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A Spatio-temporal Approach To Motion Understanding
Min Shao and Rama Chellappa
Abstract

Algorithms for the interpretation of optical flow are difficult to design mainly due to the
nonlinearity of constraint equations and the high dimensionality of the parameter space.
Here we show that when two velocity fields from the same moving object are given, the ro-
tational component of the motion parameters can be eliminated from the difference velocity
field. Thus the translational component, or the focus of expansion (FOE) can be robustly
found by solving a set of linear equations. This in turn facilitates closed-form solutions for
the rotational component and environment depth. This approach can be applied to multi-
object motion segmentation using the Hough transform. If a dense sequence of images is
available, then the structure of the environment and the 3-D motion parameters can be
recovered directly at every image point from the given velocity filed. In this approach both
spatial and temporal information are used in 2 uniform way. The structure-from-motion
(SFM) problem is then reduced to solving a quadratic equation. If the optical flow field is
not available, the SFM problem based directly on the first-order derivatives of the image
brightness is underdetermined. However, by exploiting the image brightness constancy con-
straint in both spatial and temporal domains we show that, given the first and second order

spatio-temporal derivatives of image brightness, the SFM problem becomes overdetermined.



1 Introduction

The problem of recovering the structure of the environment and the 3-D relative motion
between a sensor and the environment from the 2-D image data has been explored by
many researchers in the area of computer vision. It is known as the structure-from-motion
(SFM) problem. There are basically three different approaches to the SFM problem in the
literature, namely, the discrete, the continuous, and the direct approach.

In the discrete approach [1, 2, 3], a finite number of well-separated features such as
points, lines or contours are extracted and matched in a sequence of images. The dis-
placements of these features between successive image frames are used to estimate motion
parameters and depth of the environment at these features. It has been observed [1] that
this approach tends to be unstable in the presence of even small amount of noise. As only
a very sparse set of features are used, the depth of the environment obtained using the
feature-based approach is also very sparse. The most difficult problem associated with this
approach is the correspondence problem.

The continuous approach depends on the computation of apparent velocities, or optical
flow, of brightness patterns in an image before the motion analysis begins [4, 5]. In principle,
given the optical flow at five points, the motion parameters can be recovered. However,
algorithms for the SFM problem are difficult to design due to mainly the nonlinearity of the
constraint equations and the high dimensionality of the parameter space. Direct solutions
are iterative in nature and good initial guesses are required to make the solution numerically

stable. Most studies therefore seek to develop strategies where the dimensionality and /for

nonlinearity are reduced.



As several authors have noticed, temporal information is as important as spatial informa-
tion in a sequence of images. Bolles and Baker [6] used a solid of data called spatio-temporal
data, with time as the third dimension, to compute 3-D locations of world features. It is
constructed from a dense sequence of images-images taken close enough that none of the
image features move more than a pixel or so. In this case the correspondence problem
becomes trivial if the camera motion is known. Subbarao [7] and Wu [8] presented a formu-
lation and solution procedure for reconstructing the structure of the environment and the
motion parameters from the first-order spatio-temporal derivatives of the optical flow. It
was pointed out that first-order temporal derivatives of the motion field is relatively more
robust than its second-order spatial derivatives. But their analyses were restricted only to
a small field of view around the line-of-sight.

In this paper we propose two methods to make the SFM problem linear and numer-
ically efficient and robust. We first discuss how to use two velocity fields from the same
environment taken at different time instants to decouple the rotational component from the
optical flow field. We show that the difference of the two velocity fields does not contain
the rotational component. Because the difference is taken at the same image location no
correspondence is necessary. The ratio of the two components of the difference velocity field
at each image location provides one linear constraint equation on the focus of expansion
(FOE). Thus two or more image points on the same rigid body uniquely determine the FOE.
By using the Hough transform one is able to segment the image into individual objects and
compute the FOE for each rigid body.

Another way to linearize the SFM problem is using local derivatives of the optical flow

fields. If we are able to estimate the first-order spatio-temporal derivatives of the velocity



filed, we can recover not only the motion parameters and the depth of the environment, but
also the orientation of the underlying surfaces at each point. We thus unify the analysis
of spatial and temporal information and obtain closed form solutions at each point. This
- is most desirable if one wants to consider non-rigid motion problems. As we will see, the
results obtained by Subbarao [7] and Wu (8] are only first-order approximations to our
solutions around the line of sight. Our methods are more efficient because we do not have
to transform the optical flow field at each pixel.

