
e N R R O —— 131
5.37. Band 4, threshold 32.......ccovvevriimriiiniiniccecinesssesecssssesseeensessssssenes 131
5,38, Band 4, threshold 32, INVErse, eroBIONM i nississvissssssasisssisssanisnivis 131
509, ATty 10 skeletonizn HONE: o aumr s s s o S PsE 132
540, After 50 skelelonizafions.mnmesswmasampmwsmussmsmssssimmsss 132
B:41, Band 8, edge Aeteclion wssmsmevmssomsnsssmrisvsssomeasss sisnmsmssssis 133
542, Band 5,-edge detaction, Threshld B2....omcmmmemmssomssms s 133
5.43. After isolated pixel removal. ... 133
5.44. Overlay of Fig. 5.38 and Fig. 5.43....cccooiiiiiiiiiiiccev s 134
5.45. Inverted and magnified image of Fig. 5.44.........ccoovvviienncnnncnenecnes 134
546, Overlay using medial-axis ManSIOIM . ssnsmssissssmsmsmssnmsiossmmmensnsi: 134
5.47. Inverted and magnified image of Fig. 5.46......cccccecvuvvciinciiniccrciencnennns 134
5.48. Overlay after erosion and skeletonization..........cviininenssresmsisssnesnn: 135
5.49. Inverted and magnified image of Fig. 5.48........cccovviiiiinicnccnnn, 135
5.50. TM utilization with overhead........ccooeeiiiiiiiiiinciiiiiiciccrcine, 136
581 'TM, utilization without overhead, omsmummmenmasimmisms 136
5.52. Processing times shown with associated overhead during

L 1 £ e 157
6:1. Processor clags hierarchy for SCOOP pyramid....oermmmesmsssmsssssasis 144
6.2. Processor class hierarchy for SCOOP hypetctbe.cummmsinimommniisvmsiss 145
6.3 Ciptidal JRteTetmhBetitn INEFVDIR c e oo 147

ix

List Of Tables

5.1. Size of pyramid for different levels.........ccocccvceniinnrnnncnneinirenisene, 96
5.2. Performance for CONVOIUEIOMN . ..oiviriiiteeeeeeeeeeeeee e e e e eeessesesssees e sessesseses 105
5:3: Performantce For con VOO s i s sttt eratssesme 107
5.4. Performance for Nevatia-Babu Edge Detectioncceeververereerenrnrennns 110
5.5. Performance for OPR teratioN ..ccvuviimiciriieiereieeeeeriereeseessessessessessessssessssses 114

Abstract

This dissertation describes a working software prototype of a pyramid
architecture, known as the SCOOP pyramid, to investigate its use and
effectiveness in computer vision. The pyramid architecture is shown by
simulation to be an effective architecture for a wide range of computer
vision tasks from low level pixel-oriented operations to segmentation to
high level symbolic operations. Results also show that processing
overhead for a task can take more time than the task itself. This processing
overhead includes the loading of convolution kernels and morphological
look-up tables. An object-oriented methodology for modeling the
individual processors and ports is used. The method of modeling and
constructing the prototype is efficient and flexible. This encourages the
fine-tuning of the architecture design. The prototype is used as a testbed for
simulations of computer vision tasks and the results of these simulations
are presented. The simulations include isolated tasks: convolution, edge
detection, and segmentation. Also, a complete scenario to find bridges in
LANDSAT aerial data is studied. This scenario is controlled by a simple
knowledge base. The SCOOP architecture provides an environment to

model architectures of arbitrary topology, complexity, and composition.

xi

Chapter 1 Introduction

The field of computer vision includes tasks that range in complexity from
simple low level arithmetic computation to higher level symbolic
processing [1]. The low level tasks are usually local (i.e. they deal with
small spatial neighborhoods) and involve simple computations done
repetitively throughout the image. Also, the output is usually a data
structure of similar size. This data structure is often an image of labeled

pixels. These tasks are viewed as “image in, image out” algorithms.

Image analysis is defined as “classifying segments or features of the image
into known classes” [2]. Image analysis tasks are often composed of many
lower level computations. The output is not always a collection of pixels.
Instead, more complex data structures are needed for symbolic
representation of features. The output is a collection of symbolic
descriptions of regions or lines in the image. From this output, object
surfaces, boundaries, and possibly depth are inferred. It is during image
analysis that much of the pixel-based to symbolic transformation takes

place [3].

Higher level symbolic processing then uses the derived symbolic
information. Such algorithms often manipulate data in the form of
semantic networks. These networks are graphs that represent a relational
model of the real world as interpreted from the pixel-based data. The high
level processing also can serve to control the lower levels of processing via
control strategies. These strategies can influence the rules and
computations applied at lower levels. Often, such a system is classified as

goal-oriented, goal-directed, or backwards inductive.

The different levels of vision tasks are associated with the levels of
abstraction of the data that are being processed (see Figure 1.1). Low level

image analysis tasks primarily make use of pixel-based image data. This

i

data is characterized by large regular data structures of values that represent
some local spatial feature (such as intensity). These large data structures
are often simple gray level images, but often complex data sets can also be

used (e.g. Synthetic Aperture Radar).

Image analysis through high level tasks makes use of symbolic data that
represent textural descriptions, regions, boundaries, surfaces, and objects.
The symbolic data can also represent a “real world model” to be associated
with the higher level symbolic descriptions by the vision system. Symbolic
data structures and their algorithms are complex, although there is

generally more pixel-based data than symbolic data.

Low Leve| sessmdBme— |mage Analysis ssessseefBm High Level

Figure 1.1. Association of Classes of Algorithms to Data Abstraction

Many vision systems use sequential general purpose computers [1, 4, 5, 6].
Their performance do not meet the increasing demands on throughput.
For example, the processing of color images with a resolution and frame
rate comparable to broadcast television requires a throughput rate of
approximately 22.5 MBytes/sec. Certain special purpose architectures can

be used effectively to increase performance (discussed in Section 1.2).

The design of parallel architectures often requires a prototype or testbed in
which to develop and simulate algorithms. A testbed also provides an

environment for collecting performance benchmarks. Chapter 3 presents

2

methods for constructing such a prototype that is used as a testbed for the
simulation of a simple vision system on a pyramid architecture. The
algorithms for the vision system are presented in Chapter 4 and the
simulation results are presented in Chapter 5. The methods for
constructing the prototype provide great flexibility. A prototype built using
these methods is easily reconfigured and allows for the construction of
other architectures of interest. The SCOOP pyramid uses an object-oriented
methodology and allow for the modeling of the architecture at various
levels of detail: architecture level, processor level, processor component

level, gate level, and so on.

The prototype constructed for this research is configured as a pyramid that
is modeled at the processor level. Pyramids are discussed in Chapter 2.
The name of the prototype is the SCOOP pyramid. The acronym SCOOP
stands for “Southern California Object-Oriented Prototype.” Chapter 6
shows that by changing as little as a single method (methods are define in
Chapter 3) the prototype can represent a SCOOP architecture of another
topology. By changing the description of the processors (or ports), the
prototype can represent architectures constructed from different
components. Thus, the SCOOP pyramid is a useful tool for researchers
who wish to prototype, benchmark, and design algorithms for their

proposed architectures.
1.1 Computer Vision

The goal of computer vision is to enable machines to interpret two
dimensional pixel-based data (captured from some sensory input such as
visible wavelength cameras, infra-red cameras, ultra-violet cameras, and
synthetic aperture radars) so that a relational model is formed from that
data. Humans are natural experts at this and we do not yet have a

complete understanding as to how this occurs [7].

The nature of vision is one that suggests special purpose architectures as
the human eye contains hundreds of millions of optical receptors and
other such biological “hardware” that operate in parallel [8]. A discussion
of some special purpose architectures is in Section 1.2. Computer vision
tasks can be divided into low level processing, image analysis, and image

understanding and are discussed in the following sections.
111 Low Level Tasks

Some of the most computationally intensive computer vision tasks are the
low level image processing procedures. Many architectures have been
presented for these tasks [9, 10]. Typical low level tasks are local operations,
such as filtering and morphological operations. Most filtering is done by
convolution of the image with a kernel. Morphological operations can be
performed quickly using a table look-up scheme [11]. A characteristic of
these tasks is that the processing time (or number of steps) is usually
known in advance. This tasks can also be classified as “image-in, image-

out” algorithms.
1.1.2 Image Analysis

Image analysis tasks usually involve extraction of features from an image.
The algorithms are more complex and often global. Different data
structures result from these operations. Typical image analysis algorithms
involve analysis of lines, regions, and areas [12]. At this level,
segmentation of the image into distinct objects or surfaces occurs (although
not necessarily the identification of the objects). Image analysis tasks can
also be used to guide the operation of the lower level tasks. Attention can
be focused on selected regions. The image analysis tasks can be guided by
the higher level strategies. If such a system is goal-oriented, then the

image analysis tasks can concentrate on that goal. Some image analysis

tasks can be adaptive and treat some parts of the image different from
others.

1.1.3 High Level Tasks

High level symbolic tasks are less well defined than the previously
mentioned tasks. This can be attributed to the lack of understanding about
intelligence (both artificial and natural) and about human vision. When a
human being observes a scene, what exactly is he looking at? What
cognitive processes are going on inside his head that can (consciously or
unconsciously) control his thought processes and further efforts to get a
better look? In other words, the vision system, like the human being,
must be able to focus its attention upon a region of interest depending
upon the goal. These are the areas of much research in subjects such as
artificial intelligence, cognitive psychology, and philosophy. For the image
processing community, much current research has been limited to
segmentation, network matching, model correlation, identification of
objects in a scene, and firing of rules in a knowledge-base. Typically, they
are implemented as goal-oriented systems—thus enabling the machine to

perform specified tasks efficiently and economically.

The representation of knowledge (or knowledge base) of such systems

should have the following properties [1]

represent analogical, propositional, and procedural structures,
allow quick access to information,

. be easily and gracefully extensible,

1
2
3
4. support inquiries to the analogical structures,
5. associate and convert between structures, and
6

support belief maintenance, inference, and planning.

An inference mechanism is necessary in a goal-oriented system. Given

precise goals and operating rules, inferences are made as to the operations

5

needed in order to achieve those goals. Also, inferences can be made in
either direction. One can start with facts and infer possible results, or one
can start with goals and work backwards towards the facts. Working in
both directions simultaneously can produce results that working in either
direction alone cannot produce. The synergy of forward and backward

inferring can be the key of the success of a goal-oriented system.
1.2 Specialized Architectures

With performance requirements increasing, one must consider parallel
architectures for efficient and possibly real-time execution of these tasks.
“Real-time” execution of tasks require that the architecture can keep up
with the input from the sensor. These sensors produce data at very high
rate (on the order of 10 MBytes/sec) and the image data is very regular in
structure. Depending on the tasks that are required, the structure of the
data, and the processing requirements, a suitable and simple architecture

can be proposed.

Parallel architectures are needed to achieve the high performance
requirements. A problem is the programming of these parallel
architectures—the mapping of the application to the particular
architecture. In fact, many problems that originally had limited
throughput because of intensive serial computations are now found to
suffer from lack of communication bandwidth on some parallel
computers. That is, the problem of communication between processors
will limit the execution time to process data. If an application is to be
mapped onto a general purpose parallel processor (if one exists), then one
often has to settle with an architecture that is not matched to the particular
application. The implementation becomes unbalanced. Consequently, the
utilization of the processors will be inefficient. Special purpose
architectures can be designed to match the particular range of tasks by

balancing computation load with input-output.

There are many parallel solutions to simple low-level image processing
tasks. Most of the previous work has concentrated on solving an isolated
simple problem as opposed to complete scenarios that make use of a wide
range of tasks. There are solutions for many low-level tasks: filtering,
matrix-vector operations, Fourier transforms, and eigenvalue
computation. The parallel solution to these algorithms is the mapping of
the algorithm onto a specific parallel architecture. Often the algorithm is
modified to be able to do this (algorithm synthesis). These methods are

briefly discussed in the following sections.
1.2.1 Mapping of Algorithms onto Architectures

Algorithms are mapped onto architectures. A mapping determines which
processors perform what action at a specific time. Different architectures
will be more suitable for some tasks than others. The proper type of
mapping can very often be elusive, because many of the mappings are ad
hoc and the designer will often try to force a particular architecture when
another is more appropriate. (Somewhat like trying to fit a square peg into
a round hole.) Sometimes the designer is constrained by hardware
limitations. Some mapping methods are index transformation, algorithm

modification, and partitioning.
Index Transformation

Usually, the most repetitive parts of a sequential program are those that are
within the indexed loops (e.g. DO loops in FORTRAN). Much of the
parallelism within a program can be found in these loops. For example,
index transformation is a method of “spreading-out” the indices over the
processors (spatially) that are usually spread-out over time (temporally).
Pipeline and systolic architectures (see Subsection 1.2.4) take advantage of

this method when properly programmed. The only constraint to consider

for the simultaneous execution of statements are the data dependencies

between them. A detailed discussion of this technique can be found in [13].
Algorithm Modification

Very often, the algorithm itself can be modified in order to expose some of
its parallelism. Often, the designer of a sequential algorithm does not
concern himself with this. Currently, most compilers for parallel
machines do not perform well in detecting all the parallelism in a
program. Most of the rules used to detect parallelism are ad hoc; the
compiler will search for iterative loops and such in order to exploit the
parallelism there. To exploit parallelism even further, the programmer
must modify it by hand to expose more of the parallelism. Examples of

these modifications can be found in [14].
Partitioning

Partitioning is a technique to map a problem into an architecture where
the size of the problem is larger than the size of the architecture. Details of

this technique can be found in [15] and [16].
1.2.2 Architecture Design

There are many schools of thought in architecture design. Many will take
existing hardware and try to modify it to suit their needs. Others will
design around certain fixed topological configurations (e.g. mesh
connected, cosmic cube, and pipeline). Modular approaches to design are

superior for the following reasons:

1. Complicated tasks can be very “unwieldy” when attempted all
at once. A modular approach (sometimes called “divide and
conquer”) provides easier design subtasks. Also, if the project
is large enough for many designers, a modular approach is the

only feasible way.

2. A good modular design is easily testable, verifiable, and
debugged.

3. A good modular design can be reconfigured.

4. A good modular design can be easily modeled, simulated, and
analyzed.

5. A good modular design can be easily tuned.

The drawbacks are that a modular design can often decrease performance.
Bottlenecks can occur where interface bandwidth does not meet the needs
of the communicating modules. Hopefully, the interfaces can be matched
to prevent any bottlenecks. It is felt that the benefits outweigh the
drawbacks and thus suggest a stronger case for modular design. A modular
design does not imply that the finished product must look like a bunch of
boxes with skinny lines between them. In fact, the modular approach is
often used as a prototype for a fully integrated system. The design is

modular, not necessarily the result.

This modular approach can be used when designing an architecture for a
large task. A case study of this approach has been presented by Barad and
Moldovan [17]. The Karhunen-Loéve transform is broken down into
smaller segments (or modules). Each of these modules is far easier to
design. In fact, many of the modules used were already existing designs.

The only extra consideration is the interfaces between the modules.

An object-oriented methodology is used for modeling the SCOOP pyramid.
An object-oriented design is inherently modular and provides for total

encapsulation of the objects. This will be fully discussed in Chapter 3.
1.2.3 Data Structures

The data structure of images (iconic structures) are very regular and large.
They are large planar arrays representing intensity, temperature, gradients,

or other features. Trying to devise data structures for the higher levels that

9

suitably model the data is quite difficult. Higher level data structures are
dynamic, adaptive, and unpredictable as compared to the well structured,
pixel-based data structures for the lower levels. These structures must be
compatible to the extent that the processing between levels of abstraction

will allow for easy conversion in either direction.

The overall set of data structures in a vision system should be hierarchical
[8]. Pyramid architectures have been shown to have properties that lends
itself to natural vision [18]. This type of hierarchical model provides a
medium in which to have the proper set of data structures and processing

relationships.
1.2.4 DParallel Architectures

Computer architectures can be classified into several groups. Classically,

these groups are [9]

SISD: single instruction stream—single data stream
SIMD: single instruction stream—multiple data stream
MISD: multiple instruction stream—single data stream

MIMD: multiple instruction stream—multiple data stream

Many new architectures exhibit properties of different categories and are

placed in a new category of their own (e.g. systolic, data flow, and MSIMD).
SISD

These architectures are the conventional single processor architectures
commonly in use. These are sometimes labeled as “Von Neumann
architectures” and use the stored-program concept. Essentially, a single
processor will process data and will pass the data back and forth between it
and memory. This type of architecture is very easy to control, but allows

only sequential processing.

10

SIMD

The term SIMD refers to a class of architectures that contain many
processors, each performing identical functions at the same time. The
SIMD machines have received much attention in the field of image
processing owing to the nature of many of the low level algorithms.
Typically, these architectures are composed of a collection of processing
units, and interconnection network, and a controller. Each processing unit
contains a processor and some local memory. The interconnection
network provides for interprocessor communication. The controller
broadcasts the instructions to the processing units, providing the single
instruction stream. Examples of SIMD architectures include many

processor pipeline and mesh connected architectures.
MISD

These architectures generally do not exist. The entry was only included to
complete the possible combinations of single/multiple instruction and

data streams.
MIMD

This category of architectures includes a wide range of multiple processor
systems that do not have the restriction of identical operations nor
synchronous operation. They are typically interconnected through a
common bus, a fixed network, a switched network (such as a crossbar), or

through shared memories.
Systolic Arrays and Wavefront Processors

Systolic arrays are very closely related to SIMD architectures. They consist
of a regularly connected array of identical processors, each performing

identical tasks. They operate in a synchronous manner: taking in data

11

from neighboring processors, operating on the data, and then passing the

data to neighboring processors during each time unit [19].

Wavefront arrays are similar to systolic arrays, except that they are
asynchronous. Their computation can be described in wavefronts [20].
Both of these architectures offer efficient low level processing of data using
VLSI technology.

Data Flow

Data flow architectures are asynchronous, multiple processor systems that
operate in a data driven or demand driven fashion [21, 22]. Data flow
architectures are the first serious attempt at a general purpose parallel
architectures. On the other hand, the overhead and control of data flow
systems are quite high. Also, a special purpose architecture can always be
made more efficient than a data flow architecture if one can accept the

limited capability of the special purpose machine.
1.2.5 Hybrid and Hierarchical Systems

Hybrid and hierarchical systems have architectures that use additional
hardware that allows for some special communication between the
processors. For example, a mesh connected architecture with only local
interconnections can be augmented with a global bus in order to allow
global broadcasting. Brief descriptions of some hierarchical systems are

presented in the following subsections.
2-D MCN with Broadcasting

A two-dimensional mesh-connected network with row and column
broadcasting has been proposed by Prasanna Kumar and Raghavendra [23].
This is a hybrid architecture that combines the capabilities of local
communication (via 4 nearest neighbors) and global communication (via
individual row and column buses). This particular architecture exhibits

12

many advantages over a mesh with one global bus as it allows for much
parallel non-local communication, often without the problem of bus
contention. Many operations can be executed quite effectively (and some

optimally) [23].
Hierarchical Mesh Architecture

An improvement upon the previously discussed 2-D MCN with row and
column buses is the HMESH architecture [24]. It is a two-dimensional
mesh-connected network of processors with a hierarchy of broadcast buses
along the rows and columns. The hierarchy of broadcast buses allow for
global communications in O(log N) time. This is comparable to global
communication time in a pyramid architecture. This architecture has been

shown to provide good performance for many geometric algorithms [25].
Digital Optical Architectures

A digital optical architecture consists of a collection of optical processors
and an optical interconnection network. Optical interconnection networks
are discussed in Subsection 1.2.6. Optical architectures offer many potential
advantages over conventional electronic architectures [26]. The design of
such architectures may overcome some of the limitations of electronic

architectures [27, 28]. Some of these advantages are

1. Light signals can pass through each other without interfering,
while electronic signals may interfere with each other in close
proximity at high data rates.

Optical architectures are inherently parallel.
Optical interconnections are inherently three dimensional in

nature.

13

Thus, some types of optical interconnection networks may be more cost
effective, physically compact, and have higher performance than electronic

networks.
Pyramid Architecture

A pyramid architecture is a series of interconnecting two dimensional
mesh-connected arrays of decreasing sizes. These architectures can employ
a multiresolution model for the data. The pyramid architecture is the
primary architecture of interest in this research. Chapter 2 is devoted to

the pyramid.
1.2.6 Data Routing via Interconnection Networks

The goal of a parallel architecture is to achieve a speed up that is
proportional to the number of processors in the system (in practice, the

speed up is often much less). “Speed up” is defined as

number of steps for sequential algorithm

S= ; (1.1)

number of steps for parallel algorithm

In order to achieve a high utilization of the processors, they must often
communicate with each other. Examination of the data dependencies

specify the required communication. “Utilization” is defined as

number of processors busy
number of processors

(1.2)

Utilization of the architecture can change with time. High utilization is
desired to show that the architecture is being used in a cost effective

manner.

In practice, the communication costs of many parallel algorithms becomes

the dominant factor in the design. If a crossbar network is used the
14

hardware costs grow as the square of the number of processors grows. This
cannot be acceptable when the number of processors is large, or when the

planar design of a VLSI circuit would make the layout too complex.
Permutations

Many networks can be described by the set of permutations that it can
perform. Some algorithms require perfect shuffle, exchange, or other
permutations. Often, certain permutations can be achieved by several
elementary permutations that the architecture performs in one step. Thus,
some data exchanges can be performed by a multiple stage (or multiple

pass) network.
Broadcasting

Broadcasting can be a convenient means of achieving global
communications throughout an architecture. Considering the number of
steps that some interconnection networks will require (especially when an
architecture is not matched to the particular tasks), broadcasting becomes
more attractive; however, bus contention and hardware cost must be

considered.
Fixed Connections

Many architectures incorporate fixed connections. This implies a fixed set
of data exchange paths that can be used. The advantage of this is the low
hardware cost and the lower cost of control of the network. In fact, the
only control needed is to work out the protocol between processors that

communicate.
Optical Interconnection Networks

Interconnection networks created with optical hardware offer possible

advantages over conventional electrical interconnections. Electronic

15

hardware is, for the most part, a two-dimensional medium. Electronic
components are etched onto a small number of layers of material to form
chips, which in turn are mounted on circuit boards. Many parallel
architectures have a three-dimensional topology. Mapping a three-
dimensional architecture onto a two-dimensional surface can create
problems in interconnecting the components. Optics system are inherently
three-dimensional, and light beams can cross each other in a linear

medium without interfering.

Figure 1.2 shows a simple optical interconnection network. This network
is a 4x4 crossbar. Although the complexity of an NxN crossbar network
grows by O(N2), the parallel nature of optics may make large crossbar

networks feasible.

) AN A
e / /
— -1 L1 e
- / e
ﬁ‘ i, 7
] =
1 LA
.. |~ | —"
-""'--.~ /
~ L~ Pl
T~ // .
input optics crossbar mask optics output
vector vector

Figure 1.2. Optical Interconnection Network

The crossbar mask is a hologram and is used to route the optical signals.
The use of such an optical interconnection network makes the layout and

configuration of three-dimensional architectures much easier.

The current state of optical hardware lags behind that of electronic
hardware. The switching (or reconfiguration) time of optical networks are
longer than equivalent electronic networks, although the bandwidths are

much higher [26]. Advances in optical hardware will increase the

16

likelihood that optical networks will used more often in future

architectures.
1.2.7 Performance Evaluation

Parallel computers are useful in that they achieve a speedup over that of
sequential computers (see Equation 1.1). If a parallel computer has N
processors, the maximum speedup achievable is N. In practice, this
speedup is rarely achieved. Some reasons for this inefficiency are: idle
processors, setup time, memory conflicts, communication costs, and

inefficient algorithms.
Simulation

The simulation of a parallel architecture on a single processor, general
purpose computer is quite complex. The simulation is often done at
various levels of abstraction so that verification can take place at each these
levels. Tanimoto suggests that the design of the simulation can take place

at various levels [29]

machine level - emulate each cycle of each processor, or
2. intermediate (modular) level - the individual simulated
processing tasks are routines to be called for a more complex

simulation.

