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ABSTRACT

In this paper we introduce algorithms for finding optimally sparse solutions sub-
ject to linear and quadratic constraints. The problem of finding the maximally
sparse solution, i.e. the vector with fewest non-zero terms, is shown to be closely
related to ! optimization for 0<p<1. For linearly constrained problems, it is
shown that®he optimal solution lies at the extreme points of the feasible set. A
non linear simplex algorithm is presented for efficiently locating a local minimum
on the connected graph of basic feasible solutions. By modifying the algorithm to
include a stochastic search, it is shown that a global minimum of the problem
may be found. For quadratic constraints, the maximally sparse solution is found
by means of a convex transformation. The utlility of these algorithms is demon-
strated in the design of arbitrarily shaped, narrowband beamforming arrays.
Using the maximaly sparse criteria we are able to peform optimal array thinning
and element placement for this problem for an arbitrary set of linear response
constraints. The algorithms also have many other applications in signal process-
ing, one such application considered in this paper is the recovery of sparse
reflectivity sequences in seismic deconvolution.
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1. Introduction

We address the problem of finding the maximally sparse solution vector to a sys-
tem of linear constraints, i.e. a feasible solution with the maximum number of
zero valued elements. This problem can be expressed as the nonlinear mathemati-

cal program:

min N
; J@ =3 Iz) such that |[Hz —bl|<e (1)
§=1
MXN 1 3,'?50
X =
where H €R , and X(z;) =1, =0

The utility of this class of solutions became apparent to the authors while trying
to reconstruct, from the externally measured magnetic fields, 3-d neuromagnetic
images of brain neuron currents [1]. With this and other applications discussed in
section 5 it was found that the common approaches such as 12, l o OF maximum
entropy optimization produced poor results. It is suggested that a large class of
signal processing and more general problems exist which would benefit from appli-
cation of the minimum order criterion. In any problem where extremely “spiked"
results are expected, or where the incremental cost of adding a non-zero term to
the solution outweighs the cost of increasing an already non-zero term, the

minimum order solution is desirable.

The algorithms for minimum order optimization discussed below are based on the

related nonlinear program

min N 1
;9@ =31zl such that |Hz —2l<e ¢ >1 (2)
fa=]
Since [(z)]¢ =|lz u’ , the lp quasi-norm of z for p=%, minimization of g(z) is

equivalent to lp optimization for 0<p <1. We will show that for ¢ >>1, g(z)

approximates f(z) in eqn (1), and provides a more suitable objective for iterative
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optimization. We will refer to eqn (2) as an {,;, program.

Previous work related to the topic of this paper inclu’des both mathematical
optimization for concave cost functions, and applications where sparse solutions
were sought. In [2] the basic behavior of linearly constrained [, optimization
problems for 0<p <1 is discussed, including examples of how the solution changes
in a stepwise fashion as p is varied over this range. The theory of quasi-Banach
spaces based on the quasinorm /,, 0<p <00, has been studied, and is discussed,
for example, in [3]. Equation (2) is also related to the linearly constrained concave
minimization problem, for which a number of global optimization algorithms have
been proposed, based on collapsing polytopes [4] and branch and bound pro-
cedures [5,6]. While these methods do achieve global optima, they are probably
computationally infeasible for the large dimensions (N ~ 100) considered in this
paper, due to the use of multiple nested linear programming subproblems and the

assumptions necessary to apply them to the general form of eqn (2).

For blind deconvolution of seismic reflectivity data, several authors have discussed
the need for optimization norms which increase sparseness or minimize the
entropy of the solution. These authors have proposed the use of the “varimax,"
“parsimonious,” and [,, p <1 norms [7,8,9]. These examples are closely related to
our problem, however the algorithms used do not in general find the global

optimum, and are not directly applicable to the form of eqn (2).

In the area of sparse image reconstruction, linear programming has been applied
successfully [10] but without explicitly seeking the maximally sparse image. Also,
a technique of "beam subtraction” has been employed to restore sparse astronomi-
cal star field images [11). Design of sparse beamforming arrays, or array “thin-
ning,” has also appeared in the literature [12,25] but we know of no published

approa;:h for optimally thinned arrays of arbitrary shape.
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In the following we describe three algorithms for finding maximally sparse solu-
tions and discuss their properties. They are demonstrated in application to the
design of maximally sparse beamforming arrays and the recovery of sparse

reflectivity sequences for seismic deconvolution.

2. Minimum Order From lp Optimization

As an optimization problem, eqn (1) is particularly difficult to solve. We are
plagued with numerous local minima, and f (z) is discontinuous and has zero gra-
dient except at the discontinuities. In an effort to overcome these limitations, we
propose an approach to the minimum order problem based on generalized linearly

constrained lp optimization. Figure 1 illustrates the unit ball surfaces in R? space

N
for the quasi-norm ||z |l y, = [ z; 17147 for values of p in the range 0<p <oco.

el
For p>1 we have the conventional lp norm, which is a convex functional and
obeys the triangle inequality. Since the linear constraints in (2) form a convex set
it is well known that any local minimum of |z |L, satisfying the constraints is a
global optimum. Many efficient algorithms exist for solving such problems
[13,14]. Of particular interest are the cases for values of p =1, 2, and oo, which
form the basis of many widely used optimization procedures. However the result-

ing solutions for these do not achieve the ‘sparse’ results of interest in this paper.

For O<p <l , o is only a quasi-norm (3}, since the triangle inequality does not
hold, and in fact the inequality is reversed for positive z;. Over R N, Hzll L is nei-
ther convex nor concave, containing many strong local minima and presenting a
difficult optimization problem. Large values of p result in smooth solutions, how-
ever, as p—0 the solutions tend to become more ‘spikey,” or sparse {7].

The reason for this can be seen in Figure 1. As p—0, the curves in Figure 1
approach the z,, z, axes, on which the unit ball lies for / (z) in eqn (1). We iden-

tify minimum order optimization as a special case of generalized I, optimization.
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Since g(z)=[l|z | |7 for p=-;—, we have
I N L w
gm0 9@ = B[t = 5 Xe) = 1 @)

The utility of this observation is that for ¢ finite, g(z) eliminates some of the
handicaps of f(z). g(z) is continuous everywhere and differentiable except at the
axes. Gradients may be computed for all non-zero terms. This enables use of gra-
dient search techniques at least for finding local minima. In section 3 we present
a finite extreme point search algorithm which also benefits from the use of ¢(z)
rather than f(z). For reasonably small values of q, ¢g(z) is computationally
stable, and thresholds are not needed to handle inexact zero values. Also, ¢(z),
unlike f(z), can provide some discrimination in cost between solutions of equal
order, thus avoiding a stalled search at a point surrounded by adjacent solutions

of equal cost.