The difficult problem associated with our approach described above is the assumption
that optical flow fields are known . The direct approach [9, 10] bypasses the computation of
optical flow and directly utilizes the derivatives of image brightness to estimate the motion
parameters. Negahdaripour and Horn [9) exploited the spatial gradient and the time rate
of change of brightness over the whole image and explicitly imposed the positive depth
constraint to recover the FOE. As the problem of determining the motion parameters and
the surface structure from a single brightness constancy equation is an underdetermined
problem, this approach is successful only in some cases.

In our work we exploit the brightness constancy constraint in both spatial and temporal
domain. The first and second order spatial and temporal derivatives of the image brightness
provide four constraint equations for the motion parameters and the surface structure. At
every image pixel there are three local unknowns, namely, the depth, and the orientation
of the surface, and there are six global motion parameters. Thus by simply counting the
number of constraints and the number of unknowns, it is easy to see that only the derivatives
of the brightness at five different points are needed to recover the motion parameters ( the

magnitude of the translational component can not be recovered). If more points are used
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the results will be more accurate. Unfortunately, these constraint equations are highly
nonlinear and we have not been able to find closed form solutions.

The organization of this paper is as follows. General rigid body motion models are set
up in Section 2. We then propose two linear methods in Section 3 to solve for the motion
parameters and the structure of the environment from optical flow fields. The problem of
recovering the motion and structure of the environment without explicitly computing the
optical flow is considered in Section 4. Preliminary experimental results are presented in

Section 5, which is followed by a summary in Section 6.

2 General Rigid Body Motion Models

In this paper we consider the relative motion between a sensor (usually a camera) and the
environment. The environment may contain several moving objects. Each object is rigid
and does not have to be separated from others a priori. The problem we are interested in
is recovering the 3-D structure of the environment (depth and orientation relative to the
camera) and the motion parameters of each individual rigid body from a sequence of time-
varying images. For each independent object in the environment we consider the equivalent
problem of a stationary object and a moving, monocular pin-hole camera represented by the
spatial coordinate system (X, Y, Z), see Figure 1. The origin of this system is located at the
vertex of the perspef:tive projection, and the Z-axis is directed along the line-of-sight. The
2-D image sequence is created by the perspective projection of the objects onto an image
plane. The focal length, from the nodal point to the image plane, is assumed to be known

and, without loss of generality, normalized to 1. The origin of the corresponding coordinate



system on the image plane is located at (0,0,1), and its z and y axis are parallel to X and
Y axis respectively. Thus the perspective Projection (=, y) on the image of a point (X,Y, Z )

in the environment is:

X Y
Q—E’y—i (1)

The instantaneous rigid body motion of the camera system can be decomposed into two
components: translation V. = (Vx, V¥, Vz) and rotation Q = (2x,Qy,9Qz). In this paper
we assume that the motion is uniform, that is, V,Q remain constant for a short period of
time.

Let R be the position vector of some point on the ob ject, with camera coordinates given
by (X,Y, Z). Due to the camera’s motion, the point in space moves with relative velocity

“é—’;i = —(Y.+ 2 x R). In component form one can write:

Y = -Wx-0vZ+Qz¥
-‘%’- = -W-Qz2X+0x2 (2
L = -Vz-QxY + 99X

The corresponding projection (#,) on the image plane of the point moves with a velocity

(u,v), where [4]

wz,y) = (2Vz - Vx)/Z + [2y0x — (1 + 22)Qy + yQ7] @)

(,9) = Wz - W)/Z + [(1+ 9°)%x — 230y - 20,]
We will refer to (u,v) as the optical flow field or the velocity field interchangeably. The
point (Vx/Vz,Vy/Vz) is called the focus of expansion (FOE). The underlying surface is

described by the function Z(X, Y), or equivalently by Z (z,y), where Z is the depth of the



surface from the camera. The orientation of the surface relative to the camera is given by

