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Abstract

Two classes of models, computational vision models and stochastic models,
are examined for synthetic aperture radar (SAR) images of natural terrain.
Algorithms are developed for surface topography estimation, image registration,
and texture synthesis.

Shape from shading techniques are used for extracting topographic informa-
tion. Previous numerical solutions to the shape from shading problem estimated
the surface derivatives without ensuring that they are integrable, a serious draw-
back. The performance of a previously developed shape from shading technique
is substantially improved using a fast least-squares algorithm to enforce integra-
bility. The resulting algorithm is then applied to SAR by representing the terrain
surface height relative to the “slant plane” (a plane parallel to the line-of-sight)
and accounting for the radiometric properties of SAR imagery.

For noisy imagery, such as SAR, low frequency surface information is diffi-
cult to recover from a single image. A fast Fourier transform implementation of
the integrability projection provides an efficient method for combining low fre-
quency surface information with the shading information. This technique may
be suitable for combining the SAR imagery and the low resolution altimetry
provided by Magellan to construct high resolution topographic maps of Venus.
The resulting algorithm is applied to SIR-B SAR imagery and the surface re-
constructions are compared with stereoscopically derived digital terrain models.
The use of auxiliary low frequency information is tested, allowing estimation of
reflectance map parameters and providing coarse surface structure to comple-
ment the surface details obtained from shading information. This simulates the
Magellan scenario.

An automatic registration algorithm is used for matching image intensity

predictions with the observed images. This registration algorithm matches two

xii



SAR images made from nearly orthogonal flight paths and matches a SAR image
with an aerial photograph without detailed a priori knowledge of the terrain,
two very difficult problems for images of hilly terrain.

Stochastic models for SAR image intensity based on nonlinear transforma-
tions of Gaussian random fields are introduced. Methods for selecting transfor-
mations to normality and model order are presented and tested on SAR imagery

and synthesis of textures appearing in SAR imagery is demonstrated.
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Chapter 1
Introduction

Algorithms developed for application to visual imagery are usually not directly
applicable to radar imagery. Yet, many of the paradigms that have evolved in
image processing and computer vision research are suitable for radar imagery.
Translation of paradigms and methodologies into algorithms for a specific ap-
plication requires a model, either explicitly in a formal derivation or implicitly
in the experiences of the algorithm designer. Models previously used in image
processing and computer vision research are inappropriate for SAR imagery be-
cause of fundamental differences between the physics of SAR image formation
and that of conventional images at visible wavelengths. The purpose of this
dissertation is to help bridge that gap by formulating models appropriate for
SAR imagery and using those models for algorithm development. An algorithm
for estimation of surface topography from SAR image intensity is developed. In
order to evaluate the surface reconstruction results an algorithm for registration
of SAR imagery to terrain elevation data is developed. Synthesis of texture in
SAR imagery is also demonstrated using simple extensions of stochastic models

used in image processing and image analysis.



1.1 The Role of an Image Model

In both image processing and computer vision two major schools of thought
exist—one centered on models of image characteristics and one based on emula-
tion of biological vision systems. The artificiality of this dichotomy is illustrated
by contrasting two anecdotes from two different professional communities. Com-
puter vision researchers have referred to vision as “controlled hallucination” [1 11,
describing the underdetermined nature of the vision problem. A similar saying
among radar image interpreters, “I wouldn’t have seen it if I hadn’t believed
it”, does not state that vision, per se, is a difficult problem. The human visual
system (HVS) and cognitive processes can provide very accurate interpretations
of radar imagery. However, radar imagery is so different from more familiar vis-
ible imagery that radar image interpreters must undergo extensive training to
become familiar with the properties of radar imagery and to learn how objects
of interest appear in radar imagery. In some sense they must re-learn how to
see. Similarly, for machine processing of SAR and other non-visual image data,
a thorough understanding of image characteristics is needed, even for applying
methods inspired by the HVS. The key issue is not, therefore, which school of
thought to follow, rather, it is how to model image data and how to utilize image

models.

1.2 Classes of Models

This dissertation examines two kinds of models for SAR imagery—computational
vision models and 2-D stochastic models. Computational vision models repre-
sent the image in terms of the physical scene being imaged and are useful for
image simulation or for inferring object properties from the image. Attention
is restricted to scenes composed of continuous surfaces instead of general 3-D
scenes. The basic principle is that the observed image is a function of both
the orientation of the surface relative to the radar and the intrinsic reflectivity
of the materials composing the surface. The relationship between the angle of
incidence and image intensity depends, in part, on surface microstructure which

can often be characterized by a few unknown parameters. The computational
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vision models developed for SAR imagery parallel those for visual imagery, but
the particular image coordinate system, the relationship between angle of in-
cidence and image intensity, and the noise characteristics are unique to SAR.
We have applied computational vision models to estimation of terrain surface
elevation from SAR imagery and to image registration.

The 2-D stochastic models represent the image as a random field corrupted
by random noise and do not require direct knowledge of scene characteristics.
Stochastic models are useful for data compression, image segmentation, ob-
Ject detection, edge detection, and image simulation. Lognormal random field
models are proposed as models for the SAR imagery. The lognormal models
are treated as specializations of transformed-Gaussian random fields, which are
straightforward extensions of the Gaussian random field models often used for
visual imagery. After being passed through an invertible point-nonlinearity, the
data is modeled as a Gaussian random field with linear spatial interaction. The
use of lognormal random field models for radar imagery has been motivated by
empirical considerations, based on statistical tests. Modeling the logarithm of
SAR image intensity as a random field with linear spatial interaction (as done
for lognormal data) has also been motivated by physical considerations, based
on the high dynamic range of radar imagery, the multiplicative relationship
between illumination, reflectance, and noise components. An additional phys-
iological motivation arises from the approximately linear response of the early
HVS to the logarithm of image intensity [141,153]. We have applied lognormal
random field models to texture synthesis in radar imagery and developed model
selection tests.

The stochastic models presented in this dissertation treat the observed image
as a homogeneous random field. They could be extended to handle nonhomoge-
neous (nonstationary) data. For example, doubly stochastic models where the
parameters of a Gaussian random field are piecewise-constant functions of image
coordinates, partitioning the image into homogeneous regions, have been con-
sidered in the literature. The partitioning process is also a random field such as
a Poisson line process [114], or a Markov random field [175,55]. Point processes

have been used for modeling transitions between regions and also for modeling



the placement of objects on a background [2,135,144,148] and the distribution
of reflectivity categories in radar clutter [82]. A second way in which point-
processes are useful is for deriving models for signal characteristics [151]. This
has been done for deriving speckle statistics [81], and for deriving reflectivity
models [9,152].

The choice of a modeling approach depends on several issues, such as

e Sensor characteristics.
e Scene characteristics.

e Applications.

For example, coherent imagery differs from noncoherent imagery both in the
presence of speckle and in the point spread function (PSF) [59]. Radar imagery
presents different problems than visual imagery, and infrared imagery differs
markedly from visual and radar images. All three sensors measure electro-
magnetic radiation but the different spectral bands measure different physical
aspects of the scene. Different type of scenes require different types of mod-
els even for identical sensors. For example, SAR images of the barren surface
of Venus are as different as night and day from SAR images of a city. In the
former case, multiple reflections are probably negligible, the local reflectance
mechanism is primarily non-specular on the scale of a resolution element, and
the surface conductivity is relatively low and nearly constant. The resulting
image intensity is relatively well-behaved. In the latter case, specular reflection
dominates, much of the returned energy may be from multiple reflections, and
surface conductivity is highly variable. The result is an image with extremely
high dynamic range and the breakup of extended features into collections of
bright spots. Completely different models would be used for reconstruction of
Venus surface topography from SAR images than would be used for delineating
man-made structures in SAR images.

Different applications require different models. In computer vision, models of
how objects appear in images are useful as a basis for inferring scene properties

from image properties. In image processing, models for the image signal and



degradations are used for developing restoration, enhancement, and bandwidth
compression techniques.

The world is so complex that we cannot possibly model every aspect of it
simultaneously. We must choose a few particular facets of reality to model in
any given case. The maxim of Occam’s razor—that models should be no more
complicated than required for explaining the observed data—is followed in order
to guide this choice. For example, when detecting small targets on a background,
the best approach might be to represent the background as a 2-D random field
rather than to use a 3-D computational vision model.

In this thesis, attention is restricted to a few basic models that are immedi-
ately useful. Models for discrete clutter such as roads and vehicles are not con-
sidered. Only so called diffuse clutter is examined. This is useful in applications
where the diffuse component is considered important, as in radargrammetry. It
is also useful when the diffuse component is considered to be clutter and objects

of interest are detectable as entities not fitting the clutter model.

1.3 Thesis Organization

Chapter 2 develops a 2-12—-D computational vision model for SAR imagery and
reviews the relevant radar literature to support that model. Limitations and
possible model extensions are discussed. Chapter 3 reviews shape from shad-
ing research and provides a method for enforcing integrability in the surface
slopes estimated by shape from shading algorithms. A significant advance over
existing algorithms results. Integrability is enforced at each iteration by project-
ing the possibly nonintegrable surface slopes onto the nearest integrable surface
slopes. This projection is easily solved if the surface slopes are represented by
a finite set of basis functions that are orthogonal and integrable. A Fourier
basis function specialization of that projection is developed which allows effi-
cient processing using fast Fourier transforms (FFTs). It provides a convenient
method for including auxiliary low frequency information into the shape from
shading solution. In Chapter 4 the computational vision models from Chapter

2 and the shape from shading algorithm from 3 are combined to derive a shape



from shading algorithm for SAR imagery. This algorithm is similar to that of
Chapter 3 except that the surface height is represented relative to a plane par-
allel to the line-of-sight (instead of a plane orthogonal to the line-of-sight) and
a SAR reflectance model is used. Noise is not considered explicitly, although
the noise level is shown to be very high, even after considerable noncoherent
integration. The resulting algorithm is tested on SIR-B imagery and compared
to independently obtained digital terrain models (DTMs). Chapter 5 applies
the computational vision model to registration of images to DTMs and for reg-
istration of dissimilar images. The method used for registering SAR imagery to
their companion DTMs for evaluating shape from shading results is presented
and the use of shading information for registering images of smooth surfaces
is demonstrated. Chapter 6 addresses stochastic models where transformed-
Gaussian random field models are proposed for SAR imagery. A statistical
decision rule for selecting model order simultaneously with the transformation
to normality is developed, and the synthesis of textures in SAR imagery using
lognormal random fields is demonstrated. The formulation provides a tractable
modeling approach suitable for model-based image analysis applications such as
edge detection, object detection, texture classification, and texture segmenta-
tion. Conclusions are presented in Chapter 7 along with suggestions for future

research.

1.4 Thesis Contributions

The following contributions are reported in this dissertation:

e A noniterative method for enforcing integrability in shape from shading
algorithms [48,51].

— An efficient implementation of the integrability projection using FFTs.

— Application of the integrability projection to improve an existing

shape from shading algorithm.

e The development of a shape from shading algorithm for SAR imagery [50].



— Efficient surface reconstruction and image simulation is obtained by

representing surface height relative to the slant plane.

— Auxiliary low resolution surface information is used to estimate re-

flectance map parameters.

e The approach of combining low frequency surface information with shading

information [51,50].

— A method for combining shading cues with the low resolution depth
information provided by area correlation based stereo matching (as

opposed to sparse feature based matches) is given.

— An algorithm suitable for fusing high resolution SAR image shading
information with the lower resolution radar altimetry data from the

Magellan Venus Radar Mapper is provided.
e Demonstration of the use of shading information for registration of dis-
similar images.
e A transformed-Gaussian random-field model formulation for image pro-
cessing [47,49].
— Decision rule for choice of random field models for SAR imagery.

— Application of lognormal random field models to synthesis of SAR

image textures.



Chapter 2

Computational Vision and
Statistical Models for SAR

Imagery

Image simulation from surface data relies on models that relate surface orien-
tation and intrinsic reflectivity (albedo) to image intensity. Vision is, in some
sense, the inverse of image simulation so that the same models used for im-
age simulation are useful for computer vision applications. Accordingly, models
that relate image intensity to surface properties are called computational vision
models. Such models have been applied to simulation of radar and optical im-
agery [69,72,173]. With each approach, the simulated image is the product of
a known albedo component and a known topography component. The function
relating image intensity to the surface slopes is referred to as the reflectance map
[71]. Two-dimensional stochastic models are useful for modeling albedo, surface
structure, image intensity, and observation noise. In this Chapter we introduce
computational vision models and stochastic models for SAR image intensity.
By following a common modeling approach for both radar and visual im-
ages it is possible to gain better insight into the similarities between, say, SAR
images and aerial photographs. By comparing specific models for radar and

visual images derived by the same approach it is also possible to gain greater



insight into the differences between SAR images and aerial photographs. These

differences fall into three categories

1. The spatial deformations introduced in projecting from a 3-D scene

to 2-D image.

2. Reflectivity characteristics, expressed in terms of both the reflectance

map and albedo.

3. Observation noise characteristics.

Each category is discussed below.

2.1 SAR Image Coordinate System

An image can be thought of as the projection of a 3-D scene into a 2-D repre-
sentation. For an image created using conventional optics the spatial transfor-
mation from 3-D to 2-D is given by the perspective projection.

The coordinate system for a SAR strip map is very different, as depicted in
Figure 2.1. For simplicity, consider the case of a straight flight path with the
antenna main beam orthogonal to the flight path (zero squint angle). Assume
that the z-axis is lined up with the r-axis. Then & may be referred to as ground

range and is related to slant range r by
r? =a? +(h - z)? (2.1)

where h is the radar altitude and the origin is located on the ground directly
below the radar. The second SAR strip map axis, by design, represents the
along track distance y. It is referred to as cross-range or azimuth. Thus, SAR
image coordinates are a projection of the physical scene, (z,y,2(z,y)), into
the “slant plane” (7,y). One result is foreshortening of the mountainsides that
slope upward as r increases. In extreme cases, an increase in ground range &
will decrease the slant range so that features in SAR imagery may appear in
reversed order. This condition, sometimes referred to as layover, does not occur

provided that ]

P S ——
= tang

(2.2)



/'

SAR

(ground range)

X

(b) Rear View

» Flight Path

y (azmuth)

(c) Side View

Figure 2.1: SAR Imaging Geometry
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where 6 is the grazing angle.

Clearly the transformation from surface coordinates (z,y, 2) to SAR image
coordinates (r,y) is not an orthographic projection. However, it is possible to
approximate the SAR coordinates as an orthographic projection of a rotated
version of the surface. Suppose that r is large relative to the image size so that
arcs of constant range are approximately straight lines over the depression angle
subtended by the image. Then the surface height u(r,y) relative to the slant

plane is given by the following rotation of z(z,y);

r cos@ 0 —sinf T To
y | = 0 1 0 y |+ 1| w (23)
7 sinf 0 cosé 2 Ug

where (70, %0, %0) is an arbitrary reference point. Here the transformation from
slant plane surface coordinates to SAR image coordinates is indeed an ortho-
graphic projection. In the absence of layover, z(z,y) being single valued implies
that u(r,y) is single valued. If both z(z, y) and u(r, y) are single valued functions
then the data structure needed for representing the terrain and the methods used
for synthesizing an image are very simple.

A very interesting parallel between the coordinate systems of SAR strip maps
and conventional photographs becomes clear at this point. For SAR, the image
coordinates can be approximated by an orthographic projection of the surface
coordinates relative to a plane parallel to the line-of-sight (the slant plane). For
conventional photographs the image coordinates can be approximated by an
orthographic projection of the surface coordinates relative to a plane orthogonal
to the line-of-sight. For example, high altitude aerial photographs taken from
nadir could by represented closely by an orthographic projection of the surface
topography if the field of view is small compared to altitude. This viewing
geometry is illustrated in Figure 2.2

Note that the surface height u relative to the slant plane will have a ramp
component—a term that increases approximately linearly with increasing range.
For computation and storage purposes, the dynamic range of u can be reduced

significantly by removing this ramp trend, giving

uy(r,y) =u(r,y) — (r —ro)tané . (2.4)

11



Figure 2.2: Geometry for aerial photograph example.
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This transformation is utilized in the shape from shading algorithm of Chapter
4.

To evaluate the reflectance map for surface reconstruction or image synthesis
it is hecessary to evaluate the angle of incidence a; or its cosine. The cosine of
the angle of incidence is simply the normalized dot-product between the surface
normal and the illumination vector,

BN
BTN

This has a particularly simple form when expressed in (r,,u) coordinates. Here
B =(-1,0,0) and N = (—u,, —uy, 1) so that

cos oy =

(2.5)

ty
CoOsS O = ———o——o 2.6
Vuitul+l (@ig)
where 5 g
u Uy
U = e B —tané
and
= ful: Oui
Ty T oy

are the partial derivatives of u. Note that a point at which u, passes through zero
while decreasing is a shadow entry point and that |u,| — co when transitioning
to or from an area in layover.

For computer implementation, u(r,y) is represented in a 2-D array with
constant sample spacing in r and y as in a SAR strip map. Standard finite
difference approximations are used for the partial derivatives. With finite central

differences we get
u(k, 1+ 1) — u(k,l —1)

(k. l) = Ay

(2.7)

and

w(k+1,1) — u(k — l,l)
2Ar

el Jos )=
or, in terms of the de-ramped version,

1) — k—1,1)—2Artané
() = LDzl L) = 20 tan (28)

= uy,(k,1) —tan@ ,
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where uy, is the central difference approximation to du,/dr.

As can be seen from (2.3) through (2.8), this slant plane representation
allows relatively simple and efficient processing techniques to be applied for
SAR image synthesis from terrain elevation data. For the same reasons, the
slant plane representation allows fairly straightforward modifications of existing
shape from shading techniques to be applied to SAR imagery. Efficient surface
reconstruction and image synthesis using the slant plane representation requires
a method for resampling a DTM from ground coordinates to slant plane coor-
dinates and vice versa. Such a method was developed which is a variation of
the summed area table method reported in the computer graphics literature (68]

and is amenable to high speed implementation.

2.2 SAR Reflectance Maps

This section provides a brief review of relevant prior research in radiometry and
develops a modeling approach for SAR reflectance maps. Cosgriff, et al. [32]
enumerated the following five parameters affecting the characteristics of terrain

backscatter for radar:

e Incidence angle

Surface roughness

Frequency

Complex dielectric constant

Polarization.

We are mainly interested in understanding the effects of incidence angle on
backscattered power. That functional relationship depends on the other four
parameters. Surface roughness relative to wavelength partly determines the
shape of the reflectance map and, hence, the reflectance map is frequency de-
pendent. The complex dielectric constant of the surface materials partially
determines albedo but will not be considered explicitly. Polarization effects are

also significant. While the interplay between all of these factors is still not
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completely understood, the utilization of frequency diversity and polarization
diversity appear to provide extra constraints needed for pinning down variations
in reflectance characteristics in radar imagery.

Radiometry is the microwave counterpart to photometry. In the 1700’s Jo-
hann Heinrich Lambert developed principles of photometry based on geometrical
optics which are still used today. In particular, the concept of the “perfectly
diffusing” (or Lambertian) surface and the term albedo were introduced by Lam-
bert [165]. At radar wavelengths, most surfaces are not perfectly diffusing so
that the reflectance properties are more highly directional than those often as-
sumed in optics. Even at visible wavelengths, reflection characteristics are very
often non-Lambertian [115,158], so that generalizations of early optical reflec-
tivity models have been developed for partially rough surfaces [7,158].

The reflectance map R(-) is the function which relates local surface orienta-
tion to image intensity. In both radiometry and photometry R(:) is a combina-

tion of three effects;
1. The electromagnetic scattering properties of the surface.
2. The geometric properties of the illumination.
3. The geometric properties of image formation.

The reflectance model should be parameterized to retain the distinction be-
tween factors unique to SAR image formation and factors due to electromagnetic
scattering properties of the surface while explicitly including the dependence on
the surface slopes in both the range and azimuth directions. For SAR, the
reflectance map R(-) can be expressed as the product of an area factor A mul-
tiplied by the radar cross section (RCS) oo per unit area. Both A and o are

functions of imaging geometry and surface orientation, i.e.

R, tyy B) = Al 0y, B)T0(Urs Uy B) - (2.9)

This resulting reflectance map is normally much more directional than if the
same surface was viewed by a passive imaging system at visible wavelengths.
This is for two reasons. First, the area factor is different for SAR imagery
than for conventional photographs in that the SAR pixel is formed in slant-

range/cross-range coordinates instead of azimuth/elevation. By itself, A is more
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directional than the reflectance map for conventional photographs of a Lamber-
tian surface used in much of computer vision research. Second, any given surface
is much smoother relative to radar wavelengths than for visible wavelengths.
Hence, oo, by itself, also tends to be more directional than the reflectance map
for a visible image of the same surface. Thus, the SAR reflectance map is the
product of two factors, both of which can be more directional than typical optical
reflectance maps.

A typical SAR reflectance map is plotted in Figure 2.3 along with a re-
flectance map for a visual image of an ideal Lambertian surface illuminated
by a point source. This helps to illustrate the drastic difference between the
characteristics of radar imagery and aerial photographs.

A visual comparison of SAR imagery with aerial photographs is shown in
Figure 2.4. Figure 2.4 (a) shows a simulated aerial photograph with illumination
from the left 60 degrees above the horizon. The Lambertian reflectance model
from Figure 2.3 was used with the camera at Nadir. Figure 2.4 (b) shows a
simulated SAR image of the same area with the same illumination geometry, i.e.
a 60 degree grazing angle, and the SAR reflectance model from Figure 2.3. The
effect of the directional reflectance is clearly visible in the higher contrast of the
SAR image. A closer examination also reveals the foreshortening of mountain

slopes facing the radar.

2.2.1 Area Factor

Two different parameterizations for area/RCS have been used in the radar liter-
ature. One parameterization uses the area of a pixel projected onto the surface
times the normalized radar cross section. This approach was introduced by
Goldstein in 1946 [57]. A second parameterization by Cosgriff, et al. [32] uses
the area projected into a plane normal to the illumination. We will refer to
the former area factor as “surface area” and the latter as “illumination area”.
The illumination area parameterization is more compatible with the definition

of RCS used by electromagnetic scattering theorists [13].
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Surface Area

Suppose for now that the pixels can be described by an ideal rectangular point
spread function (PSF). The projection in the range direction of such a pixel onto

a locally planar surface is given by

AL, = Ary/1+u2. (2.10)

The projection in azimuth of a pixel onto the surface is

AL, = Ay,/T+ a2 . (2.11)

The resulting elemental area of a pixel projected onto the surface is

As(ur,uy) = AL ALy = ArAy /(1 +u2)(1 +u2) . (2.12)
To simplify this expression, note that for small to moderate slopes
(I+u)l+ul)m1+ul+ul. (2.13)

Substituting (2.13) into (2.12) and normalizing to ArAy = 1, we can make the

following simplifying approximation

1
Asm[1+u+uZ= == (2.14)
i

Illumination Area

Nlumination area Ar denotes the area of the incident plane wave that impinges

on the projected pixel. For the rectangular PSF this gives
Ar = ArAy|u,| (2.15)

providing a very simple expression in terms of the differential geometry of the
surface. Equation (2.15) could also be expressed as the tangent of the angle
between the range vector and the terrain surface. Figure 2.5 depicts the surface
and illumination area in slant plane coordinates for a locally planar surface.
Both forms of area factor have their advantages and disadvantages. The

approximation from (2.14) gives surface area as a function of a; only. If RCS
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is expressed as a function of a; and implemented in a look-up table then the
area factor can be absorbed into the same table, saving computation. While
illumination area from (2.15) is not parameterized by a;, it is also simple and
is more physically meaningful than surface area. Experimental results compar-
ing simulated images with real SAR images described in Chapter 4 show the

illumination area parameterization to provide a more accurate model.