If however we must allow g—oco before eqn (2) leads to a solution of eqn (1), then
we cannot benefit from the practical advantages of g(z) mentioned above.
Theorem 1 (see Appendix A) provides justification for minimum order optimiza-
tion based on minimizing ¢(z) by demonstrating that for a bounded solution set
there exists a finite g, such that for all ¢ > ¢, any solution to eqn (2) is 2 solution
to eqn (1). Eqn (2) therefore defines a class of problems, indexed by ¢, whose solu-
tions are increasingly sparse as ¢ increases, until ¢ > ¢, where an optimally sparse
solution is given. For ¢<l1 the optimal z changes continuously as a function of
g, but for ¢ >1, there is a finite number of optimal solutions. A given Zopt will
remain optimal over a range of ¢ values, and as ¢ increases, we step from one
solution to another in a discrete fashion [2]. This behavior is shown in Figure 2
for a problem with four basic feasible solutions, in this case there are two distinct

optimal solutions for 0<p <l.
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It should be noted that since solutions to eqn (1) are not necessarily unique, and
lacking any justification for accepting one over another, we are satisfied with any
algorithm which will select one from the optimal set. Theorem 1 proves that solu-
tions to eqn (2), for ¢>¢,, form a subset of solutions to eqn (1), so we accept any
l /q optimum. In order to improve the computational stability of an algorithm,
we wish to use the smallest value of ¢ which reasonably approximates f (z). The
g, as computed in Appendix A is a conservative upper bound, and in practice a

much smaller value may often be used.

Figure 3 is an illustrative example of the effect of changing ¢ on solving eqn (2)

for

N PP | B

Yielding the optimal solutions for various ¢ as shown in Table 1. It is interesting
to note that for this example the bound ¢, from Theorem 1 is correctly predicted

with {1 =10, e =1, and r =1 to be ¢, = log(10/1)/log(2) = 3.32.

3. Simplex Search Algorithms for [ o Optimization

In the following, we present two algorithms for solving eqn (2) based on a non-
linear simplex search procedure. The {, /q simplex algorithm efficiently locates a
local optimum which in practice, appears to provide a good approximation of the
global optimum. The stochastic search algorithm converges asymptotically to the
global optimum. To facilitate the development, we introduce two specific forms

of eqn (2) for £ =0 and £ # 0 as follows.
For £ =0 the form is:

mi

n N !
z g(z)=2|:c,-|7 st Hz —b =0, ¢ > 1 (4)

fm=]

Note that unlike linear programming (LP), no positivity constraint on z is
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needed, as shown by theorem 2 below. This form may be applied directly to a ver-

sion of the I, /e simplex algorithm which allows bipolar valued variables.

For £ > 0 the form of (2) is

min oN 1

;9@ =3 @) st Hi —b =0, 2>0, ¢>1 (5)
f=]
where
2+]
-~ H-H 1 0 - KA -~ .h""f.
H= [H—H 0—1] =] b= [h—.f.]
-

zt, 2= €RN, 5%, 5~ €RM, ieRN', heRM', N' =2N+2M, M' =2M

st and 5~ are respectively slack and surplus variables as commonly employed in
linear programming [14]. Note these variables are not included in the computa-
tion of g(Z). This form allows us to confine the search to the nonnegative
orthant of the space RV '. Theorem 2C below provides the equivalence of equa-
tions (5) and (2) for z = z*—z~. The introduction of slack and surplus variables,
positivity constraints, and use of a form of the ll/q simplex algorithm which
allows pivots only to positive valued solutions, are needed to deal with the ine-

quality in eqn (2).

3.1. Fundamental Theorem of /,,, Programming

In solving the l,,, program, we lack the convexity properties which for [, pro-
gramming yield a well posed problem, and imply global optimality from local
optimality. Over R¥, the cost g(z) is nonlinear and neither convex nor concave.
Our problem would appear hopeless, but for the fortunate fact that for ¢>1 we
can limit the candidates to a finite set of "basic" solutions, which are the same as

those defined for linear programming. This is indicated by the "Fundamental
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Theorem of {y, Programming” which we present here, with proof in Appendix B.
We define a basic solution to eqn (4) or (5) as any z or Z with respectively at
most M or M' nonzero components. Additionally, we say any Z of eqn (5) is
"properly basic” if it is basic and (z*)T(z™) = 0.

Theorem 2A

Given a problem of the form (4) or (5), if a solution exists, then a basic solu-

tion exists.
Theorem 2B

If a global optimal solution to eqn (4) exists, it is a basic solution, and is glo-

bally optimal to eqn (2) for £ =0.
Theorem 2C

If a globally optimal solution to (5) exists, then a properly basic globally
optimal solution exists, furthermore, this solution implies z =zt —z~ is a
globally optimal solution to eqn (2) for £ > 0.

The basic solutions of the forms (4) and (5), are isomorphic with the vertices of

R 2N +2M

the convex polyhedron defined by their constraints in RV and space

respectively [14]. Consequently, we can restrict our search to these vertices, since
one must be the optimal solution. There are potentially O [ﬁ] of these vertices,

making an undirected search of even this finite set impractical for moderately
large M and N. These properties motivate us to use a procedure similar to the
linear programming simplex algorithm, traversing the vertices while monotonically
reducing the cost. Due to the nonlinear nature of the cost, modifications to the
standard LP algorithm are required, and globally optimal solutions are not

assured.



-9-

3.2. The l,;, Simplex Search Algorithm

As in linear programming, we begin by computing any basic feasible solution as a
starting point for the simplex search. The two forms presented above describe the
constraint as a vector-matrix linear equality in RM*XN or RM ' XN’ space respec-
tively. In the following development we will use Hz=b of form (4), but Hi=h
from (5) can be substituted. Selecting any M columns of H for which we can
compute a left pseudoinverse, we permute the matrix columns and corresponding

elements of z to place these as the first M columns. Partitioning H we have

| AlD | =H, where ACRMXM  At= left pseudoinverse of A (6a)
Multiplying by Al leads directly to the basic solution Zp

[1|AD )z =Ath, z5 =[AlR,0, 0] (8b)

For form (5), somewhat more care than indicated above is required in selecting
columns for A to insure zg> 0. A linear programming phase one procedure may
be used with either form to compute a non-negative initial basic solution if we
first negate elements of &, and corresponding rows of H, to force > Q, We iden-
tify the variables z; associated with columns of A as basic variables, and A as the
basis. An adjacent basic solution is one that is formed by moving (pivoting) one
variable out of the basis and one non-basic variable into the basis by swapping a

column in A with one in D, adjusting z indices, and recomputing Af.

Equation (6) suggests the structure of the "tableau” used in linear programming to
facilitate the pivoting computations [14]. The tableau is formed by augmenting

the matrix with the right hand side
Y=[1/AD|Ats) (7)

The reduced cost row of the LP tableau does not appear in Y due to the nonlinear
cost functional. Since the first M columns are always the identity matrix, they

need not be stored. During pivoting, all remaining columns of Y are updated
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using the simple pivoting equations, or with a recursive product form of comput-
ing the new inverse A!, both described in many texts [14,15]. Index vectors are
maintained to keep track of which variables are in or out of the basis. At any
iteration, Y*, the current basic solution can be read directly from the last column.
Two tableaus are said to be adjacent if we can move from one to the other with a
single pivot operation, or equivalently, if their sets of basic variables differ by one

variable only.