Ze= 3t @
Zy=§%

3 Interpretation Of Optical Flow

The problem of estimating the six motion parameters, depth and orientation of the under-
lying surface from optical flow fields is often referred as the interpretation of optical flow
[4]. Solving the optical flow equation (2) robustly and efficiently for the motion parameters
and surface structure is not as easy as it seems to be. A direct method would call for
the observation of optical flow at five points on the same rigid body from which, without
considering the scaling factor, ten equations in ten unknowns can be written. Five of these
unknowns will be the relative depths of these five points. The other four are the global
motion parameters (the magnitude of the translational component can not be recovered).
Each additional observation introduces one more unknown and two more constraint equa-
tions. Thus the interpretation problem is basically overdetermined. Unfortunately, all these
constraint equations are nonlinear. It is very difficult to find a numerically stable solution
procedure for nonlinear systems with such a large number of unknowns without good initial
guesses. Methods to find such good initial guesses have not yet been developed.

Our goal in this section is to linearize the interpretation problem, and to reduce the
dimension of parameter space. We consider two different approaches to make the inter-
pretation problem linear and well-behaved. The first approach comes from the idea of
decoupling the rotational component from the optical flow. The second one uses first order

spatio-temporal derivatives of the optical flow field at each point. In both these formulations



we are able to obtain closed-form solutions.

3.1 Decoupling rotation

The idea of decoupling rotational component from the optical flow has received some atten-
tion. Longuet-Higgins and Prazdny [4] observed that motion parallax which is observable
only at depth discontinuities can be used to decouple the rotational component from the
optical field. Unfortunately, this seems to be very hard to accomplish. Rieger and Lawton
[11] took the difference of optical flow of two neighboring image points to eliminate the
rotational component. However their analysis is valid only under some approximations

Our method of decoupling the rotational component from the optical flow relies on the
availability of two velocity fields of the same rigid body under observation at two time
insta.nts." Once the component of the image displacement due to translation are separated
from that due to rotation we have efficient algorithms for the computation of the 3-D motion
parameters and structure.

Suppose that we observe two velocity fields of the same environment due to uniform
motion of the environment relative to the camera at two time instants. At time ¢1 the
optical flow at the image coordinate (z,y) is given by u(z,y,11), v(z,y,t1). At time 2 the
optical flow at the same coordinate (z, y) is given by u(z,y,12), v(z,y,12). We assume that
the 3-D velocity ¥, £ remain constant between the two time instants. Of course the images
at the same location at different times correspond to the projection of two different points

on the underlying surface. From (3) we have

u(z,y,tl) = (zVz - Vx)/Z(tl) + [zyQx — 1+ :tz)ﬂy + yQ2z]

(5)
v(z,y,t1) = (yVz —- W)/2(t1) + [(1 + y?)Qx — zyQy - zQ,]
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and
u(z,9,12) = (2Vz — Vx)/2(12) + [zyQx — (1 + 22)Qy + y02]
v(2,9,12) = (yVz — W)/Z(t2) + [(1 + v*)Qx — zyQy — zQ,]

We now take the difference of the optical flows at the same image location (z,y)

(6)

Au(z,y) = u(z,y,11) - u(z,y,12) = (zVz — Vx)(1/2(t1) - 1/Z(t2))
Av(z,y) = v(z,y,t1) - v(z,y,12) = (yVz - W)(1/2(t1) - 1/2(12))

Thus the rotation parameters have been eliminated from the difference field. Unlike
stereoscopic motion problem [12, 13], we do not have to establish the correspondence be-
tween two velocity fields in order to linearize the SFM equations.

To ensure that the difference velocity field is accurate, the difference of Z(t1) and Z(t2)
has to be relatively large. This means that the surface must have enough variation in depth.
A discussion on the importance of variation in depth in human vision can be found in [11]

Once the difference velocity field has been found, it is relatively easy to compute the

FOE. By taking the ratio of the two components of the difference velocity at (z,y), one

obtains:
Av(z,y) _y—w (8)
Au(z,y) z -z
where
_Vx W
20 - VZ ’yo - VZ (9)

Thus the difference velocity field is everywhere directed away from (or towards) some image
location (zo, %) called FOE [4].
Equation (8) is valid at (z,y) as long as the image at (z,y) corresponds to the two

different points on the same rigid body. If the equation is violated, then (z,y) must be



on the boundary of an object. This is the basis of motion segmentation [14]). The above
formulation illustrates how we can utilize more than two frames of images (or more than
one velocity field ) to improve the accuracy in the SFM problem.