2.2.2 RCS Models

Many models for the variation of g as a function of incidence angle are presented
in the literature [9,12,106] based on both empirical studies and by modeling the
various possible scattering mechanisms that may occur. Interestingly, some of
the models developed by the radar community appear to parallel the models
developed for quasi-specular reflection in optics [115] and computer graphics.
The functional form of oy will depend on surface microstructure relative to the
wavelength, and can vary locally in ways that are difficult, if not impossible, to
detect from image data alone.

The perfectly diffusing reflectance models were rejected early in the devel-
opment of radar technology except for some special cases such as fields of grain
[81,32]. Clapp considered Lambert’s work in photometry as a starting point in
developing RCS models. Clapp’s first model [106] is given by oo = cos a; when
used with A;. The relation op = constant, Clapp’s third model, results in a
simple reflectance map R(a;) = cot(a;) when combined with the area factor for
a flat surface. This was derived by modeling the surface as being composed of
many layers of spheres, each absorbing some fraction of the incident power and
reradiating the remainder isotropically. Clapp’s third model has been found to
be in close agreement with measured RCS of some vegetation covered terrain,
such as fields of grain.

For better or worse, radar clutter is often more directional than indicated by
the above models. The generalized Lambert model, oo(a;) = cos*(a;), developed
as a remedy for this and has also been considered for computer animation of

visual scenes [129]. A further generalization, based on empirical data, is given
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by [91]
COSk ;g
—* (2.16)

sin’ o

oo(a;) =

It has also been suggested that (2.16) with k in the range of 3 to 4 may provide
a reasonable model for relatively smooth surfaces such as asphalt [106], and that
I =0, with k € [1,2] is appropriate for very rough surfaces. In our experiments
from Chapter 4, | = 0 was appropriate but much higher values were needed for
k.

RCS models for partially rough surfaces derived using stochastic models of

surface microstructure are discussed below.

Specular Point Models

One characteristic of radar clutter is the relatively frequent occurrence of specu-
larities from smooth surfaces, such as water, lava flows, roads, and other cultural
features. An ideal specular surface is one for which all energy is reflected at an
angle equal to the angle of incidence, sometimes referred to as Fresnel reflection
[147]. Most radar clutter, however, is neither perfectly specular or perfectly
diffuse but somewhere in between. Hence, early clutter modeling research at-
tempted to combine the physics of specular reflection with that of reflection by
rough surfaces. One example is the specular point theory based on modeling the
surface as a collection of many smooth facets, each with well-defined reflectivity
properties but oriented at random. Since each facet is a specular reflector the
expression for oy is related to the average number of facets oriented towards the
radar. This approach was investigated by Katzin [88], and Spetner and Katz
[152]. This is an example of using a spatial point process representation for
radar returns to derive a practical model. The resulting RCS models have been
found to have a close fit to empirical data in some cases. Specular point the-
ory is based on geometrical optics which does not lend itself well to predicting
the effects of varying wavelength, but does have the advantage of conceptual

simplicity.



Physical Optics Approaches

As of 1963, according to Beckmann and Spizzichino [13], the study of electro-
magnetic radiation reflected from planar surfaces was well-understood but the
more general case of rough surfaces remained an unsolved problem. Although
practical advances have been made, electromagnetic scattering from rough sur-
faces is still an area of active research as evidenced by more recent publications
[120,121]. Approaches based on wave theory (of which geometrical optics is the
special case with zero wavelength) have been useful when the surface height is
modeled as a continuous random field. One elegant result relates physical optics
results in the zero wavelength limit to the joint probability density function for
the surface slopes [10]. This observation is consistent with earlier work using
facet models [152], and physical optics models with finite wavelength [13].

We have considered a class of models derived by a physical optics approach
but evaluated in the zero wavelength limit. The surface is modeled as a random
process with specular reflection occurring at each point on the surface. The radar
cross section depends on the average number of points oriented towards the radar
and the average Gaussian curvature at those points, which in turn depends on
the root-mean-square (RMS) surface roughness and correlation length. We have
concentrated on the model reported by Barrick [9]. For Gaussian distributed

surface height the resulting RCS is

K tan? o;
oo(ay) = mexp{——*sg—} 1 (2.17)

where s is the RMS surface slope. A different expression is obtained for the
case of exponentially distributed surface slopes [9]. It was found in Chapter 4
that, for the available imagery, Barrick’s model with Gaussian height provided

a better fit than Barrick’s exponential slope model or Keydel’s empirical model.

Other Factors Influencing RCS

Many real-world surfaces defy description by either geometric or stochastic ap-
proaches. For example, ground cover from vegetation is extremely complex.
Even if adequate descriptions of their shape could be obtained, the role of depth

of penetration and internal reflection of the electromagnetic waves is uncertain
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[147], and an item of current research. Further, in shape from shading and even
simulation applications we may not know a priori the parameters for well-defined
effects such as simple surface roughness.

Past experimental results also indicate a need for better models for a; —»
7/2 (near grazing). This is consistent with our experience in SAR image simu-
lation where the RCS models based on simple models of surface microstructure
did not adequately predict image intensity at low grazing angles. One way to
look for better RCS models is by using better surface models. Modeling rough
surfaces is complicated by the fact that “roughness” of real surfaces depends on
the length of the yardstick used. For example surface undulations from multi-
ple physical sources can take on a wide range of scales. This effect has been
investigated with both physical and geometric optics approaches by modeling
surface height as the sum of independent random fields each with different slope
statistics [13,176]. Two-scale models have been developed which seem to better
explain the characteristics of radar backscatter near grazing in some cases [176].

Another phenomenon is that the scattering mechanism used for intermediate
angles of incidence may not be valid at the extremes near grazing and near
vertical incidence. As a; — /2 specular reflection takes over since the Rayleigh

criterion for a rough surface is [13]

wavelength
8 < constant X ————,
COSs @;

This shows that for finite surface roughness s that the surface effectively becomes
smooth near grazing. This effect is partly responsible for road glare near the
horizon observed by travelers and has been observed in radar clutter [106].

Some basic RCS models are summarized in Table 2.1.

2.2.3 Albedo of Radar Returns

Cosgriff, et al. [32] applied the term albedo to radiometry by analogy with
photometry to mean that portion of the incident energy which is reradiated
by the surface. For convenience, we lump together all multiplicative constants
that appear in front of the reflectance map and refer to that product as albedo.

Albedo depends on the electrical properties of the surface materials and any

24



RCS MODEL DESCRIPTION

cos(a;) Clapp’s 1st Model
(Lambertian)
Constant Clapp’s 3rd Model
(Perfectly Diffuse)
cos*(a;) Generalized Lambertian Model
cos®(a;)/ sin'(a;) Keydel’s Model [91]

[K sec*(a;)/s?] exp{tan®(a;)/s?} | Barrick’s Model [9], Based on
where s = RMS surface slope specular-point model for reflection from
rough surface with Gaussian slopes

Table 2.1: Some models for normalized radar cross-section versus angle of inci-
dence. Illumination area parameterization is used.
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ground cover. Variations in the median of measured radar albedo for typical
clutter spans a wide dynamic range on the order of 60 dB where the extreme
lows are for water and the extreme highs are for cities [106].

Albedo can vary significantly in ways that are difficult to predict with changes
in moisture. For example, water on asphalt changes both the smoothness and
the dielectric constant, lowering the RCS curve by as much as 10 dB (32]. In
the same investigation, water on vegetation was observed to have the opposite
effect, that of raising RCS on the order of 3 dB [32]. Water in vegetation (say
due to increasing moisture content from winter to spring) has caused an even
larger increase in RCS of 10 dB [32]. The effect of snow depends heavily on
snow depth since the electromagnetic waves can penetrate into the snow.

The issue of albedo variation is so complex that we do not attempt to develop
a predictive model for it. It does appear that the random field models discussed
in Chapter 6 are, in some cases, appropriate models for albedo. Further, fre-
quency diversity [15,41] and polarization diversity provide some information on
variations in the electrical properties of the surface being imaged. That, in turn,

gives an indication of albedo variations.

2.3 Observation Noise

The most significant source of noise for SAR imagery is speckle, which arises
from interference between the returns from multiple scatterers within a reso-
lution element. For complicated surfaces and resolution much larger than a
wavelength the complex amplitude of the speckle can be modeled as complex
Gaussian noise multiplied by the signal [60]. The correlation length of the
speckle is determined by the width of the PSF of the imaging system. Thermal
noise from the radar electronics introduces a second noise source with complex
amplitude modeled as white complex Gaussian noise added to the image.

A third source of noise arises from the voltage accumulated in the pixel
sidelobes. Since SAR image amplitude is formed essentially by calculating a
weighted Fourier transform of a finite aperture, sidelobes in the PSF are un-

avoidable, just as sidelobes are an inherent part of the frequency response of a
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finite impulse response filter. This voltage accumulated in the sidelobes of any
given pixel is the coherent summation of many different weighted voltages, each
dependent on the radar backscatter in some area. For natural terrain images,
this voltage is approximately independent of the signal in any particular pixel,
approximately white and Gaussian with variance dependent on the level of the
overall backscatter in a large neighborhood.

It is apparent that speckle, thermal noise, and sidelobe noise have very sim-
ilar statistical properties, except that speckle is a multiplicative noise source.
The combined effect is that the noisy image intensity can be expressed as a
noise-free image, combined with a bias term (dependent on thermal and side-

lobe noise levels) multiplied by a noise term

I(r,y) = [GnR(ur, uy, B) + 02,,] n(r,y) (2.18)

where of;,, is the combined power of the thermal and sidelobe noise, n(r,y)
is unit power random field distributed as chi-squared with two degrees of free-
dom, and G; is radar the system gain. It is well-known that a dual additive—
multiplicative noise source is equivalent to a single multiplicative noise source
with additive bias (as in equation (2.18)). A proof of this assertion may be
found in [177].

G; includes all of the terms of the radar equation [147] not appearing in
nR, such as wavelength, range attenuation, transmitter power, duty factor, etc.,
but also includes compensation for range dependence, antenna beam-shape, and
calibration factors. One goal in the design of high quality SAR systems is for

G; to be a known constant throughout the image. We will assume that
G,=1. (2.19)

For uncalibrated radars system gain is assumed to be an unknown constant.
The noise variance can be reduced at a cost of spatial resolution by averaging
neighboring pixels. However, if the thermal noise and sidelobe noise levels are
significant, then the bias term will remain and must be accounted for regardless
of the amount of spatial averaging. Given enough noncoherent integration one

could model image intensity as

I(r,y) m nR(ur, uy, B) + i (2.20)

27



For example, SEASAT SAR imagery, among the highest quality publicly avail-
able at this time, has an integrated sidelobe ratio (ISLR) of only 6 to 20 dB,
depending on the processing method used [130]. Since ISLR measures the ratio
of mainlobe energy to total sidelobe energy, this means that Otias can be as high
as 6 dB below the average value of nR in a region—surely a significant bias
level. For the SAR imagery used in Chapter 4, of,,, was actually larger than
the average value of nR. It is, therefore, necessary to incorporate this bias into

the reflectance model.

2.4 Stochastic Models for Image Intensity

We now introduce the stochastic modeling approach used for SAR image inten-
sity and examined in more depth in Chapter 6. Let of,,, = 0 for now and model

the observed square-law detected image I as

I(r,y) = v(r,y)n(r,y) , (921

where v(r,y) is the noncoherent image proportional to the ensemble average
radar backscatter for the object at the physical location corresponding to (ryy)-

Various models have been considered for I and v in the radar literature
[12,56,81,147]. The main shortcoming of those models is that they have not
devoted attention to spatial correlation in the data. Frost et al. [52] modeled v
as a Gaussian random field with causal spatial interaction to account for spatial
correlation. We examine transformed Gaussian random fields with possibly

noncausal spatial interaction. That is, a transformed version of v, given by

w(r,y) = g(v(r,y)) ’ (2.22)

is modeled as a Gaussian random field. The function ¢ is an invertible point-
nonlinearity. The spatial interaction in the underlying Gaussian random field w

is then represented by a noise-driven linear system

w(r,y) = p*h(r,y) (2.23)

where p is the Gaussian driving process and h is a possibly noncausal 2-D PSF.

Some specific examples are considered in more detail in Chapter 6.
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If g(-) = In(-) then v is referred to as a lognormal random field. We con-
centrate on the lognormal case for SAR images although other transformations
are possible. Presence of thermal noise and sidelobe noise requires a three-
parameter lognormal distribution model for the first order density of v. The
extra parameter is simply the additive bias o,,.. More general transformations
can be useful, for example, one which is linear at low intensities and logarithmic
for high and intermediate intensities, or a piecewise linear transformation, or a
cube root. Hence, the general form for g will be retained as much as possible.

" Stochastic models are also useful for inferring surface properties. Cox and
Munk [33,34] used texture in photographs of sunlight reflected from the ocean
surface to estimate surface roughness. More recently, Pentland [125] has at-
tempted to relate surface statistics to image statistics for visible wavelength im-
ages of fractal surfaces. It is also possible to develop relations between stochastic
models of terrain elevation and stochastic models for the noncoherent component
of SAR image intensity. We do not address that problem but proceed directly

to reconstruction of deterministic surface topography from image intensity.
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Chapter 3

Shape from Shading

3.1 Background

An image is a projection of a three-dimensional (3-D) world into a 2-D signal
and vision is, in some sense, the inverse of that projection. Hence, vision is a
highly underconstrained problem requiring additional knowledge or simplifying
assumptions. In a more restricted domain, shape from shading refers to the
problem of inferring the shape of a surface given a single image of that surface.
The basic principle is that surface shape information can be obtained by mod-
eling the observed image intensity in terms of the surface orientation and then
using that relationship to solve for the surface slopes.

Let I(z3,y2) be the observed image intensity and z(z,y) be the unknown
surface height above the (z,y) plane. Note the distinction between image coor-
dinates (z3,y2) and surface coordinates (z,y, z). The relationship between image

intensity and surface slopes can be expressed in the following form [70,134,164],

I($2:y2) = R(zxazyvﬂaean) (31)

where z; = 0z/0z and z, = 0z/0y are the surface slopes, J is the illumination
direction vector, £ is the vector from the surface to the camera, and 7 is the
albedo or intrinsic reflectivity of the materials composing the surface.

The problem of reconstructing z given I has been expressed as that of solving

a nonlinear partial differential equation in & and y [70]. Considerable progress
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has been made towards solving this in practice assuming that (i) at any point
(2,y) the reflectance map R is a function of the surface slopes and albedo only
at (z,y), i.e. multiple reflections are ignored, (ii) the albedo 1 and the vectors B
and £ are known over the entire image, (iii) R is spatially invariant, and (iv) the
transformation from surface coordinates to image coordinates is an orthographic

projection, specifically

(1‘2(3357 az)$ y2(m, y'.'z)) = (w? y) * (32)

Unfortunately, an exact solution to the imaging equation (3.1) does not
always exist, or there may be an infinite number of solutions. In practice,
modeling errors such as reflectance map mismatch, imperfect knowledge of the
light source, spatial and radiometric quantization error, observation noise, and
albedo variations are inevitable. Further, boundary conditions are generally not
completely known and sometimes may not be available at all. These factors all
influence the existence and uniqueness of a solution to (3.1) and the estimation
of a good solution in the case that a unique one does not exist. For these reasons
shape from shading is a very difficult problem in practice.

It is clear that the shape from shading problem, in its full generality, is
an underdetermined problem. Consequently, its solution requires additional
constraints. Possible constraints are smoothness and integrability of (z,z,),
shadowing cues, auxiliary data from multiple images, altimetry, higher level
scene analysis, and simplifying assumptions as discussed above.

One early application of shape from shading techniques was for estimating
lunar topography from photographs [134,164] in the 1950’s and 1960’s. In that
work a fundamental difficulty was noted: Even with a known reflectance map
and albedo, each image intensity sample is a function of the two surface gradient
components, z, and z,, at the corresponding location. One can only specify a
locus of gradient values capable of producing a particular intensity value so that
local measurements, by themselves, do not suffice. A simplification was possible
for the surface of the moon due to the particular reflectance model for the
lunar surface being constant along straight lines in the gradient space [134], i.e.
image intensity was only a function of the gradient in one particular direction.

This allowed surface reconstruction along straight lines in the image by 1-D
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integration, leaving the problem of estimating the relative elevations of each of
the integration paths. This was done by assuming the average surface height
along each line of the image to be equal. A more accurate reconstruction could
have been provided by enforcing integrability of the surface slope estimates [51].

Horn addressed the more general case where reflectivity is not a straight line
in gradient space [70]. Direct inversion of the resulting differential equation was
accomplished using the characteristic strip expansion, where the 2-D nonlinear
differential equation is converted into five ordinary differential equations (one
for each of z,y, 2,2, and z). The solution is obtained by integrating along
characteristic curves in the image—contours that proceed parallel to the gradient
of the reflectance map in image coordinates and parallel to the gradient of image
intensity in gradient space. The characteristic curves are data dependent and the
solution is sensitive to observation noise and error accumulation. Accordingly,
this approach served to demonstrate the concept of shape from shading but does
not appear to be appropriate for application to noisy data such as SAR imagery.

Haralick et al [65,66] estimated surface height from LANDSAT imagery by
integrating intensity along ridges and valleys. Since the gradient at a ridge
or a valley is zero in some direction, it is possible to estimate the gradient
orthogonal to that direction unambiguously using image intensity (assuming
known albedo). This approach is restrictive in that it only provides reasonable
estimates along ridges and valleys: What if there are none? Shape from shading
is more useful if it can be applied in areas absent of such salient features so that
it may complement other techniques, e.g. stereopsis, that rely more heavily on
the presence of significant feature.

Pentland [124] developed an approach which examines local estimates of the
Laplacian of image intensity to estimate surface slopes under the assumption
that the surface is locally spherical at each point. Lee and Rosenfeld later
improved this technique so that it only requires first derivatives [100], reducing
its sensitivity to noise. Yet the dependence on accurate estimates of intensity
derivatives (even first derivatives) makes it extremely unstable in the presence
of noise, such as speckle. Further, the local sphericity assumption is only an

approximation. A third difficulty is that no provision is made for enforcing
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global consistency (e.g. integrability) of the local slopes so that it is difficult
to construct a surface from the slope estimates. Hence the local approach is
probably not appropriate for SAR imagery.

Iterative search approaches have been developed which cast the problem in
a cost minimization framework rather than in a pure inversion framework. Such
iterative search techniques are attractive in that they allow for the inevitable
uncertainties due to modeling errors and noise. For example, Brooks and Horn
[22] proposed the approach of selecting the surface slope estimates, (2, %,),

which minimize the following cost function
e= [ [(=R(2,2)P + - (82, + 222, + £2,)dady (3.3)

subject to known boundary conditions. The first term in the integrand is the
squared error between the observed image intensity and the image intensity pre-
dicted by substituting the estimates (2., 2,) into (3.1). This mean squared error
term allows for modeling errors and noise. The second term in the integrand is
a measure of quadratic variation in the surface slopes. This is a smoothness cri-
terion which, under some conditions, assures a unique smooth solution to (3.3)
even when (3.1) does not possess a unique solution. It is also interesting that
minimization of a quadratic variation of the surface slopes is roughly equivalent
to minimization of the potential energy of a thin elastic plate [62]. The con-
stant A establishes a tradeoff between smoothness of the solution (Z,,%,) and
the mean-square value of the residuals I — R.

Brooks and Horn [22] developed an algorithm to minimize € in (3.3) subject
to the constraint that (2., 2,) satisfy known boundary conditions. Although the
Brooks and Horn algorithm may converge to a unique solution of (3.3), that
solution is generally not integrable. That is, given the final estimates of the
partial derivatives many possible surfaces could be constructed, each dependent
upon the path of integration.

Earlier, Tkeuchi and Horn [79] developed a similar algorithm that, instead

of using gradient space (z, z,) was parameterized in stereographic coordinates
(f,9) where

2z 2z
= = and = ! : 3.4)
A 1+ ka2 422 : 14T+ a2+ (
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This parameterization eliminates the difficulty in handling occluding boundaries
where z;, z,, or both are unbounded. To understand the (f,g) coordinates
geometrically, note that the locus of all conceivable unit normal vectors defines
a unit sphere, called the Gaussian sphere. The (f,g) coordinate system above
can be obtained through a central projection from the south pole of the entire
Gaussian sphere into a plane tangent at its north pole. The locus of all occluding
boundaries correspond to the equator of the Gaussian sphere and a circle of
radius 2 in (f,g) space. The algorithm of Ikeuchi and Horn allows f and g to
vary independently in the iterative solution and (z, z,) is obtained by a point
transformation of (f,g). The result is that Ikeuchi and Horn’s algorithm also
suffers from the drawback of not producing an integrable solution.

Lee [101] presented a shape from shading algorithm, inspired by that of
Ikeuchi and Horn, for which he proves the existence of a unique solution. Fur-
ther, Lee proves that his algorithm converges to the unique solution if the surface
slopes are known on the square image boundary. Unfortunately, that solution

1s not integrable.

3.2 Enforcing Integrability in Shape from
Shading Algorithms

In deriving iterative solutions to (3.1) by the calculus of variations, it appears
to be much more straigthforward to solve for surface orientation than to solve
directly for z [74]. The question of consistency between z, and z, then arises.
A reasonable consistency constraint to place on the surface slopes is that they

are integrable, where integrability is defined by

Zzy(%,Y) = 2ye(2, y) (3.5)

for all (z,y) on the support of I. That is they correspond to a surface with second
partial derivatives independent of the order of differentiation. This guarantees

that the surface height at any particular point is independent of the path of
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integration so that the integral equation

fé (zodz + z,dy) = 0 (3.6)

holds for all closed curves C in the region of interest. Integrability is related
to smoothness because a surface with discontinuities violates (3.5). Horn and
Brooks assert [74], as do we, that past shape from shading algorithms can be
improved considerably by incorporating an integrability constraint.

