USC-SIPI REPORT #133

A Digital Optical Cellular Image Processor
(DOCIP): Theory, Architecture and
Implementation

by

Kung-Shiuh Huang

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 404
Los Angeles, CA 90089-2564 U.S.A.

Dedication

To
MY FAMILY and MY TEACHERS,
" who teach me to love people and to solve problems

as simply as possible.

ii

Acknowledgements

I am deeply indebted to my thesis supervisors, Dr. B. Keith Jenkins and
Dr. Alexander A. Sawchuk, for their invaluable guidance, help, knowledge and
moral support throughout the course of this work. I owe special thanks to Dr.
Ramalingam Chellappa, who also served on my thesis committee, for his constant
encouragement and useful comments. Special thanks also to Dr. Edward K. Blum,
who served as an outside member on my thesis committee, for his enthusiasm
and helpful ideas, especially in the weekly discussion at the early stage of this
thesis. Other USC faculty, Dr. Cauligi S. Raghavendra, Dr. Richard Leahy, Dr.
Prasanna Kumar, Dr. Kai Hwang, Dr. Elsa Garmire and Dr. Armand Tanguay,
Jr. have been sources of inspiration.

I gratefully acknowledge Dr. Pierre Chavel, Mr. Jimmy Wang, Dr. Allan G.
Weber, Mr. Chein-Hsun Wang, Dr. Isaia Glaser, Mr. Hung-Jen Chang, Mr. Toy
Mayeda, Mr. Ken Prager, Mr. William Kressen, Mr. Chih-Lin Wang, Ms. Clare
Stassen and Mr. Wai-Chi Fang for their ideas, discussions and technical support..
I also owe thanks to Dr. Timothy C. Strand, Dr. Hua-Kuang Liu, Dr. Demetri
Psaltis, Mr. Ken Hsu, Dr. Richard P. Feynman, Dr. Ahmed Louri, Dr. Hungwen
Li, Dr. Pochi Yeh, Dr. Arthur Chiou, Dr. George Eichmann, Dr. Yao Li, Dr.
Sing H. Lee, Dr. Toyohiko Yatagai, Dr. Shing-Fong Lin and Dr. Chiung-Sheng

Wau for their encouragement and interesting discussions. I would also like to thank

iii

Mr. Yih-Yuh Chen for his helpful discussions in numerous problems of physics
and mathematics.

Thanks are extended to all other members of the Signal and Image Process-
ing Institute, especially Gloria Bullock, Linda Varilla, Ray Schmidt, Yih-Herng
Chuang, Aseem Vaid, Robert Frankot, Herb Barad, Dan Antzoulatos, Chun-Chau
Lin, Zhou Yitong, Shiaw-Shiang Jiang, Qin-Feng Zheng, Zeév Lichtenstein, Yu-
Hsiung Hsiao, Hao Jinchi, Shankar Chatterjee, Xiao-hong Yang, Ted Broida, Ja-
son Young, Lily Chen, Charlie Kuznia, and Dong Wiley for their help, friendship
and many interesting discussions; also to the members of the USC Family Student
Housing, especially Rong-Feng & Yu-Hua Chang, Min-Hsiu & Mei-Chu Chiang,
Hwang-Cheng & Yuh-Chyng Wang and Changhaw & Huiling Lin.

This research was supported by the the Air Force Office of Scientific Research
under grant AFOSR-84-0181, by the Office of Naval Research under contract
N00014-86-K-0602, by an IBM graduate fellowship, and by an SPIE scholarship.
Their financial support is greatly appreciated.

The greatest thanks of all go to my family, my parents Ching-Ming and Chien-
Yueh, my brothers Kuan-Tase and Kung-Hui, my sister Tase-Mei, my parents-in-
law Chin-Fuang and Shiu-Ken, and especially my wife Shin-Yuan. Dr. Kuan-Tase
Huang is the one sparking my interest in the field of computing and having the

greatest influence on my study.

iv

Contents

Dedication ii
Acknowledgements il
List of Figures x
List of Tables Xv
Abstract xvi
1 Introduction 1
1.1 Motivation e e e e 1
1.1.1 Toward A Unified Theory of Image Processing 1

1.1.2 Toward An Era of Digital Parallel Optical Computing . . . 4

1.2 Objectives i i i e e 7
1.3 Thesis Organization. 7
1.4 Contributions e 10
2 Previous Work — A Review 14
2.1 Previous Work on Image Algebra 14
2.2 Previous Work on Cellular Logic Architectures 17

2.3 Previous Work on Digital Optical Cellular Logic Processors 22
Binary Image Algebra (BIA): Fundamentals 27
3.1 Underlying Philosophy 28
32 Definitions e e e e 29
3.3 Two fundamental Principles 35
BIA: Development 38
4.1 Basic Properties of Images and Image Transformations 39
4.2 Examples of Special Cases: Translation (Shifting), Expansion, Shrink-
ing,and Projection 53
4.3 Theorems for Low Level Vision 55
4.4 Parallel Pattern Recognition Basedon BIA. 71
44.1 Life, Pattern Growth and Pattern Recognition 72
4.4.2 BIA Formulations for Pattern Recognition 75
BIA: Relationship to Other Computing Theories 84
5.1 Relationship to Symbolic Substitution 84
5.1.1 BIA Representation of Symbolic Substitution 85
5.1.2 Examples of Symbolic Substitution Using BIA 88
5.1.3 Symbolic Substitution Representation of BIA 92
5.2 Relationship to Cellular Logic 95
5.3 Relationship to Boolean Logic 96
5.4 Relationship to Linear Shift Invariant Systems, Convolution, and

5.5

Correlation v v v i it s e e e e e e e e e e e e 98

Some Standard Algebraic Structures 100

vi

6 Digital Optical Cellular Image Processor (DOCIP): Architec-

6.1
6.2

6.3

6.4

tures 103
Design Principles, 104
General Organization of the DOCIPs 107
6.2.1 Algebraic Description 108
6.2.2 General Description. 110
Arrayof Cells i e 111
6.3.1 Implementation of Fundamental Operations 111
632 CellStructure 114
Interconnection Networks. 117

6.4.1 Cellular Array, Conventional Hypercube, and Cellular Hy-
percube e e e e 117

6.4.2 Characteristics of DOCIP Interconnection Networks 121

6.5 Optical Conceptual Implementation 123

7 DOCIP: Control and Programming 130
7.1 Control Structure and Level 1 State Machine 131
7.2 InstructionSet 134
7.2.1 1-step Instruction Machine 134

7.2.2 Single Instruction Machine 135

7.2.3 General Purpose Machine 138

7.3 Programming i 142
7.3.1 Decompositionof Dilation 142

7.3.2 A Programming Example: Size Verification. 147

8 Parallel Optical Binary Arithmetic 153

vii

8.1 Binary Row-coded Arithmetic 154

8.1.1 Addition of Binary Row-coded Numbers 155
8.1.2 Subtraction of Binary Row-coded Numbers 159
8.1.3 Multiplication of Binary Row-coded Numbers 162
8.2 Binary Stack-coded Arithmetic 169
8.2.1 Addition of Binary Stack-coded Numbers 170
8.2.2 Subtraction of Binary Stack-coded Numbers 173
8.2.3 Multiplication of Binary Stack-coded Numbers 176
8.3 Binary Symbol-coded Arithmetic 176
8.3.1 Addition of Binary Symbol-coded Numbers. 177
8.3.2 Subtraction of Binary Symbol-coded Numbers 185
8.4 Complexity of Parallel Optical Binary Arithmetic 188

9 Implementation of A Prototype DOCIP — Experimental Demon-

stration 191

9.1 Interconnection Hologram 192
92 Optical Gate Array, 198
9.3 Experimental DOCIP System and Circuit Design 200
9.4 ExperimentalResults 205
10 Conclusions and Future Extensions 209
10.1 Conclusions ¢ o i ittt e e e e 209
10.2 Future Extensions, 210

A Proof of Two Fundamental Principles 212
Al Proofof Lemma3.1.............. 212

viii

A.2 Proof of Theorem 3.1t i i i i it e e e e e e e e
A3 Proof of Theorem 3.2 i i i i i e e e e e e e e e e

B Properties of BIA Image Operations
B.1 Properties of Complement and Difference
B.2 Properties of Union and Intersection
B.3 Properties of Dilationand Erosion

B.4 Properties of Some Standard Operations

C Proof of Theorems for Low Level Vision
C.1 Proof of Theorem4.2 i
C.2 Proof of Theorem4.3
C.3 Proofof Theorem4.4,

References

218
218
220
221
222

225
225
228
229

230

ix

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

A sequential process of cellular logic operations. 19
Acellularstring. 19
Acellulararray. i i it e e e 20
A one-dimensional cellular hypercube. 21
A two-dimensional cellular pyramid.. 21

A 3-D free-interconnection digital optical sequential logic system. 22

The universalimage W. 30

An example of fundamental operations. 33

The 4-neighborhood and 8-neighborhood of an image point (z,y). 39

The 4-connected component and 8-connected component of an image. 41

The outside and holes of animage. 42
Difference. i i e e 44
Intersection. e 45
Erosion. i e e e 45
Symmetricdifference. Lo oL L L. 46
Opening. v i i i i e e e e e e e e e e 47
Closing. i v i i i i i e e e e e e e e e e 47

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

4.27
4.28
4.29
4.30

4.31

Hit or miss transform (template matching).. 48

Thinning. e e 49
Thickening. e, 50
A sequential thinning. 52
A conditional dilation., . 53
One kind of morphological low pass filter (opening). 59
A second kind of morphological low pass filter (closing).. 59
A morphological high pass filter. 60
A morphological band pass filter. 61
One kind of shape recognition. 62
A second kind of shape recognition. 63
“Salt” and “pepper” noiseremoval. 65
Edgedetection. 67
A size verification (forholes). 69
An example of the convex hull of an image X. 70
The difference of the convex hull C(X) by X. 70

A set of reference image pairs for labeling a particular class of

connected components.l . e e e 71
Pattern growth using Ulam’s transition rule. 73
A set of reference image pairs for Ulam’s transition rule. 73

Pattern recognition using the reversal of Ulam’s transition rule. . 75

A set of reference image pairs for the reversal of Ulam’s transition

xi

4.32 A shift and scale invariant pattern recognition of solid square pat-

5.1
5.2

6.1

6.2
6.3
6.4
6.5

6.6

6.7

7.1
7.2
7.3
7.4

7.5

7.6

7.7

terns, as an example of recognition by a shrinking sequence. 81
BIA representation of symbolic substitution. 85
A symbolic substitution system. 88

A digital optical cellular image processor (DOCIP) architecture —

one implementation of binary image algebra (BIA). 110
The cell structure of the DOCIP machine. 115
A conventional hypercube (4-cube) laid out in two dimensional space.118
A two-dimensional cellular hypercube — DOCIP-hypercube. . . 119
An optical 4-connected or 8-connected cellular array (DOCIP-array4

or DOCIP-array8).t en.. 124
An optical 4-directed or 8-directed cellular hypercube (DOCIP-

hypercube4 or DOCIP-hypercube8). 125
An optical multiplexing technique for interconnections. 127
A level 0 state machine. ALU: Arithmetic Logic Unit. 132
Alevel 1 statemachine., 132
Alevel 2statemachine. 133

A 3-step instruction machine. Its instructions include three steps:
‘fetech ’, ‘execute’,and ‘store’. L. 135
A 1-step instruction machine. Its instructions combines the ‘fetch’,
‘execute’, and ‘store’ intoonestep., 136
An example of decomposing a dilation with a larger reference image
R into a sequential dilation with some smaller reference image E;. . 146

Theinputimage X.., 147

xii

7.8 Thereferenceimages Rand Q.
7.9 The expected outputimageY..
7.10 An allowed reference image E at a clock cycle in the DOCIP-array8
(also allowed in DOCIP-hypercube8) and its corresponding 9 (or
33) bits in instruction (nyn;...n;) for controlling the neighborhood
mask (i.e. the reference image for the dilation).
7.11 An allowed reference image P at a clock cycle in the DOCIP-
hypercube8 (not allowed in the DOCIP-array8) and its correspond-
ing 33 bits (assume 31 X 31 cells) in instruction (ning...n3s) for

controlling the neighborhood mask (i.e. the reference image for the

dilation). e e
7.12 The locations of the desired objects in the output image Y.
8.1 Binary row-coded numbers.
8.2 Parallel addition of binary row-coded numbers (I).
8.3 Parallel addition of binary row-coded numbers (II).
8.4 Parallel subtraction of binary row-coded numbers.

8.5 Parallel (matrix-constant) multiplication of binary row-coded num-

8.6 Parallel (element-element) multiplication of binary row-coded num-

8.7 Binary column-coded numbers.
8.8 Binary stack-coded numbers. 0.,
8.9 Parallel arithmetic with binary stack-coded numbers.

8.10 Abitencodedasasymbol..

149

158

171

xiii

8.11
8.12
8.13
8.14
8.15

9.1
9.2

9.3
94

9.5

9.6
9.7

9.8

9.9

Binary symbol-coded (symbolic substitution) arithmetic. 179
Parallel addition of binary symbol-coded numbers. 181
Symbolic substitution binary addition with two-pixel coding. . . . 183
Symbolic substitution binary addition with six-pixel coding. .. . 184

Parallel subtraction of binary symbol-coded numbers. 187

Experimental DOCIP system. 193
Preparing and recording procedures for the interconnection holo-
gram of dichromated gelatin. 195
Experimental system for testing the LCLV uniformity.. 199
The stead-state output vs. input relationship of 49 tested points
in the center regionof the LCLV. 201

The circuit diagram of a 54-gate processing element of the DOCIP-

Direct implementation of the interconnections of Fig. 9.5.. 204
Layout of outputs of 54 gates in the camera input plane (i.e. mon-
itorplane). e 206
The simulation results and the outputs of 54 gates of some instruc-
tions (I). i i 207
The simulation results and the outputs of 54 gates of some instruc-

tions (II). i i 208

xiv

List of Tables

1.1

2.1

4.1

4.2

6.1

6.2

8.1
8.2

A comparison between electronic and optical computing technologies. 5
A summary of recent results of optical gates. 25

Basic properties of three fundamental operations and three derived
operations (alternative fundamental operations). 57

Basic properties of some standard derived operations. 58

A comparison between three different interconnection networks of
N x N processing elements (PEs): cellular array, conventional hy-
percube and cellular hypercube. 121

Cellular image processor execution times for N x N image data. 128

Complexity of parallel optical binary addition. 189

Complexity of parallel optical binary subtraction. 190

Xv

Abstract

Is there a simple unified complete theory of parallel binary digital image pro-
cessing? Can this theory suggest new parallel algorithms and architectures for
image processing and numerical computation? Can these algorithms and archi-
tectures be implemented by optical computing techniques? This thesis attempts
to answer these questions.

A binary image algebra (BIA), built from five elementary images and three
fundamental operations, serves as a unified theory of parallel binary image pro-
cessing and a spatial logic of parallel optical computing. It also leads to a formal
parallel language approach to the design of parallel binary image processing and
parallel binary arithmetic algorithms. Digital optical cellular image processors
(DOCIPs), based on cellular automata and cellular logic architectures, imple-
ment parallel algorithms of BIA efficiently. An algebraic structure provides a link
between the algorithms of BIA and architectures of DOCIP.

Optical computing suggests an efficient and high-speed implementation of
the DOCIP architectures because of its inherent parallelism and 3-D global in-
terconnection capabilities. The use of optical interconnections permits a two-
dimensional cellular hypercube (DOCIP-hypercube) topology to be implemented
without paying a large penalty in chip area (the cellular hypercube interconnec-

tions are space-invariant which implies a low hologram complexity); it also enables

xvi

images to be input to and output from the machine in parallel. A computer-
controlled system has been constructed to fabricate multi-facet interconnection
holograms for 3-D optical circuits. A prototype DOCIP system has been imple-
mented to demonstrate the concept of the DOCIP architecture. Experimental

results are presented.

xvii

Chapter 1

Introduction

1.1 Motivation

This research is stimulated by the search for a simple parallel digital optical archi-
tecture for image processing. However, image processing has no standard unified
theory, so many image processing algorithms and architectures exist in a state of
chaos. Hence, we first develop a simple unified consistent theory of parallel binary
image processing (covering both algorithms and architectures), and then consider

its implementation on digital optical processors.

1.1.1 Toward A Unified Theory of Image Processing

Image processing (including image analysis) is concerned with the manipulation
and analysis of images (or pictures) by processors (or computers) [Chellappa85a,
Chellappa85b, Rosenfeld82, Pratt78, Stucki79]. It cuts across various application
areas, such as medical diagnosis, machine vision, planetary physics, and industrial

inspection. But as useful as these applications are, the concepts that give rise to

them are deep and the tools are complicated. Furthermore, more image processing
algorithms and architectures are proposed in the literature each year. In English
alone, thousands of technical papers are being published each year in more than 10
technical journals and numerous conferences and workshops. Unfortunately, little
use is made of any unified standard systematic mathematical structure in both

algorithms and architectures [Duff81]. This results in the following drawbacks:

1. Each research group has its own notation and tools.
2. Algorithms and architectures for image processing are not well matched.

3. It is very difficult to evaluate and compare so many different image process-

ing algorithms and architectures.

4. It is very difficult for a user to choose the best algorithm and the best

architecture for his own purpose.

5. Overall, the cost of development and the complexity of research in both

algorithms and architectures of image processing are increasing,.

To improve on this chaotic situation in image processing, we propose

o To develop a unified consistent systematic mathematical structure for image

processing algorithms and architectures.
To accomplish the above goal, we first pose the question:

¢ What kind of mathematical structure is appropriate to serve as a theoretical

framework of image processing (covering algorithms and architectures)?

Algebra is a foundation of mathematics and successfully provides fundamental
tools for many disciplines of science and technology. For example, the theory of
computing machines is primarily based on modern (or abstract) algebra. Thus,
it is possible that an appropriate algebraic structure should provide a framework

of theoretical image processing (covering both algorithms and architectures).
Definition of Algebraic Structure

An algebraic structure (or algebra) [Birkhoff65, Birkhoff70, Gilbert76] is a pair
(or system) A = (S, F) where

e Sis aset, and

e F is a family of operations which are functions:
f:85—5,
and k is a finite non-negative integer.

Remark: For any finite non-negative integer k, we define a k-ary operation on S as
an operation which is a function f : S*¥ — S. Thus, a unary (or 1-ary) operation
on S is simply a function on S to S. A binary (or 2-ary) operation on S is a
function on S? to S. For completeness, we define a nullary (or 0-ary) operation

on S to be a particular element of S.

Therefore, the problem to be solved is essentially to find an “appropriate”
algebraic structure (S, F') for parallel binary image processing, i.e. to search for

S and F, and its “efficient” hardware implementation.

1.1.2 Toward An Era of Digital Parallel Optical
Computing

Optical computing is the use of optical systems to perform computations on one-
dimensional or multidimensional data [Sawchuk84, ProcIEEE84]. Due to its par-
allel processing ability and large data capacity, analog optical computing has re-
ceived a great deal of research interest since the 1960’s [Goodman68]. While many
analog optical systems can perform specific operations (e.g. convolution and corre-
lation) with extremely high throughput rates, they face several severe limitations
in accuracy, flexibility, and programmability. In order to eliminate or reduce these
limitations, an obvious approach is to utilize discrete, instead of analog, signal lev-
els [Sawchuk84, Jenkins84a, Jenkins84b]. To achieve such digital optical comput-
ing, we have at least 3 possible logic systems: residue logic [Huang79, Psaltis79,
Horrigan79, Tai79], multilevel logic [Abraham86, Tao86, Arrathoon86, Hurst86],
and binary logic. Because it is much easier to make reliable 2-level devices for
binary logic and only log:k of them are needed to to represent k levels, optical
technology may be able to implement binary computing as electronics does. Thus,
in this thesis we will only consider parallel binary optical computing. The basic
purpose of this proposed research essentially follows from the goal proposed in
[Sawchuk84]: “to perform binary digital computing with optical systems having
photons as the primary information-carrying medium, avoiding electronic logic,
and having as few photon-electron and electron-photon conversions as possible.”
The potential advantages of binary parallel optical computing architectures have

been summarized in (Jenkins86]:

o They offer flexibility of operations — numerical, symbolic or logical, com-

pared to analog or discrete multilevel processors;
e They have binary digital accuracy and dynamic range;

¢ They offer computing architectures very different from electronic very large
scale integration (VLSI): they permit global interconnections and parallel
input-output compared to the local interconnections, clock-skew problems,

pin-in/pin-out and bus limitations of very large scale integration (VLSI);

e They utilize the 2-D parallel nature of optical device arrays and low inter-

action of optical signals for interconnections in 3-D; and

¢ They offer the possibility of high throughput and processing speed with

arrays of fast optical switches that are being developed.

The reasons that we use optics to complement electronics are highlighted on

Table 1.1.
Technology Electronics Optics
Information carrier Electron Photon (no mass, no charge)
Interconnections Primarily 2-D 3-D
Bandwidth Low High
Crosstalk High Low
Interconnection Connnectivity Local Global/local
Clock-skew Problems Yes (or serious) No (or little)
Pin-in/pin-out limitations | Yes (or serious) No (or little)
Switching Easy Difficult

Table 1.1: A comparison between electronic and optical computing technologies.

To take advantage of binary parallel optical computing, we must find out:

e What kinds of problems are appropriate for optical systems?

These problems have to utilize some of the above advantages. One most sig-
nificant example is the field of image processing. This is due to the following

reasons:
e The computational requirements in image processing are extreme;
e Large amounts of parallelism are involved in image processing;
o Images are inherently two-dimensional;
¢ Global information extraction from images require global communication;

e The communication and interconnection requirements between cells and

memory, and input/output of data to the cells are extremely high;
¢ Images are inherently formed by optical waves; and

o Cellular logic architectures which put a cell (or processing element) behind
each pixel of an image are appropriate architectures of parallel image pro-

cessors and suited to implementation on optics.

Philosophically, the parallel processing ability and free interconnection capa-
bilities of optics are well-matched to parallel image processing tasks and can dra-
matically reduce the computation time compared with today’s serial computers.
Thus, digital cellular logic image processors may be well suited to digital optical
computing techniques. The problem then becomes how to design a simple and

efficient optical cellular logic processor for image processing.

1.2 Objectives

This research cuts across the fields of image processing, parallel processing and
optical computing. It includes both theoretical and experimental work, and covers

both algorithmic and architectural designs. The objectives of this work are:

e To develop a consistent systematic complete algebraic theory, called binary

image algebra (BIA), to serve as

— A unified theory of parallel binary image processing, and

— A spatial logic of parallel digital optical computing.

e To devise highly parallel optical computing architectures, namely digital

optical cellular image processor (DOCIP) architectures, for

— Implementing BIA parallel algorithms effectively, and

- Utilizing the capabilities of optics.
o To experimentally implement a prototype DOCIP system for

— Demonstrating the concept of the DOCIP architecture, and

— Demonstrating the feasibility of optical holographic interconnections

and digital optical computers.

1.3 Thesis Organization

Chapter 2 discusses past work related to this research: Section 2.1 reviews pre-

vious work on image algebra; Section 2.2 reviews previous work on cellular logic

architectures; Section 2.3 reviews previus work on digital optical cellular logic
processors.

Chapter 3 gives the framework of BIA: Section 3.1 discusses the philosophy
of BIA; Section 3.2 gives the basic definitions of BIA; Section 3.3 presents two
fundamental principles which prove the completeness of BIA. The tedious proof of
a lemma and theorems for the two fundamental principles is presented in Appendix
A.

Chapter 4 describes some image processing applications of BIA: Section 4.1
reviews basic properties of images and image transformations, and derives from
them some standard image operations; Section 4.2 gives some examples of special
cases; Section 4.3 gives some useful theorems and examples for low level vision
operations, including morphological filtering, shape recognition, “salt” and “pep-
per” noise removal, size and location verification; Section 4.4 describes a shift
and scale invariat pattern recognition algorithm for a certain class of problems.
The basic properties of BIA fundamental operations and standard image opera-
tions are contained in Appendix B. Proofs of the theroems for low level vision are
presented in Appendix C.

Chapter 5 discusses the relationship of BIA and other computing theories: Sec-
tion 5.1 formalizes symbolic substitution as compact BIA expressions and suggests
some BIA algebraic techniques for describing and comparing symbolic substitution
algorithms; Section 5.2 describes cellular logic as a speical case of BIA; Section
5.3 describes Boolean logic as a serial version of BIA; Section 5.4 discusses the
relationship with linear shift invariant system theory, convolution and correlation;

Section 5.5 describes some standard algebraic structures supported by BIA.

Chapter 6 presents the implementation of BIA on digital optical cellular im-
age processor (DOCIP) architectures, including the DOCIP-array and DOCIP-
hypercube: Section 6.1 discusses the design principles of the DOCIP machines;
Section 6.2 describes the general organization of the DOCIPs, including an al-
gebraic description and a general description; Section 6.3 describes the array of
cells, discusses the implementation of the three fundamental operations of BIA
and the cell structure of the DOCIPs; Section 6.4 discusses and compares the in-
terconnection networks, including a cellular array (DOCIP-array interconnection
network), conventional hypercube, and cellular hypercube (DOCIP-hypercube in-
terconnection network); Section 6.5 gives their conceptual optical implementation
techniques.

Chapter 7 describes the control and the programming of the DOCIPs: Sec-
tion 7.1 determines the DOCIPs as “level 1 state machines”; Section 7.2 discusses
the control structure of the DOCIPs; Section 7.3 gives the instruction set of the
DOCIPs, which consists of only one instruction, pipelines the three fundamental
operations of BIA; it also shows that the DOCIPs are “l-step instruction ma-
chines” and are general purpose in that, given expandable memory, a DOCIP can
compute any computable function. Section 7.4 considers the programming of the
DOCIPs, and presents decomposition algorithms of dilation and some program-
ming examples.

Chapter 8 uses BIA to develop parallel binary arithmetic algorithms and de-
scribes the execution of these algorithms on the DOCIPs: Section 8.1 presents bi-

nary row(or column)-coded arithmetic: binary addition, binary subtraction, and

binary multiplication (including a matrix-constant multiplication and an element-
element multiplication); Section 8.2 presents binary stack-coded arithmetic; Sec-
tion 8.3 discusses binary symbol-coded arithmetic (symbolic substitution arith-
metic). Section 8.4 gives a comparison for the above different number represen-
tations. For the reader who is interested only in the image processing algorithms
and architectures, Chapter 8 can be bypassed without discontinuity.

Chapter 9 discusses the implementation of a prototype DOCIP system: Section
9.1 describes the implementation of the optical gate array; Section 9.2 describes
the fabrication of the multi-exposure multi-facet interconnection hologram for 3-
D optical circuits; Section 9.3 presents the experimental DOCIP system and the
circuit design to demonstrate the concept of the DOCIP architecture; Section 9.4
gives the experimental results.

Chapter 10 concludes the thesis: Section 10.1 gives a conclusion; Section 10.2

discuses future research on this work.

1.4 Contributions

The contributions of this work are summarized as follows:
e An algebraic foundation called binary image algebra (BIA) for parallel bi-
nary image processing [Huang88a] is given, including:

— Animage space and a family of fundamental operations and elementary

images for parallel binary image prcessing;

— Two fundamental principles for generating images and image transfor-

mations to demonstrate its completeness; and

10

— A structure which suggests a mapping between parallel algorithms and

parallel architectures.

o A spatial logic and a parallel language for parallel digital optical computing

is described in which:

— Algorithms for optical symbolic substitution, cellular logic, and binary

logic processors are formalized as compact BIA expressions [Huang87d];

~ An inherently parallel (SIMD) language for parallel computing archi-

tectures is suggested [Huang87e, Huang88h); and
— A standard notation and a unified approach for parallel binary optical
computing and image processing is provided [Huang88a, Huang88b,

Huang87d, Huang87e].

o Highly parallel algorithms for image processing, numerical computation and

symbolic substitution are given, including:

— Fast low level vision algorithms [Huang88a), and pattern recognition
algorithms to reduce the complexity for a certain class of image pro-

cessing and machine vision problems [Huang88c];

— A compact representation and a comparison of different kinds of par-

allel binary arithmetic [Huang88b];

— Symbolic substitution rules for image processing and numerical com-

putation applications [Huang88c, Huang88e]; and

— A technique for the comparison of algorithms on various architectures

[Huang88e).

11

o Highly parallel architectures for image processing and optical computing are

described; specifically,

— A two-dimensional cellular hupercube architecture for image process-
ing that combines the features of a cellular array and conventional
hypercube while preserving a relatively low interconnection hologram

complexity [Huang87b, Huang88d, Huang88g]; and

— Digital optical cellular image processor (DOCIP) architectures for par-
allel image processing and parallel numerical array computation that
make uses of the capabilites of optics and implement BIA effectively

and naturally [Huang87c, Huang88a, Huang88g].

e Optical holographic interconnections for 3-D optical circuits are experimen-

tally demonstrated, including:

— An optical multiplexing technique that improves the flexibility and
programability of optical holographic interconnections and reduces the

hardware complexity of optical processors [Huang87a); and

— A computer-controlled optical system for automatically fabricating multi-
exposure multi-facet interconnection holograms for 3-D optical circuits

[Huang88f, Huang88i).

¢ An experimental demonstration of a prototype DOCIP system is performed

[Huang88d, Huang88i], which:

-~ Experimentally demonstrates a 54-gate optical processor, an instruc-

tion decoder and electronic input/output interfaces; and

12

— Shows the functioning of the most sophisticated and complicated ex-
perimental digital optical computing system to date (to the best of our

knowledge).

13

Chapter 2

Previous Work — A Review

Through parallel studies of architectures, algorithms, mathematical structures,
and optics we have that: 1) an image algebra extending from mathematical
morphology [Serra82, Lougheed80, Matheron75, Haralick87] can lead to a for-
mal parallel language approach to the design of image processing algorithms; 2)
cellular automata are appropriate models for parallel image processing machines
[Preston84, Burks70]; 3) an algebraic structure serves as a framework for both
algorithms and architectures of parallel image processing; and 4) the parallel pro-
cessing and global interconnection advantages of optical computing may be useful
in efficiently implementing image algebra with cellular logic architectures. This
chapter will first discuss the previous work on image algebra, cellular logic archi-

tectures and then digital optical cellular logic processors.