.Theoretically, we need only the difference velocities at two different image locations in
order to solve (8) for the FOE. But if we take into account the noise in the computation
of optical flow, we may get very undesirable results using so little information. We now

propose two ways to combine the global information to reduce the effect of noise.

3.1.1 Least-squares formulation

If the scene has already been segmented into individual objects, we can use linear least-
squares methods to improve the accuracy. Assume that a set of image points (z;,%:),i =
1,2,...,M where the difference velocities are available belong to the same object in the

scene. For each point we have a linear equation in Zo, Yo:

Av(zi; yi)oo = Au(zi, 4i)go = Av(zi )i — Au(zi, gi)y fori=1,2,..,M  (10)
The least-squares solution of the above set of linear equations is given by

. .
° | = @mme (11)
Yo

where Hjsy2 is given by

Av(zy, )  —Au(zy, )
H= (12)

Av(zar,yrm) —Au(zar, yar)

10
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and Cayx; given by

Av(zy,y1)z1 — Au(z1, 910
c= : (13)
Av(TrM, YMm)Zar — Au(Zar, Yar)yne

The solution procedure only involves inverting a 2 by 2 matrix, thus is very efficient and

robust.

3.1.2 Hough Transform Formulation

If the scene contains several rigid objects undergoing relative motion, the above method
can be applied only after the scene has been segmented into individual ob jects. If all the
FOEs are known, (8) can be used to identify if the point is on the boundary of an object
or not. Thus the remaining task is to find the FOEs of all the rigid body motions in the
scene.

From (10) we see that each measurement of difference velocity provides a linear con-
straint equation on the FOE, thus voting’ for a set of values of FOEs. This is an ideal
situation in which we can apply the Hough Transform, as the dimension of the parameter
is low and the constraint equation is linear.

Following the Hough transform formalism [15], one obtains the following algorithm:

ALGORITHM: FOE detection using the Hough transform.

1. Quantize parameter space between appropriate maximum and minimum values for Zo

and Yo.
2. Form an accumulator array A(zo,yo) whose elements are initially zero
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3. For each point (z,y) where the difference velocity is available, and exceeds some
threshold, increment all points in the accumulator array along the appropriate line,
ie,

A(zo,y0) = A(2o,%0) + 1

for 2o and yp satisfying Av(z, y)zo — u(z, y)yo = Av(z,y)z — Au(z,y)y

4. Local maxima in the accumulator array now correspond to the FOEs of the ob jects

in the scene

Using the FOEs as the features of objects, we can use standard clustering techniques
in pattern recognition to classify all the image points into rigid objects. Of course the
translational component is not a unique criterion to segment motion in images. But it
is the first stage of motion segmentation. The second stage uses the Hough transform to
cluster the rotational component based on the result of the first stage. The constraint
equations are again linear. The details of motion image segmentation will be the topic of a
forthcoming paper.

Once the scene has been segmented, and the motion parameters are found using the

Hough transform followed by least-squares, it is quite straightforward to find the depth.

3.2 A Spatio-Temporal Solution

An alternative way of linearizing the SFM problem is using the first and second order spatial
derivatives of the optical flow [4, 16]. In this section, we show that one can use the more
robust first order temporal derivatives of the optical flow field in place of the noise-sensitive

second order spatial derivatives. We show that the depth and the motion parameters as
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well as the orientation of the underlying surface at each point can be recovered from the
optical flow and its derivatives at that point. The pixel-wise solution of the SFM problem is
very important because it enables us to deal with more general problems such as non-rigid
body motion.

Let u(z,y,1),v(z,y,t) denote the optical flow at time ¢ and image location (z,y). The
surface can be described either by Z(z,y,t) or by Z(X,Y,t), where (z,9) and (X,Y) are
related by the perspective projection in (1). Note that here the third dimension —time ¢
and the 2-D spatial dimension are treated in a uniform way.