Fritsch proposes similar levels of simulation [30]. Simulations can take

place at even lower levels, such as the register or gate levels.

The simulation at the machine level is important to analyze the mapping
of the algorithm to the architecture. Very often, unforeseen problems arise
that are not anticipated in the theoretical analysis of the algorithm. In
particular, a result of this research (discussed in Chapter 5) is that the setup
times for many algorithms are not negligible, and in fact often dominate
the total processing time for a task. The intermediate level of simulation is

17

useful in speeding up such a simulation. It is important that all
intermediate tasks be verified at the machine level before being used at a

higher level.

For example, the algorithm is simulated at a modular level to verify that
the mapping is correct. Then, simulation and verification on each module
is performed. Finally, a simulation of the entire system is performed by

simulating the modules and their interfaces.

The methods used in the simulation will have to take advantage of the
modular nature of the design. Thus, a prototype of the architecture must
be built that will properly simulate the hardware to the level of interest.
The modular design requires that each processor be individually
constructed and integrated into the architecture and that it properly

executes the necessary instructions for each algorithm.
Benchmarks

A benchmark is a program that is run on a computer system to test that
system’s performance. Benchmarks can be useful in evaluating a system’s
performance for a class of problems—providing that the benchmark

program is representative of that class of problems.
Benchmarks are useful if they take into account the following:

the size of the problem,
setup times,

overhead related to communication management,

=

overhead related to loading data, both input and other data
(e.g. kernels),
overhead related to loading processor instructions, and

overhead related to output.

18

If the benchmarks do not take these into account, then the benchmarks can
be very deceiving of the system’s real performance. There still might be
some assumptions made in the benchmarks, but the times should still

reflect expected performance.

Duff discusses the pitfalls of performing benchmarks on image processors
in [31]. The conventional approach of ranking systems solely on their
timing performance must be avoided when considering parallel
architectures. Other factors are important, such as cost, reliability,
resolution, precision, flexibility, and programmability. The book, edited by
Uhr et al. [32], contains many papers with benchmarks on various image

processing architectures.

Often a class of problems is best represented by a realistic scenario on real
data. The benchmarks might look good for a collection of tasks, but if the
final goal is to perform these tasks together, then the benchmarks might
not represent the overhead needed to manage the transition from one task
to the other. That is, achieving good performance in a set of tasks done
separately does not insure good performance for these tasks done together.
This is discussed further in Section 1.3. For this reason, a complete

scenario is included in the benchmarks for the SCOOP pyramid.
1.2.8 Considerations

Current parallel implementations (and many proposed solutions) do not
effectively meet the requirements for a full range of vision tasks. For
example, many pipeline architectures are totally unsuited for data
dependent processing as this would cause the pipeline to be flushed and
restarted. Also, special purpose architectures suffer from their inherent
inflexibility. Their specialized usage limits the scope of problems that can
be solved efficiently. For some, this limitation is tolerable. For others, this

limitation can be very costly. There are trade-offs that must be considered

19

between the performance of specialized architectures versus the flexibility

of general purpose architectures.

Many complex algorithms are compute-bound. “Compute-bound” means
that the computer takes longer to process the data than its takes to input
and output the data. More precisely, an algorithm is compute-bound if and
only if the number of computing operations is larger than the total
number of input and output data elements [9]. Otherwise, it is considered
I/O-bound. When an algorithm is unbalanced (i.e. heavily bounded by
computation or I/0), the type of bounding is the limiting factor in the
performance of the execution. For instance, a VLSI chip has a limited
number of pins. Only a limited number of these pins can be utilized for
I/O. Once the implementation is considered to be I/O bound, then
improving the calculation steps within the chip does not improve the
overall timing as the chip cannot input or output data fast enough to keep
up with faster calculations. The hardware inside the chip will have to wait
for the I/O operations. Thus, finding a fast parallel implementation for the
calculations of an operation is not enough to improve overall performance

if the implementation becomes I/O-bound.

Two more important considerations are whether special purpose
architectures can be reconfigured and easily programmed so that they
become flexible and thus efficient for a larger class of problems. These
considerations suggest a modular approach to the design of the
architecture. The modules are very specialized for performance, but can be
integrated as a whole system that exhibits flexibility. But, in order to
pursue the modular approach, the nature of the tasks to perform must be
examined.

Another consideration is whether the approach to the vision tasks are top-
down or bottom-up. A top-down approach can be goal oriented and directs

the lower level processes. A bottom-up approach will perform specified

20

tasks during the analysis and infer consequences from the results. A

comprehensive system will use both approaches [33].
1.3 Motivation

There are problems when attempting to integrate different levels of vision
tasks on the same architecture. Many architectures are suited for a
particular class of tasks. As an example, a pipeline of processors handles
data in a stream format. This data must be very regular in structure. Also,
the pipeline cannot make decisions that are dependent on the data without
risking the interruption of the smooth flow of data through the pipeline.
Thus, while a pipeline is well suited for low level vision tasks, it does not
allow for more complex data structures and more complex algorithms

needed for higher level vision tasks.

More massively parallel two-dimensional mesh-connected arrays are well
suited for low level local operations, but their SIMD nature does not
efficiently support more complex algorithms. MIMD mesh-connected

arrays still suffer from lack of global communication and global control.

Also, many architectures created for symbolic operations (e.g. Symbolics
3600) are not well suited for the massive amounts of pixel-based data as are
other massively parallel architectures. Even though the individual
processors of these architectures might be quite powerful, these

architectures are often too small to handle a data set of images efficiently.

Figure 1.3 emphasizes another difficulty in attempting to integrate various
tasks into a system. Suppose there tasks A and B are to be processed.
Further, suppose that two separate architectures are used—each one is
designed to efficiently execute task A and task B, respectively. If the
communication between processes A and B (i.e. between subarchitectures
A and B) takes longer than the processing of tasks A and B, then the

overall process is now I/O-bound. That is, an inter-architecture bottleneck

21

is formed as data is pushed from one architecture to the other. The effects
of this bottleneck become even more severe when we consider that the

overall process might be an iterative process between tasks A and B.

Architecture resuitsr trom iacesEing Architecture
efficiently efficiently
designed for task designed for task
A @ . B
further processing

Figure 1.3. Separate architectures for separate tasks

A prime motivation of this work is the desire to integrate all levels of the
vision process onto the same architecture to avoid such a bottleneck that
would result in re-evaluation of the data. If higher-level analysis showed
that further lower-level processing is needed (goal directed processing),
then switching back and forth between separate specialized architectures
results in a bottleneck. Therefore, it becomes important to be able to
efficiently perform different tasks at different levels of abstraction on a
unified architecture that would allow a smooth transition between these

levels.

Another motivation is to develop a methodology to construct prototypes
of proposed architectures. It is often difficult to build the full-sized
architecture to be studied and often a scaled-down hardware prototype is
not a suitable representation of the final architecture. Software prototypes

have several advantages over scaled-down hardware prototypes

1. The time needed to design, build, and debug the prototype is
considerably less is software than in hardware.

2. The software prototype can better assist the software
developer of algorithms for the prototype since the software
prototype can represent an architecture of a larger size.

3. Software prototypes are much cheaper to build.

22

4. Software prototypes can be easily modified to reflect
architectures of other topologies, or even architectures

composed of radically different types of hardware (e.g. optical).

Of course, the major drawback of the software prototype is that the actual

time to execute an algorithm is much longer than the hardware prototype.

Several microseconds of processing in hardware may require minutes of

simulation. Thus, the software prototype is ideal for designing algorithms,

analyzing the architecture, and performing benchmarks, but extremely

poor for processing data in a production environment.
1.4 Research Contributions
The following is a list of contributions resulting from this research:

1. The pyramid architecture is shown by simulation to be an
efficient and effective architecture in which to implement a
wide range of computer vision tasks. The pyramid can adapt
to the different levels of abstraction of the data that
correspond to the different levels of vision tasks. It meets the
requirements for a vision architecture [34] and has the
hierarchical structure necessary for recognition cone
algorithms [8]. The following algorithms are mapped and
benchmarked on the SCOOP pyramid:

. convolution,

a
b. morphological operations (used in item f),

n

Nevatia-Babu edge detector,

o

computing histograms of arbitrary shaped regions
from multispectral data (used in item e),

e. Ohlander-Price-Reddy segmentation,

a complete scenario to find bridges in LANDSAT

scenes.

23

2. An object-oriented methodology is presented to model any
architecture by creating objects (instances of abstract class
descriptions) for each component of the architecture. This
provides a flexible environment to study alternative
architectures.

3. The SCOOP pyramid is a working software prototype of a
pyramid architecture. It serves as a testbed in which to
develop and benchmark different algorithms. The SCOOP
pyramid is currently the seven levels—two larger than
existing hardware prototypes (see Section 3.1.4). The design of
SCOOP allows modeling of architectures of arbitrary size (see
Section 5.1.3).

4. The overhead to set up certain tasks on parallel architectures

is often the most time consuming process (see Section 5.7.5).

Each of these items are fully explored in the thesis and are summarized
again in Chapter 6. The following chapters present the pyramid
architecture, an object-oriented methodology for constructing prototypes of
parallel architectures, a selection of algorithms that are implemented on
this prototype, and timing results. Finally, the implications of all this work

and suggestions for future work are discussed in the final chapter.

24

Chapter 2 The Pyramid

The pyramid architecture is the primary architecture of interest in this
research. This chapter will present the pyramid in detail, summarize past
and current use of the pyramid, and discuss the motivation behind the use
of the architecture as a single unified architecture for a wide range of vision

tasks. Later chapters present the actual prototype, algorithms, and results.
2.1 The Structure

A pyramid (or cone) architecture is a hierarchical layer of mesh connected
arrays [35, 36, 37]. Each level decreases in size until reaching an apex at the
top. The reduction of size of the levels is by a constant factor—usually
four. The inter-level interconnections are such that each processor
communicates with other processors on neighboring levels. Typically,

each processor has one parent processor and four child processors.

Figure 2.1 is a partial view of the top three levels of the pyramid. The
intra-level mesh connections are not shown in order to avoid cluttering
up the drawing. Each level is mesh connected to its nearest four neighbors
on the same level. The bottom level of the pyramid is the same size as the
image produced by the sensor. Suppose a camera produces digitized
images that are 512x512 pixels. These images are loaded directly into the
pyramid's bottom level, one pixel per processor. If the camera is
constructed properly, the image loaded into the bottom level of the
pyramid at the start of each time frame. Standard video frame rates are 30
frames/sec. Thus, the bottom level of the pyramid will have a new image

loaded into the bottom level 30 times each second.

25

LI\ LT LT\ LS

Figure 2.1. Pyramid Architecture

A processor's location is given by a 3-tuple (x, y, z) representing the (x,y)
location on level z. The levels are numbered such that the top level is
level 1. The interconnections between the levels can be mathematically
expressed in the following recurrence relations. The top level processor

has no parent processors. Equations (2.1)—(2.3) give the parents’

coordinates
122
Y parent =|_y;r—1_J (2.2)
Zparem =271 (2.3)

in terms of the coordinates of the child x, y, and z, where | } denotes
greatest integer less than the argument. Equations (2.4)—(2.11) describe the
coordinates of a processors’ neighbors. The directions north, south, east,
and west refer to the relative directions of the processors as if viewed on a
map. If one looks “down” on any level, then the intra-level, four
connected neighbors of a processor will be its northern, southern, eastern,

and western neighbors. Actual directions are not really important, the
26

names are used as they are more familiar than constant referral to a

processors relative indices. The z coordinate is not defined in the first four

sets of intra-level relations as the processors are on the same level. Thus

the relations

Xnorth =xe1
Ynorth =¥
Xsouth =x+1
Ysouth =Y
Xeast =X
Yeast =Y+ 1
X west =X
Ywest =1

(2.4)
2.5)
(2.6)
(2.7)

(2.8)
(2.9)

(2.10)

(2.11)

are defined. Equations (2.12)—(2.23) describe the coordinates of a

processors’ children, as summarized by
XNW-chila = (xx2) -1
YNW—chila = (y x2) -1
INW-child =2+ 1
XNE—child = (X %2)—1
YNE-child =¥ X2
ZNE-child =2+ 1
XsW—chila =X X2
Yswehilda =(yx2)-1

ZsW_chia =2+ 1

(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)

(2.20)

27

XSE-child =X X2 (2.21)
YSE—child =Y X2 (2.22)

Zgg chila =2+ L (2.23)

Note that the bottom level processors of the pyramid do not have children.
A processor can also determine which child it is, relative to its parent, by

using the following rules:

if my row is even, then I am a southern child,
if my row is odd, then I am a northern child,
if my column is even, then I am an eastern child, and

if my column is odd, then I am a western child.

For example, a processor at (5, 4, 6) is in the 6th level of the architecture. Its
parent processor is at location (3, 2, 5) and it is a northeast child relative to

that parent. The location of its other neighbors can be similarly computed.
2.2 Pyramid Data Structure

A pyramid data structure is a type of generalized image structure. The data
structure is constructed from an image at different levels of resolution. For
example, an image that is originally NxN is represented at N/2xN/2, N/4xN/4,
N/8xN/8, and so on (see Figure 2.2). This is often done by averaging the four
pixel values together and the result is the value that represents the parent
processor's value. The purpose is to allow for processing at a chosen level
of reduced resolution to increase performance as processing a smaller
image takes less time. Many “coarse-to-fine” image-resolution algorithms
have been developed that are much more efficient than conventional
high-resolution image algorithms. In matching algorithms for example,
the idea is to take a “quick look” at lower levels of resolution so that the
algorithm can “home-in” on the object to match at the higher

resolution [1]. Baugher and Rosenfeld use this technique to find

28

boundaries of large objects [38]. Burt discusses many coarse-to-fine search
strategies [18]. Klinger discusses multiresolution processing with regard to
actual parallel hardware [39]. Cibulskis and Dyer discuss a technique
whereby segmentation is pursued using evidence gathered at many levels
“of resolution [40]. Crowley defines a multiple-resolution representation for
shape of regions [41]. Preston uses multiresolution techniques for the
processing of microscopic images [42]. Shneier makes use of a pyramid data

structure for encoding of image features [43].

N N/2 N/4

N/4

N/2

N

—

Figure 2.2. A Pyramid Data Structure

Not all data structures are formed by simple averaging of the
neighborhood. Gaussian and Laplacian pyramid data structures have also
been studied for multiresolution research. As defined by Burt in [18], a
Gaussian pyramid is a series of images G; and is formed by taking a

weighted average Gy(x,y) of the neighborhood using the relation

2 2
G, (x,y) = Z 2 w(m,n) Gp;; (2x+m,2y+n) (2.24)

m=—2 n=-2

where level [/ e[1,N] for an N level pyramid and w(m,n) is a separable,
normalized, and symmetric kernel. The series of images starts with the

original image G.

29

The inverse of the previous relation is

Gio=Gy (2.25)

2 2
_—
G (=4 Y, Y, wimm G (5, 57 2.26)

m=-2 n=-2

where Gy is the image obtained by applying Eq. (2.26) to G; k times. Note
that only the terms for which (i+m)/2 and (j+n)/2 are integers contribute to
the sum in Eq. (2.26). Gy is the same size as the original image.

A Laplacian data structure L; represents a bandpass filter of the image and is
defined in terms of the Gaussian structure by

Ll = Gt — GI—I,I (2.27)
where G; and Gy.;, are defined by the previous equations and Ly = Gn.

In the absence of noise, the original image can be completely recovered

from the Laplacian using
N
Go= D, Ly (2.28)
1=1
where Ly is obtained by expanding L;k times using relations similar to

Egs. (2.25) and (2.26), substituting L for G.

Clark and Lawrence makes use of zero crossings in a Laplacian pyramid to
find boundaries and even propose a systolic architecture for

implementation [44].
2.3 Processing and Recognition Cones

The processing cone model of image processing provides for hierarchical

control of images of varying resolution. Figure 2.3 shows the three modes

30

of processing in the cone: reduction, iteration, and projection. Tanimoto
[45], Hanson and Riseman [6], and Nazif and Levine [46] have used the

processing cone model.

Resolution Level

7 - 6
v\
g2 = ;
16 s
32 — 5
Yy .
64 2

Bttt
. AL R R K
2 / Reduch0n+ +*o"4’o"’0"+"t¢‘f‘+

plpay- —— 0

Figure 2.3. Processing Cone Model

In the processing cone model of computation, the pyramid structure is
used only for low level image processing tasks. All processing is still

“image-in, image-out.”

Recognition cones are the next step in evolution of processing cones.
Recognition cone perceptual systems (described in [47], [8], and [48]) are a
collection of modular, massively parallel procedures to examine global
aspects of an image. The processing flow in a recognition cone suggests a
pyramid architecture for efficient execution. Uhr describes the processing
flow as [8]:

1. Information is input into a large 2-dimensional retinal array.
2. One or more processes are applied either in parallel or
serially.
31

3. Whenever desired, the output of a process is merge into the
parent array.

4. Whenever desired, parents send information to children.

5. Whenever desired, processors send information to one
another.

6. These kind of processes continue to be executed, at every level

of the pyramid.

The SCOOP pyramid provides an excellent environment in which to
imbed recognition cone processes. The SCOOP pyramid is flexible,
reconfigurable, and programmable. It can be the prototype architecture for

the investigation of recognition cone concepts.

In this dissertation, the SCOOP pyramid is configured as a conventional
pyramid architecture. That is, the architecture with a constant factor of
reduction between levels (e.g. a factor of 4), four child processors, and one
parent processor. Other pyramid structures such as linked pyramids, one
with a non-constant factor of reduction, or different number of child
processors for each processor will perform differently for each of the tasks,

but will exhibit the same properties of the hierarchical structure [8].

Most pyramid architectures operate in an SIMD mode. The SCOOP
pyramid operates in a multiple SIMD mode (MSIMD). That is, each level
of the pyramid is an SIMD mesh connected array, but the levels of the
pyramid operate in an MIMD fashion for inter-level communication. Each
level is homogeneous (i.e. all processors are identical). However, the

higher levels of the pyramid have more powerful processors.
2.4 Hierarchical Processing and Multiresolution Processing

Much of the work done with pyramids, both the architecture and the data
structure, has been multiresolution processing. Multiresolution

processing allows for the processing of the image data at various levels of

32

resolution. Often an algorithm can produce intermediate results quickly
when done at a reduced (coarse) resolution version of the original image.
The results from this provides guidance when processing at the original

(fine) resolution.

Hierarchical processing includes a wide range of tasks that are well
integrated together. This includes feedback, iterative processing, and
higher level tasks to control lower level ones. For example, Levine
proposed to use a knowledge-base to control lower level image processing
[4]. Hanson and Riseman's work [6, 12] makes use of higher level tasks to
control lower level tasks. In this case, a processing cone paradigm is used
for the iconic processing. Features are extracted from the processing cone.
An image specific model (STM - Short Term Memory) is formed and

processed with a general knowledge model (LTM - Long Term Memory).

Currently, researchers at the University of Massachusetts are designing a
hierarchical architecture known as the Image Understanding Architecture
(IUA) [34]. The architecture consists of 3 levels of two-dimensional mesh-
connected arrays of processors. The top level consists of 8x8 array of LISP
processors. The next level consists of 64x64 array of synchronous-MIMD
16-bit processors. The bottom level consists of 512x512 SIMD array of 1-bit
processors. This bottom level of the IUA is also known as the CAAPP
(Content Addressable Array Parallel Processor) and is documented in [3].
Being a hierarchy of 2-D meshes, the IUA resembles a “truncated pyramid.”
The researchers at the University of Massachusetts are currently building a
hardware prototype of the IUA scaled down by a factor of 64:1. Weems et

al. list the requirements for vision architectures as [34]:

1. the ability to process both pixel and symbolic data,
2. a fast processing rate for huge amounts of sensory and

intermediate level data,

33

3. the ability to transform an image into a set of meaningful
symbols that describe it,

4. the ability to select particular subsets of the data for varying
types of processing,

5. feedback mechanisms that allow focusing of attention and
data-directed processing, without having to dump the image
to some “host” for external evaluation,

6. multiple levels of representation and stages of processing are
essential and require very different types of processing
elements, and

7. fine grained and high speed communication and control is
required both among the processes at each level and between

the different processing levels.

The SCOOP pyramid architecture satisfied these requirements. It processes
both pixel and symbolic data (requirement #1). The processing is quite fast
(requirement #2) and a symbolic representation of iconic data can be
derived (requirement #3). Various algorithms can process only a subset of
the total data set at any one time (requirement #4) and the high-low and
low-high direction of processing provides for feedback without the use of
another architecture (requirement #5). The pyramid processes data at
varying levels of abstraction (requirement #6) and there exists fine grain,
high speed communication and control between the levels (requirement

#7). All of these attributes are shown in the chapters to follow.

The pyramid architecture is not claimed to be an optimal architecture for
vision processing, but it does meet the previously listed requirements for a
vision architecture. A pyramid is a specific topology for hierarchical
architectures and other hierarchical architecture can conceivably provide
for better performance. It still remains to be seen which architecture
provides the best performance. Until the IUA prototype is constructed, the
exact performance of the architecture proeessing real data is unknown.

34

The SCOOP pyramid is a working prototype with some performance
results and processed images. The differences and tradeoffs between the
various stages in the design of architectures and hardware/software

prototypes are presented in the next chapter.

35

Chapter 3 The Prototype

The method used to model and construct a working prototype of the
pyramid architecture is described in this chapter. The complexity of such a
massively parallel architecture requires a suitable environment to develop
a prototype. A pyramid with a bottom level of 512x512 processors requires
well over 300,000 processors to simulate. An object oriented modeling
approach is chosen using the Smalltalk-80! system on a Sun 3/110
workstation. The Smalltalk system provides an interactive environment
to describe, construct, and program the prototype in a very efficient
manner. This Smalltalk system (known as PS2) was developed by ParcPlace
Systems [49].

3.1 Building a Prototype

A dictionary definition of the word prototype [50] is “An original type,
form, or instance that serves as a model on which later stages are based or
judged.” The reason people build prototypes is that they are simpler,
cheaper, and more flexible than the actual system that they model, and
thus provide a disposable basis for exploring aspects of a proposed
engineering effort.

In this research, building an actual pyramid architecture of significant size
was infeasible. This limitation does not prohibit the study of vision
algorithms for this architecture. Software prototypes have many
advantages over hardware prototypes: they are less expensive, more
flexible, and quicker to develop. The advantage of a hardware prototype is
performance. The hardware prototype is generally a scaled-down version
of the actual system it models. Nevertheless, the cost of designing, wiring,

and troubleshooting boards is still significant.

1Smalltalk-80 is a trademark of Xerox and will hereafter be referred to as Smalltalk.
2pS is a trademark of Xerox.

36

The software prototype offers great flexibility. The structure or the size of
the architecture can be changed with a small effort (see Chapter 6). The
methods of building prototypes used in this work can assist future work in
architecture studies. Prototypes of other architectures, including optical
architectures, can be built and studied. This will be discussed in future

chapters and especially in Chapter 6.

The difference between a software prototype and a simulation must be
pointed out. A simulation represents the data structures and processing of
those structures. A software prototype is an abstract description of the
actual architecture. One constructs the software prototype to have a virtual

architecture in which to program, analyze, and run simulations upon.
Architectures can be analyzed by many “levels of reality,” such as

a theoretical analysis of the architecture,
a software simulation,
a software prototype,

a scaled-down hardware prototype, and

U R -

the actual architecture.