2.1 Previous Work on Image Algebra

The idea of binary image algebra (BIA) comes from several sources — mathe-

matical morphology, image processing, parallel processing, modern algebra, and

14

fundamental concepts of modern physics. This section will concentrate only on
reviewing previous work relating to image algebra and its relationship to BIA.
During the past few years, numerous papers have used an algebraic approach
to aid in image processing [Serra82, Lougheed80, Ritter87, Giardina84, Agui82].
Among of them, morphological image algebra has the closest relation to BIA.

Mathematical morphology was born in 1964 when G. Matheron was asked to
investigate the relationships between the geometry of porous media and their per-
meabilities, and at the same time J. Serra was asked to quantify the petrography
of iron ores for predicting their milling properties at the Paris School of Mines in
France [Serra82, Matheron75]. For a more historically accurate viewpoint, it orig-
inates from research in integral geometry by H. Minkowski who formulated the
system of integral equations which permit the extraction of global measurements
from a set of projections [Minkowski03]. The structure of mathematical morphol-
4ogy is derived from the four principles of quantification which must be satisfied
by every morphological transformation and measure in geology, and then becomes
a physical theory (not just a mathematical one). In this approach, objects are
modeled as subsets of the space of their definition. The purpose of mathematical
morphology is to determine the structure of the objects by transforming the sets
that model them. Structuring elements, predefined shapes, are employed to probe
or to test out the spatial nature of the object undergoing analysis.

S. R. Sternberg et al. used morphological methods for a variety of industrial
machine vision applications [Lougheed80, Sternberg82, Sternberg85]. Sternberg’s
image algebra is primarily based on Matheron and Serra’s mathematical morphol-

ogy. His major contribution is to introduce the umbra transform for gray-level

15

images and to develop the cytocomputer for rapid morphological image process-
ing.

This morphological image processing approach has been applied to a wide
variety of applications including cytology, genetics, petrology, microscopy, and
industrial machine vision. Many papers describe either specific theoretical as-
pects of mathematical morphology or application-specific morphological algo-
rithms [Klein72, Mandeville83, CAPAIDM85a, CAPAIDM85b, Sternberg86). The
applications of mathematical morphology have been fruitful. In this thesis we

adapt it to provide the following features:

1. A simplified mathematical structure. Mathematical morphology comprises
two branches, integral geometry and geometrical probability, plus a few col-
lateral ancestors (harmonic analysis, stochastic processes, algebraic topol-
ogy) [Serra82]. The mathematical details and formal proofs in morphology
are often intricate and involve advanced set theoretic and topological con-

cepts which are not always necessary for engineering applications.

2. A complete algebraic theory. Mathematical morphology defines some alge-
braic operators and utilizes some algebra. With our adaptation, we would
like to answer the following questions:

e What is the algebraic definition of this mathematical morphology?

e How powerful is this mathematical morphology?

e What is the definition of a transformation? Morphological transforma-
tions are constrained by four principles [Serra82], here we introduce a

complete definition of image transformations.

16

3. Clarification of its relationship to other areas. We define its relationship to
linear system theory, image processing, and common computing techniques

including boolean logic, cellular logic, and algebraic structures.

There are other image algebras, each with its own characteristics [Ritter87,
Giardina84). Because of our intended application to a highly parallel computing
machine with simple processing elements and a reduced instruction set, we utilize a
BIA with only three fundamental operations that can implement any binary image
transformation. For example, the counting function, which gives the number of
pixels having a certain level, is considered a mapping from a picture type of
operand to a number type of operand [Ritter87, Giardina84]; in BIA numbers
are also represented as images [Huang88b]. BIA suggests several simple but fast
parallel image algorithms and a parallel image processing architecture with a very

low cell complexity.

2.2 Previous Work on Cellular Logic
Architectures

To match BIA parallel algorithms by cellular logic architectures in a transparent
way, we characterize a cellular automaton by an algebraic structure as BIA does.
The cellular logic computer was first inspired by the writings of von Neumann
[Neumann51, Neumann66] on cellular automata. The first highly parallel cellular
image processor was suggested by Unger [Unger58, Unger59). Unger proposed

and, later, simulated a two-dimensional array of modules (or processing elements

17

or cells) as a natural spatial computer architecture for image processing and recog-
nition. In this approach, each computational cell is responsible for one pixel (or
one element of an image) with its neighboring pixels.

A cellular logic (or neighboring logic) operation is then referred to as a trans-
form of an array of data X(i,j) into a new array of data X’(z,j) where each
element in the new array has a value determined only by the corresponding el-
ement in the original array along with the values of its neighbors. Figure 2.1
describes a sequential process of cellular logic operations.

A cellular logic processor specialized for applications in image processing is
then called a cellular image processor. Some review of cellular image processors
can be found in Ref. [Preston79, Rosenfeld83, Preston83, Preston84]. Over the
last two decades, many cellular computers have been constructed for implementing
cellular logic operations, and some idea extending the original nearest neighbor-
hood connected cellular logic computer for improving speed and flexibility are
proposed [Rosenfeld83]. Most existing or proposed architectures can be classified

as:
1. the cellular string (Fig. 2.2),
2. the cellular array (Fig. 2.3), and

3. the cellular hypercube (Fig. 2.4) and the cellular pyramid (Fig. 2.5).

These three types of architectures share a common feature in the simplic-
ity and regularity of interconnecting simple processing elements, and represent
interconnection geometries from 1-D to 2-D then 3-D. The 3-D case leads to
further improvements in speed and flexibility, but can be very difficult to im-

plement on a planar VLSI chip [Rosenfeld83, Sawchuk85, Jenkins85). However,

18

lnstructicV

y4 CLO

Neighborhood
Configuration

Y\ \\l_.

X(i.j)
y
Image Array of Cells or Image
Processing Elements (PEs)

Figure 2.1: A sequential process of cellular logic operations (CLOs). The value
X'(2,) is determined by the corresponding X(i,j) in the original image along
with the values of its neighbors.

Figure 2.2: A cellular string. It requires only a 1-D interconnection geometry.
Each cell only connects with its two nearest cells.

19

- Connections in the 4-connected cellular array
===} Connections in the 8-connected cellular array

Figure 2.3: A cellular array. It requires a 2-D interconnection geometry. Each
cell connects with its 4 or 8 nearest cells.

20

_F igure 2.4: A one-dimensional cellular hypercube [Rosenfeld83]. It requires a 3-D
interconnection geometry. Each cell connects with cells at distances 1,2, 4,8, ..., 2
from it. Here, only the connections with distances 1, 2, and 4 are shown.

Figure 2.5: A two-dimensional cellular pyramid. It consists of stages of arrays with
extra connection between two adjacent stages and is most efficiently implemented
with a 3-D interconnection geometry.

21

in principle, the 3-D interconnection geometry is realizable by a digital opti-
cal system without further difficulty, because the general architectural struc-
ture of a digital computer as shown in Fig. 2.6 is inherently 3-dimensional
[Jenkins84a, Jenkins84b, Sawchuk84, Chavel83). Digital optical architectures will
be discussed in the following section.

interconnection unit
(computer generoted hologram)

I>§<:"

EE el g Epsqn

-
-

.

parallel .o —-—:P—..v/-ﬂ‘
inputs I - B
I

(data or
program) -6

: poralle!
<" output

gate array
(liquid crystal light valve or threshold device)

Figure 2.6: A 3-D free-interconnection digital optical sequential logic system
[Sawchuk84, Jenkins84b).

2.3 Previous Work on Digital Optical Cellular
Logic Processors

Recently, several techniques for constructing optical cellular logic processors for
image processing have been proposed [Jenkins85, Sawchuk85, Yatagai86, Tanida85,
Caulfield86]. However, most of them are only conceptual considerations and

do not have any detailed design. The work by Sawchuk and Jenkins, et al,

22

[Sawchuk84, Jenkins84a, Jenkins84b, Jenkins85, Sawchuk85, Chavel83] leads to
a very promising direction of digital optical computing and offers possible im-
plementation techniques for digital optical cellular logic processors. They have
described and implemented an optical binary sequential logic system that offers
a free-interconnection capability very different from that of electronic VLSI.

The system (shown schematically in Fig. 2.6) consists of a spatially parallel
array of optically implemented independent binary gates, and an interconnection
unit that optically directs some of signals on the output side of the gate array
back to the input side of the gate array. Its inherent 3-D structure provides for
a high degree of interconnection flexibility. The holographic interconnection sys-
tem connects the output of each gate to inputs of other gates, effectively wiring
up a circuit. For ease of manufacture, the holograms can be generated by (elec-
tronic) computer and written out using a computer plotting device. The con-
cept of this system with a 16-gate circuit has been experimentally demonstrated
[Jenkins84a]. The limitations of this system are primarily due to the space-
bandwidth product (resolution) of optical gate array (spatial light modulator),
interconnection unit (computer-generated hologram) and optics. The following
discussion of the gate array and interconnection system is primarily a digest from
[Jenkins85, Sawchuk85] (with a minor modification).

2-D arrays of optical gates demonstrated to date have one drawback or another
that preclude their use in a practical, competitive optical logic system. While
current devices can implement 10° to 108 gates in one array, in most cases the
major drawback is the extremely slow speed of the devices. (Typical response
times are > 1 ms.) Recent progress in the area of optical bistability, however,

provides hope for fast optical logic systems. To date their demonstrations have

23

been primarily on individual (single gate) devices, but in principle they can be
used for 2-D arrays as well. Gate switching times on the order of ns-ps have
been demonstrated [Jewell84a, Jewell84b, Jewell85, Jewell86, Jewell87, Miller85,
Miller86, Smith87, Sharfin86a, Sharfin86b, West87, Lee86a, Lee86b, Wheatley87,
Gibbs87], and there is potential for even much faster gates [Fork82, Smith81]
(although other considerations such as power may limit the usable response time
in a system to ~ 100 ps). Many of these devices are all optical (intrinsic) in that
the signal is not converted to electrons and then back to photons again in order
to obtain the nonlinearity. This is one of the reasons for their speed advantage.
Table 2.1 summarizes some recent results of optical gates. For a review of optical
bistability, the reader is referred to [Gibbs85, Gibbs80, Miller82).

Three different optical interconnection systems for interconnecting the gates
have been previously described in [Jenkins84b, Chavel83]. All of them use holo-
grams in conjunction with free-space propagation. Their characteristics differ
and this manifests itself in the kinds of circuits and processors that can be im-
plemented most efficiently with each system. The gate requirement, hologram
space-bandwidth product, and possible optical interconnection systems for cellu-
lar logic have been discussed in [Jenkins85, Sawchuk85).

We predict that the number of the elements of the optical gate array and the
interconnection subhologram array in a sequental optical logic system (Fig. 2.6)
can be ~ 108/cm?, each loop feedback time can be ~ 100 ps (the feedack path
~ 3 cm), we can achieve the performance of 10'® operations per second. Current
optical technology in conjunction with anticipated progress in research may make
the construction of such a processor feasible. It is also very possible that the

communication and interconnection capabilities of optics for optical cellular logic

24

: Major . Swiching | Swiching |Fabricated| Gate Gate
Device Developer Material Time Energy Array Spacing |Diameter
Optical JK. Jewell On: 1ps 10 end
Logic et al. |GaAs/alas |Rec: 1.5pJ o nif/o‘:'mit 3 um 1.5pm

*150ps 4

Etalon (AT&T) problem)

Self
Electro-optic [D.A.B. MillexGaAs/AlGaas| On: 30ns | 100p] 2x2 120x

Device et al. Mow |Ree: 30ms lan ot | gen | 409%™ | soum

(SEED) (AT&T) s25 | (optical)

Nonlinear SD. Smith Os: 100ps
Interference -1, om n:

Filters et al. ZoSe Rec: 10ps 100 lO‘/cn? 30um

(NLIF) (Edinburgh

(W.F.

Laser M. Das:::rali 1nGaaso?| 0.5 0.5f] (opt.)

if: Sl InGaAs/In .Ins
Amplifier (GTE) 20pJ (tot.)

uantum Well

Qane]o c L.C. West GnAsIAlG.AsL

State Transition 2ps ? 3012
Device (AT&T) MQW
(QWEST)

On: switch-on time
Rec: recovery time
* indicates the recovery time for the whole amray of gates
Note: SEED time and energy correspond to a single pixel device (except where otherwise noted).

Table 2.1: A summary of recent results of optical gates.

25

processors could provide for substantially reduced computation time for image
processing tasks.

Obviously, the work of Jenkins and Sawchuk, et al, in optical computing and
optical cellular logic processors guides the progress to the detailed design of a
digital optical cellular logic processor. The goal of this thesis is to have a complete
optical circuit design of a cellular machine, the DOCIP, and to demonstrate its

concept experimentally.

26

Chapter 3

Binary Image Algebra (BIA):

Fundamentals

Binary image algebra (BIA) is intended to be a unifying theory based on a set
of three specific fundamental operations. Another basic purpose of BIA is for
the development of a programming language for a specific parallel architecture,
namely a digital optical cellular image processor (DOCIP) (Chapter 6 and Chap-
ter 7). These fundamental operations are the key operations in the instruction
set of the DOCIP machine. The BIA provides a decomposition of general opera-
tions, including low-level image processing operations, into the three fundamental
operations of the instruction set. This decomposition is inherently parallel and
provides a direct mapping to the machine architecture.

In this chapter, we first discuss the philosophy of BIA, give the definition of

BIA, and provide the fundamental principles of BIA for proving its completeness.

27

3.1 Underlying Philosophy

The overall philosophy of BIA is:

o An image, but not a pizel, is an object. For parallel languages and machines
for image processing, images can be considered as primitive variables for

simplifying the design.

o Complez image processing operations can be reduced to simple instructions.
Although image processing operations appear complex, the fundamental

interactions and the elementary components in a system are very simple.
Thus, BIA begins by:

1. Defining the universal image as the working space for images and their image

transformations.
2. Defining elementary images which can be combined to generate any image.

3. Defining fundamental operations which can be cascaded to form complex

operations.

4. Defining image processing/analysis algorithm design as the choice of “good”

(or “appropriate”) reference images and transformations.

A reference image can be any image and is a generalization of structuring elements
in mathematical morphology [Serra82). Reference images contain some predefined
image property (or information); image transformations (or operations) are used
for measuring the image property from an input image. Image description, image

information extraction or image property measurement is done by using reference

28

images to model or transform the original image to a final state which reveals the
desired information or is used to detect the desired properties easily.

Here we give the algebraic structure of BIA first, and then provide defini-
tions and present two fundamental principles which allow us to generate any
reference image and implement any image transformation. Ideally, BIA may be
further generalized to GIA (General Image Algebra) which deals with grey-level

and complex-valued images.

3.2 Definitions

Definition of Binary Image Algebra (BIA)

Binary image algebra is an algebra with an image space S, which
is the power set of a predefined universal image P(W), and a family
F of operations including 3 fundamental operations (®,U, ~), which
are non 0-ary operations, and 5 elementary images (I, A,A™!, B, B™1),

which are 0-ary operations. Symbolically,
BIA=(P(W);®,U,",1,A,A™",B,B™") (3.1)

ie. S= P(W)and F =(®,Y, ,1,A,A™!, B, B~'). The image space

S and the family F of operations will be derived in the following.

Basic Definitions

In general, a binary digital image is defined as a function f that maps each
spatially sampled grid point (z,y) of the picture on an orthogonal coordinate

system onto the set composed of two elements: 1 (i.e. white, foreground point

29

or image point) and 0 (i.e black or background point). However, it will be more
convenient for our algebra, if we use a set of the coordinates of image points (‘1’s)
to specify an image. In this paper, an image is treated as the set of coordinates
of image points (i.e. foreground points or pixels that have value 1). We begin the

description of BIA by defining our artificial universe:

Definition 8.1 The Universal Image.
The universal image is the set W = {(z,y) | z € Z,,y € Z,}, where
Z, = {0,%1,%2,...,£n} and n is a positive integer (Fig. 3.1).

TY n
< —
A
111 111 11 1
111 111 11 1
11 1 111 111]]a
111 11 1 111]|Y
111 11 111} x
111 111 111
11 1 111 e 111
111 11 1 111
111 11 1 111

Figure 3.1: The universal image W. It has (2n + 1) x (2n + 1) image points and
n is a positive integer.

30

Remark: “€” means “belongs to”. Notice that given n, the universal image
defines the domain of our images. In fact, for an image with size larger than

(2n 4+ 1) x (2n + 1) (the size of the universal image), we need to increase the size
of the universal image or decompose the tested image into subimages whose sizes
are smaller than the size of the universal image. For the reason of simple
practice, we only consider the square tessellation of images. To deal with
non-square (e.g. hexagonal) tessellations, we can simply replace the universal

image to be the set of grid points corresponding to the new tessellation pattern.

Definition 3.2 Image Space.

The image space is the power set (the set of all subsets) of the universal image,

ie. § = P(W).

Definition 3.3 Image.
A set X is an image if and only if X is an element of the image space S, i.e. X

is a subimage (subset) of the universal image W. Symbolically,
Xisanimage o X €S X CW.

Remark: “C" means “is included in”. There exist 2(3+1)x(2n+1) different images.

Three terms related to images are defined:

1. Size (or area) of an image X, denoted as #(X), is the cardinality (i.e. the

number of elements) of the image X.

2. Foreground of an image X, simply denoted as X, is referred to those pixels

with value 1.

3. Background of an image X, denoted as the complement X (Definition 3.6),

is referred to those pixels with value 0.

31

Once we know the foreground of an image, the background of this image is well
defined (since the universal image is given first). Thus, the foreground is

sufficient to specify an image.

Definition 3.4 Image Point (Foreground Point).

A point (z,y) is an image point of an image X if and only if (z,y) is an element
of the set X.

Remark: The largest image is the universal image W and consists of

(2n +1) x (2n + 1) image points, i.e. #(W) = (2n+1) X (2n + 1); the smallest
image is the null image ¢ (defined as the complement ¢ = W) and has no image

points, i.e #(¢) = 0.

Definition 8.5 Image Transformation.
A transformation T is an image transformation if and only if T is a function

mapping from the image space S to the image space S.

Remark: There exist (2(2n+1)x(2n+1))@E#DXAm0) 400 00 transformations.

Definition 3.6 Three Fundamental Operations.

There are three fundamental operations (Fig. 3.2):

1. Complement of an image X:
X ={(=9) | (z.9) e WA (z,9) ¢ X} (3.2)
2. Union of two images X and R:

XUR={(z,9) | (z,y) € XV (x,9) € R} (3.3)

32

ojojooNoXoNe]
COO0OO0OO0O0O0
OO+~ v~v~0OO
OO +v~+~0OO
OO0 v~v0O0O
OCOO0O0OO0OO0O0
oJoJoNoNoXoNe]

R

~rrrerrr 0O
v O
rrryyvv O
Q00
000
~r—r—0000

OO0 00CO00O

Reference
Image

COO0OO00O0O0O0
Ovr~vrv+~0O0O
Orvr—00O0
Orr—~0000
Or~r0O0 0000
(oJoloNololoeNe)

leNoXoNoYoleNeol
Or~r+~+~0O0
Or-r~v+~0O0
Ovrvr~v+v~0O0O
Orr+~+~0O0
o000 O0O0C

OO00O00O0OO0

input
Image

CO0OO0OO000O0O

—rTrT T T T
00O Ov
00O v
OO r—r—v
Oy
—_rrerrrer

— gy g g ey g

33

X®R

Dilation

XUR

Union

X

Complement
Figure 3.2: An example of fundamental operations: complement, union and dila-

tion.

3. Dilation of two images X and R:

X®R=
{(zr+ 22,1 +92) €W | (z1,11) € X, (22,92) € R} (X #S)A(R# ¢)
é otherwise

(3.4)

Remark: “A” means “and”, and “V” means “or”. Note that X usually
represents an input or data image and R is a reference image. The consideration
of null image in the dilation operation is missing in mathematical morphology
(where the dilation is defined the union of all translations of X by all image
points in R); with this generalization we have a complete theory which is not
found in other image algebras because of a lack of demonstration of their
capabilities for implementing any image transformation. We can also define
other image operations as fundamental operations instead of these three
operations. The reason for choosing these three operations is because of their
simplicity, and resulting simple software design and hardware implementation.
As shown later, these three operations may be implemented by a 2-D optical

gate array with 3-D interconnections.

Definition 3.7 Elementary Images.
These elementary images are constant images, i.e. 0-ary operations. Each

elementary image has only one image point. There are 5 elementary images:
1. I = {(0,0)} — consisting of an image point at the origin
2. A={(1,0)} — consisting of an image point right of the origin
3. A7 = {(~1,0)} — consisting of an image point left of the origin

34

4. B = {(0,1)} — consisting of an image point above the origin
5. B! = {(0,~1)} consisting of an image point below the origin

Remark: In fact, these 5 elementary images could be reduced to 4 elementary

images, because I = A= A@9 A"'=B = Bg B~

Definition 3.8 Reflected Reference Image.
Given a reference image R which is a predefined image for containing some

desired image property or image information, its reflected image is defined as

R={(-z,-y)| (z,y) € R}. (3:5)

Remark: In many useful cases the reference image R is symmetric, then R = R.

3.3 Two Fundamental Principles

Two fundamental principles basically define the binary image algebra (BIA). Be-

fore stating these two principles, we give some preliminary results.

Lemma 3.1.

XemuXonoT={ X R yxrerw) (9

¢ otherwise

where I = {(0,0)} is an elementary image, R is the reflected reference image of
R, and “VY” means “for all”.

Proof. Appendix A.1.

Remark: This lemma says that if the image X matches the image R, then the
origin (central pixel) of the above output image has value ‘1’, otherwise always
‘0.

35

Theorem 3.1.

Any image transformation T : P(W) — P(W) can be expressed as

r(x) = {Xe B U (X e FH)UT e Q) (37)

i=1

where k < #(P(W)), R; and Q; are the reference images used to form any desired

image transformation, and

k
UR;ERIURgu...URk.

i=1

Proof. Appendix A.2.
Theorem 3.2.

Any image can be represented as

X= | AP (3.8)
(s.)eXx

where A'B' = A' @ B,

A=A0A®..0 A={(:0)}ifi>0,

A=A"9A"'9..0A47 ={(,0)}ifi <0,

v’

and A, B, A7}, B! are the elementary images defined in Definition 3.7.

Proof. Appendix A.3.

Principle 1. Fundamental Principle of Image Transformations
Any image transformation T can be implemented by using appropriate
reference images R and the three fundamental operations: 1. Com-
plement X of an image X, 2. Union U of two images, 3. Dilation &
of two images.

Proof: Tt follows from Theorem 3.1.

36

In order to use principle 1 efficiently in practice, we invoke principle 2 for the

generation of reference images.

Principle 2. Fundamental Principle of Reference Images
Any reference image R can be generated from elementary images
(I,A, A, B, B7!) by using the three fundamental operations.

Proof: 1t follows from Theorem 3.2.

Therefore, by the above principles, we can represent BIA as:

BIA = (P(W);®,U,",1, A, A", B, B-).

37

Chapter 4

BIA: Development

BIA can have many applications in character recognition, industrial inspection,
medical image processing, and scientific computation. In this chapter we first
review the basic properties of images and image transformations, define 11 stan-
dard operations, and give some special cases of dilation [Serra82, Lougheed80,
Matheron75, Haralick87, Rosenfeld70, Rosenfeld82, Duda73, Levialdi72]. Then
we summarize four theorems and some examples for binary image processing and
suggest a pattern recognition algorithm from the observation of the growth of
patterns.

Sections 4.1-4.3 primarily give a survey of binary image processing algorithms
with implementation using BIA fundamental operations. These fundamental op-
erations are so chosen because they form an efficient basis for the instruction set
of an optically-based cellular image processor. This survey serves as a description

of a parallel language for controlling the processor and how it is compiled into

38

low level instructions. In Section 4.4, BIA formulates a class of pattern recogni-
tion problems. The use of BIA for parallel numerical computation is described in

Chapter 8 [Huang88b).

4.1 Basic Properties of Images and Image

Transformations

Definition 4.1 Connectivity in Images

1. 4-neighbor and 8-neighbor:

An image point (z,y) in an image X can have two types of neighors:

(a) An image point (3, j) is a 4-neighbor of (z,y)
« (i,7) € {(z £ L,y), (s, y £ 1)}.
Remark: {(z,y),(z £ 1,y),(z,y £ 1)} is called the 4-neighborhood of
(z,y) and Ny = {(0,0),(0,£1),(£1,0)} = JUAUA"'UBUB~! (Fig.

4.1(a)).
D : the pixel at coordinate (x,y) X : the pixel at coordinate (x.y)
(a) the 4-neighborhood of (x,y). (b) the 8-neighborhood of (x,y).

Figure 4.1: The 4-neighborhood and 8-neighborhood of an image point (z,y).

39

(b) An image point (3, j) is a 8-neighbor of (z,y)
= (G, e{(z£,y),(z,yx1),(z£1,y£1)}.
Remark: {(z,y),(z £ 1,y),(z,y £1),(z £ 1,y £ 1)} is called the 8-
neighborhood of (z,y) and N5 = {(0,0), (0, £1), (+1,0), (£1, 1)} (Fig.
4.1(b)).

2. 4-connected and 8-connected:

(a) Two image points (z,y) and (¢,7) of an image X are 4-connected
« there exists a sequence of image points (z,y) = (%o, ¥0), (Z1,¥1), -+
(Zmyym) = (3,7), where (zx,yx) is a 4-neighbor of (zx_1,yx-1) and

(zr,2) EX,1 < k< m.

(b) Two image points (z,y) and (i,) of an image X are 8-connected
+— there exists a sequence of image points (z,y) = (Zo,%0), (%1, Y1), -+
(Zmyym) = (3,7), where (zk,yx) is a 8-neighbor of (xx—1,yx-1) and

(zr, %) € X, 1 < k< m.

Remark 1: “4-connected in X” and “8-connected in X” are equivalence

relations (reflexive, symmetric and transitive).

Remark 2: For any image point (z,y) in a non-null image X, the set of
(¢,7) such that (z,y) and (7,5) are 4-connected (or 8-connected) is called
a 4-connected (or 8-connected) component of X. A 4-connected (or 8-
connected) component of X is just an equivalence class in X under the
equivalence relation — “4-connected (or 8-connected) in X”. Thus, a col-
lection of 4-connected (or 8-connected) components of X forms a partition

of X, i.e. the set of all 4-connected (or 8-connected) components {X;}:cr

40

(where I is the index set of connected components) is a family of non-null

subimages of X and has the following properties:

(a) Xi#pforalli el

(b) XinX; =¢foralli#j,ij€l (XinX; =X;UX; as defined in
Definition 4.3)

(c) X = UerX;.

Fig. 4.2(a) shows a 4-connected component in an image X and Fig. 4.2(b)

shows an 8-connected component in X.

re’e’ awe e e e """
OO0

OO0
OO0

OO0

IOCEXIOOIOOOC

» " e
3IOOOOOOOOOOOD!
OO OOOOOC
OOOOOOOOOO

OO0
SOOCOOOOOOOCK

3OO0
OO0

OOOOOOOOOOOD
XOOOCOOOOOOCX
MOOOOOOOOOCX
OO OOCOCX,
XOOOOOOOOOOCX
IOCOOOOOOCK
GO OOOOOOT
OSSO0

Image X (a) A 4-connected (8-connected (b) An 8-connected component of X
tco) component of X.

Figure 4.2: The 4-connected component and 8-connected component of an image.

Remark 3: If an image X has ! 4-connected (or 8-connected) components,
there are [distinct equivalence classes in X. Each equivalence class X; can
be represented by an image point in X;. Thus, we may use ! distinct image
points which belong to ! different 4-connected (or 8-connected) components

to represent the classes of the image X.

Remark 4: In dealing with connectedness in both X and X, to avoid the

“connectivity paradox” [Rosenfeld70], it is preferable to use opposite types

41

of connectedness for X and X, i.e. if we use “4-connected” for X, then we

use “8-connected” for X, and vice versa.

Remark 5: I any image X is surrounded by a border of 0’s, the component
of X consisting of the points connected to (any one of) these 0’s is called
the outside of X (Fig. 4.3(a)). If X has any other components, they are
called holes in X (Fig. 4.3(b)).

T [ﬁ
i

(a) The outside of X. {b) The holes of X.

Figure 4.3: The outside and holes of an image.

For more detailed discussion of geometric properties of images, the reader is
referred to [Rosenfeld70, Rosenfeld82, Duda73]. For equivalence relations, equiv-
alence classes and partitions, please refer to [Birkhoff70, Birkhoff65, Gilbert76).

Definition 4.2 Basic Properties in Image Transformations

The key properties of image transformations are the following ten basic properties
1. Increasing: An image transformation T'(X) is increasing
= (X CY - T(X)CT(Y)) for all X,Y € P(W).
2. Decreasing: An image transformation T'(X) is decreasing
<+ (X CY - T(Y)CT(X))foral X,Y € P(W).

42

10.

Extensive: An image transformation T'(X) is extensive

& X CT(X) for all X € P(W).

Antiextensive: An image transformation T'(X) is antiextensive

— T(X)C X for all X € P(W).

. Idempotent: An image transformation T'(X) is idempotent

o T(T(X)) = T(X) for all X € P(W).

Shift invariant: An image transformation T'(X) is shift invariant

o T(XeP)=T(X)® P for all X,P € P(W) and P is a point image
which consists of one and only one image point.

If an image transformation is not shift invariant, then it is shift variant:

T(X @ P)# T(X)® P (in general).

Homotopic: An image transformation T'(X) is homotopic
> there exists a one-to-one and onto correspondence between the connected

components of X and those of T(X), for all X € P(W). The same is then

true for the holes.

Commutative: A binary image operation - is commutative

~+ X-R=R-X for all X,R € P(W).

Associative: A binary image operation - is associative

& (X-R)-Q=X-(R-Q)forall X,R,Q € P(W).