Both the local shape from shading algorithm and earlier iterative algorithms
reported in the literature [22,79,100,101,124,126] do not take into account the
interdependence of the two components of surface orientation but allow them
to vary independently. If we do allow (z.,z,) to vary independently then (3.1)
may have an infinite number of solutions even when boundary conditions are
completely known and there are no modeling errors or observation noise. Just to
illustrate this point, neglect the issue of boundary conditions and consider shape
from shading as a discrete problem. Suppose we observe image intensity on a
N x N grid. We have N? observations and hope to determine 2N? samples of
the partial derivatives of z(z,y). Clearly, there is an infinite number of solutions
to (3.1) if the partial derivatives of z are not interdependent. Suppose instead
that we simply require that these partial derivatives are integrable in the sense
of (3.5). Then the partial derivatives must correspond to only N2 unknown
samples of z so that we are dealing with approximately N? equations in N?
unknowns. Hence, an integrability constraint cuts the number of unknowns by
a factor of two, neglecting boundary conditions.

Integrability constraints have been used before in iterative shape from shad-
ing algorithms. Smith [149] derived a set of equations relating derivatives of
image intensity to surface orientation independent of albedo and illumination
angle, and without assuming a particular local characteristic for the surface
(such as Pentland’s local sphericity assumption). It is interesting to note that
integrability was assumed in the formulation and imposed in deriving algorithms
for solving the equations. Smith considered the use of a penalty function to
encourage integrability during iteration, and a local spatial approach for con-
structing a surface from nonintegrable slope estimates, although no convergent

algorithm was reported.
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Strat developed an iterative shape from shading algorithm that minimizes
the mean squared image intensity prediction error plus a penalty term that
measures the departure from integrability [154]. This penalty is the sum of
squares of discrete approximations to the loop integral (3.6) evaluated at each
pixel in the image. The contour of integration is a 2 x 2 pixel block containing
the pixel being evaluated.

Recently, Horn and Brooks [74] have developed an approach for deriving
iterative shape from shading algorithms using the variational calculus. It was
shown that several previously developed algorithms are special cases of the vari-
ational calculus approach. A new iterative algorithm which attempts to enforce
integrability through the use of a penalty function, [ (9%, /3y — 82,/0z)*dzdy,
was developed and its discrete implementation was shown to be very similar
to that of Strat’s algorithm. Problems at occluding boundaries were overcome
by employing a unit surface normal parameterization for surface orientation in-
stead of the simple partial derivative form. Horn and Brooks encountered some
difficulties in developing a convergent iterative algorithm that strictly enforces
integrability. Further, algorithms that were presented do not appear to allow
much flexibility for incorporating additional constraints.

We have developed a method for strictly enforcing integrability and for en-
forcing constraints on the surfaces spectrum. The method for enforcing integra-
bility is to project the possibly nonintegrable surface slope estimates onto the
nearest integrable surface slopes [48]. In Section 3.3, this orthogonal projection
is solved for the case that the surface slopes are represented by finite sets of
orthogonal, integrable basis functions. It is shown that the projection maps
closed convex subsets of the space of nonintegrable surface slopes onto closed
convex subsets of the space of integrable surface slopes provided that certain
conditions are met. Ikeuchi and Horn have previously derived an iterative algo-
rithm, described in [74], that constructs depth information from nonintegrable
surface orientation data by iteratively solving the same projection. That ap-
proach has the advantage of not requiring a finite basis function representation.
Our method has the advantage of being noniterative along with all of the ad-

vantages and disadvantages of the basis function representation. In Section 3.4
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the projection is presented for the special case of Fourier basis functions. In
Section 3.5 the discrete periodic Fourier basis formulation of the projection is
applied to extending a shape from shading algorithm of Brooks and Horn [22] so
that it converges faster and with much less error than the original version. This
extended algorithm includes the integrability constraint, and both the regular-
ization and intensity prediction error penalties from equation (3.3). Simulation
results are presented for images of complicated surfaces representative of natural
terrain. The technique is appropriate for integrating noisy slope estimates and
could, perhaps, be used in improving the results of several other shape from
shading algorithms [100,101,124,126,149]. It is this extended algorithm which
we have adapted to SAR imagery. Finally, in Section 3.7, possible applications

of the integrability projection to other vision problems are considered.

3.3 Enforcing Integrability by Orthogonal

Projections

There are many conceivable ways of enforcing (3.5). The key is to develop
a computationally efficient method suitable for use with iterative algorithms.
We have developed an approach based on projecting the possibly nonintegrable

estimated surface slopes (2, 2,) onto a set of integrable surface slopes (Z,, 2,),

where 5 5
e 3.7
ayz Ox 2y ( )
while simultaneously minimizing the following distance measure
A{(25,2,), Gy 5)} = ] j |25 — 242 + |5, — £,[2dzdy . (3.8)

Note that the minimum distance property makes this an orthogonal projection.

The task of finding such a projection is simplified if we can represent the
surface slopes by a finite set of integrable basis functions, each satisfying (3.7).
Suppose that we represent the surface z(z, y) by the functions ¢(z,y,w) so that

2(z,y) =Y Clw)p(z,y,w), (3.9)

weN
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where w = (wz,w, ) is a two dimensional index, (2 is a finite set of indices, and the
members of {¢(z,y,w)} are not necessarily mutually orthogonal. If each ¢(w)
satisfies (3.7) then it follows that z does also. Note that the partial derivatives
of z can also be expressed in terms of this expansion, giving
za(2,y) = 3 C(w)a(z,y,w) (3.10)
weQ

and

zy(z,y) = Z C(w)dy(z,y,w)

wen
where ¢, = %E and ¢, = g—ﬁ.

Now a method is presented for finding the expansion coefficients C(w) which
minimize (3.8). Suppose that the members of {@,(z,y,w)} are mutually or-
thogonal as well as the members of {¢,(z,y,w)}. Then we can compute the
coefficients for the expansions of 2, and 2, such that

Z(z,y) = E él(g)‘;bx(msysﬁ) (8.11)

wen

Ziltsy) = E éz(ﬂ)‘lsy(m-.‘ y,w) .

wen
The orthogonality of the basis functions in (3.11) greatly simplifies the mini-
mization of (3.8).
Proposition 1: The expansion coefficients C(w) in equation (3.9) that mini-
mize (3.8) given a nonintegrable estimate of surface slopes, 2,(z,y), 2,(z,y), are

given by A A
P,(w)Ci(w) + Py(w)Ca(w)

C@) == DT R W)

(3.12)

for each w € Q, where

Pilw) = f/l%(ﬂ?,y,w_)lzdwdy

and
Py(w) = /_/ |¢y($,y,g)]2dxdy .
The integrated surface Z(z, y) and integrable surface slopes, #;(z,y), Z,(z,y) are

then obtained by substituting C(w) into the expansions (3.9) and (3.10).
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Proof: By substituting the expansion for 2,, 3,, %,, and %, into (3.8) the

distance measure becomes

d{(éwaéy)s(gxa Ey)} = (3.13)
2 2
f/ 2 Coe— 3 Cite| +|X G4y~ 3 Caty| dudy,
weN wenN weN weN

which reduces to

d{(2z, %), (%2, Z)} =
[ [ ZIE=Cillgal + T 16~ Collg, P dady
weN wEeN
due to the orthogonality of {¢.(w), w € 2} and of {¢,(w), w € 2}. By inter-
changing the order of summation and integration the distance in (3.8) reduces

to

d{(ﬁr’éy),(gx’gy)} = (3.14)

X;] 1C(w) — C1(w)*Pe(w) + |E(w) — Co(w)]?Py(w) -
we

Equation (3.14) can be minimized by minimizing each term of the summation
individually. By differentiating (3.14) with respect to the real and imaginary
parts of C(w) for each w, setting the result to zero, and solving for C, (3.12)
results. '

For clarity in the subsequent proofs, express (3.10) and (3.11) in terms of

vectors. First, define the vectors

@I(m, y) = col[qu(a:, Y L_"):E € ’Q]

Py(z,y) = collpy(z,y,w),w € Q]
0 = [09 e 50]

C = col[C(w),w € ]

Cy = col[é'l(g),g € Q]

Cs = col[Cy(w),w € 9]

Equation (3.11) can now be written as
2| | @20 C,
2 0 9T

; 3.15
C, (3.15)
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with the set of possibly nonintegrable surface slopes expressed as

T ¢
So = span ! 0 o ] ; (3.16)
Similarly, (3.10) can be rewritten as
.«z (I)T
=l (3.17)
Zy <I>§'
with the set of integrable surface slopes given by
‘I>T
S = span @; (3.18)
v

which is a vector subspace of Sp.
We will denote the mapping of S onto S using (3.12) as P. This can be

written in vector form as

C=[P I-P]

Ch ] (3.19)
C2

where P is a diagonal matrix with diagonal elements P,/(P; + P,) and I is the
identity matrix.

Proposition 2: The projection (3.12) maps convex subsets of {2,,3,} onto
convex subsets of {Z;, Z, }.

Proof: Convexity follows directly from the observation that (3.19) is a linear
mapping. Suppose that £ is a convex subset of So. Then P(€) is a subset of
§ and we must now prove that P(€) is convex. The definition of convexity is
that, for all U,V € € and for all 0 < p < 1 we have yU + (1 — )V € €. Then
P(pU 4+ (1 — p)V) € P(E), since € is convex. P is linear so that

P(pU + (1 - p)V) = pP(U) + (1 — p)P(V) . (3.20)

This proves that the right hand side of (3.20) is an element of S, thus completing
the proof.
Proposition 3: The projection (3.12) maps compact subsets of the functions

{2z, 2,} onto compact subsets of {Z;,%,}. Since we are working in metric spaces,
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this is equivalent to saying that closed and bounded sets are mapped onto closed
and bounded sets [139].

Proof: From Theorem 4.15 of [139] we know that Proposition 3 holds if P is
a continuous mapping. Since all of the elements of the transformation in (3.19)
are finite, it follows that 7 is continuous, completing the proof.

It was shown that the integrability constraint represents an orthogonal pro-
Jection mapping closed convex subsets of its input space onto closed convex
subsets of its output space. This is a highly desirable property if the projection
is to be applied as a constraint in iterative algorithms [159,178]. The shape from
shading problem, in its entirety, does not appear to lend itself well to solution
by the method of projection onto convex sets (POCS) since the nonlinearity of
the reflectance map makes it difficult to realize an orthogonal projection. How-
ever, it is possible to introduce additional constraints, e.g. integrability, into an
iterative shape from shading algorithm using POCS as an intermediate step. An
example of this is presented in Section 3.5. Note that the methods for enforcing
boundary conditions in previous shape from shading algorithms [22,74,79,101]
could be expressed as projections onto closed convex sets. This follows from
the fact that the operation of setting a function equal to prescribed values over
some region of its support (e.g. strictly enforcing boundary conditions) can be
expressed as an orthogonal projection mapping closed convex sets onto closed
convex sets [178].

This approach for enforcing integrability has a second distinct advantage in
that the surface can be reconstructed in one pass using all of the information
available in (2, 2,) simply by performing the summation in (3.9) for the values
of é’(g) computed in (3.12). Thus it may be useful as a more efficient integrator

for nonrecursive local shape from shading approaches.

3.4 Integration by Fourier Expansion

The usefulness of the expansion presented in Section 3.3 depends on the specific

choice of basis functions. The Fourier basis functions, ¢(z,y,w) = exp(jwzz +
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jwyy), are particularly convenient computationally, and they also form a com-
plete orthornormal basis for z.
Using this basis the surface is represented by

Hz,y) = X;I C(w)exp{jw - (z,y)} (3.21)

where {C} are the coefficients of the Fourier series expansion of Z. For images
of size N by N, a reasonable choice for  would be (27n,27m), with n,m €
{0,1,-+-,N — 1}. Now let C,, C,, C., C, be the Fourier coefficients for 2oy 2ys
%3, Zy respectively.
The derivatives of the Fourier basis functions possess the following useful
properties
¢ = jwz¢ and ¢, = jw,é, (3.22)
P, x wl, Py x w?, Ci(w) = Cu(w)/jws, and Co(w) = Cy(w)/jw,. Then using
(3.12) and (3.22) it is straightforward to show that (3.8) is minimized by taking

~ —ijéz f-i)_.j‘w é 923
Clw) = a(o§+wg vCyl(w)

(3.23)

with the Fourier coefficients of the constrained surface slopes given by [48]
éa:("-i) = ijé’(‘é’-) and éy(‘—‘-’-) = jwyé(g) .

The expressions above are valid except at the point w = (0,0) which simply
means that we cannot recover the average value of z without some additional
information.
Note that
wy =0 = C(w) — Culw)/jws

and
w, = 0 = C(w) — Cy(w)/jwy .

In general, the Fourier coefficients of the raw slope estimates are combined in
proportion to their relative frequencies. For example, if we divide the weight
for C(w) in (3.12) by that of €, (w) we get w, /wy. The effect is to reduce “ran-
dom walk” errors that result from amplification of low frequency noise during

integration.



This frequency domain interpretation helps in understanding an inherent
difficulty in the shape from shading problem. The observed image intensity is
a function of the derivatives of the surface. Equation (3.22) shows that the low
frequency information for the surface is lost in the image formation process.
Hence, the reconstructed surface inevitably suffers from low frequency distor-
tion, the severity depending on observation noise characteristics. The frequency
domain formulation of the integrability constraint is appropriate here since the
low resolution data could be introduced as a projection constraint in an iter-
ative shape from shading algorithm. This is accomplished by substituting the
Fourier coefficients of the low resolution surface in place of the lowest frequency
shape from shading results. Experimental results in Figure 3.6 of Section 3.6
demonstrate the improvement that results from using four known low frequency
terms in compensating for completely unknown boundary conditions.

It is conceivable that low resolution information could be drawn from other
sources in real-world applications of shape from shading techniques. For exam-
ple, in some remote sensing applications low resolution surface height informa-
tion is available from DTMs [72,172]. A particular example where low resolu-
tion constraints on shape from shading is available and useful is the Magellan
project’s Venus Radar Mapper which will collect SAR imagery of the surface of
Venus along with much lower resolution radar altimetry data [36]. With shape
from shading techniques it may be possible to improve upon the resolution of the
radar altimetry data by combining it with the higher resolution SAR imagery

as discussed in Chapter 4.

3.4.1 Discrete Periodic Formulation

For computer implementation some form of discretization is necessary. Assume,
for computational simplicity, that the surface slopes are circularly periodic and
evaluate the Fourier coefficients C, and C, using the discrete Fourier transform
(DFT). With this discrete periodic formulation (3.8) is minimized by

@ (ws) Ca(w) + af(w,)Cy(w)
lazlz &= Iaylz

Clw) =

(3.24)

43



with
ér(g) = ar("-’r)é(‘i) and éy(ﬁ) = ay(wy)é(ﬂ-’-) )
where a; and a, are the Fourier coefficients of the appropriate discrete differen-

tiation operator in z and y. Suppose we approximate the derivatives by finite

central differences, e.g.
1
zy(l,m) ~ S[z(1 +1,m) — 2(I — 1,m)) (3.25)

and similarly for z;. For the central difference operator above we get ay(wy) =
sexp{jwy} — Lexp{—jw,} = jsin(w,), and similarly a,(w;) = Jexp{jw;} —
s exp{—jw;} = jsin(wy).

The estimated surface is constructed by performing the inverse DFT of ¢ (w)
from (3.24), so that the integrability projection doubles as an integrator. In all
cases the DFT is evaluated using a fast Fourier transform (FFT) algorithm.

Figure 3.1 shows the improvement of the above fast least-squares integra-
tion method over simple spatial integration for reconstructing a surface from
noisy slope estimates. The top plot, Figure 3.1a, shows the noise-free surface.
Forward difference approximations to the surface slopes (z, z,) were calculated
and then each sample corrupted by additive white Gaussian noise. The noise
standard deviation was 0.25 for each slope component, and the maximum value
for the surface slopes was about 0.8. Figure 3.1b shows the reconstruction ob-
tained by simple spatial integration along a single path. Error propagation is
apparent from the ridge lines that appear on the reconstructed surface. Fig-
ure 3.1c shows the surface reconstruction obtained using the fast least-squares
integration described above. Error propagation is greatly reduced and a much
better reconstruction results.

The intuitive frequency domain interpretation of the integrability projection
is easily extended to the discrete case using the discrete periodic formulation.
Alternatives to the discrete periodic formulation are possible, but are not consid-
ered here. The Fourier expansion could be formulated on a finite lattice instead
of a periodic lattice. The mathematics are somewhat more complicated but FF'T
calculations are still possible [44] and more careful attention could then be paid
to boundary conditions. Other basis functions, such as Chebyshev polynomials

could also be useful for finite lattice realizations.
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Figure 3.1: (A) Noise-free surface. (B) Reconstruction from noisy slopes ob-

tained by simple spatial integration along a single contour. (C) Reconstruction
using least-squares integration.
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3.5 An Improved Shape from Shading
Algorithm

We have utilized the projection from Section 3.4 to obtain a simple extension
of an algorithm presented by Brooks and Horn [22]. The result is an algorithm
which minimizes (3.3) while satisfying the discrete form of (3.7) and (3.8) at
each iteration. The experimental results presented in Section 3.6 show a marked
improvement in performance due to the integrability constraint.

Using the finite difference approximations, the values of 2,(z,y) and 2,(z,y)

which minimize (8.3) are found iteratively by the following recursion for each

point (z,y), )
Zx 2 R
{‘f } ={f } 3 Xlr<R) [ J (3.26)
% lpn 4 Je Ry

at the (k + 1)th iteration, where

IR IR
* = 7 and Ry = E’:’z_y .
R and its partials are evaluated at [, 3,]k, A; is a constant inversely propor-
tional to A in (3.3), [2,2,]x is a smoothed version of (22, Zy)k, and [z, ]k is
obtained by substituting the raw estimates [Z,, 2,]x into the integrability projec-
tion (3.24).
The smoothing applied during each iteration is given by [22]

Z,(l,m) =
%[Ey(l:m +1)+5(1,m—-1)+Z,(+1,m)+ (1 - 1,m)]
+5[Z,(I—1,m—-1)+5(-1,m+1) (3.27)

+Z,(I+1,m+1)+z,(l+1,m—1)]

and similarly for 2,. Note that this is just a discrete approximation to the
Laplacian with the center pixel left out. This follows from a manipulation of
a discrete form of the Euler equations for (3.3) as discussed in [22,74]. The

resulting expression relating A\, to A from (3.3) with this particular version of
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the Laplacian is [22] A; = ;3;. The rationale for evaluating R with the smoothed
slope estimates is that it stabilizes (3.26) [79].

The iterative algorithm can be summarized as follows [48];

(i) Smooth the previous slope estimates using (3.27),

(ii) Generate a new set of raw slope estimates using (3.26),

(iii) Project the raw slope estimates onto the nearest integrable solution
using (3.24).

The process is repeated until the cost function either stops decreasing or becomes
sufficiently small. The surface height is obtained by simply performing the
inverse DFT of C(w) after the final iteration.

Parameterization in gradient space (z,,z,) rather than stereographic coor-
dinates (f,g) is sometimes criticized because the surface gradient is not well-
defined at occluding boundaries where z,, z,, or both are infinite. However, for
discrete data, 2, and z, are bounded for all practical purposes. This observa-
tion leads to a potential method for utilizing occluding boundaries in the above
shape from shading algorithm. Intuitively, it seems that most of the information
provided by the occluding boundary comes from knowledge of the location of
its contour in the (z,y) plane and the orientation z,/z, along its contour. The
occluding boundary can be detected by examining zero crossings of the Lapla-
cian of image intensity [62]. The orientation of the occluding boundary z,/z,
can be found from an analysis of this occluding contour. Then, perhaps, the
orientation can be enforced as a constraint in the shape from shading solution
while allowing the magnitude \/23-}-‘23 to be controlled by the regularization
penalty in (3.3). Alternately, it is possible to apply the integrability constraint

in gradient space and the surface slope update in (£, g) coordinates.

3.6 Experimental Results

The above algorithm was tested on synthetic imagery with and without known
boundary conditions and was also tested on real imagery. In each case discussed
below the images are of size 64 x 64 pixels. Lambertian surfaces illuminated

by point sources were assumed in each case, giving the following the reflectance
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map

Brzz + ﬁyzy + 8.
VB4 B2+ B2 1+ 22+ 22

However, the implemented algorithm used numerical derivatives of the reflectance

R(zxazy, ﬂa 83 T]) =0 (3'28)

map so that any reasonably well-behaved known reflectance map could have been

applied.

3.6.1 Comparison of Constrained Versus Unconstrained
Algorithm

First, a series of experiments was performed to compare the performance of the
shape from shading algorithm in Section 3.5 with and without the integrability
constraint. An image was simulated for a surface consisting of a partial sphere
protruding above a plane.

In the first experiment, the surface slopes were provided where the sphere in-
tersects the plane. No noise was added to the observed intensity, the only source
of errors being intensity quantization and finite precision arithmetic. Under
these conditions, the algorithm of Brooks and Horn converges to a reasonably
accurate solution for the surface slopes. This case was used to get an indica-
tion of the impact of enforcing the integrability projection under very benign
conditions. Table 3.1 shows the mean and standard deviation of the surface ori-
entation error for both the constrained and unconstrained algorithm after 100
iterations. Note that the application of the integrability constraint reduces the
error standard deviation from 2.36 degrees to 0.53 degrees, a factor of 4.5. A
second observation is that a minimum value of A = 7000 was required for stabi-
lizing the unconstrained algorithm, while the constrained algorithm was stable
for a wider range, down to A = 5000. Interestingly, the very significant change
in A (from 7000 to 5000) resulted in an insignificant change in the error standard
deviation ( from 0.53 to 0.56), perhaps indicating that most of the smoothing
is coming from the integrability constraint. This appears to corroborate the
finding of Horn and Brooks [74] where the regularization penalty from (3.3)
was dropped and an integrability penalty was used instead, improving upon the

results of Tkeuchi and Horn [79].
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The rate of convergence was also compared for the partial sphere case. For
the constrained algorithm the orientation error standard deviation was down
to 2.7 degrees after only 5 iterations. The unconstrained algorithm took about
90 iterations to reach this same level of convergence. After 8 iterations the
constrained algorithm was down to 1.25 degrees error standard deviation, while
the unconstrained algorithm took nearly 1000 iterations to reach the same level.
This demonstrates that enforcing integrability by the method developed in this
chapter can greatly speed up convergence.

Similar experiments were repeated with relaxed boundary conditions, i.e.
boundary conditions provided around the square border of the image. The
integrability constraint also reduced the error standard deviation by a factor of
about 4.5 in this case. The numerical comparison is shown in Table 3.2.

When the unconstrained algorithm was applied with relaxed boundary con-
ditions the resulting solution was nearly locally cylindrical (i.e. Z, ~ 0) every-
where. This is clearly nonintegrable. The integrability projection was applied to
the above erroneous slope estimates after 100 iterations of the unconstrained al-
gorithm. Here the error standard deviation is much higher than for constrained
iteration but significantly lower than for unconstrained iteration, as indicated
in Table 3.2. This demonstrates the usefulness of the integrability projection as

a method for constructing a surface from nonintegrable slope estimates.