For the l,/, simplex algorithm, we may view the set of tableaus as a connected

graph with a node for each tableau satisfying (7).
Let S = the set of all basic feasible solutions (BFS) to (2).
Let T = the set of all tableaus, Y’ associated with S.

Define a graph, G = (T, v) where v consists of pairs (Y*, Y/) € viff tableau

Y7 can be generated from Y' by a single pivot operation (or vice versa).
Each element of T maps onto an element of S. This graph is connected and has
properties discussed in depth in [16]. The fundamental theorem implies we may
find an optimum by searching the graph G. The algorithm performs this search
by generating a sequence, {Y’ li=1,2, - f maxs Which traverses the graph along a
path of monotonically non-increasing cost, halting when all adjacent solutions are

of greater cost. The algorithm is as follows:

1) Find any initial basic feasible solution.

2) Compute the cost, Ez,-l/ 9, of the bounded feasible solutions from adjacent
tableaus.

3) If no adjacent tableau is of equal or lower cost, terminate, optimum found.
Otherwise, if any lower cost tableaus exists, select one and pivot to it. Oth-
erwise, perform an anti-cycling procedure [Bland, Kruse] to pivot to an equal

cost tableau.
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4) Repeat 2) and 3) to termination.

Note that in step 2) the test for feasibility requires a positivity constraint if form

(5) is used.

This algorithm’s approach is similar to one described in [2], although we have not
seen it applied to the minimum order problem. As with linear programming, a
practical computer algorithm must deal with accumulated error from pivoting,
find an initial solution, include an anti-cycling procedure, and handle systems of

large order.

Our experiments have shown that the 1/q simplex algorithm converges in approxi-
mately the same number of iterations as the linear algorithm would for a similar
sized system. Since the cost at adjacent tableaus can be computed without pivot-
ing the entire tableau, the processing load involved in computing costs at all adja-
cencies in step 2) above is equivalent to a single pivot operation. Thus computa-
tion time is approximately twice that of the LP simplex algorithm overall. With
a convergence time comparable to the O(5/V) iterations of the LP simplex, this

algorithm is dramatically more efficient than an exhaustive search.

In general, the algorithm does not guarantee convergence to a global optimum.
However, we have found that in most cases acceptably sparse solutions were
found. This algorithm is much more efficient than the globally optimum stochas-
tic search algorithm deseribed in section 3.3, so if a good, near optimal solution is
acceptable, this algorithm is recommended. It is somewhat surprising that it gen-
erally performs so well. In the following discussion we attempt to provide insight

into why this is so.

A feasible solution to eqn (2) with fewer than M nonzero components is termed a
degenerate solution. It follows then, that our original problem, (1), involves a
search for the maximally degenerate solution, and for ¢>¢, we seek the same

solution for eqn (2). In standard LP, degeneracy is handled as a nuisance and so-
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called ‘anti-cycling’ procedures, mentioned above, are employed to avoid related

problems. Here, degeneracy is precisely what we are looking for.

The problems associated with degeneracy arise from the fact that zero valued
basic variables may be interchanged with non-basic variables resulting in a
different tableau, but identical corresponding solutions in 2. In the non-
degenerate case, there is a one-to-one correspondence between each tableau and its
corresponding basic solution. Degenerate solutions have a many-to-one relation-
ship. A degenerate solution is overdetermined, with more than one constraint
equation active at once [16]. It is important to consider the effect on algorithm
performance of having a finite set of tableaus associated with a single basic solu-

tion.

Consider a degenerate BFS, z; €S, and its representation in the graph G
described above. For each such solution we define a degeneracy subgraph, DG’
containing all nodes which map onto z; and their interconnecting arcs. Consider

for example the following system with 5 variables and 3 contraints:

.1?1.
1 100 1/2 1/6| [
1|l = 010 1/2 1/6]| |23 (8)
1 001 —1/2 1/6 T4

Ts

The set of basic feasible solutions, their degeneracy degrees and the number of
tableaus in the degeneracy subgraph are shown in Table 2 and the associated
graph, including the degeneracy subgraphs associated with the degenerate solu-
tions, are shown in Figure 4. Note that the tableaus in DG are not all mutually
adjacent. This figure also illustrates the increased number of paths to a degenerate
solution. The number of nodes in DG’ increases extremely rapidly as the order of
degeneracy increases, and it is likely that many, if not most, of these nodes are

not mutually adjacent [16]. This poses a problem for the {,,, simplex algorithm



-13-

if such a subgraph is encountered prior to reaching the optimal solution. All
nodes in DG/ are of the same cost, yet we must traverse the subgraph to insure
access to any lower cost nodes in G which are adjacent to distant nodes of DG/ .
One cannot use a single pivot operation to reach all BFS’s connected to the degen-
eracy subgraph associated with /. Procedures must be employed to insure that
we do not terminate prematurely in DG’ without accessing all external nodes con-
nected to the subgraph, of potentially lower cost, and that we do not ‘cycle’ end-
lessly in DG7. A number of approaches to this problem have been used, including
a very simple anti-cycling procedure due to Bland [14,7], perturbation methods
[14,17), and algorithms to find the minimum spanning tree for DG’ to guarantee
no cycling and access to each external connected point [16]. The stochastic search
algorithm described in section 3.3 randomizes the selection of adjacent nodes to
pivot to, and thus eliminates the problem of cycling or missing lower cost adjacen-

cies at a degenerate solution.

Degeneracy of the optimal solution however provides advantages which contribute
to the success of the algorithm. As the !, /q simplex algorithm traverses the graph
from an arbitrary starting point, it can find the global optimum only if a path of
monotonic decreasing cost exists through adjacencies. With the many to one
mapping of DG’ onto Z;, there are many more paths from an arbitrary point in
G to a node mapped to a degenerate solution z; than would be found for a non-
degenerate solution. Thus a degenerate optimum is adjacent to more nodes and it

is less likely to be an isolated minimum (see the example of Figure 4).

The algorithm’s operational modes differ for forms (4) and (5). With (4), the
degeneracy properties described above dominate algorithm performance, but with
eqn (5), cost reduction is obtained primarily by pivoting zero cost slack variables
into the basis. Few examples of degenerate solution results have been observed

for form (5), but results are regularly of lower order than the LP solution.
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3.3. The Stochastic Search Algorithm

The algorithm described in this section uses the techniques of simulated annealing
[18,19] to arrive at globally optimal solutions to problem (2). The algorithm still
limits its search to the graph of basic solutions and traverses the graph across
adjacent node ares. A Markov chain is generated using the Metropolis algorithm

[18,19] to randomly select from the adjacent solutions.

Using the graph notation described above, let N(Y')CT denote the set of neigh-
bors, by adjacency, in G to the node Y*. Let Y’ be mapped onto the BFS z; €85,
along with all other nodes contained in the degeneracy subgraph DG; associated
with z;.