Distributive: A binary image operation - is distributive over a binary image

operation +

& X-(R+Q)=(X-R)+(X-Q) for all X,R,Q € P(W).

43

Definition 4.8 Standard Operations

Most standard operations can be derived from the three fundamental operations;

eleven common ones follow:

1. Difference of X by R (Fig. 4.4):

X/R={(z,9) e X |(z,9) ¢ R} =XNnRE=XUR (4.1)

Remark: X = W/X where W is the universal image. The difference is

| @

X R X/R

"

Figure 4.4: Difference.
an obvious approach to detect defects in the foreground of a tested image.

2. Intersection of two images X and R (Fig. 4.5):

XNR={(z,9) | (z,y) € XA(z,y) E R} =X UR (4.2)

Remark: XUR=XNR. If XN R # ¢, then we say that an image X
hits (or is joint with) an image R. If X N R = ¢, then we say that an image

X misses (or is disjoint with) an image R
3. Erosion of an image X by a reference image R or foreground template match-
ing of X by R (Fig. 4.6):
XeoR=XoR (4.3)

44

x R XAR

Figure 4.5: Intersection.

Remark: X® R=X © R, and R = R when R is symmetic. The erosion

@@;e o @

]

X R X8R

Figure 4.6: Erosion.

of an image X by a reference image R can be thought of as the complement
of the dilation of the backgound by the reflection of the reference image R.
In general, the erosion of a non-null image X by a non-null reference image
R can be used to decrease the size of regions, increase the size of holes,
eliminate regions, and break bridges in X; on the contrary, the dilation
of 2 non-null image X by a non-null reference image R can increase the
size of regions, decrease or fill in holes and cavities, and bridge gaps in

X. Furthermore, the erosion can be interpreted as a foreground template

45

matching where the foreground points of X © R indicates the ocurrences of
the foreground template R in X (for this purpose, the size of R usually is
much smaller than the size of X).

4. Symmetric Difference of two images (mod 2 image addition or subtraction)

(Fig. 4.7):

XAR=(X/R)U(R/X)=XURURUX (4.4)

Remark: The symmetric difference is a commutative operation, and its

X R XAR
Figure 4.7: Symmetric difference.
inverse operation can be defined as itself. In Chapter 5 we show that this
operation is the parallel form of boolean EXCLUSIVE-OR. It is an obvious

approach to detect defects (including the foreground or background defects)

of a tested image.
5. Opening of an image X by a reference image R (Fig. 4.8):
XoR=(X6R)oR=Xo®R®R (4.5)

Remark: The opening operation is an erosion followed by a dilaton with

the same reference image R. In general, the opening X o R with a non-null

46

%]
&

@

X

R

Figure 4.8: Opening.

XoR

reference image R reduces the size of regions and eliminates some image

points by removing all features in X which can not contain the reference

image R.

6. Closing of an image X by a reference image R (Fig. 4.9):

XeR=(X®R)OR=(X®R)®R

(4.6)

Remark: The closing operation is a dilation followed by an erosion with

e °
©

@

X

R

Figure 4.9: Closing.

@ 2
O

XoR

the same reference image R. In general, the closing X ¢ R with a non-

null reference image R increases the size of regions and eliminates some

47

background points by filling in all background areas that can not contain

the reference image R, such as holes and concavities in the image X.

7. Hit or miss transform ® of an image X by an image pair R = (R, Rp) or

template matching of X by R (Fig. 4.10):

X®R=(XoR)NXoR)=XoR)U(XaR) (4.7

Remark: The hit or miss transform of an image X by a reference

f. foreground points with value 1
"' b: background points with value 0

Bl)= (e, B

R=(R;, Ry)

et

2000000000

X000
2XOOCOOOODOOOD]
2OOCOSOOOOOOC
2OOCOOOOOOOD,

200000000OOCK

OO
2OCOOOOOOOOOMD|

OO COOOOEOOCD|

POOOOOOOYEITD|

OO COCOOOOOCD,]

g |

Figure 4.10: Hit or miss transform (template matching).

S
®
=

image pair R = (R;, R;) is used to match the shape (or template) defined
by the reference image pair R where R; defines the foreground of the shape
and R, defines the background of the shape. The key conditions are that
the foreground X must match R, (i.e. X © R,), while simutaneously the
background X matches R; (i.e. X © R;). In order to better define the

hit or miss transform and its relationship with conventional boolean logic

48

operations, we start from a pixel-wise boolean comparison to derive the hit
or miss transform in shape recognition (Theorem 4.2). Note the similarity

of the symmetric difference and the hit or miss transform.
8. Thinning (© an image X by an image pair R = (R, R;) (Fig. 4.11):
XOR=X/(X®R =XuU(X@R)U(X6R,) (4.8)

Remark: The thinning operation is antiextensive and decreases the size

i

R=(R;, Ry)

Fo I XIS
XOOOOOOOOOOOD!

b
©
£

Figure 4.11: Thinning.

by removing the central points of the regions which match the reference

image pair R = (R,, R;).

9. Thickening ® an image X by an image pair R = (R,, R,) (Fig. 4.12):

XOR=XU(X®R =XU(X®R)U(X®R,) (4.9)

Remark: The thickening operation is extensive and increases the size by
filling the image points where the regions match the reference image pair

R = (R1, Rz).

49

|

20001 p-

2000
v I IC XD
= iDOOO!

o]

R=(Ry, Rz)

OO0
YOO

X 2O XOOOOOOC

O0O0COO000O0OCK

Image X 7 XOR
Figure 4.12: Thickening.

10. Sequential operations (e.g. sequential dilation, sequential erosion, sequential
thinning etc.):
If an image operation - is successively performed with each reference image
(or image pairs) in a sequence (R;) = (R,, Ry, ..., R:), then we define a

sequential image operation

X -(Re) = (((X - R) - Ry)...- R,). (4.10)

Two examples are:

(a) Sequential thinning of an image X by a sequence of image pairs (Rg) =

(Ray Royrey R2):

X ©(Rs) = (-((X OR.) O Rs)... OR.). (4.11)

Remark: The sequential thinning is powerful in many applications, such
as constructing a digital homotopic skeleton of an image X. Skele-
tonization of an image is an operation that transforms the image to

a simplified image, called skeleton, which emphasizes its connectivity.

50

However, a homotopic skeleton cannot be obtained by digitizing an
analog skeletonization algorithm; instead, a sequential thinning with a
sequence of reference image pairs should be used. Several different al-
gorithms employing different reference image pairs (called masks) have
been proposed by several authors [Preston84, Levialdi72]. Fig. 4.13
shows an example of the skeletonization by a sequential thinning with
a sequence of eight reference image pairs proposed by Levialdi et al
[Levialdi72].

(b) Sequential dilation of an image X and a sequence of reference images

(Ra) = (Ra, Rb, eevy R,):
X®(Rg)=(..((X® R,))® Ry)... ® R.). (4.12)

Remark: Since the dilation is commutative and associative, in prac-
tice the dilation X @ R with a large reference image R is usually im-
plemented as a sequential dilation with a sequence of small reference

images. For example,if R=E, @ E; ® ... ® E; , then

X®R= (((X DE)OE)D...® E); (4.13)
and if £ = E1 = E2 =..= Ek, then
R=E'=E®E®..0E. (4.14)

k

11. Conditional operations (e.g. conditional dilation, conditional erosion, con-
ditional thinning etc.):
An image operation - between an image X and a reference image (or image
pairs) R performed within a limiting set Y is called a conditional operation

and is denoted

51

Ry

Ry

f
b

] [eb] Bl

Ry

Re
(Ray Ry, ..., R,)

Ry

OOOOOOOOOOCK,

| COOOCOCOOCOCOOC

OO

XX

COCOTrr=r-rv-COOC)
OO r—r—vrvr0O0OC]
COCOrvr—rrrCOOC

OO0

OO0

OO0

XOOCOOOOODOCOOD

XX

0
o

C]

SOOI

CCOCOOCTXOCK

=
o

©®

QOO

COOOOOOOOOOCK

SOOI

COOOOOCOOIOOCE

COOOOOOOOOOCK

OO

OO0

YOOOOOOCIOOC

(Re)

OO0

OO0

OO0

QOOOOOCTOOCO

XXCOOOOOIOOCOL

XO0C OO0

COOO =000

(0 @ @ - - -

(o oo eao e o

(o0 oo o s o o e -

[e " e et e e e e a2 o

Re

Ry

OO

]
e o]

®

I QDOOOOOOCOO

OO0

Bre] CFT L8 8] [hal

Ra

cTooeocawweoe oo

COO™r—vr—r—vrv+OOC
COOvrTrT+vr OO0
OO rrr—rrr-O0OC

OO0

OO0

COOOOOOCOOO

COOOOOOCOOC

OO,

QOOOOOOCOOC

2O

X ©(Ro)
52

(used for homotopics skeletonization)

inning

: A sequential th

[Levialdi72].

Figure 4.13

X-R|Y=(X-R)nY =X -RUY (4.15)

® |, |.@®°

X R X@R

XoR Y XOR|Y

Figure 4.14: A conditional dilation.

Remark: Fig. 4.14 gives an example of the conditional dilation.

4.2 Examples of Special Cases: Translation
(Shifting), Expansion, Shrinking, and
Projection

Translation (shifting), expansion, shrinking and projection in a direction can by

achieved by the dilation (or erosion) in a direct way.

53

1. Shifting an image X from coordinate (z,y) to coordinate (z + %,y + j) is

done by
Xo{()}=Xe{(-i,-N} (4.16)

Remark: A point image {(z,7)} corresponds to a discrete delta function at
8(z — i,y — j). Thus, an image function X(z,y) (which corresponds to the
image X) convolved with the delta function §(z — ¢,y — j) or correlated with

8(z+1i,y+j)is the same as X @ {(¢,7)} = X © {(-¢,-)}-

2. Adding a new 8-connected or 4-connected boundary to an image X (i.e.

expansion) is done by

X® N, (4.17)

or

X @ Ng (4.18)
where Ny=TUAUA'UBUB™ and Ns =Uj;._, A'B’.
3. Removing the 8-connected or 4-connected boundary of an image X (i.e.

shrinking) is done by
XOoN,=X&N, (4.19)

or

XoNg=X® N (4.20)
where Ny = TUAUA'UBUB-! and N3 =} AiBI,

1,7=—1

4. Projecting an image X to distance k in a direction 4, i.e. producing a
shadow of X where the furthest image point in the shadow in the direction

0 is at distance k from the furthest image point in X in the direction 8, this

54

can be achieved by

X oot (4.21)

where © can be any one of the following:

o East: E=JUA, E*=f, A’

e South: S=IUB, S*=%,B"¢

o West: W=TuA™), Wk=)k A~

e North: N=JUB, N* =t B

e Southeast: Sg = IUAB™!, Sk =L, A'B~*

o Southwest: Sw = TU A~'B~!, Sk, =5, A" B~}
o Northwest: Nw = TU A™'B, N§, =5, A~ B’

o Northeast: Ng = TU AB, Nk = U5, A'B’

o Horizontal: H = J__, A’, H* = J-__, A’

o Vertical: V = B, Vk=UL_, B

l-—l

o Left-diagonal: Lp =Ul._; A~B', L =L _, A~°B’

e Right-diagonal: Rp =Ul_, A'B, R, = UL _, A'B’

4.3 Theorems for Low Level Vision

Here we summarize four theorems and some examples for binary image processing
applications. We first give basic properties of the BIA fundamental operations
and standard operations. Then we describe the implementation of morphological

filters, shape recognition algorithms, “salt” and “pepper” noise removal, size and

55

location verifications, convex hull and connected component labeling. Those more

obvious proofs are omitted for brevity.

Theorem 4.1 Properties of Image Operations

The BIA fundamental operations and standard operations have the properties
shown in Table 4.1 and Table 4.2.
Proof: Appendix B gives some of their mathematical expressions which follow

form the definitions.

Ezamples of Morphological Filters

Many image transformations are interpreted as morphological filtering [Serra82]
or cellular filtering [Preston84]. Some major mophological filters are listed in the

following;:

1. One kind of morphological low pass filter (Fig. 4.15): to remove high fre-

quencies in the foreground of an image X can be achieved by opening, i.e.

XoR = (XOR)®R

_ (4.22)
= X®R®R.

2. A second kind of morphological low pass filter (Fig. 4.16): to remove high

frequencies in the background of an image X can be achieved by closing, i.e.

XeR = (X®R)OR

(4.23)
= (X®R)®R.

56

Operationg Complement Unlon Dilation Difference Intersection Erosion
Properties X XUuR XoR X/R XnR XOR
Increasing No Yes Yes Yes Yes Yes
Decreasing Yes No No No No No
. Y Yes N
Extensive No es RO o No No
Yes
Antiextensive | No No No Yes Yes GfRDI)
Idempotent No Yes No Yes Yas No
Shittinvariant | No No Yes No No Yes
Homotopic No No No No No No
Commutative No Yes Yes No Yes No
Associative No Yes Yes No Yes No
Distributive
- No Yes Yes No Yes No
(with soma oper. (with n) (with v) (with u, &)

Table 4.1: Basic properties of three fundamental operations and three derived
operations (alternative fundamental operations).

57

Homotopic

OperatlonT mm Opening Closing Thinning Thickening | o niation
Properties XAR XoR XeR XOR XOR X ©(Re)
Increasing No Yes Yes Yes Yes No
Decreasing No No No No No No
Extensive No No Yes No Yes No
Antiextensive No Yes No Yes No Yes
Idempotent No Yes Yes No No Yes
Shift invariant No Yes Yes Yes Yes Yes
Homotopic No No No . No No Yes
Comnutative Yes No . No No No No
" Associative | Yes No No No No No
(i som apor] MO No No No No No

Table 4.2: Basic properties of some standard derived operations.

58

w| [
11 I
X R XoR

Figure 4.15: One kind of morphological low pass filter (opening).

o | (B
B E 1I
X R XeR

Figure 4.16: A second kind of morphological low pass filter (closing).

59

3. A morphological high pass filter (as shown in Fig. 4.17) which removes
low frequencies in the foreground of an image X can be achieved by the

difference of X and its opening, i.e.

X/(XoR) = X/(X©R)®R)
= X/(X®R®R) (4.24)
= XU(X®ROR).

7

AN
AW
NN\

fa

DN

> | OO

R X/(X o R)

Figure 4.17: A morphological high pass filter.

4. A morphological band pass filter (as shown in Fig. 4.18) which removes low
frequencies and high frequencies in the foreground of an image X can be
achieved by the difference of its opening with a smaller reference image R

and its opening with a larger reference image @, where R C Q, i.e.

(XoR)/(XoQ) = (XOR)®R)/(X0Q)8Q)
= (XeR)®R/(X0Q)0Q) (4.25)
= (X0eRORUX®QQ)

Theorem 4.2 Shape Recognition (Template Matching)

60

NN
NN
AR

A U O
g

RSN
NN

OO

BEE q
X

Figure 4.18: A morphological band pass filter.

(XoR)/(X Q)

1. The locations of a shape, that is defined by a non-null reference image R and
a non-null reference image (called mask) M (Fig. 4.19), with RC M C W

(W is the universal image), can be detected by

(XeRIN(Xo(M/R) = (X®R)U(Xa®(M/R))
(XeRU(X®MUR).

(4.26)

Equivalently, setting R, = R, R, = M/R and redefining a non-null reference
image pair R = (Ry, R;) (Fig. 4.20) yields the hit or miss transform of X
by R:

X®R=(X0R)NXOR)=(X®R)U(XDR,).

2. The locations of a shape, that is defined by a family of non-null reference
image pairs {R(8)} with 8 € © (O is the index set of the family of non-null
reference image pairs and R(6) = (R,(0), Rz(f)), can be detected by the

61

A, |

(XoR)u(XeMuR) =

Figure 4.19: One kind of shape recognition. R represents the shape to be identi-
fied, and must lie entirely and exclusively in the mask defined by M.

62

X®R =

R

R,

Figure 4.20: Hit or miss transform, which recognizes locations of foreground points

given by R, in conjunction with background points given by R,.

63

union of the hit or miss transform of X by R(9):

Useoe X ®R(0) = Useo(X © Ri(8)) N (X © Ra(0))

_ ! (4.27)
Useo (X & R1(8)) U (X @ Ry(9)).

Proof: Appendix C.1.

Theorem 4.8 “Salt” and “Pepper” Noise Removal

1. “Salt” noise removal (isolated image point removal) (Fig. 4.21(a)): removal
of an image point if and only if all its 4-connected or 8-connected neighbors

are background points (0’s) can be achieved by

X0Quu=XuXeoM, (4.28)

or

X0Qs=XuXoM (4.29)

where Q4 = (M4, I), Qs = (Mg, I), My = AUA"'UBU B~ = N,;/I and
M8=N8/I.

2. “Pepper” noise removal (interior fill) (Fig. 4.21(b)): creation an image point
at a coordinate if and only if all of its 4-connected or 8-connected neighbors

are image points (1’s) can be achieved by
X@Ri=XuXeM, (4.30)

or

X@R=XUX0d M (4.31)

where Ry = (I, M,), Rg = (I, Ms).

64

OOOOOOCROOO0OC

QOOOOOOOOO0C

SOOI

Reference Image Mg

CIOOOOOOOO0OCK

OOOOOCOOOODDOC

X0 O0OO00O0OOC0C

OOOO0OOOOOOOC

Reference Image M;

Image X

L OOOOOOOODOOC

AT

OO0

COOOOOOCOOOC

CROOOOOTEOCX:

YOOOOODCEOOCK

COOOOOOOOOEDOC

(2)

20000000

OOOOOOODODOC

3OO0

OO OOO0OOCOOC

COOODOOOEOOD

(b)

XOOOOOOCO0OOC

2OOO0OC0COOOC

2OOOOCOCOO0OC

OO0

OO0

2OCOCOOCNIOC

XOOQOOOOOOOOC

ICOOOCOD0OC

(XUX @ Mg)U(X U (X @ Mp))

(XuXoM)u(Xu(XeM))

(c)

" noise removal. (a): “Salt” noise removal. (b):

“Salt” and “pepper” noise removal.

Figure 4.21: “Salt” and “pepper
“Pepper” noise removal. (c)

65

3. “Salt and pepper” noise removal (Fig. 4.21(c)): removal of noise points,
that are completely surrounded with 4-connected neighbors or 8-connected

neighbors of the opposite value, can be achieved by

(X0 Qu)/(X ®Ry) =(XUX D M)U(XU(X D M,)) (432)

or

(XO0Qs)/(X®Rs) =(XUX®M)U(XU (XD M)). (4.33)

Proof: Appendix C.2.

Remark: This theorem demonstrates the fact that many higher level operations
(e.g. involving thinning and thickening) can be efficiently implemented by the
three fundamental operations. Using the same design methodology as the “salt
and pepper” noise removal, we can design many similar algorithms, such as spur
removal, bridge break, and edge detection (perimeter) etc. For example, the
detection of the 4-connected or 8-connected edge of an image X (Fig. 4.22) can

be achieved by

X/(X© Ng)=XU(X®Ns) (4.34)

or

X/(X6N4) =YU(7®N4). (4.35)

Theorem 4.4 Size and Location Verification

The locations in an image X of the regions including the reference image R and

included in the reference image @, where R C @, can be detected by

S(XeR/(XeQ)eQ))=S(XeRUXaQeQ). (4.36)

66

Reference Image N,

COOOOOOODOOOOCK

OO0

COOOOOOCDOO

Reference Image Ny

MG

image X

IOODOOOCDDOR

OCICHCICICICITICE

X/(X 6 Ny)

OCOOOOOOOOCL

WO

SOCOCICCICICACICN)

X/(X & Ng)

Figure 4.22: Edge detection.

67

where S(-) means the homotopic skeletonization. (An example is given in Fig.
4.23.)

Proof: Appendix C.3.

The above theorems serve as the typical rules for morphological image process-
ing. In fact, there are many ways to analyze the shapes and sizes of an image by
using only the three fundamental operations. As another example: comparing an
image X with its convex hull C(X) [Rosenfeld82] is a useful technique to analyze
shape. If there is only one object or objects separated by distances greater than
their own diameters in the image X, then its convex hull is the intersection of
projections (Fig. 4.24):

o0 =[x ol (4.37)
i=
where ©;, ¢t =1,2,3,4, are H,V, Rp, Lp (defined in Definition 4.4), and k should
be greater than the longest radius of objects in X. Then the difference of the
convex hull and the image C(X)/X indicates how many concavities the image
X has and what their individual shapes and sizes are. Fig. 4.25 illustrates an
example.

One more observation is to apply the convex hull and the hit or miss transform
for a particular class of connected component labeling problems: given an N x N
image X which consists of k£ connected components (each with size smaller than
M x M, separated by distances larger than M, and M <« N), label each connected
component by a single image point (the upper left image point of its convex hull).

This can be achieved by
U C(X) ®R(6) (4.38)

9€®
where C(X) is obtained from Eq. (4.37), the set of reference image pairs { R(9) |

0 € O} contains three reference image pairs (Fig. 4.26), each corresponds to a

68

R Q
@
XoR XoR
@ |
(XoR)/(X0Q)8Q)) S(XeR)u(XodoQ)

Figure 4.23: A size verification (for holes).

69

X Xo H* Xo vk

.4

c(X)

Figure 4.24: An example of the convex hull of an image X (implemented by the
intersection of projections).

XLk

c(X)/X

Figure 4.25: The difference of the convex hull C(X) by X (C(X) and X are shown
in Fig. 4.24).

70

possible neighborhood of the upper left image point of convex hulls. This par-
alle] algorithm can be executed on the DOCIP-array and the DOCIP-hypercube
(Chapter 6) in O(M) and O(log, M) time respectively. This algorithm requires
only simple cell hardware complexity and is executed much faster than other con-
nected component labeling algorithms [Stout88]. The only problem is its strong

restriction on the input image.

{8 BBl

Figure 4.26: A set of reference image pairs {R(6) | @ € ©} for labeling a particular
class of connected components. Each array represents an image pair consisting of
foreground points (value 1, represented by “f”) and background points (value 0,
represented by “b”). The origin is located at the center.

4.4 Parallel Pattern Recognition Based on BIA

A shape recognition algorithm has been summarized in Theorem 4.2 in Section
4.3. The practical difficulty with this theorem is that it is efficient only for shift
invariant recognition and requires a large number of intricate reference image pairs
to perform the recognition step in the presence of changes in scale, rotation or
both. To solve this kind of invariance problem, in this section we recognize all the
desired patterns by reversing the growing procedure of a family of patterns. This
family defines all patterns in presence of such changes as scale and transforms all
the desired patterns into their original seeds, which are usually chosen as isolated

single image points.

7

4.4.1 Life, Pattern Growth and Pattern Recognition

These pattern recognition algorithms are motivated from the “games of life” and
patterns of growth in cellular automata [Berlekamp82, Gardner70, GardnerT71,

Gardner83, Ulam62, Poundstone85, Wolfram84, Wolfram86, Farmer84, Demonge-
ot85, Packard85, Preston84]. Cellular automata are mathematical systems con-
structed from many identical components, each simple, but together capable of
complex behaviour. Growth from simple “seeds” in two-dimensional cellular au-
tomata can produce patterns with complicated structures. Several examples of
cellular automata, such as Conway’s game “Life” [Berlekamp82, Gardner70], illus-
trate that how extremely simple rules can be used to characterize very complex
behavior. Binary image algebra (BIA) can efficiently describe these games or
patterns of growth of two-dimensional cellular automata also. Some examples

are:

e Ulam’s transition rule [Ulam62]: A foreground image point (with value 1)
never becomes a background point (with value 0) while a background point
with a single foreground point in its 4-connected neighborhood becomes a

foreground point (Fig. 4.27). BIA describes this as

X(ter) = X(t) U (U X (&) ® R(9)) (4.39)
Py

where the set of {R(6) | 8 € ©} contains four reference image pairs (Fig.
4.28), each corresponding to a 4-connected neighborhood with a single fore-
ground point; X(¢x41) (at time tx41) is the image corresponding to the state

subsequent to X () in each iteration, and © is the index set of these four

72

reference image pairs. The rule leads to infinite growth which is in general

not self-reproducing.

111
1]1 111 111

1'—"11 — 11711 —b111 111 —51111 1111 —D11111 11111
111 111 111

111

Figure 4.27: Pattern growth using Ulam’s transition rule.

ENlE Al

Figure 4.28: A set of reference image pairs {R(8) | € ©} for Ulam’s transition
rule. Each array represents an image pair consisting of foreground points (value
1, represented by “f”) and background points (value 0, represented by “b”). The
origin is located at the center.

e Fredkin’s transition rule [Gardner71]: Any pixel (or point) with an even
number of foreground points in its 4-connected neighborhood becomes a
background point while a pixel with an odd number of foreground points in
its 4-connected neighborhood becomes a foreground point. BIA describes

this as

X(ten) = Ha X(t) ® R(0) (4.40)
€

73

where the set of {R(0) | 6 € O} contains eight reference image pairs, each
corresponding to a 4-connected neighborhood with an odd number of fore-
ground points. This rule can lead to a self-reproducing pattern of growth.
The same equation with a defferent set of {R(9) | § € ©} can be used to

perform the Conway’s game “Life” and other patterns of growth.

These games of life and patterns of growth remind us that an orignal “seed”
with a simple rule may characterize a set of many extremely complex patterns.
Now, in the reverse direction, if this set of complex patterns is a class of patterns
to be recognized, then we apply a rule for growth reversal to transform those
complex patterns into their orignial “seeds”. By examing the “seeds”, we can
easily classify or recognize different patterns and determine their locations. For
a simple example, we assume all the patterns generated from an isolated singe
image point using Ulam’s transition rule are considered as a class of patterns. To
recognize the patterns of this class, we then apply the reversal of Ulam’s transition
rule (Fig. 4.29) as

X(ten) = X(4)/(UJ X(t:) ® R(8)) (4.41)
6eo
where the set of {R(0) | # € ©} contains eight reference image pairs (Fig. 4.30).
For a pattern with diameter m, it will be transformed to the “seed” (an isolated
single image point) after m — 1 iterations of the above equation.

The difficulty is in determining the “seed” and the rule of growth reversal for

a class of patterns. In the next subsection, the BIA formulations for this idea will

be described.

74

1 e—1]s <—11I11 DUPEYS DS PRPUNDPY b b IR P 1y 03 1

I

Figure 4.29: Pattern recognition using the reversal of Ulam’s transition rule.

ALk Pobe] oy o] ree] o8] o] PR

Origin

Figure 4.30: A set of reference image pairs {R(6) | 8§ € ©} for the reversal of
Ulam’s transition rule.

4.4.2 BIA Formulations for Pattern Recognition

We have developed the BIA formulation for a class of pattern recognition prob-
lems. The algorithm involves two phases (Fig. 4.31): (1) the training phase
chooses or calculates a small set of acceptable reference image pairs for character-
izing sequences that present all the patterns of a class; and (2) the recognition
phase recognizes all the desired patterns in an input image by transforming them
into their original “seeds” (each seed represents the end of a sequence) and then
picking up those desired “seeds” for indicating the locations of desired patterns.
We will discuss two cases, distinguished by restrictions on the allowable sequences:
(1) the recognition sequences of patterns that are decreasing in size (“shrinking”
sequences), and (2) general sequences that have no such restriction (generalized

“reduction” sequences).

Case 1. Recognition by A Shrinking Sequence

75

Training Patterns

Aclass, K
of
patterns

Determine
appropriate sequence(s)
of patterns

R—

Calculate the
sef(s) of reference
image pairs

Is the criteria
for "acceptable” reference
image pairs met?

Yes

Recognizing Patterns

Input image
with different classes
of patterns

Transform the patterns
belonging to the desired
class into their "seeds”

Pick up
the desired
"seeds”

Output image
with the locations of
the input patterns that
belong to class K

Figure 4.31: Algorithm structure for BIA pattern recognition.

76

Suppose we want to recognize all patterns of a class (e.g. all solid square patterns)
with different scale sizes and locations in an input image X (e.g. Fig. 4.32(a))
and produce the output image Y (e.g. Fig. 4.32(b)) with the recognition results.

The procedure is:

1. Training the patterns of a class:

e Step 1. Determine a growing sequence of the desired patterns T; (e.g.

Fig. 4.32(c)) which are increasing in size, i.e.
Tochc.T...CThai CT (4.42)

where 0 < 7 € m, Ty determines the “seed” for the patterns of this
growing sequence, and T, is the largest pattern (having diameter m).
The reversal of Eq. (4.42) represents the shrinking sequence. For
simplicity we generally assume the same transition rule will be applied

for each step T; — T;_; of the shrinking sequence.

e Step 2. Calculate a small set of reference image pairs {R(9) | 0 € ©}
(e.g. Fig. 4.32(d)) and an auxiliary set of reference image pairs {R(}) |

X € A} (e.g. Fig. 4.32(e)) with the property:
— Bach reference image pair R(#) corresponds to a possible neigh-
borhood subimage of a given foreground image point of a pattern
T:;, 1 £ 1 £ m, whose previous state in the previous pattern T;_;

is a background point. Symbolically,

{R(0) |0 € ©} (4.43)
= {(P®N)NT)®P|P={(z,9)} CT:/Tis1,1 < i < m}

7

where T;/T;_; = T:nTi—; = m, P is a point reference image
containing only single foreground point which is also a foreground
point in the difference image T;/T;—,, and N is the chosen neigh-
borhood configuration (e.g. 3 x 3 neighborhood). This set will be
used in the shrinking sequence for recognizing the desired patterns
below.

— Each reference image pair R()) corresponds to a possible neighbor-
hood of a given foreground image point of a pattern T;, 1 < i < m,
whose previous state in the previous pattern T;_; is a foreground

point. Symbolically,

{R(A) | A € A} (4.44)

= {(PON)NT)®P|P={(z,9)} CT:NTiy,1 < i <}

where P is a point reference image containing only one single fore-
ground point which is also a foreground point in the intersection of
T; and T;.;. This set will be used in the next step to help to deter-
mine whether the growing sequence is “acceptable”, i.e. whether

{R(9) | 0 € ©} meets the criterion below.

e Step 3. Check the criteria of acceptable reference image pairs for { R(0) |
0 € 0}:

— The above two sets of reference image pairs {R(0) | #§ € ©} and
{R(A) | A € A} must be disjoint, i.e.