These different levels represent the various stages that a designer can use
for analysis of various computer systems. Usually, they are performed in
the order listed. Analyzing and describing architectures at each of these
various levels have their own advantages and disadvantages. These

tradeoffs are now discussed in the following subsections.
3.1.1 Theoretical Analysis Method

A theoretical analysis of an architecture consists of a mental abstraction or
mathematical description of the architecture. A researcher describes the
topology of the processors and how they interconnected and thus forms an
analytical model for the architecture. Equations (2.1) through (2.23)

37

describe the pyramid interconnection scheme. This method has the
advantages that it is simple to perform and very inexpensive. It is really
the first step in designing or analyzing any architecture. The drawbacks to
such an approach is that there are many pitfalls and stumbling blocks that
are not considered in such an analysis. Also, detailed programming of an
architecture from just a mental (and even mathematical description) is

extremely difficult.
3.1.2 Software Simulation

Most real world situations are difficult to analyze using an analytical
model. In fact, an accurate analytical model is often difficult to derive.
Once the theoretical analysis is performed, a simulation of such an
architecture is often the next step. In this case, a computer program
evaluates a model numerically over a time period [51]. Often
commercially available simulation packages can be used. This method has
the advantage that actual timing results of processing “real data” are

produced.

A simulation does not have to be functional. That is, there is not
necessarily a functional equivalent for each object in the architecture that is
represented in the simulation. A simulation can just be a timing model
that is driven to produce statistics about algorithmic performance. For
example, many algorithms on a 2-D mesh-connected array can be
simulated using a spreadsheet program. Certainly, the spreadsheet does
not represent a functional representation of each of the processors, their
communications paths, communication protocols, local memory usage,

instruction set, and so on.
3.1.3 Software Prototype

A software prototype is an abstract representation of the actual architecture.

Software prototypes have functional equivalents to the architecture that

38

they model. Individual processors and ports are constructed and
interconnected. These are actual objects (in the software sense) and each
represent an actual component in the final architecture. A prototype is
then used as a “testbed” in which to run the simulations that were
described in the previous subsection. The advantage of using a prototype
as a testbed for simulations is that all overhead processing is forced to be
considered. Also, the individual processors are actually programmed,
which facilitate the design of algorithms as well as the programming of the
actual hardware. If the actual architecture which the prototype models

actually exists, then the prototype is said to emulate that architecture.
3.1.4 Hardware Prototype

The next step is to build an actual hardware prototype. Currently, there are
only 2 known hardware prototypes of pyramid architectures: the
University of Washington pyramid (5 levels) [37] and the George Mason
University pyramid (5 levels) [36]. This step is necessary in the actual
construction of complicated hardware. A designer needs to test all the
hardware: power supplies, faulty components, bad interconnections.
Getting rid of all the bugs in the hardware often takes longer than the
actual construction of the hardware. Also, this is often limited to a scaled-
down version of the proposed hardware. The two existing hardware
prototypes of a pyramid architecture have only 5 levels. This maps the

bottom level into only a 16x16 image.

In general, both types of prototypes (hardware and software) can be used as

a testbed for performing simulations.
3.1.5 The Actual Architecture

Finally, the product of all the design, analysis, simulation, and prototype
work is the actual full-sized architecture. There is no substitute for this

level of reality. Even so, each of the previous steps in the design of the

39

architecture allows the designer to reflect on the design at earlier and less

costly stages.
3.2 Object Oriented Programming

The method chosen to model and construct a prototype of this architecture
is object oriented. In an object oriented approach, one describes objects and
the methods that they perform. Some objects represent the specific pieces

of the architecture and the methods describe the operations they perform.

A non-object oriented approach uses specific data structures to represent
the items within the architecture. The data structure must change each
time the characteristics of modeled items are changed. The code that
represents the functions of this item must be updated with each and every
change. There is much redundant code involved for each of the different

types of objects.
3.2.1 What is Object Oriented Programming?

Object oriented programming has its own terminology and is radically
different from conventional procedural languages. A programmer must
get used to sending “messages” to “objects” instead of performing
procedures on data structures. The idea of objects sending messages to one

another is used directly in the modeling of the architecture.

Some terminology used in object oriented programming is listed as

follows:

Object An object is a component of the system. It is a totally encapsulated
set of data that can receive messages, perform methods associated
with these messages, and send messages to other objects. All objects

belong to a class.

40

Message

Method

Receiver

Class

Subclass

Superclass

Instance Variables

Class Variables

Inheritance

When a message is sent to an object, the object (known as the receiver
of the message) will select and perform the method that corresponds

to the message.

A method is a sequence of instructions (i.e. messages sent to objects) to
perform a task. The result of the method is an object and is returned

in response to the message.
The receiver of a message is the object that the message is sent to.

A class describes the characteristics of the objects that are members
of the class. Those objects are known as “instances” of the class.
Objects “know” which methods correspond to particular messages

because of the description of the class they belong to.

A subclass is itself a class. It inherits all methods and variables of

the class of which it is a subclass.

Likewise, if class A is a subclass of class B, then class B is the
superclass of class A. A class, its subclasses, and its superclass make

up its class hierarchy.

These are variables (whose values are themselves objects) that are
private to an object. All objects of a class have the same set of
instance variables, but the values they take on are private to each

object.

These are variables that are shared by all instances of the class.

That is, they are global to all members of the class.

An object that is a member of a class inherits all variables and
methods of its superclass, and the superclass's superclass, and so on.
A class can override a method that it inherits. That is, a class can
change the method that corresponds to a message that an object
might receive. Multiple inheritance is not considered here so all

classes have only one superclass.

41

In this dissertation, different fonts are used to distinguish between the
different parts of the object oriented description. Bold type is used for class
names (e.g. class Pyramid) and a non-proportional, typewriter font for the
names of messages (e.g. performConvolution). Also, global names are
always capitalized and local names start with lower case letters. Therefore,
class names always start with capital letters. The names of messages always
start with lower case letters. Note that descriptive names are encouraged.
Names with multiple words are appended together with the first letter of
each word capitalized (with the possible exception of the very first letter).
These are the conventions used in the Smalltalk language and

community.

Programming in an object oriented language involves describing classes.
That is, describing the instance and class variables and defining the
methods that perform the tasks associated with the messages. This is done
in Smalltalk using an interactive environment suited for object oriented

programming [52].

A very simple example illustrates these language features. Suppose one
wants to create a program that will perform operations and compute
features on different geometric figures. The first step is to create a class

structure. Figure 3.1 shows a simple class structure.

GeometricFigures

Rectangles Triangles
Squares EquilateralTriangles

Figure 3.1. Class structure of GeometricFigures

42

3.2.2 Message Passing

One starts by creating a class structure, beginning with the class
GeometricFigures. Instance variables are used to describe the location of
the vertices of the figure. Suppose that one wants to compute the area of a
geometric figure. Further, suppose that this method is called area and it
returns an object which is a number whose value is the area of the receiver

of the message area. The statement is
theArea « aFigure area.

This statement sends the message area to aFigure (an instance of
GeometricFigures) and assigns the area (an instance of Number) to the
variable theArea. An example of how to accumulate the sum of the areas

of a collection of figures is

totalArea « 0.
1 to: numberOfFigures do: [:figureNumber |

totalArea « totalArea + (theFigures at: figureNumber) area].

These statements work in the following way. First, totalArea is initialized
to zero (an instance of Number). The variable numberOfFigures refers to
the total number of figures in the array theFigures. The variable
theFigures is an instance of Array containing an ordered collection of
GeometricFigures (arrays don't have to contain only numbers). This
second statements executes the block (the statements between the square
brackets) numberOfFigures times. This is similar to a DO LOOP in
FORTRAN. The variable figureNumber is increased upon each iteration
of the control loop. It is the index into the array theFigures. The area is
then computed and added with the totalArea. Note that parentheses can
control the order in which messages are sent. Object oriented
programming must always be thought of as objects sending messages to

one another. Even the addition in the last statement should be thought of

43

as the message “+” being sent to a number (totalArea) with the argument
of a number (eqﬁal to the area of the figure being indexed by
figureNumber) with the final sum being referenced by totalArea. Figure 3.2
shows an abstract view of this process. The object (known as anObject)
sends the message area to aGeometricFigure (an instance of class
GeometricFigures). The object aGeometricFigure will perform the method
associated with the message area and return the result aNumber, which is
an instance of class Number. The black arrow refers to the sending of a
message and the gray arrow refers to the instantiation (i.e. creation) of a

new object.

aNumber

area

anObject aGeometricFigure

Figure 3.2. Abstract representation of objects passing messages

3.2.3 Opverriding Inherited Methods

A fairly complex method is needed to perform the steps necessary to
compute the area of an arbitrary geometric figure. If some of the types of
figures to be encountered are known, subclasses of GeometricFigures
(e.g. Rectangles and Triangles) that describe certain types of geometric
figures can be created. A three sided geometric figure will be an instance of
class Triangles as well as an instance of the GeometricFigures. Similarly

for the class Rectangles. These subclasses will inherit all the instance

A4

variables (i.e. vertices) of their superclass and the method area. There are
simple methods to determine the area of rectangles and triangles so one
can override the method area with a newer method to take advantage of
this knowledge. One can create further subclasses of these to take
advantage of knowledge that edges are of equal length, thus creating classes
Squares and EqualateralTriangles. Therefore, one overrides the method
area to implement an even simpler algorithm for finding the area. In
general, it is easiest to describe a class by: finding an existing class very close
to the new class, make the new class a subclass of the existing one (thus
inheriting from the existing class), and then overriding or adding new

methods to the new class.
3.24 Advantages of Object Oriented Programming

One of the biggest advantages of object oriented programming is the
reusability of code that comes from inheritance. When subclasses are
created, the methods are inherited from their superclass. Presumably, one
does not override all the methods of the superclass. Therefore, much of
the code is reused. Also, when a method is changed for a class, all the
subclasses inherit the new method. That is, the change is propagated

throughout the class structure.

Another advantage to modeling with object oriented programming is the
encapsulation property of an object [53]. Think of the receiver of a message
as the producer of a service and the sender of the message as the consumer
of a service. The consumer of the service knows what services the
producer will offer, but knows nothing about how the service will be
performed. The methods and data that the producer uses are totally
encapsulated (i.e. hidden) within the producer and thus protected. In the
previous example, it is the particular geometric figure that determines how
to compute the area, not the source requesting the area. This provides a

complete and protected modular system.

45

3.3 Protocols for Multiple Processes and Simulations

Modeling and constructing prototypes of a parallel computer architecture
requires the maintenance of multiple processes. These processes must be
aware of each other and their cooperation must be explicitly defined. These
processes (each one allocated to a processor) are dependent upon one
another in that data dependencies exist between them. Often a calculation
requires the results from another process and must wait until this result is
available. André et al. discuss two types of cooperating processes:
centralized and distributed [54]. The distributed implementation makes
use of queues (ports) between the processes that perform the necessary
handshaking. This localized handshaking avoids the practical hardware
problem of clock skew while increasing the complexity of the
communication ports. The distributed implementation adapts much
easier to the different levels of processing requirements (and different
levels of processor power) within a collection of processes (the
architecture). For this reason, the distributed implementation of process

management was chosen.

The communication of these processes require protocols for mutual
exclusion of the data. Raynal discusses the mutual exclusion problem
using both the centralized and distributed frameworks [55]. Two solutions
are presented: one based on state variables and another based on message
communication. The message communication methods were chosen

since they match the object oriented paradigm of Smalltalk precisely.

A substantial amount of work has been done by the developers of
Smalltalk to provide assistance with simulations of systems. Provided are
such classes as Process, Semaphore, Delay, and SharedQueue for describing
the workings of multiple independent processes. Also, classes that are
provided for simulation support are Simulation, SimulationObject, and

EventMonitor. These are all described in detail in [56]. The protocols of

46

these classes that are used in the creation of this prototype are described in
Subsections 3.3.1 through 3.3.7. This is not intended to completely
reproduce that information which is already available in the reference; it

only provides a short synopsis of each class.
3.3.1 Class Process

A process is an object that represents a sequence of actions that are
described by Smalltalk expressions. These actions can be carried out
independently of other processes. There are messages to fork, suspend,
resume, and terminate these processes. In this prototype, instances of class
Process enumerates the sequence of events that a processor will undergo.
(Note that the class Process is completely different from the class Processors

that are described later.)
3.3.2 Class Semaphore

The class Semaphore is used to send signals between independent
processes. Together with class SharedQueue (to be discussed later), the
necessary handshaking between the processors of the architecture takes

place.
3.3.3 Class Delay

A delay allows a process to suspend itself for a specific period of time.
When the time is up, a semaphore is sent to the process to cause it to

resume.
3.3.4 Class SharedQueue

The class SharedQueue is an important class in the prototype. This is how
the processors within the architecture pass data and instructions between
one another. The shared queue provides the necessary handshaking to

synchronize the communication between the asynchronous, independent

47

processors. There will be two shared queues between every two processors
that are interconnected. Each shared queue is unidirectional, so two are

needed to provide bidirectional capability.

Note that this architecture requires no global clock. Many other
architectures make use of a global clock to provide processor
synchronization. The global clock (and thus problems such as clock skew)

are eliminated by the use of these queues.

To save space in the simulation, class SharedQueue has been replaced by
class UnidirectionalPort. This class is a stripped down version of class
SharedQueue and provides only that which is necessary for this work. For
instance, the length of each queue is only one (a port with no buffer) and
thus space was saved by not providing a queue of arbitrary length. Class

UnidirectionalPort will be discussed later in detail.
3.3.5 Class Simulation

Class Simulation controls the set of objects that make up the simulation.
This class maintains the simulation clock, the queue of events that are
waiting to be processed, and maintains references to all the objects in the
simulation. Class Simulation understands messages: to initialize the
simulation, define a schedule whereby the objects enter and leave the
simulation, schedule and coordinate resources, and to finish and clean up
the simulation. This type of discrete-event simulation is known (in [51]) as
a “next-event time advance simulation” as opposed to a “fixed-increment
time advance simulation.” A queue of events is a collection of events that
are ordered by the time that they should be executed. In a fixed-increment
time advance method, the clock is advanced by a fixed amount and then all
events that are scheduled to be executed by that time are then run. In the
next-event time advance method, the queue of events is a collection of

events that are scheduled to execute. Each event has a tag that associates

48

itself with a time on the simulation clock. The events are ordered by this
time. When all events for time r; are executed, the clock is then set to time
tj, where 1;is the lowest value of all time tags in the event queue but still

greater than ;.
3.3.6 Class SimulationObject

Class SimulationObject represents the components of a simulation.
Consider a simulation of trafficc. Automobiles, Trucks, and Buses are all
road vehicles and can all be subclasses of SimulationObject. The reason
they should be described by different classes is that automobiles, trucks, and
buses all interact with each other in different ways. Autos tend to move
more quickly than the other classes, buses tend to make many stops, and
trucks will stop for lengthy times to load or unload something. Other
classes can then enter into the simulation such as RailRoad,

FuneralProcession (a collection of Automobiles), and so on.

Class SimulationObject understands messages for: initialization,
simulation control, and task language. These objects report the fact that
they are entering the simulation to the ActiveSimulation (an instance of

Simulation) and release themselves upon exiting the simulation.
3.3.7 Class EventMonitor

EventMonitor is a subclass of SimulationObject. This class adds messages
and overrides some inherited ones to help document what is going on
within a simulation. Basically, this class helps provide a log file of events

that take place during the simulation.
3.4 SCOOP Class Protocols

The class protocol structure for the prototype is divided into two class
hierarchies. The first class hierarchy is the class of processors that make up
the architecture. All processors within the architecture are instances of one

49

of the classes within this class structure. Figure 3.3 shows the class

structure of all the processors.

PyramidEventMonitor

T

Processors

AN

LowLevelProcessor TopLevelProcessor

Figure 3.3. Class hierarchy of processors

The class PyramidEventMonitor is the abstract class which describes the
attributes of objects within a simulation that monitor and report on
events. It itself is a subclass of EventMonitor, which is a subclass of
SimulationObject. All of the processors within the architecture are
instances of Processors (or its subclasses). The subclasses
LowLevelProcessor (for processors at the bottom level) and
TopLevelProcessor accurately reflect the different characteristics and
capabilities of the different types of processors that make up the SCOOP
pyramid.

Figure 3.4 is a class hierarchy of some of the simulation classes. The class
Pyramid is a subclass of Simulation. The class Pyramid refers to the

architecture itself, as well as the simulation to be performed.

All the subclasses of Pyramid are the actual simulations. They inherit all
the variables and methods of class Pyramid so that they only describe the
different situations for each simulation. Note that the actual algorithms to

perform are described in the processor classes, not in the simulation classes

50

since it is the processors themselves that must know what steps to

perform.
Simulation
Pyramid
ConvSimulation NBSimulation OPRSimulation

Figure 3.4. Class hierarchy of simulations

In the following descriptions, a specific format is used to document the

class. For example, the protocol for class GeometricFigures might look like

GeometricFigures instance protocol

feature extraction
area

Computes and returns the area of the receiver.

GeometricFigures class protocol

instance creation

new: alList

Return an instance of GeometricFigures with vertices at aList.

The class protocols describe methods used to create instances of the class.

The lines “feature extraction” and “instance creation” are category names.

51

The following class protocol descriptions are not complete. Only the more
important messages are included in order make this list more readable.
Also, subclasses inherit methods from their superclasses and these
methods will not be listed again unless they are overridden by newer

methods.
3.4.1 Class UnidirectionalPort

This class is a stripped down version of class SharedQueue. The protocol

for this class is

UnidirectionalPort instance protocol

initialize-release
release

Releases and empties the port.

accessing
next

Returns the object waiting in the port. Sender of message will be
suspended until something is returned.

nextPut: aValue

Send aValue through the port to the processor at the other end.

UnidirectionalPort class protocol

instance creation
new

Return a new instance of UnidirectionalPort.

22

3.42 Class PyramidEventMonitor

The class PyramidEventMonitor describes all objects within the simulation
that report and monitor events. It is a subclass of EventMonitor. The

following is the protocol for class PyramidEventMonitor

PyramidEventMonitor instance protocol

scheduling
startUp
Initialize instance variables. Inform the simulation that the

receiver is entering it, enter a log entry into logfile, and then initiate
the receiver's tasks.

task language
holdFor: aTimeDelay reason: aString

Record entry into log file stating aString as reason that receiver will
delay for aTimeDelay.

printing
printOn: aStream

Print label onto aStream which identifies receiver.
3.4.3 C(lass Processors

Class Processors is a subclass of PyramidEventMonitor. All processors
within the architecture are instances of this class. This following
description documents the messages used by the processors to configure
themselves and perform operations for the simulation. Some of the

messages refer to algorithms that will be discussed in the next chapter.

o

Processors instance protocol

simulation steps
performConvolution
Perform the steps necessary to complete a convolution.
performNBSimulation

Perform the steps necessary to complete the Nevatia-Babu edge
detector.

performOPRIteration

Perform the steps necessary for one single Ohlander-Price-Reddy
iteration.

performOPRSimulation

Perform the iterations necessary to complete the Ohlander-Price-
Reddy segmentation process.

simulation control
tasks

Determine the type of simulation and continue on the proper route.

control tasks
broadcastTasks

Broadcast instructions down throughout the architecture starting
from the processor at the top.

histogram tasks
accumulateBinCounts

Remain idle while each LowLevelProcessor accumulate bin counts of
gray levels.

sendHistogramsUp

Receive the subhistograms from children, combine them to generate
larger subhistogram, and send this to parent.

54

analysis tasks

analyzeHistograms

Remain idle while TopLevelProcessor analyze histograms.

threshold tasks
broadcastThreshold

Receive threshold rule from parent and send this to the children.

merging tasks
mergeRegions

Remain idle while each LowLevelProcessor merges regions.

hardware setup
connectPort: direction to: portl from: port2

Connect receiver to the proper ports to communicate with neighbor in
the specified direction.

initializeProcessorsPorts

Initialize the processors ports before setup.

data transfer

getFromEast

Obtain packet from eastern neighbor through the shared queue
connecting us. Returns nil if there is no neighbor.

getFromNorth

Same, but from northern neighbor.

putToEast: aValue

Put aValue to my eastern neighbor through the shared queue
connecting us. Do nothing if there is no neighbor.

59

putToNorth: aValue

Same, but for northern neighbor.

inquiries
getProcessorID

Returns a string describing the processor ID (i.e. row, column, and
level).

whoIsMyNorthEastChild

Returns the coordinates of my child to the northeast.

whoIsMyParent

Returns the coordinates of my parent processor.

Processors class protocol

instance creation
new: x andY: y andL: level

Returns an instance of Processors with coordinates (x, y, level).

class initialization
initialize
Initialize class variables of Processors.
initNumberOfLevels: height

Initialize the height of the pyramid. That is, all Processors know
the size of the architecture.

3.4.4 C(lass LowLevelProcessor

Class LowLevelProcessor is a subclass of Processors. This subclass further

refines the description of the processors to that which is particular to the

56

processors at the bottom level of the pyramid. Some of the messages refer

to algorithms that will be discussed in the next chapter.

LowLevelProcessor instance protocol

control tasks
breoadcastTasks

Receive instruction from parent and execute it.

histogram tasks
accumulateBinCounts

Accumulate bin counts of gray levels of columns keeping track of
regions separately.

sendSubHistogramsUp

Send the subhistograms to the parent. Do this for each region in a
pipeline fashion.

threshold tasks

broadcastThreshold

Receive threshold rule from parent. Execute the threshold rule.

merging tasks
mergeRegions

Merge regions to remove isolated/small regions.

accessing
pixelValue
Return current pixel value associated with the processor.
regionLabel

Return the region label associated with the processor.

57

local computations
find3Neighborhood

Communicate with neighbors to determine the processor's 3x3
neighborhood.

find5Neighborhood

Communicate with neighbors to determine the processor's 5x5
neighborhood.

performConvolution: sizeOfWindow

Perform the convolution steps for this processor with the
KernelWindow.

performNBComparison

Perform the comparison steps for the Nevatia-Babu Edge Detection.
performNBConvolution

Perform the convolution steps for the Nevatia-Babu Edge Detection.
performNBLineDescription

Perform the line description steps for the Nevatia-Babu Edge
Detection.

data manipulations
atWindow: theRow andY: theColumn

Return the value in the neighborhood window at location (theRow,
the Column).

atWindow: theRow andY¥Y: theColumn put: aValue

Put aValue into the neighborhood window location (theRow,
theColumn).

initPixelValue: aValue
Initialize this processor's pixel value to aValue.
initPixelValue: aValue inDataBamd: bandNumber

Initialize this processor's pixel value to aValue for data band
bandNumber.

58

simulation steps
performOPRIteration

Perform the steps necessary for a single Ohlander-Price-Reddy
iteration.

LowLevelProcessor class protocol

instance creation
new: x andY: y andL: level

Return an instance of LowLevelProcessor at location (x, y, level).

class initialization
initialize

Initialize the class wvariables for all instances of class
LowLevelProcessor.

initImageSize: imageSize

Initialize the size of the bottom level (i.e. the image).
initKernel

Initialize the kernel for convolutions.
initNBKernels

Initialize a full set of NB kernels.
initNeighborhoodSize: size

Initialize the size of the neighborhood window to size.
3.4.5 Class TopLevelProcessor

The class TopLevelProcessor describes the processor at the top of the
pyramid. It is a subclass of Processors. The power of the processors
increase as the size of the level decreases. The top level processor is the
most powerful one and can control the rest of the architecture by

broadcasting instructions. In general, the more complex operations are

59

reserved for the top few levels of the pyramid. Some of the messages refer

to algorithms that will be discussed in the next chapter.