Figure 3.2 (A) shows the true partial sphere surface, (B) an image generated
from that surface, (C) the surface estimated using the constrained algorithm
given both the image intensity and knowledge of the surface slopes around the
border of the image (corresponding to Table 3.2), and (D) the surface estimated
given only the simulated image without the knowledge of boundary conditions.
For the known boundary condition case the reconstructed surface is almost
identical to the true surface. For the case of unknown boundary conditions,
use of the regularization penalty term in (3.3) combined with the integrability
constraint was sufficient to provide convergence to a reasonable solution in all
test cases.

The positive results above can be attributed mostly to the integrability con-

straint, although other issues deserve some attention. Illumination from the
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Orientation Error (Degrees)

Algorithm A mean st. dev.
[ Unconstrained | 7000 4.07 2.36
|| Constrained 7000 0.64 0.56
| Constrained 5000 0.61 0.53

Table 3.1: Comparison of surface orientation error after 100 iterations for the
unconstrained algorithm versus the constrained algorithm. The boundary slopes
are provided at the intersection of the sphere and the plane in these examples.

Orientation Error (Degrees)
Algorithm A mean st. dev.
Unconstrained 7000 6.49 10.33
Unconstrained 7000 8.45 6.66
(until last iteration)
Constrained 5000 1.89 2.45

Table 3.2: Comparison of surface orientation error after 100 iterations for the
unconstrained algorithm versus the constrained algorithm. In these examples,
boundary conditions are supplied around the square border of the image.
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side (instead of directly overhead) has a positive impact on the results. Had the
sphere been illuminated from directly overhead, one would not be able to distin-
guish a concave-downward sphere from a concave-upward sphere using shading
alone. Some other information would be needed, such as boundary slopes at
the joint between the sphere and the plane or low resolution surface informa-
tion. This did not appear to be a very serious issue in our experiments since
a slight deviation of the illumination source from vertical would allow the al-
gorithm to resolve this type of ambiguity. No special measures were taken to
avoid wraparound due to the discrete periodic formulation of the integrability
projection: N x N FFTs were used for N x N images. Similar methods have
been used before in solving similar elliptic problems [44]. Periodicity appears to
help a little bit for surfaces without discontinuities at the wraparound points,
such as in Figure 3.2, but it has a slight negative impact for more complicated

surfaces.

3.6.2 Shape from Shading for Complicated Surfaces

A second set of experiments demonstrates the performance of the constrained
shape from shading algorithm using images of more complicated surfaces. In
Figure 3.3, a picture of the surface of the moon is shown along with a surface
estimated based on a guessed light source direction and an assumed reflectance
map. Boundary conditions are neither known nor guessed in advance and a
reasonable surface estimate is obtained. Although the lunar surface may be
non-Lambertian [134], the surface estimate shown in Figure 3.3 was obtained
by assuming Lambertian reflectivity. For this moon image, surface estimates
consistent with our visual intuition were obtained using a variety of assumed

reflectance maps and for a broad range of plausible light source directions.

Images were simulated using a digital terrain model (DTM) of the Laguna
Hills in California. Figure 3.4 shows three dimensional (3-D) plots of the true
DTM and the results of the constrained shape from shading algorithm after 50
iterations. Comparison of the 3-D plot in Figure 3.4A with those of Figure 3.4B
and 3.4C show that the general shape of the surface has been reconstructed

both with and without known boundary conditions. The 1-D slices compared in
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Figure 3.5 better illustrate how closely the reconstructed surface (dotted line)
fits the true surface (solid line) in the known boundary conditions case.

The dashed line in Figure 3.6 shows a 1-D slice of the surface reconstruction .
obtained with completely unknown boundary conditions. Although the overall
shape of the reconstruction is very similar to that of the true surface (solid line)
there is some apparent low frequency distortion. This distortion is caused by the
loss of low frequency information in the process of image formation, combined
with the tendency of the regularization penalty and periodic boundary condi-
tions to flatten the surface. Qualitatively similar low frequency errors appear
in the solution for z(z,y) when small amounts of observation noise, or other
sources of error are present. This low frequency distortion is an inherent part of
the shape from shading problem since we are observing image intensity, which
is a function of the partial derivatives of z(x,y). The reconstruction of z(z,y)
involves integrating those partial derivatives, amplifying the low frequency por-
tion of the noise spectrum as discussed in Section 3.4. Thus, it is important to

be able include low frequency constraints from other sources.

3.6.3 Incorporating Low Resolution Information

The dotted line in Figure 3.6 shows the improvement that results from including
a very small amount of low resolution data in the shape from shading solution.
This demonstrates that if low resolution information is indeed available in some
form other than shading then errors resulting from missing boundary conditions
and observation noise can be greatly reduced. The application of the integra-
bility constraint lends itself well to including low resolution information as a
constraint in the iterative shape from shading algorithm of Section 3.5. This
was accomplished by taking the Fourier transform of the Laguna DTM in Fig-
ure 3.4, and saving only the four lowest frequency terms (not including the DC
term). The four lowest frequency terms of the true DTM were then substituted
for the corresponding part of the Fourier transform of the estimated surface
height at each iteration. This did not add significantly to the computational
load because the Fourier transform of estimated surface height is obtained as a

byproduct of the integrability constraint as can be seen from (3.23). Enforcing
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Figure 3.4: (A) Laguna Hills DTM, (B) estimated DTM obtained from a simu-
lated image of that surface, and boundary slopes, (C) estimated surface obtained
with unknown boundary slopes.
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Figure 3.5: One dimensional slice through the DTMs of Figures 3.4A and 3.4B.
The horizontal axis corresponds to the 32nd line in the images of Figure 3.8.
That is, it forms a line parallel to the z-axis running from left to right through
the center of the images. The units for the vertical axis are the same as the

image sample spacing in (z,y).
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Figure 3.6: One dimensional slice comparing the true DTM, shape from shading
results with unknown boundary conditions (Figure 3.4C), and shape from shad-
ing with unknown boundary conditions but utilizing low frequency constraints

provided by the 0.1 percent lowest frequency Fourier coefficients of the true
DTM.
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the low frequency data as a projection constraint did not appear to slow down

convergence in the cases tested.

3.6.4 Synthesis Results

The shape from shading algorithm was used to obtain a viewpoint - indepen-
dent representation of an image suitable for predicting image intensity patterns.
In Figures 3.7 and 3.8 predicted images are synthesized for various illumina-
tion geometries given true surface shapes and also given surface slope estimates
obtained using the constrained shape from shading algorithm of Section 3.5.

The top row of Figure 3.7 shows simulated images for the partial sphere from
Figure 3.2 created with four different illumination directions. The second row
synthesizes images with the same four illumination directions but using the sur-
face reconstruction from Figure 3.2(B), which uses known boundary conditions
around the border of the image. The close match between each of the images in
the second row and their counterparts in the first row appears to indicate that
the shape from shading algorithm is utilizing most of the information available
in the observed image intensity. The third row uses the moon surface estimate
from Figure 3.3(B). Although ground truth is not available for testing the ac-
curacy of this solution it is encouraging that the surface estimate did produce a
set of synthesized images that are consistent with our visual intuition.

Figure 3.7 also reminds us that the human visual system does a good job of
evaluating surface shape from image intensity for a wide variety of illumination
conditions. Then it is reasonable to ask if the shape from shading algorithm
can also produce high quality surface reconstructions without much sensitivity
to illumination geometry. In Figure 3.4, simulated images created using four
different illumination geometries were used to test the constrained shape from
shading algorithm. First, simulated images were created using the DTM from
Figure 3.4 given the various illumination directions. This is shown in the top row.
Second, the shape from shading algorithm was applied to each of those images.
The resulting four surface slope estimates were each used to simulate four images
using the same set of four illumination directions. These images are presented in

the four subsequent rows. For example, the DTM was reconstructed given the
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first (leftmost) image in the top row and that surface was used in simulating all of
the images in the second row from the top. The surface reconstruction obtained
from the second image in the top row was used in forming the four images in
the third row, and so on. The purpose of forming the synthesized images is so
that we can examine the sensitivity of the observables (image intensity) to errors
in the function we want to estimate (surface shape) over a range of operating
conditions (illumination geometry in this example).

Inspection of the images in Figure 3.8 for constant illumination geometry, i.e.
within the same column, shows very little difference in the synthesized images.
The most notable difference is a slight smoothing in the direction orthogonal
to the illumination vector B as could be predicted by examining the partial
derivatives of the reflectance map in (3.26). Figure 3.8 demonstrates that the
constrained shape from shading algorithm obtains results that are not sensitive
to the illumination geometry of the observed image, provided that it is known.
This indicates that the constrained shape from shading algorithm is robust with

respect to illumination geometry.

Notice that a significant portion of the first image in Figure 3.8 is covered
by shadows. A reasonable surface estimate was still obtained as indicated by
the predicted images in the second row of Figure 3.8. Figure 3.9 shows a repre-
sentative 1-D cut through the surface reconstructed from the shadowed image
as compared with the true surface and a surface estimated from an image free
from shadows. It is possible, in principle, to extract powerful surface orienta-
tion constraints at shadow entry points and the relative heights between shadow
entry and exit points. However, it can be difficult to reliably detect shadows
and locate their entry and exit points. The predictive ability of even partial
shape from shading results might provide a method of distinguishing between
shadows and areas with very low albedo. Hence, we wanted to test the “robust-
ness” of the shape from shading algorithm when confronted with shadowing,
while not taking advantage of the constraints that are, in principle, available
from shadowing. The only provision made in obtaining shape from shading re-
sults for partially shadowed images was to set \; = 0 in the shadowed regions.

This is equivalent to setting the albedo to zero in shadows, in effect ignoring
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Figure 3.9: One dimensional slice showing true DTM and the estimated surface
given a partially shadowed simulated image of the surface compared to an es-
timate made from an image without shadows. No attempt was made to utilize
the relative height information available from the shadow boundaries.
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the nonexistent shading information and letting the regularization penalty and
integrability projection bridge the gaps left by cast shadows. This worked well
with small but significant degrees of shadowing. As shadowing becomes more

severe the algorithm becomes more difficult to stabilize.

3.7 Discussion

The projection represented by (3.23) was used to provide a very effective ex-
tension to the iterative shape from shading algorithm of Brooks and Horn [22]-
The resulting extension converged relatively well for a variety of test cases.

This technique also can be used as an integrator which minimizes the ef-
fects of local errors by combining all of the available information in a globally
consistent manner. Accordingly, it may be useful for improving other computer
vision techniques that obtain possibly erroneous local derivative estimates. Two
obvious examples are the shape from texture work reported by Witkin [170]
and the technique recently reported by Pentland [126] which attempts to unify
shape from texture with shape from shading. In both papers, mention was made
of difficulties encountered in reconstructing a depth map by integrating inexact
surface orientation estimates.

Shape from shading results were presented in Section 3.6 demonstrating a
case where, for all practical purposes, knowledge of the 0.1 percent lowest fre-
quency Fourier coefficients of the surface makes up for the fact that boundary
conditions are completely unknown. This is exactly the situation in some remote
sensing applications: boundary conditions are not available but low resolution
information is. For example, the Magellan Project will provide SAR imagery
of the surface of Venus along with much lower resolution radar altimetry data
[36]. The algorithm in Section 3.5 easily combines the low resolution altimetry
data with high resolution shading information. A simple extension such that
the algorithm is suitable for SAR imagery is developed in Chapter 4.

A second application for the low frequency constraint capability is in com-
bining stereo information with shading information. Correspondence between

stereo image pairs provides low frequency information not available in shading
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alone. Conversely, shading provides information not available from either sparse
or low resolution stereo correspondences. Further, illumination differences be-
tween stereo image pairs (for photographs taken at different times of day or for
SAR imagery) may limit the accuracy of stereo image matching. It should be
possible, therefore, to use shading and stereo information synergistically.

A similar integrability constraint has been used to unwrap the phase of com-
plex SAR imagery in two dimensions [142]. A fast least squares approach was
presented there which removes the inconsistencies in local phase derivative cal-
culations (due to phase ambiguities and noise) to provide a phase image. What
is most interesting here in the context of computer vision is this: The phase
of a coherent image (e.g. SAR) pixel is related to surface structure. Hence,
phase may provide depth information not completely available from image in-
tensity alone. The contribution of phase in determining surface structure is
an underlying principle in some applications of speckle interferometry [42], and
also was utilized for SAR imagery in one dimension by Harger [67). It may be
possible to combine phase and shading information for surface shape reconstruc-
tion. Interestingly, the technique presented in this chapter is applicable to both
components of that problem.

Very recently, Simchony and Chellappa [146] have applied orthogonal trans-
forms to directly solve a linearized version of the irradiance equation and to
enforce an integrability projection similar to that presented in this chapter.
The integrability projection of Simchony and Chellappa was derived using a
discrete formulation of the problem while we have discretized the solution to
a continuous formulation of the integrability problem. More significantly, they
have shown how to efficiently utilize very general boundary conditions, and how
to combine sparse stereo depth maps with photometric stereo and monocular
shading.

In the next Chapter, we will adapt the shape from shading algorithm from
Section 3.5 to SAR imagery. One could follow the same approach to adapt
other shape from shading algorithms, such as that of Simchony and Chellappa,
to SAR imagery.
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Chapter 4

Obtaining Shape from Shading

Information in SAR Imagery

Topographic data can be extracted from SAR imagery using at least three kinds
of approaches; those that exploit radiometric, geometric, and interferometric in-
formation. Radiometric information is useful because the backscattered power
is a function of terrain surface slopes. This is the basis of shape from shading
techniques. Geometric information enters through the relatively stable relation-
ship between the scene geometry and its projection into a SAR image. This
is the basis for stereogrammetry, using multiple images, and for mensuration
of discrete objects in a single image. Interferometry uses the relative phase
variation betwen the complex amplitudes of two SAR images made from two
vertically separated antennas to obtain estimates of the elevation angle to the
terrain surface.

It has been suggested that all three approaches are complementary to some
extent [39]. It is well-known in the computer vision community that shading of
smooth surfaces and stereo parallax provide complementary information: Shad-
ing is useful in areas with constant albedo and fairly smooth variations in surface
orientation. Conversely, stereo matching is more effective in areas with large
albedo variations or sharp surface orientation changes that provide the required
intensity features. For SAR imagery, geometric and radiometric information are

not only complementary, they are synergistic. Because SAR is an active sensor,
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both geometric as well as radiometric disparities are created when a SAR stereo
image-pair is formed. This limits the accuracy of radar-stereogrammetry [99].
The performance of interferometry depends on the ability to reliably unwrap
the phase of noisy image data and correct for a variety of phase errors [104].
The point is that a single information source usually does not yield all of the
topographic information available from SAR imagery.

In this Chapter we apply a shape from shading technique to SAR imagery
and illustrate some of the strengths and weaknesses of shading as a source of
topographic information. SAR image characteristics have not been addressed in
any of the previous shape from shading research.

The use of radar backscatter power to extract terrain surface orientation,
sometimes referred to as radarclinometry [167], has been considered before.
Cosgriff, et al. [32], while concentrating on clutter modeling for system design
purposes, discussed the possibility of radarclinometry and suggested a solution
method using multiple radar images. Wildey [167,168,169] developed algorithms
for reconstructing surface topography from the shading in a single SAR image.
Those algorithms directly inverted a differential equation similar to (3.1) for
SAR imagery subject to local constraints on the relationship between z, and
zy. These constraints are similar, although more general, than the local spheric-
ity assumption used by Pentland [125] and also must be inferred from image
intensity derivatives.

We have adapted the shape from shading method from Chapter 3 to SAR
imagery using an approach that could also be applied to any number of related
algorithms from the computer vision literature. This provides more general
solutions, more effective methods for applying additional constraints, and more
efficient numerical computation than previously available for radarclinometry.
In Chapter 2, SAR image characteristics were related to surface properties.
Based on those characteristics, a shape from shading algorithm suitable for
SAR imagery is presented in this Chapter. The algorithm, its applications, and
possible extensions, are discussed in Section 4.2. In Section 4.3, this algorithm
is applied to reconstructing surface topography for both simulated and real SAR

imagery. Conclusions are summarized in Chapter 7.
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4.1 SAR Image Based Shape from Shading
Algorithm

As illustrated in Chapter 2, the relationship between image intensity and
surface properties for SAR imagery differs markedly from that of, say, aerial
photographs. Yet, there are also important similarities between the compu-
tational vision models for SAR imagery and aerial photographs. It is those
similarities which allow us to apply some of the same methodologies utilized in
previous shape from shading research.

First, it was pointed out that a SAR strip map can be represented as an
orthographic projection of a surface relative to the slant plane. The simplifying
assumption of orthographic projection, utilized in many algorithms applied to
visible images (including shape from shading), is less restrictive for SAR images.
We have represented the surface topography relative to the slant plane as for-
mulated in (2.3). The resulting algorithm reconstructs u(r,y), an orthographic
projection of (u,r,y), given observed SAR image intensity.

While the reflectance map models typically used for visual images are not
valid for SAR images, a similar computational vision modeling approach has
been used quite successfully for radar image simulation [53,69]. The particu-
lar reflectance maps are different, but the same methodology is applied. The
methodology used for solving the shape from shading problem has been to model
the observed image intensity in terms of local surface slopes and develop an al-
gorithm to solve for those surface slopes (or surface height). The algorithms
reported by Brooks and Horn [22] and Frankot and Chellappa [48] solve for
surface slopes by minimizing mean-squared intensity error criterion balanced

against a surface smoothness criterion. The resulting cost function is
g fj [T — R(@r, )2 + A- (62, + 202, + a2, )drdy . (4.1)

Along with the cost function in (4.1) an integrability criterion is enforced.
The algorithm constrains the surface slopes (u,,u,) to satisfy

g 0

%u,. = é;uy s (42)
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Or Ury = uy,. The fast least squares technique presented in Chapter 3 is applica-
ble given the orthographic projection property of u(r,y). Suppose that we are
presented with a possibly nonintegrable pair of slope functions [@,(r, ), 4, (r, y)]
such that any number of surface reconstructions @ could be obtained depend-
ing upon the path of integration. The least squares integrability projection
algorithm finds the pair of slope functions [&,(r,y), @i,(r,y)] that satisfy (4.2)

simultaneously with minimizing the distance

A (iir, 1), (iy, iy)} = / /(ﬁr—ﬁ,,)zKr+(ﬁy—ﬁ,)2Kydrdi : (4.3)

where K, + K, = 1. The constants K, and K, are relative weights assigned to
u, and uy, respectively. It is helpful to set K, > K, because the error in u, is
normally smaller than the error in u,,.

The constrained minimization problem defined by (4.1), (4.2), and (4.3)
can be solved by extending the iterative algorithm presented in Chapter 3. The
resulting algorithm is now summarized. Denote the surface slope estimates after
the kth iteration as [i,, @i,]r. The surface slope estimates for the next iteration
are obtained by the following five steps:

1. Obtain a smoothed version, [t,, z::,y]k, of the previous iterate using

Gy (l,m) =
sliy(Lm + 1) + a@y(I,m — 1) + @, (I + 1, m)a, (I — 1,m))
+a5lay (I —1,m —1) + a4y (I = 1,m + 1)

iy (I +1,m 4+ 1) + @y (I + 1,m — 1)]

(4.4)

and similarly for 4,.

2. Simulate the SAR image by evaluating the reflectance map with the
smoothed slope estimates, giving R(4,, i) for every range-azimuth sample lo-
cation, (I,m).

3. Calculate the partial derivatives of the reflectance map with respect to u,
and u,. The derivatives are evaluated using the smoothed surface slopes from
step 1,

Ry, ) = %R(a,b) (4.5)

a=t,,b=1y
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and

a2 0
Rylduy) = %R(a,b)

a=ty,b=1,

Numerical derivatives are used to provide greater flexibility, allowing the use of
a reflectance map look-up table and, if necessary, an empirical reflectance map.
Normally R, > R,, explaining why 4, has less error than @,. This is what
Wildey referred to as “poor photometric leverage” for the cross-slopes [167].

4. Update the slope estimates using the recursion [22],

[ iy } : [ R (i, i)
Yl

Ry (tir, Uy)
where ); is inversely proportional to A in (4.1). The new slope iterate obtained

] (4.6)

£ 2»

[ } + M (I =Ry, &) [

Vdg

from (4.6) is virtually guaranteed to be nonintegrable.
5. Enforce integrability using the following projection constraint [51] on the

Fourier series of [i,, @iy]k41

K, a; (@)U (w) + Ky a3(w)U,(w)
Krla (@) + Kylay(w)]?

where U,(w) and U,(w) represent the discrete Fourier transforms (DFT) of

U(w) =

(4.7)

[@;,@y)k41 respectively, U(w) represents the DFT of the new estimate of surface

height @(r,y). The vector w = (wy,w,) € (%2, am), with n,m € {0,1,---,N —

1} for images of size N by N. The coefficients a, and a, are given by the fre-

quency response of the partial differentiation operators in r and y, respectively.
For example, if we approximate the surface slopes using first order central dif-
ferencing then the frequency response is a,(w) = j sin(w,) and similarly for a,.

The Fourier transform of the new surface slope iterates are given by
Ur(w) = ar(@)U(w) and T(w) = ay(w)0(x) (4.8)

with the final step in the iteration that of performing the inverse DFT of (4.8)
to get [dr,7y]k41. The integrability projection constraint from (4.7) doubles as
an efficient 2-D integrator for constructing a surface from noisy slope estimates
utilizing all of the available data.

The same process is repeated until the intensity mean squared error is suffi-
ciently small or until a predetermined number of iterations have been completed.

The overall procedure follows the structure shown in Figure 4.1.
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4.2 Applications in Radargrammetry

The integrability projection used in the shape from shading algorithm has some
distinct advantages. The main advantage is that it is noniterative—it constructs
a surface from noisy slope estimates in one pass utilizing all of the available
data, unlike simple spatial integration. A second advantage is computational
efficiency. It utilizes fast Fourier transform (FFT) algorithms routinely used for
SAR image formation. Hence the method is efficient in terms of the number
of computations required, the ability to utilize high speed FFT processors, and
synergy with SAR image formation hardware and software. A third advantage
i1s modularity.

It is possible to apply other constraints in a similar manner. This is repre-
sented in the block diagram of Figure 4.1. The integrability constraint is a form
of self-consistency. Another form of self-consistency is that shadows appearing
in the image should correspond to shadows predicted by surface reconstruction.
The second class of constraints comes from auxiliary data sources. This might
come from altimetry data, stereopsis, and higher level scene analysis. If auxiliary
information is local in nature it can be applied as a constraint directly to the
surface. If it is global in nature it is sometimes more conveniently applied in the
frequency domain. Altimetry data and stereo data tend to be of lower resolution
than SAR imagery obtained by the same radar system and, accordingly, may
be useful as global low frequency constraints for surface reconstruction. This is

discussed below.