{R(0)|0€O}N{R(N)|AeA}=¢ (4.45)

78

This condition means that we can not expect to change a fore-
gound image point into both foreground and background points
simultaneously at a coordinate during the growth reversal.

— For multiple classes of patterns in an input image, we must also
require that the patterns of a class never become the seeds of other
classes when applying the transition rules of other classes. One
way of ensuring this is to require the sets of reference image pairs

{R(0) | 0 € ©} for different classes to be disjoint. This avoids

errors in the recognition process.

If the above criteria are not satisfied, then we have to modify the
growing sequence or increase the neighborhood configuration (i.e. the

size of reference image pairs) until they are satisfied.
2. Recognizing the desired patterns:

e Step 1. Transform the desired patterns T;,: = 1,2,...,m, in the 2-D
input image X into their original seeds Ty (usually consisting of one
and only one foreground image point):

This is to reduce patterns of the same class (e.g. having different
scales and locations) in an input image X = X({o) to a set of seeds
(i.e. isolated single foreground image points usually) by the recursive

relation:

X(tewr) = X(t)/ U X(tx) ®R(0) (4.46)
oco
where 0 <k < m.

o Step 2. Pick up the original seeds by the equation

Y =X(n)®Q (4.47)
79

where Q (e.g. Fig. 4.32(f)) is a reference image pair associated with
the seed, (i.e. with one and only one foreground image point at the

center usually), and Y is the final recognition output.

This procedure is shift invariant because of the parallel BIA formalism. Scale
invariance can be incorporated by using an appropriate sequence of patterns that
represent scaled versions of the same basic pattern. In addition, rotation in-
variance can be incorporated by using multiple sequences, one for each different
orientation (since the input space is discrete, the number of different orientations
is finite and in some cases is small, e.g. 4 or 8 orientations). The main restriction

(Eq. (4.42)) can be removed in the more general procedure described below.
Case 2. Recognition by A Generalized Reduction Sequence

In this case, the patterns in the growing sequence need not satisfy the increasing

size condition (Eq. (4.42)). We can modify the above procedure as follows:

1. Training the patterns of a class:

¢ In addition to calculating {R(9) | # € ©} and {R()) | X € A}, we also
calculate one more set of reference image pairs {R(y) | ¥ € '} and one

more auxiliary set of reference image pairs {R({) | £ € E}:

— Each reference image pair R(£) corresponds to a possible neighbor-
hood of a given background image point of a pattern T}, 1 < < m,
whose previous state in the previous pattern T;.; is a background

point. Symbolically,
{R(7) |v€T} (4.48)
= {(PON)NT)®P|P={(zy)} CTinTi5,1 <i<m}

80

o 10 11 W mj‘]’ﬂ

AR I
R
Bt

Figure 4.32: A shift and scale invariant pattern recognition of solid square pat-
terns, as an example of recognition by a shrinking sequence. (a): An input image
X. (b) The output image Y. (c): The growing sequence of solid square patterns
T;, 0 < i< 4. (d): A set of acceptable reference image pairs {R(8) | § € ©}
for solid square patterns with different scales. (e): An auxiliary set of reference
image pairs {R()\) | A € A} for solid square patterns with different scales. (f):
The reference image pair Q.

81

where P is a point reference image containing only one single fore-
ground point which is also a foreground point in the intersection
of T; by Ti_;. The sets {R(0) | § € ©} and {R(v) | ¥ € '} will be
used to recognize the desired patterns.

— Each reference image pair R(£) corresponds to a possible neigh-
borhood subimage of a given background image point of a pattern
T;, 1 < 1 < m, whose previous state in the previous pattern T;_,;

is a foreground point. Symbolically,

{R(E) €=} (4.49)
= {(Pe&N)NT)® P | P ={(z,y9)} CT:ica/T:;1 < i < m}

where P is a point reference image containing only one single fore-
ground point which is also a foreground point in the difference of
T;-1 by T;. This set will help to determine whether {R(y) | v € T'}

is “acceptable” or not.

o Because we can not expect to change a background image point into
both foreground and background points simutaneously, we have to add
the criterion that the sets {R(y) | v € T} and {R(¢) | £ € =} must be
disjoint. Similarly, the sets of reference image pairs {R(y) | v € T'} for
different classes must be disjoint to ensure that the patterns of a class
never become the seeds of other classes when applying the transition

rules of other classes.

2. Recognizing the desired patterns:

82

o Instead of the Eq. (4.46), we transform the desired patterns T},: =
1,2,...,m, in the 2-D input image X into their original seeds Ty by the
recursive relation:

X () = (U X(4) @ R() U (X ()] U X(t) @RO) (450)
qer)
where 0 < & < m. Finally, we pick up the original seeds by ¥ =
X(tm) ®Q as desbribed in Case 1.

This case allows more general pattern sequences such as hollow objects (e.g. se-
quences of successively larger line objects such as squares or rectangles). In both
cases, this algorithm can reduce the computation complexity for a class of pattern
recognition and symbolic substitution problems because of its inherent parallelism.
In addition, the concept of using sequence(s) of patterns to describe a class may
allow a simple description of classes that are not easily represented by a set of
features, such as different natural pattern textures. How easily the BIA technique

described here can be applied to such problems is not known at present.

83

Chapter 5

BIA: Relationship to Other

Computing Theories

5.1 Relationship to Symbolic Substitution

Symbolic substitution was first considered as a means of utilizing the paral-
lelism of optics by Huang [Huang83]. Recently, the use of symbolic substitu-
tion as a basis for digital optical computing has been reported in [Huang83,
Brenner85, Brenner86a, Brenner86b, Brenner87, Mait87, Cloonan87, Capps87,
Ramamoorthy87, Jeon87, Taso87). Special symbolic substitution rules can be ap-
plied to perform arithmetic operations and simulate a Turing machine [Brenner86a).
Symbolic substitution can solve any computable problem and performs many op-
erations. Here we formalize symbolic substitution by BIA algebraic symbols,
demonstrate that symbolic substitution rules are particular BIA image transfor-
mations, and give some BIA algebraic techniques for deriving and comparing

symbolic substitution algorithms.

84

5.1.1 BIA Representation of Symbolic Substitution

In this subsection we derive the BIA equation for symbolic substitution.

symbolic substitution rule involves two steps: 1) recognizing the locations of a
certain search-pattern within the 2-D binary input data, and 2) substituting a

replacement-pattern wherever the search-pattern is recognized. We derive it by

BIA in the following steps (illustrated in Fig. 5.1):

Search-pattern
R = (R, Ry)

b

(

b

’
Foreground =

Input_image

1fol1]o

1]lo]1r |

t|1]11]0

ojoj1]o
Origin X

Figure 5.1: BIA representation of symbolic substitution. The optional mask M

Background =
Pattern of 1's Pattern of 0's

)

Foreground recognition

ojojojo
1101 |0
1]0}1]o0
ojoji{o

XeoR=XoR,

Background recognition

1

0

0

1
0
0

0
0
0

1
0
0
1

0
0
0

XoR,=X®R,

n

Full recognition

Replacement-pattern

Q

0

0

0|0

0

0

0

1
0
0

0

0
0|0
110

X®R

Symbolic substitution rule = Hit or miss transform + Dilation

is used for controlling the block search region.

N\ Aomnn

Substitution output

ojojo

0

1§1]0

0j0jo

ofo |1

0
0
1

(X®R)®Q

cojo|jo|e

-|lol=|o
Qloejo|o

- |O|l =10

1. BIA Notations for Symbolic Substitution:

e 2-D binary input data = image (bit plane) X
e Symbol to be recognized (search-pattern) = reference image (or image
pairs) R

e Symbol to be replaced (replacement-pattern) = reference image Q@
2. A Symbolic Substitution Rule:

e Step 1. recognition of the search-pattern:

(a) Foreground recognizer: the locations of a spatial search-pattern R,
(a set of 1’s called the foreground) within the 2-D input data X

can be recognized by the erosion operation of X and R;:
XoR =X®R,. (5.1)

(b) Background recognizer: the locations of a spatial search-pattern
R; (a set of points that correspond to 0’s which is called the back-
ground) within the 2-D input data X can be recognized by the

erosion of X and Ry:

XOR,=X®R,. (5.2)

(c) Full recognizer: by combining the two above steps, the locations
of a certain spatial search-pattern R = (R, R;) (R defines the
foreground, and R; defines the background) within the 2-D input
data X can be recognized by the hit or miss transform of X and

R:

X®R = (XOoR)N(XORy)

= XoR)U(X 0 R,).

(5.3)

86

o Step 2. substitution of the replacement-pattern:

— Substituter: a new replacement-pattern @ can be substituted for
R wherever the search-pattern R is recognized by the dilation of
X®Rby Q.
¢ Synthesis:

— A complete symbolic substitution rule is implemented by the hit

or miss transform of X by R followed by the dilation by Q:

(X®R)®Q = (XeR)n(XoR))®Q

(5.4)
= XoR)U(X0R)®Q.

¢ Optional masking:
~ An optional mask M can be used for controlling the block search

region. A symbolic substitution rule can be modified as:
(X®R) NM)eQ. (5.5)

By proper choice of M, the search can be made in overlapping,

disjoint or non-contiguous blocks.
3. A symbolic substitution system (Fig. 5.2):

o This idea can be extended to more than one rule (say p substitution
rules as shown in Fig. 5.2). Herre a symbolic substitution processor
produces several copies of the input X, provides p different recognizer-
substituter units, and then combines the outputs of various units to
form a new output. Thus, a symbolic substitution system is imple-

mented by
Jix @R @ Q¥ (55)

i=1

87

Symbolic Recognition 1 Symbolic Substitution 1
(Hit or Miss Transform) [® (Dilation)
® @

Symbolic Recognition 2 -’ISymbolic Substitution 2

(Hit or Miss Transform (Ditation)
Input /) ® Union Out
Image U —>
X : : '

Symbolic Recognition p| |[Symbolic Substitution p
(Hit or Miss Transform) [(Dilation)
® ®

Figure 5.2: A symbolic substitution system with p symbolic substitution rules.

or

U((X @R n M) @ @V (5.7)

=1
where R and QW), i = 1,2,...,p, are the reference image pairs and
replacement patterns in the i** symbolic substitution rule. This, then,

is the BIA formula for general symbolic substitution.

Hence, a general mathematical formalism of symbolic substitution has been
developed. BIA represents a general complete systematic mathematical tool for

formalizing the symbolic substitution algorithms.

5.1.2 Examples of Symbolic Substitution Using BIA

In many special cases the above form for symbolic subsitution (Eq. (5.6) or Eq.

(5.7)) is inefficient and can be reduced to a relatively simpler form or implemented

88

in a more efficient way by using some BIA algebraic techniques. Here are some

examples:

o Case 1. R = ¢ (null image) or Ry = ¢
This implies
(X®RY) 9 Q" = (X o R{) o QY (5.8)
or

(X ®RY) @ QW = (X o BY) @ @Y, (5.9)

so that we can implement the full recognition of the i** symbolic substitu-
tion rule by implementing only the background recognition or foreground

recognition.

e Case 2. QU = ¢:
This implies

(X ®RY) @ QY = ¢, (5.10)

so that the #*» symbolic substitution rule is not needed and has no effect
at all. For example, the subtraction of two binary numbers stored in a 2-D
bit array can be described symbolically as a sequence of BIA operations.
The four general rules of recognition and substitution needed to implement

subtraction can be reduced to two rules using Eq. (5.10) [Huang88b).
e Case3. XO Rgi) =X0O Rg"):
This implies
X®RY=XoRY =X eRY, (5.11)
so that we can implement the full recognition by either the background

recognition or foreground recognition, alone. This always happens in the

89

case of the dual-rail coding, so that dual-rail coding implements symbolic

substitution according to

UXe R " =) X o B @ Q% (5.12)

i=1 =1

or

O((Ye RYnM)e Q¥ = O(X@R:ﬁ"nM)eQ“). (5.13)

i=1 i=1

However, dual-rail coding requires more complicated coding and doubles the

device area.

Case 4. R{) =QW,i=1,2,....k, k< p:

For k = p, we simply replace the input image X with the same image X,
and we do not need to process the image at all. For k¥ < p, we can keep the
portion of the input image which contains the patterns Rg") ,t =12,k

and process only the other portion of the input image as follows

UL (X ®RY) @ QY
= (X/Uin(X ®RD) @ R) U (UL (X @R @ QW) (5.14)
= (X/Uen (X ®RD) @ NO) U (U (X ®RD) @ QV)
where N = Rgi) U Rg) specifies the neighborhood configuration. In sym-

bolic subtitution, we usually choose N as a constant image, i.e. N =

Rg'.) u Rg'-) = N, for all 7, then Eq. (5.14) can also be implemented as

(X/ (U1 (X @ RD) @ No)) U (Upn (X @ RD) @ Q)
= (X/(Ukekn (X @ RD)) @ No)) U (Uierss (X @ RO) @ QV)

(5.15)

where the first term produces the portion of image containing the patterns

which will be substituted with the same patterns. Obviously, the efficiency

90

of this algorithm is increased as the number & is increased or the size of ref-
erence images (or image pairs) is increased. This algorithm can reduce the
number of required BIA fundamental operations, compared to the imple-
mentation with Eq. (5.6). If we have a special control structure to update
only a portion of the input image, where the encoded symbols are replaced
with new symbols (the other portion of the image remains the same), with-
out extra time. An example with ¥ = p/2 occurs in the parallel binary
addition of symbol-coded data (Chapter 8), in which we do not assume
the existence of such special control structure in Chapter 8 for reserving
the hardware simplicity. Instead of using this algorithm, we can see that
one rule of binary addition and two rules of binary subtraction in single-
pixel coding also satisfy the condition of Case 2, which algorithm is used in

Chapter 8.

o Case 5. QW =Qforall1 <i<p:
This implies that we should combine the results of the hit or miss transforms
first and then replace them by the same replacement-pattern @ instead of
implementing p substitution units for realizing the same substitution step,
i.e.

U xereq. (5.16)

=1

This happens in cases when a type of pattern is defined by a set of reference

image pairs R%), i = 1,2,...,p.

As we will see later, BIA also suggests a digital optical cellular image processor
(DOCIP) architecture which can implement all the above algorithms of symbolic

substitution in an efficient, programmable, and highly parallel way.

91

5.1.3 Symbolic Substitution Representation of BIA

BIA provides useful parallel algorithms for image processing and numerical ar-
ray computation (Chapter 4 and Chapter 8). To systematically develop parallel
algorithms for symbolic substitution processors (Fig. 5.2), we first list symbolic
substitution rules for the three fundamental operations of BIA (Chapter 3). Then
we can derive symbolic substituion rules for all BIA parallel algorithms. Choosing
some particular search-patterns and replacement-patterns, symbolic substitution

rules represent the three fundamental operations as follows

1. Complement can be implemented by a symbolic substitution rule as
X=(X®R)oI (5.17)

where the search-pattern is the reference image pair R, = (¢,7), ¢ is a null
image and I is an elementary image (also the identity of dilation) defined

in Chapter 3, the replacement-pattern is also the elemetnary image 1.

Proof : (X®R)®I = (Xes)n(Xe)el
= WnX)el
= Xol
= X.

2. Union can be implemented by two symbolic substitution rules as
XUR=(X®R)DNHU((R®R,)DI) (5.18)
where R, = (I,) is the right identiy of the hit or miss transform).

Proof : (X®RH)HU((Y®R)BI)

92

= (XehnXeg))u(Yel)n(Xee)
= (XNnW)u(Y nW)

= XUY.

3. Dilation can be implemented by a symbolic substitution rule as
X®R=(X®R,)O®R (5.19)

where the search-pattern is R, = (I,¢) as used in the union and the

replacement-pattern is R.

Proof : (X®R,)OR = (Xe)n(Xoe¢)or
= (XNW)®R

= X@R.

Erosion, morphological low pass and high pass filters are useful image opera-
tions (Chapter 4). We list their symbolic substitution rules here as examples for

deriving symbolic substitution algorithms based on BIA:

o Erosion can be implemented by a symbolic substitution rule as
XOR=(X®R)0I (5.20)
where the search-pattern is R, = (R, ¢) and the replacement is I.

Proof : (X®R)®I = (XOoR)N(X64¢)
= (X6RNW

= XO6R

93

¢ Opening (one kind of morphological low pass filter) can be implemented by

a symbolic substitution rule as
XoR=(X®R.)®R (5.21)

where the search-pattern is B, = (R, ¢) as used in the erosion and the

replacement pattern is R.

Proof : (X®R.)®R = (XoR)N(Xe4)OR
= (KeRNW)®R
= (XeR)®R

= XoR.

e Morphological high pass filter can be implemented by three symbolic sub-

stitution rules as
X/(XoR)=[((X®R)DIU[(X®R)OR))®R]0I (5.22)

where R, = (¢,I) as used in the complement and R, = (R, ¢) as used in

the erosion.

Proof: [((X®R)®IV[(X®R.)®R)®R]&1
= [(XU(XoR)®R]DI
= XU(XoR)

= X/(X oR).

Thus, BIA offers a systematic mathematic structure for developing parallel

algorithms for symbolic substitution processors. In general, BIA also provides

94

a universal description of algorithms on parallel single instruction multiple data
(SIMD) machines. Its description of an algorithm on a given architecture simplifies

comparison of the number of operations required.

5.2 Relationship to Cellular Logic

Cellular logic architectures have been briefly reviewed in Section 2.2. A cellu-
lar logic operation transforms an array of data into a new array of data where
each element in the new array has a value determined only by the corresponding
element in the original array along with the values of its neighbors (Fig. 2.1).
In BIA, an image transformation can be writtern as a polynominal of reference
images (Theorem 3.1) where the reference images can have arbitrary large size.
In terms of cellular logic, the reference image essentially defines the neighborhood
of a cell where the neighborhood can be very large and not just nearest 4- or 8-
neighborhood as in conventional cellular logic. Thus, cellular logic operations are
also particular cases of image transformations with small local reference images,
and BIA also serves as a systematic mathematical tool for formalizing cellular
logic.

Because of existing hardware interconnection limitations, it is difficult and
costly to implement an image transformation with a large reference image in one
clock cycle. In addition, the conventional nearest-neighbor connected cellular
arrays have poor communication capabilities. To improve this, we develop the
DOCIP-hypercube architecture in Chapter 6, which combines features of con-
ventional nearest-neighbor connected cellular logic architectures and conventional

hypercube architectures for implementing BIA effectively.

95

In summary, BIA provides a systematic mathematical formalism for both sym-
bolic substitution and cellular logic. The applications of symbolic substitution and
cellular logic can be accomplished by BIA; on the other hand, generalized cellu-
lar logic architectures are good candidates for implementing BIA (Chapter 6 and

Chapter 7).

5.3 Relationship to Boolean Logic

BIA can implement any boolean logic operation on binary images. It is also
obvious that BIA fundamental operations can be implemented by a boolean logic
gate array with interconnections. The following straight-forward correspondence

can be drawn between the BIA operations and boolean logic operations:

BIA Operations Boolean Logic Operations
1. Complement NOT

2. Union OR

3. Dilation Multiple-input OR

4. Intersection AND

5. Erosion Multiple-input AND

6. Symmetric Difference EXCLUSIVE-OR

Note that the inputs of OR and AND (corresponding to union and intersection)
come from two different images. The multiple inputs of OR and AND (cor-
responding to dilation and union) come from the same image while the other
operand image R only determines the number and location of input pixel values.
A complete logical set is able to implement any boolean logic function; it con-

sists of at least one of the following sets: NOT and OR; NOT and AND; NAND;

96

NOR. In BIA, in order to implement any image transformation, we need a com-
plete system of pixel-wise logic operations and we also need a translational type
of operation (such as translation, dilation, erosion, convolution and correlation
etc.) to allow the global information extraction in an image or the information
exchange between pixels of the same images. In order to have a 2-D compact
parallel form of image processing algorithms whose variables are whole images,
we define the parallel form of those corresponding boolean logic operations as
BIA operations. In fact, there are two boolean algebras, (P(W);U,n, ~, ¢, W)
and (P(W); A,n, ", ¢, W), supported by BIA also (Section 5.5). We can define
several possible sets of fundamental operations for implementing any image trans-
formation, such as a parallel form of NOR (or NAND or (NOT and OR) or (NOT
and AND)) and a translational-type operation (e.g. translation, dilation, erosion,
convolution, and correlation etc). The reasons that we choose complement, union

and dilation as the three fundamental operations are:

o Nice mathematical properties: The dilation is commutative, associative, and

distributive over the union; the erosion has no such properties.

¢ Simple hardware implementation: These three operations are easily imple-

mented by a 2-D gate array and 3-D interconnection techniques.

¢ Simple software design: These three operations are inherently parallel and.
frequently used operations. Algorithms can be written as compact formulas
which easily become very efficient fast parallel algorithms by simply applying

the fundamental operations and removing the data dependencies.

Comparing BIA with the conventional boolean expressions for logic functions,

the major advantages of BIA are summarized in the following:

97

e BIA operations are inherently parallel, but boolean logic operations are

serial.

o BIA operations include parallel information transferring capabilities which

are missing in boolean logic operations.

¢ Algorithms in BIA are written as compact algebraic formulas whose vari-
ables are whole images, while a typical image processing algorithm is very

difficult to write in a compact precise boolean logic expression.

o BIA has pictorial physical meaning, while boolean expressions provide little

physical feeling for parallel image processing algorithms.

5.4 Relationship to Linear Shift Invariant
Systems, Convolution, and Correlation

It is well known that the theory of linear shift-invariant (LSI) systems plays a key
role in conventional signal (including image) and system analysis [Oppenheim?75,
Pratt78]. It is very natural that we like to ask what the relation between BIA
and LSI system theory is. A system is defined as a transformation or mapping
from a set of input functions into a set of output functions, and a two dimensional

discrete LSI system is defined as a system which obeys two properties:

o Linearity: T[az(i,7) + bz(3,)] = aT[z(¢, 5)] + bT[2(2, 7)] for arbitrary con-

stants a and b;

e Shift-invariance: y(¢,j) = T[z(¢,7)] = y(i — k,j —) = T[z(i — k,j - 1)).

98

A linear system can be completely characterized by its unit-impulse response
r(¢,j; k1) = T[6(t — k,j — 1)]. In an LSI system the unit-impulse response is
simply r(¢,7; k,1) = r(i — k,j — 1), and the output of an LSI system with input
z(Z,7) and unit-impulse response r(i,j) is the convolution of z(i, ;) and r(z,),

denoted by

(=<

z(i,j) *r(3,j) = Z z(k,r(: — k,j — 1) (5.23)

k==00

Now, let us consider only binary images. In terms of the set notation, an image
X ={(i,7) | =(¢,7) = 1} corresponds to function z(,j). If we assume r(¢,j) =1
at and only at n points which correspond to an image R with n image points,

then the convolution of z(z,) and (%, j) with a threshold ¢ =0 is

X*Rl=o = {(4,) | Zrpz(k,N)r(i —k,j —1) > 0}
= {G+kj+) | Seazlk Drys) > 0}
= G+ k5 +1) | 2k, DrGy) > 0) (5.24)
= {G+k3j+1|(5)€ X, (k1) € R}
= XOR
where the ouput of the threshold is defined as 1 if z(3,5) * r(z,7) > 0, and is
0 otherwise; and the universal image, as before, contains all image points (z, 5),
(k,1), and (¢ 4k, j +1). This means that the dilation X @ R is the same as adding
a threshold ¢ = 0 to the convolution sum. The reference image plays a role similar
to that of the unit impluse response in the binary image system. Similarly the
erosion X © R is the same as the convolution z(z, j) * r(—:¢, —j) followed by the

thresholdi=n—1.

99

Correlators have been used in pattern recognition for a long time [Goodman68).
Correlation is strongly related to convolution: convolution involves folding, shift-
ing and summing; correlation involves shifting and summing without folding.
Therefore,

X (5] R= X*R |¢=o= XOR |¢=o (525)
X e R = X * R lg-_-_,._1= XoR |g=n_1 (5.26)

where * means convolution, o means correlation, and R means the reflected image
of R.

Furthermore, although the three fundamental operations of BIA are nonlinear,
with appropriate number representations they are able to implement parallel nu-
merical and linear operations also. Also, BIA can implement both shift invariant

and shift variant image transformations.

5.5 Some Standard Algebraic Structures

Some algebraic structures supported by BIA are in the following:

o

. (P(W);®) is a semigroup.

2. (P(W);®,1) is a monoid.

3. (P(W); A, ¢,4) is an abelian group.

4. (P(W);u,n,~,¢,W) and (P(W); A,N, ", ¢, W) are Boolean algebras.
5. (P(W);C) is a poset (partially ordered set).

6. (P(W);u,n, C) is a complete lattice.

100

Proof: (1) A semigroup is a set with an associative binary operation [Birkhoff70,
Birkhoff65, Gilbert76]. By Theorem 3.1, the dilation & is associative for all images
in P(W).

(2) A monoid is a semigroup with an identity [Birkhoff70, Birkhoff65, Gilbert76).
By Appendix B, the dilation has an identity I = {(0,0)}. Note that (P(W);©)
is neither a semigroup nor a monoid.

(3) A group is a monoid in which every element has an inverse. An abelian
group is a group in which the operation is commutative [Birkhoff70, Birkhoff65,
Gilbert76]. By the definition of symmetric difference (mod 2 image addition), it
can be easily verified that its identity is ¢ and its inverse operation (mod 2 image
subtraction) is itself.

(4) A boolean algebra is a set with operations V,A,~,0 and 1 satisfying: 1.
aVb=>bVa,aAb=>bAa (commutativity); 2. aV (bAc) =(aV b A(aVc),
aA(bVc)=(aAb)V (aAc) (associativity); 3. @ V0 = a (universal bound);
4. a Al = a (universal bound); 5, aVa@ = 1, a A@ = 0 (complementarity)
[Birkhoff70, Birkhoff65, Gilbert76]. By Appendix B, (P(W);uU,n,~, ¢, W) and
(P(W); A,n, ", ¢, W) are Boolean algebras.

(5) A poset is a set with a relation satisfying: 1. the reflexivity; 2. the
antisymmetry; and 3. the transitivity [Birkhoff70, Birkhoff65, Gilbert76]. The
relation C satisfies these three conditions: 1. X C X for all X € P(W); 2. if
XCRand RC X,then X=R;and 3. if X C Rand RC @, then X C Q.

(6) A complete lattice is a poset (S;<) in which every subset of S has a
sup (the least upper bound) and an inf (the greatest lower bound) [Birkhoff70,
Birkhoff65, Gilbert76)]. In the algebra (P(W); U, N, C), given any subset of P(W),
say {X(0) | 9 € ©} (© is the index set of the elements in this subset of P(W)),

101

we have

sup = |J X(0) (5.27)
0€o

inf = () X(6). (5.28)
060

Thus, several standard algebraic structures and their properties can be directly

implemented and used in BIA.

102

Chapter 6

Digital Optical Cellular Image
Processor (DOCIP):

Architectures

This chapter describes the digital optical cellular image processor (DOCIP) ar-

chitectures:

e The DOCIP-array, a cellular array processor, which uses optical parallelism
to map an inherently 2-D parallel data structure to a 2-D nearest-neighbor
connected cellular computer in a simple and direct way; its performance is

primarily limited by its O(1) interconnectivity, and

e The DOCIP-hypercube, a two-dimensional cellular hypercube processor,
which uses optical parallelism and 3-D global interconnection capabilities

to implement a hypercube interconnection.

103

Here, the term “DOCIP” will be used to refer to both of the DOCIP-array and
the DOCIP-hypercube. The major characteristic of the DOCIP is to match par-
allel image processing tasks by using inherent optical parallelism and 3-D free
interconnection capabilities. The complexity of cell structure is reduced and the
conventional communication bottleneck problem is released. Furthermore, the
DOCIP-hypercube offers further improvements in speed and flexibility for global
operations. We will first discuss the design principles, then the array of cells, the

interconnection networks, and finally optical conceptual implementations.

6.1 Design Principles

The philosophy behind the DOCIP is to provide very flexible and fast 3-D parallel
optical processing to efficiently implement BIA algorithms in a simple and natural
way. In general, to construct an image processor one should address the problems

listed below.

1. Choice of algorithms

o Solving problems in image processing is primarily to search for algo-
rithms, and then implement them. Here the algorithms supported by
BIA are our algorithmic choice for the DOCIPs, because of their sim-

plicity and parallelism.
2. Choice of a language

¢ Language is used for conceiving and writing algorithms and for com-
munication between people and machines. It is a window between

simplicity and complexity, and should be able to represent complex

104

algorithms in a simple, clear, and clean way. The algebraic language
comprising those algebraic expressions in BIA is a good candidate for
the language of the DOCIPs. This algebraic language makes a complex
parallel algorithm appear as a compact formula where a symbol repre-
sents a whole image or a parallel operator, and has no requirement of

knowing English.
3. Choice of architecture

e Image processing and analysis tasks have the following properties:

-~ Large data processing requirement,
— Mostly local parallel operations,
— Momogeneous processing of all pixels, and

— Inherent two-dimensional parallelism of images.

e The fundamental characteristics (such as discrete space, discrete time,
finite state variables, local transition function, parallel bits, homoge-
neous space and time) of cellular automata [Wolfram86, Preston84]
correspond to the above properties of digital image processing in a
direct way. Thus, two dimensional cellular automata are appropriate
models of image processors, and two dimensional cellular logic archi-

tectures are good candidates for our choice of architecture.

