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ABSTRACT

The solution of many estimation problems can be greatly enhanced by the
incorporation of inexact knowledge or vague human reasoning. For such estimation
problems, two distinct forms of problem knowledge can be identified: statistical
(objective) knowledge and heuristic (subjective) knowledge. This chapter discusses
a systematic way of expressing and integrating these two forms of knowledge into
the estimation process. This work can be interpreted as a fuzzification of standard
constrained optimization. Fuzzy set theory is used to form a fuzzy constraint which
represents the domain-specific knowledge of human experts. This work may also
be interpreted as a systematization of the use of subjective priors by Bayesians.
Although our work is of general applicability, we demonstrate the use of heuristically
constrained estimation to the particular problem of seismic deconvolution. These
results show that the incorporation of heuristic knowledge (albeit vague) yields

better results than if such knowledge is ignored.

INTRODUCTION

Several authors have noted or predicted that advances in seismic signal pro-
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cessessing will focus on the blurring of the distinction between seismic processing
and seismic interpretation [15][16]. They note that methodologies must be de-
vised to allow the seismic interpreter to play a more direct role in the processing
routines. Such applications demand novel approaches that provide for the system-
atic integration of inexact knowledge or vague human reasoning into the processing
algorithms. The development of estimation techniques for such problems is the
focus of our work.

We demonstrate an approach for the integration of human reasoning directly
into the seismic deconvolution process. Seismic deconvolution is performed to esti-
mate the earth’s layer structure by processing echoes from an energy source at the
earth’s surface. This problem can be viewed as one of detecting overlapping
wavelets in noise. The standard maximum likelihood procedure for this difficult
problem [7] leads to an objective function that can rank drastically different earth
layer structures as being equally likely. Most of these structures, however, do not
represent any heuristically feasible true earth structure; that 1s, a human data inter-
preter would easily reject most of these solutions as impossible. One might attempt
to use standard search space constraints to eliminate these heuristically infeasible
structures; however, human criteria for such judgements involve vague concepts
which cannot be coerced into crisply defined constraints.

Our approach shows how human heuristic rules of thumb, expressed with vague
linguistic concepts, can be systematically used to heuristically constrain the search.

This procedure selects the likely solutions which are more consistent with the in-
terpreter’s common sense.

Our methodology, which can be employed in a wide class of signal processing
applications, is developed by drawing upon the basic ideas of fuzzy optimization
from decision theory, fuzzy logic from fuzzy set theory, and the basic concepts of

rule based systems from Al

Techniques That Are Of Age

The work of many individuals in the diverse fields of mathematics, signal processing,
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systems engineering, and computer science have set the stage for the advent of “In-
telligent” or “Expert Signal Processing”. That the time is ripe for such beginnings
is evidenced by notable trends in current research.

During the past decade, a good deal of attention in mathematical research
has been focused on studying fuzzy set theory as a mathematically sound formula-
tion for human knowledge representation [1][2][3]. This work provides a systematic
methodology for the expression of vague human concepts. Another trend, spawned
by the introduction of fuzzy set theory, is a general tendency of researchers to
fuzzify previously developed crisp methods [8][9]. In particular, the fuzzification
of the notion of constrained optimization in decision theory has received at least
limited attention [9][10]. During this same period, computer science research has
established structures and algorithms for machine intelligence (e.g., [4]). We shall
demonstrate how theoretical results from these fields combine to define heuristically
constrained estimation (H.C.E.), a technique for intelligent signal processing.

Recent literature cites novel signal processing techniques which have begun
to tie the available theoretical foundations to today’s dem~nding signal processing
applications [5][6][10]. Although not all these authors emphasize the artificially
intelligent nature of their novel approaches, the existence of such seedlings is unde-

niable.

Our Approach

Our approach is to organize the heuristic knowledge of the data interpreter in a
simple “If-Then” rule base (as might be done for an expert system). Conceptual
meanings of the linguistic elements of these rules are encoded by fuzzy set mem-
bership functions. We then employ an inexact reasoning scheme based on fuzzy
set theory. This reasoning scheme operates on the rule base to arrive at a fuzzy
constraint set. This fuzzy set is then used to heuristically constrain the search
space.