By including the temporal dimension in (3), one obtains:

w(z,y,t) = (2Vz - Vx)/Z(z, y,1) + [2y2x - (1 + 22)Qy + yQ7] (14)
v(za yt)= (sz - VY)/Z(J:, v, t) + [(1 + yz)QX - zyQy — 302]

In this section, we assume that the relative motion remains constant for a short period

of time. By differentiating the above equation with respect to the spatial coordinates z and

Yy, one obtains.

uz(z,y,t) = [7(%,@' - %Zx] + [yQx — 2z8y]

(15)
”x(xy Y, t) = [- V,,-,;g Zz] + [_yQY - 7]
and
uy(z,y,8) = [- 5 ;;fz Zy) + [z0x + Q2] (16)
vy(2, 1) = [gp2gy — Y% 2] + [209x - 2Qy]
One also takes the temporal derivatives of the velocity field to obtain:
- Vz—Vx19Z2(z,y,t
u(z,9,t) = [ §Herx) 22 Gad) an

vt(x’ Y t) = [— %’Vi;,:ti]az 'bz‘.y,t
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From (2) we know that
ﬂfl’t’”—t) = -Vz - QxY + QpX (18)
And from the chain rule of differentiation, we also have

dZ _9Zdz  8Zdy 0%

dt Szt Tagdt T o (19)
Noting that %‘f =y, % = v is exactly the optical field, one can solve for %:
3Z(z,y,t
% = -Vz - QxY + Qv X — Z,u(z,y,t) - Z,v(z,y,1) (20)

Thus the temporal derivative of the velocity field is given by:
—zV;
uy(z,y,t) = [%][—Vz = QxY + Qv X ~ Zyu(z,y,t) - Zyv(z,y,t)] (1)
‘l)t(:l?, Y, t) = [%][_VZ - QxY + QrX - Zzu(za Y t) - Zyv(z, Y, t)]

The variables %%, %{- are related to the orientation of the surface Z X Zy by the following

lemma.
Lemma 1
82 _ Zx (XYt
{ & = Z(zy, t)ﬁé;q}; (22)
Zy(X.Y,t
% = 2L
Proof: From the perspective projection we have
Z(X,Y) = Z(z,y) x (23)
| { =7y
__Y
V= zixm

Taking the partial derivatives of Z(X +Y') with respect to X,Y on both sides of the above

equation, and applying the chain rule, one obtajns
Zy = Z.5+2,8%

14
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where

(gi = 1=zZx

| o = 8% (25)
o = -4«

H = =k

Substituting the above equation into (24), it is easy to obtain (22) by solving (24) for
Zz, Z, using Cramer rule. Q.E.D

An alternative proof can be found in [17]

Using the above lemma, and the perspective projection property, (15)-(16), and (21)

can be written as:

uz(z,y,t) = [z;%’g;; - %mz;‘_vz;] + [y02x — 220y]

(26)
vz(z,y,t) = [—’%%fmz%z;] + -39y - 2]
and
{ uy(o,0,t) = [~ B 4 20y + 0] on
vy(z,9,t) = [ﬁf’m - %mﬁy_w;] + [29Qx — zQy]
and

ut(z: Y, t) = [%ﬁ]["?{%ﬁ)‘ -Qxy+ Qyz — m%‘x_—yz;u(a:, y:t) - m%%z;”(wa Y, t)]

v(z,y,t) = [%][‘Z{%ﬁ)’ - Qxy+ Qyz - m%z;u(x, ¥,t) - ﬁz%”(z, ¥,t)]
(28)

At each point, (14),(27) and (28), together with (29) provide eight nonlinear equations in
nine unknowns. However, the depth Z (z,9,t) always appears in ratio with the translational
velocity V. and thus is not recoverable. We can arbitrarily assume Z(z,y,t) = 1. Equations

(14),(27),(28) and (29) can then be simplified as (we now omit the time argument in all the

variables):

15



u(z,y) = [2Vz — Vx] + [z3Qx — (1 + 22)Qy + yQ3]

(29)
v(e,y) = [yVz ~ W]+ [(1 + 92)0x — 290y — 205]
us(2,y) = [Vz - (aVz - Vi) 2] + [¥9x ~ 229y (30)
5(2,9) = ~[4Vz - Vylig - + [-98y — Q7]
and
{ uy(2,9) = [(aVz ~ Vi) =] + [50x + 93] -
v(2,9) = [Vz - (WVz - W)z ] + [209x — 29y]

u(,y) = [(Vx — 2V2)l[-Vz - Qxy + Qs — X u(z,y) - =7 v(%, ¥)]

(@, 9) = [(Vr - yVa)ll-Vz - Qxy + Qvz — 1% (s, y) - =702, v)]
(32)

The above relations form eight nonlinear equations in eight unknowns. The solutions of
these nonlinear equations are generally iterative. Yet we are able to reduce the problem to

solving a quadratic equation in one unknown.