¢ The neighborhood configuration in a cellular imagee processor usu-
ally defines the interconnection network and strongly depends on the
type of tessellation (digitization pattern) of those images allowed to be
processed. To be able to completely cover an area, there exist three

possible regular forms — the equilateral triangle, the square and the

105

hexagon. Their relative merits can be found in [Rosenfeld70, Gray71,
Golay69, Deutsch72, McCormick65, Duff73]. Considering pattern con-
nectivity properties, the hexagonal pattern has only one type of near-
est connected neighborhood and is favored in this sense. However, the
hexagonal tessellation has its own drawbacks:

— The orthogonal coordinates of the array points with the hexagonal
tessellation cannot be expressed as integer multiples of the length
unit.

— The natural shifting directions of the hexagonal array do not co-
incide with the coordinate axes.

— For practical applications, it is inconvenient and unconventional to
digitize an image by the hexagonal tessellation.

Hence, for the reason of simple practice and direct mapping BIA algo-

rithms, the square tesseliation of image and the square array of cells is

used in the DOCIP.
4. Choice of hardware implementation

¢ The main difficultiess in implementing an image processing machine
are in the following;:
— Solving the image parallel input/output problems,
— Effectively implementing parallel operations,
— Effectively handling huge amounts of homogeneous image data
with inherently two-dimensional structure,
— Effectively extracting global information in parallel for making de-

cisions fast,

106

— Efficiently reducing the hardware complexity, and

— Fully utilizing avaliable parallelism.

o Ideally, the optical implementation of cellular logic architectures, espe-
ically the optical two-dimensional cellular hypercube architectures, will
solve the above problems naturally, because it combines two desirable

features of the universe:

— Fully using the natural 3-D space: two spatial dimensions for stor-
ing the inherently two-dimensional image data and for implement-
ing the nonlinear logic units (planar gate-array), and the third
dimension used for interconnection; and

— Using the fastest speed (propagation speed of light) and the lightest
(no mass, no charge, and infinite life time) particles (photons) to

propagate and to carry information.
Overall, the design principles of the DOCIP architectures are:

o Parallelism should be fully explored by using parallel algorithm, parallel

language, parallel architecture, and parallel hardware implementation;

e Bach cell, responsible for a pixel, need not be “general-purpose”. On the
contrary, each cell should be made as simple as possible to keep a low hard-

ware complexity.

6.2 General Organization of the DOCIPs

Based on the above design principles, we want to implement a simple cellular

processor with the ability to implement any image transformation. We first answer

107

this algebraically, then give an algebraic description and a general description of

the DOCIP design.

6.2.1 Algebraic Description

To map BIA into the DOCIP architecture in a transparent way, we first define
the DOCIP algebraically:

Definition of Cellular Automata
A cellular automaton is an algebra (S; F, N.) where S is the state
space which is a set of states, F' is a family of transition functions, and

N, is the neighborhood configuration.

Constraints on a cellular automaton for Implementing BIA:
1. $DO P(W)
2. Fo {&,u,"}
3. NNDIVUAUAT'UBUBor N.D AUA'UBU B!
where “D” means “contains”, the definitions of the image space, three

fundamental operations and five elementary images are referred to

Chapter 3.

Thus, in terms of cellular automata, the DOCIPs have to satisfy the above
constraints for realizing BIA. For storing input images and temporary results in
a more flexible way, the DOCIPs utilize three memory modules and all share the

same algebraic structure (except the neighborhood configuration):
DOCIP = (P(W x W x W); ®,U, ", N,) (6.1)

where “x” denotes cross product and N, can be one of the following 4 types:

108

1. DOCIP-array4: each cell connects with its four nearest neighbors and itself,
i.e.

Narraya =IUAUA'UBUB™. (6.2)

2. DOCIP-array8: each cell connects with its eight nearest neighbors and itself,
ie.

1
Narray8= U AiBj- (6’3)

"vj="'1
3. DOCIP-hypercubed: each cell connects with itself and those cells in the 4
directions at distances 1,2,4,8, ...,2* from itself, i.e.
Nhypcrcube4 = U (A-’ U B‘) (6‘4)
i=o,%1,%2,..., k2%
where k is sufficiently large for the connections to traverse the entire array

of cells.

4. DOCIP-hypercube8: each cell connects with itself and those cells in the 8
directions at distances 1,2,4,8, ...,2* from itself, i.e.

Nhypercubes = U (A' U Bi U A"Bi U AiB-i). (6.5)
i=o0,+1,%2,...,42%

The reason for choosing these specific structures is: 1) the DOCIP-array has ex-
tremely simple organization and low hardware complexity for implementing BIA;
and 2) the DOCIP-hypercube will improve the computation time for many global
operations from O(N) of the DOCIP-array with N x N cells to only O(log,N)
while reserving a reasonable number of interconnections and simple optical hard-

ware requirement.

109

6.2.2 General Description

From the above algebraic definitions, the DOCIPs have the same algebraic struc-
ture except the neighborhood configuration N,. Thus, they share the same ar-
chitecture as shown in Fig. 6.1 except the allowed configuration of the reference
images E; at a cycle which defines the neighborhood configuration and the corre-

sponding interconnection network.

= Image Data (NxN Matrix) Control Unit
~—7pp Control Signal
Program
Complement Clock > COUQnter <
U Union
@ Dilation ‘
) », Instruction Memory Test and
73 and Decoder ' Branch
{é Y
7 - “| Reference Image
E;
.Detst- Memory
Image in inatio Seal'?é:tor Dilation ,
Selector ® Image
or Data Out

Figure 6.1: A digital optical cellular image processor (DOCIP) architecture — one
implementation of binary image algebra (BIA). The DOCIP-array requires 9 (or
5) control bits for reference image E;. The DOCIP-hypercube requires O(logN)
control bits for reference image E;.

Basically, the proposed DOCIP as shown in Fig. 6.1 is a cellular SIMD machine
and consists of an array of cells or processing elements (PEs) under the supervision

of a control unit. The control unit includes a clock, a program counter, a test

110

and branch module for feedback control, and an instruction decoder for storing
instructions and decoding them to supervise cells. The array of cells includes a
destination selector, three memory elements for storing images, a memory selector,
and a dilation unit.

The DOCIP machine operates as follows: (1) a binary image (N x N matrix)
is selected by the destination selector and then stored in any memory as the
instruction specifies; (2) after storing the images (1 to 3 N x N matrices), these
images and their complemented versions are piped into the next stage, which
forms the union of any combination of images; (3) the result is sent to a dilation
where the reference image specified by the instruction is used to control the type
of dilation; (4) finally, the dilated image can be output, tested for program control,

or fed back to step (1) by the address field of the instruction.

6.3 Array of Cells

6.3.1 Implementation of Fundamental Operations

The most complicated fundamental operation in BIA is the dilation operation .
The interesting fact is that dilation @ operation in general is a typical sequen-
tial cellular logic operation. The cellular logic operations can be implemented
in the following ways: (1) the neighborhood table look-up (or template match-
ing) approach. (2) the processor array and (3) the run-list processing approach
[Verbeek84]. The table look-up approach is most widely used in cellular logic

computers; the reason may come from its flexibility and conceptual simplicity.

111

The most straight forward implementation of a truth table may be achieved by
the storage of the entire truth table in a direct, or location-addressable memory

(LAM). These systems require a memory size (in bits) of
S =27q

where p is the number of input bits and ¢ is the number of output bits.
However, to set up a large number of different cellular logic operations, it

requires large memory size. For example, we have (2(27+1)x(2n+1))(@@m+x(n)

image transformations and each transformation requires 2(27+1)x(2n+1) bits, Thus,

to implement any image transformation by only the take look-up approach it, we

will require a huge memory size (in bits) of

S = (2(2n+1)x(2n+1))(2(2"+‘)"(2"“)) x 2(2n+l)x(2n+l).

The run-list processing approaches were original designed as software methods
for use in general purpose computer. Here, we propose the implementation of 3
fundamental operations by the gate array and 3-D interconnection approach. This
approach is similar as the processor array approach. Its major requirement is that
the interconnection mechanism has to assure rapid access to the required image
memory from the neighboring (or the extended cellular hypercube neighboring)
pixels. A digital optical system offers parallel and global accessing ability, and,
it is one of the best candidates to implement cellular logic operations in this

approach.
Implementation of Complement Operation

We can use an array of memory with inverting and noninverting outputs, or

use an array of inverter gates. In this approach, we can always let the boundary

112

of the binary image X be white (0 or transparent); and let the universal binary
image W include X in a plane of pixels. The complement of a binary image
then can be considered as the output of a full inverter gate array which places an

inverter behind every pixel.
Implementation of Union (or Intersection) Operation

The union (or intersection) of two binary images A and B is the same as the
output of a full 2-input OR (or AND) gate array which places a 2-input OR (or
AND) gate for every corresponding two pixels, one pixel from X and the other
from R. Further more, the action of superimposing two optical signals into a gate
is equivalent to the OR operation of these two optical signals into the gate. Thus,

by appropriate arrangement of gates, we may get the union operation for free.
Implementation of Dilation (or Erosion) Operation

The dilation (or erosion) of the binary image X by a reference image R which
has n foregfround image points is the same as the output of a full n-input OR (or
AND) gate array which places an n-input OR (or AND) gate behind each pixel;
and those n inputs for each gate come from n pixels in X corresponding to the

reference image R.

One important feature of parallel binary image processing is that there are
many possible complex image transformations which conceptually employ large
or intricate reference images. Thus, the most difficult problems are: 1) how to im-
plement the desired image transformation quickly and economically; and 2) how

to supply the required arbitrary large reference image in a rapid way. Must we

113

utilize many complicated hardware devices to implement complex image trans-
formations? Do we really need a large number of memory bits to store a lot of
large reference images? It is not necessary; two fundamental principles in BIA
suggest an economic approach. The DOCIP array of cells with an inter-cell comm-
nuication interconnection network will implement these three BIA fundamental
operations in a pipeline and has the ability to realize any image transformation

and to generate any image.

6.3.2 Cell Structure

Since each cell is identical, the cell structure actually defines the whole array of
cells. Each cell of the DOCIPs is a synchronous sequential logic circuit that takes
its input from the neighboring cells (nearest neighbors or extended hypercube
neighbors) and delivers its output to the same cell.

To be mathematically precise, a cell of the DOCIP is a finite state machine
and can be described as M = (Q,1,T) where

e @ is a finite set of states,
e I is a finite set of inputs, and
e T is a finite set of state transition functions mapping from @ x I into Q.

Here, we emphasize the analysis of the state transition function. Detailed
discussions of finite state machines can be found in [Hartmanis70, Minsky67). In
our case, the cell structure is shown in Fig. 6.2, and the descriptions of this state

machine (@, I, T) are given below.

o A state of the cell of the DOCIP is

114

Instruction

(Reference image)

From
neighbors
Mulgple-input

R gate

Selector or common
controllable mask
for all cells

Input pixel : M1

To
neighbors

Output pixel
——

—

Selector or common

Selector or common |
controllable mask
for all cells

controliable mask
for all cells

Figure 6.2: The cell structure of the DOCIP machine.

115

g = (m1,mz,m3) € Q (6.6)

where m;, m; and mj are three binary memory bits;

e An input of the cell of the DOCIPs is

i = (z,¢,dy,dz,d3, 31,82, ...86, 01, N2y 0oy Nky T2y ooy Th) € 1 (6.7)

where i consists of 2k + 10 binary bits, r;,n;,7 = 2, ..., k, are the values from
its neighbors (corresponding to a reference image of the dilation operation)

and their control bits; n, controls the input from its previous own state.

The DOCIP-array4 has the value k = 5, the DOCIP-array8 has the value
k = 9, the DOCIP-hypercube4 has the value of k£ = 4log((N + 1)/2)) + 1,
and the DOCIP-hypercube8 has the value of k = 8log((N +1)/2) + 1 for an
N x N array, where (N +1)/2 is a power of 2. z is the input pixel from an

input image X ¢, 81, S2,..., 3¢, d1,dz, and d3 are common control bits used

for all cells.

o The state transition function f € T is
qt+1) = f(q(t),i(t))
= (m()(z(t) + c(E)(sa(t)ma(t) + s2(t)ma(t) + sa(t)ma(t)+
sa(t)m(t) + ss(t)mz(t) + se(t)ms(t)))
+na(t)r2(t) + ... + nk(t)ri(t)) - (di(2), d2(2), da(t))

= (my(t +1),ma(t +1),ma(t +1))
(6.8)

where + is an OR operation, - is an AND operation, and 77 is a NOT
operation of m;. A cell circuit diagram with 3-input NOR gates for the

experimental DOCIP system can be found in Chapter 9 (Fig. 9.5).

116

6.4 Interconnection Networks

Similar to other SIMD array processors [Hwang84], the topological structure of
the DOCIP machines are mainly characterized by their interconnection networks
used in interconnecting the cells. Formally, an inter-cell communication network
can be specified by a set of data routing functions. If we index all the cells by a
set S, each routing function f is a bijection (a one-to-one and onto mapping) from
S to S. Algebraic definitions of the neighborhood configurations of the DOCIPs,
which also define their interconnection networks, have been given in Section 6.2.1.

Here we will further discuss their properties and characteristics.

6.4.1 Cellular Array, Conventional Hypercube, and
Cellular Hypercube

The DOCIP-array uses the conventional nearest-neighbor connected cellular array
(Fig. 2.3) to process 2-D image data in parallel and to easily realize its simple
interconnection. However, conventional nearest-neighbor connected cellular ar-
rays have poor communication capabilities; their performance is primarily limited
by their O(1) interconnectivity. To improve this while preserving a reasonable
number of interconnections, ideally a conventional hypercube increases the inter-
connectivity to O(loga M) for M processing elements (PEs). (We refer to a PE in
a cellular computer as a cell which usually has no address and index registers.)
A conventional SIMD hypercube computer is comprised of M = 2! PEs, where [
is a non-negative integer. All the PEs are synchronized and operated under the
control of a single instruction stream. They are indexed 0 through M — 1 and

the p** PE is referred to as PE(p) for p € [0, M —1]. A hypercube is denoted as

117

an l-cube where ! = log, M represents the number of directly connected PEs. Let
Pi-1P1-2...Po be the binary representation of p, and let p®®) be the number whose
binary representation is p;_;...ps41P5Pb~1.--Po, Where Py is the complement of p,
and 0 < b < l. In the hypercube model, PE(p) is connected to those PE(p(*)) for
0 £ b <l (i.e. a direct connection exists only between processors whose binary
indices differ by one bit position), and data can be transmitted from one PE to
another in one step only via this interconnection pattern [Hwang84]. The worst

case for an inter-PE communication requires log; M routes.

{0000) {0001) {0010) (0011)

(0110) i (0111)

(1000) (1001) (1010) (1011)

=\~

(1100) I=J(1101)] |(1110) (1111)

(0100) (0101)

Figure 6.3: A conventional hypercube (4-cube) laid out in two dimensional space.
Its interconnections have no spatial invariance.

However, when a conventional hypercube is laid out in two-dimensional space
(e.g. Fig. 6.3 gives a 4-cube), its interconnection patterns are not space invariant;
such spatial invariance is desirable for image processing and for simple hardware
implementation. To include this, we increase the interconnections to make a two

dimensional cellular hypercube (Fig. 6.4).

118

—— Connections in the 4-directed cellular hypercube
==} Connections in the 8-directed cellular hypercube

. .
\ (-11.011)' (-10,+11) (-01,+11) {00,+11) (+01,+31) m:
(M1,+10) (-10,+10) (-01,+10) (00,+10) A.-HO) (+10,+10) {+11,+10)
(~11.+O‘% -10,+01) {-01,+01) (00,+01) (+01,+01)I (+10.#01)| (+11,+01)

——

ase [(-11,00) {-10,00) {-01,00) {00,00) {+01,00) {+10,00) (+11,00) | amn
S—
{-11,-01) (-10,-01) (-01,-01) (00,-01) {+01,-01) {(+10,-0 {+11,-01)
(-11,-10) {-10.-10) (-01% (00,-10) (+01.-10)I (#10.-10)] (011.-\)
/

{-11,-11) (-10 {-01,-11) {00,-11) } {+01,-11) (+10,-11) (+11,-13)

Figure 6.4: A two-dimensional cellular hypercube — DOCIP-hypercube. Each cell
is interconnected with other cells having a relative one bit difference in coordinate
label in positive or negative z and y directions to achieve a spatially symmetric
and invariant interconnection pattern. Only connections from the central cell
are shown; all cells are connected identically so the resulting interconnections are
space invariant.

119

The cellular hypercube introduces a symmetrical positive and negative index
so that each cell is connected with cells having a relative one bit difference in
coordinate label in positive or negative = and y directions; the numerical difference
of addresses of connected cells is nonzero in at most 1 bit. A two-dimensional
SIMD cellular hypercube computer consists of M = N? = (2n — 1)? cells and
n = 2%, k is a non-negative integer. They are indexed (—n + 1, —n + 1) through
(n—1,n—1) and the (g, 7)* cell is refered as CELL(q,r) for q,r € [-n+1,n—1].
In the 4-directed cellular hypercube (cellular hypercube4) model, CELL(q,r) is
connected to those CELL(q £ 2¢,7) and CELL(q,r £2?) for 0 £ d < k; and
in the 8-directed cellular hypercube (cellular hypercube8) model, CELL(q,r) is
connected to those CELL(q%2¢,r), CELL(q,r £2?%) and CELL(q + 2%,r +2%)
for 0 < d < k. Data can be transmitted from one cell to another in one step
only via this interconnection pattern, although it occurs in parallel for each pixel.
For N2 = (2n — 1)? cells, the worst case for an inter-cell communication requires
2logan or 4logyn (they are O(loga N)) routes for the 8-directed or 4-directed cellular
hypercube repectively.

Both the conventional hypercube and cellular hypercube require a 3-D global
interconnection mechanism which is difficult to implement on a planar VLSI
chip [Rosenfeld83, Sawchuk85, Jenkins85]; they pay a large penalty in increas-
ing chip area from O(N?) of celluar array to O(N*) [Ullman84]. However, in
principle, the 3-D interconnection mechanism is realizable by digital optical sys-
tems: the conventional hypercube requires the interconnection hologram space-
bandwidth product of O(N%log,N) while the cellular hypercube still preserves
a low hologram complexity O(N?). (We use a hybrid interconnection system

([Jenkins84b, Sawchuk84]) as a model for measuring the complexity of optical

120

holographic interconnections.) Table 6.1 gives a comparision between these three
different interconnection networks: cellular array, conventional hypercube and cel-
lular hupercube. Thus, the cellular array has the simplest hardware requirement

and the cellular hypercube has the overall desired features.

Interconnection | Cellular | Conventional | Cellular
Networks Array Hypercube | Hypercube
Connectivity
(Interconnections | O(1) O(logaN) | O(logaN)
per PE)
2-D
Spatial Yes No Yes
Invariance
Inter-PE
Communication | O(N) O(log2N) | O(logaN)
Time Complexity
VLSI
Chip O(N?) O(N%) O(N*)
Area
Hologram
Space-bandwidth | O(N?) | O(N%logaN) | O(N?)
Product

Table 6.1: A comparison between three different interconnection networks of N x
N processing elements (PEs): cellular array, conventional hypercube and cellular
hypercube.

6.4.2 Characteristics of DOCIP Interconnection Networks

To directly match the universal image W of BIA into the array of cells and to
simplify the cell structure, the DOCIP interconnection networks, the cellular array

and cellular hypercube, requires some special characteristics which usually do

121

not exist in the general interconnection networks of parallel processors. These

characteristics are summarized below.
1. Symmetric index of cells

The two dimensional array of cells range from (—n, —n) up to the index of
(n,n) (Fig. 6.4). For an N x N array, N is then equal to 2n + 1. The
purpose is to preserve the symmetry of the array space, i.e. the symmetry
of the universal image W. Thus, if an image is accepted by the DOCIPs,

then its reflected image is guaranteed to be accepted too.

2. No address and index register in a cell

In fact, the natural spatial positions of cells have distinguished the cells.
Furthermore, the output of a cell at a cycle is determined by only the values
of its neighbors corresponding to the neighborhood configuration N, and
all cells have the same behavior through the whole space. Thus, to reduce
the hardware requirement of a cell, we discard the address registers. This
means that each cell does not record the addresses of those cells which send
the information to it, does not record the addresses of those cells which will
be sent message from it, and does not record the address of itself. On the
other hand, the control signals of a reference image at a cycle and the spatial
position of a cell have replaced the function of those address registers in a

natural way.

3. Two-dimensional spatial symmetry and spatial invariance

Each cell only interconnects with its neighbors(or extended hypercube neigh-
bors). The neighborhood configuration is spatially symmetric and the in-

terconnection pattern is spatially invariant.

122

To be mathematically precise, the interconnection network of a DOCIP with

a given neighborhood configuration

N = {(¢1,51), (32, 72), -+ (38, J1)} (6.9)

is characterized by the following data routing functions:
R(z,]) = (za]) + (ilyjl) (6.10)

where | = 1,2,...,k. This means that a cell at (i,5) is connected with cells
at (i + 21,7 + 71),(+ 22,5 + J2)y ..y (8 + 5,7 + Jx)- If some neighboring cells
do not exist, then the corresponding signals are connected to free space. Thus,
the interconnection networks of the DOCIPs are also completely defined by the

neighborhood configuration N..

6.5 Optical Conceptual Implementation

The DOCIP entire system can be realized by an optical gate array with optical
3-D interconnections as we discussed in Section 2.3; Figures 6.5 and 6.6 show
the conceptual optical implementation for the DOCIP-array and the DOCIP-
hypercube respectively. It embeds an array of cells in an array of optical binary
gates and performs interconnections of these gates by an optical hologram.

It should be noted that current optical technology has implemented only arrays
of moderately large numbers of gates (500 x 500) at very slow (~ms) switching
speeds, and alternatively, arrays of small numbers of gates (2 x 2 to 6 x 6) at
fast switching speeds (0.1us - 2ps) (Section 2.3). Current ongoing research in a
number of laboratories looks promising in eventually providing the needed arrays

of large numbers of gates with reasonably fast switching speeds.

123

A

N

¢

= onePE

(optical gate array)

output

intra-PE
and inter-PE
interconnection unit

(optical hologram)

AN
\

output side of input side of
N X N array of N X N PE array
processing elements
(PEs) <“+—jmagin

’ input

§ .'.-7/

(optical gate array)

Figure 6.5: An optical 4-connected or 8-connected cellular array (DOCIP-array4
or DOCIP-array8). Each cell connects with its four nearest cells and itself by
optical 3-D free interconnection. The optical hologram provides both intra-cell
and inter-cell interconnections. Intra-cell interconnections and imaging optics are
omitted for clarity. The input and output sides of the optical gate array are
interconnected by an optical feedback path and are shown separately for clarity.

124

— —
— ———

— Connaections in the DOCIP-hypercubed
|==)Connsctions in the DOCIP-hypercubes

Optical Feedback Path

Interconnection Unit
(implemented by

G— imagin
9'ng optical hologram)

N
®
= ==
/N/
N x N Output Side of Array of Cells N x N Input Side of Array of Cells
(implemented by optical gate array) {implemented by optical gate array)

Figure 6.6: An optical 4-directed or 8-directed cellular hypercube (DOCIP-
hypercube4 or DOCIP-hypercube8). Each cell connects with cells in the 4 di-
rections or 8 directions at distances 1,2,4,8,...,2% from it by optical 3-D free
interconnection.

125

Control of the DOCIP can be easily realized by using an electronic host instead
of an all-optical control unit, since control of SIMD systems is primarily a serial
process. The tradeoff is a possible inefficiency in the interfaces between electronic
and optical units. Because of this, the all-optical approach may be preferable in
the long term.

To efficiently utilize optical gates, they can be interconnected with a 2-D op-
tical multiplexing technique (Fig. 6.7) in which a common controllable mask is
used for all cells. This is essentially to improve the flexibility of the space invari-
ant interconnection system in [Jenkins84b, Sawchuk84, Chavel83]. In [Huang87a]
and [Taboury87), a similar holographic interconnection technique is discussed in
detail.

The optical multiplexing technique has the following advantages: 1) the DO-
CIP will no longer require the broadcasting of instructions from the control unit
— instead all cells fan their outputs into a common controlling mask pixel; 2) it
will reduce the number of gates; and 3) each cell has a simple structure — essen-
tially containing only a 3-bit memory with inverting and non-inverting outputs,
and a multiple-input OR gate for dilation.

Order of magnitude execution times for image processing on the DOCIP ma-
chines and on the conventional electronic array processors are compared in Table
6.2. In contrast with the DOCIP-array, the DOCIP-hypercube improves the ex-
ecution times of many global operations from O(N) to O(log, N) time which is
difficult to achieved by planar VLSI technology. Comparing with the conventional-
array processors having serial or N-parallel input/output, the DOCIP-array will
have the same order of performance in local and global operations but will be im-

proved in input/output performance, and in principle could be as low as O(1) in

126

Optical Feedback Path
Hologram (or Grating)

Mask (or Shutter Armay)
\ 1 l ET. /
\ /

y/

A
Input Side of
Array of Cells

Hologram

Output Side of
Array of Cells

Figure 6.7: An optical multiplexing technique for interconnections. The hologram
(or grating) attached to (or imaged from) the output side of the array of cells is
to group all the same type of interconnections with the same direction and length
(i.e. all the routing functions of all cells defined with the paticular element of the
neighborhood configuration N,; there exists k different types of interconnections
for k& elements in N.) from all cells. Each subhologram of the second hologram is
to provide a common type of interconnections for all cells (e.g. all cells connect to
their east nearest neighbors). The common controllable mask (or shutter array)
(e.g. 3 x3 mask for DOCIP-array8) attached to the second hologram is to provide
all 2% (e.g. k = 9 for DOCIP-array8) possible spatial invariant interconnection
patterns for all cells.

127

1/0 operations. The DOCIP-hypercube will not only be improved in input /output
performance but also in global operations. One important feature in the design of
the DOCIP-array and DOCIP-hypercube is that optical 3-D free interconnection
capabilities can be used to reduce the cell hardware requirements as well as solve

the global connection and parallel 1/O problems.

Conventional DOCIP- DOCIP-
Array array hypercube
OPERATION (Electronics) (Optics) (Optics)
Local o(1) o(1) o()
Operations
Global O(N)
Operations or O(Nz) O(N) O(logN)
Commu.nication O(N)) o(1) o)
PE<4>Main Memory] or O(N")
Input O(N)
Output or O(Nz) o) oQ)

Table 6.2: Cellular image processor execution times for N x N image data. It

roughly compares the execution time for the conventional electronic array proces-
sor, the DOCIP-array and the DOCIP-hypercube.

Another intersting question is, “Can we also build an analog optical computer
to do morphological image processing?” The answer is “yes”, because the dilation
and erosion are exactly the same as the convolution and correlation by adding

some particular thresholding (Section 5.4) which are possibly implemented by

128

Fourier optics. But, an analog optical morphological processor may face draw-
backs such as dynamic range, accuracy limitations, and flexibility limitations as
other analog systems do.

In Chapter 9, a prototype DOCIP experimental system with a 54-gate optical
processor, an instruction decoder and electronic input/output interfaces will be

implemented for demonstrating the concept of the DOCIPs.

129

Chapter 7

DOCIP: Control and

Programming

The DOCIP is directed particularly toward spatial problems — implementing
BIA algorithms, but is alos general purpose in the sense that it can simulate
any Turing or Random Access Machine (RAM) machine. Both the DOCIP-array
and the DOCIP-hypercube have a simple control: 1) a single-control-level that has
only one higher control level for interpretation between the program and the data;
and 2) a single instruction that includes ‘fetch’, ‘execute’, ‘store’, and pipelines
the 3 fundamental operations of BIA.

A single-instruction machine is generally considered to be impractical in elec-
tronics because it may lead to excessively complex programs. In the DOCIPs, the
single-instruction machine is well suited to the system architecture. The reason
for this is that the optical parallelism and global interconnection capabilities of
DOCIP also contribute to parallel optical control signal flow. We will first discuss

the control structure, then the instruction set and the programming.

130

7.1 Control Structure and Level 1 State

Machine

In addition to having a simple cell structure, the DOCIP also has an extremely
simple control structure; it includes only a clock, a program counter, a test/branch
module, and an instruction memory/decoder with simple codes as described in
Section 6.2. We will discuss the reason for this simple design through the study
of state machines.

A state machine is a sequential machine with a finite number of states. A state
provides the memory of past history to determine future behavior. We define a
level 0 state machine as a machine with no other control unit other than a state
transition function. A level n state machine is a machine with n control levels.
A somewhat similar classification of state machines is given by C. R. Clare in

[Clare73]. Some examples:

1. A Turing machine is a level 0 state machine (Fig. 7.1). It has no separate
control unit. The control is provided by the instruction memory which
memory serves to store the state transition function. There is no program

counter and the instructions are not accessed through an address unit.

2. A von Neumann machine is a level 1 machine (Fig. 7.2). Its control unit
includes a program counter, address register, and instruction register. In-

structions are retrieved by their address via the address register.

3. A microprogrammed machine is a level 2 machine (Fig. 7.3), since it is
considered as a von Neumann machine with one extra level of interpretation

between the stored program and the ALU.

131

Instruction

Memory

Data

Memory

-
> ALU

Figure 7.1: A level 0 state machine. ALU: Arithmetic Logic Unit.

- Program
Counter
Address
h R «
Instruction Register
Memory . Instruction
Register
|
L
Instruction
Data Decoder
<
Memo! ALU
YV o—>
Figure 7.2: A level 1 state machine.

132

Program
Counter
1
~ i
<& Address i
Instruction | Register
Memory _ | Instruction
“| Register
T
* i
< Address H
Micro Register
lastruction
Memory | Instruction
"1 Register
2 §
Yy
Instruction
Decoder
Data
Memory | ALU

Figure 7.3: A level 2 state machine.

If the machine has more control levels, it usually has the following positive

features:
o the length of program is shorter;
¢ the requirement of parallel communication is reduced; and
e the complexity of parallel interconnection is simpler.
However, the higher level machine also has the following negative features:
e the execution time is longer; and
e the gate requirement of the control is higher.

At present, optical parallel and global interconnections are generally inex-

pensive, but gates are expensive. Compared to electronics (VLSI), the major

133

constraint in a digital optical system is the availability of gates. Hence, at this
stage, the DOCIP is designed as a level 1 state machine as shown in Fig. 7.1.