The simplex algorithm described above generates the pair of sequences

{0 In=12, -t} = {2" [n=12, - ) ©)

according to the rule Y("+1)eN(Y") such that ¢(z"*!)<g(z"), where {z"} may
have repeated elements due to degeneracy. Thus the cost is nonincreasing at each
iteration. We define local convergence as the first element z; in the sequence such
that all tableaus adjacent to the degeneracy subgraph DG; of z; have correspond-
ing solutions of higher cost. Ideally we would like to find the global optimum on
the graph G, i.e. z"™ such that g(z"™)<g(z) for all z;E€S. In the following we
describe how the method of simulated annealing is used to generate a random
search pattern which allows escape from local minima on the graph and converges

asymptotically to the global minimum.

Since each element of the sequence {Y" } belongs to the neighborhood of the previ-
ous element, as defined by the graph G, it follows that randomizing the choice of
Y"**! from the neighbors of Y® will produce a Markov chain. The key to use of
the simulated annealing algorithm is to chose a Gibb’s measure, Py(Y) and ran-

domize the updating rule (choice of tableau) such that for a fixed temperature
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parameter, T, the resulting Markov chain is homogeneous [19]. The temperature
parameter T is introduced to simulate the annealing process so that as T—0, the
measure Pp(Y) becomes concentrated at the tableaus corresponding to the global
minima of g(z) for all 2€S. The Gibb’s measure is chosen to reflect the cost

function of our problem:

Pr(Y) = z(lT) exp [—g;Y) ], YET (10)

where z(T') is the partition function such that Y Pp(Y)=1 and ¢(Y) denotes the
YeT

cost g(z) where z is the BFS associated with Y. For a time homogeneous Mar-

kov chain, the Gibb’s measure must obey [19]

Pr(Y')= ¥ Py(i,5)Pr(Y’) for all Y Y/€ET (11)

s
where Pp(1,7) den:t;Tthe one step transition probability matrix. The choice of
the updating rule explicitly determines the matrix P,. In the following we use
the Metropolis algorithm and prove that the resulting matrix P, satisfies (11)
with P7(Y) as defined in (10). Each point Y has a neighborhood, N(Y*), with
cardinality K; =|N (Y')l Let &Y*) denote the degeneracy degree of Y [16], i.e.

the number of zero valued elements in the BFS z' corresponding to tableau Y?,

and &pp= 2% [{Y')). Then |K;|< (Spaxt1)(N — M) =K | 5 is the max-

Y'eT
imum number of adjacent tableaus. Let
PRI
Pr(i,j) = 2(3.i) min [1, exp [ 2(X)-g (V) ]‘ (12)
where
1 \ -
if YYEN(Y'
Ko )
2(5,§)=11— Y Pr(¢,5') if 1=9 (13)
Jlei
|0 if YYEN(Y'), i
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The Metropolis algorithm [18,19] which produces this transition probability is
described below. We first verify that eqn (12) satisfies eqn (11). For (11) to hold,

it is sufficient to verify the detailed balance equation [19,20):
Pp(Y')P(i,5) = P(Y/)P1(j,i) forall Y', Y/ET (14)

Case 1: For j#i, Y/EN(Y') from eqn (13), z(,7)=0 hence P(i,7)=0. If
Y/EN(Y') then Y EN(YY), thus both sides are identically zero.

Case 2: For 7=, equality clearly holds.

Case 3: For Y/EN(Y'), from eqn (10)

Pr(Y) _ a(Y")—g(Yf)]
Pr(YT) "p[ 7 19)

From eqn (12)

Pr(7,4)  2(5,/) minf{l, exp—[g(Y')—g(Y’))}

Pr(i,5)  2(5,5) min{l, exp—[g(Y’)—g(Y")]} (16)
e [ o(¥)=g(¥9) | _ Pr(¥)
’ T Pp(Y?)

thus eqn (14) and (11) are satisfied.

To generate the corresponding time homogeneous Markov chain, we would use the
following algorithm [19]:

1) Select initial basic feasible tableau, Y*, n=0.

2) Let IN(Y" )FK,‘, then select a tableau Y/€E[N(Y" JUY"] according to the

probability:

1/K . if Y/ EN(Y")

i) .
PriY)=1,k, /K ax if YY"
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3) If Y/=Y*, then Y**!'=Y", n=n+l, go to 2), else continue.
4) Compute cost ¢(Y’) for new candidate tableau. If Ag = g(Y?)—g(Y") < 0
Then: Y*+! = YJ

Else: generate random variable r ~ UJ[0,1]
Ag
Ifr < —=
r <exp [ T ]

Then: Y*+=Y/,

Else: Y*+! = Y*
5) n=n+1, go to 2).
The convergence to the global optimum is achieved by generating a time inhomo-
geneous Markov chain by monotonically decreasing the temperature parameter T

as the iterations proceed. As T'—0 the Gibb’s measure, P7(Y), will converge to

the limit

1

T YeT*!

PO(Y) = 0 Yﬁ T* (17)

where T® = {Y€ET: ¢(Y)<g(Y') for all Y'ET}. For global convergence of the
simulated annealing algorithm, i.e. the sequence {z" } converges with probability 1
to some element z‘€S’, it is necessary that the time inhomogeneous Markov
chain is strongly ergodic. The algorithm described above, when modified to
reduce the temperature T, monotonically at each iteration, produces a strongly

ergodic Markov chain, provided the annealing schedule is of the form [19]

- ol
T = o T aF MO (18)

where n is any parameter 1<n,<oco. The parameter ¥ > rL is shown in [19] to

depend on the radius, r, of the graph and [ is a Lipshitz-like constant which is a
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measure of the maximum local slope of g(Y) on the graph. Explicit formulas are
given for r and L in [19], however, in practice these values are too large for rea-
sonable computation times. In implementing the algorithm the initial tempera-

ture was chosen arbitrarily, then reduced according to eqn (18) at each iteration.

Since the simulated annealing algorithm exhibits only asymptotic convergence,
and yet the graph G has only a finite number of nodes, this algorithm is of prac-
tical importance only if its finite time behavior yields improved solutions over the
deterministic simplex search. In section 5 we show simulation results obtained by

this algorithm.

4. Convex Transformation Gradient Search

In some applications the constraints may be better expressed as an upper bound
on the /[, norm of the deviation of Hz from the desired vector &, as in the qua-
dratic form:

min

N 1
9@ =157 st (Hz—b)T(Hz—b) <€, 5;20,and ¢>1  (19)

i=1
The convex transformation gradient search algorithm presented here is an efficient
algorithm which can handle systems of large dimension. Though global optimality
of the result is not assured, as in /,/, simplex algorithm, this produces locally

optimal solutions which in practice achieve low order.

If the hyper-volume defined by the constraint (Hz—&)T (Hz—£) < e does not
contain the origin, then the globally optimal solution must lie on the surface of
this volume. The surface contains no isolated extreme points, so we must search a
continuous surface, rather than a finite set of points for the optimum. For prob-
lems of this form we may not define a finite set of basic solutions, and therefore

cannot rely on a simplex search approach.
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Attempts at straightforward constrained optimization gradient search techniques
are doomed by the extremely strong local minima of the objective function g(z).
The convex transformation approach maps the problem into a space which elim-
inates this problem and improves the computational and numerical aspects of a

gradient search by giving us a convex cost objective functional.