TopLevelProcessor instance protocol

control tasks
broadcastTasks

Send an instruction to the children.

histogram tasks

sendSubHistogramsUp
Receive the subhistograms from the children, combine these to form
a complete histogram, and save them for further processing.

analysis tasks

analyzeHistogram: aHistogram for: aRegion forDataBand:
bandNumber

Analyze the histogram associated with region aRegion in data band
bandNumber.

analyzeHistograms
Analyze the complete set of histograms.

chooseThreshold: thelIntervals forRegion: region forDataBand:
aBand

A score is computed for each interval set (of a region). This score is
1000*(peakHeight-higherShoulderHeight)/peakHeight. Choose
the interval (of all the histograms of spectral components for that
region) that has the highest score. Return the threshold rule.

comparePeakAreas: theIntervals inHistogram: aHistogram
Peak area is now compared with an absolute threshold and with a
relative threshold, representing a percentage of the total histogram
area. Only peaks larger than these thresholds are retained.

condenseIntervals: thelntervals

Shift intervals to left to fill up slots left empty by intervals that
merged into other intervals.

60

finalScreeningTest: thelntervals

A final screening is performed to reduce the interval set to a specific
number of intervals. This is done by repeatedly merging regions
with low peak-to-shoulder ratios until only the correct number of
valley remain.

globalHistogramTest: thelIntervals
The second highest peak and those peaks whose height is less than
a percentage of it are merged. The lowest interior valley is then
found, and any interval whose right shoulder is more than a certain
number of times that valley height is merged with its right
neighbor.

mergeInterval: intervalNumber for: thelntervals
Merge interval into neighbor with higher shoulder.

peakToShoulderRatioTest: thelntervals

Merge any intervals into dominant neighboring interval if the peak-
to-shoulder ratio does not exceed a certain parameter.

screenIntervals: theIntervals

Scan across the intervals in order to merge some of the intervals into
others.

smoothHistogram: aHistogram

Smooth aHistogram with a Gaussian mask.

threshold tasks

broadcastThreshold

Send the threshold rule to the children.

simulation steps
performOPRSimulation

In between iterations, dump out results into interim files for later
examination.

61

TopLevelProcessor class protocol

instance creation
new

Create the top banana!

class initialization
initialize
Initialize all the class variables for TopLevelProcessor.

3.4.6 Class Pyramid

Class Pyramid is a subclass of class Simulation. It not only represents the
simulation, but the architecture itself. It has references to all the processors
and ports (shared queues) in the architecture and can instruct the

processors at the bottom level to read in and write out data.

Pyramid instance protocol

accessing
bottomLevellmage

Returns a two dimensional array of pixel values from the bottom
level of the architecture.

bottomLevelImageAsArray

Returns a one dimensional array of pixel value in lexicographical
order to write out to file.

imageRegionsAsArray

Returns a one dimensional array of region labels to write out to file.
imageSize

Returns the size of the image (i.e. the size of the bottom level).
numberOfLevels

Returns the number of levels.
62

numberOfLevels: height

Set the number of levels equal to height.

initialization
defineResources

Schedule the entrance of all processors into the simulation.

simulation control
deactivate
Release the simulation from memory.
finishUp

Send a message to all processors for them to release themselves from
the simulation.

file access
dumpImageIntoFile: selectedFileName

Open a file named selectedFileName and write out the image data
to it.

dumpRegionLabelsIntoFile: selectedFileName
Same as previous, but for region labels instead of image data.

loadDataBandIntoPyramid: selectedFileName forDataBand:
bandNumber

Open a file named selectedFileName and load this into pyramid as
data band bandNumber.

loadImageIntoPyramid: selectedFileName

Open a file named selectedFileName and read the image data into
the processors at the bottom level.

63

Pyramid class protocol

instance creation

createPyramid: numberOfLevels

Create a pyramid architecture with numberOfLevels levels.

monitor simulation

monitorSpaceUsage

A background process that monitors the consumption of objects and
memory.

3.4.7 Class ConvSimulation

Class ConvSimulation is a subclass of Pyramid. It is the simplest of

simulations performed on the prototype.

ConvSimulation instance protocol

accessing
imageSize
Return the size of the image (i.e. the bottom level).
initialization
defineResources

Define the arrival schedule of processors into the simulation.

simulation control
finishUp

Allow the processors to release themselves.

64

ConvSimulation class protocol

examples
doExample

Perform a simulation of the convolution and store results.

instance creation
new

Return an instance of ConvSimulation with all class variables
initialized.

3.4.8 Class NBSimulation

Class NBSimulation is a subclass of Pyramid. It is a simulation of the

Nevatia-Babu edge detector.

NBSimulation instance protocol

accessing
imageSize
Returns the size of the image (i.e. the bottom level).
initialization
defineResources

Define the arrival schedule of processors into the simulation.

simulation control
finishUp

Allow the processors to release themselves.

65

NBSimulation class protocol

examples
doExample

Perform a simulation of the Nevatia-Babu algorithm and store
results.

instance creation
new

Return an instance of NBSimulation with all class variables
initialized.

3.4.9 C(Class OPRSimulation

Class OPRSimulation is a subclass of Pyramid. It is a simulation of the

Ohlander-Price-Reddy segmentation algorithm.

OPRSimulation class protocol

examples
doExample

Perform a simulation of the Ohlander-Price-Reddy algorithm and
store the results.

3.5 The Methods

The complete code of the prototype is not included in this thesis due to its
bulk.? The methods describe precisely the individual steps for the
construction of the prototype and all the steps for the processors and ports

for processing tasks to be described.

3The complete source to the SCOOP pyramid are available by contacting the author at
Tulane University, New Orleans, LA 70118-5674.

66

The following chapters will focus on the algorithms that were simulated
on the prototype, the results of these simulations, and general discussions
about this implications of the results.

67

Chapter 4 The Algorithms

This chapter describes the algorithms implemented on the SCOOP
pyramid. It is important to choose a wide range of vision algorithms
dealing with data at different levels of abstraction. The intent here is not to
actually improve the quality of the algorithms, but to find efficient parallel
implementations, to map them onto the architecture, and to compare their
performance to the execution of other architectures. The selected

algorithms cover a wide range of vision tasks:

1. low level image processing: convolution, Nevatia-Babu edge
detection,

2. image analysis: Ohlander-Price-Reddy segmentation (Phoenix
version),

3. high level symbolic computation: rule chaining, and

4. a complete scenario that includes a wide range of tasks from

low level to high level.

Each of the algorithms are discussed in the following sections. A brief
sketch of the pyramid implementation is also given in these sections.
Later chapters provide the details of the implementation of these

algorithms.
4.1 Low Level Image Processing

The low level tasks are usually local (i.e. they deal with small
neighborhoods) and involve simple computations done repetitively
throughout the image. Also, the output is usually a data structure of
similar size. These tasks can be viewed as “image in, image out”
algorithms. A non-exhaustive list of categories of low level image

processing tasks include [57]:

68

Image coding
Image enhancement

Image restoration

B B o

Image transformations

All of these categories (excluding transformations) are typically local
operations. These operations can be viewed as a local neighborhood
function @ (of size (2n+1)x(2n+1)) on the neighborhood of the pixel at
location (x,y) as given by

n

image,,(x, y)= @ (image;,(x+,y+)) (4.1)

1J=-n

where the output pixel is a function of pixel values in its local
neighborhood. Many low level algorithms are performed by multiple

iterations of the process as described by Eq. (4.1).

Because the data to be processed is usually represented by pixel values, the
data structures are typically large, regular arrays of these values. If the
picture is digitized to 512x512 resolution, then there are 262,144 pixel
values. If the image is a multispectral image (e.g. red, green, and blue color
components), the there will be 786,432 values represented by a three
dimensional data structure. If there are a sequence of these color images
arriving at video rates of 30 frames/second, then there will be 23,592,960
values in just one second of image data represented by a four dimensional
data structure. The massive quantity of the data should be kept in mind at

all times when considering processing requirements.
411 Convolution

Convolution of an image is a relatively simple yet frequently used
algorithm. It is used for image smoothing, edge enhancement, and many

other filtering operations. It can also form the basis of more complex
69

algorithms such as the Nevatia-Babu Edge Detector (discussed in the next
section). For this reason, it was chosen as the starting place for the

simulation work. Convolution of a kxk kernel with an image is specified

by

k k
image(x,y) = zz image(x—i,y—j) x kernel(i,j) (4.2).
i=1 j=1

The contents of the kernel determine the type of filtering operation to
perform. For example, simple edge enhancement can be performed by a

gradient operator. The gradient is measured by the following [58]

s(x,y) =af A+A; (4.3)

o(x,y) = tan'l(‘-i—z-) (4.4)
1

is the magnitude and direction at location (x,y), and where

A, = f(x+n,y) - f(x,y) (4.5)
Ap = flx,y+n) = f(x,y) (4.6).

The value of n (known as the “span”) is a small value (typically 1). The
function f(x,y) is the image function. Figure 4.1 shows the 2x2 Roberts

gradient kernels for a span of one [1]
01 10
A= =
: [—1 0} = [0 —1]
Figure 4.1. Roberts gradient kernels

Figure 4.2 shows two other directional kernels used to measure gradients
in the 0° and 90° directions

70

101 11 1
Ay=|-101 A=l 0 0 0
101 =,

Figure 4.2. Directional edge kernels

Again, looking at Eq. (4.2), it becomes immediately obvious that the
number of operations involved in determining the output value at any
one point is proportional to the size of the kernel. A serial computer must
perform this convolution for each of the N2 pixels in the image (assuming
an NxN image). Thus, the serial execution of a convolution of an NxN
image with a kxk kernel is O(NZ2k2) steps. In other words, the time is
dominated by the size of the image. It is desirable to perform the
convolution using a method that is independent of the size of the image.
The output value at any location (x,y) in the image is a function only of the
kernel and the values of its neighboring pixels. The size of the

neighborhood is equal to the size of the kernel.

If each processor at the bottom level of the pyramid must determine the
output value for its location, then each processor must communicate its
value to its neighbors in order to determine the entire neighborhood.
Then, each processor convolves this neighborhood with the kernel (as
given in Eq. (4.2)). For a 3x3 kernel, the following steps are taken to

determine the neighbors of a pixel:

1. Pass the pixel value to the Northern, Southern, Eastern, and
Western neighbors through the 4 ports.

2. Receive the pixel values from the Northern, Southern,
Eastern, and Western neighbors. These are the pixel values
passed from execution of step 1 by the neighbors.

3. Pass the value received from the North to the East and West.

4. Receive the pixel values from the East and West. These are
the pixel values from the Northeast and Northwest
neighbors, respectively.

71

5. Pass the value received from the South to the East and West.
6. Receive the pixel values from the East and West. These are
the pixel values from the Southeast and Southwest neighbors,

respectively.

Figure 4.3 shows the sequence of how the knowledge of the neighborhood

is acquired. A filled in square indicates knowledge of the pixel value.

Y @ 0 © ® 1061 ©
S £
B 1 —~ - e -
©,_ 0. © O © | 4© o o ‘o
-& F—a | LBt T e I i el
1 T 5 §
©?) e 0! ©

Figure 4.3. Knowledge of pixel's 3x3 neighborhood is acquired

After these six steps, each processor has all the pixel values for the entire
3x3 neighborhood. A very similar algorithm is used to find the 5x5
neighborhood (as done in Section 4.2) for a 5x5 convolution. The steps

needed for a 5x5 convolution are just an extension of the 3x3 case:

1-6. Find the 3x3 neighborhood (as previously described).

7. Put the Southwest value to the North, the Northeast value
to the South, the Northwest value to the East, and the
Southeast value to the West.

8. Get the NorthNorthEast value from the North, the
SouthSouthWest value from the South, the EastSouthEast
value from the East, and the WestNorthWest value from
the West.

9. Put the Southeast value to the North, the Northwest value
to the South, the Southwest value to the East, and the
Northeast value to the West.

72

10.

11.

12

13.

14.

Get the NorthNorthWest value from the North, the
SouthSouthEast value from the South, the EastNorthEast
value from the East, and the WestSouthWest value from
the West.

Put the South value to the North, the North value to the
South, the West value to the East, and the East value to the
West.

Get the QuterNorth value from the North, the OuterSouth
value from the South, the OuterEast value from the East,
and the OuterWest value from the West.

Put the WestSouthWest value to the North, the
EastNorthEast value to the South, the NorthNorthWest
value to the East, and the SouthSouthEast value to the
West.

Get the OuterNorthEast value from the North, the
OQOuterSouthWest value from the South, the OuterSouthEast
value from the East, and the OuterNorthWest value from
the West.

Figure 4.4 shows the sequence of how the knowledge of the neighborhood

is acquired (after the 3x3 neighborhood is acquired). Again, a filled in

square indicates knowledge of the pixel value.

The remaining convolution formula can take place in just k? steps (where

k is the size of the kernel). This is a very efficient algorithm and it is

performed in time that is independent of the size of the image. This is a

substantial speed-up of the O(N2k?) steps needed for the serial algorithm.

73

® ®
@ @ ?ﬁ @ (3] e ﬁ@ © ©
8 7 9 10
7_\@/') Z.19 \@/_ ‘S
8 ! gé 10
@ i) ® D ® © e O
e © ©
© © 0 © © © ©i e
® @ @F @ | © ® ! e ﬁ e e
'“"'""‘"'“-‘-""“-i-é ----- Tif-m .‘I“.I e o gl
...... 11...,;‘..1..“?? @*3 13aN
®@ | ® ‘4@ ® i © ®© @ ! PR
@ D 3] (3] @ O ® e

Figure 4.4. Knowledge of pixel's 5x5 neighborhood is acquired

41.2 Morphological Operations

Many cellular operations such as erosion, dilation, shrinking, and isolated
pixel removal are classified as morphological operations. These techniques

were developed formally by Matheron [59] and Serra [60].

Gerritsen and Verbeek [11] describe a method of using table look-up
procedures to perform binary morphological operations. This is done, for
each pixel, by ordering the bits of the neighborhood into a 9-bit index into
the look-up table. The 9-bit index into the table implies that the table is 512

bytes long. There is substantial overhead to load these tables (see

74

Section 5.7.5). There is a specific look-up table for each morphological
operation. The ordering of the neighbors within the 9-bit word starts from
the center pixel, then to the southeastern neighbor, circling clockwise
around the neighborhood to the eastern pixel. Another way to look at it is
that the binary values are multiplied by their corresponding coefficients

and summed together (see Figure 4.5). The 3x3 coefficients are

8 4 2
16 256 1{-
32 64 128

Figure 4.5. Ordering of 3x3 Morphological Coefficients.

The method for performing these operations in the pyramid are very

similar to the convolution operation:

1. The 3x3 neighborhood is found using the steps outlined in
Section 4.1.1.

2. The index to the morphological table is found by ordering the
binary pixels into a 9-bit word whose place in the 9-bit word
can be associated with the ordering as given by Figure 4.5.
This 9-bit word is an index into a 512 byte table.

3. The center value is replaced by the value given in the table.

The timings for the different architectures are the same order of magnitude
for the 3x3 convolution. Morphological operations are basically look-up
table responses to a 3x3 binary neighborhood. Many of these can be
performed using multiple iterations to extract certain features. For
instance, the TM scenario (in Chapter 5) uses 50 iteration of a topologically-
preserving shrinking look-up table in order to realize the medial-axis
transform of the water. Results of the morphological operations are

presented as part of the two scenarios in Chapter 5.

75

4.1.3 Nevatia-Babu edge detector

The Nevatia-Babu edge detector [61] is a convolution based form of edge
detection. Six convolutions are performed with the image and six 5x5
directional edge kernels and their outputs are compared at neighboring
pixels to determine whether or not each pixel is an edge pixel. The steps at

each pixel location are [62]:

1. Perform a convolution with six 5x5 directional edge kernels
(see Figure 4.6). Save each of the outputs.
2. The direction with the greatest magnitude is the edge
direction and its magnitude is its edge magnitude.
3. A pixel is an edge pixel if
a. its edge magnitude is greater than the edge magnitudes
of the neighboring pixels in the direction normal to the
edge direction of this pixel (the diagonals approximate a
normal direction to a 30° edge),
b. the edge directions of the two neighboring pixels are
within 30° of the center pixel, and
c. the edge magnitude is greater than a specified
threshold.
4. If parts 3a and 3b are true, then the two neighboring pixels are
disqualified from being edge pixels.

Figure 4.6 are the edge kernels for the convolutions. They are edge masks
in six directions: 0°, 30°, 60°, 90°, 120°, and 150°.

76

[-100 -100 0 100 100 [-100 32 100 100 100
-100 -100 0 100 100 -100 -78 92 100 100
100 -100 0 100 100 ~100 -100 0 100 100
-100 -100 0 100 100 -100 -100 -92 78 100

L 100 -100 o 100 100) L-100 -100 -100 -32 100.

(100 100 100 100 100] [100 100 100 100 100]
) 78 100 100 100 100 100 100 100 100
~100 -92 0 92 100 0 0 0 0 0
-100 -100 -100 -78 32 -100 -100 -100 -100 ~-100

-100 -100 -100 -100 -100) [-100 -100 =-100 -100 ~-100J

" 100 100 100 100 100] [100 100 100 32 -100]
100 100 100 78 -32 100 100 92 -78 -100
100 92 0 -92 -100 100 100 0 -100 ~-100

32 -78 -100 -100 -100 100 78 -92 -100 -100

100 -100 -100 -100 -100) L100 -32 -100 -100 -100.

Figure 4.6. Convolution kernels for Nevatia-Babu edge detector

This algorithm is implemented in the pyramid in a similar fashion to the
convolution. There are some additional savings. First of all, all six
convolutions take place after only one communication sequence. That is,
each bottom level processor determines its 5x5 neighborhood only once.
Then all six convolutions are calculated. This saves the communication
steps for five of the convolutions. After the edge magnitudes are
determined for the six directions, each processor then finds the edge
magnitudes and directions for its 3x3 neighborhood. Each processor then

determines if it is an edge pixel and sets an edge flag accordingly.
4.2 Image Segmentation

Winston [63] defines image segmentation as, “the problem of dividing an
image into coherent regions corresponding to object faces.” Another way
of phrasing it is that image segmentation as the process of separating an
image into spatially coherent regions. The spatial coherency of the final
segmentation provides for fully connected regions without any
unidentified holes. There is no actual metric for spatial coherency, as it is
somewhat subjective.

77

Haralick and Shapiro present a detailed survey of many image
segmentation techniques [64]. They classify these techniques into several

categories:

. measurement space guided spatial clustering
single linkage region growing schemes
. hybrid linkage region growing scheme

i
2
3
4. centroid linkage region growing schemes
5. spatial clustering schemes

6

split-and-merge schemes

Ballard and Brown present a simpler categorization of segmentation
techniques [1]. The two basic approaches to segmentation are edge based
and region based. Both of these approaches are complementary to each
other. Edge based segmentation methods rely upon finding boundaries
between objects by searching for the edges. Region based methods group

pixels into regions that represent individual objects (or parts of objects).

Each of these approaches makes use of many features from the image.
Intensity values is a single pixel characteristic. Color or multispectral
features are intensity values from individual pixels of multiple spectral
bands. Texture features make use of intensity values of neighboring pixels
and the statistical or structural properties that can be inferred from these.
Hanson and Riseman incorporate these different methods into the
VISIONS system [6, 12]. This system makes use of the processing cone (see
Chapter 2) model to extract boundary and region features to form an image
specific model containing regions, segments, and vertices. This model is
then compared to the world model for matching. A similar approach is
taken by Levine at around the same time [4]. Later work by Levine
incorporates pyramid data structures into the extraction and analysis of

image features [65].

78

4.2.1 Color Segmentation

Many segmentation schemes make use of measurements taken from
different spectral bands. This may improve segmentation performance
where regions might have similar intensities, but different hue or
saturation. Typically, these could be the color spectral components for Red,
Green, and Blue (RGB). Early work in multispectral segmentation was
performed by Ohlander, Price, and Reddy [66]. They make use of histogram
features from multiple data bands in a split and merge technique that is

examined in detail in Section 4.2.2.

Multiple data bands contain more information than a simple
monochrome band and thus should provide for better segmentation
results. The different color bands provide for another dimension within
the feature space. The data bands of the images need not include solely
intensities from the visible spectra, but may also include infrared and

ultraviolet bands. This discussion is restricted to only visible data bands.

Data from the three color bands (RGB) can be transformed into HSI
coordinates (Hue, Saturation, and Intensity) by [66]

(R-G)+(R-B)

H = arccos (4.7)
2V (R-G)R-G)+(R~-B)G-B)
. =m{1 s min(R, G, B)] o
R+G+B

3

The parameter m is the maximum desired saturation value.

Data from the three color bands (RGB) can also be transformed into YIQ

coordinates! (perceptual brightness, In-phase, and Quadrature) by [66]

1 The I in the HSI system should not be confused with the I in the YIQ system.

79

Y =0509 R+ 1.000 G + 0.194 B (4.10)
I =1.000R-0460G - 0540B + M (4.11)

Q =0403R-1.000G + 0597 B + M (4.12)

The parameter M is the highest possible intensity value (255 for 8-bit
images).

The image data can be transformed before segmentation to provide more

data bands to enhance the results of the segmentation.
4.2.2 Ohlander-Price-Reddy Segmentation

The Ohlander-Price-Reddy Segmentation Algorithm uses features from
histograms of image data bands to split regions. This technique is intended
to be used with images containing multiple data bands. The data bands

represents features from different spectral components.

Initially, the entire image is considered to be one uniform region. A
histogram of each data band is taken and analyzed to determine a suitable
threshold. The criteria for selecting a suitable threshold is listed later.
Once a threshold is determined, the region is then split in accordance with
this threshold. Merging is then performed to remove regions that are too
small (typically isolated pixels). [Each region is again processed
individually: histogram of data bands, threshold determination, and
merging. This iterative process continues until regions are no longer split;

that is, a suitable threshold is not found for the region.

The threshold determination is performed by selecting the strongest peaks

in the histogram. Pixels with values outside of this peak are split from the

80

region. The criteria for selecting the best peaks? is as follows (in order of

precedence) [66]:

1. An intensity peak in 0-60 or 200-255 ranges (i.e. close to end of
histogram),

2. Both minima < 10% highest value, max/min ratio > 4,
another peak exists with max/min ratio > 2,

3. Both minima < 25% of peak value, max/min ratio > 4,
another peak with max/min ratio > 2,

4. Max/min ratio > 2, another peak with max/min ratio > 2, if
maxima are within 10% then both are acceptable (bimodal
distribution),

5. Saturation only: minima in 0-200 (lowest 20%), max/min
ratio > 2, specified minima must separate peak with max/min
ratio > 1.2,

6. Minima < 10% of highest value and 10% of all points must be
outside the peak, or

7. Minima < 70% of highest value and max/min ratio > 1.7.

Timings of the serial execution for the OPR algorithm indicate that the
histogram computation generally takes more than 52% of the time
needed [66]. In fact, as the size of the image grows, the number of data
bands increases, or the complexity of the image increases, the computation
time for the histograms increases faster than the times for the other
operations. Thus, the percentage of time needed for histogram
computation also increases. The threshold analysis does not get more
complicated as the more complex image still contains the same number of
bits per pixel (and thus, the same number of bins for the histogram). So, it
is reasonable to assume that the histogram computation for the serial

execution of the OPR algorithm is by far the dominant task in the entire

2The maximum and minimum values of the peaks are used as features to calculate threshold. The
max/min ratio is the ratio of the peak’s maximum to the smaller of the peak’s minima.

81

process. With this in mind, a parallel method to substantially reduce this

burden is presented in Section 4.2.4.

4.2.3 Phoenix Segmentation

The Phoenix Segmentation Algorithm is part of the SLICE segmentation
scheme developed at SRI [67]. It is similar to the Ohlander-Price-Reddy

Segmentation Algorithm in that it uses a recursive histogram-threshold-

merge technique. The difference is in the method used to determine the

threshold. The OPR algorithm determines the strongest intervals by

concentrating on the peaks in the histogram. The Phoenix algorithm

concentrates on the valleys. The method for selecting the threshold is [67]:

1. The histogram is first smoothed and then broken down into

intervals. An interval is from valley, to peak, back to valley.