Then, the DOCIP has the following nice properties:

¢ it makes extensive use of optical parallelism and 3-D free interconnection

capabilities;
e it reduces the optical gate count of the control unit;

e it has a simple control structure (i.e. the control of the DOCIP has one and

only one interpreting state machine); and
e the control unit also utilizes the advantages of parallel processing.

To avoid using the DOCIP for the possible complex programs from high level
vision or other complex sequential problems, which are essentially serial processes
instead of 2-D parallelism, we may attach the DOCIP to a general purpose host

machine.

7.2 Instruction Set

7.2.1 1-step Instruction Machine

The program of a conventional computer usually is a sequence of 3-step instruc-
tions which includes these three steps: ‘fetch’, ‘execute’, and ‘store’ (Fig. 7.4).
The basic reason is that operations often require two or more operands from
memory modules. But in a conventional machine it is difficult to access several
memory modules in parallel. The central processing unit (CPU) of a conventional

computer is then designed to operate on the contents of an accumulator rather

134

than accessing memory words directly. For example, the operation C = A+ B is

performed by the three instructions:
1. LOAD A — Transfer A to accumulator S,
2. ADDB— S« S+8B,

3. STORE C — Transfer result to memory location C.

/ CPU\ Step 2. Execute

—T Accumulator

Step 1.
Fetch

Step 3.
Store

Memory [

Figure 7.4: A 3-step instruction machine. Its instructions include three steps:
‘fetech ’, ‘execute’, and ‘store’.

A better match to the capabilities of optics is obtained with the DOCIPdesigned
as a 1-step instruction machine which combines the ‘fetch’, ‘execute’, and ‘store’

into one step (executed in one instruction cycle time) (Fig. 7.5).

7.2.2 Single Instruction Machine

Recently, it has been argued that “complex instructions are rarely used by actual

programs, their inclusion into the processor’s instruction set has more negative

135

— CPU —

Single step

— Memory<—

Figure 7.5: A 1-step instruction machine. Its instructions combines the ‘fetech’,
‘execute’, and ‘store’ into one step.

effects on overall performance than it has positive ones” [Katevenis85]. Obviously,
the simplest case for this consideration is to reduce the instruction set into only
one instruction. Van der Poel has designed a simple one-instruction machine
which has only one instruction [Poel56). However, it is criticized as being quite
impractical [Hayes78] . The primary objection to a simple instruction set is that
it may lead to excessively complex programs.

The DOCIP is a specialized machine designed for parallel binary image pro-
cessing. The three fundamental operations are generally the most frequently used
operations and are able to implement any other image transformation. Thus, our
instruction set should include these three fundamental operations. Having just
one instruction leads extremely simple processing elements made up of minimal
logic circuits. This allows a highly parallel machine with a moderate total num-

ber of gates, appropriate for optics since gates are expensive and interconnections

136

are plentiful. Obviously, there is a tradeoff between processor simplicity and pro-
gramming complexity. The DOCIP is designed as a one-instruction machine in

order to:

¢ simplify the instruction set,
e maximize the utilization of optical parallelism and 3-D interconnection,
o reduce the execution time, and

e minimize the hardware cost and gate requirement.

This one and only one instruction has the following format:
(C, dla d2, d3, 81582100y 86y 013 102y «eey nkajlaj2a G1,Q2, ..., Gy bla b2, ey b’)
where k is determined by the chosen neighborhood configuration N and ! defines

the maximum length of a program, 2. The functions of these 12+ k2! instruction

codes are given below.

o c is used to select the image from the input or from the feedback, ¢ = 0 for

input and ¢ = 1 for feedback.

¢ dy,d;, and d3 are used to select the destination memory for storing the

image; d; = 1 implies the image is stored into memory M;.

® 31,82,...,3¢ are used to select the output from the memory elements; $5;_; =
1 implies select the non-inverted image from memory M;, s;; implies select

the complement of the image in memory M;.

® n1,ny,...,n are used to control the neighborhood mask, i.e. to supply the
reference image; a 1 corresponds to a foreground point (value 1) and a 0

corresponds to a background point (value 0) of the reference image.

137

¢ j; and j, are used to control the absolute jump or conditional jump; j; =1
implies an absolute jump and j2 = 1 implies a conditional jump. j; =j2 =1

represents a ‘Halt’ (i.e. do not continue to the next instruction).
® ay,ay,...,a; are the address for the jump.

® by, by, ..., by are the address of the instruction.

7.2.3 General Purpose Machine

A Turing Machine defines what is computable. A Random Access Machine (RAM)
is as powerful as a Turing Machine, since they can simulate each other. A general
purpose machine means that it has the capability of computing any algorithm
that is computable. Here, we will show that the DOCIP is a general purpose

machine by simulating any RAM program. The concept of the Turing Machine
and the RAM can be found in [Hopcroft79, Aho74].

Simulation of A RAM Machine

The instruction set of the RAM consists of the following operations:

138

Operation code Address

1. LOAD operand
2. STORE operand
3. ADD operand
4. SUB operand
5. MULT operand
6. DIV operand
7. READ operand
8. WRITE operand
9. JUMP label
10. JGTZ label
11. JZERO label
12. HALT

Before going to the simulation, please note that the instruction of the DOCIP
essentially performs image transformations, i.e. transforms an array of data, while
an instruction of the RAM performs a one-word operation. Thus, we first make an
assumption: the word length is w in the RAM’s memory and we can choose any
w bits in the image memory in the DOCIP to represent a word. Then, we can
simulate the RAM instructions on the DOCIP in the following straightforward

way:

1. The data transfer instructions (LOAD, STORE, READ, and WRITE) are
simulated by the first 10 instruction codes of the instruction of the DOCIP

which are ¢, d;,...,ds, and sy, ..., Sg.

139

2. The data manipulation instructions (ADD, SUB, MULT, and DIV) are sim-
ulated by the following 10 + & instruction codes: dy,...,ds, 81,...,36, and

n,...,nx in O(w?) steps for the DOCIP; because we can implement the
ADD and the SUB in O(w) steps and the MULT and the DIV in O(w?)

steps as we will see in Chapter 8.

3. The program control instructions (JUMP,JGTZ, JZERO, and HALT) are

simulated by the following:

¢ j1 and j; control the type of jump (absolute or conditional);
® ay,...,a; gives the jump address;

e The above ! + 2 bits with the other bits of the single instruction can
be used to simulate JGTZ and JZERO; because the 3 fundamental
operation can be used to implement the comparison circuit in O(w)

steps..

o The HALT can be done by JUMP to the address which is the address

of itself or JUMP to an instruction which has j; = jo = 1.

Thus, any RAM instruction can be simulated by the DOCIP-array and the
DOCIP-hypercube in at most O(w?) steps. Therefore, the DOCIP-array
and the DOCIP-hypercube are “general purpose” and are able to compute

any computable algorithm.
Simulation of A Symbolic Subsitution Processor

Another approach to demonstrate that it is general purpose is: 1) the DOCIP
can simulate any symbolic substitution system; and 2) a symbolic substitution

system has simulated a Turing machine in [Brenner86a).

140

A general mathematical formalism of symbolic substitution has been devel-
oped in Section 5.1. For a local search-pattern and replacement-pattern (i.e.
Ry, R2,Q C Ngpray or Npypercute), the DOCIP-array or DOCIP-hypercube can
implement a symbolic substitution rule in four (or five with the optional mask)
steps:

Assume start with X in M,.

1. Mi® R, = M,

2. My ® Ry > M,

3. MbuUM; - M;

4. M;9Q— Out (=(X®R)®Q)

Let the pixels used in the substitution rule(s) of a symbolic substitution processor
be the neighborhood, N,,, of the processor. We see from the above steps that the
DOCIP can simulate the symbolic substitution processor iﬁ constant time if the
two machines have the same neighborhood. If Ny, is not a subset of the DO-
CIP neighborhood, then the simulation will take longer. In either case, it is not

presently known how many steps it takes the symbolic substitution processor to

simulate the DOCIP.
Simulation of the Game “Life”

One more obvious way for demonstrating the general purpose capability is: 1) the
DOCIP implements BIA and can implement any game of life or pattern of growth
of binary cellular automata as described in Subsection 4.4.1; and 2) with suitable
encoding of variables and processes, the Conway’s game “Life” have been used to

simulate a general purpose machine [Berlekamp82].

141

7.3 Programming

BIA and DOCIP architectures can have many applications in character recog-
nition, industrial inspection, medical and scientific research. Since BIA is able
to implement morphological operations efficiently, the DOCIP machines can ef-
ficiently analyze the shape and connectivity of regions as well as measure their
size; they also have the potential to accomplish any image transformation. Their
appications for numerical array computation will be contained in Chapter 8. In
this section, we discuss a decomposition algorthm for the DOCIP programming,

and then illustrate the programming with a size verification algorithm.

7.3.1 Decomposition of Dilation

From the applications of binary image algebra (Chapter 4), we see that the perfor-
mances of most algorithms are primarily limited by the complexity of dilation. The
reseason is that the other two fundamental operations (complement and union)
are executed in O(1) in a cellular computer, but a dilation with a large reference
image is very difficult to implement at a clock cycle (unless we have a fully inter-
connected network which is too costly). However, the dilation of an image with
size N X N by a reference image M x M takes long time for input/output and
O(N? x M?) computation time for a uniprocessor. To comprimise the hardware
implementation cost and the time complexity, we have to consider the decom-
position of a dilation with a larger reference image into a sequence of dilations
with small reference images where each dilation with small reference image can

be implemented in a DOCIP-array or DOCIP-hypercube at a clock cycle. If it is

142

possible to decompose R into a sequence R=E, ® E; @ ... ® E;, then
XOR=(..(X®E)®E)®...® E). (7.1)

This decomposition may not exist, in which case R can always be decomposed as

R=RyUR;U...U Ry, and then
XOR=(X®R)U(X®R)U..U(X®R:) (7.2)

where each R; can be composed from the smaller reference images E;.

The following is the performance analysis of DOCIP-array and DOCIP-hypercube
for computing the dilation with different type of reference images. The time com-
plexity of the dilation is the same as generating the reference image from the
elementary image I = {(0,0)} by unions or dilations with small reference images
where each small reference image must be a subset of nearest neighborhood or
cellular hypercube neighborhood (i.e. Nurrayas Narrayss Nagpercubeas OF Npypercubes)-

Now let us consider different kinds of reference image:

1. Point reference image: the reference image contains only one image point at

coordinate (z,y) (without loss of generality, consider only z,y > 0):

P = {(z,y)}

= {(ak-18k=2..-80, bi_1bi2...bo)2} (7.3)
= MiA%? T BYY
where (ag-1ax-2...00, Bi_1b1-2...80)2 is the binary representation of z,y, k =
llog2(2z)],1 = [loga2(y)], and Hf._'.éA“i = AP A2 P ... D A*-1. Thus, it
requires O(log, L) for DOCIP-hypercube and O(L) for DOCIP-array where

L is the distance between the image point and the origin.

143

2. Horizontal or vertical line reference image:

o Consider the horizontal line reference image centered at the origin (0,0):
H = {(~1,0), (=1 +1,0),...,(0,0),(1,0), ..., (m,0)} (wherem —1 < I <
m). With the properties of spatial symmetrical and invariant intercon-
nection patterns in cellular architectures, the time complexity of gener-
ating H is the same as that of generating H' = {(0,0),(1,0),...,(m,0)}.
If m = (ak-18k-2...a0)2 (binary representation) and k = |log2(m)],

then

H = UL A
= ME23(Uizo,22,...20 A%7).

Thus, it requires O(logz L) for DOCIP-hypercube and O(L) for DOCIP-

(1.4)

array where L is the distance between the farest image point and the
origin.
e Consider the horizontal line H” is located at (z,y), i.e.

H' = {(x - l’ y)’ (27 -1 + lay)v"-) (z:y)v (:t + lvy)s seey ((B +m, y)}
= {(-l’ 0),(~1+ 1,0), +(0,0),(1,0),...,(m, 0)} ® {(ms y)}

= HoP
(7.5)

where H is a horizontal line reference image centered at origin and P is
a point reference image. Since both H and P take O(log,L) and O(L)
for DOCIP-hypercube and DOCIP-array respectively. Thus, for the
shifted horizontal or vertical reference image, it requires O(log, L) for
DOCIP-hypercube and O(L) for DOCIP-array where L is the distance

between the farest image point and the origin.

3. Rotated line reference image:

144

¢ Rotated multiple 45 degrees: let us consider D = {(0,0),(1,1),...,(m,m)}.
If m = (@g-1ak-2...a0)2 (binary representation) and k£ = |logs(m)],

then
D = Un(4BY

= IZ(Uizop,...2(AB)%) (7:6)
= Hf;é (Uizo0a,21,...2i(A™1 B)%)1 iy A
Thus, it requires O(log, L) for DOCIP-hypercube and O(L) for DOCIP-
array where L is the distance between the farest image point and the
origin.

o Arbitrary rotated line reference image: By a similar argument as the
above, for generating arbitrary rotated line reference image, it still
takes O(log L) for DOCIP-hypercube and O(L) for DOCIP-array where
L is the distance between the farest image point and the origin. In
general, DOCIP-hypercube8 (or DOCIP-array8) requires about twice
hardware complexity of DOCIP-hypercube4 (or DOCIP-array4) and at

best have twice speedup for generating arbitrary rotated line.

4. Parallelogram (filled) reference image: A parallelogram reference image P
can be generated by a dilation of two line reference image. So, it still takes

O(logy L) for DOCIP-hypercube and O(L) for DOCIP-array where L is the

distance between the farest image point and the origin.

Obviously, the hexagon and the polygon (e.g. Fig. 7.6) (filled) can be generated
by a dilation with 3 line reference images and a dilation with 4 line reference
images respectively, and so forth. Thus, a simple algorithm for implementing the
dilation is to consider a large reference image as a number of connected sets of

parallelograms (filled) R;. Each connected set of parallelograms is generated by

145

a sequential dilation of some line reference images and the union of all connected
sets of parallelograms (filled) is the desired reference image. Thus, for a reference
image with M x M image points it takes the time between O(M x M x loga M)
(assume that any pair of two or more arbitrary image points can not be formed a
connected set of parallelograms, i.e. each image point is a set of parallelograms)

and O(log, M) for DOCIP-hypercube; and it takes the time between O(M x M x
M) and O(M) for DOCIP-array.

? @

= q ® \ @ — & / @

‘Y

Ey E, E; Ea

Figure 7.6: An example of decomposing a dilation with a larger reference image R
into a sequential dilation with some smaller reference image E;. It requires O(N)
and O(logN) time for DOCIP-array and DOCIP-hypercube respectively.

A sorting algorithm of decomposition for a nearest-neighbor connected cellular

processor can be also found in [Zhuang86].

146

Here we illustrate the programming of the DOCIP machines by a simple size

7.3.2 A Programming Example— Size Verification

verification algorithm:

¢ Problem: Given an input image X with 31 x 31 pixels (Fig. 7.7) which

we want to preserve those square objects

contains some square objects X,

< size of X; < size of Q

size of R

X; which satisfy the following condition:

where R and @ are reference images as shown in Fig. 7.8. Other objects
will be eliminated in the output image Y. The expected output image Y is

shown in Fig. 7.9.

Figure 7.7: The input image X.

147

DOOOOOOOOOC

XOOOOOOOOOC

SOOI

OO0

3OOOOOOCNOCX

Reference Image R

Figure 7.8: The reference images R and Q.

X - 0O000COCOOOCOOOO00O000N
(AT peyasgasga JCICICOC IO OO OO0,
0O0 —O00000O00000OCOO0000
LI Ty TP I OC U OO OO0 - e w o
LA ATy T =L LI O OO OC OO0 LX)
lllllllllllllllllll OO0 O0O0
.................... Lt
.................. LG C C)OO0

Figure 7.9: The expected output image Y.

148

e Algebraic expression for the size verification using band pass mor-

phological filtering:

(XeROR)U(XBQ®Q)

where R = R and Q = @ in this special example.

e Algorithm for the DOCIP-array8:

(X E*® E?)U(X @ E‘e EY)

where E (Fig. 7.10) is the allowed reference image with the maximum size at
a clock cyclein the DOCIP-array8, the referenceimages R = E® = EQE®E
and Q=E'=E®QF®E®E=RQE.

AXSOOOOOOOOOCD
OO0
3SOOOOCOOOOOO0
YOOOOOOOOO00D
SOOCEOOOOOO00

IO X 2O

I

Reference Image £

DOCIP-array8 Instruction Code for E
it

DOCIP-hypercube8 Instruction Code for E

01010100 10010000 1010 1010 0 1 ippun

for ceils or cells or cells
atfggstgggg 8 at distance 4 at distance 2 at distance 1/0

Figure 7.10: An allowed reference image E at a clock cycle in the DOCIP-array8
(also allowed in DOCIP-hypercube8) and its corresponding 9 (or 33) bits in in-
struction (njns...n;) for controlling the neighborhood mask (i.e. the reference
image for the dilation).

149

The DOCIP-array8 requires 13 steps to complete this algorithm, its program
(instructions) is in the following:

Assume start with X — M, (X stored in Memory1)
1. i®E—-M (=X0E)

M;®E - M, (=X @ E?)

M;®E - M; (=X @ E?)

M®E - M; (=X & E*)

M, ®E — M, (=W€BE)

M, ®E - M, (=X & E>® E?)

M®E - M, (=X & E3 0 E°)

M;® E — M, (=W€BE)

© ® N S ;o W N

M;@®E — M; (=X @ E*® E?)

10. Ms® E — M3 (= X © E*® E°)

1. M@ E - M; (= X ® E* @ EY)

12. MUM; — M; (= (X ® E?® E3)U (X @ E* @ EY))
13. End with 7z = Y (= (X ® 3@ E?) U (X © E* © EY))

Algorithm for the DOCIP-hypercubeS8:

(XePOE®POE)U(X®POE*® P E?)

where P (Fig. 7.11) and E (Fig. 7.10) are allowed reference images at a
clock cycle in the DOCIP-hypercube8, the reference images R = E® = PQE
and Q=E'=P®E*’=ROE.

The DOCIP-hypercube8 requires 10 steps to complete this algorithm, its
program (instructions) is shown in the following:

Assume start with X — M; (X stored in Memory1)

150

DOCIP-hypsrcube8 Instruction Code for P

0 0 1 1

for cells or celis or cells
atfggstgggg 8 at gllstanco 4 at distance 2 at distance 1/0

Figure 7.11: An allowed reference image P at a clock cycle in the DOCIP-
hypercube8 (not allowed in the DOCIP-array8) and its corresponding 33 bits

(assume 31 x 31 cells) in instruction (nyn;...n33) for controlling the neighborhood
mask (i.e. the reference image for the dilation).

[

Mi®oP-> M, (=XoP)

. M;®@E—- M, (=X0®POE)

.M;®E > My (=X®P@®E?

. M;0P> M (=X0P6E:0P)

. M;®E-M,(=X0P®E*®POE)
. M;®P - M;(=X®P®E*®P)

. M;®@E—-M;(=X0P®E*®POE)
.M;®E > M;(=X®P®E*® P E?)

W 0 N O v ke W N

. MUM; - My (=(X®POEGPOE)U(X@PBE:D P ® E?))
10. Ed with M3 - Y (= (X®POEG®E)U(X®P®E*® P E?))

The above programs can be translated into the machine instruction codes directly.

If we want to detect the geometric centers (locations) of the desired objects, then

151

we can use a sequential thinning to achieve the homotopic skeleton (Theorem 4.5)

(Fig. 7.12).

.

m

200000000000OO000000000

FO0O0000COOOOOOOOOOOOOOOGOOOOCIOOO!

=~
POOOOOO00OCOOOOOOOOOOOOOCICIOOICOIOD

3OO0

Figure 7.12: The locations of the desired objects in the output image Y.

152

Chapter 8

Parallel Optical Binary

Arithmetic

Optical computers can operate on 2-D planes of data in parallel. Boolean logic
equations do not provide a complete description of such parallel operations for bi-
nary arithmetic. An optical system that operates on planes of data should employ
an inherently parallel mathematical description for its arithmetic. The purposes
of this chapter are: to use binary image algebra to develop parallel numerical com-
putation algorithms, and to describe the execution of these algorithms on a digital
optical cellular image processor (DOCIP) architecture. We discuss three basic bi-
nary number representations: 1) binary row-coding; 2) binary stack-coding; and

3) binary symbol-coding for symbolic substitution arithmetic.

153

Parallel operations of binary addition, subtraction and multiplication are de-
rived by BIA and illustrated as examples. Parallelism is achieved by performing
arithmetic operations on many pairs of operands simultaneously. The carries for
each pair of operands are essentially propagated serially to keep hardware com-
plexity low [Psaltis86]). This enables speed-ups close to, and in some cases equal
to, linear to be obtained. In this chapter we will consider only positive numbers.
A suitable digital number representation will easily provide for negative numbers
also. For example, two’s complement arithmetic can be performed with only mi-
nor modifications to the algorithms and programs given in this chapter, and with

the addition of one more bit (the sign bit) to each operand and result.

8.1 Binary Row-coded Arithmetic

Binary addition of two k-bit numbers yields at most & + 1 bits, and binary mul-
tiplication of two k-bit numbers yields at most 2k bits. In this paper, we assume
that all input numbers are padded with enough zeroes to avoid the possibility of
overflow. This also guarantees that the different operands in the image will be
treated separately. A binary row-coded number is encoded in a part of a row of
an image. Although the word lengths of numbers do not need to be equal, we
assume in this discussion that an image (bit plane) with N x N bits contains
N?/k numbers of k-bit length as a simple illustration (Fig. 8.1).

In this section, we describe parallel addition, subtraction and multiplication

by BIA expressions and their programs on the DOCIP machine.

154

k-bit k-bit

engt
enat,, W

——— longth ——— fe——— jength —¥
ry
T zl a []] rl [] []
T2 T2

N-bit

L
]
N-bit =
length Z length
L
]
]

1 N = s @ I3k 1 N s 8 ® TN/

Figure 8.1: Binary row-coded numbers.
8.1.1 Addition of Binary Row-coded Numbers

Consider an image X (e.g. Fig. 8.2(a)) composed of N?/k numbers z;,i =
1,2,..,N?/k, an image R (e.g. Fig. 8.2(b)) composed of N?/k numbers r;,i =
1,2,...,N?/k, and the output of the addition S = X + R (Fig. 8.2(c)). To realize
this addition in parallel by means of BIA, we first consider the serial (carray-
propagate) addition of 2 binary numbers s; = z; + r;. The first step of serial
addition is to add the least significant bits, say z;,) and ry,). The boolean logic

equations for adding the two least significant bits (half-adder) are
e sum bit: Si(o) = Zi(o) XOR Ti(o)s
e carry bit: Ci(o) = Zi(o) AND Ti(o)-

Now, applying the corresponding parallel operations of XOR and AND, i.e. the

symmetrical difference A and intersection N, and shifting the set of carry bits

155

by a dilation @, we can implement parallel addition by the following recursive

equations:

1. Define the initial states of images of sum bits and carry bits (called sum-bit

image and carry-bit image) at time ¢, as :

S(to) = X, C(to) = R. (8.1)

2. The recursive relation between the states of the sum-bit image and carry-bit

image at two adjacent time intervals is then:

S(tiy1) =SE) A C(H) = S(t;)UC(L)US(L)UC(L:) (8.2)

Cltin) = (SE)NCHE) DA =S{E)UCH)® A™? (8.3)

where i = 0,1,2,...,k+1, and the elementary image A~! is used to shift the

carry-bit image one bit to the left for the next iteration.

3. After a maximum of k + 1 iterations, the sum-bit image is the result and

the carry-bit image is the null image ¢:

S(tk+1) = X + R, C(tk+1) = ¢ (8.4)

This procedure is illustrated in Fig. 8.3.

The result of parallel addition of binary numbers with a maximum k-bit word
size is obtained after k + 1 iterations. This algorithm can be implemented in the
DOCIP architecture by the program (instructions) given below. M;, M, and
M3 represent the three N x N-bit memories. “X — M;” denotes “store X into
memory M,;”. Each numbered line represents a single DOCIP machine instruction

for one value of i. Comments are in parentheses.

156

101 00010 01101
7001] = = = 001iils » = 10000] = = =
k=5 bits
(a) (b) ()

Figure 8.2: Parallel addition of binary row-coded numbers (I). (a): An image X
of operands. (b): An image R of other operands. (c): The output X + R.

o Assume start with X in M; (= S(%)) and R in M; (= C(to)).

o First to kt iterations:
1. M UM, - M; (= 5(%) UC(L))
2. Myu M, — M, (= S(L)UC(t:))
3. MiUM, UM; — M, (= S(t:) UCZ))
4. MyUM; — M, (= S(ti1))
5 M3® A = M, (= C(tiy))
where:=0,1,2,....,k— 1.

o (k4 1)* iteration:
1. FiUM; — Ms (= S(t) U C(t)
2. MyUDE; — M; (= S(t) U C(t))
3 M, UM; — Out (= S(te41) = X + R).

The total number of clock cycles for the execution of this program on the DOCIP

machine is

#(k) < 5k +3 = O(k)

which is independent of the number of words being added. 157

01001 00100

[DI770] = = = 000T0] = = =
S(t) = " Ct) = s

01101 00000

01100] = = =~ 00100f = = =
S(tg) = b C(tz) = u

01101 00000

01000] @« = = M s = =
S(tS) = s C(t3) = s

01101 00000

00000}« = = 70000« = =
S(tq) = n C(t‘) = []

o11o1| 00000

10000])= = = 00000] ®» = =
S(ts) = . C(ts) = .

Figure 8.3: Parallel addition of binary row-coded numbers (II): The procedure for
parallel addition X + R where X and R are shown in Fig. 8.2, S(t;)=S=X+R
and C(ts) = ¢.

158

In fact, BIA can be used to devise a parallel form of a conditional-sum adder
or carry-lookahead adder for further extracting additional parallelism, and the
execution time of this addition can be reduced to O(log:k). Obviously, there
exists a tradeoff between execution time and hardware complexity. This paper

concentrates only on some simple algorithms .

8.1.2 Subtraction of Binary Row-coded Numbers

Let the output of the parallel subtraction be D = X — R (e.g. Fig. 8.4(a)-(c)).
To realize it, we first consider the serial binary subtraction of 2 binary numbers
d; = z; — r;. The procedure in the least significant bits z;,) and r;(,) of binary
subtraction generates a difference bit dj,) and a borrow bit ;). The boolean

logic equations for subtracting the two least significant bits (half-subtractor) are
o difference bit: s;(o) = zi(0) XOR ry(g),
e borrow bit: cj(o) = Ti(e) AND 7).

Now, applying the corresponding parallel operations, and shifting the set of borrow

bits by a dilation @, we can implement the parallel subtraction as follows:

1. Define the initial states of images of difference bits and borrow bits (called

difference-bit image and borrow-bit image) at time ¢, as :

D(to) = X, B(to) = R. (8.5)

2. The recursive relation between the states of the difference-bit image and

borrow-bit image at two adjacent time intervals is:

D(t,'.H) = D(t,') A B(t,') = D(t,') U B(t,') U D(t,') U B(t,‘) (8.6)

159

B(tip) = (D{L)NB(t))® A™ = D(t)UB(L:) @A™ (8.7)

where i =0,1,2,...,k+1, and the elementary image A~ is used to shift the

borrow-bit image one bit to the left for the next iteration.

3. After a maximum of & + 1 iterations, the difference-bit image is the result

and the borrow-bit image becomes the null image ¢:

D(t41) = X — R, B(try1) = ¢. (8.8)

This procedure is illustrated in Fig. 8.4(d).
The result of parallel subtraction of binary numbers with a maximum k-bit
word size is obtained after k + 1 iterations. The DOCIP architecture can realize

this by the following program (instructions):
e Assume start with X in M; (= D(%)) and R in M, (= B(1p)).

e First to k** iterations:
1. My UM; —» M, (= D(t;) UB(%:))
2. Mi UM, —» M, (= D(t;) U B(t;))
3. MiUM; = M, (= D(ti1))
4. M3 @ A™' = M, (= B(tin1))
where: =0,1,2,...,k — 1.

o (k + 1) iteration:
1. My UM; — Ms (= D(tx) U B(l))
2. MiUM; = M, (= D(t) U B(ti))

3. —M;U-M_z-—) M1 (= D(tk.H) = X—R)

160

k=5 bits

<4——>-
01011 00010 01001
01001|=* * * 007111 . |0-o-0-1-0-.
(a) (b) (c)
01001 00000
01110 . " 07700 = =
D(t1)= = B(tl)-:]
[01001 00000
00010 .. 00000~ =
D(t) = B(t;) =
(d)

Figure 8.4: Parallel subtraction of binary row-coded numbers. (a): An image X
of operands. (b): An image R of other operands. (c): The output X — R. (d):
The procedure for parallel subtraction X — R, D(t;) = X — R and B(t;) = ¢.

161

The total number of clock cycles in the DOCIP to complete this subtraction
process is

t(k) < 4k + 3 = O(k).

8.1.3 Multiplication of Binary Row-coded Numbers

Using the representation illustrated in Fig. 8.1, we define a parallel (matrix-
constant) multiplication of an image set of binary numbers and one single binary
number X - R,, and parallel (element-element) multiplication of two image sets of

binary numbers X x R.
I. Matrix-Constant Multiplication X - R,

Consider an image X (e.g. Fig. 8.5(a)) comprising N2/k numbers z;,% = 1,2, ..., N*/k,
and a reference image R, (e.g. Fig. 8.5(b)) comprising only one single k-bit bi-
nary number r = (r(x_1)7'(x-2)-.-7(0))2- The output of the parallel multiplication is
X - R, (Fig. 8.5(c)).

To realize it, we first consider the serial multiplication of two binary num-
bers that is the sum of the shifted versions of the multiplier or the multiplicand.
Then, by applying the corresponding parallel operations and parallel shifting by
a dilation @, we can implement this parallel multiplication by the equation

X-R=) Xeoa® (8.9)
L¥ry=1
where the sum notation }_ refers to a sequence of parallel additions and the parallel
addition + is defined in Subsection 8.1.1.
The DOCIP takes O(k?) clock cycles for implementing this matrix-constant

multiplication. Its procedure involves:

162

ka7 bits
13001 0! i
0001001]

E110111
.. 101101 s 2 =

.