For each point in the original space,
{z |zer¥, z,>0 } we define {gly;=1/p In(z;)} (20)

providing a one-to-one mapping of z onto y. Equation (19) then becomes
inf LA T
y hy)=Ye" st (HeP—b)" (He”—-b)<e¢ and y;>—0c0 (21)
fm=]
where €# denotes point by point exponentiation of each element of a vector z.

Since e¥

is a strictly convex function, and sums of convex functions are convex,
h(y) is a strictly convex functional over 3. Note that although we have to res-
trict z;#0 (y; >—00), we may allow z; to be arbitrarily close to zero, and thus
consider low order solutions as having the largest possible number of elements
within an epsilon neighborhood of zero. This transformation is similar to one
used in solving the geometric programming problem by transformation to a con-

vex program [21,22]. In our case however, the original convex set defined by the

constraint becomes non-convex.

We have been successful in using exterior point, non-linear constrained optimiza-
tion algorithms in solving the transformed problem, eqn (21), where these algo-
rithms failed with the original form, eqn (19). By using a least squares solution as
a search starting point, a sequential quadratic programming algorithm [23] has
been successful in yielding very low order solutions for systems as large as 100 or

more variables.

At each iteration, cost function and constraint error evaluations, and their gra-
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dient vectors, are computed from the current estimate of z. Exact expressions for
the gradients of the cost function and constraints have been derived from eqn
(20), and the Hessian matrix is then approximated by assuming a local quadratic
form and using finite differences from successive constraint gradients. Algorithm
termination is accomplished when an error measure of the Kuhn-Tucker condi-
tions is sufficiently small [23]. Execution times in our experiments compare favor-
ably with the [, /¢ simplex algorithm for similar sized systems. A penalty method
approach [13,14] for constrained optimization has also been used successfully in

solving eqn (21).

5. Applications

Two classes of problems have been identified to which the minimum order cri-
terion may be usefully applied. The first class includes system design problems in
which the dominant cost is the number of non-zero components required to meet a
given set of constraints. An example of this class, which is treated below, is the
design of an array beamformer to meet a given spatial response using the
minimum number of array elements. Other potential applications include the
design of minimum computation FIR filters [24] and problems in operations
research. The second type of application lies in the processing of signals. In the
following we demonstrate results in seismic deconvolution. Other interesting
applications include the reconstruction of star source images in radioastronomy
[11] and imaging of current dipole sources as a means of locating neural activity

in the human brain from external magnetic field measurements [1].

5.1. Sparse Arbitrary Beamforming Array Design

In this section we consider the problems of array element shading and placement
for arbitrarily shaped symmetric 3-D arrays in narrow-band phased beamformer

operation. The "fewest elements" optimality criterion allows us to reduce the
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beamforming processing load by identifying the unnecessary phones for a given
beam; a task which is difficult using other design approaches. Also, if we use a
fine grid of potential element locations, then the minimum order solution can be

used for optimal element placement analysis.

Although a number of line array thinning approaches have been proposed [25,12],
they are not applicable to the arbitrary 3-D array, and do not guarantee
optimally sparse arrays even in the 1-D case. The literature contains analysis of a
number of unusually shaped arrays, including circular, spherical, cylindrical, and
conformal configurations which follow the the shape of the supporting vehicle
[26,27,28,29]. With these configurations it is often very difficult to determine
efficient element placement; attempting to approximate equal spacing can cluster
elements in areas which contribute little to array response, and thinning can
become a trial and error proposition. Maximizing the target signal to noise ratio
with respect to a known noise field [30], linear programming methods, or using a
pattern search algorithm [29,31] can yield useful shadings for these arbitrary
arrays, but can give no information on how many elements we need, or where
they should be placed. The examples below show how the /,;, optimization algo-
rithms can be applied directly without restriction on the array configuration, and
how the maximally sparse optimization approach can improve on other thinning

methods.

To set up a system for beamforming design using the [, /4 simplex or simulated
annealing algorithms, we take M samples of the upper and lower response bounds
from a dense enough grid on an enclosing sphere to control sidelobe leakage. Let
s; be the vector of direction cosines to the point on the sphere where the upper
and lower response constraints, ,, and b, are sampled. Let sy be the vector direc-
tion cosines of the MRA, and r; the position vector or the jth array element. Let

a; be the computed shade for the jth element, with 2 =a*—a~ where
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aj'",aj" 2> 0 so we may obtain positive or negative shade values while using the

positive only vectors gt and 4~ in the algorithm. We require symmetry about

the origin to insure a real response value:
l'j = _rN—j—l! and a_,- = aN_j_l (23)

where N is the number of array elements, therefore we need only solve for
N /2 + 1 shades (coefficients) in g. The response at the constraint points is then

given by a cosine transform using the matrix with elements:

H;; =

; %cos [r; - (8i—sp)w/c], fori=l,M j=1--Nf2+1 (24)

where w is the band center radian frequency and c¢ is the wave propagation speed.

We introduce slack vectors zt and z~ of length M, and have the final form of the

system:
A
H-HIO | |k
Hr =4 : |H—m! 0 -} = |5t (25)
P
1 1 Q20 - c

where } indicates rows may have been negated to force !z,t to be non-negative.
The bottom row of H is added to constrain the sum of shade absolute values.
Our simulations show ¢ can be adjusted to improve array gain relative to a noise
field and beamformer stability. From eqn (25) we first use a phase one algorithm
to find any basic solution and then optimize using the simplex or simulated
annealing algorithms. With a low order solution & computed, the final complex

element weight for the beamformer is

=J={ri80)
v; =eje ¢ (26)

For all examples given below, ¢=15 was used by the optimization algorithms.
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Consider the 60 element transparent concentric ring array of Figure 5. We wish
to form beams, steered horizontally, in the plane containing the array. This is
similar to the configuration used by some "dipping" sonar systems which suspend
a cylindrical ring array in the water from a helicopter and form horizontal search
beams. Figure 6 shows the beam response for the full array using unity magnitude
shading, with complex phase shifting at each element equal to the conjugate of
the elemental propagation phase delay for a plane wave arriving from the max-
imum response angle (MRA) of zero degrees. A sinusoidal signal at 1 kHz is
assumed, which gives an average element to element spacing of just over \/4. We

require the element positions to be symetric about the origin.

For the thinned array design, we use the same element phasing as in Figure 6, but
let the algorithm adjust the real amplitude shading. The mainlobe width is con-
strained to be the same as Figure 6, with sidelobes no larger than the first
sidelobe. Allowing some of the secondary sidelobes to come up to the level of the
first allows some degree of freedom which is exploited by the algorithm to thin the
array. Figure 7a shows the remaining elements of the array after thinning by the
lyj, simplex search algorithm, and Figure 7b shows the corresponding response
pattern. Only 16 of the original elements are needed to maintain the original
mainlobe shape and maximum sidelobe level. This result agrees with earlier obser-
vations that the outer elements of a ring array are the primary contributers to
beam response. Note that the algorithm simultaneously selects the elements and

computes the optimal shade weighting.