Our work is closest technically to the somewhat limited [10] work done in fuzzy

optimization. Although there are some differences in formulation between our work
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and that done in fuzzy optimization (a discussion of the similarities and differences
follows later), the major differences are more a matter of the spirit of application.
Even though estimation theory can formally be thought of as a branch of decision
theory, the emphasis in fuzzy optimization has had a decidedly operations research
flavor. Applying the general notion of a fuzzy constraint to estimation applications
provides interesting interpretations of classical constrained estimation techniques

and of the use of subjective priors by Bayesians.

Expert Signal Processing: An AI Interpretation

We wish to stress the Al nature of heuristically constrained estimation. We now set
out to describe what we mean by intelligent signal processing and how the concept
is achieved by H.C.E..

To help establish a definition of intelligent signal processing , we quickly review
the definitions of general Artificial Intelligence. Elaine Rich in her book entitled
Artificial Intelligence [4] offers an appropriate definition:

Artificial Intelligence is the study of how to make computers do things

at which, at the moment, people are better.

Equally appropriate is Patrick Winston’s definition in his book, also entitled Art:-
fictal Intelligence [12]:

Artificial Intelligence is the study of ideas which enable computers to
do the things that make people seem intelligent.

In keeping with such definitions, we define intelligent signal processing as the study
of techniques which eztend conventional signal processing toward applications which
are normally thought to require some human intervention. More specifically, intelli-
gent signal processing is the study of ways to merge conventional signal processing
goals and techniques with incomplete human a prior: knowledge and vague human
reasoning.

Conventional estimation theory is the study of methods which employ statisti-

cal knowledge of a problem to the development of estimators. Our work investigates
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how this same objective statistical knowledge can be coordinated with the use of
domain-specific subjective knowledge to achieve estimators capable of results that

normally require human intervention.

Human reasoning is incorporated by virtue of the fuzzy constraints. This
amounts to the codification of part of the design process of the estimator. By
providing a means with which to codify the reasoning behind the selection of op-
timization constraints, such constraints may be expressed in the form of a rule
base. This brings the heurisitic part of the design process to the surface in a form
which is understandable and modifiable by the end user of the estimation algorithm.
The end result is an algorithm with less “hard-wired” behavior; one that is more

adaptable to the user’s subjective viewpoint.

In addition, the use of fuzzy logic to represent conceptual human reasoning
allows heuristic constraints to remain vague in nature. This allows for use of sub-
jective domain-specific knowledge which would otherwise be intractable. Further,
the automation of such reasoning allows the interaction of heuristic human reason-
ing to permeate the optimization procedure in a way not otherwise possible. Partial
solutions may be checked against human criteria as the optimization proceeds. Such

interaction can act to cut down the effort of optimization over large search spaces.

The end result is that H.C.E. is a way of coordinating probabilistic knowledge
with heuristic domajn-speéiﬁc knowledge for solving hard estimation problems. By
developing a methodology for the coordination of these two distinct forms of problem

knowledge, we can address the following problematic issues:
e Some problem knowledge is not easily coerced into a statistical model.

e Some problem knowledge can not be tractably coerced into standard (i.e., cri'sp)

optimization constraints.

e Some problem knowledge is too variable to be of general use for all data sets,

thus leading to the tendency to off-handedly reject such special purpose infor-

mation.
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The rest of this chapter is organized as follows. First, we outline the nature of
the seismic estimation problem. This will provide a frame of reference for the rest
of the document. In doing so, we will examine the available problem knowledge.
Next, we show how this knowledge can be mathematically encoded into an ob jective
function and fuzzy constraints. We then demonstrate comparative results using and
excluding the heuristic knowledge. Finally, we return to our rule set to show how
it can be expanded to begin to include some of the practical considerations with

which interpreters deal.

A PARTICULAR APPLICATION

Although H.C.E. is generally applicable to a wide range of estimation problems
with ill defined search space constraints, we are particularly interested here with its
application to seismic deconvolution. The central theme of H.C.E. is the coordina-
tion of objective and subjective problem knowledge. Although it is common practice
to include a full discussion of the statistical (objective) modeling assumptions, it is
rare to include or attach any significance to heuristic (subjective) problem knowl-
edge. This sort of knowledge is usually considered either useless or untractable and
is typically abstracted out of the problem statement. Our application description,
on the other hand, will include a discussion of what is known both statistically and
heuristically.