4.2.1 Low Frequency Information

Note that (4.7) is valid only for w # (0,0). This illustrates the fact that low fre-
quency surface height information is lost in the image formation process, since
image intensity is a function of the derivatives of surface height. A surface re-
constructed based on shape from shading techniques inevitably suffers from low
frequency errors, the severity depending upon observation noise characteristics.
This also appears to be true of interferometry [61], which relies on noisy and

ambiguous observations of phase differences to solve for relative surface height.
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An added advantage of the Fourier based integrability constraint is that low
frequency information from other sources can easily be included during or after
iteration of the shape from shading algorithm. This can be accomplished by
performing the DFT of the low resolution surface height information, denoted
by Ur(w). This can be precomputed with modest computational cost. The
appropriate low frequency terms of Uy, are used to replace the low frequency DFT
coefficients U(w), in effect treating Uy, as a projection constraint. The algorithms
of Brooks and Horn [22] and Ikeuchi and Horn [79], which our algorithm is based
upon, requires knowledge of boundary conditions. While boundary conditions
are generally not available, low frequency information sometimes is. Further,
availability of low resolution surface height data can, for all practical purpose,
eliminate the need for boundary conditions in addition to replacing lost low
frequency information as shown in Chapter 3. The significance of this issue for

SAR imagery is illustrated in Section 4.3.2.

4.2.2 Fusion of Stereopsis and Shape from Shading

A second possible source of low resolution information is from stereo image
pairs. One computer vision paradigm uses shape from shading to provide an
interpolation between sparse height information provided by matching stereo
image pairs. That is, the height information provided by the stereo image pair
may have very high resolution but is only available at a few points in the image.
The sparseness of this stereo information results from the practice of extracting
correspondence by matching discrete features, such as edges. A second method,
with its own advantages and disadvantages, obtains correspondence using cross-
correlation of multiple subareas [132]. The correlation approach does not rely
on the presence of sharp changes of intensity but requires fairly large areas
to average over in order to obtain reliable matches with SAR imagery [46].
Hence, use of multiple subarea correlation to estimate correspondence between
stereo image pairs provides low resolution correspondences, but complete area
coverage. Such low resolution stereo data could be combined with shape from

shading results using the algorithm presented above.



Conversely, shape from shading can be used improve stereo match results.
For SAR imagery, a tradeoff exists between two competing effects: On the one
hand, the larger the difference in look angles for the stereo image pair the less
sensitive the surface reconstruction is to errors in stereo correspondence [98].
On the other hand, the errors in stereo correspondence grow as the disparity
between the look angles increases [99]. In many cases the human eye is not
even be able to recognize that two SAR images are of the same terrain if they
are made from drasticly different look angles because the change in illumination
geometry causes changes in shading. Hence, stereopsis helps shape from shading

and shape from shading helps stereopsis.

4.2.3 Venus Radar Mapper

The geology of the planet Venus is of great scientific interest because it is about
the same size and density of Earth and it is Earth’s closest neighbor [24]. The
scientific community relies heavily upon radar observations to provide this in-
formation since the Venusian atmosphere is opaque at visible wavelengths. The
Magellan project’s Venus Radar Mapper will provide high resolution (nominally
150 meter) SAR imagery of the surface of Venus along with much lower resolu-
tion (5 to 50 kilometers depending on operating altitude) radar altimetry data
[77]. It is believed that the Magellan SAR imagery will provide new informa-
tion about the geology of Venus, which in turn will create more insight into the
evolution of the solar system.

For example, certain significant geological features, such as folds and faults,
appear as banded terrain in SAR imagery. Bands from 10 to 20 kilometers wide
have been observed in previously obtained radar images of Venus and similar
bands as small as 5 kilometers appear in the Appalachian mountains [24]. While
the altimetry data might not be able to resolve the bands, the Magellan SAR
imagery certainly will.

Using the techniques presented in Section 4.1, the altimetry data and the
SAR imagery could be combined to construct high resolution topographic maps

of Venus. The Magellan scenario, where SAR imagery is combined with orders
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of magnitude lower resolution altimetry data for surface reconstruction, is sim-
ulated in Section 4.3. The grazing angle for the SAR imagery will be anywhere
from 40 to 80 degrees, depending on orbital position. Imagery near 45 degrees
grazing should provide the best compromise between shadowing and layover.
Experience with Seasat imagery indicates that the higher grazing angle imagery
is still useful but the likelihood of encountering layover is much greater. Nonco-
herent integration of anywhere from 4 to 30 looks (depending on orbital position
and the demands placed upon the communication link) will be performed to re-
duce speckle. The highest possible degree of noncoherent integration is desired
to provide an adequate radiometric resolution without compromising spatial
resolution. If 30 look imagery is indeed available, then the shape from shading
algorithm can probably be applied without any additional noncoherent integra-
tion at the full resolution specified for the SAR imagery.

Earlier scientific observations point out some potential difficulties in applying
shape from shading to SAR imagery of Venus. For example it has been observed
that surface roughness is often higher at high elevation than at low elevation on
the surfaces of both Earth and Venus (apparently due to erosion at mountains
and sedimentation in valleys) [127]. The reflectance map is a function of surface
roughness. Therefore, the impact of this variation on shape from shading might
be to produce distortions in the estimated surface which are not easily detected,
perhaps making a mountain seem to be less jagged than it really is or making
plains appear rougher than in reality. There also appears to be correlation
between high albedo and high elevation, perhaps caused by erosion exposing
metallic ore at high elevations. Thus, while albedo variations on the surface of
Venus appear to be much lower than those typical of Earth, they are significant
[127], and their effect on shape from shading is probably correlated with surface
structure.

Prior scientific work also provides possible solutions to the above difficulties.
Along with low resolution surface height data, it will also be possible to obtain
estimates of of the albedo and surface roughness (and therefore the reflectance
map) at comparable resolutions. Scattering laws have been derived which pro-

vide a familiy of reflectance maps parameterized by RMS surface roughness and
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albedo [9,63]. Pettengill et al. [127] used a scattering law due to Hagfors [63] to
obtain reflectivity and surface roughness estimates from earlier Pioneer Venus
radar altimetry data. The observed distribution of echo power versus time de-
lay was first converted to a distribution of echo power versus angle of incidence,
which was matched with the scattering law to provide an estimate of the surface
roughness and albedo. This information helped scientists to develop theories on
the geological make-up of Venus. In the same manner, we can construct prac-
tical estimates of albedo and reflectance maps to support the application of
shape from shading. The likely absence of cultural features and vegetation may

practically eliminate the need for any higher resolution estimates of albedo.

4.2.4 Albedo Variation

Haralick et al. [66] extended a technique due to Eliason et al. [41] to detect
albedo variations using multi-spectral Landsat imagery. In a similar manner, it
may be possible to detect changes in albedo using multi-frequency radar imagery
[15]. It may also be possible to segment areas of drasticly different albedo (e.g.
no return versus moderate return versus very high return) prior to application
of shape from shading techniques and to develop shape from shading algorithms
that are more robust with respect to albedo variations.

There also appears to be some informaton on both albedo and surface struc-
ture in SAR image phase [67]. Presently, it is not clear just how much can be
gained through the use of phase information, especially with diffuse reflection.
Polarization diversity may provide additional information useful for obtaining
shape from both shading and phase information. The recent analysis of multi-
polarization radar imagery [163] may provide insight into the utilization of phase
data and polarization diversity for inferring surface structure. For example, it is
possible to distinguish between surface and volume scattering mechanisms, and
therefore reflectance map classes, using the phase differences between images

sensed with different polarizations.
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4.3 Experimental Results

4.3.1 Simulation Results

The shape from shading algorithm presented in Section 4.1 was tested on simu-
lated and real SAR imagery. Figures 4.2 and 4.3 illustrate the simulation results.
In Figure 4.2 (a) the original DTM is shown. A simulated noise-free SAR image
with a 45 degree grazing angle is shown in Figure 4.2 (b). A simulated speckled
SAR image is shown in Figure 4.2 (c). Although the speckle noise is reduced by
noncoherent averaging of 16 speckle samples, the noise is still significant both
visually and statistically. For this particular case, the standard deviation of
the noise alone is about the same as the the standard deviation of the noise-
free image from Figure 4.2 (b). Figure 4.2 (d) shows the reconstructed surface
obtained from the noisy image. Although no special provisions were made to
accommodate the noise, a reasonable reconstruction was still obtained.

A more clear evaluation of the results can be made by examining 1-D slices
through the original and reconstructed DTMs. In Figure 4.3 the solid line shows
a 1-D slice through the original DTM. The dotted line shows the shape from
shading results given the noise-free simulated image and the dashed line shows
the results obtained using the noisy image. For the reconstructions shown,
boundary values were not provided to the algorithm. Instead, 0.1 percent of the

lowest frequency DFT coefficients of the DTM were provided.
While the simulation results are encouraging, they are unrealistic in that no
modeling errors are present. A practical test of shape from shading on real SAR

imagery is now presented.

4.3.2 Results with SIR-B SAR Imagery

A set of three SIR-B SAR images, an aerial photograph, and a DTM derived
stereoscopically from aerial photographs (all for the same location) were used as
test cases. These were provided by Dr. Gitta Domik of the Vexcel Corporation.
The area coverage was near the town of José de San Martin in Argentina. Figure

4.4 shows a SAR image simulated from the DTM with and without speckle noise,
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Original Surface
veosss Reconstruction from Noise-Free Image
3.5F - - - - Reconstruction from 16-Look Speckled Image -

Figure 4.3: 1-D cuts through the original DTM compared to the noise-free
reconstruction, and the reconstruction given the noisy image.
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one of the SIR-B SAR images, and a registered aerial photograph. Proceeding
diagonally across the aerial photograph a riverbed and a roadway are clearly
visible, and a great deal of other albedo variations are evident. A small airport
can be seen in the upper left hand corner of the aerial photograph. The town
of José de San Martin is just to the right of the airport but is not discernable
at this resolution.

Comparison of the images with registered terrain elevation data revealed
some important characteristics of this data set. First, the empirical reflectance
map for the aerial photograph was very close to the often assumed Lamber-
tian characteristic. The reflectance map for the SAR imagery was even more
directional than expected. Second, the albedo variations present in the aerial
photograph prevented successful application of any current shape from shading
technique, while the albedo variation in the SAR imagery was much less severe.
The SAR albedo variation was significant enough to be noticed visually and to
have a negative impact on the surface reconstruction results but did not cause

catastrophic failure.

For each of the three SAR images we used the following experimental pro-

cedure:

1. Reduce SAR image pizel spacing to match the DTM pizel spacing.
The original SIR-B pixel spacing is about 12.5 meter while the DTM
sample spacing is 37.5 meters, a factor of 3 reduction. Resolution
reduction was performed by averaging 3x3 blocks of pixels. The
original SAR image is obtained as a noncoherent average of four
looks. The equivalent number of looks for a 37.5 meter pixel is then
36, assuming independent speckle samples. However, SAR imagery
is normally slightly oversampled. The equivalent number of looks
estimated using the ratio of the square of image mean to image
variance in a very low contrast region is about 28 (after compensating

for intensity variations due to topography).

2. Precisely register DTM to SAR image. This allows us to compare

the reflectance parameters for the different images, evaluate signal to
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noise ratio, and compare the SAR image based surface reconstruc-
tion with the DTM. To estimate the transformation we simulated a
SAR image given the DTM and approximate knowledge of imaging
geomtery. Next we performed an exhaustive search over translation,
rotation, and scale, selecting those parameter values which maxi-
mized the normalized cross-correlation. This is very similar to the
approach Horn and Bachman used for registering LANDSAT im-
agery to DTMs [72] and is discussed in Chapter 5. The orthographic
projection representation in the slant plane provided an excellent
model for the SAR coordinates: Sub-pixel registration accuracy be-
tween simulated and observed images was achievable after compen-
sating only for translation, rotation, and scaling of the ground coor-

dinates.

. Generate low resolution DTM. In each case, the Fourier transform of
the registered high resolution DTM was obtained, all but the lowest
frequency 0.1% of the coefficients were set to zero, and then the
inverse Fourier transform of the resulting spectrum was performed.
This represents a resolution reduction factor of about 23 in range

and azimuth, roughly simulating the Magellan scenario.

. Estimate reflectance map parameters using low resolution DTM. This
ensures that the shape from shading test results represent the useful

case where the high resolution surface structure is unknown.

. Ezecute shape from shading algorithm given a SAR image and low
resolution DTM. Ten iterations of the algorithm from Section 4.1
where performed in each case. The total execution time for a 256 x
256 image was 45 minutes on an unloaded Micro VAX, including

resampling into ground plane coordinates.

Details of these results are presented below.
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Reflectance Parameter Estimation

Reflectance models from Chapter 2 were fit to the SAR imagery using both the
low resolution and high resolution DTMs. Three types of parameters need to be
estimated: Additive noise bias, albedo, and shape parameters. An exhaustive
search over the parameter space was used in each case to select those values
which minimize the following mean-squared prediction error

= 5 e — R(ur(I,m .
ep_(l,mz)enMQ [I(1,m) — R(u.(I,m), u,(I,m))]* , (4.9)

where Mg denotes the number of pixels in the domain § under consideration.
Equation (4.9) is just the sample second moment of the error between the ob-
served image intensity and predicted image intensity. We compared the results
using the generalized Lambert model and Barrick’s rough surface model with
Gaussian and exponential surface slope probability density functions (PDF).
This was done for various images, DTM resolutions, and image resolutions. Bar-
rick’s model with Gaussian height PDF nearly always resulted in lower mean
squared prediction error than the exponential model and the generalized Lam-
bert model, although the visual realism of the image simulation was about the
same in each case. Reflectance parameters were fairly stable as a function of
image resolution. Each parameter varied slightly as a function of DTM resolu-
tion. The error in the parameter estimate obtained using a low resolution DTM
appears to be somewhat predictable but no attempt was made to compensate
for it in our experiments.

The two different area factor parameterizations, illumination area and sur-
face area, were compared when used in conjunction with Barrick’s (Gaussian)
RCS model. Use of illumination area resulted in consistently lower mean squared
prediction error. Visually, the quality of image simulation did not vary signifi-
cantly between the two area factor parameterizations.

Figure 4.5 shows a scatter plot of observed SAR image intensity versus cos a;
for the SAR image of Figure 4.4 (bottom-left), providing an empirical reflectance
map. The nominal depression angle is 32.9 degrees so that the value of cos q;
is approximately 0.84 for flat ground and the surface orientation data centers

itself around this value. Notice from Figure 4.5 that the reflectance is a strong
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function of cosa; at high angles of incidence but only a very weak function at
low angles of incidence. Accordingly, the up-slopes (areas increasing in height
as slant range increases) have much more contrast and higher intensity than
the down-slopes. Small-signal suppression due to additive noise and intensity
quantization therefore destroys shading information on the down-slopes.

Tables 4.1 through 4.3 show the reflectance map parameter estimates ob-
tained from the three SIR-B SAR images given high and low resolution DTMs.
In each case we used Barrick’s RCS model for Gaussian surface slopes with
the illumination area parameterization. RMS surface roughness determines the
shape of the RCS curve with the resulting reflectance map being more direc-
tional the lower the roughness. The surface roughness estimates, obtained as a
byproduct of reflectance map parameter estimation, were between 17.5 and 24
degrees in each case.

RMS prediction error between real and simulated image intensity is also
given in Tables 4.1 through 4.3. The prediction error was calculated in each
case using the high resolution DTM to predict image intensity through the re-
flectance model. In the first column, an indication of prediction error with no
modeling error was obtained by simulating a 28-look speckled image with the
same reflectance map parameters as the real SAR image. The mean squared
error between the simulated speckled image and the simulated image without
speckle was then computed. The second prediction error column in Tables 4.1
through 4.3 uses the same reflectance map parameters (estimated using the high
resolution DTM) and compares predicted image intensity to the observed SAR
image intensity. The third prediction error column uses reflectance map param-
eter estimates obtained given the low resolution DTM. This is the situation that

would be encountered in practice.
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Figure 4.5: Scatter plot of observed SAR image intensity versus cos(angle of
incidence), SIR-B image with pixel spacing reduced to 37.5 meters. The nominal
depression angle is 32.9 degrees giving a mean cosa; ~ .84 .

84



Simulated image Parameters Parameters
with speckle | estimated using | estimated using
No modeling high resolution | low resolution
errors DTM DTM
Surface roughness - 19.1 17.5
(degrees RMS)
7 = 12.2 11.6
Ofins - 7.7 84.9
Intensity prediction 19.46 28.55 28.72
RMS error
SNR (dB) 1.5 -1.04 -1.16

Table 4.1: Reflectance map parameter estimates, resulting prediction error
statistics, and shape from shading SNR measure for SIR-B SAR image in the
upper left hand corner of Figure 4.8.

Simulated image Parameters Parameters
with speckle estimated using | estimated using
No modeling high resolution | low resolution
€rTors DTM DTM
Surface roughness - 23.5 23.0
(degrees RMS)
n = 13.6 15.5
o2 = 38.0 388
Intensity prediction 8.56 10.49 10.57
RMS error
SNR (dB) 13 2.85 3.0

Table 4.2: Reflectance map parameter estimates, resulting prediction error
statistics, and shape from shading SNR measure for SIR-B SAR image in the
top row, center column of Figure 4.8.
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Simulated image Parameters Parameters
with speckle | estimated using | estimated using
No modeling high resolution | low resolution
errors DTM DTM
Surface roughness - 24.1 20.5
(degrees RMS)
n = 10.6 9.2
ot - 78.1 88.1
Intensity prediction 19.74 25.27 25.50
RMS error
SNR (dB) .01 -1.68 -1.88

Table 4.3: Reflectance map parameter estimates, resulting prediction error
statistics, and shape from shading SNR measure for SIR-B SAR image in the
top row, right hand column of Figure 4.8.
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Signal to Noise Ratio

A measure of signal to noise ratio (SNR) specially defined for shape from shading

is presented in Tables 4.1 through 4.3. This measure is given by

2
O'I'—Ep

; (4.10)

€p

where 2

M > I*(l,m) - ( Y I, m)) (4.11)

2, 2 (1,m)en

is the sample variance of the observed image and ¢, is the intensity prediction
error defined in equation (4.9). Several points are now evident. First, compar-
ison of SNR for simulated speckle images with that of real images indicates a
2 to 3 dB loss due to modeling errors for these particular cases. We conjecture
that spatial variations of reflectance parameters, i.e. albedo, noise bias, and sur-
face roughness account for most of the modeling error. Second, comparison of
SNR using high resolution versus low resolution reflectance parameter estimates
indicate only an additional 0.2 dB loss for the low resolution estimates. This
demonstrates successful reflectance map estimation from low resolution topog-
raphy. Third, the SNR is very low (even without modeling error), suggesting
that future improvements might be obtained through optimal filtering of speckle

noise.

Low Frequency Information

It has been suggested that auxiliary low frequency information be used to com-
pensate for unknown boundary conditions and observation noise [51]. An ex-
ample using a SIR-B SAR image window of size 64 by 64 pixels with 75 meter
pixel spacing is now provided. Figure 4.6 demonstrates the results of shape
from shading with and without auxiliary low frequency information. In Figure
4.6A a section from a DTM is shown. The surface reconstruction given only
the shading information in a SAR image shown in Figure 4.6B. Notice that the
slopes in the range direction are fairly accurate while the slope estimates in the
azimuth direction are not. This is partly a consequence of unknown boundary

conditions and partly due to the fact that image intensity is a very weak function
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of the azimuth slopes. A low resolution surface is shown in Figure 4.6C. This
was obtained from the five lowest frequency Fourier coefficients of Figure 4.6A.
The results of using shape from shading to combine the low resolution surface
with high resolution image intensity information is shown in Figure 4.6D. In-
terestingly, the distorted surface of Figure 4.6B gives a lower value for the cost
function in (4.1) than does the true surface. Actually, both the intensity pre-
diction error and the surface smoothness criterion were lower for the distorted
surface. Tests on simulated imagery indicate that this is not due solely to mod-
eling error: Similar results were obtained for simulated speckled imagery, but
not for speckle-free imagery. The general trend is as expected—as the noise level
increases so does the loss of low frequency surface information in the image.
The same kind of approach was applied to the 256 by 256 pixel SAR images
corresponding to Tables 4.1 through 4.3. The procedure described in the begin-
ning of Section 4.3.2 was followed. Figure 4.7 shows an image simulated from
the low resolution DTM. This illustrates how little low frequency surface infor-
mation is available in image intensity and also a possible difficulty in estimating
reflectance map parameters from low resolution surface data. The higher slope
values are not well represented so that the reflectance map is fit mostly to data
with angle of incidence near the radar depression angle. This indicates that
some degree of extrapolation is required and, therefore, care must be taken in

selecting an appropriate reflectance model class.

Surface Reconstructions

Images Predicted from Surface Reconstructions: Figure 4.8 shows three
original SAR images and and intensity predictions given shape from shading
results. The top row shows the three observed SAR images corresponding to
Tables 4.1 through 4.3, respectively. In each case the range direction and the
illumination is along the horizontal axis. The first two images are taken from
about 12 degrees difference in depression angle and about 1.3 degrees difference
in orientation or aspect. The third image has about 81 degrees aspect and
illumination difference from the first two images. Surface reconstructions from

each of the SAR images were obtained and then each surface reconstruction was
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Figure 4.6: (A) Section from DTM co-registered with SAR image, (B) surface
reconstruction given only the shading information in a SAR image, (C) low res-
olution surface obtained from the five lowest frequency Fourier coefficients of
the DTM, (D) surface reconstruction obtained using shape from shading algo-
rithm to combine the low resolution surface with high resolution image intensity
information.
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used to predict each of the original SAR images. The second row shows the
three predicted SAR images given the shape from shading results of the top-left
SAR image. The third row shows predicted images given the shape from shading
results of the top-center SAR image, and the fourth row does the same given
the top-right SAR image.

Comparison of the observed images with predicted images show excellent
intensity predictions for similar imaging geometries, as expected. Prediction
of the first two SAR images given the third (and vice versa) provides a worst-
case example because of the near orthogonal aspect difference. This means we
are using mostly the estimates of azimuth slope for one image to predict the
intensity of the other image. The left and center images in the bottom row
show very good predictions of the first and second SAR images, respectively.
The predictions of the third SAR image given in the rightmost column, second
an third rows, are of fair quality. They show some loss of the structures that
were in the downslopes of the observed image and some distortions due to albedo
variations, yet most of the structure is still recognizable.

The large illumination differences also present some difficulty in deriving
stereo correspondences. The predictive ability of shape from shading results

might support stereo matching in this case [99).

Comparison with DTM: Actual surface reconstructions are now compared
with the “true DTMs”. Figures 4.9, 4.10, and 4.11 show 64 by 64 overviews
of the shape from shading results showing a favorable comparison between the
DTM and the surface reconstruction. The reconstructions correspond to the
three SAR images in Figure 4.8. Some apparent differences can be observed
along drainage patterns in the surface, perhaps due to albedo variations or
surface roughness variations.

