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Abstract

A method for matching stereo images using a neural network is pt&seﬁted. Usually, the
measurement primitives used for stereo matching are the intensity values, edges and linear
features. Conventional methods based on such primitives suffer from amplitude bias, edge
sparsity and noise distortion. We first fit a polynomial to find a smooth continuous inten-
sity function in a window and estimate the first order intensity derivatives. Combination
of smoothing and differentiation results in a window operator which functions very similar
to the human eye in detecting the intensity changes. To give some insights into the result-
ing window operator, a theoretical analysis of the variances of the estimated derivatives
is given. Since natural stereo images are usually digitized for the implementation on a
digital computer, we consider the effect of spatial quantization on the estimation of the

derivatives from natural images. A neural network is then employed to implement the
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matching procedure under the ep.ipolaf; photometric and smoothness constraints bas;ed
on the estimated first order derivatives. Owing to the dense intensity derivatives a dense
array of disparities is generated with only a few iterations. This method does not require
surface interpolation. Experimental results using random dot stereograms and natural

images pairs are presented to demonstrate the efficacy of our method.

1 Introduction

Stereo matching is a primary means for recovering 3-D depth from two images taken
from different viewpoints. The two central problems in stereo matching are to match the
corresponding points and to obtain a depth map or disparity values between these points.
In this paper we present a method for computing the disparities between the corresponding
points in the two images recorded simultaneously from a pair of laterally displaced cameras
based on the first order intensity derivatives. An implementation using a neural network
is also given.

Basically, there exist two types of stereo matching methods: region based and feature
based methods according to the nature of the measured primitives. The region based
methods use thg intensity values as the measurement primitives. A correlation technique
or some simple modification is applied to certain local region around the pixel to evaluate
the qua:lity of matching. The region based methods usually suffer from the problems due

to lack of local structures in homogeneous regions, amplitude bias between the images and



noise distortion. Recently, Barnard (1] applied a stochastic optimization approach for the
stereo matching problem to overcome the difficulties due to homogeneous regions and noise
distortion. Although this approach is different from the conventional region based methods,
it still uses intensity values as the primitives with the aid of a smoothness constraint.
Barnard’s approach has several advantages: simple, suitable for paralle]l processing and a
dense disparity map output. However, too many iterations, a common problem with the
simulated annealing algorithm, makes it unattractive. It also suffers from the problem of
amplitude bias between the two images.

The feature based methods use intensity edges or linear features (for example, see
Grimson [2] and Medioni [3]) or intensity peaks which correspond to discontinuities in
the first order derivatives of intensity [4]. The intensity edges are obtained using edge
detectors such as the Marr-Hildreth edge detector [5] or the Nevatia-Babu line finder
[6]). Since amplitude bias and small amount noise do not affect edge detection, feature
based methods can handle natural images more efficiently. Owing to fewer measurement
primitives to deal with, usually feature based methods are faster than the region based
methods. However, a surface interpolation step has to be included. In order to obtain a
smooth surface, several types of smoothing constraint techniques have been introduced [2).
The common problem in feature based methods is that if features are sparse, then surface
interpolation step is difficult. Among the feature based methods, the Marr-Poggio-Grimson

algorithm gives impressive results. But it is difficult to ensure continuity of disparity over



an area of the image. To overcome this problem, Grimson proposed a new version of
their algorithm [7] including the figural continuity constraint [4] and other modifications.
The figural continuity constraint is superior to the region continuity constraint. However, a
occluding boundary or a sloping surface may cause problems. Another interesting approach
is the integrated approach which consists of integrating matching, contour detection and
surface interpolation steps [8). The integrated approach uses no constraint other than the
assumption of piecewise smoothness. A variety of stereo images were given in [8] to show
the performance of this approach. Some problems of this approach reported by the authors
are misplacement and missing of contours, and disparity errors due to inaccuracies of edge
detection.