The purpose of seismic signal processing is to map out the gross layer structure
of the earth in order to detect geological structures which could serve as traps for
oil reserves. To accomplish this goal, a seismic experiment along the lines of that
shown in Figure 1 is performed.

An explosion serves as a source of acoustic energy which propagates downward
into the earth. Images of the acoustic source wavelet h(k) are reflected upward by
the interfaces of layers of different acoustic impedances. The reflected images are
recorded, in the presence of measurement noise, by a sensor placed at the surface.
The measurements are modeled by the convolution of the wavelet h(k) with a spike

train u(k), where the time between spikes is related to the distance between layers,
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Figure 1: The Essence Of The Seismic Ezperiment
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Figure 2: The Deconvolution Problem

and the magnitude of each spike is related to changes in acoustic impedance between
adjacent layers. Since convolution is commutative, the noise-free measurements
y(k) can be viewed as the result of subjecting a linear time-invariant system, whose
impulse response is h(k), to a spike train input u(k), as depicted in Figure 2 [14].
The goal in deconvolution is to process the noise corrupted measurements z(k)
so as to determine a u(k) which best explains the observed data; i.e., the u(k) which

is most consistent with the observed data and the a prior: knowledge we have about

the problem.



Objective Or Statistical Knowledge

The manner in which one expresses statistical knowledge is, of course, well es-
tablished. The @ priori statistical knowledge that we have for the seismic prob-
lem is summed up in the transitional density p(z|u), where z represents the se-
quence or vector of available measurements {z(1),2(2),...,2(N)}, and u ranges
over the elements of the search space S of all conceivable spike train sequences
{u(1),u(2),...,u(N)}. This transitional density encompasses all the statistically
relevant features of the system modeling, and the probabilistic nature of the mea-
surement noise sequence v(k). Notice that for a more general problem, an a priors
density function p(u) may be available. In our particular problem, no such a prior:
statistical information is assumed available or relevant; however, our approach does

not restrict the use of such information. Hence, we do not need to employ the

widely used random reflector model which is controversial from a physical point of

view [14].
Subjective Or Heuristic Knowledge

We will discuss the exact manner in which one expresses heuristic knowledge in
the next section. For now, we simply state what is subjectively known about the
seismic deconvolution problem. It is perhaps easiest to state the known heuristic

information in the form of rules of thumb. Consider the following:

1) It is best to explain the received measurements by a u(k) which consists of a
relatively small number of significant events.

2) In any subsequence of length L, there should not be too many events.

3) In any subsequence of length L, there should not be significant events close

together.

The heuristic rationale for these rules is as follows. If our layered model of the earth
is correct, rule 1 simply says that we are interested in explaining our measured data
by an earth with a small number of distinct layers. Rules 2 and 3 deal with the local

nature of the layering. Rule 2 simply says that many layers should not be packed
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in any small depth region L. Finally, rule 3 says that layers of greatly different
impedances should not be very thin.

We will show how the above heuristic rules of thumb can be expressed in a
simple mathematical form which is interpreted as a fuzzy subset of the search space
S. The general idea is to use these rules of thumb to form a fuzzy constraint set.
In some sense, this heuristic knowledge is not as tidy as the statistical information.
There may always be more rules to consider, some of which may be conditional
on other heuristic inferences made by either the user of the estimator or by other
rule based systems. For example, the seismologist may expect a “bright spot” at
some approximate depth. The interpreter could easily add a rule which codified
this expectation. We will return to the issue of expanding the rule base later in
this chapter. Ultimately, an expert system of the form suggested in [2],(3] or [13]
could be used to generate the fuzzy constraint set. Such a system could be set up
to interface with the seismic interpreter directly, allowing for on-line tailoring of the

constraint set.

KNOWLEDGE REPRESENTATION

We have identified two forms of knowledge (objective and subjective) that can
be applied to the seismic deconvolution problem. We now turn to the problem of
codifying this knowledge. We are primarily interested in examining a methodol-
ogy for the representation of the subjective problem knowledge; since, probabilistic
representations for objective knowledge are so standard.

Before demonstrating how the heuristic rules of thumb listed earlier can be
expressed by fuzzy set notions, we first briefly summarize the elements of fuzzy set

theory which are important to us.