(2) (b) (c)

Figure 8.5: Parallel (matrix-constant) multiplication of binary row-coded num-

bers. (a): An image X of operands. (b): An image R,. containing only a single
number. (c): The output X - R,.

1. Generating the term X @ A~":

o The DOCIP-array requires at most I < k —1 = O(k) clock cycles,

because
A—l —_ (A—l)l

-1 -1 -1
A9 A 7aa...‘s{aA ! (8.10)

XoA! = ((XoA oA)®...0A™).
1

e The DOCIP-hypercube requires at most log,! < logs(k—1) = O(logzk)
clock cycles, because we can rewrite [as a binary number [= (@(ltogat))---2(1)8(0))25

and we have

A—' nl.’oy?lj A—%6)" 27

= A% A-ay? .0 A-.,(l,m,n.gumu
, (8.11)
XoA"! = ((XoA™@)es™0T)0..

A X uortpy 22y

163

where |logal] is the greatest integer less than or equal to log,l, and each
dilation with A=%»"? can be implemented in the DOCIP-hypercube in

one single clock cycle.

o The total time delay for generating all required X @ A~, 0 < [<
k —1, is bounded by O(k) for both the DOCIP-array and the DOCIP-

hypercube. Since
XA =(XpAa g A, (8.12)

we can generate the new term X @ A~' by simply deriving it from
the previous term X @ A~(~1) without starting from the original X.
The total generating time is then dominated by the number of terms

X @ A~! which is at most O(k).
2. Implementing the summation Zl.Vr(,)=l XAt

e The DOCIPs require at most k — 1 = O(k) parallel additions to im-
plement this summation, and each parallel addition requires at most
k + 1 = O(k) iterations (as shown in subsection 3.1). Since it takes
O(k) time for generating all the terms X @ A~', the total execution
time of the DOCIPs for this matrix-constant multiplication of k-bit

binary numbers is
O(k) x O(k) + O(k) = O(K?).

From the example shown in Fig. 8.5, R, = I U A~? contains only a single number
r = (0101); = 5, and the DOCIP can implement this matrix-constant multiplica-
tion X - R, as follows:

164

Assume start with X in My (= X & I).

L. Mi®@A2 = M; (=X A™?)

2. The instructions of the parallel addition are performed as shown in subsection
3.1:

M+ M; - Out (=X R,).

II. Element-Element Multiplication X x R

Consider an image X (e.g. Fig. 8.6(a)) comprising N2/k numbers z;,z = 1,2,..., N2 [k,
and an image R (e.g. Fig. 8.6(b)) comprising N2/k numbers r;,: = 1,2, ..., N*/k.
The output of the element-element parallel multiplication is X x R (Fig. 8.6(c)).
Because the multiplication of two binary numbers is the sum of the shifted
versions of the multiplier or the multiplicand, applying the corresponding parallel

operations, we can implement this paralle] multiplication by the equation

XxR = TIF(XoA)n(RN(MeAT)) @ Uizt A7) 6.13)

= SIIXOATURUM@ AT Uit A
where the mask M (Fig. 8.6(d)) is used to extract the I** bit (where the 0** bit

is least significant and the (k — 1)** bit is most significant). The DOCIPs can

implement this element-element multiplication by the procedure
1. Generate X @ A~ and RUM @ A-':

¢ Using an argument similar to that in subsection I above, the DOCIP-

array takes O(k) time and the DOCIP-hypercube takes O(logk) time.

2. Generate RUM @ A~ @ Uf;(',"lA‘j:

165

k=7 bits

ponTot
1011 0000010 010110
ot R B s T B o
] []]
[]] a
a |]
(a) (b) (c)
ka7 bits ka7 bits ke7 bits
00....0i{1 *00----021 0000000
] i 11111 « =
. i L L k=7 bits
s § ™ 5 H]
" ... = i SEEENKI
a g. " 5. |
] i1
b i .
iy i1
A i
(d) (e) ()

Figure 8.6: Parallel (element-element) multiplication of binary row-coded num-
bers. (a): An image X of operands. (b): An image R of other operands. (c):
The output of the parallel (matrix-matrix) multiplication X x R. (c): The out-
put X x R. (d): The mask M. (e): The image Uiz} A~#. (f): The image
(RNM) e Uiz A,

166

e The DOCIP-array takes O(k) time, because

k=i-1 1 1

U a7 = a2 ((J a9y 4% e A7),

j=0 =0 =0 =0 j=0
k=11

/

(8.14)

[> 0, and each dilation by a term in parentheses executes in one clock

cycle.

e The DOCIP-hypercube takes O(logz k) time, since
k=11 lloga(k=i-1)] n .
Ua= TJ A% (8.15)
7=0 n=0 y=0

where k — 1 — 1 = (a((togy(k-1-1)})---6(1)(0))2, and again each dilation by

the term in parentheses executes in one clock cycle.

o It takes O(k) time for the DOCIP-array and O(log;k) for the DOCIP-

hypercube to generate the term

(Xo AU ((RU(M e AT) @ Uiz A~9).

3. Implementing the summation Y50 X ® ATURUM @ A-'@ UiZ{ A3

¢ The summation requires at most (k — 1) addition operations, and each
addition operation takes O(k) time on the DOCIP system. We also
require O(k) time for the DOCIP-array and O(log;k) time for the
DOCIP-hypercube to generate each operand of the addition. Thus,
for this element-element multiplication of k-bit binary numbers, the
total computation time is O(k®) for the DOCIP-array and O(k?log:k)
for the DOCIP-hypercube.

167

Multiplication requires more than three memories. This can be accommodated
by either building more memory into the DOCIP machine or by swapping inter-
mediate results into and out of an external memory. In the latter case we assume
the external memory can be loaded and unloaded with one image in a single time
step. In section 4, binary stack-coded arithmetic also requires more than three
memories; we'll make the same assumptions on the use of an external memory.

For binary column-coded arithmetic, a number is encoded in a part of a column
of an image as in Fig. 8.7. All the algorithms derived in this section can be also
applied to binary column-coded numbers except that we replace the elementary
image A~? by a different elementary image B for shifting the carry-bit image or

borrow-bit image in the vertical direction.

N-bit
— lengtlh —b|
M N .
C-bit F J—Most significant bit
Iengm Z1|Z2]s & wi{Zi|e = = Z A
Least significant bit
a
N-bit| *
length .
. .
& . J—xmu

Figure 8.7: Binary column-coded numbers.

168

8.2 Binary Stack-coded Arithmetic

In this case, a number is encoded in a stack of & image planes with the least
significant bit in the first plane, next least significant bit in the second plane, etc.

(Fig. 8.8).

1

AN
AN

evasoressones sovsoosnsons Guseses:

z1(k = 1)_—§p)

T 3|7 zN’(o)
N-bit| S
Ieth /

X(k-1) X(0)

Figure 8.8: Binary stack-coded numbers. z;(m) represents the m* bit of the i*»
number in the image plane. Xo) represents the image plane of least significant
bits and X(x.1) represents the image plane of most significant bits.

We assume all numbers including the results of arithmetic operations can be
represented in k bits, so that k images, each with N x N bits, contain N? binary
numbers. Here, we describe parallel addition, subtraction and multiplication by

BIA expressions.

169

8.2.1 Addition of Binary Stack-coded Numbers

Using the representation illustrated in Fig. 8.8, we consider the parallel addi-
tion of two sequences of images of binary numbers. Assume a sequence of im-
ages X = (X(k-1), X(k-2)»---» X(0)) (e.g. Fig. 8.9(a)) storing N? binary numbers
zi,t = 1,2,...,N?, and a sequence of images R = (R(k-1)s B(k-2)s ---» R(o)) (e.g.
Fig. 8.9(b)) storing N2 numbers r;,i = 1,2,..., N2, Then the output of the paral-
lel addition is X + R = § = (S(x), S(k-1), ---» S(0)) as shown in Fig. 8.9(c).

To realize this addition using our three fundamental operations, we implement

an array of full adders as described by the equations

1. The least significant bit planes of sum bits and carry bits are given by:

Sw) = X(0) ARg = m U Rg) U X(o) U m (8.16)
Cay = X(0) N Ry = X(0) U Ro) (8.17)

2. The recursive relations:

Se) = XD RuHAC

= (X N B NCa) U (X N Ry N Cpy)U
(X N By NCe)U(Xm N Ry NCa) (8.18)

= (X@ VU Ry UCH)U(Xe U RRUCHU
(XU Ry UCR) U (Xy VR UC)

Civny = (XN By) U (XeNCw) U (Ry N C)

= (XU RV (XeUCy) U (RuUCy)
where1 =0,1,2,...,k — 1.
3. The final solution is:
X + R= S = (S(k),S(k—l)a seny S(o)) (820)

170

Figure 8.9: Parallel arithmetic with binary stack-coded numbers. (a): A se-
quence of images X = (Xs), X(3), X1)»X(0))- (b): A sequence of images
R = (R(3),R(2),R(1),R(o)). (C): The sum X + R = (5(4),3(3),5(2),5(1), S(o)).
(d): The difference D = X — R = (D), D2), D(1), D(oy). (e): The product
M=XxR= (M(7),M(6),...,M(o)).

171

where Sy = Cix) because X(x) = Ry = ¢.

This algorithm can be implemented in the DOCIP architecture by the program
(DOCIP instructions):

o Assume start with X(o) stored in M; and R(q) stored in M;.

e Calculate S(g) and Cyy:
1. M UM; — M3 & Out (= Cpy))
2. MyUM,; - M; (= XU Rg))
3. M{UM, UM; — M, (= X(0) UR(g))
4. My UM; — Out (= S())

o Calculate S(;) and Cy):
1. Xup) = M,
2. MyUM; — M; (= X3y U Cpy))
3. MiUM; — M, (= X0V Cqy)
4. MiUM; — My (= Xy A Cqy)

Ry — M

M UM; — M,

MiUM,; - M,

M, UM; — Out (= Sp))

Xy — My

10. Ry — M,

© 90 N @ o

11. UM, - M,
12. Cy = My

13. MyUM; = M,
14. MU Mz — M3

172

15. X(3) = M,
16. MUM,;, —» M,
17. MU M3 —» M3 & Out (= C(z))

e Calculate S() to S(x-1) and C3) to Cyyy:
Use the same instructions for calculating S(;) and Cjz) except that X(;) and
Ry (and S(y) and C(y)) are replaced by X(;) and Ry (and S(;) and Cii4))
in each iteration, and in the beginning of an iteration the memory Mj; stores

C) instead of Cp, ¢ = 2,3, .., k.
The complete execution of this operation in the DOCIP requires
k) <17(k—-1)+4 =17k — 13 = O(k).

clock cycles. Additional parallelism could be extracted to further reduce the
execution time by utilizing carry-lookahead techniques or by optimizing the above

program.

8.2.2 Subtraction of Binary Stack-coded Numbers

Let the result of the parallel subtraction be X — R = D = (D-1), D(x-2), ---» Do)
(e.g. Fig. 8.9(d)). To realize it using the 3 fundamental operations, we consider
a serial full-subtractor. Applying the corresponding parallel operations, we can

implement this parallel subtraction by the equations

1. The least significant bit planes of difference bits and borrow bits:

Do) = X(0) & Roy = X(0) U Bo) U Rigy U Xq) (8.21)
Bg) = X(0) N Ro) = X(0) U Rg) (8.22)

173

2. The recursive relations:
Dy = (XN R N Bg) U (X N Ry N By
(X@ N R N Bg) U (X N Ry N Bgy)

= (X@ U R U By) U (X U Ry U By)u

(X Y Ry U By) U (X U Ry U B)

By = (X N RN Bg)U (X N R N B)u
(X N R N Be) U (X N Ry N Bygy)

= (X@V Ri) U Bgg) U (X U Ry U B))u

(X Y Ry U By) U (X U R U By)
where:=0,1,2,...,k — 1.

3. The final solution:

X - R = D = (D(k—l)) D(k_g), ...,D(o)).

(8.23)

(8.24)

(8.25)

This algorithm can be implemented in the DOCIP architecture by the program

(instructions):
o Assume start with X(q) in M; and Rg) in M,.

o Calculate Do) and m:
1. MyUM; — M3 & Out (= Wl))
2. UM, - M, (= '}'(fo_,u R))
3. 7 UTE; - Out (= Dyg)

e Calculate D(l) and B(g):
1. X(l) - M1
2. Ml U M3 — M2

174

3. MuM; — M,
4. Ry — Ms

5 My UMz — M,
M UMz — M;
M, UM; - M,
Ry — M3

MyUM; - M,

© »® N>

10. MU M, - M,

11. Xpy — M,

12. MU M; — M;

13. Byy — M,

14. My U M; — Ms

15. M; UMz — Out (= D))
16. Xy — M

17. M{U M; — M,

18. R(j) — Ms

19. MyuM; - M,

20. My U M; — M; & Out (= By))

Calculate D(3) to Dx_1) and Bg) to Byy):

Use the same instructions for calculating D) and B(;) except that X;) and
Rq) (and D(;) and By)) are replaced by X(;) and R(;) (and D(;y and Biyy))
in each iteration, and in the beginning of an iteration the memory M3 stores

By;) instead of m, t=2,3,..,k

175

Therefore, the total execution time in the DOCIP to complete this parallel sub-

traction is

t(k) < 20(k — 1) + 3 = 20k — 17 = O(k).

8.2.3 Multiplication of Binary Stack-coded Numbers

Let the result of the parallel multiplication be X x R = M = (M(3x-1), M(2x-2),---, M(q))
(e.g. Fig. 8.9(e)). Since binary multiplication is equivalent to the addition of
shifted versions of the multiplicand, applying the corresponding parallel opera-

tions, we can implement the parallel multiplication by the equations

PO = (0,0,...,0, X(k-l) N R(o), X(k_g) n R(o), ey X(o) N R(o)) (8.26)
k
PO = (0,0,...,0, Xk-1) N Ry, Xx-2y N Ry, ..., X0) N R, 0,0, ...,0) (8.27)
k—i i
k-1
XxR=M=Y PO =pOpl)y 4 pk-D (8.28)
i=0

where 1 = 0,1,...,k — 1, and the addition + is defined in subsection 4.1. Since
this parallel multiplication requires at most k£ — 1 additions, each addition takes

O(k) time for the DOCIP, and each PC) can be generated in O(k) time, the total

execution time is O(k3).

8.3 Binary Symbol-coded Arithmetic

Symbolic substitution has the ability to solve any computable problem and per-
forms many operations [Huang83, Brenner86a). As shown in Section 5.1, we for-
malized symbolic substitution by BIA algebraic symbols and demonstrated that

symbolic substitution rules are particular BIA image transformations and can

176

be improved by BIA algebraic techniques and pattern recognition algorithms in
many cases. Here we will give the BIA formal notations of binary symbol-coded
(symbolic substitution) arithmetic. We show that the symbolic substitution imple-
mentation of some operations is relatively complicated to other implementations.

A bit in a binary number is encoded in symbolically as pixels of an image
(Fig. 8.10). In this section, we primarily concentrate on single-pixel coding: a
logic value (0 or 1) is represented by a single pixel (dark or bright) (Fig. 8.10(a)),
as in the binary row and stack-coded number representations, but the operands of
binary numbers z; and r; are stored in the same input image X as shown in Fig.
8.11(a). The expected output images of symbolic substitution for binary addition
and binary subtraction are shown in Fig. 8.11(b)-(c).

To achieve these desired operations, the symbols associated with the operands
are recognized and then replaced by new symbols associated with the results of
the operation. Systems for implementing binary addition and subtraction are

formalized and illustrated as examples of binary symbol-coded arithmetic below.

8.3.1 Addition of Binary Symbol-coded Numbers

This parallel binary addition (Fig. 8.12) can be implemented with four symbolic
substitution rules [Huang83, Brenner86a) (Fig. 8.12(a)) . In the case of single-
pixel coding, as we will show, Rule 1 is not necessary. The symbolic substitution

system for single-pixel coding can be realized as
Y(to) = X (8.29)

Y(t301) = U(Y () ® R9)) @ @V (8:30)

i=1

177

Zero

(b) (c)

Figure 8.10: A bit encoded as a symbol. (a): The single-pixel coding of zero and
one (a bit is a pixel). (b): The two-pixel (i.e. dual-rail) coding of zero and one (a
bit is encoded as two pixels) [Huang83, Brenner86a). (c): The six-pixel coding of
zero and one (a bit with value zero or one is encoded as six pixels) [Jeon87].

178

000...00 X.- [,
Xat I, = s = 000...00 e a =
000...00 X,- |' 2
Xo+ 1, 000...00

. [

a]

" .

(b) (c)

Figure 8.11: Binary symbol-coded (symbolic substitution) arithmetic. (a): The

input image X contains the operands z; and r;. (b): The output of parallel
addition. (c): The output of parallel subtraction.

179

where Y'(¢441) is the result, j = 0,1,2,...,k + 1, k is word size (i.e. the number
of bits in a operand); R®) = (R, R{)) and Q) are shown in Fig. 8.12(b) and

represented as
1. R{M = ¢, RN = UL, B, QW) = ¢,
2. RO =1, R® =B, QW =1,
3. R =B,RP =1,Q® =1,
4. RY =L, B, R = ¢, QW = A~'B.

Here the null image ¢ and the elementary images are as defined in Chapter 3; the
mask M (Fig. 8.12(c)), used for controlling the block search region, is the image
corresponding to the coordinates of the origins (lower-lefter pixels) of the input
symbols in the input image X. An example is given in Fig. 8.12(d).

Note that Q') = ¢ implies

(Y& @RV n M) QY = 4, (8.31)
so that
Y(ti) = UL ((Y(E) ®RD) N M) e QW)
= UL ((Y(t;) ®RD)n M) e QW) (8.32)

= UL(Ft) @ BV u(r() o B")n M) e Q0.
Thus, for single-pixel coding of symbolic substitution, we can reduce the four
rules of binary addition to only three rules. However, this reduction of complexity
cannot be applied to two-pixel (i.e. dual-rail) or six-pixel coding.
When implemented on the DOCIP, this addition requires at most & + 1 iter-

ations, each iteration requiring two union operations of three results of symbolic

180

10110 Rule 1. §— %

+10011
Carry bits 10010 0 0
Sum bits _00101 Rule 2. § —» 54
Carry bits 0010 1 0
Sum bits 100001 Rule 8. 5 —» %
Carry bits 000
Sum bits. 101001 Rule 4.] — 1,

(a)

E E E £
Rule 1. —_ Rule 2. —
E E [] L]

igi Origin 2 2 -
Origin igi Ri Ve E Rg) =R QW =7
=6 B =Ues QW=o

Rule 3. l:l — . Rule 4. D NS D
[

E [K

Rf” =B, Rga) =T Q¥ =71 Rg‘l} = U0 B, R?) =¢ QW= A4"1B
(b)
k=5 bits (c)
-—>
01017 0
00010 = = = 0??80 .
81$91 00000
10000
(d)

Figure 8.12: Parallel addition of binary symbol-coded numbers. (a): Four sym-
bolic substitution rules for addition. (b): Reference image pairs R(*) and reference
images Q) i = 1,2,3,4, used for addition. Q) is a null image, Rule 1 is not
needed for this single-pixel coding. (c): The mask M. (d): An example of parallel
addition of binary symbol-coded numbers.

181

substitution rules, and each rule is realized within five steps as shown in Subsec-

tion 7.4. Thus, the total execution time in the DOCIP is
(k) S (Bx5+2)(k+1)=17(k+1) = O(k).

When using 2 or 6 pixels to represent a logic value (Fig. 8.10(b)-(c)), we can

formalize symbolic substitution addition as

e Two-pixel coding (Fig. 8.10(b)) [Huang83, Brenner86aj: we can implement
a full recognition with only a background recognizer (or foreground recog-
nizer)

Y(tin) = Ua((Y () ®@RO)n M) e Q¥)
= UL (Tt e B Yu(rit) o B,) nM)@Q® (8.33)
= UL (Y@t @ K" nM)eQ®

where j =0,1,2,...,k; R} = (Rgi),R,(zi)) and Q) are shown in Fig. 8.13(a)
and represented by elementary images as

1. RV =1UB?, R = BUB3 QW =TUA'B?,

2. R =2, B\, R® = TU B3, Q® = BU A-'B?,

3. R =1uB% R =2, B\, Q¥ = BUA-'B?,

4. R =BuB® R =TUuB? QW =1U A-1B3;
and the mask M is shown in Fig. 8.13(b).
Since

T ek UL e k) =T e k) = v e k"), (831

for the two-pixel coding, R") can be represented by only its foreground

R or background R{). For implementation on the DOCIP, this algorithm

182

[

o

|

Rule 1.

R
b

W | HEE W

Origin Origin

.
[]
E

l

Rule 3.

Rule 2.

Rule 4.

Figure 8.13:

(b)

[N
_ [l

|

_ [l

LI

l

_ [l iy EE

Symbolic substitution binary addition with two-pixel coding

[Huang83, Brenner86a). (a): Reference image pairs RO and reference images
QY. i =1,2,3,4, used for addition (with two-pixel coding). (b): The mask M.

183

requires four rules, and each rule involves two dilations and one union or
intersection. Because they may be not included in Ngyray oF Npypercute, €ach
dilation of RS or Q¥ is implemented by 2-4 steps for the DOCIP-array8 and
1-2 steps for the DOCIP-hypercube8. The total execution time is bounded
by 28(k+1) for the DOCIP-array8 and 18(k+1) for the DOCIP-hypercube8.
Moreover, it requires more difficult two-pixel coding and doubles the device

area.

e Six-pixel coding (Fig. 8.10(c)) [Jeon87]: the mask M is not needed and
4
Y(tin) = U () ®RY) Q¥ (8.35)
=1

where j = 0,1,2,...,k, k is the word size; R®) = (R, R{") and Q® are

shown in Fig. 8.14 and are represented as

BN B BN EOE
Rule 1. D.._,D-- Rule 2. D.._,EI--

Ol i CIHN o | |
N HE ECE BN
R R
e H | BeE | |
W [BN EON u [

Figure 8.14: Symbolic substitution binary addition with encoding a bit as six
pixels [Jeon87].

1. R = TUABUB?UAB3, R") = BUUB3U AU AB?U (L, A%B'),
QW = A-3B2U A—?2B3UJ U AB,

184

2. RY = (UL, B)uAu A3 RP = Tu B3U (UL, AB') U (L%, A%B'),
Q® = A-3B2U A-2B*U BU 4,

3. R = TUB3U (UL, AB), RY = (UL, B) U AU A% U (UL, A%BY),
Q® = A-3B2U A~2B3U BU 4,

4. RY = BUBRUAUAB?, R = TUB2U ABU AB3U (U, A2B'),
QW = A—3B3U A2B*U U AB.

The six-pixel coding removes the need for the mask M, but requires more
difficult encoding, more difficult implementation of the hit or miss transform
by R¥ and dilation by Q(), and six times the hardware area. Addition on
the DOCIP-array or DOCIP-hypercube using six-pixel coding takes much
more time (on the order of ten times) than single-pixel coding or two-pixel

coding.

8.3.2 Subtraction of Binary Symbol-coded Numbers

Similar to addition, we generally use 4 symbolic substitution rules (Fig. 8.15(a)),
but Rule 1 and Rule 4 are not necessary for single-pixel coding. The symbolic
substitution system using single-pixel coding for binary subtraction can be realized
as
Y(t) = X (8.36)
Y(tin) = UL((Y(t)®RY)nM)e QW)
= UL e A)ur) e R)nMeQd (83
= U)o A u () e &) n M) e

185

where Y (ti4,) is the result of the subtraction, j =0,1,2, ..., k, k is word size (i.e.
the number of bits in a operand); R() = (Rgi),Rgi)) and Q) are shown in Fig.

8.15(b) and represented as
L RV = ¢, B = UL, B, QW = ¢,
2. R =B RP =1,Q®=1uA'B,
3. RO =1 R® =B, Q® =,
4. RM =L, B~ R = ¢, QW = ¢

where the null image ¢ and the elementary images are as defined in Chapter 3;
and the mask M (Fig. 8.15(c)) is a shifting of the mask for binary addition.
Because Q1) and Q™ are null images, and the dilation of a null image is a null
image, Rule 1 and Rule 4 are not needed for single-pixel coding. Fig. 8.15(d)

gives an example. The execution time for the DOCIP is
t(k) < 11(k + 1) = O(k).

Similar to binary addition, we can develop symbolic substitution binary sub-
traction algorithms with BIA representations for coding a symbol with two or six
pixels. However, four symbolic substitution rules are still required because Q")
and Q" will not be equal to the null image. The DOCIPs take approximately
the same execution time for binary subtraction using two-pixel or six-pixel coding

as for binary addition.

186

10100 Rule 1. 9 —» 0

-10011 0 0
Difference bits 00111 0 1
Borrow bits 00011 Rule 2. 7 —1
Difference bits 00001 1
Borrow bits 0011 Rule 3. a —»0
Difference bits ~00001 0
Borrow bits 000 Rule 4. 1 —»

N (2)
Origin Origin

v

E E- [
Rule 1. — Rule 2. —_—
uie . . D

RV =9, R =, B~ QW=06 R=81,) =1 Q¥W=Iu4iB!

=0
Rule 3. [] — [Rule 4. ot ..

[

L]

R® =1, RY) = B QB =1 RV =B R"=90 QW=y
(b)
k=5 bits (c)
01011 01001
00010 " = om 00000 S & .3
01001 00010
00111 00000
(d)

Figure 8.15: Parallel subtraction of binary symbol-coded numbers. (a): Four
symbolic substitution rules for subtraction. (b): Reference image pairs R() and
reference images Q'"), i = 1,2, 3,4, used for subtraction. Because Q") and Q™) are
null images, Rules 1 and 4 are not needed for single-pixel coding. (c): The mask
M. (d): An example of parallel subtraction of binary symbol-coded numbers.

187

8.4 Complexity of Parallel Optical Binary

Arithmetic

We have shown that BIA offers a general tool for mapping serial binary arithmetic
into different forms of parallel binary arithmetic (including binary row-coding,
binary stack-coding, and three coding techniques for symbolic substitution arith-
metic) in a precise and compact way. The complexity of parallel addition and
subtraction of two N x N arrays of binary numbers (each number with k-bit
length) for these different number representations are compared in Table 8.1 and
Table 8.2.

Binary row-coded arithmetic requires the smallest number O of fundamental
operations. Binary stack-coded arithmetic requires the lowest number of process-
ing elements (or cells) P and the smallest overall O x P complexity (assume each
parallel fundamental operation corresponds to P processing elements executing
in parallel). For the normal case in which the word size is larger than one and
much smaller than the image size (1 < k < N), binary row-coded arithmetic can
be implemented in the DOCIP with the fastest computation speed (assume the
DOCIP can input all operands in an image at a time). The complexity of binary
symbol-coded (symbolic substitution) arithmetic in general is in all cases higher
than that of binary row-coded and binary stack-coded arithmetic. For implement-
ing symbolic substitution algorithms on the DOCIPs, the single-pixel coding is

superior to the other symbol coding techniques.

188

Symbolic i
nomber | moay | memy | Sobeten | Spmcle
Representation Row-coding Stack-coding (single-pixel (two-pixel
coding) coding)
No. of Dilations k (1) 9(k +1) 8(k+1)
(or Erosions)
No. of Unions 4k+3 16k-12 15(k+1) 16(k+1)
(or Intersections)
No. of 7k+d 20k-13 12(k+1) 16 k+1;
Complements *2k+2 *7k-5 *3(k+1) “4(k+1
Total No. of Parallel
% O(k+1)
Fundamental O 12k+7 ,36k-25 _36(k+1) 4
Operations 7k+5 23k-17 27(k+1) 28(k+1)
No. of
Processing P k N2 N2 2k N? 4K N2
Elements
Total No..of OxP (12k+7)kN2 (36k-25)N? 76k(k+1)N2 160k(k+1)N2
Computations X *(7k+5)kN2 *(22k-16]N? *S4k(k+1)NZ | “112k(k+1)N?
DOCP] 17k 18(k+1) or
Execution Time Sk+3 17k-13 (k+1) 28(k+1)
2
PXT (Sk+3)kN (713N | 34K | 3ok

* indicates the number of operations when erosion and intersection are also allowed.

Table 8.1: Complexity of parallel optical binary addition of two NxN arrays of
k-bit binary numbers. Each parallel fundamental operation corresponds to P
processing elements executing in parallel.

189

) Symbolic Symbolic
Number Binary Binary Substitution | Substitution
Representation Row-coding Stack-coding (single-pixel (two-pixel
coding) coding)
No. of Dilations k 0 B(k+1
(or Erosions) Stk))
No. of Unions 4k+3 16k-12 10(k+1) 16(k+1)
(or Intersections)
No. of 6k+4 2k-18 8(k+1) 16(k+1
Complements *3k+2 *11k-8 ‘2(K+1) “4lkc+1
Tot . of
otal No. o Pa"'""% 11k+7 43k-33 24(k+1) 40(k+1)
Fundamental *8k+5 *33k-26 . *28(k+1
Operations ; 18(k+1) (k1)
No. of
Processing P kN2 N2 2kN? 4kN?
Elements
Total No. of o | (kT (43k-33)N? | 48K(ke1)N2 | 160K(k+1)N?
Computations X *(8k+5)kN? “(33k-26)N? | “36k(k+1)N2 | *112k(k+1)Ne
DOCIP 18(k+1) or
20k-17
Execution Time 4k+3 1) 28(k+1)
PxT (4k+3)k N2 (20k-17)N? 22Kk{k+1)N? 712;'5(&(&1)1'\::\12“

* indicates the number of operations when erosion and intersectlion are also aliowed.

Table 8.2: Complexity of parallel optical binary subtraction of two NxN arrays of
k-bit binary numbers.