In the following derivation we use a set of auxiliary variables defined as follows :

T = zVz-V,
z-Vx (33)
T]_ = yVZ—Vy
Z
p = Tl-zzx—yZy (34)
_ Z
¢ = TSy
and
w="Vz4+yQx ~ 2Qy (35)

It is clear that the two sets of independent variables Vx, Vi, Vz, Qx,Qy,Q2,2x, 2y

and T, Ty, w,p,q,x,Qx, 0z are equivalent, that is, there is a one-to-one correspondence

16
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between them. Besides there is almost no computation involved from one set of variables
to another. Therefore we can try to solve for the second set of variables from the velocity
field and its spatio-temporal derivatives.

. Equations (30)-(33) can be reformulated in terms of the new set of independent variables:

f

t = T+a:yﬂx ~(1+23)Qy + ¥0z2

v = ol +(1+y*)Qx - 2yQy — 2032
Uy = w—p—2Q0y
%= = —op—yQy — Qz (36)
ty = —q+20x+Qz
v = w—og+yQx
uy = Tw+pu+tqu
(% =«
where
a=::—i 37
is known.

Since the first six equations are linear, we can solve them for X, 8y, 0z, w,p,gin terms

of T:

’ i = aT
J Qx = -i50p- aﬁyT+ [ﬁ,— - ﬁf’?] (38)
U = gott ol +[EE - ol
| 2 = —(vz+ap+yQy) .

17



and

where Cy, Cy, C3,Cy, Cs, Cg are the constants defined as follows. Let

(

Then,

.

Substituting the above equations into (43),

CsT? +(Cs + Cru + Cav)T + (Cyu + Cyv — u) =0

a11
a2
az
Q22
11
€12
€21

€22

Gy

Ce

il

i

P = Ci\T + C,
= C3T+C,4
w = CsT+Cy

2
ox
_m!._a

2
= -1
O’Q&'
1 1+y
&
14z -
or
H? t i
2 e 21‘ -
Vot oy + SNV 4 Yoy
oy _z
14y 1422
TYVp — U =TYU.
Oy = g + SN 4 Mromy

€11822— a
®11822—q1242)

qzan—gzgam

211822—q12a2]

£21811 =c11a21

G11a22—q124a2

211—¢c12a
G11a22~aj2a3;

Cl+1—_%03+ﬁ;7
Cot+ i Catup + s

18

one obtains a quadratic equation jn T:

(39)

(40)

(41)

(42)
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This equation generally has two solutions. It means that there is a two-fold ambiguity in
interpreting the optical flow at each point. But this ambiguity can be easily resolved using
the rigidity assumption. Hough Transform can again be employed to segment the image,

and combine the solution at each point into a consistent and robust global solution.

4 Direct Recovery Of Motion And Structure From Image

Brightness

All of the previous discussions emphasize the importance of optical flow fields. They are
based on the fact that accurate velocity fields are available. Yet we still have not been able
to come up with a satisfying algorithm for computing the velocity fields, although progresses
in this regard has been reported.

Recently several SFM algorithms that directly use brightness derivative information have
been proposed [9, 10]. All these algorithms use the first-order spatio-temporal derivatives
of the brightness, and hence are relatively robust. However, the problem of recovering
the motion parameters and the environment structure from first-order derivatives of image
brightness is underdetermined. Thus these algorithms can only deal with restricted cases,
and usually require heuristic search. However as we will show, the SFM problem from the
first and second order derivatives are overdetermined.

Assume that the”image brightness E(z,y,t) at each point remains the same as the
camera moves. By taking the derivatives of the image brightness with respect to t,We have

the following well-known equation [18] relating the optical flow the the first-order derivatives
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of the brightness.