Fuzzy Set Primer

Consider a normal “crisp” subset A of the universe of discourse X. Denote by z
an element of X. Then, the set A C X may be defined by identifying the elements
z € A. One way to do this is to specify a condition by which z € A. Thus, A can



be defined as

A = {z| z meets some condition} (1)

For example, let X be the universe of discourse composed of all people. Let the set

A, for example, be the set of all females. Thus,
A = {z| z is a female}. (2)
An equivalent way of specifying A is through its membership function.

i 1 ifzed
AT uA(x)={0 §fi§A (3)

We say that A is mathematically equivalent to its membership function p4(z) in
the sense that knowing p4(z) is the same as knowing A itself. One should also
realize that knowing the set A is mathematically equivalent to knowing £he concept
of female (at least in the sense of who is and who is not female).

Next, consider the “fuzzy” set B C X. Again, B can be defined by a condition

any z must meet in order to be in B; except, now the condition can be vague.
B = {z| = meets some vague condition} (4)

For example, let B be the set of all tall people. The problem is that tall is not a
crisp notion. Certainly, if person z has height 5’-0”, he is not tall; whereas, if person.
z has height 6’-5”, he is a member of the set B. On the other hand, what if he has
height 5’-7°? The idea behind a fuzzy set is to assign to each z € X a number in the
range [0,1] which represents the degree of agreement between the nature of z and
the defining concept of the set. Thus we say that B is mathematically equivalent

to its membership function
B = ug:X+—|[0,1] (5)

Note that a normal crisp set is indeed a special case of a fuzzy set. The exact defi-

nition of this membership function represents the subjective notion of the concept
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Figure 3: Membership function ezpressing the notion of a tall person

tall. For example, a suitable membership function for the concept of tall people
represented by the set B may be defined in terms of person z’s height as shown in
Figure 3.

An important observation is that the notion of tall has been encoded by the
subset B. Thus, we can think of the subset B as being the subjective concept tall.

Finally, we can define fuzzy set logical connectives, and, or, and not as

[

N: ANB = panp(z)=min(pa(z),p8(z)]
U: AUB = paup(z) =mazlpa(z) pnp(z)] (6)
B = pp(z)=1-ps(z)

Note that these definitions correspond to the normal notions of intersection,
union and complement when applied to crisp sets (i.e., sets with membership func-
tions that take on only values of 1 and 0). Note, also, that the following properties
usually associated with binary logic hold: commutativity, associativity, idempo-
tence, distributivity, De Morgan’s law, and absorption. Note, however, that the

normal notion of excluded middle does not hold, in that
BUB#X and BNB#0 (7)

These logical connectives can be used to define concepts which are composites

of already defined concepts. For example, the concept of a tall female can be
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defined by AN B. The fact that most of the normal structure of binary logic still
holds provides a large amount of structure for the development of such composite

concepts.

Example Representations

In this sub-section, we give concrete examples of the representation of the subjective
information for the seismic problem.

The first rule dealing with the total number of events is implemented as a
normal crisp constraint. That is, the optimization procedure is designed not to
consider any elements from the search space that have more than a pre-specified
number of spikes. For the simulation results presented later this number was set
equal to 20. Note however, that in principle, there is no reason why such a constraint
could not also be made fuzzy.

The other two rules of thumb can be expressed by the following simple “IF-
THEN” rule base, which can be used to infer the subjective acceptability of a
member z of the search space S based on examining all subsequences s of length L,

where L was subjectively set equal to 30.

rl: IF: z has any subsequence s (i.e., “or” over all subsequences) with too-many

events; THEN: z is a bad sequence under rl.

r2: IF: event i is a significant-event “and” event j is a significant-event; THEN:
the pair ¢, j is a significant-pair.

r3: IF: events ¢ and j are close; THEN: the pair 7, is a close-pair.

r4: IF: subsequence s has any pair of events i,j (i.e., “or” over all pairs)

that is a significant-pair “and” is a close-pair; THEN: subsequence s has
close-significant-events.

r5: IF: z has any subsequence s (i.e., “or” over all subsequences) with
close-significant-events THEN: z is a bad sequence under r5.

r6: IF: z is a bad sequence under rule rl “or” r3; THEN: z is a bad sequence.

r7: IF: z is not a bad sequence; THEN: x is a good sequence.
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This rule base starts with the concepts close, significant-event, and too-many
and through the use of the logical connectives generates the concept of the good
members of the search space S. Thus this rule base can be used to delineate a
fuzzy subset of the search space (in a way, a fuzzy answer) which can serve as the
optimization constraint space.