Julesz’s example of random dot stereograms shows that stereo matching occurs very
early in the visual process and is relatively independent of other forms of visual process-
ing [9]. Early stereo process means that much more measurement primitives are used in
matching. It seems that the ;egion based methods are closer to the human stereo pro-
cess than the edge based methods, because the intensity values are dense measurement
primitives. However, region based methods suffer from the problems of amplitude bias
and noise distortion, whereas human stereo process does not. The question then is what
kind of measurement primitives human stereo process does use. Arguing that the ampli-
tude bias can be eliminated by differential operation, the intensity derivatives are dense,

and human visual system is sensitive to the intensity changes, the first order intensity



derivatives (simplest derivativés) may be considered as appropriate measurement primi-
tives for the stereo matching problem. Noise distortion, which i:he first order derivatives
are very sensiti.ve to, can be reduced by some smoothing techniques such as a polynomial
fitting technique. The first order intensity derivatives can be obtained by directly taking
the derivative about the resulting continuous intensity function. Actually, the choice of
window size is closely related to the theory of human visual system. There exits at least
four independent channels containing different sized spatial filters in the early visual sys-
tem {10, 11). Combination of smoothing and differentiation results in a window operator
which functions very similar to the human eye in detecting intensity changes. To give some
insights into the resulting window operator, a theoretical analysis of the variances of the
estimated derivatives is given. Since the natural stereo images are usually digitized for the
implementation on a digital computer, we consider the effect of the spatial quantization
on the estimation of the derivatives for the natural images.

Recently, many researchers have been using neural network for stereo matching based
on either intensity values or edges [12, 13, 14, 15]. Early work on extracting the depth
information from the random dot stereogram using neural network may be found in [16].
In this pa.p?r, we use a neural network with maximum evolution function to solve the
stereo matching problem based on the first order intensity derivatives under the epipolar,
photometric and smoothness constraints. We illustrate the usefulness of this approach by

using the random dot stereograms and natural image pairs.



The organization of this paper is as follows: in Section 2, estimation of the first order
intensity derivatives using discrete orthogonal polynomials is discussed, a theoretical anal-
ysis of the variances of the estimated derivatives and computational consideration of the
effect of the spatial quantization error on the estimation of the derivatives from natural
images are given. A neural network for stereo matching and model parameter estimation is
described in Section 3. Computer simulations on the random dot stereograms and natural

image pairs are presented in Section 4.

2 Estimation of the First Order Intensity Deriva-

tives

Natural digital images usually are corrupted by certain amount of noise due to electronic
imaging sensor, film granularity and quantization error. The derivatives obtained using a
difference operator applied to digital images are not reliable. Since digital image comes
about by sampling an analog image on an equally spaced lattice, a proper way to recover
a smooth and continuous image surface is by a polynomial fitting technique. We first
assume that, a point at the right image corresponding to a specified point in the left image
lies somewhere on the corresponding epipolar line which is parallel to the row coordinate,
i.e. in a horizontal direction, and second, in each neighborhood of image the underlying

intensity function can be approximated by a fourth order polynomial. The first assumption



is also known as the epipolar constraint. With the help of this constraint, the first order
intensity derivatives we need for matching are computed only for the horizontal direction.
Under the second assumption, the intensity function in a window, centered at the point

(¢,7), of size 2w + 1 is fitted by a polynomial of the form
9(i,j +v) = a1 + a2y + asy® + aqy® + asy® (1)

where y is lies in the range —w to +w and {a;} are coefficients. If the window size is 3,
then a second order polynomial is sufficient to represent the intensity function. The first
order intensity derivative at point (i,j) can easily be obtained by taking the derivative

about g(Z, + y) with respect to y and then setting y =0

LV .é 89(17.7) — dg(iaj+y)
9= === 4y

ly=0 = a2 (2)
Thus, the estimation of the first order intensity derivatives is equivalent to determination

of a,.

2.1 Fitting Data Using the Chebyshev Polynomials

In order to estimate each coefficient independently, an orthogonal polynomial basis set
is used. Several existing orthogonal polynomial basis sets can be found in [17, 18]. We
use the discrete Chebyshev polynomial basis set, also used by Haralick for edge detection
and topographic classification [19, 20}. The important property of using polynomials is
that lox;v order fits over a large window can reduce the effects of noise and give a smooth

function.