2. The histogram then goes though a series of interval merging

tests (parameters can be fine tuned)

a.

An interval is retained if the ratio of peak height to the
higher of the two shoulders, is greater than 1.6.

An interval is retained if its peak area is greater than 30.
Also, its area relative to the area of the histogram must
be greater than 0.02.

The second highest peak, and those peaks whose height
is less than 20% of it are merged.

Any interval whose right shoulder is more than 10
pixel counts greater than the lowest interior valley, is
merged with its right neighbor.

Merge intervals with low peak-to-shoulder ratios until

only 2 valleys remain.

82

3. A score is now computed for each interval. The score is the

maximum over all intervals of the function

peak height — higher shoulder)

1000 (peak height

4. The data band receiving the highest score is used to compute
the threshold rule.

Pixels outside of the interval selected for the threshold rule are split away
from the region to form another region. This method is claimed to give
higher quality segmentation results because of the difference in histogram
analysis [67]. Therefore, it is actually the Phoenix method that is used in
this research (although it is still referred to as the OPR Segmentation
Algorithm).

4.2.4 Histogram of Arbitrary Shaped Regions

Unlike the features used by many vision algorithms, the histogram is a
global feature. It is dependent on information from the entire region (as
opposed to a small, local neighborhood). The histogram is a bin count of
the values (typically intensity values) at each pixel in the region of interest.
The histogram of a partially segmented, multispectral scene H(l, r, b)is a

function of gray level, region label, and spectral data band.

A region based segmentation method, such as the Ohlander-Price-Reddy
(OPR) algorithm (described in Section 4.2.2), requires that histograms be
accumulated from a collection of regions that have arbitrary size and
shape. The regions may have irregular shapes and may have holes
(i.e. contain other regions). Therefore, there is no single processor in the
pyramid architecture that can (with certitude) represent the “top” of any
region without including parts of other regions within its domain. This
means that the method cannot simply have the bottom level processors
communicate their values upward and accumulate the histograms for
regions separately.

83

The OPR Segmentation scheme is used as the vehicle in which the
histogram algorithm for the pyramid is presented, although this algorithm
is not limited to this segmentation scheme. Results from the OPR
Segmentation work indicate that the histogram computation on color
images takes approximately 52% of the computation time [66] (the more
data bands, the larger the data bands, or the more complex the image, the
higher this percentage will be). In contrast, the histogram analysis to
determine thresholds takes less than 2% of the computation time; thus, the
accumulation of histograms is by far the most computationally intensive
part of the method. The number of steps required on a serial processor is
O(N?) for each histogram (and there is one histogram for every spectral
component of every region). This section presents a method using a

pyramid architecture is given that reduces this to O(N) for each histogram.

This method is based on a method used by Kushner, Wu, and
Rosenfeld [68] to take histograms on the MPP. This method has been
modified to handle arbitrary shaped regions and many spectral
components. Here, the pyramid's hierarchical structure is useful to
pipeline multiple histograms towards the top processor for analysis in
choosing a threshold. The hierarchical structure of the pyramid reduces
the number of steps needed to broadcast the threshold to O(log N) from the
O(N) needed for the MPP.

The method to perform the accumulation of the bin counts in the lowest
level of the pyramid is as follows. Initially, each processor in the bottom
level holds the gray level and region label of the pixel that it represents in
the image. Each processor is responsible for accumulating the bin counts
(for all regions in all spectral components) for the gray level value that
corresponds to the row number of the processor (Figure 4.7). This means
that it will keep track of Rp separate bin counts (where R is the number of
regions and p is the number of spectral components). To simplify the
discussion, a monochrome image is considered. Thus a packet is a pair of

84

numbers representing one pixel value and label. For p spectral

components, it is p pixel values and a label.

Therefore, all the instances of class LowLevelProcessor hold a packet that
contains the gray level and region label of the pixel that it represents. It
then decides if the gray level of the packet is equal to its row number. If it
is, it then increments the bin count for the region that corresponds to the

packet's region label. If not, nothing happens.

All instances of class LowLevelProcessor then pass these packets
(containing the gray level and region label) to its northern neighbor (and
receive a packet from the south). The choice of direction for passing is
arbitrary. All processors look to see if the gray level corresponds to its row
number and if it does, it will increment the bin count for that region.
Again, they continue to pass these packets on to their neighbors. After N
steps, each processor has accumulated bin counts for all the packets south
of it. This entire process is then repeated in the opposite direction. This
process is repeated in the opposite direction because any given processor
has not yet “seen” the packets from processors that are north of it. If the
bottom level of the pyramid has a wrap-around feature (as on the MPP),
then this is not necessary. After 2N steps, each processor holds the bin
count (for all regions) for the gray level that corresponds to its row (for the

entire column).

This processor accumulates
bin counts for gray level i
for all regions and all
spectral components of the
pixels in column j-1.

i+1

i+2

Figure 4.7. Accumulating bin counts in the bottom level processors

85

The other processors in the pyramid are idle during the accumulation of
the bin counts. Of course, the distributed histograms residing throughout
the entire bottom level of the architecture are very difficult to analyze.
These must be sent upward towards the top level. Also, the information
from the different columns is combined as the information is passed to the
higher levels. #When a higher level processor receives a set of
subhistograms from its four children (consider the 4 processors in the
shaded region of Figure4.7), it combines data from the child at (i+1,j+1)
with the child at (i+1,j+2) and the child at (i+2,j+1) with the child at (i+2,j+2)
by adding the corresponding bin counts together. Then the two
subhistograms are appended together to form a new, larger subhistogram.
The new subhistogram has a length of two (gray levels i+1 and i+2) and
covers two columns (j+1 and j+2). The method used to do this is similar
for all processors (the bottom level does not receive anything from below
and the top level does not pass anything on). This “combine and append”
operation continues up the pyramid with the subhistograms growing at

each interlevel communication step.

The histograms for each region and spectral component are sent in a
pipeline manner up the architecture towards the top. That is, the
histogram for all spectral components are sent up the pyramid (one
following the other in pipeline fashion) for the first region. Then all
spectral components are sent for the next region, and so on. The
histograms are now accumulated at the top processor of the pyramid. The
analysis is done in one processor (i.e. serially) so that the determination of
a threshold (by comparing the histograms) happens efficiently. After the

determination of a threshold, it is broadcasted downward.

The final merging process is performed by smoothing the split regions with
a smoothing kernel (e.g. Gaussian mask). The convolution algorithm on a

pyramid is documented in Section 4.1.1.

86

The only assumption made for this method of histogram accumulation is
that the total number of gray levels possible in a pixel does not exceed the
total number of rows in the image. If there are 8 bits/pixel (in each spectral
component), then there are 256 possible gray levels. Therefore, the bottom
level of the pyramid must be at least 256x256 (i.e. 9 levels). This is not
really much of a restriction; as in Kushner, Wu, and Rosenfeld's method,
larger histograms can be partitioned by requiring processors to keep track of
multiple gray levels. That is, 9 bit images (512 gray levels) could be

row i). In fact, this is the method used in the SCOOP pyramid.
4.3 High Level Symbolic Computation

Symbolic processing for vision often takes the form of semantic network
processing or knowledge based processing [1]. Recent work has been done
in the area of semantic network processing on a small two-dimensional
mesh-connected network of processors [69]. This mesh is the same size as
the third level of the SCOOP pyramid (i.e. 4x4), so adapting this technique
to the pyramid is straightforward. Duda et al. describe a method whereby
semantic networks can be represented in a rule-based inference system [70].
One of the main intents of this research is a goal based vision system, so
the tasks of forward and backward chaining of rules is studied as part of the

overall system.
4.3.1 Rule Chaining within a Production System

A Production System is composed of a set of rules (productions), a database
(context) to keep track of the current state of knowledge, and an inference
engine (interpreter). The symbolic information (i.e. rules and context)
make up the form of knowledge representation for this level of abstraction

of computer vision work.

87

A rule contains two parts: an antecedent and a consequence. The
antecedent (or condition) implies the consequence (or the resulting action).

The format of a rule can be expressed as
antecedent = consequence.

The antecedent is a Boolean value or a logical combination of Boolean
values. These values are determined from the given situation, the result
of some action, or other Boolean variables yet to be determined. These
values represent the current state of knowledge (or context). The
consequence can be a Boolean variable to be used as an antecedent of
another rule, a final goal, or it can initiate some action. The consequence is
inferred from an antecedent that is asserted. The following is an example
set of rules that could be used to describe the detection of bridges in an

aerial scene.
Across(LINE, WATER) = BRIDGES
EdgeDetect(DataBand5) = LINE
RegionGrow(DataBand6) = WATER

The interpretation of the rules can follow two directions: forward and
backward. This process is called “chaining.” The forward chaining of rules
involves the logical inference of outcomes given a set of premises.
Backward chaining of rules starts with a goal and determines what
conditions need to be true in order to prove that goal. In this example, we
can use the backward chaining process to form a goal tree of the
antecedents that need to be proved in order to resolve the goal BRIDGES.
Figure 4.8 is such a goal tree.

Notice that this goal tree is balanced. That is, the number of rules to be

fired to infer the left half is equal to the number of rules to be fired to infer

88

the right half. The circles represent actions to be performed and the

rounded rectangles represent antecedents or consequences.

BRIDGE

WATER

Edge
Detect

BAND 5

Figure 4.8. Goal Tree of Sample Rules
4.3.2 Parallelism During Chaining Process

The are two types of parallelism that can be utilized in a rule-based system.
The inference engine (responsible for performing the forward and
backward chaining of rules) can take advantage of AND parallelism and

OR parallelism.

and parallelism When an antecedent is a combination of two (or more) partial
antecedents and they are logically joined together via an AND

statement, then each of these partial antecedents can be proved

89

concurrently. Another aspect is that if just one partial antecedent
results in a false value, then the proof of the other antecedents is
unnecessary as the logical AND of these will always result in a

false value.

or parallelism When an antecedent is a combination of two (or more) partial
antecedents and they are logically joined together via an OR
statement, then each of these partial antecedents can be proved
concurrently. Another aspect is that if just one partial antecedent
results in a frue value, then the proof of the other antecedents is
unnecessary as the logical OR of these will always result in a true

value.

Each of the antecedents in the rule base of a vision system is often an

“action rule.”

action rule A rule that is composed of antecedents that require some lower level

processing.

These two types of parallelism can be exploited to reduce the effort needed
to prove (or disprove) an antecedent. The rule base constructed for the
SCOQP system is an action-oriented set of rules. Action-oriented means
that many of the antecedents are not just simple logical values, but logical
values that are determined as the result of some complex action that is
performed at a lower level (i.e. an action rule). Specifically, these actions
often make use of the entire pyramid (or critical parts of it) and therefore
prohibit the other actions from taking place. These actions must be
performed serially, even though there is a parallel implementation for it.
In Figure 4.8, the circles represent actions: Edge Detect might represent a
Nevatia-Babu edge algorithm (see Section 4.1.3), Region Grow might
represent some clustering algorithm, and Across represents the overlaying
of both results. Both the edge detection and the region growing use most

of the processors in the architecture during their execution. The

920

overlaying cannot start until the results from the edge detection and region
growing are both finished. Therefore, the actions must occur in sequential
order and neither AND nor OR parallelism can be exploited to the fullest
extent. This is not to say that AND and OR parallelism cannot be exploited
at all. If the region growing is performed first and there are no water
regions detected, then the edge detection need not be performed and the
system reports that there are no bridges. That is, the unnecessary steps can
be “short-circuited” (i.e. bypassed). The overlaying operation is basically a
logical AND of the two processed images and the definition of AND
parallelism states that if one partial antecedent is false, then the entire

antecedent is false.

Conjecture: The action-oriented nature of a rule base in a vision system prohibits
the concurrent proving of each antecedent of a rule on a single
architecture (where that architecture is monopolized by each
action). Therefore, the logical combination of two (or more)
antecedents (each containing actions) must be performed

sequentially.

This conjecture is related to the so called “frame problem” as described in

Minsky’s paper [71]

“The new, more successful symbolic theories use hypothesis
formation and confirmation methods that seem, on the
surface at least, more inherently serial. It is hard to solve any
very complicated problem without giving essentially full
attention, at different times, to different subproblems.
Fortunately, however, beyond the brute idea of doing many
things in parallel, one can imagine a more serial process that
deals with large, complex, symbolic structures as units! This
opens a mnew theoretical “niche” for performing a rapid
selection of large substructures; in this niche our theory hopes
to find the secret of speed, both in vision and in ordinary
thinking.”

91

By forming a goal tree, a hypothesis is created that is to be proven by
proving several subproblems. Making use of AND parallelism and OR
parallelism, the execution of some of these subproblems can be short-
circuited. However, the entire architecture (or at least its critical parts) does

focus its attention on each subproblem during the firing of each action rule.

Therefore, the inference mechanism is not distributed amongst the
processors because of the action-oriented nature of the rule base. Even
though this might have resulted in quicker search times through the rule
base, the savings would not have been worth the overhead needed to
distribute and manage the rule base. As presented in Chapter 5, the
overhead associated with parallel algorithms is often substantial. The
concurrent execution of the actions within the rules prohibit this inference
mechanism from taking advantage of its major source of parallelism.
However, AND and OR parallelism is still used to trim rules (i.e. short-
circuit) to prevent the unnecessary execution of some actions as explained

earlier.
4.4 Sequence of tasks

In order to complete a wide range of tasks on the prototype, a complete
scenario that include tasks that range from low level to high level
algorithms must be performed. The scenario that is presented here
includes algorithms that are as simple as taking a threshold and are all
incorporated within an expert system shell that includes an inference
engine for both forward and backward chaining as well as reasoning with
uncertainty. This scenario starts with a high level abstract goal: given an
aerial scene taken from a LANDSAT satellite, find all the bridges within
the scene. This scenario uses this goal and a set of rules as a starting point.
The inference engine will then form a goal tree and explicitly prepare for a

sequence of lower level algorithms to execute.

9z

Zucker describes the use of production systems with feedback [72]. Multiple
matches can result in an ambiguity as to which rules to fire. Often, this can
be resolved using feedback of rules. For instance, the sample rule-base of
the previous section laid out a method of finding bridges in an aerial scene.
Many edge detection algorithms produce many more edges than would be
reasonable for bridges (even after overlaying these with regions identified
as water). Further rules can be used to eliminate bridge candidates by
requiring that these lines go across the water instead of along it. The
medial-axis transform of the water can be used as a criteria of what it
means to go across the water. Thus, if the first set of rules results in an
unreasonable number of bridges, a further set of rules can be used to
further qualify these candidates as actual bridges. If the production system
includes confidence measures or incorporates fuzzy logic, then the feedback
and execution of these additional rules can increase the confidence
measures attached to the resulting bridges [73]. Therefore, one can infer
that these edges (that went across the water and not along it) are bridges

with a much higher confidence than those that are eliminated.

The next chapter presents the results of these simulations. Processed
images are shown, together with timing results, memory usage, and

analytical comparisons to some other architectures.

93

Chapter 5 Results

The results of the simulations on the SCOOP pyramid are discussed and
presented in this chapter. First, the construction of the prototype is
presented. SCOOP memory usage is then examined. Comparison of object
table usage! and memory usage? for different simulations are shown.
Then, the overhead due to algorithm setup is discussed. Following this is
a presentation of timing results for each of the different algorithms
implemented: convolution, Nevatia-Babu edge detection, Ohlander-Price-
Reddy segmentation, and a complete scenario that includes a wide range of
tasks. Timing results from the prototype are compared with expected
results from the SCOOP pyramid and other architectures. Tables
comparing the performance of several alternative architectures are shown.
These table values for the various architectures were determined using
analytical methods (or from named references). The table values for the

pyramid were verified by SCOOP simulations.
5.1 The Prototype

This section presents the details of the construction and monitoring of the
SCOOP pyramid. Subsection 5.1.1 discusses the construction of the
prototype that is done by creating instances of the classes discussed in
Sections 3.3 and 3.4. Subsection 5.1.2 presents the methods used to monitor
the object table usage and memory usage within the SCOOP pyramid. This
discussion is necessary to understand how some of the results of later
sections of this chapter where determined. Subsection 5.1.3 discusses the
limitations of SCOOP. Subsection 5.1.4 discusses the overhead required to

setup the architecture for the task. This overhead cannot be ignored if the

1Object table usage is often known as “oops usage” in the Smalltalk community.
2Memory usage is often known as “core usage” in the Smalltalk community.

94

architecture is to perform a wide range of tasks that is driven by the

knowledge-base (as are the scenarios of Section 5.7).
5.1.1 Prototype Construction

The construction of the SCOOP pyramid involves the creation of
thousands of Smalltalk objects. There are objects to represent each of the
processors, the ports between the processors, and objects to represent the
architecture as a whole. There are also objects to represent the different
values and parameters during the simulation: pixel values, results from
operations, Boolean flags, and so on. The process of building the pyramid
begins with the sending of the message createPyramid: to the driving

simulation class (a subclass of Pyramid class).

For example, an instance of class Convolution is created for the simulation
of a convolution of the image by a kernel. The instance of the simulation
sends a message to the classes Processor, LowLevelProcessor,
TopLevelProcessor, and UnidirectionalPort to create instances of each of
these. These objects are then interconnected in a fashion that represents
the topology of the architecture. The pyramid is created by connecting each
level of processors together and then interconnecting the levels. An
interconnection is created by assigning a common instance of class
UnidirectionalPort to the processor's instance variables that represent the
correct port connection to its neighbor. For example, the processor—(5, 5, 5)3
is connected to its northern neighboring processor—(4, 5, 5) by assigning an
instance of UnidirectionalPort to processor—(5, 5, 5) instance variable
toNorth and also assigns the very same UnidirectionalPort to processor—(4,
5, 5) instance variable fromSouth. This is continued until the entire
architecture is constructed and interconnected. To repeat, the prototype is
built by creating an instance of each element of the architecture and then by

interconnecting those elements to form the topology of that architecture.

3Processor—(x,y,l) refers to the processor at location x,y on level 1.

95

A pyramid architecture can be built to various sizes. The number of

processors within the architecture is
L
Proc; = Z giil) (5.1)
i=1

for a pyramid with L levels and the recurrence equation

Ports;, = Portsy _; + 10 X 22““_1) B 2 (5.2)

computes the number of ports needed (with Ports; = 16). Table 5.1 shows

the number of processors and ports needed for several different sizes.

of levels # of Processors # of Ports
3 21 144
4 85 720
5 341 3152
6 1365 13136
7/ 5461 53564
8 21845 216400
9 87381 869712
10 349525 3487056

Table 5.1. Size of pyramid for different levels.
5.1.2 Monitoring of Prototype During Execution

The abstract representation of processors and ports by instances of their
classes in the Smalltalk system uses a certain amount of memory
depending on the total number of objects (referred to as oops) used and the
memory (referred to as core) used for each of those objects. Smalltalk keeps
track of the objects created by keeping an entry for each object in an object
table. The amount of memory used for each object in the object table
depends upon the complexity of that object. The properties of an object are
determined by the protocol of the class and the private instance variables
for that object. Therefore, a more complex object is expected to not only
have more instance variables, but also each of those instance variables

(each one of them objects themselves) are more complex and will take
96

more memory. The memory usage increases with the creation of new
objects.

The creation of the architecture creates quite a demand on the object table
and memory usage of the Smalltalk system. A monitoring process is used
during the simulation to keep track of the memory and object usage during
the construction of the architecture and the startup of the simulation. This
monitoring process is started by sending the message
monitorSpaceUsage: to the simulation. The Smalltalk code for

monitorSpaceUsage: and its explanation follow.

monitorSpaceUsage: aFileStream
“This method will fork a process (at higher priority) to monitor stack
space and oops space usage. The higher priority is needed so that a
simulation will not prohibit this from running.”
| aBlock |
aBlock « [1 to: 10000 do:
[l
aFileStream nextPutAll: i printString; nextPut: Character tab;
nextPutAll: Smalltalk coreLeft printString; nextPut: Character tab;
nextPutAll: Smalltalk oopsLeft printString; nextPut: cr.
(Delay forSeconds: 10) wait]].
MonitorProcess « aBlock newProcess.
MonitorProcess priority: (Processor activePriority + 1).

MonitorProcess resume.

The MonitorProcess runs in the background during the simulation. A
continuous loop prints the coreLeft (memory left for objects) and oopsLeft
(space left in object table) to a file. This process is given a higher priority
than all the processes running under the Processors since it must be able to
perform these measurements without the simulation preventing this

monitor from running.

97

Figure 5.1 represents object table usage as a function of real-clock time (not

simulated time) for a 7 level pyramid simulation.

oops used

300000

200000

100000 =

simulation startup phase

begining of algorithm execution

pyramid constructed finished

0 —H— T T T Y T J T ¥ T T 1

0 20 40 60 80 100 120

time (mins)

Figure 5.1. Object table usage in 7 level SCOOP pyramid

In addition to object table usage, a prototype requires memory for each of

the objects themselves. Figure 5.2 represents memory usage as a function

of time for a 7 level pyramid simulation.4

41t is interesting to note that a reduction in the number of levels to 6 substantially reduces
the oops usage, but increases the core usage due to the larger arrays needed for histogram
accumulation (see Figure 5.12).

98

15000000 -

1 simulation startup phase

10000000 -

core used

5000000 -
] begining of algorithm execution

pyramid constructed finished
0 B Lo e LA ma e | —
0 20 40 60 80 100 120
time (mins)

Figure 5.2. Memory usage for a 7 level SCOOP pyramid

Although both Figures 5.1 and 5.2 were measured during the start of an
OPR simulation (to be discussed in detail in Section 5.4), the plots for the
other simulations are identical up to the actual begining of the algorithm
execution. In fact, the tasks (and kernels or tables) are not loaded until the
actual begining of the algorithm execution. This is part of the setup
overhead considered in Section 5.1.4. The plots only extend slightly past
the construction of the SCOOP pyramid and do not present object table or

memory usage during the algorithm execution.

The shape of Figures 5.1 and 5.2 are similar for other size pyramids—they
would differ only in actual object table usage and memory usage due to the
to number of instances of classes Processors and UnidirectionalPort (see
Table 5.1). Both classes TopLevelProcessor and LowLevelProcessor are
subclasses of Processors. Instantiating class Processors (or one of the
subclasses) takes the same number of entries in the object table and uses
the approximately the same amount of memory for each one. This is

shown later in Figures 5.3 and 5.4.

99

The pyramid is constructed (i.e. all processors and ports in place) by 4.5
minutes (Figures 5.1 and 5.2). This is the most intensive use of objects
during the preparation for the simulation. In fact, it is the most intensive
use of objects throughout the entire simulation. The consumption of
object table space increases rapidly and almost linearly during the pyramid
construction stage. This happens during the execution of the method
createPyramid: when sent to the class Pyramid. The 5,461 processors and
53,564 ports consume almost 150,000 objects during the construction.
These results are expected because a large number of similar objects are

created during the construction phase.

The simulation startup phase is the period of time that all processors
(instances of a subclass of EventMonitor) report to the instance of Pyramid
(a subclass of Simulation) and prepare to collect simulation statistics. This
is a much longer period of time and does not consume objects quite as fast.
What does happen is that memory for each of the memory intensive
objects is consumed very rapidly. In particular, all objects that are instances

of Array (or a subclass) are very memory intensive.

During the simulation startup phase, part of the executable Smalltalk
image is constantly swapped in and out of memory. Also, garbage
collection and object table compaction is invoked, thus slowing the
simulation from this point on. The swapping process is used in the Unix
system to manage an executable process that is larger than the actual
amount of memory in the physical machine. These simulations were
performed on a Sun 3/110 and much of the swapping was performed
through a server over an Ethernet network, thus exacerbating this
overhead. The garbage collection process tries to recover unreferenced
objects in order to free space for further creation of new objects. Object
table compaction marks all entries in the object table that no longer exist to
be removed from the table. The active entries are then made contiguous
within the table, thus freeing space for new objects at the end of the table.