What has been left out of the above discussion is the subjective definitions
used to define the root concepts of close, significant-event, and too-many. These
concepts are defined in terms of fuzzy subsets of the following domains of discourse:
S, the search space consisting of all conceivable spike trains z; B, the space of all
subsequences s of any particular sequence z; E, the space of all events within a
subsequence s where an event is simply the amplitude and location of a sample
point of z; and, D, the space of all interspike distances |t — j| where ¢{ and j are
event indices in a sequence z.

For our subjective membership functions, we have chosen:

L 15—1|t—7
Heloselt —J) = maz [__%_ﬂ’o] ) (8)

a subset of D which codifies the concept of all inter-spike distances considered to

be close:

“signiﬁcantoevcnt(event € s)

lamplitude of event € s| > (9)

= |amplitude of max event € s|
a subset of E which codifies the concept of all significant events within the subse-

quence s of length L of sequence z; and,

L
1 ;
Htoo-many(s) = A § :F‘s:’gniﬁcant-event(event ), (10)

i=1
a subset of B which codifies the concept of all subsequences s which have too-many

events.

By using the logical connectives and their properties, the rules which define

the composite concepts close-pair, significant-pair, and close-significant-events can
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be translated as follows:

Pcla.se-pair(i’j) = Helose(t —J) Vi, j € E; (11)

”signiﬁcant-pair(i! 7)

= min[ﬁ‘aigniﬁcant-evcnt(i)’ “signiﬁcant-event(j)] Vi,jeE; (12)

and,

Pclose-aigniﬁcant-events(s)
e - e
= event pairs1 JE § [mm(”signiﬁcant-pair(%.7)1

“close-pair(iaj)] Vs € B (13)

Finally, the constraint space is defined, using De Morgan’s Law, by the fuzzy subset
C = pc(z)as

min
pe(z) = se B[1— maI[#too—man'g(S)s

f‘cio.se-signiﬁcant-events(s)]] VzeS (14)

Thus the approach to subjective knowledge representation is to establish the
fuzzy sets described by the root functions and then to construct higher order sets
from these using fuzzy intersection, union and not. The process chains until finally
the constraint set can be established. This process can be diagramatically repre-
sented by a tree of fuzzy sets shown in Figure 4. Each rectangle in the tree represents
a fuzzy set (note that not all sets need be explicitly named). At the bottom of the
tree are the fuzzy sets defined by the root membership functions. Fuzzy sets which
are constructed from these lower sets are connected by lines. Lines without an arc
represent the “or” operation while those with the arc represent the “and” opera-
tion. The “not” operation is represented by a tilde. The tree shows exactly how

the constraint set is ultimately constructed from the root functions.
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USING THE CONSTRAINT

All that remains to completely define what is meant by H.C.E., is the manner
in which the constraint is to be used. A method was chosen which met the following

goals:

G1) exact correspondence to normal constrained optimization in the case that the
constraint set C is crisp

G2) correspondence to the notion of a subjective prior in the case of maximum

likelihood estimation.

Consistent with these goals, we chose to maximize the objective function J(z)

given by
J(z) = j(z)uc(z) (15)

where
p(z|z) for MAP estimation

j(z) = { p(z|z) for ML estimation (16)
j(z)  for arbitrary cost function

In the case of a normal crisp constraint set, p.(z) is either 1 over possible solu-
tions (thus having no effect on J(z)) or 0 over impossible solutions (thus forbidding
acceptance of any such = regardless of the value of j(z)). Thus we have, in princi-
ple, a direct correspondence between H.C.E. and constrained optimization for crisp
constraints.