Let a set of discrete Chebyshev polynomials be defined over an index set @ = {—w, —w+

1,..,w—1,w}, i.e. over a window of size 2w + 1, as

Cho(y) = 1
Chi(y) = v
Cha(y) = ¥* — /0 (3)

Cha(y) = ¥*—(294/02)y

Chy(y) = v*+ [(g204 — 9096)/(209s — B)] ¥* + (4296 — 93)/ (9094 — &)

where

n = Z k™.

keq

With the window centered at point (i,7), the intensity function g(i,j + y) for each

y € § can be obtained as
4
§(i,j +y) = 3 dm Chn(y) (4)
m=0
where §(¢, 7 +y) denotes the approximated continuous intensity function. For w =1, only
the first three Chebyshev polyﬁomials are needed. By minimizing the least square error in

estimation and taking advantage of the orthogonality of the polynomial set, the coefficients

{d=} are obtained as

_ Eyeﬂ Chm(y) g(iaj + y)
I = = en ORLW) ?

where {g(i,j +y)} are the observed intensity values.

Expanding (4) and comparing with terms in (1), the first order intensity derivative



coeflicient a,, is given by

a; = dl - -qids

92
= Y M(y) g(i,j +9) (6)
139
where M(y) is determined by
M(y) = Chy(y) _ g4 Cha(y) (7)

" Tuen Chi(v) @ Tuea Chi(v)

For w = 1, the second term in (7) is zero. From (6) one can see that M(y) is a filter for

detecting intensity changes.

2.2 Analysis of Filter M(y)

Basically, the filter M(y) used for detecting intensity changes has to satisfy the following
requirements. First, it should eliminate amplitude bias completely. Second, it should
remove noise very efficiently.

For simplicity of notation, we rewrite (6) as
a; = M(5) *g(3, 7) (8)

where “+” denotes the convolution operator. Suppose that the image is corrupted by
amplitude bias b and additive white noise {n;;} with zero mean and variance o2. The

observed image is

g(lv]) =g(z’])+b+n(27]) (9)



where §(i, ) and g(i, ) are the corrupted and original intensity functions, respectively.

Noting that the filter M(j) is an anti-symmetric function of j, the amplitude bias b is

completely eliminated after convolution operation. Therefore,

M(5) * 3(i,3) = M(3) * (9(3, j) + n(3, 5))-

The expected value of the filter output can be written as

E{M(j) * §(i,5)} = M(j5) * 9(i, 5).

Accordingly, the variance can be expressed as

E{(M(5) * 9(i, 7) - BE{M(j) = 5(,4)})*}

= B{(M(j) *n(i,5))’}

=a® ) M(j)

jen

By using (7), it is straightforward to prove that

. de
M) =
,-ez‘;; () 9692 — 43

where
=) v
yeQ

Hence, the variance of the filter output is

E{(M(j) * 5(i,5) - B{M(j) * §(;,/)})*} = —=—
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For large window size, g¢ > ¢2.The variance can be approximated as

B{(M()+ 365) - B(MG) » 6, )7} = 22 (13)

From (15), one can see that the variance becomes smaller and smaller as the window
size increases. For instance, if the window size is 5, then the variance is 0.90%. If the
window size is 11, then the variance is significantly reduced to 0.009¢%. However, large
window causes some loss of local information due to smoothing which smears or erases
local features. If one desires to retain local features, then a small window may be used,
but more noise remains and the estimated intensity function is rough. - Also in order to
reduce effect of the spatial quantization error for the natural images, a window as small
as size of 3 may be used, as discussed in the next section. The variance of the estimated
derivatives using a 3 x 3 window is the same as that in (15). It appears that the choice of
the window size is closely related to theory of human visual system. It is known [10, 11]
that at least four different size channels exist in 2 human visual system. Marr suggested
[21] that in order to detect intensity changes efficiently, the filter used should be first a
differential operator, taking either a first or second order spatial derivative of the image
and second be capable of being tuned to act at any appropriate scale.

The following examples show that by choosing a proper window size the effects of noise
can be eliminated very efficiently. A 256 x 256 real image is used here.

Ex.ample 1: An amplitude bias of strength 20 and white Gaussian noise (30 dB SNR)
were added to the image. A section of the image is shown in the Figure 1. The dashed and

11



solid lines in Figure 1(a) represent the original and noisy images, respectively. Obvi;)usly,
there is no'way to match these two image based on the noisy biased intensity values only.
Figure 1(b) shows the estimated first order intensity derivatives from these two images

using the polynomial method. The window size is 5, i.e. the index set is {—2,-1,0,1,2}.