In [25], Jarske et. al., propose a simple thinning procedure for narrow beam
arrays. In their example 4.1, a symetric line array is designed with length con-
strained to be <50\, and a mainlobe width constraint of +/-3.6 degrees
(wavenumber = .087/X ). The thinning procedure used in [25] requires the ele-

ments to be placed at multiples of A\/2 from the array center. Figure 8a shows
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the final element positions for the best solution in [25]), which produced a max-
imum sidelobe level of .217 (-13.27 dB), using 25 elements. Figure 8b shows the
positions of the 26 elements, and Figure 9 shows the corresponding response pat-
tern, for the I, /e simplex search solution to the same problem, but with the main-
lobe further constrained to +/-2.06 degrees. The initial array used in the search
was 251 elements long, with .2\ spacing, for a total length of 50\. Using the sto-
chastic search algorithm and truncating the sequence prior to reaching a tempera-
ture of zero, this solution was improved to that shown in Figures 8c and 10. Note
that here only 24 elements were needed, the aperture is slightly smaller, and the
mainlobe narrower than example 4.1 of [25]. The difference between the /;;, and
the stochastic search solutions is an example of termination at a local optimum
which is overcome by the simulated annealing randomization of the search. Fig-
ure 8d shows the final element positions, and Figure 11 the corresponding beam
response for the I,;, search with all constraints (including mainlobe width) identi-
cal to the example in [25]. Only 16 elements were needed and the aperture was

reduced further.

5.2. Seismic Deconvolution

The goal of seismic deconvolution is to estimate the acoustical properties of a lay-
ered medium by recovering a reflectivity sequence, representing the impedance
mismatches between the layers, from a set of measurements of an incident wavelet
relected from each of the boundaries [32]. Several methods have been proposed for
‘blind deconvolution’, in which the source wavelet is unknown, based on the
optimization of norms which favor sparse reflectivity sequences. Examples of such
norms are the varimax and parsimonius functionals [7,8,9]. While these methods
have met with some success, the cost functions are nonconvex, and since the
methods are formulated as unconstrained optimization problems [8], the search is

carried out over a continuous parameter space, converging to a local optimum.
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Methods based on the above cost criteria, do not adapt well to the case in which
the source wavelet is known and the problem can be formulated in terms of a set
of linear constraints, since local minima are not confined to the vertices of the
convex polytope. An alternative approach is taken by Mendel [32] based on a sta-
tistical model for the signal and reflectivity sequence. A Bernoulli-Gaussian model
describes the reflectivity sequence, in which the parameter, \, of the Bernoulli pro-
cess determines the degree of sparseness of the layers and the variance, 02, of the

Gaussian, the average energy reflected at each boundary.

In the following we apply the methods developed above to the deconvolution
problem in which the source wavelet is known and compare the results with those

obtained using the optimal deconvolution methods in [32].

The linear system was set up to include slack variables in a similar manner to
that described in section 5.1 to allow for noise in the data. The formulation differs
slightly since rather than constraining each component of the error vector,

£=(z—Hb), an upper bound was placed on the sum of the magnitude of the com-

M M
ponents of &, i.e. 2[5,-‘=2tz,-“’—z,-‘1§c. The effect of this modification is to

f=1 (=l
allow larger errors at a few sample points provided the total error is not too large.
A suitable choice of ¢ could be found from an estimate of the variance of the

noise in the signal. The system which imposes the above the constraints is as fol-

lows:
a+.
Hzr =54 : [B'—H} 0 -Tollzt |= [Jz] (27)
Q0 0 1 11}z ¢
s

where b denotes the reflectivity data and z=z*—z~ the unknown reflectivity

sequence.
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A seismic signal was simulated by convolving the reflectivity sequence in Fig. 12b,
generated according to a Bernoulli Gaussian model( A=1/16, o®*=1), with the
causal 4th order ARMA wavelet in Fig. 12a. The resulting signal, corrupted with
ii.d. Gaussian noise at an SNR of 10 dB, is shown in Fig. 13a. A second set of
data was generated to incorporate convolutional backscatter [32]. In this case an
iid Gaussian sequence, of variance 07=0.01, was added to the reflectivity
sequence prior to convolution with the wavelet; again i.i.d Gaussian noise was

added to the resulting data at a SNR of 10dB. The data is shown in Fig. 13b.

The results of deconvolution are shown for Mendel’s optimal seismic deconvolu-
tion method (OSD) (Fig. 14) and the nonlinear simplex algorithm (NSA)(Fig. 15)
for the signal plus noise case (Figs. 14a and 15a) and the signal plus backscatter
plus noise case (Fig. 14b and 15b). The square boxes in the graphs show the loca-
tions of the detected events, the solid lines the locations of the actual events. In
the backscatter case, we are interested only in the larger events, the smaller
‘events’ being due to backscatter from small scatterers and not of primary interest
in this problem. When applying the OSD method we assumed only knowledge of
the wavelet parameters; all variances and the Bernoulli parameter were estimated
from the data. Event detection was performed using the ‘single most likely

replacement’ detector [32].

It is interesting to note that there is very little difference between the results
obtained from the two approaches, even though the minimum variance deconvolu-
tion was based on the exact statistical model by which the data was generated,
while the new method uses only the 1/p cost function. In the case for data plus
noise the OSD method produces a spurious event at about the 80th sample point
(Fig. 14a) which is not present in the NSA solution. In the cae with backscatter,
the OSD performs slightly better and detects only ‘true’ events while the NSA

method also detects several of the larger ‘backscatter events’. In both cases how-
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ever, the number of events detected may be altered by modifying either the level
of the threshold in the event detection in OSD [32] or the upper bound, ¢, on the
{; norm of the residual error. In either case, an estimate for these values could be
obtained from more detailed knowledge of the varainces of the backscatter and

additive noise terms.

6. Conclusions

Algorithms have been presented for determining minimum order solutions to
problems with linear or quadratic constraints. These algorithms are based on
minimization of the [, norm, 0<p <1, which for a sufficiently small value of p is
equivalent to the minimum order criterion, as shown in Theorem 1. In the case
with linear constraints it was shown in Theorem 2, that the solution lies at a ver-
tex of the convex polytope formed by the linear constraints and can therefore be
found using a simplex algorithm with either deterministic or random updating
resulting respectively in localy and globaly optimal solutions. In the case with
quadratic constraints a convex transformation was described. The algorithms were
demonstrated to achieve good, sparse solutions in application to beamformer

design and seismic deconvolution.
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9. Appendix A

Theorem 1: Let S denote the set of all basic feasible solutions to

Hz =b s.t HERMXN, If the solutions in S are bounded, then

ﬂ=:1éa§ [lo(z)) is finite. Let e=1‘esr'1112, <N {lt,-j] s.t. :c,-jgeo} i.e. € is the

smallest non-zero magnitude of any element of any vectors in S.