In the case of ML estimation, the form of J(z) looks exactly like that of MAP
estimation with p.(z) playing the role of a purely subjective prior. The fact that the
area under p.(z) has not been constrained to 1 leads only to an immaterial scale
constant. This interpretation can be viewed as an explanation for the successful
(albeit, debatable) use of subjective priors by Bayesians. Thus in some sense H.C.E.
pokes at the long standing Bayesian-Nonbayesian debate. It is a rationale for not
throwing away subjective information simply because it cannot be justified as an
objective probability density. Our work goes further than this though. in that it

provides a methodology for integrating information that even a subjectivist would
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not attempt to coerce into a prior density function. Fuzzy logic is in effect a way of
systematizing the use, construction, and justification of such subjective densities.
The form of Eq. (15) suggests that one should form a new objective function
J(z) from the old one, j(z), and then maximize this new objective function through
some gradient search scheme. Although this can certainly be done, there are prac-
tical advantages to casting the optimization problem as an equivalent tree search
and using the p.(z) to guide the search, which is, in fact, how the simulation results
described below were obtained. This approach also motivated writing the rule base
to examine subsequences of a potential z. By monitoring subsequences of the so-
lution as the search proceeds, bad branches of the tree are detected and the search
proceeds down more profitable branches. The details of the tree search formula-
tion are too involved to be included here, but will be described in a forthcoming

publication.

Relation To Fuzzy Optimization
This subsection discusses the similarities and differences between our work and that
done in the field of fuzzy optimization as described by Negoita [10]. As defined by
Negoita
An optimization problem in a fuzzy environment 18 a system of fuzzy

constraints f; together with an objective function P: X — R (where R 13

the real line).
Under this definition, the solution to the fuzzy optimization problem with m fuzzy

constraints corresponds to the points that maximize

D(z) = min(P(z), fi(z), fa(2),- -, fm(2)) (17)
In light of our previous discussion, this may be thought of as

D(z) = min(P(z), [fiNfN,...,Nfm](2)) (18)

Thus H.C.E. apparently differs from fuzzy optimization in two ways. First, we allow

more complicated forms of connectives in the generation of the overall constraint.
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This is actually an insignificant difference in that no restriction was ever placed
on the individual constructions of the f;; thus, they themselves would allow for
arbitrary complexity. The second difference is a little more significant. We suggest
the product of P(z) and p.(z) rather than the min. We do this so as to achieve
the goals G1 and G2 set out earlier. Although the min operator could achieve goal
1 with proper normalization of J(z), such a normalization is not always possible,
since the range of J(z) is not usually pre-determinable. Furthermore, min will not
achieve goal 2.

This difference can be reconciled, though, by first interpreting P(z) it-
self as some sort of membership function for the set of probable z and then
min[P(z), pc(z)] may be interpreted as an intersection. If this is what is intended,
then there are other fuzzy set operations [9] (the so called stochastic operators)
which allow the interpretation of intersection as membership product. The con-
tortions of the above argument are not as farfetched as one might initially think;
since, both probability measures and possibility measures are fuzzy measures [8].
Thus, we see that H.C.E., although different in implementation, shares some of the

motivational intent of fuzzy optimization.

RESULTS

This section presents results of applying H.C.E. to a maximum likelihood esti-
mator for the seismic probiem. Figure 5 shows the overall measurement modelling.
The figure shows: an input spike train u(k) which models the layered structure
of the earth; the impulse response h(k) of the linear time invariant system which
represents the source wavelet; the noise-free convolution y(k) of the spike train and
the system’s impulse response (note the severe overlapping nature of the wavelet
copies); and the available noise corrupted measurements z(k).

Presented in Figures 6 and 7 are simulation results showing the benefit of the
integration of heuristic information into the seismic problem solution. The spikes
shown were estimated; while, the circles mark the true locations and amplitudes

of the actual spikes. Both represent constrained ML estimation of the spike train.
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The “no heuristic” case was constrained only by the crisp constraint of “no more
that 20 spikes.” The “using heuristics” case in addition used the rule base described
earlier. The influence of the heuristic is obvious. It is clear that the beginning of the
“no heuristic” case is a subjectively unlikely earth layer formation. There are many
significant spikes within the early subsequences. The large overlapping wavelets are
the cause for the non-heuristically constrained ML estimator’s poor performance.

The heuristic also managed to note the low possibility of the doublet near time 240.