Example 2: An amplitude bias of size 20 and white Gaussian noise corresponding
to 20 dB SNR were added to the original image. Figure 2 shoﬁrs a section of the image
taken from the same location as in Example 1. Figure 1(a) gives the original and noisy
biased images. Figure 1(b) shows the estimated first order intensity derivatives of these
two images. Since noise in this case is large, a large window of size 11 was used to reduce

its effect. One can see that the derivatives of two images are matched very well.

2.3 Computational Consideration for Natural Images

For the implementation on a digital computer, the natural stereo images must be digitized
both spatially and in the amplitude. Under the perspective projection, the natural stereo
pair images, that is, the left and right images, can not be matched very well at sample
points because of the spatial quantization error. The spatial quaptiza.tion error affects the
intensity function as well as the derivatives. In this section we consider the effect of spatial
quantization error on the estimation of the intensity derivatives. Similar results also hold

for edge detection. A recent discussion about the problems of the quantization error in

12



stereo matching can be found in [22].

For analysis purposes, a typical camera configuration system similar to that used by
Horn [23] is given in Figure 3. Assume two cameras are rigidly attached to each other
so that their optical axes are parallel and separated by a distance d. The focal length of
the lens is represented by f which takes a negative value in the world coordinate system
OXYZ. The origin of a right handed coordinate system of the world is located midway
between the camera lens centers. The positive Z-axis is directed along the camera optical
axes. The baseline connecting the lens centers is assumed to be perpendicular to the optical
axes and oriented along the Y-axis. Let the coordinate systems of the left and right image
plane be orz1y; and opTRYR, respectively. Then a point in the world, (X, Y, Z), projects

into the left and right image planes at

d
(ern) = (L5, LD (16)
and
’ —d
(@num) = (L5, L2 (17)

respectively. Disparity Dx,y can then be defined as
A 1 '
DxySyr-yr=-fd > (18)

Suppose we sample the left image uniformly at line Xy = Xp = X, a set of equally-spaced

points'{..., L_z, L..1 N Lo, Ll, Lg, ...} are obtained at

{-"s (30: yL—z)) (30’ yr_, )7 (xo, yLo)a (30) yL, )7 (30, yl’a)’ ooy }
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The corresponding object points {..., P_3, P_,, Py, P, P;, ...} are located at
{-") (XO’ Y-Z’ Z—2), (XOa Y-li Z—l)’ (XOa ),01 ZO)’ (X01 Yla Zl)1 (XOa }/21 Z2)7 '"}

on the surface. These object also project into the right image plane at

{"'v (309 yR_:)) (xo, yR-l), (zRo’ yRo)’ (301 an)’ (30! yﬁz)a ooy }

When the object surface is xiot parallel to the image plane, the corresponding points on
the surface are unequally-spaced. Conéequently, the image points in the right image plane
are also unequally-spaced which means that the image points do not match the sample
points everywhere if the right image is uniformly sampled. This phenomenon is shown in
Figure 3.

We assume that in the left image plane, the sample points match the image points
exactly, and in the right image only the image point Ry matches the sample point as

illustrated in Figure 3 and other image points may not match the sample points. Thus

YL, — YL, = YLt — YL

and
YL, — YLo = YR! — YR

where the “s” denotes the sample point. The spatial quantization error i.e. the distance

14



between the sample point and the corresponding image point can be calculated as

(vr —yro) — (ym: — ¥ro) = (YR —¥m) — (¥ —yre) = fd(E-3%) i>0

N =
(YR — YR) — (¥Ro —YRY) = (¥Ro —¥R) — (VLo —yr) = fd(z %) i<0
(19)
Obviously,
7> Nie1, >0,
and

7 < Mi-1, 1 <0.

This shows that the spatial quantization error depends on the coordinate Z, focal length
f and the distance d between the cameras. If the object surface is parallel to the image

plane, then the sample points will match the corresponding image points perfectly because
Zo = Z{, V ‘i.

An interesting aspect of (19) is that by definition of disparity in (18) the spatial quan-
tization error is exactly equal to the difference of the disparities between the points Py
and P;. Therefore, stereo matching algorithms using intensity vz;,lue as the measurement
primitives can not detect such a difference if the sample interval is twice as large as the
spatial quantization error.