Given €0 and <00, if V is the set of all globally optimal solutions to

min N
g J@)=3 Xz) such that Hz =5 (27)
f=1

with r = f(z) for any z € V (i.e. r is the optimal solution order), and U is the
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set of all globally optimal solutions to

min N, A
z g(z) =Y, lc,p such that Hz =5, ¢ > 1 (28)
f=]
then U C Vif ¢ 2> ¢, where
log Q
€
M= (29)
log r+1
r
Proof:

1) By Theorem 2A, and since any non-basic solution to eqn (27) is of higher

order than a basic solution, V C S. Also, by Theorem 2B, U C S.

2) Since|xj|$ﬂ, 1<j<N forallz €8, g(z) <rQY forallz € V

3) Since the order of any basic solution, z', not in V is > r+1, and
lzj’lz €, 1<§<N, for z; #0, g(z' ) > (r+1)e/? for all 2’ € an.

4) If for some g, rQ/9 <(r+1)e!/9 then by 2) and 3), g(z)<g(z') for all zEV
and all z' € Sni—’-, then by 1), solutions minimizing ¢(z) must be contained
in V,ie UCV.

5) Solving for q in 4):

1
r41 /9

r

€

Ql
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and since 0<r,,{l< 00, ¢, is finite. Q.E.D.

Note that this is a sufficient (but not necessary) condition which gives a conserva-
tive upper bound on ¢ and that in practice 2 much smaller value may be used.
Even though the equations may contain unbounded or very large finite solutions,
the application itself may suggest a more realistic value for 0. This smaller Q will
yield a smaller ¢ which will minimize the objective, g(z), for the lowest order
realistic solution, but will return a higher cost for lower order, yet unrealistic solu-
tions. For example, in the beamforming problem, we know that for a stable shad-
ing design with a normalized MRA response of 1.0, any single shade cannot be
significantly larger than N. Mathematically feasible, yet practically unrealistic
solutions of low order can be rejected by using the "common sense" value for
{I~N. Likewise, a realistic value for ¢ can be inferred from the measurement and

quantization noise in our problem.

10. Appendix B
Theorem 2A, Proof:

The existence of a solution, or a basic solution, is dependent only on the con-
straint equation Hz = b, not on the cost functional. Therefore, this portion
of the theorem is equivalent to the linear programming case, for which a

proof is available in many texts [Luenberger].
Theorem 2B, Proof*:
1) From eqn (4) above, we have the form

mi

n N, &
;g 9@)=X% |:1:,-F such that Hz =5, ¢ > 1 (31)

f=1
we construct the system

min 2N
. A=Y )

§=1

1
¢ such that Cy =4, 320, ¢ > 1 (32)
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5)

6)
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where

<+
— &z
-

By construction, any feasible g for (32) implies an z feasible for (31). Simi-

, C= [H'—H], z=(zt-2z7)

larly, g basic for (32) implies an z basic for (31).

2N
Over g 20, Y (v }/¢ is strictly concave, and Cy=h defines a convex set.

fe]
Any strictly concave functional achieves its global minimum at an extreme
point of a convex constraint set. Since a solution is an extreme point iff it is
basic [Luenberger], then eqn (32) is minimized at some basic solution, g,

with cost A (g, )-

Given ;5= [Zoht, mo;t]T let & = 2,5, — Zp;. We prove by contradiction g,
is properly basic. Assume that for a pair of terms in gy, (a:,-:‘ )-(:c,-; ) #0,
and thus g,, is not properly basic. We may form a new vector, 2’ by

replacing only these terms with:

A = 2t s + — ! = g — my + =
z; iy, — min(z;} , 77" ) and 3 g —min(z , 7))

By inspection g’ is a basic feasible solution to (32) and A (z')<h(y,,) since
y' differs from g,, in only two terms, which are both smaller than the
corresponding terms in Yopt - This contradicts the optimality of Yopt s SO We

conclude (z;* )T(zo;' )=0.

pt

g(&) = h(y,pt) for any optimum solution to (32) since due to 4)

B ape =5 (01, 1= 35 it W04 35 i =3 b0 =g (2)

opt
i=1 il =1 =1

We prove by contradiction that Z is optimum for (31). Assume Z is not

optimum for eqn (31), but some Z is, with g(z)<g(z,). We could then con-

T

struct a feasible solution ji= (z*,z7)7, with Z* containing the positive terms

of Z and Z~ the negative terms. (z1)7(z7)=0, so as in §)
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9(Z) = h(%)<h(yop)=9(%) which contradicts the assumption y,, is optimal
for (32). Therefore, Z is optimal for (31).

Thus, given y,, optimum for (32), by 3) it must be basic, 2) implies an &
which is also basic for (31), which by 6) is also optimum. Q.E.D.

Theorem 2C, Proof:

1)

2)

3)

Hi — b =0, Z >0 defines a convex solution set over which ¢(Z) is concave.
If an optimal solution Z° exists, then, since g(Z) is (not strictly) concave,
there exists a solution Z,,; which is an extreme point, therefore basic, with
9(2%) = 9(Ept )-

We may use an argument similar to step 4) of Theorem 2B above to prove
(Zo5)T (Zopt) = 0 and thus Z is properly basic.

Since g+ and s~ are not included in the cost computation ¢(Z), as in 5) and
6) above ¢(Z,5) = 9(xz), =2}y — Zyp:, and hence if Z,, is an optimal solu-

tion to (5), 2 is an optimal solution to (2). Q.E.D.



Optimal Solutions

q values: Solution type: - ¢ Xgt Xg:
0 min-max 91 91 91

3 min energy 98 20 98
1<q<3.32 linear program | 1.00 | 0.00 | 1.00
q>3.32 | min order (max sparse) | 0.00 | 10.00 | 0.00

Table 1: Optimal solutions to eqn (2) for the system of eqn (3) for various g¢.

FEAS SOLUTION: :
BASIC IBLE J Order of Tableaus in

Degeneracy
Subgraph

(1)

2 | 0 (2)
o |lo] o (3),(8):(6),(7),(8)
0o | 2 | 2

=] °

0 L 1 (4)(8)

Table 2: Comparison of the degeneracy of the feasible basic solutions to eqn (8)




Figure 1. Unit balls of the 1, norm for various p. Noteasp
approaches 0 the unit ball approaches the axes.
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Figure 2. Hlustration of the cost, g,(z;) associated with each of the four basic
feasible solutions to the problem of eqn (4) for p values of 0<p<l. Note for
0<p<.613, z, is of lowest cost, while for .813<p<l, z, is of lowest cost.
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Figure 4: Graph of the simplex tableaus and their
connections for the example in eqn (8). Each shaded
area, DG; , represents the degeneracy subgraph

associated with basic feasible solution Xi. Graph node
numbers indicate the corresponding unique tableaus.
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Figure 7. Thinned array result using the !, simplex search with mainlobe and
maximum sidelobe constrained to match figure 5b. a) Element positions. b)

Thinned and optimally shaded beam response.
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Figure 8. Element positions of four thinned array placement solutions. a)
Jarske et. al. example 4.1 [25]. b) I, simplex search with narrower mainlobe con-
straint than a. c) Stochastic search with narrow mainlobe. d) [, simplex search

with identical constraints to a. above.
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Captions:

Table 1. Optimal solutions to eqn (2) for the system of eqn (3) for various g.
Table 2. Comparison of the degeneracy of the feasible basic solutions to eqn (8).