E(2,9,t) + Ex(z,y,t)u(z, y,t) + Ey(z,y, t)o(z, v, t)=0 (43)

At each point, the velocxty field u(z,y,t),v(z,y,t) is a function of a local variables Z(x,y,t)
and the six global motlon parameters, Yet the above equation provides only one constraint
at each point. Thus the problem of recovering the motion parameters and the depth of the
environment is underdetermined. We need to find more constraints.

One way to transform the underdetermined SFM problem into an overdetermined one
is to use second-order derivatives of the image brightness[19]. By taking the derivatives of

the both sides of the brightness constancy equation with respect to z, y,1, we obtain three

more constraint equations:

Ei: + Epru(z,y) + Eryv(z, y)+ Eyuz(z, v+ Eyv(z, y)=0 (44)
Ewy + Ecyu(z,y) + Eyyv(z,9) + Ezuy(z, ¥)+ Eyvy(z,y)=0 (45)
By + Exu(z,y) + Eyev(z,y) + Exuy(z, ) + E,vi(z,y) = 0 (46)

From (14),(27)-(29) we know that Uz, Uy, Uz, Vy, Ug, V¢ introduce two more local variables,
namely, the orientation of the underlying surface which is also very useful information.
Thus by plugging equations (14),(27)-(29) into (54)-(57), we have four constraint equa-
tions in three local variables, and six global motion parameters at each point. The mag-
nitude of the translational component can not be recovered, as discussed in the previous
sections. Thus we only have five global motion parameters. Theoretically, only the first
and second-order derivatives of the image brightness at five points are needed. The least-

Squares approach can then be used to exploit the abundance of available data to improve

the accuracy.
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The major difficulties in this formulation of the SFM problem are still the nonlinearity
of the constraint equations and the high dimensionality of the parameter space. Although
the SFM problem is no longer underdetermined if we use the second-order derivatives of the
image brightness, the solution is still very unstable. We are still working on robust solution
procedures to solve these constraint equations. Again the rotation decoupling might be

useful. Or we can use a relatively long sequence of images.

5 Simulation Results

In this section, we present some simulation results to illustrate the robustness of the rota-
tion decoupling algorithms. We assume that two velocity fields are available and we use
the rotation decoupling algorithms (least-squares and Hough transform) to find the FOEs.
Various degrees of noise are added to the optical flow fields. As we have pointed out, the
accuracy of the algorithms depends on how much depth variations the underlying scene con-
tains.The depth variation of the scene is measured by the relative difference of the depth of
the scene observed at the same image location at different times.

The scene we use is a sphere of unit radius moving with constant translational velocity
Vx =2.0,Vy = 4'0’.,VZ = 2.0, and constant rotational velocity Q2x = 0.0,Qy = 2.0,Qz =
1.0. Thus the FOE is at zg = 1,yo = 2. The input data are the simulated optical flow fields
corresponding to the sphere at two different locations. The depth variation is controlled by
the positions of the sphere at two different times. Various degrees of noise are added to the

optical flow fields. The computed FOEs under a number of depth variation and noise are

shown in Table 1.
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Depth Noise | FOE FOE

Variation Least-squares | Hough Transform
33% 1% | (1.0,2.0) (0.99,1.98)

33% 10% | (0.93,1.84) | (0.86,1.69)

33% 20% | (0.75,1.44) | (0.44,0.75)

33% 50% | (0.40,0.69) | (0.26,0.34)

62% 1% | (1.0,2.0) (0.99,1.98)

62% 10% [ (0.96,1.91) | (0.98,1.94)

62% 20% | (0.88,1.74) | (0.95,0.87)

[62% [ 50 % | (0.59,1.08) [ (0.77,0.64) _

Table 1: Simulation results of Rotation decoupling algorithms with ideal FOE at: (1,2).

Obviously, the least-squares method is more robust than the Hough transform. This
observation justifies the use of least-squares following the Hough transform, which has been

explained in the paper.

6 Summary

In this paper, we proposed two methods to linearize the SFM problem. The rotation de-
coupling algorithm works well if the scene contains enough depth variations. The surface
orientation can not be recovered directly using this algorithm. The spatio-temporal ap-
proach can be viewed as an extension of the rotation decoupling algorithm when the time
interval between two 6ptica.l flow fields is small. Closed form solutions are obtained for the
motion parameters and the surface structure at each pixel. Currently, we are applying the

algorithm to real images and extending it to non-rigid body motion analysis.