We further assume that the incident illumination and absorption characteristics of
the ob:iect surface are roughly constant, and the surface orientation and the distance to

two cameras are almost same. Therefore, the left and right image planes receive the

15



same amounts of light which means the intensity functions of conjugate image points are
almost same. Expahd the intensity function g(zo,yr:) as a Taylor series about the point

(307 yﬂ,‘) = (z01 yR‘)

9(zo,yr = 1) = 9(o,yr:) — M 9 (To,YR)lyg=yn, + O(n?), i>0
9(zo,yre) =

9(z0,yr + 1) = 9(0,yr) + 0 9 (To, ¥R)lya=yn, + O(0F), <0
(20)

where g'(:r:o,yn)lyn:m‘, is the derivative of intensity function at the point (zo,yr;). By
using the sampled intensity function to estimate the first order derivative of the intensity

function g(zo,¥yR,), (6) becomes

g (2o, yRo) = % M(y) g(zo, (¥R, +9)*) (21)

where the “~” denotes the estimate of the intensity derivative using the sampled intensity
functions.

Replacing the sampled intensity functions in (21) by (20), we have

g-‘(zOs yR)lyn=yno = 20 M(i) 9(zro yr) + z‘% u(?) m: M(3) g’(xOv yR)lva=yR.- (22)
i€ i€

where u(?) is a step function

1, 1>0
u() =
-1, :<0.
Clearly, the first term in the right side of (22) is equal to (6) which means it is a correct

estimate, and the second term is an estimation error caused by the spatial quantization

16



error. Since the spatial qua.ntiza.tioﬁ error is proportional to f and d, and is inversely
proportional to Z, the estimation error will be small when the camera is close enough
and/or the object is far enough. When the surface is not parallel to the image planes and
the object is close to the camera, using a large window to estimate the derivatives will give
a large error due to the accumulated quantization error. Hence, a small window is preferred
if the object is close to the camera. As proposed in [24], the smallest channel in the human
visual system contains a filter with a central diameter of 1.5’, roughly corresponding to 4
pixels. Therefore, considering the effects of noise distortion and the spatial quantization
error, a filter m(y) with size of 3 — 7 pixels is the proper one for the natural stereo images.

In fact, (22) can be considered as a general form for both derivative estimation and
edge detection as most of the edge detection algorithms can be considered as a window
operation followed by appropriate thresholding. Owing to the output error of window
operation, the edge detector may miss an edge, give a false edge or shift the edge. In other
words, the edge output also suffers from the spatial quantization error.

Noting that the filter m(y) is anti-symmetric function of y and assuming that the

derivatives at sample points are the same, (22) can be simplified as

W

9 (0, ¥r)yr=yry = 9 (T0r Yr)lyrmye[1 = )_?; m(i) (m + -i)]- (23)

Substituting (19) and then (18), we finally have

w

3(30, yr)lw=yro = g'(:t:o, y")l!lr=l!ro [1- Z m(i) (Di — D-i)] (24)

=

17



The estimate of the derivatives may be either larger or smaller than the true value which

depends on-the orientation of the object surface.

3 A Neural Network for Matching

3.1 A Neural Network

We use a discrete neural network cont@ining binary neurons for representing the disparity
values between the two images. The model consists of N, X N, x D mutually interconnected
neurons, where D is the maximum disparity, N, and N, are the image row and column
sizes, respectively. Let V = {v;x,1 ¢ < N;,1 £ j < N,,0< k< D} be a binary state
set of the neural network with v; ;x (1 for firing and 0 for resting) denoting the state of the
(2, 4, k)th neuron. Especially, when the neuron v;.jk is 1, this means that the disparity value
is k at the point (z, 7). Every point is represented by D + 1 mutually exclusive neurons,
i.e. only one neuron is firing and others are resting, due to the uniqueness constraint
of the matching problem. Let T} ;kimn denote the strength (possibly negative) of the

interconnection between neuron (3, j, k) and neuron (I, m,n). We require symmetry
Ti,j,k;l.m,n = Tt nsijk for 1<4I<N, 1<),m< N, and 0<k,n<D

We also insist that the neurons have self—feedback, i.e. T; ik # 0. In this model, each

neuron (i, j, k) randomly and asynchronously (or synchronously) receives inputs from all

18



neurons and a bias input

Uik = Z z Z Z,J,k dmallmn + Ic gk (25)

=1 m=1 n=0

Each u; ; is fed back to corresponding neurons after maximum evolution

Vijk = 9(tijk) (26)
where g(z; ;) is a nonlinear maximum evolution function whose form is taken as

if zijx =maz(zij;l=0,1,..D).
9(zijk) = (27)
0 otherw:ise.
In the asynchronous updating case, the state of each neuron is updated by using the latest
information about other neurons. While, in the synchronous updating case, the information
received by the neuron at time ¢ is about previous states of other neurons at time ¢ — 1.