Figure 1. Unit balls of the /[, norm for various p. Note that as p approaches 0

the unit ball approaches the axes.

Figure 2. Illustration of the cost, g,(z;) associated with each of the four basic
feasible solutions to the problem of eqn (4) for p values of 0<p<1. Note for
0<p<.613, 2, is of lowest cost, while for .613<p <1, z, is of lowest cost.

Figure 3. An example of /, optimization for various values of ¢. Solutions to

equation (3) show minimum order results for ¢ >3.32.

Figure 4. Graph of the simplex tableaus and their connections for the example in
eqn (8). Each shaded area, DG;, represents the degeneracy subgraph associated
with basic feasible solution z;. Graph node numbers indicate the corresponding

unique tableaus.

Figure 5. Original 60 elements concentric ring array. Elements are omnidirec-
tional and beams are formed in the plane of the array. Design is for 1 kHz acous-

tic operation in seawater.
Figure 8. Unity shaded beam response for array of Figure 5.

Figure 7. Thinned array result using the [, simplex search with mainlobe and
maximum sidelobe constrained to match figure 5b. a) Element positions. b)

Thinned and optimally shaded beam response.

Figure 8. Element positions of four thinned array placement solutions. a)
Jarske et. al. example 4.1 [25]. b) [, simplex search with narrower mainlobe con-
straint than a. c) Stochastic search with narrow mainlobe. d) !/, simplex search

with identical constraints to a. above.



-4-

Figure 9. Beam magnitude response for array of Figure 7b.
Figure 10. Beam magnitude response for array of Figure 7c.
Figure 11. Beam magnitude response for array of Figure 7d.

Figure 12. a) ARMA wavelet used in the seismic signal simulation. b)

Reflectivity sequence used in the seismic data simulation.

Figure 13. a) Resulting signal synthesized from wavelet and reflectivity sequence

of Figure 12. b) Signal with -10dB Gaussian noise added prior to convolution.

Figure 14. Deconvolution results using Mendel’s optimal seismic deconvolution.

a) Using data of Figure 13a. b) Using data of Figure 13b.

Figure 15. Deconvolutin results using nonlinear simplex algorithm. a) Using

data of Figure 13a. b) Using data of Figure 13b.



Optimal Solutions

q values: Solution type: X Xg' Xg:
0 min-max 91 91 91

5 min energy 98 20 98
1<q<3.32 linear program 1.00 0.00 | 1.00
q>3.32 min order (max sparse) | 0.00 | 10.00 | 0.00

Table 1: Optimal solutions to eqn (2) for the system of eqn (3) for various ¢.



BASIC FEASIBLE SOLUTION:

Order of Tableaus in
Ty | 23 | 24 | 5 Degeneracy Degeneracy
Subgraph
1 [1]ofo 0 (1)
Z, 2 2 0 -2 0 0 (2)
Z3 0 Y 0 Y 6 2 (3)!(5)7(6)7(7)’(9)
24 0 0 2 2 0 1 (4),(8)

Table 2: Comparison of the degeneracy of the feasible basic solutions to eqn (8)



Figure 1. Unit balls of the 1, norm for various p. Note as p
approaches 0 the unit ball approaches the axes.
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Figure 2. Illustration of the cost, g, (z;) associated with each of the four basic
feasible solutions to the problem of eqn (4) for p values of 0<p<l. Note for
0<p<.613, z, is of lowest cost, while for .613<p<l, z, is of lowest cost.
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Figure 3. Anexample of 1q optimization for various values of g. Solutions
to equation (3) show minimum order results for g>3.32



Graph of the simplex tableaus and their
connections for the example in eqn (8). Each shaded
area, DG; , represents the degeneracy subgraph
associated with basic feasible solution Xi. Graph node
numbers indicate the corresponding unique tableaus.

Figure 4:
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Figure 5. Original 60 elements concentric ring array. Elements are omnidirec-

tional and beams are formed in the plane of the array. Design is for 1 kHz acous-

tic operation in seawater.
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Thinned and optimally shaded beam response.
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Figure 8. Element positions of four thinned array placement solutions. a)
Jarske et. al. example 4.1 [25]. b) I, simplex search with narrower mainlobe con-
straint than a. c) Stochastic search with narrow mainlobe. d) I, simplex search

with identical constraints to a. above.



1.0

0.8 4
3 0.6 4
[~
o
2,
3
[+ S
(-]
3
= 0.4 1
c
o
[
=
0.2
0.0 v T . T ¥ Y T
0.0 0.2 0.4 0.6 0.8

Normalized Wavenumber

Figure 9. Beam magnitude response for array of Figure 7b.

1.0



1.0

“ -
8 0.8 1
<
[-]
Q.
(]
-]
[+ <
(]
3
= 0.4
[
[=]
3
=
0.2
0.0 v T v T v 1 T
0.0 0.2 0.4 0.6 0.8

Normalized Wavenumber

Figure 10. Beam magnitude response for array of Figure 7ec.

1.0



|

0.81
g 08-
[
[~
&
(]
«
([}
T
2 04
c
(=]
[}
=
0.2-
0.0 . T . T ’ T - T
0.0 0.2 0.4 0.6 0.8

Normalized Wavenumber

Figure 11. Beam magnitude response for array of Figure 7d.

1.0



Optimal Solutions

q values: Solution type: - Xyt Xy Xg:
0 min-max 91 91 91

.5 min energy .98 20 .98
1<q<3.32 linear program 1.00 | 0.00 | 1.00
q>3.32 min order (max sparse) | 0.00 | 10.00 | 0.00

Table 1: Optimal solutions to eqn (2) for the system of eqn (3) for various g.

BASIC FEASIBLE SOLUTION: .
Order of Tableaus in
z, | 2o | 73 | 74 Degeneracy | Degeneracy
Subgraph
Z | L |1 ]1]O0]oO Y
|22 ]o[-2]o (2)
Z3 0 0 0 0 8 (3)’(5)a(6)1(7)1(9)
Z4 II o|lo]|2 ]| 2]o || 1 (4),(8)




Figure 1. Unit balls of the 1, norm for various p. Note as p
approaches O the unit ball approaches the axes.
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Figure 2. Illustration of the cost, g,(z;) associated with each of the four basic
feasible solutions to the problem of eqn (4) for p values of 0<p<l1. Note for
0<p<.613, z, is of lowest cost, while for .813<p <1, z, is of lowest cost.
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Figure 4: Graph of the simplex tableaus and their
connections for the example in eqn (8). Each shaded
area, DG; , represents the degeneracy subgraph
associated with basic feasible solution Xi. Graph node
numbers indicate the corresponding unique tableaus.
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Thinned and optimally shaded beam response.
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Figure 8. Element positions of four thinned array placement solutions. a)

Jarske et. al. example 4.1 [25]. b) [, simplex search with narrower mainlobe con-
straint than a. c) Stochastic search with narrow mainlobe. d) I, simplex search

with identical constraints to a. above.
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