Figure 4.12 shows a full resolution window of one of the mountains from the
DTM and its reconstruction from the third SAR image. Finally, Figure 4.13 pro-
vide 1-D cuts diagonally across the DTM and surface reconstruction obtained
from the first SAR image. Table 4.4 provides RMS error for the surface recon-

structions. First the standard deviation of the high resolution DTM is given
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Figure 4.9: 64 by 64 sample overviews of the shape from shading results for the
first SAR image in Figure 4.8. (A) DTM, (B) Surface reconstruction from SAR
image and low resolution data.
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Figure 4.10: 64 by 64 sample overviews of the shape from shading results for the
second SAR image in Figure 4.8. (A) DTM, (B) Surface reconstruction from

SAR image and low resolution data.
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Figure 4.11: 64 by 64 sample overviews of the shape from shading results for
the third SAR image in Figure 4.8. (A) DTM, (B) Surface reconstruction from

SAR image and low resolution data.



for reference. Second, the standard deviation between the low resolution DTM
and the high resolution DTM is provided as a basis of comparison. Third, the
standard deviation of the surface reconstruction combining shape from shading

and the low resolution DTM is given.

SAR image
1 2 3

Standard deviation of
high resolution DTM | 84.3 | 84.0 | 80.0
(meters)

Standard deviation of
low resolution DTM 16.8 |21.2 | 17:5
(meters)

Standard deviation of
surface reconstruction | 14.4 | 17.6 | 14.1
(meters)

Table 4.4: Surface height reconstruction error.

Table 4.4 shows that, in the experiments presented above, shape from shad-
ing provided a modest improvement over the RMS error of the low resolution
surface data. Comparison of Figure 4.8 with 4.6 and the comparison provided by
Figure 4.6 show that shape from shading provided intensity prediction capability

and structural detail not available from the low resolution data.
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Figure 4.12: Full resolution subarea view of the shape from shading results for

the third SAR image in Figure 4.8. (A) DTM, (B) Surface reconstruction from
SAR image and low resolution data.
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Figure 4.13: 1-D diagonal cuts across the DTM and surface reconstruction ob-

tained from the first SAR image.
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Chapter 5

A Computational Vision

Approach to Image Matching

Scene matching is very important in both machine vision and remote sensing.
We define the basic scene matching problem as follows: Given two images I
and I, of the same physical scene, find the correspondence between I; and 1o,
Correspondence is defined as the coordinate transformation 7 that aligns the
two images such that a similarity measure o(7; I, I;) is maximized. Classical
“area correlation” fits into this framework with 7 strictly translation and p
the cross-correlation function between I; and I, as a function of their relative
translation. A similarity measure (and some kind of continuity constraint) is
needed also for symbolic matching of discrete features because of segmentation
errors and the possibility of scene content changes from image to image. The
problem of symbolic matching can therefore be considered as a generalization of
this Chapter’s concept where the similarity measure arises in a graph-matching
proceedure.

T is needed for image registration which, in turn, is needed for any image
processing or image analysis task using multiple images. If the sensor locations
are known for both images then variations in 7 provide scene structure. This is
known as stereopsis or stereogrammetry. If the location of one sensor is known
relative to the scene then 7 determines the location of the second sensor relative

to the scene. Navigation update is one application of that principle.
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In this chapter a predictive approach is used to automatically register SAR
images with DTMs, with other SAR images made from grossly different aspect
angles, and with aerial photography.

5.1 Scene Matching as Prediction

Scene matching relies on some level of prediction; Otherwise there is nothing to
match. Direct cross-correlation of image intensity relies on I;(7(2,y)) provid-
ing a good prediction of I (z,y). If the images are made from similar sensors
and shading differences are small then this is the most appropriate approach.
If there is significant surface height variation, significant differences in illumina-
tion direction, and only weak albedo variation then cross-correlation of image
intensity is not reliable.

Matching of edges and object boundaries relies on those features being pre-
dictable from one image to the next. This is the case when matching images
of scenes with piecewise constant surface slopes, which map into piecewise con-
stant image intensity. Then intensity discontinuities due to shading are relatively
consistent between images. Boundary features are also appropriate for scenes
dominated by abrupt albedo transitions that arise from abrupt transitions in the
materials composing the surface. The actual value of the albedo may vary wildly
as a function of wavelength, but the locations of albedo discontinuities often do
not. Hence, boundaries are appropriate features for matching multi-spectral
images of scenes dominated by transitions in surface materials. Of course, the
correlation between albedo discontinuities for images close in wavelength, such
as L-band versus X-band, should be much higher than for images from different

parts of the spectrum, such as X-band versus infrared.

5.1.1 Matching Images to Scene Models

Feature-based approaches that match images to scene models have been consid-
ered for both SAR imagery [92,119] and imagery from visual and infrared sen-

sors [16,131]. Unfortunately, when image intensity is not dominated by albedo
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discontinuities and slope discontinuities then segmentable features are not re-
peatable from image to image and some other approach is required.

Matching of images to scene models directly by image intensity prediction
has a longer history and wider applicability. In the late 1940’s a navigation
system that correlates radar imagery with simulated imagery was developed
for the United States Air Force and included into the MACE missile system
[94]. The radar reference imagery was simulated by photographing a physical
model of the terrain with albedo features painted in. The reference imagery
was stored on film and correlated with the sensed radar imagery on board the
missile using vacuum tube electronics. More recently, Horn and Bachman [72]
registered Landsat images to DTMs by correlating real images with simulated
images. The coordinate transformation 7 between the real image and simu-
lated image was modeled by translation, rotation, and scaling. The registration
error estimation algorithm selected values of those transformation parameters
that maximized the normalized cross-correlation between the two images. This
requires resampling one of the images into the new coordinate system defined
by each candidate T and then calculating the correlation coefficient.

We have used a predictive approach to automatically register SAR images
with DTMs, with other SAR images made from grossly different aspect angles,
and with aerial photographs. We also demostrate automatic registration when
the topography is not known a priori but reconstructed from the image using
shape from shading techniques. Only scenes of continuous surfaces without
detailed albedo variation are considered. Feature based scene matching typically
fails on those types of scenes. We follow the approach taken by Horn and
Bachman, extend it to SAR imagery, and demonstrate the application of surface

reconstruction to match dissimilar images.

5.2 Registration Algorithm

The dominant unknowns between sensor coordinates and surface coordinates are

modeled by 3-D translation, rotation and scaling. For orthographic projections
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from surface coordinates to image coordinates this corresponds to 2-D transla-
tion, rotation, and scaling between simulated and sensed images. Under these
conditions, the transformation between two sensed images is the composition
of two 2-D translation, rotation, and scaling operations; the result being a 2-D
affine transformation.

For SAR images of everything but flat terrain, the projection from surface
coordinates to image coordinates is not orthographic. Yet, as shown in Chap-
ter 2, the projection from surface height above the slant plane to SAR image
coordinates is approximately orthographic. Therefore, the incremental transfor-
mation required to register a real SAR image with a simulated SAR image from
roughly the same orientation is closely approximated by simple 2-D translation,

rotation, and scale. This transformation is given by

cosp —sing s, 0 r g
T(r,y) ~ +- ; 5.1
W (siw cow)(OSy)(y) (yo) o

A similar principle holds for aerial photographs; The image is approximately an
orthographic projection of the surface represented relative to a plane orthogonal
to the line-of-sight (intead of a plane parallel to the line-of-sight as for SAR).
Matching is accomplished by selecting the parameters (s,, Sy; P, To, Yo) from
(5.1) which maximize the cross-correlation between the predicted and sensed

images, i.e.

Select (sr,sy,¢,70,%0) such that o{I(r,y),L(T(r,y))} is maxi-

mized.

The most direct realization of this approach is an exhaustive search for
the transformation parameters that maximize g, an extremely computation-
ally intensive procedure. Many different methods have been used to avoid the
computational burden of exhaustive search, including multi-subarea correlation
[46,105], multi-resolution hierarchical search [46,72,137], and Fourier transform
methods [5,96].

We have decomposed above the five-dimensional search space into a 2-D
search over translation followed by three 1-D searches over ¢, s,, and Sy, respec-

tively. Significant error in any one of the parameters can cause errors in searching
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for the other parameters so that two or three iterations are sometimes required.
To reduce computation the above five parameter search is first performed at
reduced resolution and then repeated at higher resolutions—a multi-resolution
hierarchical search. Finally, if rotational errors of more than about three degrees
are present between the simulated SAR image and the sensed image then a new
SAR image is simulated using the new slant plane orientation estimates and the
entire search process is repeated. This minimizes shading errors and residual
geometric distortions due to incorrect slant plane orientation. The overall algo-
rithm structure is presented in Figure 5.1 and registration parameter search is
outlined in Table 5.1.

e Start with initial parameter estimates (s;, s, 3, 1o, %o ).
e Search for translation.

— For each candidate translation (7o, yg) calculate o[I1(r,y), L(T (r,y))]
for the parameter vector (s, $,, 3,70, %)

— Interpolate and save the translation for maximum p. Denote it as
(T‘ba gﬂ)
— Save the maximum value of p for error screening.

e Search for rotation.

— For each candidate rotation ¢ = @ + kAp (with k selected to span
the interval of uncertainty) calculate o[I(r,y), I2(7 (r,y))] for the pa-
rameter vector (s, Sy, @, 7o, Yo)-

— Interpolate and save the rotation for maximum g. Denote it as .

— Save the maximum value of g for error screening.

Search for s, (same as above but using s:r).

Search for s, (same as above but using s,).

Repeat at same resolution with ~ % the search uncertainty for each pa-
rameter.

e Increase image resolution and repeat search.

Table 5.1: Registration parameter search outline.
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Figure 5.1: Algorithm structure for precise registration of images to DTMs.
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A similar approach was used by Horn and Bachman [72] to register Landsat
images to DTMs. This approach is now much more attractive, with commer-
cially available image processing hardware designed for performing fast convo-

lutions and fast coordinate transformations [155].

Step Size Selection

The maximum step size is selected for each search such that the entire region
of uncertainty is covered without undersampling. The maximum step size for
translational search is one pixel. In searching through rotation and scaling, one
search step should not cause the outer portion of the image to move more than
one pixel. We include a factor K to allow for slightly oversampled imagery,

giving

2v/2
Ay = tan™! (_I'I(—) (5.2)
1mage size
and 55
AS:B = ASy = ‘—;\‘— (5.3)
image size

where I is between 1 and 2.

Error Detection and Recovery

Error detection is most easily accomplished by checking the results of multiple
subarea matches for consistency as in [105]. An example of this is provided later.
Although it is not possible to detect errors from a single match, it is possible to
deduce a high error probability. Three indications have been considered; (1) The
global maximum correlation is not at a local maximum, i.e. the maximum is on
a border of the search region, (2) the global maximum correlation is not much
larger than the second largest local maximum, and (3) the correlation peak is
small. The first condition indicates a high likelihood that the true parameters
are out of the search region. The second condition indicates a significant like-
lihood that noise or other errors have raised what should be a sidelobe to a
level higher than the true mainlobe of the correlation function. That conclusion
is supported by the following argument: The cross-correlation is modeled as a

noisy version of the autocorrelation of I after correction for the shape of the
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noise autocorrelation. If the signal autocorrelation is dominated by a peak and
a sidelobe then there is a monotonic relationship between the cross-correlation
peak to sidelobe ratio and probability that the cross-correlation mainlobe truly
corresponds to the autocorrelation mainlobe. The third indicator, correlation
peak value, provides an estimate of signal to noise ratio. All three reliability
measures need to be reexamined for multiplicative noise.

Error recovery requires some means for providing alternate hypotheses and
ranking them. Local maxima in the cross-correlation function provide good al-
ternatives to the global maximum and consistency between multiple subareas
provides a method (along with the actual cross-correlation value) for ranking
the alternatives. This strategy was used to reject outliers in a multi-subarea cor-
relation algorithm where local translational shifts of subareas distributed about
the image are used to solve for an affine transformation model [46,105]. Our
results indicate that the same approach is useful for providing error recovery in
the five parameter search algorithm in this chapter. Instead of testing consis-
tency between local translation estimates, consistency between local estimates
of all five parameters (s,, sy, ¢,70,Y0) is tested (care must be taken to account

for coupling of the local translation with ¢, s,, and s,).

5.3 Registration of Images With DTMs

The SIR-B SAR images in the top row of Figure 4.8 were registered to a DTM
of the same area using the algorithm described in Section 5.2. First, we started
with uncertainties of about +20 pixels in translation, +10% in scale, and ro-
tational errors of about 4 degrees. The starting uncertainty could be less than
those values because of the spacecraft ephemeris data (or inertial navigation
system data for airborne SAR) that is available, in principle. Nevertheless, it is
important to be able to deal with higher uncertainties when navigation data is
not conveniently obtained.

Figure 5.2a shows a plot of ¢ as a function of (rg, yo) with all other parameters
fixed for the top left image in Figure 4.8 in combination with its simulated

version. Figure 5.2b shows the same for the top right image in Figure 4.8. While
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the two images are formed with nearly orthogonal aspect angles relative to each
other, both cross-correlation functions are more narrow in the range direction
than in the azimuth direction. This is reasonable because, for constant albedo,
the image intensity is a very strong function of the derivative of surface height
in the range direction. The resulting image intensity tends to have a shorter

correlation length in the range direction.

For each image, the registration parameter search converged well enough to
provide sub-pixel accuracy across the entire image without the use of any error
recovery mechanism. The DTM was then registered to the SAR image, with
height measured relative to the slant plane. This precisely maps the surface
topography onto the SAR image using the same resampling algorithm used for
simulating the SAR image. It it also possible to perform the inverse mapping,
i.e. map the SAR image onto the surface, using a similar algorithm. The accu-
racy was evaluated by flickering between the real SAR image and the synthetic
image generated from the registered DTM on a COMTAL display. The visual
effect of small errors in the registration parameters can be judged by slightly
perturbing the registration parameters and then sub jectively evaluating the jit-
ter that appears when flickering between the two slighlty misregistered images.
Translational misregistration of as little as 1/4 pixel are readily seen by the eye
as jitter between the two images. For images of size 256 x 256, rotational errors
of around 0.1 degrees were visually detectable, and coordinate scaling errors of
about 0.2% were visually detectable. Since no such jitter was observed between
automatically registered images, we conclude that the registration errors were
less than the above values. Errors in surface height show up as shading changes
and localized shifting of intensity features, as with stereo parallax measurement.
Almost no shifting of local features were observed, with most of the intensity
errors due to apparent albedo variations and random noise.

The aerial photograph in Figure 4.4 was also registered by the same method.
In this case, albedo variations dominate the image intensity and the maxi-
mum correlation coefficient obtainable between the image and its simulation was
¢ = 0.21. This image was very difficult to match visually with the simulated

image because of the albedo variation and, as a result, manual registration was

107



‘O’ ““
( A ) ety

Figure 5.2: Correlation coefficient between real SAR image and synthesized
image as a function of (ro,yo) with all other parameters fixed. (A) For the top
left image in Figure 4.8. (B) For the top right image in Figure 4.8.
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grossly in error. After the automatic registration was completed, the resulting
rectification appeared to be within a pixel accuracy over the entire image except
at mountain peaks, where uncompensated parallax errors appeared. This was
evaluated by flickering between the two images on the same display and compar-
ing subtle topography-induced intensity variations in the real aerial photograph
with those of the simulated aerial photograph.

5.4 Registration of Dissimilar Images

Our primary motivation for performing the registrations described above was to
compare shape from shading results with the DTM, estimate reflectance map pa-
rameters, and estimate albedo variation. Other applications could be supported
by the same method. It is possible to register imagery from many sources by
registering them all to a common database, e.g. the DTM.

For images made from very different geometries or from different Sensors,
both manual and automatic registration are difficult problems. If we have knowl-
edge of surface structure then registration can be obtained using the method in
Section 5.3. This is illustrated by attempting to correlate the top left image of
Figure 4.8 directly with the top right image, a difficult problem due to the 81
degree aspect difference.

Figure 5.3a shows a plot of cross-correlation between the two SAR images
as a function of (rg,yo) after correcting for rotation and scaling. The peak is
flattened relative to Figure 5.2 with a peak correlation coefficient of only 0.38.

The registration algorithm latched onto a few distinct topographic features.
The dominant topographic features have the largest stereo parallax so that,
when they are registered, everything else is grossly misregistered. Alternately,
the registration obtained by combining the two image-DTM registrations from
Section 5.3 provides for a closer match on the more subtle features. There, most
of the two scenes are in close alignment with the largest parallax errors occurring
on large topographic features. It is also possible to correct for local foreshort-

ening to get a very precise registration, although this was not implemented.
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If we do not have a DTM, it is possible to construct one from the data as
demonstrated in Chapter 4. This idea was tested by correlating the synthesized
images in Figure 4.8 with the SAR images in the top row. That is, we attempted
to register a SAR image to its prediction based on a surface reconstruction. The
surface reconstruction was made from a real SAR image with a different aspect
angle. In each case the resulting registration was visually correct to within one
pixel overall but with some larger local registration errors appearing because of
local errors in the surface reconstruction. These local errors were mostly in the
downslope regions of the image used for reconstruction.

Figure 5.3b shows a plot of cross-correlation between the top left SAR image
with it prediction from the top right image (the prediction is shown in the
bottom left of Figure 4.8). The peak is slightly higher (¢ = 0.42) and more
prominent than that of Figure 5.3a.

We also tried registering the aerial photograph to the SAR image. As ex-
pected, direct correlation of the SAR image with the aerial photograph failed.
The correlation coefficient was negative even for the best visually obtained offset.
A synthesized image was then created from the surface reconstruction given the
SAR image in Figure 4.8. The registration algorithm failed when applied to the
entire frame. Registration was then attempted on three large randomly selected
subareas. Two out of the three subareas were consistent with each other as
determined by the multiple subarea correlation outlier rejection algorithm from
[46]. The registration obtained by averaging the translation of the two consistent
subareas resulted in a 3 pixel error when compared to visual estimates.

The experimental results from this Chapter are summarized in Table 5.2.

5.4.1 Local Matches

Although we have concentrated on registration of full image frames using one
global transformation, local matches are needed for deriving stereo correspon-
dences and removing high order misregistration. This has been done using both
feature based techniques [110], and using intensity correlation [102,116,132].
Matching stereo pairs of SAR images presents the problem of “edge migration”

due to shading changes between the two images [99]. The approach presented
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Figure 5.3: Cross-correlation of two SAR images of the same area but with near
orthogonal aspect angles. (A) Plot of cross-correlation between the two SAR
images after correcting for rotation and scaling, no correction for shading. (B)
Cross-correlation after applying shading correction. Shading correction utilizes
the surface reconstruction obtained by the shape from shading algorithm.
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Images Correlated Peak p Registration Results
SAR image 1 | Prediction from | .665 Global subpixel accuracy
DTM
SAR image 2 | Prediction from | .545 Global subpixel accuracy
DTM
SAR image 3 | Prediction from | .590 Global subpixel accuracy
DTM
SAR image 1 | Prediction using | .422 < 1 pixel average error
SAR image 3 Larger local misregistrations
SAR image 3 | Prediction using | .418 < 1 pixel average error
SAR image 1 Larger local misregistrations
SAR image 1 | SAR image 3 379 Two major peaks registered
2> 4 pixel error elsewhere
Aerial Photo | Prediction from | .214 < 1 pixel error
DTM
Aerial Photo | SAR image 1 — Unable to match:
No positive correlation
Aerial Photo | Prediction from | .152 Single subarea: 11 pixel error
SAR image 1 Multiple subareas:
~ 3 pixels error

Table 5.2: Summary of registration tests. The first three cases involved searching
for translation, rotation, and scaling. All other cases only involved a transla-
tional search.
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above, using single-image-based surface reconstruction to facilitate the matching

may help to improve the accuracy of SAR stereo matching.
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Chapter 6

Transformed-Gaussian Random
Field Models

6.1 Introduction

The theory of Gaussian random fields and linear system are relatively mature
and provide a good set of tools for model-based image processing. Yet image
intensity seldom fits the models needed for applying those tools. Two simple
methods have been applied for converting image intensity to Gaussian first order
statistics. The first method compensates for a nonstationary image mean by
subtracting a local intensity average from the image intensity [78],[95],[109].
This has also been extended to compensate for nonstationary variance [95]. The
second method is to transform the intensity as close to Gaussian statistics as
possible by passing it through an invertible point-nonlinearity [84]. We follow
the second method, treating the issue of non-Gaussian statistics separately from
the issue of nonstationarity. A combination of the two approaches appears to
be appropriate in developing multi-resolution algorithms for image processing
and image analysis.

This research provides models for spatial correlation which, together with
the distribution model, are mathematically tractable and fit a variety of im-
ages. If the data is first transformed to Gaussian statistics with an invertible

point nonlinearity then it can be modeled by extending the well-understood
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results from Gaussian random fields with linear spatial interaction. Lognor-
mal random fields with multiplicative spatial interaction are a special case of
the above transformed-Gaussian random fields which are of interest in radar
and image processing. Other distributions such as the Weibull [56,143] and
the K-distribution [81] have been considered for radar data, but do not lend
themselves well to parameter estimation and synthesis. Transformed-Gaussian
random fields are much more practical spatial models in this sense.

Several researchers have found that radar returns corrupted by speckle and
also with speckle averaged out by noncoherent integration fit lognormal statis-
tics [12,40,147,160]. This is based on examining histograms as well as formal
goodness-of-fit tests such as the Kolmogorov-Smirnov (K-S) test [160]. Previ-
ously published results [12,40,47,147,160] suggest lognormal models for radar
image intensity based on image statistics alone.

The use of lognormal models for radar and optical images has also been
motivated by physical reasons. Lognormal models have been suggested for ho-
momorphic filtering to separate multiplicative illumination and reflectivity com-
ponents [153]. For imagery at visible and infrared wavelengths, spatial models
which are linear in the logarithm of intensity have been suggested for use in
filtering signal-dependent noise [89]. Radar returns can have very high dynamic
range, up to 90 dB [113]. For this reason the logarithm of radar returns are often
digitized and stored rather than the power itself. Even at visible wavelengths
the logarithm of image intensity is often digitized rather than intensity itself due
to dynamic range considerations. Another physical consideration is that image
intensity is positive. An image can be thought of as an estimate of the power
spectrum of aperture voltage and positivity of lognormal data is consistent with
image intensity being a power signal.

Physiological models for the human visual system (HVS) provide further
motivation for the use of lognormal stochastic models for imagery, when appro-
priate. The HVS response to the logarithm of image intensity is approximately
linear [141,153]. With processing matched to the HVS receiver /observer charac-

teristics it has been possible to improve visual quality over that of conventional
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techniques in both data compression [140] and image enhancement applications
[153].

Many theoretical and phenomenological studies have been conducted inves-
tigating the first order density and average value of radar clutter under various
conditions. Yet very little work has been published in modeling spatial correla-
tion in radar imagery. Clearly, an independent and identically distributed (IID)
model is too simplistic to be of much use.