The uniqueness of matching problem is ensured by a batch updating scheme-D+1 neurons

{vi,jo,---vij,p} at site (i,7) are updated at each step simultaneously.

3.2 Estimation of Model Parameters

The neural model parameters, the interconnection strengths and the bias inputs, can be
determined in terms of the energy function of the neural network. As defined in [25], the

energy function of the neural network can be written as

1 N, NN N N. D D N N. D
E=-Z Y 3 Tojutmen vigk Vima— 2 2 2 Lijevige  (28)
2 i=1 =1 j=1 m=1 k=0 n=0 =1 j=1 k=0
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In order to use the spontaneous energy;-nlinirniza.tion process of the neural network, we re-
formulate the stereo matching problem under the epipolar assumption as one of minimizing

an error function with constraints defined as

Ny N N N. D
E= Z 2 Z (QL(%J) .‘JR(’ .7391‘7))2 ”t.J.k+ Z Z E Z (vijk ”(:‘.:‘)en.::)z (29)

i=1 j=1 k=0 =1 j=1 k=0 s€S
where {g;(-)} and {gg()} are the first order intensity derivatives of the left and right
images, respectively, S is an index set excluding (0,0) for all neighbors in a I' x T' window

centered at point (7, j), A is a constant and the symbol & denotes that

fa+b lf 0<a+bL N, N,
f a@db =
0 otherwise
The first term called the photometric constraint in (29) is to seek disparity values such
that all regions of two images are matched as close as possible in a least squares sense.
Meanwhile, the second term is the smoothness constraint on the solution. The constant A
determines the relative importance of the two terms to achieve the best results.

By taking I' = 5 and comparing the terms in the expansion of (29) with the corre-

sponding terms in (28), we can determine the interconnection strengths and bias inputs

as
Tiikamn = —4826;18;mbin + 2) ;s 8(i.i)(m)@s0k,n (30)

and -
Iije = =(92.(3,5) = grli,j © ) (31)

20



where 8, is the Dirac delta function. The size of the smoothing window used in (30) is 5.
However, one can choose either larger or smaller window. From (30) one can see that the

self-connection T j:ijk is not zero which requires self-feedback for neurons.

3.3 Stereo Matching

Stereo matching is carried out by neuron evaluation. Once the parameters T; ;im,» and
I.;x are obtained using (30) and (31), each neuron can randomly and asynchronously
(or synchronously) evaluate its state and readjust accordingly using (25) and (26). The
synchronous updating scheme can be implemented in parallel, while the asynchronous
updating scheme can be sequentially implemented without loss of generality. Another
updating scheme called the hybrid updating scheme is that some neurons are synchronously
updated and others are asynchronously updated. For natural stereo images, we will use this
hybrid neural network to overcome the difficulty of lack of local structures in homogeneous
regions.

The initial state of the neurons were set as

1 if I =maz(l;1=0,1,.., D).
Vijk = - (32)
0 otherwise
where I ;x is the bias input.

However, this neural network has self-feedback, i.e. T;jkijx # 0, as a result the energy

function E does not always decrease monotonically with a transition. This is explained as
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follows. Since we are using a batch updating scheme, (D + 1) neurons {v; jx; k =0, ..., D}
corresponding to the image point (%, j) are simultaneously updated at each step. However,
at most two of the (D + 1') neurons change their state at each step. Define the state changes

Av; ;i and Av;;, of neurons (¢, j, k) and (2, j, k') and energy change AE as

new old

Av'th =9 hk T Vigk

= old
Av; jp = v ,,k' = Yk

and

AE = Erew _ Eold

Consider the energy function

r N" C G " C
= —-;-Z Z 2 Z z: Z Tl,J,k tm,n Viik Viman — 2 Z Z I‘.J-k Vi ke (33)
i=1l I=1 j=1 m=1 k=0 n=0 =1 j=1 k=0

The change AE due to a changes Av;,;x and Av, ;, given by

f' 0 1
= -0 X Z Tijkstomin Vtimen + Liji ) A0 50 — 'Z-Te.j.k;i.j.k (Av; k)’