100

However, most of the objects are not relinquished until the end of the
simulation; thus the garbage collection and object table compaction
(automatically invoked in Smalltalk) is often time consuming and not too

productive.

Memory usage increases as the object usage increases. This is expected
because the simulation is creating many instances of the same classes. A
simulation with many more diverse classes of objects might have had the
memory usage increase faster as certain types of objects were created. This
did not occur in the pyramid as the three classes of processors are all closely
related and all ports are the same. The next two figures confirm this. In
both Figure 5.3 and 5.4, object table consumption and memory
consumption are plotted against each other. The plots rise linearly during
the construction of the architecture and increase linearly (although at a
higher rate) during the simulation itself. The construction of the
architecture entails the instantiation of the necessary processors and ports
and the interconnection of these. The memory usage after the
construction is due to the instantiation of local storage within each of the
processors during each of the steps. Garbage collection is often invoked
during this process (not shown in these figures) to retrieve the memory

used and free up object table space from unreferenced objects.

The plots for both five and seven levels of the pyramid are similar in that
they have two linear portions, with the architecture construction phase
followed by the simulation startup phase. These plots show that the
relation between object table usage and memory usage are independent of
the size of the pyramid. This is expected because the objects that are created
(all subclasses of Processors or UnidirectionalPort) are similar in
complexity regardless of the pyramid size. The plot for the seven level
pyramid covers a much longer period of time, and thus has many more

data points than were collected using the method monitorSpaceUsage:.

101

1.2e+6 -
1.0e+6 -

8.0e+5

coreUsed

6.0e+5
4,08+5

2.0e+5

0.0e+0 %

0 10000 20000 30000 40000 50000
oopsUsed

Figure 5.3. Memory usage for 5 level SCOOP pyramid.

1e+7 =

8e+6

simulation startup phase

Be+6 - \ /

4o46 -

coreUsed

2e+6 -
Qe+0 4 T Y 1
0 100000 200000 300000 400000
oopsUsed

Figure 5.4. Memory usage for 7 level SCOOP pyramid.

5.1.3 Limitations of SCOOP

Additional memory is always needed for overhead of the interpreter,
arrays, and other large data structures. The current version of the virtual

machine interpreter (v. 1.1) for PS Smalltalk has a limit that the total

102

executable size of a Smalltalk image not exceed 16 MBytes [49].> This
prevented the simulation of larger pyramid structures. Future versions
should not have this limit and will allow for modeling of architectures of
arbitrary size. The SCOOP pyramid does not need to be changed in order to
model pyramids of larger sizes. The method createPyramid: requires the
number of levels to be given as an argument and there is no limit imposed
by the design of SCOOP. Sections 5.2 through 5.4 present actual processed
images by the SCOOP pyramid at either 6 levels (Ohlander-Price-Reddy
segmentation) or 7 levels (convolution and Nevatia-Babu edge algorithm).
These pyramids correspond to bottom levels of 32x32 and 64x64,
respectively. In order to reproduce these images for this thesis, the images
had to be enlarged to a size of 256x256 by replicating pixels. This produces a
“blocky effect” that is unavoidable without altering (e.g. smoothing or
interpolating) the data. This is an artifact of the printing and reproduction

process that is not inherent in the SCOOP pyramid.

The scenario results in Section 5.7 shows processed images of 512x512
resolution. It was possible to process images of this size because the
processing had to be performed offline. The HUMBLE Expert System Shell
(see Section 5.5) version was compatible with Apple’s Smalltalk-80
(version 0.3) for the Macintosh. The images were processed offline, in
accordance with the instructions of HUMBLE, on a Sun 3/110.

The processes of garbage collection and object table compaction reduce the
simulation performance as the processes of the simulation are halted
during these phases. Garbage collection and compaction are invoked
automatically when needed. There is significant swapping to disk during
these phases that also reduces the simulation performance. The swapping
is reduced by adding more physical memory to the machine. The

workstation used for these simulations relies upon a disk server over a

5This appears to be an outgrowth of the era of 16-bit machines at Xerox PARC, where
Smalltalk was developed.

103

network. The swapping process (when needed) is much faster if the
workstation has its own disk. Therefore, both physical memory and fast

local data storage increase the simulation performance.
5.14 Algorithm Setup Considerations

Another point not previously mentioned (and often not thought about in
predicting architecture performance) is that many vision algorithms
require some sort of setup before actual execution. For example, a
convolution requires that the values for the kernel must be sent to the
processors. Thus, the implementation of the algorithm incurs setup
overhead. Setup overhead is defined as the amount of processing time
spent upon preparation for the particular algorithm. In image processing,
this usually entails the distribution of kernel values or tables to be used
during the algorithm.

An analogy to the setup overhead is that of a magic trick using a deck of
cards. Many mechanical card tricks require that the deck of cards be setup
before hand (not in the presence of the audience) in order to work as

smoothly as it seems to when performed.

Equation 5.3 defines the setup overhead as a ratio of the computation to the
overhead time. The ratio vy is defined as

tC
Y=== (5.3)
tO
where . is the computation time and ¢, is the overhead time. Time £
includes communication overhead as well as setup overhead. Previous
research by Sunwoo et al. has shown that some overhead is dependent

upon the size of the data set [74].

104

5.2 Convolution

The actual simulation is performed by creating an instance of the class
ConvSimulation. This is a subclass of class Pyramid and it inherits all the
needed methods to construct the actual prototype. This instance of class
ConvSimulation constructs the actual pyramid, performs the setup for the
convolution, loads the image, and then convolves the image with the
kernel. During the simulation, each processor reports to a log file each step
it performs at each time during the simulation. The log file represents a

report of the history of the simulation.
521 Algorithm Performance

The steps for the convolution are explained in Chapter 4. The convolution
is performed totally within the bottom level of the pyramid. This makes
the performance the same as two-dimensional mesh-connected network of
processors. Table 5.2 presents a summary of the performance for the
convolution algorithm on several architectures. Utilization is defined in
Section 1.2. The parameters within the table assume an NxN image to be
convolved with a kxk kernel. The systolic design is one consisting of k3
systolic processors and is described in detail in [75]. The effects of filling and

flushing pipeline are not considered for the systolic design.

of steps® utilization
serial N2k2 1.0
systolic NZk-1 1.0
2-D MCN k2 1.0
pyramid k2 0.75

Table 5.2. Performance for convolution

While the performance of the pyramid is as strong as the 2-D MCN (and

stronger than the others), the utilization of the architecture is lower than

6For this chapter, all values given are assumed to be order of magnitude, unless otherwise
stated.

105

the 2-D MCN. The implementation of the convolution on the pyramid is
identical to the 2-D MCN, thus the processors on levels other than the
bottom level seem somewhat superfluous for this algorithm. However,
the pyramid does allow for continuous processing of other algorithms
while the convolutions are taking place. Consider a sequence of images
(e.g. motion detection) where frames appear on the bottom level at a steady
rate. A convolution takes place in O(kZ) steps. The convolved image is
sent up to the next level where the result is reduced in resolution by a
factor of 2. The bottom level is now ready for the next frame in the image
sequence. Meanwhile, levels 1 through L-1 (for an L level pyramid) now
act as its own L-1 level pyramid to perform further processing on the
convolved frame. If the rate of processing within this upper part of the
architecture is fast enough to keep up with the rate of acquisition of the
image frames in the bottom level, then bottom level will represent a 2-D
MCN of processors that is fully integrated into an L-1 level pyramid for
efficient data transfer. The advantage here is the full integration of the 2-D

MCN to other parts of the architecture for further processing.
5.2.2 Setup Overhead

The broadcasting ability of the pyramid sets up each kernel in O (k2 logN)
time. The 2-D MCN does not have this broadcasting ability and requires
O(k2N) time to setup the kernel. This is not insignificant and is in fact
larger than the time to perform the convolution itself (although still much
faster than the serial machine with its setup time). The setup need not be
performed for each convolution if repeated convolutions with the same
kernel are to be performed. The scenario described in Subsection 5.2.1
about a sequence of images is such an example. The setup time (only
performed once) is then insignificant compared with the processing time
needed for the convolutions. However, this is a special case and a designer

must consider the setup overhead in general. Table 5.3 shows the setup

106

times and total times for the convolution (the totals assume one setup and

one convolution).

of steps for setup total # of steps
serial k2 (N2+1)k2
systolic k3 N2k-1+k3
2-D MCN k2N (k2+1)N
pyramid k2 log N (k2+1) log N

Table 5.3. Performance for convolution

The time to fill up the pipeline (systolic case) can be ignored since it is
small compared with the execution time. The same is especially true in
the serial case. However, the very efficient mesh and pyramid algorithms
are now so efficient that their own setup times become the dominant

factor.
5.2.3 Results

As an example of this procedure, Figure 5.5 is a gray level image before
convolution. Figures 5.6 and 5.7 are the same image convolved with a
smoothing kernel and an edge enhancement kernel, respectively. These
images (64x64) are convolved in a 7 level pyramid (64x64 bottom level) in
partitions. There are no edge effects because a row of LowLevelProcessors
is added to the bottom level along each side of the image (66x66 bottom
level). These extra rows of LowLevelProcessors contain the pixel values
from the neighboring partitions. The time to process the image (ignoring
partitioning) is completely independent upon the size of the image as well
as the content of the data itself. The times are only a function of kernel
size. These images were convolved with 3x3 kernels. The setup times for
loading the convolution kernels are a function of the size of the kernel and

the number of levels in the image.

107

Figure 5.5. Gray level image before Figure 5.6. Image after convolution with

convolution. smoothing kernel.

i
i
5
st *

Figure 5.7. Image after convolution with edge enhancement kernel.

Figures 5.8 and 5.9 are the smoothing and edge enhancement kernels,

respectively.

108

a1 0.1 0.1
0.1 0.2 0.1
0.1 0.1 0.1

Figure 5.8. Smoothing kernel.

-1 -1 -1
-1 9 -1
-1 -1 -1

Figure 5.9. Edge enhancement kernel.

5.3 Nevatia-Babu Edge Algorithm

This algorithm is an interesting example of the combining several simple
operations in order to realize a more complex process. This operation
starts with six 5x5 convolutions and the results of the convolutions are
compared to determine whether or not each pixel is to be labeled as an edge

pixel. Section 4.1.3 contains a more detailed description of the algorithm.

As with the previous simulation, this simulation is started by creating an
instance of class NBSimulation. Itis a subclass of Pyramid. It inherits all
the methods required to construct the prototype. A log file of this

simulation is created with the reports of each processor during each step.
5.3.1 Algorithm Performance

Table 5.4 shows the results for the Nevatia-Babu edge algorithm. The
times for the convolution of the 6 kernels are combined with the time for
the comparison steps. In this table, N is the size of the image (i.e. NxN), k; is
the size of the convolution kernels, and k; is the size of the comparison

neighborhood.

109

of steps utilization
serial N (k] + k) 1.0
systolic N (i +Kg) 1.0
2-D MCN ki +k; 1.0
pyramid ki +k; 0.75

Table 5.4. Performance for Nevatia-Babu Edge Detection
5.3.2 Setup Overhead

As with the convolution, the results in Table 5.4 indicate that both the 2-D
MCN and the pyramid perform the best. Again, the pyramid does not
achieve complete utilization of the architecture because the task uses only
the processors on the bottom level. However, the pyramid does have a
lower setup time for convolution kernels (see Table 5.3). This setup time is
even more dominant in this algorithm as the convolution can be
performed in an even more efficient manner than before (for both mesh
and pyramid). After the neighborhood is determined for the first of the six
convolutions, the second through sixth convolution can take place with
no interprocessor communication at all. The entire neighborhood is

already determined after the first convolution.
5.3.3 Results

Figure 5.11 is the image that results from processing Figure 5.10 using the

Nevatia-Babu algorithm.

110

Figure 5.10. Gray level image before Figure 5.11. Processed with Nevatia-Babu

Nevatia-Babu algorithm algorithm
5.4 Segmentation

The segmentation simulation is quite complex compared to the previous
simulations. In this case, all the processors within the architecture are
expected to be more active during the algorithm. The previous
simulations were performed on the bottom level (except during setup).
An instance of class OPRSimulation is created for this simulation. As with
the other simulations, it is also a subclass of Pyramid and inherits all the
needed methods to construct the prototype. This simulation can be
adjusted to handle segmentations with varying image size, number of data
bands, and number of bits per pixel. Again, a log file is written as a history

of each segmentation.

The results of the simulations of the segmentation algorithms are
inherently more interesting in that they are typically dependent on the
data. Very complex images will take longer to segment than simpler ones.
This usually implies that more iterations are needed to converge on the

final results.
111

Segmentation is also interesting in that it facilitates the transition between
different levels of data abstraction. One starts out by segmenting an image
(pixel-based data) and form regions that can be represented by symbolic

information. This symbolic information often includes

shape description,
area of region,
label of region,

surface orientation,

oo 9 g e

illumination/shading information.

The important step in this transition is to define the regions correctly.
With poor region definition, the symbolic descriptions derived will be

misleading at best.

The segmentation process studied is the class of split-and-merge (or divide-
and-conquer) techniques. In particular, a modified version of the
Ohlander-Price-Reddy Segmentation process (known as the Phoenix

Segmentation process) is simulated and results are presented.
5.4.1 Simultaneous Histogram Computation of Arbitrary Shaped Regions

A requirement of the split-and-merge segmentation algorithms is to
accumulate histograms of the regions. The entire image starts as one
uniform region. A histogram is accumulated and the degree to which the
histogram is bimodal is determined. This is used to determine a threshold
if one is acceptable. If the histogram is not bimodal enough, then a
threshold is not chosen and the region is not split. If a threshold is chosen,
then the region is split into two separate regions in accordance with this
threshold.

Tanimoto (in [76]) describes a method of computing the histogram on a

pyramid. The image size is NxN pixels and contains G gray levels. In

112

sequence, the values from 0 to G-1 are used as a threshold for the bottom
level processors. Each step requires that the processor compare whether or
not its pixel value is less than the threshold. If so, it contributes to the bin
count for that gray level.” This process is continued in pipeline manner up
the architecture towards the apex. This process for computing the
histogram requires G iterations of the counting process. The counting
process takes O(log N), so the entire histogram takes O(G log N) steps. This
procedure is quite efficient, but is too general to be used to compute the

histogram of arbitrary regions.

Levialdi (in [77]) describes a method whereby the histogram of the region is
not actually computed, but bimodality is detected (or more precisely,
estimated) at various levels of resolution. Each parent processor finds the
partition (of the children) so as to minimize the variance about the mean.
By comparing means, bimodality can estimated. At some level, a processor
will decide that the region is bimodal and then the threshold will be
broadcast downwards. This method is quite analogous to human visual
system. However, there are practical programming problems in the
operation of implementing this. First, it is not quite precisely an
implementation of the algorithm in question. The Phoenix version of the
OPR Segmentation process searches for dominant intervals in the
histogram, not for valleys. This produces improved segmentations
results [67]. Secondly, this assumes an image model of a single object and
background. Complex images of many objects (particularly overlapping
and occluding) will present programming problems for coordinating the

independent bimodal searches.

Section 4.2.4 presents a detailed description of the method developed to
compute the histograms of arbitrary shaped regions simultaneously. The

method is to accumulate the bin counts simultaneously for all regions and

7Notice that this is an accumulative histogram and that the actual count for that bin can be
obtained by subtracting values previous bin counts.

i 5

all spectral components. The histograms are now distributed among the
bottom level processors. The second phase is to send the subhistograms
upwards in a pipeline, combined-and-append fashion until they reach the
top processor (see Section 4.2.4). This takes O(N + RpG) steps.

5.4.2 Ohlander-Price-Reddy Segmentation (Phoenix Version)

The following results were obtained in the SCOOP pyramid by
instantiating the class OPRSimulation. The simulation makes use of the

entire pyramid and utilization plots are presented.

For the following times, N is the size of the bottom level, p is the number
of data bands, R is the number of regions, G is the number of gray levels,
and k is the size of the neighborhood used in merging. The following

times are for 1 iteration.

The communication for accumulating the bin counts takes O(N) steps. The
time to send the histograms up takes O(RpG) steps. The histogram analysis
requires O(RpG) steps (serially). Broadcasting the threshold rule takes
O(log N) steps. Table 5.5 lists the times needed (order of magnitude) for the
different subtasks of a single iteration of the OPR segmentation algorithm

using serial, 2-D mesh-connected network, and pyramid architectures.

histogram® threshold analysis merge
serial RpN2 N2 RpG k2N2
2-D MCN RpN N RpG k2
pyramid N+RpG log N RpG k2

Table 5.5. Performance for OPR iteration

There is quite a speed up for certain tasks in the pyramid (more noticeable
as N becomes large). One takes advantage of using a powerful processor as

the top processor in the SCOOP pyramid. When the histogram is loaded

8The 2-D MCN histogram computation leaves a distributed histogram along the first column
of processors. An additional N steps are required to have them “funnel-off” to a single
processor for analysis.

114

into this processor for analysis, it can analyze the histogram at a very fast
speed so that the resulting threshold will be obtained very quickly. The
histogram is still the dominant task in the OPR algorithm and the SCOOP
pyramid manages to speed it up quite a bit. Note that all the results are for
just 1 OPR iteration. The number of iterations is dependent on the data,
and the effects of the speed-up is compounded if there are many iterations

(i.e. as the complexity of the data increases).

Figure 5.12 is a plot of number of bins each processor is responsible for
versus different sizes of pyramids and different dynamic ranges. The taller
the pyramid, the larger the bottom level. Thus, the lower level processors

for the taller pyramids have less bin counts to keep track of.

10 -
& 6 |evel
g 8- |-® 7level
a -5 8 level
2 -~ 9level
o 6 -
B
[+1]
(=N
a
[+ 4 -
=
Q
o
=
3 2- /
0 T T T T ' 3 g

0 100 200 300
of gray levels in image

Figure 5.12. Number of bins each processor is responsible for

Figure 5.13 is a plot of the utilization of the processors in the pyramid as a
function of time. The accumulation of histogram bin counts is the
dominant process. The bottom level (~75% of the architecture) works
alone on this process. The histograms (for each region and spectral band)
are sent up the pyramid to the top processor. The histogram analysis is
done in the top processor while the other processors remain idle (this

115

accounts for the near zero utilization during this process). The
broadcasting of the threshold is then performed in logN steps. Finally, the

bottom level performs the merging.

1.0 1 ; E
l : <
send histograms up threshold
0.8 -:‘ A lll—ﬁl
5_ 06 = @ \
g %‘ merge
= 0.4 - 8
J accumnulate bin counts
0.2
0.0 T T
0 100

of steps

Figure 5.13. Utilization of the pyramid during each iteration of the OPR algorithm

Figure 5.14 is a plot of time needed (as a percentage of each iteration) for

each of the processes for 3 data bands at 6 bits/pixel in each band.

Figure 5.15 is a plot of time needed (as a percentage of each iteration) for

each of the processes for 1 data band at 8 bits/pixel in each band.

Notice that the task of accumulating the bin counts is the dominant task.
The histogram accumulation is always the dominant task in the Ohlander-
Price-Reddy Segmentation [66]. The pyramid has a good ability to broadcast
and speeds up the threshold task by quite a bit. The local communication
of the bottom level mesh provides for rapid merging process. The analysis
is done serially. The accumulating of bin counts pushes the values of the
image around the bottom level in the same way a systolic array operates

upon the data. This accounts for the smaller amount of speed-up in this

task.

116

threshold

sendHistUp
&
3
8 merge
o
analysis

accBinCounts

] ™ | 5 i = L] i)]
0 20 40 60 80
% of leration

Figure 5.14. Processing time for each step of OPR iteration—3 data bands, 6 bits/pixel

threshold

merge

Process

analysis

sendHistUp

accBinCounts

1 F i L 1] e 1 b i
20 40 60 80
% of lteration

o

Figure 5.15. Processing time for each step of OPR iteration—1 data band, 8 bits/ pixel

SCOOP simulations were done for data sets of varying size, bits per pixel,
and number of data bands. Pictorial results of a typical segmentation are

now presented.

117

5.4.3 Results

Figures 5.16, 5.17, and 5.18 are the original RGB data bands processed. In
this simulation, the pyramid could only complete the algorithm for a 6-
level pyramid because of the restricted memory available, as explained in
Subsection 5.1.3. These data bands are 32x32 and have 6 bits of dynamic
range. Even with this degradation of the input data, the segmentation
results shown in Figures 5.19, 5.20, and 5.21 are quite good. These results

overlay an outline of the region boundaries on top of the data bands.

Figure 5.16. Red data band. Figure 5.17. Green data band.

118

Figure 5.18. Blue data band. Figure 5.19. Region boundaries overlaid with
red data band.

Hiogd | { :
g

Figure 5.20. Region boundaries overlaid Figure 5.21. Region boundaries overlaid with
with green data band. blue data band.

5.4.4 Space Tradeoffs

A curious phenomena occurs when segmenting images of different sizes.
An image of smaller resolution should take less time and space in the
119

SCOOP simulation. It is true that it took less time by the expected values
predicted in Table 5.5. However, the object table usage and memory table
usage did not decrease proportionally (see Figures 5.3 and 5.4). A five level
pyramid is only 1/16% the size of a seven level pyramid.? However, the
amount of object table usage and memory usage for a seven level pyramid
is less than 16 times that of a five level pyramid. This is due to the relative
increase in bin count responsibility with increasing bits per pixel, as shown
in Figure 5.12, for pyramids with a smaller number of levels. When taking
this into account, the object table usage and memory usage turn out as

expected.

5.5 The Expert System Shell

Ishikawa and Tokoro present the idea of Distributed Knowledge Object
Modeling in their Orient84/K language [78]. The Orient84/K language is
an object-oriented language (based on Smalltalk) for knowledge
representation. It was not possible to use Orient84/K in this research as it
does not allow for execution of standard Smalltalk programs underneath it
and therefore does not integrate well with the Smalltalk environment.
This led to the use of an alternative expert system shell to drive the

simulations.

In order to keep all the processing within the Smalltalk system, an object-
oriented inference mechanism was needed. The HUMBLE expert system
shell [79] is used to construct the knowledge-base (rules) for the vision
system. HUMBLE is written in Smalltalk and can send messages to
Smalltalk objects outside of the HUMBLE shell.

9A pyramid asymptotically increases in size by a factor of four as each level is added to the
bottom. Thus, adding two levels will increase the relative size by a factor of 16.
10HUMBLE is a trademark of Xerox Corp and is a product of Xerox Special Information
Systems.

120

The format of HUMBLE rules are not Smalltalk, but are compiled into
Smalltalk code within the HUMBLE shell. The basic structure of the rules

are

RuleName

“comments = should explain purpose of rule”

statements.
Any statements surrounded by a pair of double angle brackets (‘<<’ and
>>’) are interpreted directly as Smalltalk code. Thus the HUMBLE system
will allow for firing of rules to trigger other Smalltalk tasks (such as
previously simulated algorithms). The rules surrounded by curly brackets
and preceded by an at sign ('{@...}") are rules to be chained in the forward
direction. Therefore, both the forward and the backward inference

mechanism were used.

A HUMBLE knowledge-base is constructed by building Entities [79]. An
Entity is a formal representation of something about which rules can be
written. An Entity is much like an instance of a class of entities known as
an Entity Type. Entities contain parameters that are manipulated by the
rules of the system.