EXPANDING THE RULE SET

The primary goal of this chapter has been to present a novel approach to signal
processing which directly incorporates geophysical reasoning into the estimation
process. Our goal was not to demonstrate this geophysical reasoning per se. To
this end we had set up only a bare minimum of rules.

Collecting the appropriate geophysical knowledge for the specification of a com-
plete knowledge base is not a simple matter. How does one recognize pertinent
subjective knowledge and collect it for codification and ultimate use? This problem
has its parallel in the development of expert systems. The problematic issue of
how one decides what subjective knowledge is useful and how to extract it from the
experts of the particular domain of application has been well recognized by the AI
community. This general topic (called knowledge engineering) has plagued expert
system development [18]. Tt is well recognized by the AT community that much of
an expert’s knowledge has subconscious elements to it. The intricacies in which
data is interpreted are not always immediately expressible in words.

The geophysical signal processing engineer must take a far greater responsibil-
ity to understand the intricacies of the specific estimation problem at hand. Simple
abstracted models are no longer sufficient. Expert sources for this interpretive geo-
physical knowledge must be sought out and interviewed in an attempt to codify
their knowledge.

The goal of this section is to demonstrate the process of knowledge extraction

by way of an example. Several good texts have been published which may serve as
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sources of expert geophysical interpretation knowledge. Anstey [17] s a particularly
good source and Denham [15] points out several others, as well as providing a general
overview of seismic interpretation himself. We will refer to Anstey [17] and Lindseth
[16] to show how knowledge about “bright-spots” can be integrated into the small
rule base which we have already presented.

Accounting For Bright Spots

Trends in modern seismic signal processing include care to recover and avoid dis-
tortion of seismic trace attributes. It has been found that trace attributes such as
amplitude can provide valuable intrepretive information. In particular, so called
direct hydrocarbon detection often relies on sudden contrast changes in trace am-
plitude as an indication of the presence of a hydrocarbon accumulation. It has been
noted that relatively flat regions of large amplitude returns correlate well with the
presence of hydrocarbons, particularly in sandstone source reservoir rock encased

in shale. A graphical representation of this sort of trap is shown in Figure 8.

Figure 8: Physical Model Leading To A Bright Spot

The geophysical reasons for the bright spot in the recorded data are well under-
stood. The velocity through the porous material of the reservoir rock is a weighted

average (weighted by a porosity factor) of the velocity of the dry rock matrix and
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the velocity through the fluid which fills this matrix. Roughly the composite average
velocity V, in a fluid filled matrix is:

g 1-6
%" W

- (19)
where
Va: The average velocity
Vm: Rock matrix velocity
Vi: Fluid velocity
6: Porosity, expressed as a decimal fraction
Given the velocity in shale, dry sand, gas, and water and by using Eq. (19),
the velocities for the various regions shown in Figure 8 will be known, namely:
Vshate; Vgas/sands 30d Viyater/sand- The amplitudes recorded on the seismic trace
correspond to the reflection coefficient R, at each of the interfaces. Given that R,
at the interface of any regions 1 and 2 is roughly given by

Vel
W+

(20)

it is clear that the gas/sand - water/sand interface has a significantly larger reflec-
tion coefficient than either the shale - water/sand or the shale - gas/sand interfaces.
Thus, we would expect a relatively flat bright spot across the seismic traces corre-
sponding to the gas/sand - water/sand interface.

At this point, the reader may be wondering why we are concerned with the
bright spot phenomenon with respect to our simple rule base since no solutions
were constrained solely on the bases of the absolute amplitude of any single event.
Notice however that such sand reservoirs are usually fairly thin. This would imply
that in case of the geological structure of Figure 8, it is reasonable to have three
reflectors relatively close together. Such a solution would indeed be partially con-
strained by the heuristic data base as presented. The question arises as to how one
might maintain the good effects of our closeness constraint while not de-emphasizing

legitimate solutions asdepicted in Figure 8.
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Consider the following additional pieces of expert geophysical knowledge (direct
quotes from expert source [17]):

1) The clearest bright spots exist at times less than about 1.75
- 2 seconds.

2) Fluid contacts are observed, though only when the pay zone
is thick.

3) In the identification of fluid contacts (and reservoir bound-
aries in general), we are often concerned with fairly subtle
indicators of interference.

4) The gas-liquid contact must necessarily be a positive reflec-
tor.