=1 m=1 u—O

r c 1
—(Z E Z T.,,.k dmn Vlmn +1 ik’ ) A”.‘.,‘,k’ -3 Ti.j.k';i.j.k' (Avi.j.k')2

=1 m=1 n=0

(Avt.J.kvmw' + Av; ; gk Vi ,J.k) (34)

_q.l‘.»jvki'ﬂ: Lk

is not always negative. For instance, since

N, N. D
Uijh =D Z " Tiiktommn Vimn + Lijk

{=1 m=1 n=0
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and

N N. D
ui'jlk' = Z Z Z 1}1].1‘-";‘:""" vl'm'n + I'-'J"k’
=1 m=1 n=0
if
old old
'J,,—-O v'J'kl—l

u"Jlk > ul J,k

and the maximum evolution function is as in (27), then
"J'k = 1 v k' = 0

and

Av; e =1, Av ;= -1
Noting that
Tk =0 if k# K,
(34) can be simplified as
AE = (“e,j,k' - Uijk) — ‘;‘ (T ki + Ti.j.k';x‘,j,k’) (35)
Thus, the first term in (35) is negative. But
Tiskiigk + Tiutiju = —96A <0

leading to
1
-5 (Tivjok3ivjnk + T‘n]n K 51,0,k ) > 0
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When the first term is less than the second term in (34), then AE > 0 (we have observed
this in our experiments), which means E is not a Lyapunov function and hence the network
is unstable. Consequently, the convergence of the network is not guaranteed [26).

To ensure convergence of the network probably to a local minimum, we have designed
a deterministic decision rule. The rule is to take a new state v}{¥ and v, ;,+ of neurons
(1,5, k) and (i, 7, k') if the energy change AE due to state changes Av;;x and Av; . is
less than zero. If AE due to state change is > 0, no state change is affected. A stochastic

decision rule can also be used to obtain a globally optimal solution [27, 28].

The stereo matching algorithm can then be summarized as
1. Set the initial state of the neurons.

2. Update the state of all neurons randomly and asynchronously (or synchronously)

according to the decision rule.

3. Check the energy function; if energy does not change anymore, stop; otherwise, go

back to step 2.

4 Experimental Results

A variety of images including random dot stereograms and natural stereo image pairs were

tested using our algorithm. A 5 x5 (i.e. ' = 5) smoothing window was used for all images.
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4.1 Random Dot Stereograms

The random dot stereograms were created by the pseudo random number generating
method described 'in [29]. Each dot consists of only one element. All the following random
dot stereograms are of size 128 x 128 and in the form of a three level “wedding cake”. The
background plane has zero disparity and each successive layer plane has additional two ele-
ments of disparity. In order to implement this algorithm more efficiently on a conventional
computer, we make the following simplifications. Since only one of D + 1 neurons is firing
at each point, we used one neuron lying in the range 0 to D to represent the disparity
value instead of D + 1 neurons. From (30) one can see that the interconnections between
the neurons are local ( a I' x T neighborhood) and have the same structure for all neurons.
Therefore, for I' = 5 we used a 5 x 5 window for computing U; ;x and energy function
E instead of a N,N,(D + 1)xN,N.(D + 1) interconnection strength matrix. The simpli-
fied algorithm greatly reduces the space complexity by increasing the program complexity
little. Therefore, it is very fast and efficient.

Figure 4 shows a 10% random dot stereogram. Intens;ity values of the white and black
elements are 255 and 0, respectively. Figure 4(c) is the resulting disparity map after 10
iterations using asynchronous updating scheme. When the synchronous updating scheme
is used, 23 iterations are needed. The disparity values are encoded as intensity values with
the brightest value denoting the maximum disparity value. We used A =20, D =6 and

w = 2 (i.e. window size was 5). Note that the disparity map is dense.
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A similar test was run on the decorrelated stereogram [9]. The original stereogram is
50% density random dats. In the left image, 20% of the dots were decorrelated at random.
By setting A = 2800, D = 6 and w = 2, a dense disparity map in Figure 5(c) was obtained
after 12 asynchronous iterations. The same result can be obtained after 19 synchronous
iterations. .