We propose Gaussian autoregressive random field and noncausal Gaussian
Markov random field (GMRF') models for the logarithm of radar image intensity
in 2-D. This leads to the lognormal multiplicative AR (MAR) and lognormal
multiplicative Markov random field (MMRF) models, discussed below, and pro-
vides a general but tractable statistical representation for lognormal radar im-
agery. Blanco [20] investigated the spatial correlation of 2-D radar clutter and
mentioned the possibility of modeling the logarithm of clutter power as a Gaus-
sian Markov process. However, no discrete formulation or method for synthesis
were provided, and isotropic clutter was assumed. The isotropic assumption
is restrictive for radar imagery. Suppose, for example, that the surface being
illuminated is isotropic. Even then the resulting radar image is not, in general,
isotropic due to the properties of image formation. This effect was illustrated
in Figure 5.2. Lognormal time series models in one and two dimensions have
been considered in the literature. Peebles [123] provided a method suitable for
synthesizing correlated lognormal clutter given known correlations, however it
was formulated for 1-D data only, no method was provided for parameter es-
timation, and no synthesis results were given. Kaufman et al. [89] suggested
modeling the logarithm of image intensity as a unilateral AR process (the term
“unilateral” is defined in Section 6.2). In that paper, techniques were devel-
oped for estimating the parameters of a unilateral AR process in the presence
of noise for image restoration applications. Radar imagery, noncausal models,
and model selection were not considered, and synthesis of textures visually sim-
ilar to real images was not demonstrated. We have considered the problem of
selecting random field models for radar imagery where model validity is judged

by both the statistical goodness-of-fit of the model to empirical radar data and
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how closely the synthesized random fields visually resemble the original radar
imagery.

Two lognormal random field models with multiplicative spatial interaction
are discussed in Section 6.2. Markovianity, second order properties, and stabil-
ity of lognormal random fields are then discussed. In Section 6.3, least squares
(LS), and maximum likelihood (ML) estimates of model parameters are pre-
sented along with bounds on estimation error. In Section 6.4, a decision rule
is formulated for selecting transformations to normality and model order for
random fields which can be expressed as nonlinear transformations of Gaussian
random fields. The objective is to decide, based upon image statistics alone, in
what domain to treat the image as a Gaussian random field. Lognormal ran-
dom fields are treated as a special case with the transformation to normality
being logarithmic. Procedures for synthesizing unilateral and noncausal lognor-
mal random fields are presented in Section 6.5. The approach is to estimate
the random field parameters from empirical data, generate a Gaussian random
field with appropriate parameters by passing white Gaussian pseudo-random
numbers through a linear system and then exponentiating the Gaussian random
field. In Section 6.6, the lognormal models discussed in this chapter are applied
to radar image synthesis. Lognormal models were fit to some of the available
SAR images and then synthetic textures were generated which closely resemble
the original SAR images. Conclusions are presented in Section 6.7. Derivations

of second order properties, and proofs of theorems on Markovianity can be found
in [49].

6.2 Lognormal Multiplicative Random Field Models

Two models for 2-D lognormal random fields with multiplicative interaction
are now examined. The first model is the unilateral multiplicative autoregres-
sive random field (MAR), and the second model is the noncausal multiplicative
Markov random field (MMRF). The MAR and MMRF models are natural ex-
tensions of Gaussian AR and GMRF models. Other 2-D multiplicative lognor-

mal models follow as extensions of other Gaussian random field models such as

117



ARMA and ARIMA models [21,86]. We restrict our attention to the unilateral
MAR and noncausal MMRF models, which are the most basic.
Case i: MAR. Let v(s),s € £, be represented by the following white-noise-
driven multiplicative system
o(s) = I] [ols + 1)) u(s) (6.1)
reN
where 2 = {0,1,...,M — 1} x {0,1,...,M — 1}, N is the neighborset defining
model support, v(s) is a lognormal white noise process referred to as the driving
process, and s = (m,n), a 2-D index.
The random field v(s) is said to obey a lognormal MAR model if w(s) =
Inv(s) obeys the following Gaussian AR model with u(s) = Inv(s)
w(s) = Y brw(s +r)+ u(s) (6.2)
reN
where ((s) is zero mean white Gaussian noise. The nonzero mean case is ad-

dressed in [49]. The covariance of u(s) is given by

_ ] a2 r=(0,0)
C“(r)_{o r # (0,0) .

For brevity, we only consider the MAR model in its unilateral form. The

(6.3)

same basic definition and correlation structure applies for noncausal MAR mod-
els [28,85] but with the neighborhood of dependency including pixels in every
direction. We have adopted the term unilateral instead of “causal”, follow-
ing Goodman and Ekstrom [58]. This is to avoid confusion with quarter-plane
causality, where a pixel value depends only on its neighbors in one quadrant
bounded by that pixel. The most general unilateral 2-D neighborset places de-
pendency on past intensity values as the image is sequentially scanned, e.g. prior
samples in a raster scanned image. This is referred to as nonsymmetric half-
plane (NSHP) support. Quarter-plane causality is a special case of unilateral,
or NSHP, model support.

The Gaussian AR model with unilateral dependency possesses the following

unilateral Markov property;
P(w(s) | wis:) V1 € Qn) =p(w(s) | ws+r)Vre N)  (6.4)
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where g x is a definition of the “past” which depends on the structure of N as

follows;

1. S ¢ QS,N
2. s+r € QynVreNnN (6.5)
3. r€Qn = (r+t)eQsnVt €N, provided r+t#s.

Using results from [49], the unilateral Markov property also holds for the log-
normal MAR, u(s).

In 1-D, any noncausal MAR model can be represented by an equivalent
unilateral model. Thus, it suffices to consider only unilateral models in 1-D.
In 2-D this is no longer true due to the lack of a general spectral factorization.
Hence we also consider noncausal models and, in doing so, concentrate on the
noncausal MMREF.

Case ii: MMRF. Suppose now that w(s) obeys a noncausal Gaussian Markov
random field (GMRF) model. Now uv(s) is represented by the multiplicative
system in (6.1) and the underlying difference equation in (6.2) except that it is

driven by a correlated noise with the following covariance [85]

a3 r = (0,0)
Cu(r)=14 —6:02 reN (6.6)
0 otherwise .
Then v(s) is said to obey a noncausal MMRF model. We will refer to the
noncausal MMRF simply as the MMRF.
The GMRF obeys the following Markov property with respect to noncausal

neighborset N ;
p(w(s) | w(s1), Vs1 # s) = p(w(s) | w(s +r), r € N). (6.7)

Here s represents the “future”, {s + r Vr € N} denotes the “present”, and all
s1 ¢ sU{s+r,r € N} denotes the “past”. This is in contrast to the more
familiar notion of a one-sided past, present, and future in (6.4). By Theorem 1,
below, v(s) also obeys the Markov property in (6.7).

The noncausal Gaussian AR random field and, therefore, the noncausal MAR
also obey a noncausal Markov property but with respect to a larger set of neigh-

bors than its model support.
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Figure 6.1: Nonlinear system obtained as nonlinear transformation of a linear
system. Lognormal random field models are represented using g(v) = In(v),
with » lognormal.

6.2.1 Markovianity in Discrete Random Fields

The Markov property defined in (6.7) is sometimes referred to as local Marko-
vianity. Global Markovianity is a more general definition used by Rosanov [136]
and Woods [174]. For 2-D Gaussian random fields local Markovianity for all
s € {2 implies global Markovianity [136]. This is also true of any random field
representable as a Gaussian random field passed through an invertible point
nonlinearity, and therefore lognormal random fields. Hence, we refer to (6.7)
simply as the Markov property. This and other properties of discrete Markov
random fields are stated as theorems in the following paragraph and proved in
[49].

Consider random fields generated by the nonlinear system in Figure 6.1 with
v = g~'(w), where g and g~! are strictly invertible point nonlinearities. First,
suppose that w is a Markov random field, not necessarily Gaussian.

Theorem 1 : w locally Markov implies v locally Markov.
Proof: See [49].
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That is, an invertible point-transformation of a Markov random field is also a
Markov random field. Theorem 1 does not assume any distribution for w or v.
Now suppose that w is also Gaussian.

Theorem 2 : wv(s) locally Markov for all s and w is Gaussian implies v globally
Markov .

Proof: See [49].

Therefore, in any transformed Gaussian random field, local Markovianity implies
global Markovianity.

Now let M(v(s)|vs) be the conditional median of v(s), where v5 = {v(sy),Vs; #
s}. The median is invariant under invertible point transformations and, for
Gaussian random fields, the mean and median are equal. Hence, the conditional
median is useful for deriving properties of transformed-Gaussian random fields

from the well understood properties of Gaussian random fields.
Theorem 3 : If w is a GMRF then

M(v(s)|ys) =g " (Z Grw(s + r)) ; (6.8)
reN

Proof: See [49].

That is, the conditional median of v is obtained by transforming the condi-

tional mean of w. If v is lognormal and w is Gaussian, then ¢=!(w) = e¥, and

E(v]ys)/M(v|ys) = e2°%. This leads to the following two lemmas:

Lemma 1 : If v is lognormal and Markovian then

M(v(s)lvs) = [] [o(s + ). (6.9)

reN

Lemma 2 : If v is lognormal and Markovian then

E(v(s)|vs) = 2% T] [v(s + r)]*. (6.10)
reN

6.2.2 Second Order Properties for MAR and MMRF
Models

The covariance and power spectrum of v is not easily obtained, in general. For-

tunately, it often suffices to know only the covariance and power spectrum of w.
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The covariance and power spectrum of w are discussed below and expressions for
the autocorrelation, covariance, and variogram of v in terms of w are presented.

The MAR random field is represented by the multiplicative system in (6.1)
driven by white lognormal noise, v. Then w obeys a Gaussian AR model so that

the power spectrum of the logarithm of the MAR random field is [87]

0.2

_ K
Sw(/\) == |1 Exll ZrEN gre\/__i' ’\Tr|2 .

(6.11)

The linear system which generates w(s) is said to be bounded-input-bounded-
output (BIBO) stable if bounded inputs guarantee bounded outputs. The nec-
essary and sufficient condition for BIBO stability of w is [133]

{1 — 5 e(i,j,z;'zg} £0 (6.12)
(i.)eN

in the region defined by {(Z1,22) : |Z1] < 1N |Z;] < 1}. It can easily be

shown that the conditions for the lognormal random field v(s) to be BIBO

stable and positive are identical to the conditions for BIBO stability of w(s).

More precisely,
O0<y(s)<oo Vs€N = 0<v(r)<oo Yre (6.13)
if and only if
| u(s) |[<oo Vs€Q = |w(r)|<oco Vref.

Here v(s) and v(r) are restricted to positive values since 0 < e¥ < oo for all
| w [< co. Similar stability results hold for more general transformed Gaussian
random fields when appropriate bounds are placed on v and v.

The MMRF is represented as the output of the multiplicative system in (6.1)
except that it is driven by a correlated noise. For MMRF models the covariance

of the logarithm of the driving process is

os p={0,0)

Cur)=1 —602 reN (6.14)

0 otherwise .
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For the power spectrum S,,(A) to be real requires 6, = 6_, [18]. Therefore, we
define a new neighborset N’ for Markov random fields, which contains the half

of N corresponding to the unique half of the parameter set. Specifically,
reN = -r¢gN’; N={r:reN}u{r: -reN'}. (6.15)

The resulting power spectrum for the logarithm of a MMRF is [85]

0.2

N T
B} = 1—2%cnt Or cos(3ZANTr) 18)

Again, the conditions for stability of v(s) are identical to the conditions for
stability of w(s). A sufficient condition for stability of w(s) is that [85]

{1 -2 B cos (%)\Tr)} >0 (6.17)

reN’
for all A € Q.

In [49] it is shown that the autocorrelation of v is proportional to the expo-

nentiated covariance of w, i.e.
Ry(8) =m2eful) (6.18)

By Fourier transforming the Taylor series expansion of C,, we obtain a general-

ization of the Middleton expansion [1] for the power spectrum of v
85|
S.0) = miS LB (6.19)

where
S.(A)%S.(N) k£0
Bi(\) = (6.20)
8()) k=0

and ¥ denotes k-fold convolution, and S,,(A) = FT [C,(s)].

The asymptotic properties of S, are summarized here. If ol < 1 then v
has approximately the same spectrum as w except for a DC term which ensures
positivity of v. When o2, > 1 then the spectrum of v approaches a Gaussian

shape with root-mean-square (RMS) bandwidth o, times that of S, provided
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Sy is well-behaved. For high contrast radar images this provides some theoret-
ical justification for the practice of assuming a Gaussian shape for the power
spectrum of image intensity. Thus, the relationship between the power spectra
of w and v varies between adding a DC offset to broadening into a Gaussian
shape with RMS bandwidth proportional to o.
The covariance and variogram of v are derived as functions of C,, in [49].
The covariance of v is
Cy(s) = mi[e%® _1] (6.21)

and the resulting normalized variogram is

(6.22)

Cuw(s) _
Vi(s) = 2 [1 : 1]

 efu(0) —7

The shape of R,,V,, and &, are highly dependent on ¢, while the shape
of Ry, Vy, and S, are independent of o,,. Numerical techniques for calculating
Ry, Vy, and S, are discussed in [49)].

6.3 Parameter Estimation

For compactness, define the image intensity vector v as the lexicographic ordered

or row-scanned vector

v = [v(0,0),v(0,1),...,v(0,M —1), (6.23)
v(1,0),...,0(1,M —1),...,9(M —1,M —1)].

We define the parameter vector as
8 = col[f;,r € N] . (6.24)
The covariance matrix of v is the M? x M? matrix
Cy =[Cy(s —r);s,r € ), (6.25)
where (2 is defined in (6.1). Then, the difference equation for w = In(v) becomes

H(@)w = p + m,1 (6.26)



where a nonzero mean m,, is now included, the vector 1 is a M? x 1 vector of

l's, and H(@) is a M? x M? matrix. Finally, to simplify notation let

=0, (6.27)

m

6.3.1 Least-Squares Estimates

For MAR models, the least-squares (LS) parameter estimates based on w are
[85]

b= %z(s)zT(s)] 3 LZ 2(s) (w(s) —ﬁzw)] (6.28)

en

with

4 1 . T A

p===>. (w(s) — 1y — 8 z(s)) (6.29)

M? SEQ :
and 3
My = Iﬁsezgw(s) (6.30)

where

z(s) = col [w(s +r) — 1R, r € N] . (6.31)

It turns out that, for the unilateral lognormal MAR random field, the LS
estimates above are identical to the maximum-likelihood (ML) estimates of §
given lognormal observations v. Teekens [156] has shown that the joint-complete
sufficient statistics for the parameters of a 1-D MAR process are given by the
LS parameter estimates for the underlying Gaussian AR process. This is also
true for unilateral 2-D MAR random fields.

For the MMRF and other noncausal models, the LS and ML estimates are
not equal. The following LS estimates for MMRF parameters are consistent,
though not efficient [85]:

b [g q(s)qT(s)} 3 [Z el M] (6.32)
with i ) i ,
=T (w(s) = v~ £ a(s)) (6.33)
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where

q(s) = col [w(s +r)+w(s —r) — 2, r €N (6.34)

and 772, is the sample mean as before.

6.3.2 Maximum-Likelihood Estimates

The joint probability density function for a lognormal random field v is
a2 1 -1 1

p(v) = |(27)7 |Cw|? ]] v(s)] exp [-—5 (In(v) — my1)T Cy™? (In(v) — mwl)] A

E (6.35)

To find the ML estimates we need the likelihood function for v conditioned on

the model parameters. For unilateral MAR random fields, the determinant of

the conditional covariance reduces to |C,| = p™°, hence the joint log-likelihood

of the observations given the parameters reduces to

2 2
Inp(v|d,p,m,) = —LIn27p— 2—15 >a (ln(v(s)) — My — QTz(s))
—Zalnv(s)
ignoring boundary conditions. By maximizing the above equation with respect

to 8, p, and m,, the ML estimates can be shown to be identical to the LS

estimates in unilateral MAR models, and identical to the ML estimates for the

(6.36)

parameters of the underlying Gaussian AR random field, w.
The same is not true, however, for the noncausal MMRF model. The condi-

tional log-likelihood function in this case is

lnp(v| 8, p,my) = %fln (1 — ZQTqB,\) d\ — M; In27p

—1(In(v) = my,1)T H(6) (In(v) — my,1) (6.37)
—Yqlnuv(s)
where
¢ = col [cos (i—}r-/\Tr>,r € N'] : (6.38)

Note that the log-likelihood is non-quadratic in 8, unlike for the unilateral model.
Equation (6.37) is the same as the log-likelihood of the underlying GMRF except
for the last term, which is not a function of any unknown parameters. Hence,

the MLE for the parameters of v is obtained by maximizing the same criterion
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function as for w. The ML estimates for the mean and variance terms of the
GMREF are [18]

it = 1, (6.39)
and i
o 2 =T R
i =55 2 (w6) — i - 874(s)) (w(s) - ) (6.40)
Q
= [Cul0) =2 8, Culr) (6.41)
Nf

where éw(r) are the sample correlations given by

Cu(r) = 1/M?Y" (w(s) — 1iy) (w(s + r) — 12y, . (6.42)
Q

By substituting for 7, and p and dropping the terms which are independent

of 8, the MLE of @ is the value which maximizes

M2, . - .
~ i (c,,,(o) _2 % 9,.cw(r)) L % [ (1 a 2QT¢).) d\.  (6.43)

Applying recent results for Gaussian random fields [145], the above solution

always exists, and is unique, asymptotically consistent and efficient.

6.3.3 Estimation Error

The ML parameter estimates are asymptotically efficient, i.e. their covariance
for large sample sizes approaches the Cramér-Rao lower bound (CRLB). For
unilateral models, the LS estimates are equivalent to the ML estimates and are
therefore asymptotically efficient. For noncausal models, the LS and ML esti-
mates are not equivalent and the LS estimates are consistent but not asymptoti-
cally efficient [85]. The CRLB is given below for the parameters of the unilateral
MAR random field and the noncausal MMRF. The variance of the LS estimates
for MMRF parameters is also presented.

The covariance matrix of any unbiased estimate of 8 is bounded below by

the inverse of the Fisher information matrix,
Co 2 371(8) (6.44)
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where the elements of the Fisher information matrix are

Jsl@) = —E {E‘Z—ra%lnpu(ﬂ Q)} , (6.45)

and the inequality A > B for matrices denotes A — B is positive semi-definite.
Evaluation of (6.44) with the likelihood function in (6.36) gives the following

error bounds for the parameters of the unilateral MAR random field

Gy > gapP!
var(p) > 35p° (6.46)
var (mw) 2 ﬁl_p (1 B ZrEN 91')_2

where P = E[z(s)z”(s)] and var(-) denotes error variance. For the MMRF
we evaluate (6.44) with the likelihood function in (6.37), giving the following

inequalities
C; > J7Y(9)
var(p) = 3P (6.47)
~ 1 -1
var (fw) 2 3ap (1 —2 5 it 91-)
where

cos r/\T) cos (%S/\T)
[1 = 2T B cos (226A7)]”

If we approximate the block-Toephtz matrix C, by a block-circulant matrix or,

Falby=2 ]

dx . (6.48)

equivalently, assume a toroidal lattice, then the integral above is replaced by a
summation over A € ).
The covariance of the LS estimate for the parameters of the MMRF is [85]
1 o B P ~-1 A =

Q = E[q(s)d"(s)]
Tys = E [Q(r)qT(S)]
with q(s) as defined in (6.32).

(6.50)
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6.4 Decision Rules for Model Selection

This approach for model selection follows that of Kashyap [84]. The basic idea
is to select one of a finite set of model structures {C}} which best fits the ob-
served image intensity v. Each model structure includes a strictly monotonic
transformation to normality gx(-) and neighborset Ni. This is in contrast to
traditional hypothesis testing approaches such as the K-S goodness-of-fit test
where one particular model is tested against all alternatives. The traditional
goodness-of-fit tests are valid only for IID data and are very difficult to general-
ize, even for very simple models of spatial interaction [166] while the approach
developed below takes into account the spatial correlation of the data.

We follow a special case of the Bayesian approach for model selection. With

the general Bayesian approach, the model structure C} is selected such that
P (Cilv) > P(Cjlv) (6.51)
for all C; # Cj. From Bayes rule
P(Cilv) =p(vIC:) P (Ck) /p(v). (6.52)

We drop p(v) since it is independent of model class and therefore irrelevant.
We also drop P (C}) since there is no reason to believe that the classes are
not equally likely. Then it remains to solve for p(v|Ct). Regardless of any

distribution assumptions

p(v[Ck, 8y, pi) = p(Wi|Ck, 8y, pi) |Ow /O], (6.53)

where py is defined in (6.27), |dw,/dv| is the Jacobian of the transformation

between w and v, and the matrix [Ow/dv] is diagonal. Therefore

P(VICr, By, pic) = P (Wk|Ch, B, o) TT 91(s) (6.54)
seN
where dgali)
[ gl
g’k(S) = _dcr-la=v(s) " (6.55)

Now suppose that w;. is Gaussian. Under this hypothesis, Kashyap and Chel-
lappa [85] have derived an approximate expression for p(w|C}) by asymptoti-

cally integrating over 6, and p; with suitable priors. We obtain the test statistic
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Tk by using this approximation to Inp(wy|C}), including the Jacobian term
9x(s) , and dropping constant terms giving
T (v) = Zlngk—i—fln S (3,85) dX — —lnpk P ’“1nM2 (6.56)
seN
where j and 8, are suitable parameter estimates obtained by fitting model C}
to the data, and ny is the number of unique entries in 8,. We then select model
structure C} which maximizes Tj(v).
Under the hypothesis that w; obeys a unilateral Gaussian AR model, the
integral term in (6.56) vanishes. Therefore the test statistic becomes [47]
Ti(v) =Y Ing, — -ﬂ—/g In jj, — =% ln(Mz). (6.57)
8€0)
The decision rule is to select the model which maximizes T} in (6.57).
Under the hypothesis that wj obeys a noncausal GMRF model, the test
statistic in (6.57) reduces to
Ti(v) = > Ing, — — LN P —

SeEN

2 tn(M?) + - f fiy (1 _ 28" ¢“) . (6.58)
We then select the model class which maximizes (6.58). For all but very small
sample sizes, the final term in (6.58) with the integral replaced by summation
over A € Q) provides a reasonable approximation to the integral.

Ezample 1:
Suppose we want to compare the fit of two unilateral AR models with the same
number of parameters n but different intensity transformations ¢; and g2- Let
hypothesis C}. denote that wi(s) = gx[v(s)] obeys a Gaussian AR model of order
n . The resulting decision rule is

b
(ﬁ_/;fi) lnﬁi—l g LP lng; =) lng; : (6.59)
< P2 o  sen SEQ

Ezample 2:
Suppose that we want to select either C; = Gaussian AR model of order n, or
C; = lognormal MAR model of order n, both unilateral models. Then g1(v) = v,
and g2(v) = Inv. The decision rule from equation (6.59) becomes

(—?)h% %2 > lnv(s) . (6.60)

Cl SEN
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Note that, for the unilateral models considered in the two examples, we select
the transformation resulting in the lowest residual variance after accounting for
the Jacobian of g.

The usefulness of these decision rules in determining the appropriate model

for real SAR images is illustrated by the experimental results in Section 6.6.