In this research, the only version available for the HUMBLE shell was for
the Macintosh computer. The instructions from the inference engine are
used to control off-line processing since it was not possible to complete the
scenario (Section 5.6) with the limited memory of the Macintosh. The
Smalltalk messages resulting from the formation of the goal tree (by
HUMBLE) directed the off-line processing (on the Sun 3/110 workstation).
The timing results presented later takes the known parallel execution

times of the off-line processing into account.
5.6 A Scenario: Finding Bridges in Aerial Scenes

In this scenario, the goal is to find bridges in a multispectral LANDSAT
image. A set of rules is constructed to represent the knowledge used in
121

processing LANDSAT data. As much a priori knowledge is used to take
advantage of experience from previous processing tasks. The following are

the rules of the knowledge base that fired in this scenarioll:

findBridgeCandidates
“Rule will check for lines going across water - these are probably bridges.”
ifNoneOf: Region
have: [labelOfObject = ‘'water']

then: [@{findWaterl}].

“If no water exists now, then the image has no water.”

ifNoneOf: Region

have: [labelOfObject = 'water']

then: [<<Transcript cr ; show: 'No water regions in
image.'.>>].

“Now that we have water, we can now find and overlay edges.”

{@findEdges} .

{@overlayEdgesWithRegion}.

findEdges
“Determine the instrument type and perform correct”
“sequence of tasks.”
if: (dataSet = 'MSS’)
then: [{@findEdgesMSS}]
else: [
if: (dataSet = ‘TM')
then: [{@findEdgesTM}]
else: [<<Simulation report: ‘unknown instrument’].

1.

findEdgesMSS
“Find edges in a multispectral scanner (MSS) data set.”
“Signal to architecture to perform edge detection”
<<Simulation active findEdges: #band5>>.
“Now threshold edges using 5 most significant bits.”
<<Simulation active threshold: 32>>.
“Get rid of isolated pixels.”
<<Simulation active morph: #isolRm>>,

findEdgesTM
“Find edges in a Thematic Mapper (TM) data set.”
“Signal to architecture to perform detection”
<<Simulation active findEdges: #band5>>.
“Now threshold edges using 5 most significant bits.”
<<Simulation active threshold: 32>>.
“Get rid of isolated pixels.”
<<Simulation active morph: #isolRm>>.

11The rules are expressed in a variant of Backus-Normal form (BNF). This is the syntax
used in the Humble system. Many other rules exist, such as finding region size, but do not fire
in this example.

122

findwWater
“This rule will find water regions in image.”
if: (dataSet = ‘MSS’)
then: [{@findWaterMSS}]

else: |
if: (dataSet = ‘TM')
then: [{@findWaterTM}]
else: [<<Simulation report: ‘unknown instrument’].
1.
findWaterMSS

“Find water regions in MSS data set.”

<<Simulation active threshold: #band6 at: 50>>.
<<Simulation active inversion #bandé>>.
labelOfObject = ‘water’.

findWaterTM
“Find water regions in TM data set.”
<<Simulation active threshold: #band4 at: 32>>.
<<Simulation active inversion: #band4>>.
labelOfObject = ‘water’.
“Now skeletonize to find medial axis of water.”
<<Simulation active morph: #skeleton times: 50>>.
labelOfCObject = ‘skeleton’.

overlayEdgesWithRegions

“Now overlay water and edges.”

if: (dataSet = 'MSS’)

then: [
<<Simulation active overlay: #band5 with: #bandé>>.
<<Simulation active morph: #erode times: 2>>.
<<Simulation active morph: #isolRm>>.
labelOfObject = ‘bridge’ withCertainty: 0.7

1.
“TM bridges have higher confidence since they are”
“overlaid with medial axis of water.”
if: (dataSet = ‘TM’)
then: [
<<Simulation active overlay: #band4 with: #band5>>.
labelCfObject = ‘bridge’ withCertainty: 0.8
1s

In plain English, these rules essentially follow these heuristics:

Bridge candidates are lines that run across water.
2. One finds water by passing the proper spectral band through a
threshold.

3. One finds lines using an edge detector.

123

4. Lines found using rule 3 overlaid with water found using
rule 2 are bridge candidates. Bridge candidates are bridges
with a moderate confidence level.

5. One can increase the confidence that the bridge candidates are
bridges by eliminating those bridges that are not
approximately normal to the axis of the water. That is, bridges
go across water and not along water. Therefore, the bridge
candidates should intersect the medial axis of the water to

improve the confidence that the candidates are bridges.

All of these rules will be explained as they fire with the output images

shown in Subsections 5.7.1 and 5.7.3.
5.7 Scenario Results

As explained in Section 5.1.3, the limitations forced the actual low level
image processing tasks to be executed offline. Within the Smalltalk
environment, the HUMBLE shell is used to create a goal tree that
determined the processing steps necessary at each point in time. Prior
simulations determined the time necessary for these offline operations and

these times are incorporated into the timing results.

Two scenarios are described in the following subsections. The first one is
from a data set of the Washington, D.C. area using the Multispectral
Scanner instrument. The second one is from a data set of the Baltimore
area using the Thematic Mapper instrument. These are both LANDSAT
instruments. These scenarios are meant to show the flexibility of the
system—that it adapts to different sets of data and perform the

corresponding operations as described by the rule set.

124

5.7.1 MSS Scenario

Figures 5.23 and 5.24 are bands 5 and 6 of the MSS scene, respectively.
Figure 5.25 is the result of performing a convolution of band 5 with the
Laplacian mask as shown in Figure 5.22 after a threshold of 32 (5 most
significant bits). In this image, the outline of the water becomes noticeable
and the some of the lines stretching across the water are the bridges.

-1.0 -1.0 -1.0
-1.0 8.0 -1.0
-1.0 -1.0 -1.0

Figure 5.22. 3x3 Laplacian Kernel

Figure 5.23. MSS data band #5. Figure 5.24. MSS data band #6.

125

Figure 5.25. Band 5, edge detection, Figure 5.26. Band 5, edge detection,

threshold 32. threshold 32, isolated pixel removal.

Figure 5.26 is the result of one pass of the isolated pixel removal operation
performed upon Figure 5.25. This removes much of the edge effects on the

water without removing any bridge pixels.

Next band 6 is used to determine the water regions. Experience has shown
that using threshold of 50 is a good value to find water in band 6 of the
MSS. Figure 5.27 is band 6 after a threshold of 50.

126

Figure 5.27. Band 6, threshold 50. Figure 5.28. Invert pixels of previous.

The results have to be overlaid. This operation is basically an AND
operation. So, each pixel of the image must be inverted so that the water
has a value of one and the non-water regions are zero. This results in
Figure 5.28.

The two images are overlaid and Figure 5.29 is the result (Figure 5.30 is an
inverted and magnified version of Figure 5.29). Notice that the only errors
are those small isolated edges over the water. Erosion will be used in the

next steps to get rid of these without severely affecting the strong lines.

127

Figure 5.29. Overlay of processed Figure 5.30. Inverted and magnified image of
bands 5 & 6. Fig. 5.29

(¥

f

Two parallel bridges

bridge ——p» —

Figure 5.31. Isolated pixels removed from Figure 5.32. Inverted and magnified image of
Fig. 5.29 Fig. 5.31

Isolated pixels are removed after erosion and six bridge candidates (4 real
and 2 false) are found in Figure 5.31. The resulting image is inverted for

clarity, annotated and shown in Figure 5.32.

128

This processing found three bridges and resulted in also three errors (false
alarms). Further rules can be used to filter out such errors (the TM
scenario in Section 5.7.3 uses such a rule). A rule stating that a bridge must
go across the water and not along it increases the confidence measure

associated with each qualifying bridge. This is used in the next scenario.
5.7.2 MSS Timing Data

The processing times are reflected in the following plots. Figure 5.33 shows
the utilization of the architecture as a function of time. This plot includes
overhead associated with loading convolution kernels and morphological
operation tables during the execution of the actual process. This overhead
cannot be ignored unless a sufficient amount of local memory is allocated

in each processor in the bottom level.

Utilization

0.2 1

0.0 H—— ; : . - ; . !
0 200 400 600 800
of steps

Figure 5.33. MSS utilization (includes overhead).

If the overhead is excluded from the timing analysis, it must be assumed
that each processor on the bottom level has enough local memory to keep
copies of the most often used kernels and morphological operation tables.

The morphological tables require 512 bytes each (see Section 4.1.2). The

129

convolution kernels require k? bytes for each kxk kernel. Figure 5.34 is a
plot of utilization for the scenario without the need to load kernels and

tables.

1.0

0.8 -
c

0.6 -

Utilization

0.4

0.2~

0.0 T T T T Y T T 1
0 20 40 60 80
of steps

Figure 5.34. MSS utilization (without overhead).

The processing time overhead for the convolution, threshold, and
morphological operations are shown in Figure 5.52 in Section 5.7.4.
Figures 5.33 and 5.34 show that the SCOOP pyramid allows the designer to
evaluate design parameters (in this case, local memory) before building any
actual hardware. This tradeoff will be shown again in the Thematic

Mapper scenario results (Section 5.7.4).
5.7.3 TM Scenario

The following scenario is has the same goal as the previous MSS scenario,
but uses the data from the TM (Thematic Mapper) LANDSAT instrument.
Figures 5.35 and 5.36 are bands 4 and 5 of the TM data set.

130

Figure 5.35. TM band #4. Figure 5.36. TM band #5.

Figure 5.37 is band 4 after a threshold of 32. This extracts the water regions.
Figure 5.38 is the erosion of figure 5.37 after inversion (white pixels are
eroded). This operation erodes some of the shoreline between the water
and land that shows up better in TM data than in MSS data.

Figure 5.37. Band 4, threshold 32. Figure 5.38. Band 4, threshold 32, inverse,

erosion.

131

The medial axis of the water is now obtained by performing 50 iterations of
skeletonization (a morphological operation). Figure 5.39 is the image after
just 10 iterations. Figure 5.40 is after 50 iterations. Apparently, the wide
bay requires more iterations, but bridges are typically not located over large

bodies of water.

Figure 5.39. After 10 skeletonizations Figure 5.40. After 50 skeletonizations

Figure 5.41 is the result of the convolution of band 5 with the Laplacian
edge kernel (see Figure 5.22). The edge detected image is then then passed
through a threshold of 32 to get rid of weak edges. The result is in
Figure 5.42.

132

Figure 5.41. Band 5, edge detection Figure 5.42. Band 5, edge detection,

threshold 32

The isolated pixels are removed from Figure 5.42 (another morphological
operation) and the result is shown in Figure 5.43. Figures 5.43 and 5.38 are

then overlaid in Figure 5.44.

Figure 5.43. After isolated pixel removal

133

Figure 5.44. Overlay of Fig. 5.38 and Figure 5.45. Inverted and magnified image of
Fig. 5.43 Fig. 5.44

Figure 5.46. Overlay using medial-axis Figure 5.47. Inverted and magnified image of
transform Fig. 5.46

There is the strong presence of the one bridge, but there are many false
alarms. These are now bridge candidates. The false ones are now

eliminated using the results from the medial axis transform. Figure 5.46 is

134

the result of overlaying Figures 5.43 and 5.40. Many of the bridge
candidates that did not go across the water (edge effects from shoreline) are
eliminated in this step. Figure 5.48 is the result from overlaying the same
two images, but only after erosion and skeletonization is performed upon
Figure 5.43 (to remove some of the smallest bridge candidates). This
produced the best results. The bridge is still visible and there are only 4
false alarms. If the length of these bridges are used as a discriminator, then

only the bridge is found with no false alarms.

Figure 5.48. Overlay after erosion and Figure 5.49. Inverted and magnified image of

skeletonization Fig. 5.48
5.74 TM Timing Data

Figure 5.50 is a plot of the utilization for the Thematic Mapper case
including overhead (as explained in Section 5.7.2). There is full utilization
during the overhead stages (broadcasting kernels and morphological
tables). The utilization drops to approximately 75% during the actual
operations that only the bottom level participates in (e.g. convolution and

morphological operations).

135

Utilization

0.2 41

too o

200

I * I * 1 N ! ! 1

400 600 800 1000 1200

of steps

Figure 5.50. TM utilization with overhead.

Figure 5.51 is a plot of utilization for the TM case using the assumption of

sufficient local memory to avoid dynamic loading of tables and kernels.

The time need is much less and the full utilization only happens during

broadcasting of instructions or thresholds.

0.6

Utilization

0.4 -

0.2 1

0.0
0

100

1 M] v] ' I N 1
200 300 400 500 600
of steps

Figure 5.51. TM utilization without overhead.

136

As with the MSS scenario (Subsection 5.7.2), the SCOOP pyramid allows
the architecture designer to evaluate the performance with different
amounts of local memory. Thus, the software prototype enables the fine-

tuning of the architecture before hardware is built.
5.7.5 Processing Overhead

The overhead for the major processing tasks is shown in Figure 5.52. The
setup time (or overhead) is often more than the time to actually perform
the task. This is especially true in the case of morphological operations (see
Subsection 4.1.2). However, repeated iterations of morphological
operations do not require retransmission of this table. In the case of
processing the image from the Thematic Mapper, a skeletonization was

performed that required 50 iterations to produce the medial-axis of the

of Steps

Figure 5.52. Processing times shown with associated overhead during scenario

152

5.8 Comparison to Other Architectures

In summary, the presented algorithms were performed at least as fast as
the other architectures and often much faster (refer back to Tables 5.2, 5.3,
5.4, and 5.5). The 2-D MCN often performed as well as the pyramid for
local neighborhood operations because the pyramid was, in fact, operating
as a mesh. However, the pyramid has additional flexibility for use in
hierarchical processing as shown in the Phoenix Segmentation and
LANDSAT scenarios.

The following chapter will discuss the implications of these results and
will also offer thoughts on the use of this methodology of constructing
prototypes (used in the SCOOP pyramid) to aid researchers in analyzing

other architectures.

138

Chapter 6 Discussions

This chapter reviews the results of the Chapter 5. Important points that
result from this research are discussed. Many of these points are
qualitative in nature, but offer substantial assistance to those interested in

constructing prototypes of other architectures for analysis.
6.1 Methodology of Constructing Prototypes

Perhaps the most interesting characteristic of this research is the method
used to build a working prototype of the architecture. The method used to
model the architecture is object oriented. The Smalltalk-80 development
system is used to create a working prototype of the architecture. The
prototype is then used as a testbed for simulations of a wide range of

computer vision algorithms.

Obviously, building the actual hardware with the correct number of
processors interconnected properly would be even more favorable than
just constructing a prototype. However, this is often not a practical
solution. In particular, it would take many years to design, fabricate,
assemble, wire-wrap, and debug all the necessary hardware. The cost of
constructing this can be enormous and the debugging effort is often

lengthy and frustrating.

Of course, someone interested in the architecture could then build a scaled-
down hardware prototype of the architecture. For instance, Weems et al.
propose a hierarchical architecture for image understanding: the Image
Understanding Architecture (IUA) [34]. This architecture consists of three
interconnected levels of 2-D mesh connected arrays. The top level consists
of 8x8 LISP 32-bit processors (MIMD), the second level consists of 64x64
array of 16-bit processors (synchronous MIMD), and the bottom level
consists of a 512x512 array of 1-bit (serial) ALUs. This hierarchy is a

139

“truncated pyramid” which the high, medium, and low levels of vision
tasks are mapped onto the top, middle, and bottom levels of the
architecture, respectively. The researchers at the University of
Massachusetts are presently building a scale prototype of this architecture at
a 64:1 ratio [80]. That is, the top level is represented by a single processor,
the middle level will include 64 processors, and the bottom level will
contain 4096 cells (in a 64x64 array for the image level). This is scheduled
for completion in early 1988.

Building the hardware prototype is an important step in the construction
of the actual architecture. However, a software prototype is quite
advantageous in this case. First of all, the prototype could be built in a
manner of weeks instead of many laborious months. In fact, the current
pyramid prototype constructed in this research can be modified to connect
in the manner that this IUA prescribes by only modifying the method
createPyramid: and by modifying the classes Processors,
TopLevelProcessor, and LowLevelProcessor to conform to the
characteristics of their processors. Of course, the software prototype runs
slowly in comparison to actual hardware. What can take seconds on a
hardware prototype can often take many minutes (even several hours) on
a software prototype. However, the software prototype can help their
analysis and especially programming of the architecture quite quickly. First
of all, the IUA and the pyramid studied in this research differ in only
several ways: the particular topology (although it is still quite similar to a
pyramid) and the actual specified processors that are proposed. The IUA,
like the SCOOP pyramid, is planned to be an architecture that processes
vision algorithms on many levels of abstraction. Which is the better one
to pursue? Is there another variation of either of these architectures that
will perform better than both? These questions can best be answered by
building software prototypes of each and running them against each other.

Committing to building even a scaled-down prototype of the actual

140

hardware will leave little room for change if the researchers decide that a

variant might be in order.

The necessity to actually build a prototype of an architecture cannot be
overstated. Theoretical analysis of algorithms is quite useful, but it is
unable to predict the unforeseen pitfalls of actually programming the
architecture. A case in point is the overhead used to setup many

algorithms (see Chapter 5).
6.1.1 Aid in Hardware Implementation

The advantages of this methodology, from a hardware designers point of
view, are that SCOOP

1. aids in the programming of architecture, both global control
and individual processors, and

2. allows designers to examine potential modifications to the
architecture without performing actual hardware

modifications.

The first point will be further explored in Section 6.1.4. The second point
allows, rather encourages, the designer to “fine tune” the design by making
incremental changes to the prototype. Certain tradeoffs can be studied to

determine the proper design parameters. Some tradeoffs include

more local memory per processor versus cost,

central controller versus distributed control,

local handshaking versus global clock,

wider bandwidth communication channels versus cost,

changes in instruction set for some/all processors, and

g ok W

changes in interconnection network properties.

To summarize, the enormous flexibility in the software prototype allows a
designer to change the design parameters of the proposed architecture to
141

improve the final design. The software prototype also acts as a testbed for

simulations to predict the performance of the architecture.
6.1.2 Modelling Other Topologies

As discussed previously at the beginning of this chapter, the SCOOP
pyramid can be reconfigured to model architectures of other topologies.

To begin with, the standard two-dimensional mesh-connected array has
already been modeled because each level of the pyramid is a mesh. Many
of the low level image processing algorithms in the pyramid primarily
make use of only the bottom level. The convolution and morphological
operations performed in the SCOOP pyramid are essentially the same
models for the SCOOP mesh. The only difference is the methods for
setting up the architecture for the tasks (i.e. broadcasting the kernels or

morphological tables).

The method createPyramid: is the method that is responsible for
creating processors and ports and connecting them together to reflect the
pyramid topology. By substituting the method createHypercube: for
createPyramid:, a SCOOP hypercube can now be modeled. The
argument to the message createHypercube: is the number of
dimensions for the cube. Also, some minor changes to the class Processors
would be necessary to reflect the fact that a processor in a pyramid
communicates with 9 other processors and that a processor in a cube

communicates with N processors (for an N-dimensional Hypercube).

The class structure of the processors for the architecture must change also if
other topologies are modeled. The SCOOP pyramid is not homogeneous.
Different levels have different processors (although within each level all
the processors are the same). In the hypercube, all the processors should be
the same. Figures 6.1 and 6.2 is a partial protocol diagram that describes the

mapping the class hierarchy of processors for the pyramid into the

142

hypercube. Only some of the instance variables and methods related to
interprocessor communication within the structure is shown. The class
structures are represented by rounded rectangles. Within each rounded
rectangle are one or more of the following: class name (bold type), more
rounded rectangles (subclasses), comments (italic type), a partial list of
instance variables (follows comments), a partial list of methods (enclosed

in a box), and possibly a partial list of class variables.

The class hierarchy starts with class SimulationObjects, which is the
superclass of EventMonitor. The subclasses PyramidEventMonitor and
CubeEventMonitor differ only in name as they perform similar functions;
they are both abstract classes that alter the reporting functions of class
EventMonitor. The SCOOP pyramid then has a class Processors with
subclasses that represent processors with special properties:
LowLevelProcessor and TopLevelProcessor. The SCOOP hypercube has

homogeneous processors, so no subclasses of Processors are necessary.

The instance variables that point to the 9 neighbors for each processor in
the pyramid are replaced by the instance variable toNeighbors and
fromNeighbors for the cube. Both of these are instances of class Array
whose length is the number of neighbors for each processor (i.e. the
dimension of the hypercube). The index into either of these arrays points
to the only neighbor in that hyperplane. All methods related to
communicating with the neighbors must be altered to take this new

structure into account.

143

Class structure for the pyramid processors

SimulationObjects
EventMonitor
PyramidEventMonitor
Processors

ARRY
1))

This is the class of all general processors
processorID
myRow
myColumn
myLevel
toNorth
toSouth

fromNorth
fromSouth

connectPort:to:from:
initializeProcessorPorts
getFromNorth
getFromSouth

putToNorth:
putToSouth:

getProcessorID

NumberOfLevels
[LowLevelProcessor N\

This class represents all processors on bottom level
neighborhoodWindow
theResult
iAmAnEdgePixel
regionLabel
atWindow:andY:
atWindow:andY:put:
initPixelValue:
createNeighborhood

KernelWindow
% NeighborhoodSize J

TopLevelProcessor

This class represents the processor at the top
instructionToBroadcast
|| broadcastTasks ||

K new; /

Figure 6.1. Processor class hierarchy for SCOOP pyramid

Class structure for the cube processors

SimulationObjects

EventMonitor

CubeEventMonitor

AR R R
pEFY,

Processors

This is the class of all general processors
processorID
myIndices
toNeighbors
fromNeighbors
connectPort:to:from:
initializeProcessorPorts
getFromNeighbor:
putToNeighbor:value:
getProcessorID

\ NumberOfDimensions .

Figure 6.2. Processor class hierarchy for SCOOP hypercube.

Of course, the mapping of the algorithms are different to take into account
the vastly differing topologies. However, the transition to the SCOOP
hypercube is straightforward and thus provides for a software prototype to
use as a testbed for hypercube algorithms.

Some researchers (e.g. Uhr in [8]) propose that pyramid architectures be
augmented with extra internal or external connections. Extra internal
connections (or higher bandwidth connections at upper levels) can be
easily modeled by the SCOOP pyramid. The augmented pyramid needs
only change the method createPyramid: and add the appropriate
instance variables within the class Processors to handle the extra
connections. Higher bandwidth connections are handled by altering the
communication properties of class UnidirectionalPort. External
connections between the pyramid and other processors (e.g. a host) can be
modeled either by modelling both architectures in the SCOOP
environment, or by externally integrating the SCOOP pyramid to the host
via the external operating system links that PS provides [49].

145

6.1.3 Optical Architectures

An interesting ability of software prototypes is that they are flexible enough
to model architectures implemented using different technologies as well as
other topologies. An interesting area of research of computer architectures
uses optical hardware as a substitute for electronic hardware. In fact,
optical hardware should not be thought of only as a substitute for
electronic hardware. The design of optical architectures should not be
limited by the constraints of electronic hardware. Rather, the design

should take advantage of the characteristics of optics [27].

Giles and Jenkins [27] discuss complexity issues of generalized architectures
and the relation to optical architectures. Optical architectures offer

significant advantages over electrical architectures for several reasons

1. Three dimensional nature of light - signals with intersecting
light paths do not interfere with each other during free space
propagation. Photons are non-interactive, while electrons
exhibit mutual interaction. This may make optics more
immune from interference and crosstalk.

2. Lower space complexity. Space complexity is a measure of
either VLSI surface area or hologram surface area of
interconnections implemented [27].

3. Higher fan-out is achievable using optics.

4. Lower likelihood of global clock skew.

5. Freedom from capacitative loading providing for higher
bandwidths than with electronics [81].

The methodology of constructing prototypes in this research involves
creating abstract descriptions of the components of the physical machine.
The SCOOP pyramid described in the previous chapters is completely

electrical. Abstract classes are used to describe the architectures. Similarly,

146

abstract classes can be constructed that describe optical phenomena. These
new classes must be capable of describing the limitations of optical
hardware while allowing for some characteristics that extend beyond that

of electrical hardware.