Another type of perturbation is Gaussian white noise [29]. Figures 6(a) and 6(b) show
a pair of multi gray level random dot images with intensity value in the range (0 — 255).
Gaussian white noise corresponding to 5 dB SNR was added to the left image. The SNR
is defined as

2

SNR =10 log,, Z—';‘
where 2 and o2 are the variances of original left image and noise. The parameters were
set as A = 450, D = 6 and w = 2. Only 6 asynchronous iterations were needed to get the
final result in Figure 6(c). Using synchronous updating scheme needed 9 iterations to get
the same result.

As expected, both the synchronous and asynchronous updating schemes work very well,

although the latter takes more iterations. The synchronous updating scheme is suitable

for parallel processing.
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4.2 Natural Stereo Images

Two stereo pa.irs. of natural images, the Renault part and the Pentagon images, are used
to test our algorithm. All images are of size 256 x 256. Since natural stereo images may
not satisfy the epipolar constraint, small alignment corrections in the vertical direction are
needed. A hybrid updating scheme was used for both the Renault and the Pentagon image
pairs. The image is segmented into homogenecus and inhomogeneous regions by using a
local variance criterion. Homogeneous region is defined as a smooth region with the small
local variances. In homogeneous image regions, the corresponding neurons are updated
sequentially, while other neurons corresponding to inhomogeneous regions are updated in
parallel. Since the first derivatives of the intensity function in homogeneous regions are
small, the inputs are small and the neurons intend to take the same state as their neighbors
because of the smoothness constraint. No doubt, the neurons near the boundary will be
first affected by the neighbors corresponding to inhomogeneous regions. As the neurons
corresponding to homogeneous region are sequentially updated, they will all be affected by
the boundary conditions which means surfaces in homogeneous regions can be interpolated.

For the Renault images, the parameters were set as A =12, D =13 and w = 1. The
threshold for the local variances was set to 1.0. The local variance was computed in a
5 x 5 window. About 72 iterations were required. Since a discrete network was used, the
disparity only takes integer number. A simple smoothing technique was applied to the

nonzero portions of the disparity surface. Figures 7(a) and 7(b) show the left and right
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Renault part images. The final result is given in Figure 7(c), while (d) shows the smoothed
version of (c¢) by using a 9 x 9 mean filter. Figures 8 and 9 give the plots of the unsmoothed
and smoothed disparity su;faces corresponding to Figures 7(c) and 7(d), respectively.
Figures 10(a) and 10(b) show the left and right Pentagon images. By choosing param-
eters A = 10, D = 4, w = 1 and the local variance threshold 0.01, a disparity map was
generated after 51 iterations. The window for computing the local variance is of size 5 x 5.
Figures 10(c) and 10(d) give the unsmoothed and smoothed disparity maps, respectively.
A 13 x 13 filter was used for smoothing. The plots of Figures 7(c) and 7(d) are shown in

Figures 11 and 12, respectively.
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Figure 1: A section of a real image with amplitude bias 20 and 30 dB noise. The original
image is represented by the dashed line and the noisy image is represented by the solid

line.
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Figure 2: A section of a real image with amplitude bias 20 and 20 dB noise. The original

image is represented by the dashed line and the noisy image is represented by the solid
line.

34



o sampling point
© image point
® object point

4
left lens ol ; right lens
f
y IR
Op|LaL Ly Ly L2 R R, Ry Ry Ry Ry
< d

Figure 3: Camera geometry for stereo photography.
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(a) Left image. (b) Right image.

(c) Disparity map represented by an intensity image.

Figure 4: A 10% density random dot stereogram.
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(b) Right image.

(a) Left image.

(c) Disparity map represented by an intensity image.

20% of the dots were

density random dot stereogram. In the left image,

Figure 5: A 50%

decorrelated at random.
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(a) Left image.

(c) Disparity map.

Figure 7: The Renault part images.

images.

(b) Right image.

(d) Smoothed disparity map.

The disparity maps are represented by intensity
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Figure 8: 3-D plots of the disparity map for the Renault part images.
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Figure 9: 3-D plots of the smoothed disparity map for the Renault part images.
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(a) Left image.
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(c) Disparity map. (d) Smoothed disparity map.

Figure 10: The Pentagon part images. The disparity maps are represented by intensity

images.
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Figure 11: 3-D plots of the disparity map for the Pentagon images.
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Figure 12: 3-D plots of the smoothed disparity map for the Pentagon images.
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