5) Polarity inversions are observed occasionally. If (and only
if) the reservoir material in its water-saturated state has an
acoustic impedance greater than that of the overlying mate-
rial, and if (and only if) the local replacement of water by
gas depresses the acoustic impedance of the gas-saturated
zone to be less than that of the over lying material, then
(and only then) the reflection from the top of the reservoir

shows a polarity inversion over the gas.

Fact 1 indicates that our previous rules need only be modified for times less than
approximately 2 seconds. Fact 2 affirms our initial worry about the need to note
closely spaced events when the reservoir rock is thick relative to the sampling res-
olution of the trace (but still thin with respect to our close spike concept). Fact 3
says that no special inference can be made with respect to the polarity or large size
of any but the gas - water contact. Fact 4 clearly indicates that a bright spot has
known polarity.
A suitable extension to our small rule set would be:
r5: IF: z has any subsequence s (i.e., ‘“or” over all subse-

quences) with close-significant-events which do not consti-
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tute a brightspot THEN: z is a bad sequence under r5,

r8: IF': subsequence s is in the typical-bright-region and is bright
THEN: subsequence s constitutes a brightspot.

r9: IF': subsequence s has a double bright spot “or” triple bright
spot THEN: subsequence is bright.
rl10: IF: subsequence has two significant events *“and” one is
locally-significant “and” positive THEN: subsequence has
a double bright spot.
r1l: IF: subsequence has three significant events “and” only the

center event is locally-significant “and” positive THEN: the
subsequence has a triple bright spot.

The goal of these rules is to assure that the geophysically reasonable closely spaced
spikes which can occur at a bright spot will not be incorrectly heuristically con-
strained. Bright spots which do not contain closely spaced spikes require no special
attention since they were not heuristically constrained by the original rule set.
The required root membership functions necessary to implement these rules (i.e.,
those for the concepts typical-bright-region, locally-significant, and positive) pose no
special problems and can be constructed as we had done with our previous root
membership functions. Figure 9 shows the appropriate modifications to the rule

tree required by the bright-spot reasoning.

Going Even Further

Notice that all the rules given so far dealt with the codification of inferences made
along a single trace. To be sure, many more such inferences could be sought out and
codified. However, the scope of our inference structure would be greatly increased
by additionally codifying inferences across seismic traces. For example in the case of
bright spots: bright spots due to a gas - water contact are expected to be horizontally
flat across traces. Another example for an across trace inference is the codification

of Fact 5 given above which requires the deduction of a gas - water interface based
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on a polarity reversal for traces which intersect this interface.

We wish to stress that our work is not important because of the (admittedly
sparse) rule set which we have presented; rather, our work is important because we
have offered a general methodology for the incorporation of expert knowledge and

have demonstrated the ease and effectiveness of doing so.

CONCLUSIONS

Our work focuses on the substantiation of three primary ideas:

‘o For estimation, there are two distinct forms of problem knowledge: objective

or statistical, and subjective or heuristic.

e Subjective knowledge can be mathematically codified in a simple tractable rule

base form.

¢ Subjective information can be coordinated with objective information in a man-
ner which is an extension of classical constrained estimation.

We have shown that for the seismic deconvolution problem there exists sub-
jective information which can lead to an enhanced estimator. This information is
usually abstracted out of the problem description because it is normally thought to
be intractable. We have shown that this subjective knowledge is, in fact, readily
codifiable using ideas from fuzzy set theory. Once codified, this heuristic knowledge
can be incorporated as a fuzzy constraint on the search space. The overall method-
ology of H.C.E. can be viewed as a fuzzification of classical constrained estimation.

The presented codification of heuristics readily lends itself to a rule base im-
plementation. Thus, there is a natural connection between rule based or expert
systems and the H.C.E. procedure. Heuristically constrained estimation can be
viewed as a methodology to perform intelligent or ezpert signal processing.

We have presented simulation results which demonstrate the advantages of
incorporating both objective and subjective knowledge. In short, we have shown
that mathematical techniques are now available to systematically include a type of

knowledge which is essentially ignored by classical approaches. Taking advantage
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of this additional heuristic knowledge leads to estimators which are more versa-
tile, achieve subjectively better performance, and can automate some human data

interpretation functions.
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