22

3

m



References

[1] R.Y. Tsai and T.S. Huang, “Uniqueness and Estimation of Three Dimensional Motion
Parameters of Rigid Objects with Curved Surfaces”, IEEE Trans. on Patt. Anal. and
Mach. Intel., vol. PAMI-G, pPpP- i3—27, January 1984.

[2] S. Ullman, The Interpretation of Visual Motion, M.L.T. Press, Cambridge, MA, 1979.

[3] T.J. Broida and R. Chellappa, “Estimation of Ob ject Motion Parameters from Noisy

Images”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp.
90-99, Jan. 1986.

[4] H. C. Longuet-Higgins and K. Prazdny, “The Interpretation of a Moving Retinal
Image”, Proc. Royal Society of London, vol. B-208, pp. 385-397, July 1980.

[5] A. Bruss and B. K. P. Horn, “Passive Navigation”, Computer Vision, Graphics and

Image Processing, vol. 21, pp. 3-20, 1983.

[6] R.C. Bolles and H.H Baker, “Epipolar-plane image analysis: a technique for analyzing
motion sequences ®, In Proc. Third IEEE Workshop on Computer Vision: Represen-

tation and Control, pp. 168-178, October 1985.

[7) M. Subbarao, “Interpretation of Image Motion fields: a Spatio-Temporal Approach”,

In Proc. IEEE Workshop on Motion: Representation and Analysis, pp. 157-166, May
1986. ’

(8] J. Wu, “Motion Estimation from Image Sequences”, PhD thesis, Harvard University,
Cambridge, Massachusetts, September 1987.

23



[9] S. Negahdaripour and B.K.P. Horn, “A Direct Method Jor Locating the Focus of Ezpan-

sion”, Technical Report AT Memo No. 939, MIT Artificial Intelligence Lab., January
1987,

(10] B.K.P Horn and Jr. E.J. Weldon, “Computationally efficient Methods For Recovering
Translational Motion”, In Proc. International Conference on Computer Vision, pp. 2-

11, London, England, June 1987.

[11] J.H. Rieger and D.H. Lawton, “Determining the Instantaneous Axis of Translation
from Optical Flow Genearted by Arbitrary Sensor Motion”, In Proc. Workshop on
Motion: Representation and Perception, pp. 371-378, July 1983.

[12] A. M. Waxman and J.H. Duncan, “Binocular Image Flows: Steps Toward Stereo-

Motion Fusion”, IEEE Trans. on Patt. Anal. and Mach. Intel., vol. PAMI-8, pp.
715-729, November 1986.

[13] P. Balasubramanyam and M.A. Synder, “Computation of Motion In Depth Param-
eters: A First Step in Stereoscopic Motion Interpretation”, In Proc. DARPA Image

Understanding Workshop, Cambridge, Massachusetts, April 1988.

[14] G. Adiv, “Determining Three-Dimensional Motion and Structure from Optical Flow

Generated by Several Moving Objects”, IEEE Trans. on Patt. Anal. and Mach. Intel.,
vol. PAMI-7, pp. 384-401, July 1985.

[15) D.H. Ballard and C.M. Brown, Cpmputer Vision, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey 07632, 1982.

[16] A. M. Waxman and S. Ullman, “Surface Structure and 3-D Motion from Image Flow:

A Kinematics Analysis”, International Journal of Robotics Research., vol. 4(3), pp.

24



72-94, 1985.

[17] J. Aloimonos and A. Basu, “Combining Information in Low-level Vision”, In Proc.

DARPA Image Understanding Workshop, Cambridge, Massachusetts, April 1988.

[18] B. K. P. Horn and B. G. Schunck, “Determining Optical Flow”, Artificial Intelligence,
vol. 17, pp. 185-203, August 1981.

[19] H.-H. Nagel, “On the Estimation of Optical Flow: Relations between Different Ap-
proaches and Some New Results”, Artificial Intelligence, vol. 33, pp. 299-324, Novem-
ber 1987.

Vy $ Qy
V
p - X
Qy
N
/ /R
X
R .
27 Z< < vz
Y4
Figurei:The Pin-hole camera and its 3D
Motion Model.
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