6.5 Synthesis of Lognormal Random Fields

Synthesis of lognormal data is accomplished by first synthesizing Gaussian data
and then exponentiating it. This approach has been used for IID lognormal
data [3], 1-D lognormal data with arbitrary autocorrelation [123], and unilateral
MAR random fields [89,156]. A model based procedure for synthesis of 2-D
lognormal random fields based on fitting multiplicative lognormal models to
empirical data is given below.

Lognormal Random Field Synthesis Procedure:
(1) Take the logarithm of the sample data.
(2) Fit the appropriate Gaussian random field model to the logarithm using the
methods in Section 6.3.
(3) Synthesize the Gaussian random field w using the methods described below.
(4) Exponentiate w .
A nonzero mean is easily included by first synthesizing a zero-mean Gaussian
random field and then adding m,, as represented in (6.26).

The methods for synthesizing unilateral AR and noncausal GMRF models

in step (3) are outlined below. Further details can be found in [26].

6.5.1 Synthesis of Unilateral Gaussian Random Fields

Due to the causality of the model and the whiteness of u(s), a unilateral AR
random field can be generated directly with convolution on a finite lattice given
a set of white-Gaussian pseudo-random numbers for x(s) in (6.2). However, care
must be taken so that boundary values obey the model. It is usually necessary
to save boundary samples from the original data or to synthesize several start-up

rows and columns which are discarded later.
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6.5.2 Synthesis of Noncausal Gaussian Random Fields

Synthesis of noncausal random fields cannot be accomplished by direct convolu-
tion. In general, synthesizing a noncausal GMRF or AR random field requires
inverting the M? x M? matrix H(6). Since M can be quit large, this is im-
practical. Instead, the noise driven linear system h is implemented by Fourier
techniques. Suppose that w obeys a GMRF or Gaussian AR model defined on
a toroidal lattice. Then the covariance matrix of w is block-circulant and there-
fore exactly diagonalized by the DFT [28]. We can then directly calculate the
eigenvalues of Cy as the power spectrum of w evaluated at discrete frequency
values A € 2. In practice, approximating H(@) by a block-circulant matrix, i.e.
assuming a toroidal lattice, affects only boundary values and is therefore a good
approximation for all but very small data sets [97]. Another simplification with
a toroidal lattice is that the integral is replaced by a summation over A €  in
the likelihood equations (6.37) and (6.43), and the decision rule (6.58).

The procedure for synthesis of a noncausal GMRF on a toroidal lattice is
then:
(1) Generate white Gaussian pseudo-random data Z/(\).
(2) Calculate the power spectrum S,,(},8) for A € Q.

(3) Get the Fourier domain realization of w

W(A) = UWSu(N, 8).

(4) Inverse DFT W(A,8) to get w(s).
Experimental results for synthesis of lognormal random fields are given in
Section 6.6.

6.6 Application to Radar Image Synthesis

Coherent radar imagery is corrupted by speckle, which is often modeled as multi-
plicative noise. Ignore thermal noise for now and model the observed square-law

detected image I as
I(s) = v(s)n(s) , (6.61)
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where v(s) is the noncoherent image proportional to the ensemble average radar
backscatter for the object at the physical location corresponding to s. Variation
in n(s) as a function of s is referred to as speckle, while pass-to-pass variation
of n for a fixed position on the object is referred to as scintillation. For fully-
developed speckle, n(s) is Gamma distributed and independent of v(s). Presence
of thermal noise and sidelobe noise requires a three-parameter lognormal distri-
bution.

Suppose that v is in fact lognormal, and n is Gamma distributed. It has
been shown that, for sufficiently large o, observed power I is approximately
lognormal also [103]. Therefore, if the lognormal noncoherent image has suffi-
cient contrast, then the speckled image is lognormal. For high contrast images
we can then synthesize the speckled image I(s) directly as a lognormal random
field. For low contrast images or if pass-to-pass variations in the same scene are
to be simulated then it is more appropriate to synthesize v and n separately and

then multiply them to get I.

6.6.1 Decision Rule Results

SEASAT SAR imagery was tested for normality and lognormality. The data
included imagery from (1) rural and suburban areas of the San Fernando Valley,
California, (2) hills, mountains, and flat land in the Dominican Republic, (3)
hilly land in Kentucky, (4) sea clutter during a hurricane. Two sets of data were
created. The first was standard SEASAT imagery consisting of the intensity
average of four looks [130]. The second set was at reduced resolution to average
out speckle. Resolution reduction was performed on intensity rather than the
logarithm of intensity in order to avoid biasing the outcome towards the log-
normal case. Using the decision rule in (6.57) the fit of the nearest-neighbor
unilateral AR models with N = {(0,—1),(—1,0)} on twelve 64 by 64 pixel SAR
images were compared for the Gaussian vs. lognormal cases. The results are
summarized in Table 6.1. The lognormal AR model was preferred over the
Gaussian AR model for each of the twelve SAR images tested. Eight images
at visible wavelengths were also tested. Among them all but two preferred the

Gaussian AR model over the lognormal model for intensity.
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IMAGE TYPE || NUMBER | LOGNORMAL | GAUSSIAN
TESTED °

4-Look SAR 6 6 0

Spatially 6 6 0

Averaged SAR

Brodatz 5 1 4

Textures

Real World 3 i 2

Photographs

Table 6.1: Summary of model selection tests; causal AR model with near-
est-neighbor support, lognormal versus Gaussian.

The same set of SAR images was also tested for normality vs. lognormality
using the K-S goodness-of-fit test. Since the K-S test is valid only for IID data,
the images were undersampled by selecting every fourth pixel in both the vertical
and horizontal directions, reducing the 64 by 64 images to 16 by 16.

The lognormal IID model was accepted at the 95% significance level for nine
of the twelve SAR images, while the Gaussian IID model was accepted for only
three of the twelve images. For one image, both the Gaussian and lognormal
models were rejected by the K-S test, while the decision rule from (6.57) selected
the lognormal model. A second difficulty which can arise is that, with smaller
sample size, the power of the K-S test is reduced resulting in cases where neither
model is rejected. The decision rule developed in this chapter yields a systematic

decision in both the above cases while the K-S test does not.

6.6.2 Synthesis Results

Two model-based texture synthesis experiments are demonstrated here. First,
a set of five different synthetic textures, shown in the left column of Figure
6.2 were generated. These were generated using noncausal lognormal MMRF
models with arbitrarily selected parameters and neighborsets, and with each

texture using the same set of pseudo-random numbers, {4(s)}. The parameter
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values are given in Table 6.2. Least-squares estimates of the parameters of
each texture were then used in generating new textures with the same visual
properties, shown in the right column of Figure 6.2. Use of different random
number sequences does not change the visual properties of the textures but
creates a new realization with similar, though not identical, features. This has
been documented in [27].

In the second experiment, four textures taken from the reduced resolution
SEASAT SAR data set were fitted with noncausal MMRF models and unilateral
MAR models using the methods in Section 6.5. The results are shown in Figure
6.3. There the first column shows the original SAR images, the second column
shows synthetic textures obtained by fitting noncausal MMRF models, the third
column shows synthetic textures obtained by fitting unilateral MAR models. In
each case, twelve parameters were estimated from the data in addition to the
sample mean and driving process variance. Note in Figure 6.3 the striking
similarity between the synthetic textures and the original SAR images. Further,
note that four distinctly different original SAR images are shown. Inspection of
the textures on a high quality display show somewhat better visual quality for
the noncausal models. Also note that the Markov and AR models best represent
the small features in textures, e.g. ranging from about 1 to 15 pixels in extent.

The synthesis results are of interest for two reasons. First, they further
validate the lognormal MAR and MMRF models for radar imagery and radar
clutter. Second, synthesis is a useful application in its own right for radar Monte
Carlo simulations [123], image data compression , and simulation of radar images

from cartographic data [69].

Variogram Plots

Variogram plots are used in image processing and time series analysis as an
indication of the adequacy of a particular class of stochastic models. We have
calculated the theoretical variograms given noncausal MMRF parameters es-
timated from radar images. These are plotted against empirical variograms
obtained from the sample covariance of the original radar image and also the

corresponding synthetic texture. In Figure 6.4 such a plot is shown for the third
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Image || Parameter | True Value | Estimated Value

1 1,0 0.1600 0.1643
001 0.1000 0.1091

O30 0.1200 0.1334

Go,3 —0.1400 —0.1423

My 128.00 128.034

p 300.00 293.481

2 Bio 0.1700 0.1829
fo.1 0.1700 0.1805

3,0 —0.1500 —0.1564

Bo.3 ~0.1500 —0.1313

My 128.00 128.025

P 300.00 296.500

3 B0 0.3000 0.3040
Go,1 0.1900 0.1943

M 128.00 128.157

P 300.00 293.665

4 01,0 0.4900 0.4925
o1 0.0020 0.0042

My 128.00 128.169

P 300.00 298.996

5 Bro 0.4000 0.4114
fo.1 —0.0940 —0.0840

My 128.00 128.038

P 300.00 295.560

Table 6.2: Model parameters and their least-squares estimates for the synthetic
textures in Figure 6.2.
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image from the top of Figure 6.3. Note the close fit of all three curves in each
scan direction. Figure6.4.A shows that the model has captured the damped
oscillation of the original image in the vertical direction, while also conform-
ing to the much more highly damped behavior of the original in the horizontal

direction shown in Figure 6.4.B. Similar results were obtained for other textures.

6.7 Conclusions

Lognormal random fields can be expressed as transformations on Gaussian ran-
dom fields. Consequently, many theoretical results for lognormal random fields
are obtained as extensions of the well-understood properties of Gaussian random
fields. For example, using the formulations in this chapter, parameter estima-
tion techniques and stability criteria for a lognormal random field are the same
as for the underlying Gaussian random field.

The notion of a conditional mean and median are equivalent for Gaussian
random fields but not for lognormal random fields. The conditional median
is easily obtained for transformed Gaussian random fields by transforming the
conditional median of the underlying Gaussian random field.

The decision rule developed in this chapter chooses from a set of competing
models that which maximizes a test statistic derived from the observations v.
Suppose we hold the model order fixed. Then a transformation g is selected
which results in the lowest variance for the transformed and whitened data after
accounting for the Jacobian of g, and the Jacobian of the whitening transfor-
mation. Experimental results using this decision rule showed lognormal models
to be preferred over Gaussian models for the available radar imagery. The K-S
test also showed the lognormal distribution to provide a good fit to available
radar imagery.

The synthesis procedure for lognormal random fields is to first synthesize the
underlying Gaussian random field and then exponentiate it. MAR and MMRF
models were fit to sections of four distinctly different radar images and the

resulting synthetic textures closely resembled the original radar images. The
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Figure 6.4: Theoretical and empirical variograms for lognormal MMRF and
SAR image.
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synthesis results serve to demonstrate that the lognormal MAR and MMRF

models are practical and useful models for radar imagery.
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Chapter 7

Conclusions and Topics for
Future Research

7.1 Conclusions

A computational vision model for SAR imagery was presented and applied to
surface topography estimation and image registration. SAR image based shape
from shading algorithms were developed for surface topography estimation. The
slant plane parameterization of surface height and the use of Fourier basis func-
tions in the shape from shading formulation provide a conceptually simple for-
mulation and allow a computationally efficient implementation. Use of auxiliary
low resolution surface data as a constraint in shape from shading was introduced
and successfully applied to SAR imagery. The low resolution data was also used
for estimating reflectance map parameters. The utilization of image-derived to-
pographic information for image registration and very precise alignment of SAR
imagery with DTMs was demonstrated. A transformed-Gaussian random field
model formulation was introduced. This model formulation was applied to tex-
ture synthesis and automatic model identification for SAR imagery and should

be considered for other image processing and analysis applications.
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7.2 Topics for Future Research

Several promising topics for future study have become apparent during the
course of this research.

The SAR shape from shading algorithm may be useful for constructing topo-
graphic maps of the surface of Venus from SAR imagery and altimetry data col-
lected during the Magellan mission. Several practical issues must be addressed
first. The altimetry data must be registered with the SAR imagery. It is neces-
sary to achieve registration accuracy comparable to the SAR image resolution,
which is much finer than the altimetry resolution. While this is possible, it re-
quires a very large integration area, perhaps extending thousands of SAR image
pixels in range and azimuth. The orthographic projection approximation may
not be valid over the entire area of interest and, therefore, some sort of compen-
sation may be required in the processing. A radar cross-section model suitable
for the conditions on Venus should be considered. With a suitable RCS model,
the estimates of albedo and terrain surface roughness, obtained as a byproduct
of shape from shading, may be accurate enough to be useful in other geological
investigations. Future improvements in terrain surface estimation techniques,
considered below, may also be useful for Magellan.

Additional research is needed for handling layover. The possibility of layover
introduces both a spatial ambiguity and a radiometric ambiguity not considered
in this thesis. The radiometric ambiguity is essentially the same as that which
occurs in visual imagery at points of the surface that are normal to the incident
illumination (a; = 0) [19]. For example, consider the partial sphere surfaces in
Chapter 3. If the illumination was from directly overhead, it would be impossible
to tell from image intensity alone whether the partial sphere extended above
the plane or below the plane. In visual imagery (assuming the geometry of
Figure 2.2) the geometric ambiguity occurring where the surface is normal to
the illumination is an ambiguity in the z direction only—it is not observable
in the image. For SAR imagery, a zero crossing of o; means a change of the
slant range ordering of features as ground range increases. It may be possible
to locate and analyze layover conditions by detecting likely zero crossings of «;

from image intensity.
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If shadows can be reliably detected then they provide information on surface
slope at the shadow entry points and the relative height between shadow en-
try and exit points along lines of constant cross-range. Unfortunately, shadow
boundaries are difficult to reliably identify in noisy imagery. Often there is
only a small difference in mean intensity between a shadow and the dark but
non-shadowed downslopes of a mountain. The uncertainty introduced by addi-
tive thermal and sidelobe noise tends to swamp those subtle intensity differences.
Similarly, it is difficult to distinguish between shadows and areas of low backscat-
ter due to low albedo or, for example, the specular reflection typical of paved
roads. A predictive approach to shadow detection may reduce this difficulty, as
discussed in Chapter 3.

Because vision is a highly underdetermined problem, fusion of information
from different images and from different cues within a single image is becoming
more important as the utilization of individual information sources matures.
For example, it has been suggested that shape from shading complements stere-
ogrammetry and radar interferometry [39,99]. We have already discussed the
notion that stereo provides either low resolution or sparse surface structure in-
formation while shading provides either high resolution structure or fills the gaps
between stereo matches.

An additional role for shading is to screen false stereo matches. It is often dif-
ficult to obtain reliable stereo matches, especially in the presence of speckle noise.
One method for screening false matches is to require the image shading predicted
by the stereoscopically-derived surface reconstruction to approximately fit the
shading in the observed image. Further, the variance of the observed image
intensity should exceed the variance of the stereo-predicted shading component
by at least some threshold (the threshold can be predicted by speckle charac-
teristics). Thus, the fusion of stereo and shading may enhance the reliability of
automatically derived stereo matches.

Similarly, the precision of stereo matches can be improved by accounting for
shading differences that occur between SAR stereo image pairs. Fullerton, et al.
[54] reported a technique for approximate shading correction of opposite side

SAR stereo image-pairs, where the illumination geometry difference causes dark
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areas in one image to be bright in the other. A simple correction procedure
that maps high intensities into low intensities in one of the images was effective
in that situation. Two additional correction methods, intensity prediction and
intensity compensation, are discussed here. The intensity prediction method ex-
tracts high frequency surface information using shape from shading techniques
and then forms a predicted image, as in Chapter 4. Stereo matching of, say,
the first SAR image with its prediction given the second SAR image allows the
computation of a residual parallax error. This provides a residual surface that,
when added to the shape from shading results, approximates the desired sur-
face estimate. The intensity compensation method starts with a stereo-derived
surface reconstruction and then predicts a local shading ratio between the two
images. Given the surface reconstruction, the aspect difference between the two
images, knowledge of the parallax errors, and the reflectance map it is relatively
easy to compute the shading compensation. If the additive noise terms are low,
the correction is insensitive to albedo variations. After shading compensation
the stereo matching procedure is repeated with, hopefully, greater achievable
accuracy.

Photometric (or radiometric) stereo can also be extended to SAR imagery
and applied simultaneously with traditional geometric stereo. The difficulty in
applying radiometric stereo to SAR imagery is that it requires a precise reg-
istration between two or more images made with different illumination angles.
When the illumination geometry affects the image coordinate system, as with
SAR imagery, this registration requires knowledge of surface topography, the
unknown that we seek. A similar requirement arises in the intensity prediction
and correction methods for combining stereo and shading information. Perhaps
the local registrations provided by the initial stereo correspondences will be suf-
ficiently accurate to allow radiometric stereo, geometric stereo, and monocular
shading cues to bootstrap each other. New methods for extracting stereo depth-
maps from visual images [8,150], if re-evaluated for SAR imagery, may provide
better methods for utilizing both radiometric and geometric information.

The shape from shading results presented in this thesis covered situations

where stereo matching faces limitations: The image intensity is dominated by the
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shading of relatively smooth topographic features with minimal albedo variation.
The image registration results dealt with the same cases. Matching of boundary
features typically fails in scenes not dominated by discontinuities in surface slope
and albedo so that an intensity prediction approach was used instead. More
general scenes, containing a mixture of smooth and abrupt variations in albedo,
surface slopes, and the reflectance map are often encountered in practice. This
leads to one of the toughest machine vision problems, separation of the albedo
and surface structure components under general conditions.

It has been shown that images from multiple spectral bands [41], from multi-
ple frequency radar imagery [15], and multiple polarization radar imagery [163]
can be helpful in that endeavor. More research is needed in the estimation and
segmentation of albedo and reflectance map variations. Models are needed which
are general enough to account for the effects of surface roughness, the dielectric
properties of the surface, polarization diversity, and frequency diversity yet are
tractable enough to be useful for image analysis. The stochastic approaches
to vision problems considered by Marroquin [111], Geman and Graffigne [55],
Derin and Elliott [37], and Chellappa [29] may help to provide a framework for
algorithm development given a suitable model.

It appears that the full power of numerical methods for solving differential
equations has not been fully utilized in shape from shading and other image anal-
ysis applications. Simchony and Chellappa [146] have recently made progress in
this area that is potentially useful for SAR imagery. Fourier transform methods
were applied to directly solve linearized versions of the type of differential equa-
tions encountered in shape from shading [146] and to enforce integrability. For
nonlinear reflectance maps a few iterations of the direct algorithm are required.
With the direct approach, it is possible to approximate the surface slopes consis-
tent with a given intensity function, apply smoothness constraints, enforce fairly
general boundary conditions, enforce integrability, and fuse shading information
with stereo information in a unified algorithm. The direct shape from shading
approach should be considered, in the future, for SAR imagery

Estimation theoretic approaches have been successful in other image analysis

applications involving noise, underdetermined parameters, or both [25,29,111,181].
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In the past, shape from shading has not been approached from an estimation
theoretic standpoint. The experiments in Chapter 4 seem to indicate that im-
provements could be obtained by explicitly considering observation noise and
randomly occurring modeling errors.

The stochastic models presented in Chapter 6 are useful for applications
beyond the demonstrated texture synthesis. They are useful in providing para-
metric spectral estimates needed for data compression and speckle reduction
filtering. It has been suggested that significant progress is still possible in SAR
image data compression if speckle noise is considered as an integral part of the
data compression problem [6]. This requires a statistical model for the speckle-
free component of the SAR image.

The transformed-Gaussian Markov random field models help provide a tractable
approach for SAR texture classification and segmentation through extensions of
earlier work [25,29,55]. The detection of objects on a diffuse clutter background
may similarly benefit from the random field models—Previous models consid-
ered for radar clutter have not adequately accounted for spatial correlation.
Transformed-Gaussian models suggest simple extensions of constant false-alarm
rate approaches developed for Gaussian image data [157]. Edge detection in
SAR imagery is difficult due to speckle noise. Improvements over past edge
detectors for SAR imagery may be attainable by re-examining noise tolerant
edge detection approaches [181] in the context of a statistical model for the
speckle-free component of SAR imagery.

In this thesis, general problem formulations and model formulations were
considered and then special cases were examined. A modular approach was
followed where concepts from the literature, previously considered for visual im-
agery were re-examined for SAR imagery using appropriate SAR image models.
The same process should be useful for developing future SAR image analysis
techniques and, perhaps, will be crucial for successful large scale multi-sensor
fusion. Again, similar paradigms may be useful for processing data from many
different sensors but the specific image models are likely to be very different and
the knowledge base required for scene analysis may be very different. A thor-

ough understanding of the similarities as well as the differences between each
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modality is needed for designing an appropriate suite of sensors and for timely

development of effective processing systems.
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Figure 4.8: Three original SAR images and and their intensity predictions given
shape from shading results.
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Figure 2.4: Top: Simulated aerial photograph, Bottom: Simulated SAR image.
The highly directional reflectivity and the foreshortening of mountain upslopes
is apparent in the SAR image.
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Figure 6.2: Purely synthetic textures obeying lognormal MMRF and regenera-
tions using LS parameter estimates.

136



(4) (B)

(©) (D)

Figure 3.2: Shape from shading results using simulated sphere image. (A) Shows
the true surface shape, (B) shows an image simulated from that surface, (C) is
the surface estimated by assuming that all surface slopes around the border of
the image are zero, (D) is the surface estimated with unknown boundary slopes.
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Figure 3.7: Simulated images for various imaging geometries given shape from
shading results. The first row shows the images simulated from the true partial
sphere surface of Figure 3.2. The second row uses the reconstructed surface
given only the image intensity in Figure 3.2, and the third row uses a surface
estimated from the moon image of Figure 3.3.

60



Figure 3.8: Simulated images given true DTM compared with images predicted
by shape from shading results. The first (top) row shows images simulated
from the DTM for various illumination directions. The second row contains
predicted images for those same illumination geometries but using the surface
estimate given the first image from row one. The third, fourth, and fifth rows use
the surfaces estimated given the second, third, and fourth images respectively
from row one.
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4.1: Block diagram of SAR shape from shading approach.

Figure

70



7

= 2

H L,

A K

e

ey
SR

Figure 4.2: (a) Original DTM, (b) simulated SAR image, no noise, (c) simulated
SAR image with speckle and sidelobe noise after 16 look noncoherent averaging,
(d) surface reconstructed from noisy image.

fif



Figure 4.4: Comparison between simulated SAR image, real SAR image, and
an aerial photograph. Top-left: simulated noise-free SAR image given a DTM
(includes additive noise bias term). Top-right: Simulated SAR image including
28-look speckle pattern. Bottom-left: Real SIR-B SAR image. Bottom-right:
Aerial photograph.
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Figure 4.7: SAR image simulated from the same low resolution DTM used
to aid surface reconstruction. This illustrates how little low frequency surface
information is available in image intensity.
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Figure 4.8: Three original SAR images and and their intensity predictions given
shape from shading results.
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Original Regenerated

Figure 6.2: Purely synthetic textures obeying lognormal MMRF and regenera-
tions using LS parameter estimates.
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SAR Image MMRF MAR

Figure 6.3: Radar images and lognormal synthetic textures. Images are 64x 64
pixels.
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