The first step might be to consider a collection of electrical processors that
are connected via an optical interconnection network in the topology of a
pyramid. The interconnection network may be an optical crossbar network
constructed using spatial light modulators (SLM) [81]. This will involve

the description of a new model of communication between the processors.

Using a global clock for synchronous communications in a massive
electronic architecture with electronic interconnections could lead to
serious differential timing delays. Optical interconnection networks with
reduced clock skew as compared to electronics can be envisioned, as

shown in Figure 6.3.

Processors A

-,
— —

-n-___-.-

. Optics T

/"-

/
!
/
!
/
!
\ X
\ \

-"

Figure 6.3. Optical Interconnection Network

The processor ports in Figure 6.3 are now thought of as part of the
interconnection network. All processors “hand-off” the values to the ports
asynchronously, but within the proper time of interprocessor

communication. This allows for skew between processors, but the

147

interconnection network is now responsible for the synchronization of the
architecture between communication steps. To model this, a new type of
UnidirectionalPort needs to be constructed. This will be called OpticalPort.
This port needs to have a class variable GlobalClock visible to all instances
of OpticalPort. There is no handshaking during the communication, each
port just waits for the clock signal. The methods, instance variables, and
class variables will differ between OpticalPort and UnidirectionalPort.
However, the protocols are still identical due to the encapsulation property
of Smalltalk-80. Because the protocols are identical, the class OpticalPort

can be easily substituted for UnidirectionalPort in the prototype.

At present, optical architectures have limited processing element (PE)
complexity due to technology limitations. Thus, while arbitrarily complex
optical interconnections could be built, they may exceed the capabilities of

the processing elements.

The number of simultaneous inputs that can be accepted is limited by the
complexity of the PEs. This is usually independent of N (size of
architecture), for large N. For a pyramid, the degree of connectivity is fixed
(at 9 for the type of pyramid studied in this research). This is independent
of N, so simultaneous input reception is a reasonable assumption. Some
other topologies (e.g. hypercube and fully connected) have degrees of
connectivity that grow as a function of N. Thus, simultaneous input

reception is not a reasonable assumption.

Similarly, multiple copies of outputs can be sent simultaneously.
However, multiple messages sent simultaneously also require increased PE

complexity.

All of these require changes to the model of communication and
computation within the prototype. Thus, to model all of these situations,

it is useful to describe the most general port in a class called Port. All other

148

ports with various restrictions and differing characteristics are subclasses of
Port.

Another change in the model of interprocessor communication is the use
of a shared memory instead of an interconnection network. In fact,
different models of computation can be explored using optical networks.
Massively parallel electronic architectures often communicate via a
message passing scheme as a shared memory model is difficult to
implement. However, a shared memory model of communication
between processors may be easier to build with optics than with electronics

due to the greater fan-in capability [27].
6.1.4 Aid in Programming Architectures

Various estimates indicates that as much as 80% of computer development
costs comes from software development [81]. Increasing the cost of the
complexity of the hardware can be justified if it decreases the cost of

software development.

Boehm's study of software development costs [82] shows that software costs
are increasing every year while hardware costs are decreasing. The article

also lists methods for increasing software productivity:

1. efficient development environments,

2. eliminate steps that can be automated (e.g. documentation
and quality assurance),
eliminate rework,
rapid prototyping, and

reusability of software.

The methodology behind the SCOOP model makes use of some of these
productivity aids. The Smalltalk-80 system is a well integrated

development environment for constructing prototypes quickly. The

149

abstract descriptions of the elements of the architecture are done in class
descriptions so that the software is reused extensively. The characteristics
of the entire architecture can be changed by altering the class descriptions

that globally effect the entire model.

Using SCOOP to model architectures will assist in the programming of
those architectures. The abstract representations of the processors in
SCOOP are objects in Smalltalk. Each object has local memory and can
receive messages. Those messages can reflect the instruction set, or
modules of code to execute certain tasks. The design of the methods
associated with those messages are modular and lead to efficient and

effective integration of the software.

If a goal of architecture development is to reduce overall costs, then the
ability to fine-tune or even totally reconfigure the architecture design
might be justified if it can reduce the overall software development costs.
Hardware prototypes do not exhibit the flexibility and reconfigurability of
software prototypes. The object oriented paradigm used to create the
SCOOQP architecture allows for such flexibility. In fact, the SCOOP project
can be thought of as a “template” for arbitrary architectures. The class
descriptions of Processors (and its possible subclasses), communication
structures (e.g. UnidirectionalPort) and their interconnections are the

parameters that mold SCOOP into a prototype of the desired architecture.
6.2 Comparison of Pyramid to Other Architectures for Vision

Regardless of the method of modeling the architecture, a motivation of
this research is to determine if the pyramid architecture can be used as a
unified architecture for a wide range of computer vision tasks. The results
in Chapter 5 show that the pyramid performs well in comparison with
some other popular architectures. The hierarchical nature of the pyramid

provides effective top-down control and smooth bottom-up

150

communication of results. The many levels, differing in size and power,
provide the ﬂexibility needed to handle data at various levels of
abstraction. The simulations performed (using the SCOOP pyramid as a
testbed) meets the requirements for vision architectures as listed in
Section 2.4.

6.3 Conclusion and Future Work

In summary, a working software prototype of a pyramid architecture has
been constructed. An object-oriented methodology is used for constructing
the model of the architecture. The SCOOP pyramid is then used as a
testbed to perform simulations of a wide range of computer vision tasks.
The motivation behind this is to explore the potential of the pyramid
architecture as a single, unified architecture to perform a wide range of

vision tasks.

This simulation of the complete scenario (described in Section 4.4 and
results presented in Section 5.5) is important to the overall evaluation of
an architecture for a wide range of vision tasks. The results indicate that
the performance of the architecture in a whole scenario cannot be inferred
from the combination of the performance of the parts. This statement is

quite similar to the definition of synergy as put forth by Fuller [83]

Synergy Synergy means behavior of whole systems unpredicted by the

behavior of their parts taken separately.

Both the usefulness of the pyramid as an architecture for vision work and
the methodology of prototype construction are exhibited in this thesis. The
conclusion is that the hierarchical nature of the pyramid makes it efficient

and effective architecture for computer vision tasks.

The SCOOP model makes an effective template to prototype other
computer architectures. These SCOOP models can serve as a set of testbeds

for performing benchmarks on different algorithms.
151

Future work in this area should pursue the enhancement of the SCOOP
model so that the characteristics of the actual hardware it models can be
used to directly assist in the building or manufacturing of such an
architecture. A formal method of mapping a software prototype to the

hardware would go a long way in automating such a process.

Another topic of future work is to examine the relationship between
action-oriented rule-bases and non-action-oriented ones. The firing of
rules (both forward and backward) is a highly parallel task. It would be
useful to distinguish between those rule-bases from which parallelism can
be extracted from them in firing rules (and thus performing actions).
Possibly, the modeling of a rule-base through Distributed Knowledge
Object Modeling (DKOM) in ORIENT84/K can take advantage of much of
the parallelism inherit in the rule-base while forming a sequence of actions
to be performed [78]. Many of these actions might be pruned in the process
if one antecedent proved to be false (AND parallelism).

152

Bibliography

1]

2]

(3]

[4]

5]

(10]

Ballard, D.H. and Brown, C.M., Computer Vision, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1982.

Reeves, A.P., “Parallel Computer Architectures for Image
Processing,” Computer Vision, Graphics, and Image Processing,
pp. 68—88, 1984.

Weems, C., Lawton, D., Levitan, S., Riseman, E., Hanson, A., and
Callahan, M., “Iconic and Symbolic Processing Using a Content
Addressable Array Parallel Processor,” Conference on Computer
Vision and Pattern Recognition, pp. 598—607, IEEE Computer
Society, IEEE Computer Society Press, San Francisco, June, 1985.

Levine, M.D., A Knowledge-Based Computer Vision System, in
Computer Vision Systems, Academic Press, Inc., Hanson and
Riseman (eds.), pp. 335—352, San Francisco, 1978.

Ballard, D.H., Brown, C.M., and Feldman, J.A., An Approach to
Knowledge-Directed Image Analysis, in Computer Vision Systems,
Academic Press, Inc., Hanson and Riseman (eds.), pp. 271—282, San
Francisco, 1978.

Hanson, A.R. and Riseman, E.M., Segmentation of Natural Scenes,
in Computer Vision Systems, Academic Press, Inc.,, Hanson and
Riseman (eds.), pp. 129—163, San Francisco, 1978.

Marr, D., Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information, W.H.
Freeman and Company, San Francisco, 1982.

Uhr, L., Highly Parallel, Hierarchical, Recognition Cone Perceptual
Structures, in Parallel Computer Vision, Academic Press, Inc.,
Uhr (ed.), pp. 249—292, San Diego, 1987.

Hwang, K. and Briggs, F., Computer Architectures and Parallel
Processing, McGraw-Hill, Inc., San Francisco, 1984.

Preston, K. and Uhr, L.M. (eds.), Multicomputers and Image
Processing: Algorithms and Programs, Academic Press, Inc., San
Diego, 1982.

155

(11]

[12]

(13]

[14]

(15]

[16]

[17]

[18]

[19]

[20]

[21]

Gerritsen, F.A. and Verbeek, P.W., “Implementation of Cellular-
Logic Operators Using 3*3 Convolution and Table Lookup
Hardware,” Computer Vision, Graphics, and Image Processing,
pp. 115—123, 1984.

Hanson, A.R. and Riseman, E.M., VISIONS: A Computer System for
Interpreting Scenes, in Computer Vision Systems, Academic Press,
Inc., Hanson and Riseman (eds.), pp. 303—333, San Francisco, 1978.

Moldovan, D.I.,, “On the Analysis and Synthesis of VLSI
Algorithms,” IEEE Transactions on Computers, pp. 1121—1126,
November, 1982.

Fortes, J.A.B. and Moldovan, D.I.,, “Parallelism Detection and
Algorithm Transformation Techniques Useful for VLSI
Architecture Design,” University of Southern California, no. PPP 83-
1, Los Angeles, 1983.

Navarro, J.J., Llaberia, .M., and Valero, M., “Partitioning: An
Essential Step in Mapping Algorithms Into Systolic Array
Processors,” Computer, no. 7, pp. 77—389, July, 1987.

Moldovan, D.I. and Fortes, J.A.B., “Partitioning of Algorithms for
Fixed Size VLSI Architectures,” University of Southern California,
no. PPP 83-5, Los Angeles, 1983.

Barad, H. and Moldovan, D.I., “A Systems Approach to Mapping a
Karhunen-Loéve Transform into a Systolic Array,” Proc. of the
International Conference on Parallel Processing, Degroot (ed.),
pp- 48—55, PSU, IEEE, and ACM, IEEE Computer Society Press,
August, 1985.

Burt, P.J., The Pyramid as a Structure for Efficient Computation, in
Multiresolution Image Processing and Analysis, Springer-Verlag,
Rosenfeld (ed.), Ch. 2, pp. 6—35, New York, 1984.

Fortes,].A.B. and Wah, B.W., “Sysolic Arrays: A Survery of Seven
Projects,” Computer, no. 7, pp. 91—103, (with contributions from
researchers of the 7 projects), July, 1987.

Kung, S.Y., Lo, 5.C,, Jean, S.N., and Hwang, J.N., “Wavefront Array
Processors—Concept to Implementation,” Computer, no. 7, pp. 18—
33, July, 1987.

Dennis, J.B., “Data Flow Supercomputers,” Computer, no. 11,
pp- 48—56, November, 1980.

154

[22]

[23]

[24]

[25]

[26]

(28]

[29]

(30]

[31]

[32]

Arvind and Gostelow, K.P., “The U-Interpreter,” Computer, no. 2,
pp. 42—49, February, 1982.

Prasanna Kumar, V.K. and Raghavendra, C.S., “Image Processing on
an Enhanced Mesh Connected Computer,” Workshop on Computer
Architectures for Pattern Analysis and Image Database Management,
pp. 243—247, The Computer Society of the IEEE, IEEE Computer
Society Press, November, 1985.

Raghavendra, C.S., “"HMESH: A VLSI Architecture for Parallel
Processing,” Proc. of Conference on Algorithms and Hardware for
Parallel Processing, September, 1986.

Chalasani, 5.B. and Raghavendra, C.S., “Geometric Algorithms on
HMESH Architecture,” Workshop on Computer Architectures for
PAMI, pp. 169—175, The Computer Society of the IEEE, IEEE
Computer Society Press, Seattle, October, 1987.

Sawchuk, A.A., Jenkins, B.K., Raghavendra, C.S., and Varma, A,
“Optical Crossbar Networks,” Computer, no. 6, pp. 50—60, June, 1987.

Giles, C.L. and Jenkins, B.K., “Complexity Implications of Optical
Parallel Computing,” Twentieth Annual Asilomar Conf. on Signals,
Systems, and Computers, Pacific Grove, CA, November, 1986.

Jenkins, B.K. and Giles, C.L., “Superposition and Digital Optical
Computing,” July, 1987, Submitted to Optics Letters.

Tanimoto, S.L., Paradigms for Pyramid Machine Algorithms, in
Pyramidal Systems for Computer Vision, Springer-Verlag, Cantoni
and Levialdi (eds.), pp. 173—194, New York, 1986.

Fritsch, G., General Purpose Pyramidal Architectures, in Pyramidal
Systems for Computer Vision, Springer-Verlag, Cantoni and
Levialdi (eds.), pp. 41—58, New York, 1986.

Duff, M.].B., How Not to Benchmark Image Processors, in
Evaluation of Multicomputers for Image Processing, Academic
Press, Inc., Uhr, Preston, Levialdi, and Duff (eds.), pp. 3—12, San
Diego, 1986.

Uhr, L., Preston, K. Jr., Levialdi, 5., and Duff, M.].B. (eds.),
Evaluation of Multicomputers for Image Processing, Academic
Press, Inc., San Diego, 1986.

155

[33]

[34]

(35]

36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Uhr, L. and Schmitt, L., The Several Steps from Icon to Symbol
using Structured Cone/Pyramids, in Multiresolution Image
Processing and Analysis, Springer-Verlag, Rosenfeld (ed.), Ch. 6,
pp. 86—100, New York, 1984.

Levitan, S.P., Weems, C.C., Hanson, A.R., and Riseman, EM., The
UMass Image Understanding Architecture, in Parallel Computer
Vision, Academic Press, Inc., Uhr (ed.), pp. 215—248, San Diego,
1987.

Cantoni, V. and Levialdi, S., PAPIA: A Case History, in Parallel
Computer Vision, Academic Press, Inc., Uhr (ed.), pp. 3—13, San
Diego, 1987.

Schaefer, D.H., Ho, P., Boyd, J., and Vallejos, C., The GAM Pyramid,
in Parallel Computer Vision, Academic Press, Inc., Uhr (ed.),
pp- 15—42, San Diego, 1987.

Tanimoto, S.L., Ligocki, T.J., and Ling, R., A Prototype Pyramid
Machine for Hierarchical Cellular Logic, in Parallel Computer
Vision, Academic Press, Inc., Uhr (ed.), pp. 43—83, San Diego, 1987.

Baugher, E. and Rosenfeld, A., “Boundary Localization in an Image
Pyramid,” Pattern Recognition, no. 5, pp. 373—395, 1986.

Klinger, A., Multiresolution Processing, in Multiresolution Image
Processing and Analysis, Springer-Verlag, Rosenfeld (ed.), Ch. 5,
pp. 77—85, New York, 1984.

Cibulskis, J. and Dyer, C.R., Node Linking Strategies in Pyramids for
Image Segmentation, in Multiresolution Image Processing and
Analysis, Springer-Verlag, Rosenfeld (ed.), Ch. 8, pp. 109—120, New
York, 1984.

Crowley, J.L., A Multiresolution Representation for Shape, in
Multiresolution Image Processing and Analysis, Springer-Verlag,
Rosenfeld (ed.), Ch. 12, pp. 169—189, New York, 1984.

Preston, K. Jr., Multiresolution Microscopy, in Multiresolution
Image Processing and Analysis, Springer-Verlag, Rosenfeld (ed.),
Ch. 21, pp. 356—364, New York, 1984.

Shneier, M., Multiresolution Feature Encodings, in Multiresolution
Image Processing and Analysis, Springer-Verlag, Rosenfeld (ed.),
Ch. 13, pp. 190—199, New York, 1984.

156

[44]

[45]

[46]

(47]

[48]

[49]

[50]

(511

[52]

[53]

[54]

Clark, J.]. and Lawrence, P.D., A Hierarchical Image Analysis System
Based Upon Oriented Zero Crossings of Bandpassed Images, in
Multiresolution Image Processing and Analysis, Springer-Verlag,
Rosenfeld (ed.), Ch. 11, pp. 148—168, New York, 1984.

Tanimoto, S.L., Regular Hierarchical Image and Processing
Structures in Machine Vision, in Computer Vision Systems,
Academic Press, Inc., Hanson and Riseman (eds.), pp. 165—174, San
Francisco, 1978.

Nazif, AM. and Levine, M.D., “Low Level Image Segmentation: An
Expert System,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, no. 5, pp. 555—577, September, 1984.

Uhr, L., “Recognition Cones,” and Some Test Results; The
Imminent Arrival of Well-Structured Parallel-Serial Computers;
Positions, and Positions on Positions, in Computer Vision Systems,
Academic Press, Inc., Hanson and Riseman (eds.), pp. 363—377, San
Francisco, 1978.

Honavar, V. and Uhr, L., “Recognition Cones: A Neuronal
Architecture for Perception and Learning,” Univ. of Wisconsin,
Computer Sciences Dept., no. 717, Madison, September, 1987.

Pope, S.T., Goldberg, A., Krasner, G., and Bay, D., The Smalltalk-80™
Programming System: Reference Guide and Release Notes, ParcPlace
Systems, Palo Alto, CA, revision 2.2¢, 1987, DE Version - Release 1.

American Heritage Dictionary, Houghton Mifflin Company, Boston,
Second College Edition, 1985.

Law, AM. and Kelton, W.D., Simulation Modeling and Analysis,
McGraw-Hill Book Company, McGraw-Hill series in industrial
engineering and management science, San Francisco, 1982.

Goldberg, A., Smalltalk-80: The Interactive Programming
Environment, Addison-Wesley, Menlo Park, CA, 1984.

Cox, B.J., Object Oriented Programming: An Evolutionary Approach,
Addison-Wesley Publishing Co., Menlo Park, CA, second reprint,
August, 1986.

André, F., Herman, D., and Verjus, J.P., Synchronization of Parallel
Programs, The MIT Press, Scientific Computation Series, Cambridge,
Mass., 1985.

157

(58]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[68]

Raynal, M., Algorithms for Mutual Exclusion, The MIT Press,
Scientific Computation Series, Cambridge, MA, 1986.

Goldberg, A. and Robson, D., Smalltalk-80: The Language and its
Implementation, Addison-Weseley, Menlo Park, CA, 1983.

Pratt, W., Digital Image Processing, John Wiley & Sons, New York,
1978.

Roberts, L.G., Machine Perception of Three-Dimensional Solids, in
Optical and Electro-Optical Information Processing, The MIT Press,
J.P. Tippett et al (eds.), Cambridge, MA, 1965.

Matheron, G., Random Sets and Integral Geometry, Wiley, New
York, 1975.

Serra,].P., Image Analysis and Mathematical Morphology, Academic
Press, New York, 1982.

Nevatia, R., Machine Perception, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1982.

Nevatia, R. and Babu, K.R., “Linear Feature Extraction and
Description,” Computer Graphics and Image Processing, pp. 257—
269, 1980.

Winston, P.H., Artificial Intelligence, Addison-Weseley Publishing
Company, Inc., Menlo Park, CA, Second Edition, July, 1984.

Haralick, R.M. and Shapiro, L.G., “Image Segmentation
Techniques,” Computer Vision, Graphics, and Image Processing,
pp. 100—132, 1985.

Levine, M.D., Region Analysis with a Pyramid Data Structure, in
Structured Computer Vision: Machine Perception Through
Hierarchical Computation Structures, Tanimoto and Klinger (eds.),
pp- 57—100, 1980.

Ohlander, R., Price, K. and Reddy, D. R., “Picture Segmentation
using a Recursive Region Splitting Method,” Computer Graphics
and Image Processing, no. 3, pp. 313—333, 1978.

Laws, K., “Goal-Directed Textured-Image Segmentation,” S.R.I
International, Semiannual Technical Report, no. SRI Proj. 5355,
Menlo Park, CA, September, 1984.

Kushner, T., Wu, A. and Rosenfeld, A., “Image Processing on
MPP: 1,” Pattern Recognition, no. 3, pp. 121—130, 1982.

158

[69]

[70]

[71]

[72]

(73]

[74]

(75]

[76]

[78]

Dixit, V. and Moldovan, D.I.,, “Discrete Relaxation on SNAP,” Conf.
on Artificial Intelligence Applications, pp. 637—644, 1EEE, 1984.

Duda, R., Hart, P., Nilsson, N., and Sutherland, G., Semantic
Network Representations in Rule-Based Inference Systems, in

Pattern-Directed Inference Systems, Academic Press, Inc.,, Waterman
and Hayes-Roth (eds.), pp. 203—221, San Diego, 1978.

Minsky, M., A Framework for Representing Knowledge, in The
Psychology of Computer Vision, McGraw-Hill Book Company,
Winston (ed.), Ch. 6, pp. 211—277, San Francisco, McGraw-Hill
Computer Science Series, 1975.

Zucker, S.W., Production Systems with Feedback, in Pattern-Directed
Inference Systems, Academic Press, Inc., Waterman and Hayes-Roth
(eds.), pp. 539—555, San Diego, 1978.

Negoita, C.V., Expert Systems and Fuzzy Systems, The
Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA,
1985.

Sunwoo, M.H., Baroody, B.S., and Aggarwal, J.K., “A Parallel
Algorithm for Region Labeling,” Workshop on Computer
Architectures for PAMI, pp. 27—34, The Computer Society of the
IEEE, IEEE Computer Society Press, Seattle, October, 1987.

Kung, H.T. and Song, S.W., A Systolic 2-D Convolution Chip, in
Multicomputers and Image Processing: Algorithms and Programs,
Academic Press, Inc., Preston and Uhr (eds.), pp. 373—384, San
Diego, 1982.

Tanimoto, S.L., Sorting, Histogramming, and Other Statistical
Operations on a Pyramid Machine, in Multiresolution Image
Processing and Analysis, Springer-Verlag, Rosenfeld (ed.), Ch. 10,
pp- 136—147, New York, 1984.

Levialdi, S., “Issues on Parallel Algorithms for Image Processing,” in
The Characteristics of Parallel Algorithms, Jamieson, Gannon, and
Douglass (eds.), The MIT Press, Cambridge, Mass., pp. 191—208,
Ch. 7, 1987.

Ishikawa, Y. and Tokoro, M., Orient84/K: An Object-Oriented
Concurrent Programming Language for Knowledge Representation,
in Object-Oriented Concurrent Programming, The MIT Press,
Yonezawa and Tokoro (eds.), pp. 159—198, Cambridge, Mass., 1987.

159

(79]

(80]

[81]

[82]

HUMBLE™ V1.1 Reference Manual, Xerox Special Information
Systems, Pasadena, CA, June, 1986.

Weems, C., Levitan, S., Hanson, A., and Riseman, E., “The Image
Understanding Architecture,” Proceedings: Image Understanding
Workshop, pp. 483—496, Los Angeles, 1987.

McAulay, A.D., “Spatial Light Modulator Interconnected
Computers,” Computer, no. 10, pp. 45—57, October, 1987.

Boehm, B.W., “Improving Software Productivity,” Computer, no. 9,
pp- 43—57, September, 1987.

Fuller, R.B., Synergetics, MacMillan Publishing Co., Inc., New York,
1982 paperback edition, 1975.

160