190

Chapter 9

Implementation of A Prototype
DOCIP — Experimental

Demonstration

In this chapter we experimentally demonstrate the concept of the DOCIP archi-
tecture by implementing one processing element of a prototype optical computer
including a 54-gate processor, an instruction decoder, and electronic input /output
interfaces. The 54-gate processor consists of a 2-D array of 54 optical logic gates
and a 2-D array of 53 subholograms to provide interconnections between gates.
The interconnection hologram used in this system is fabricated by a computer-
controlled optical system to offer very flexible interconnections. To the best of
our knowledge, this experimental system is the most complicated digital optical
computing system that has been constructed to date.

A diagram of the main components of this experimental system is shown in Fig.

9.1. A multiple-exposure multi-facet interconnection hologram provides the fixed

191

interconnections between the outputs and the inputs of an array of optical gates.
The input data and the instructions are supplied from an LED array. The outputs
of optical gates are detected by a video camera and compared with the results
of a software simulation. Here we discuss the fabrication of the interconnection
hologram, the measurement of the characteristics and uniformity of a Hughes
liquid crystal light valve (LCLV) used for implementing the optical gate array, and
finally the experimental prototype DOCIP system with its operating principles

and experimental results.

9.1 Interconnection Hologram

A space-variant interconnection system [Jenkins84a, Jenkins84b, Sawchuk84] for
within-processor interconnection is used in this experimental demonstration. A
computer-controlled system is used to make an array of 53 interconnection sub-
holograms. An optical point source S, whose position is controlled by the mirror
M2 with two rotational stages (Fig. 9.1), is used to provide an object beam for
determining an interconnection of a subhologram in the multi-facet hologram. A
mask with a circular aperture, controlled by two translational stages, is used to
determine the sizes and positions of subholograms on a holographic plate. The
interconnection hologram for this 54-gate optical processing element consists of
53 subholograms (one for each gate except the output gate), which are laid out in
a 2-D array. Each subhologram covers a circular area with a diameter of 1.5 mm.
The spacing between the centers of two subholograms is 3.0 mm. Note that the

path of the object beam and the mask for subholograms are only used for making

192

& Motor control

L3
Mask

((Motor control)

Hologram

PC |ea—»

Figure 9.1: Experimental DOCIP system. P1 and P2 are crossed polarizers. Lens
L1 images the LCLV gate output plane to the hologram plane. Beam splitter BS3
is in front of the LCLV gate input plane and combines the external input signals
from the LED array and the feedback signals from the interconnection hologram.
LP1 and LP2 are lens-pinhole assemblies. P1 and P2 are crossed polarizers. The
hologram consists of an array of subholograms. Mirror M2 controls the position
of point source S during the hologram exposure. After the hologram is made,
the mask and all components in the path from the reflection off of BS1 to the
hologram are not needed.

193

the interconnection hologram; they are blocked or moved when we reconstruct the
hologram to implement the interconnections of the optical gates.

To successfully make the desired hologram, we have performed a sequence
of experiments on two kinds of holograhic recording media: (1) dichromated
gelatin, (2) Agfa-Gevaert 8E56HD silver halide photographic plate. We first dis-
cuss dichromated holograms and then silver halide holograms.

Dichromated gelatin holograms have many favorable characteristics [Chang80,
Chang79, Collier71], for example: 1) the largest refractive index modulation ca-
pacity among holographic materials available today; 2) high resolution capacity
(higher than 5000 lines/mm); and 3) reprocessing ability [Chang76]. Numerous
possible procedures for making dichromated gelatin holograms and their possi-
ble formation principles have been reported in [Brandes69, Chang71, Chang79,
Chang80, Shankoff68, Curran70, Meyerhofer72, Lin69]). Figure 9.2 shows the
preparing and recording procedure of dichromated gelatin holograms used in this
experiment, which is primarily a simplified version of that in [Chang79]. This

procedure involves five steps:
1. Preparation of gelatin plates from Kodak 649F plates:

(a) Soak in Kodak fixer F5 for 5 minutes in the dark room. The fixer F5
is prepared from 1) distilled water, 50°C, 600 milliliters; 2) Sodium
Thiosulfate Na;S;0;3 - 5H,0 (Pentahydrated), 240 grams; 3) Sodium
Sulfite (Anhydrous), 15 grams; 4) 28% Acetic Acid, 48 milliliters; 5)
Boric Acid (Crystals), 7.5 grams; 6) Potassium Alum AlK(SOy), -
12H;0 (Fine Granular Dodecahydrated), 15 grams; and 7) stirring

and adding cold water to make the total solution 1.0 liters.

194

N

i

N

2N

A.QBI' + Gel. Kodak 649F

v

1. Preparation of Fixer
Gelatin Plate F5
Dr
s y
Gel. (Hardened)
2. Sensitization Ammonium
Dichromate Sol.
Dry
3. Exposure: v
Creation of Hardness
Differential
Cr'Gel |Cr®*Gel.
4. Initial Development: v
Creation of Initial
Refractive Index Water
Modulation *
5. Final Development: Isopropanol
Amplification of Initial Alcohol
Refractive Index
Modulation Dry
"Ia ' n, Volume Hologram

Figure 9.2: Preparing and recording procedures for the interconnection hologram
of dichromated gelatin.

195

(b) Wash in running tap water for 2 hours.

(c) Dry about one day or more.
2. Sensitization:

(a) Sensitize with ammonium dichromate solution (7% ammonium dichro-
mate and 0.5% photo-flo) for 5 minutes in the dark room. The plates

are now light sensitive.

(b) Take the plates from the solution, hang them for 2 or 3 minutes, and

clean their glass surfaces in the dark room.

(c) Dry for 2 days and store in a dry (dessicator) and dark place, and
use it within 8 days. Control of humidity during this time and during

exposure is important.
3. Exposure:

o Sequentially expose the dichromated gelatin plate with different point
sources of object beams and a common reference beam. Hardness dif-
ferential between exposed and unexposed region of the plate is created.
The sensitivity of the plate is about 200 mJ/em?. Each fan-out of a
gate requires an exposure. The optical system for fabricating the inter-
connection hologram is described in in Fig. 9.1. (After the exposure,
we develop the hologram; after the development, we block the object
path and reconstruct the hologram the same place as the exposures for

interconnecting the optical gate array from its output side to its input

side.)

4. Initial water development:

196

¢ Wash in running tap water for 10 minutes in the dark room. The ini-
tial refractive index modulation is created by swelling and transferring
gelatin. In the exposed regions much less water is absorbed than in the

unexposed regions.
5. Final isopropanol alcohol development:

(a) Plates are no longer light sensitive. Dehydrate in a 50%/50% solution

of distilled water and isopropanol alcohol for 2 minutes.

(b) Dehydrate in a 10%/90% solution of distilled water and isopropanol

alcohol for 2 minutes.
(c) Dehydrate in 100% isopropanol alcohol for 10 minutes.
(d) Dry immediately with a blow dryer (until dry, approx. 5 minutes).

(e) The solutions in (a), (b) and (c) can be saved and re-used. Plates are

sensitive to humidity.

Though we can easily achieve very high efficiency (about 90%) by the dichro-
matic gelatin medium, the uniformity of all subholograms is difficult to control
(we have 35 single-exposure subholograms and 18 double-exposure subholograms;
totally 71 interconnections should be reconstructed about equal brightness). One
possible reason is that the long exposure times (sensitivity is about 200 mJ/cm?)
make the system very sensitive to mechanical vibrations.

The final hologram used in the current system is fabricated with Agfa-Gevaert
8E56HD holographic plate. Its sensitivity is about 0.03 mJ/cm?; it is much easier
to control the uniformity of subholograms. To reconstruct the double-exposure

subholograms to have equally bright interconnections, the exposure energy of the

197

second object beam is about 1.11 times that of the first object beam (this value is
similar that reported in previous work on Agfa-Gevaert 8E7T5HD in [Johnson85]).
After the final exposure, the plate is developed using D-19 (3 minutes), Kodak
Stop (45 seconds), Rapid Fixer (2 minutes) and water (30 minutes). The devel-
opment procedure of silver halide holograms is much simpler than that of dichro-
mated gelatin holograms and the sensitivity of silver halide holographic plates is
also much higher; but silver halide holograms are amplititude holograms and the
diffraction efficiency is only about 6%.

The above procedures for fabricating dichromated gelatin and silver halide
holograms can be also applied to fabricate the interconnection holograms for gen-
eral optical sequential logic circuits. The general principle of holography can be
found in [Goodman68]; the coupled wave theory of volume holography is described
by [Kogelnik69, Collier71].

9.2 Optical Gate Array

Besides the interconnection hologram, the other crucial component in the ex-
perimental DOCIP system is the optical gate array. Device requirements and
techniques for implementing parallel two-dimensional arrays of independent op-
tical logic gates have been studied in [Jenkins83,Jenkins84c,Sawchuk84]. We
use a Hughes liquid-crystal light valve (LCLV) with liquid-crystal molecules in
a 45° twisted nematic configuration, which is the same one used in [Jenkins84a,
Sawchuk84], as a spatial light modulator to provide a nonlinear threshold response
for implementing a two-dimensional optical NOR gate array. The AC voltage bias

supply of the LCLV is 6.7 volts and the frequency is 400 Hz.

198

Mirror

P1

Collimated beam

(controlled with LCLV
a rotation stage) D1 (controlled with

two translation stages)

Personal
computer (PC) <

Figure 9.3: Experimental system for testing the LCLV uniformity. P1 and P2 are
crossed polarizers. Lens L images the LCLV output to the detector D1. BS1, BS2,
and BS3 are beam splitters. The polarizer P3, controlled by a rotation stage, is
used to control the input light intensity of the LCLV. The LCLYV is controlled by
two translation stages for measuring the characteristics of different regions.

199

The Hughes LCLV characteristics have been also studied in [Jenkins84¢,Sawch-
uk84,Michaelson79). For the 54-gate optical processor of the experimental DOCIP
system to function properly, the uniformity over the spatial region of the LCLV
must be considered. A computer controlled system is used to measure the LCLV
uniformity. It main components are described in Fig. 9.3. The LCLV is read
out between crossed polarizers, P1 and P2, and is biased to implement a NOR
operation. The polarizer P3, controlled by a rotation stage with a PC, is used to
control the input light intensity of the LCLV. The detectors D1 and D2 are used
to read the input and output intensity of the LCLV. The position of the LCLV is
controlled by two translation stages for measuring the characteristics of different
regions. The result of this uniformity test indicates that the central region of the
LCLYV is reasonably uniform and allows a fan-in of 3. The stead-state output vs.
input relationship of 49 tested points in the center region of the LCLV is given in

Fig. 9.4.

9.3 Experimental DOCIP System and Circuit
Design

The major components of the experimental DOCIP system (9.1.) are (1) a 2-D
array of optical logic gates, (2) a multi-facet interconnection hologram for connect-
ing optical logic gates, (3) an LED array for supplying instructions and inputs into
the machine, (4) a video camera for recording outputs, and (5) a host computer
for providing the control of this binary digital optical computing system. The
gate size in this experiment has a diameter of 0.3 mm and the spacing between

the centers of two gates is 0.6 mm. The LCLV requires an illuminance of about

200

Vv v

v rr
— =

— —

y

Figure 9.4: The stead-state output vs. input relationship of 49 tested points in
the center region of the LCLV. Each characteristic curve corresponds to an area
of 1 mm? in the LCLV. The x and y axes of each characteristic curve represent
the input and output energy of the LCLV respectively.

201

25 pW/em? on the input side. The spectral sensitivity of the LCLV requires us to
use high-brightness green LEDs with spectrum centered at 565 nm. We used HP
HLMP 1540 LEDs that produce 30 mecd at 565 nm in a cone of half angle 45°.
An 8 x 8 square array of these LEDs with drivers, controller and PC interface was
constructed. The center-to-center spacing is 3.59 mm in both the x and y axes.
The circuit diagram of the processing element, as shown in Fig. 9.5, consists
of 54 NOR gates with maximum fan-in of 3 and fan-out of 2. Gate 54 is not
needed because the output y (the output of gate 49) is connected to gate 54 and
also detected by the camera, so there is no subhologram corresponding to gate
54. The direct holographic implementation of the interconnections for this circuit
is illustrated in Fig. 9.6. There are 19 point-spread functions (PSFs) stored in
53 subholograms for these gates; each PSF determines an interconnection pattern
that connects the output of a gate to the input(s) of other desired gate(s). A layout
of the PSFs is shown in Fig. 9.6(a), with each number representing the gate output
that is imaged onto that subhologram. The PSF stored in each subhologram is
shown in Fig. 9.6(b), with the ordered pairs representing the locations of the gate
inputs that each subhologram addresses (relative to the subhologram location).
The processing element includes a 3-bit destination selector, a 3-bit master-
slave flip-flop memory, a 6-bit memory selector with a union module, and a
5-bit neighborhood selector (for DOCIP-array4) with a dilation module. In-
structions for this experimental DOCIP system are supplied from an LED ar-
ray and decoded by the optical hardware. These instructions have the format:
(¢,d1,ds,ds, 81, 52, ..., 86, 11, N2, ..., N5) Where ¢ selects the image from the input or

from the feedback; d;,d;, and ds select the destination memory for storing the

202

{destination (input) 48 _
€ (lecdback comntrol)
% T
T (noighborhood seloction
_ % (memory solection) h; for dilation)
Golctock) 5
%
11 15 r
/4 1
>
>
Lt
. o
To
neightors r

.2
i 3 (from neighdors)
i)
[}

Figure 9.5: The circuit diagram of a 54-gate processing element of the DOCIP-
array4.

203

30 |32 | 34| 36 |38 |42 |43 |1

31133 | 35|37 | 39 |45 |47

(a)
(('3"'_;‘; (1.0 |(1.0) |(1.0) |(0.-13](1.0)
a0 o0 o |08 fean] (15 Ha-afo.qn
oo S0 00 |80 a0 |2l
(1.0) ‘:)‘.:'1”) (1.0) (::‘:; (.0 [eenler -l o
aal &0 006 .2 [0 e N

(0.4)

ao) 0O o | 11915 6 k0.4 1.1 6.5)

0.-1Y] (0.-1)

0
G0 RS R Phosd [U0Y PR PR

(b)

Figure 9.6: Direct implementation of the interconnections of Fig. 9.5. (a): Layout
of the PSFs on the hologram. The numbers correspond to those of Fig. 9.5. (b):
PSF stored in each subhologram. The ordered pairs represent the locations of the
gate inputs (image points) addressed (relative to the subhologram location).

204

image; sy, $2, ..., g select the output from the memory elements; and n,,n,,...,ns

control the neighborhood mask, i.e. supply the reference image.

9.4 Experimental Results

When biased as described in Section 9.3, our LCLV had a response time of ap-
proximately 300 msec. Implementing any instruction requires a maximum of 16
gate delays, so our clock cycle of instructions is limited to few seconds. The lay-
out of the outputs of the 54 gates at the monitor plane is shown in Fig. 9.7. We
have provided a sequence of instructions to test the circuit and compare with the
simulation in the host computer. Figures 9.8 and 9.9 shows the simulation results
and the outputs of 54 gates of some instructions which include the functions of
CLEAR, STORE, COMPLEMENT, UNION, and DILATION. A comparison with
simulations performed electronically showed that the DOCIP system functioned
properly.

In summary, we have presented a digital optical computing system which con-
sists a 54-gate processor, an instruction decoder, and electronic input/output
interfaces to demonstrate the concept of the DOCIP architecture. The system
functioned properly, producing the expected outputs. The operation speed fun-
damentally depends on the speed of the optical gate array. Recent progress in
high speed optical gate arrays (Chapter 2) shows promise for fabricating a fast
and large-scale DOCIP system.

205

E6

56 59 Fv Fs 23 F]
Output
2 P
Eo I 28 19 15 11 7 3
51 26 24 To 16 12 [] ¢
Memory1
mi
52 43 40 21 17 13 9 5
m2
53 46 44 B2 18 14 10 (3
Momory2,
m2
1 43 42 38 36 34 32 30
m3
47 45] 37 B 33 31
Memory3
m3

Figure 9.7: Layout of outputs of the 54 gates in the camera input plane (i.e.
monitor plane). The numbers correspond to those of Fig. 9.5.

206

00000600
00e0e0e0
00000000
00000000
0QeeQe0e
00000000
olol 1 Tol lof)

o] I JoI lol lo;
00000000
o] lol I lof I]
0eeeO000
00000000
ol X 1 1ol lo] J
ceCeeCe0

(b)

00000000
ool 1 I Tof 1 J
00000000
000000060
olol 1 1 Tof 1/
00000000
ool I I Jof 1

(c)

Figure 9.8: The simulation results and the outputs of 54 gates after the execution
of some instructions (I). (2) The state before executing the instructions (all LEDs
are off). (b) CLEAR (reset 3 master-slave flip-flop memories to 0; ouputs of gates
8, 10, 33, 16, 18,and 37 are dark). (c) STORE, COMPLEMENT and DILATION
(store an external input z; = 1 in Memory 1 (outputs of gates 8 and 16 have
value 1), choose its complement (output of gate 25 is 0 and output of gate 27 is
1), and dilate with a reference image corresponding to the 4-connected nearest-

neighborhood (output of gate 49 is 1)).

00000000
ool 1 X 1ol 1
000000060
 Jolojo] Jol L/
olel 1 Jol o]
00000000
olol 1 I 1o I

(a)

00000000
00000000
olo] 1 lol fol
00000000
00000000
00000000
o] ol I 1ol I

(b)

Figure 9.9: The simulation results and the outputs of 54 gates after the execution
of some instructions (II). (a) Store the dilated result in Memory 2 (outputs of
gates 16 and 18 are 1). (b) STORE and UNION (store an external input z2 =0
in Memory 3 (outputs of gates 33 and 37 are 0), and perform the union of three
memories (output of gate 27 is 0 and output of gate 49 is 1)).

208

Chapter 10

Conclusions and Future

Extensions

10.1 Conclusions

Techniques for digital optical cellular image processing are presented in this the-
sis. A binary image algebra (BIA), which serves as its software, provides an
unified theory of parallel binary image processing and a spatial logic of parallel
digital optical computing for developing parallel algorithms/languages. The ap-
plications and relationships with other computing theories demonstrate that BIA
is a powerful systematic tool for formalizing and analyzing parallel algorithms.
Digital optical cellular image processors (DOCIPs), which serve as its hardware,
utilize the parallel communication and 3-D free interconnection capabilities of
optics for avoiding communication bottlenecks and matching BIA parallel algo-
rithms efficiently. BIA parallel algorithms for low level vision and array numeri-

cal computation demonstrate the programming and power for these 1-instruction

209

DOCIP machines. Besides the software simulation, the concept of the DOCIP
architectures is expermentally demonstrated by implementing a prototype optical
computing system with a 54-gate optical processor, an instruction decoder and
electronic input/output interfaces.

In conclusion, BIA is a simple, precise and complete algebraic theory of binary
images and binary optical computing; the DOCIP machines are highly parallel,

have simple organization, low cell complexity and potentially fast processing abil-

ity.

10.2 Future Extensions

Several promising research directions have become apparent during the course of

this work. Following is a list of future research topics:

o The study of the possible extensions of binary image algebra (BIA) for
providing the algebraic foundation to solve general image processing and

computer vision problems.

o The analysis of the performance of BIA parallel algorithms (e.g. pattern
recognition algorithms) on real data and comparing to other methods (e.g.
perceptron, neural networks and conventional pattern classification systems

for pattern recognition).

e The analysis of different DOCIP cell structures with larger grain sizes for

developing fast sophisticated high level vision algorithms.

210

e The implementation, comparison and mapping techniques of different in-
terconnection networks of processors for fully utilizing the capabilities of

optical parallelism and 3-D global interconnections.

The construction of a large scale DOCIP system (e.g. 512 x 512 cells).

The investigation and implementation of a compact DOCIP system.

¢ The construction of a DOCIP with an optical multiplexing technique for

cell interconnections.

Refining the procedure for making multi-exposure multi-facet dichromated

gelatin holograms.

e The development of fast 2-D optical gate arrays for optical computing sys-

tems.

211

Appendix A

Proof of Two Fundamental

Principles

In this appendix, the proof of Lemma 3.1, Theorem 3.1 and Theorem 3.2 for two

fundamental prociples of BIA is presented.

A.1 Proof of Lemma 3.1

We start with the case of X = R and then the case of X # R.
Case 1: X =R,ie. R=X.

We want to prove

XeoX)u(XeX)ul=ToXoX)u(XeX)nI=1.

1. ClaimIc (X@ X)u(X@X)nI
- (0,0) € (X X)U (X @ X)
- (0,00¢ XoX)u(X @ X)
= [(0,0) ¢ (X @ X)] A [(0,0) ¢ (X © X)) :

212

(a) Claim (0,0) ¢ (X & X):
Assume (0,0) € (X @ X)
— (0,0) € {(a + (~2),0+ (—y)) € W | (a,b) € X,(—2,~y) € X}
—(0,0) € {(a —z,b—y) € W | (a,b) & X, (z,y) € X}
— 3(a — z,b—y) = (0,0) where (a,b) ¢ X,(z,y) € X
— 3I(z,y) = (a,b) where (a,d) ¢ X,(z,y) € X
which is impossible, since (z,y) = (a,b) € X contradicts with (z,y) =
(a,b) € X. Therefore, the assumption is wrong, we have that (0,0) ¢
(X @ X).

(b) Claim (0,0) & (X ® X):
Assume (0,0) € (X ® X)
= (0,0) € {(z + (—a),y + (~b)) € W | (z,9) € X, (~a,~b) € X}
—(0,0) € {(z — a,y — b) € W | (z,9) € X,(—a,-b) & X}
—(0,0) e {(z—a,y—b) € W|(z,y) € X,(a,b) € X}
— I(z — a,y — b) = (0,0) where (a,b) € X, (z,y) € X
— 3(z,y) = (a,b) where (a,d) € X,(z,y) € X
which is impossible, since (z,y) = (a,b) € X contradicts with (z,y) =
(a,b) € X. Therefore, the assumption is wrong, we have that (0,0) ¢

(X & X).

By (a) and (b), we have [(0,0) & (X & X)] A[(0,0) & (X & X)), i.e.

Ic(XaX)u(XeX).

We also know I C I, then we have

IcXeX)uXeX)nl.

213

2. Claim (X @ X)u(Xe@X)uTcI:

Since I C I, it implies

XeX)u(XeX)uT=XeoX)u(XeX)nICI.

From (1) and (2), we have

IcXeoX)u(XeX)nI

and

XeoX)uXeX)uT=FXeX)uXeX)nIcl.

Thus, by the equivalence of sets, we have (X @ X)U(X @ X)nI=1.
Case 2: X # R,i.e. R# X.

We want to prove

XORUX@ORUI=¢o (XORUXSRNI=4¢

1. Claim I ¢ (X® R)U(X ® R)
~(0,0)¢ (X®R)U(XOR)
~(0,00e XOoR)U(XDR)

- (0,00 (X®R)V(0,0) € (X ®R):

Now we assume (0,0) € (X ® R) A (0,0) ¢ (X ® R):

(a) If (0,0) ¢ (X @ R)
—(0,0) & {(a+ k,b+1) | (a,b) € X, (k,1) € R}
— (a+k,b+1)#(0,0), Y(a,b) € X, ¥(k,I) € R
— (a,b) # (=k, =), Y(a,b) € X, V(k,1) € R
—V(k,1) € R, 3(a,b) € X, (a,b) = (—k, 1)

214

— VY(—k,-1) € R, I(a,d) € X, (a,b) = (=k,—1)
—V(i,5) € R, I(a,b) € X, (a,b) = (3,5)
= ((i,4) € B) = ((i,4) € X)
—RcX
(b) If (0,0) ¢ (X ® R), then X C R. Since the dilation operation is com-
mutative, by interchanging the variables X and R and applying the

same procedure as (a), we have X C R.

2. By the above (a) and (b), we have X = R which contradicts with X # R.
Thus, the assumption is wrong, and we get
- (00)€ (X® R)V(0,0) € (X ®R)
oI¢(XORUX®R)
~+(X®RUX®RNI=¢
o+ (XoRU(X®R)UT=4¢.

Hence, by case 1. and case 2., we have shown that

I ifX=R

XoRUX @R UI=
¢ otherwise.

215

A.2 Proof of Theorem 3.1

Consider any image transformation (general case):

,

Xri — A
X, — A

Xl-—bA(

\
where X; € P(W), A; € P(W),i =1,2,..,,1.
If we choose R; = Xi, Q; = Ai,i =1,2,...,1, use Lemma 3.1 and some proper-

ties of the dilation (i.e. /® X = X and ¢ & X = ¢), then we have

r(x)= J(X@ R U (X ST UT 0 Q).

i=1
Since some images X; may map into the null image ¢ for a given image trans-
formation; by Lemma 3.1, we have that
k

TX)=U{XoR)U(XDR)UTDQi}

i=1

where k < I, I = #(P(W)) is the cardinality of P(W).

A.3 Proof of Theorem 3.2

This can be shown in a very straight forward way. Any image is a set of image
points and is the union of point images (consisting one and only one image point).

A point image {(7,5)} can be written as

216

{(,9)} = A'B°.

Hence, the union of all point images which are contained in X is the image X.

For example, an image X = {(2,0),(1,-1),(—1,2)} is denoted by

X =AUAB1U A1B2,

217

Appendix B

Properties of BIA Image

Operations

B.1 Properties of Complement and Difference

The complement ~, a unary operation, is decreasing and shift variant (considering
the outside of an image). The difference X/R, a binary operation, is increasing
(but decreasing with respect to the reference image R), antiextensive with re-
spect to X, and shift variant (the reference image R is fixed once it is given).
Note that the difference operation is not commutative, not associative, and not
distributive over other operations. Furthermore, the difference operation is more
complicated than the complement. Hence, it is preferable to employ the comple-
ment as a fundamental operation, but not the difference. The major properties

of the complement and the difference are listed in the following:
1. X =W/X

2. XIR=XNnR

218

=W

o

g

=¢

. X = X (idempotent for twice complements)

. X/¢ = X (idempotent for a given reference image R = ¢)
X[X=¢

. X CY &Y C X (decreasing)

. X CY « X/R C Y/R (increasing)

. X/R C X (antiextensive)

. XCRo X/R=¢

. XNR=XUR
. XUR=XnNnR
XnX=¢
XuX=Ww

S
®
&
I

X © R where R = {(-z,-y) | (z,v) € R}

>
&
=
Il

X © R where R = {(—z,-y) | (z,y) € R}

219

B.2 Properties of Union and Intersection

The union U, a binary operation, is increasing, extensive, shift variant, idempo-
tent, commutative, associative, and distributive over intersection. The intersec-
tion N, a binary operation, is increasing, antiextensive, shift variant, idempotent,
commutative, associative, and distibutive over union. The major properties of

the union and the intersection are listed in the following:

1. XUp=X
Xné=4¢
2. XUX=X
XnX=X

3. XUR = RUX (commutative)

X NR=RNX (commutative)

4. XU(RU Q)= (XUR)UQ (associative)
XN(RNQ)=(XnNR)nN Q (associative)

5. XuW=W

X NW = X (idempotent for a given reference image R = W)
6. XU(RNQ)=(XUR)N(XUQ) (distributive)

XN(RUQ)=(XNR)U(XnNQ) (distributive)

7. X C X U R (extensive)

X N R C X (antiextensive)

8. X CY « XURC Y UR (increasing)
X CY & XN RCYnNR (increasing)

220

9. XCR~oXUR=R
XCReXNR=X

10. RCXAQCX - RUQCX
XCRAXCQ—-XCRUQ

1. RCXAQCY—-RUQC XUY
RCXAQCY—-RN@QcCcXnY

B.3 Properties of Dilation and Erosion

The dilation @, a binary operation, is increasing, extensive for a given reference
image R which contains the elementary image I, shift invariant, commutative,
associative, distributive over union, and possesses an identity which is 7. The
erosion 6, a binary operation, is shift invariant, increasing (but decreasing with
respect to the refernce image R), antiextensive for a given reference image R which
contains the elementary image I. But, in general, the erosion is not commutative,
not associative, not distibutive over other operations, and does not possesses a
left identity. The major properties of the union and the intersection are listed in

the following:

1. X ® R = R® X (commutative)
X O R # RO X (in general)

2. (X®R) ®Q =X @ (R Q) (associative)
(XoR)oQ # X ©(Ro Q) (in general)
(X6R)©0Q=(X6Q)OR

221

3. X0 (RUQ) = (X® R)U (X ® Q) (distributive)
Xe(RuQ)=(XoR)n(X0Q)
Xo(ReQ)=(X6R)OQ

4. X@I =X =1 X (identity)
Xo6I=X4#16X (in general)

5. X@d=9¢=9¢0X
XO6¢=W # ¢6 X (in general)

6. X C X @ R when I C R (extensive)
X © R C X when I C R (antiextensive)

7. XCY e X®RCY & R (increasing)
X CY o« X6 RCY O R (increasing)

8. RCQeXORCXDQ
RCQeoX60QCXOR

9. X ® (RN Q) C (X ® R) N (X @ Q) (distributive inequality)
Xe(RnQ)D>(XeRu(XeQ)
(XUY)eRDO(XOR)N(YSR)
(XeoR)pQC(X®R)BQ

Remark: “O” means “contains”.

B.4 Properties of Some Standard Operations

1. The symmetric difference is shift variant (with a fixed reference image R),

commutative and associative. Symbolically,

222

(a) XAR=RAX

(b) XA(RAQ)=(XAR)AQ

) XA¢=X
d XAX=¢
€ XAX =W
) XAW=X

(8) XN(RAQ)=(XNR)A(XNQ)
(h) XU(RAQ)#(XUR)A(XUQ) (in general)
i) XAR=YAR-X=Y
2. The opening o is shift invariant, increasing, anti-extensive and idempotent.
The closing e is shift invarinat, extensive, and idempotent. Symbolically,
(a) XoRCXCXeR
(b)) XCY—-2XoRCYOR
(c) XCY—=XeRCYeR
(d) (XoR)oR=XoR
(e) (XeR)eR=XeR
3. The thinning is shift invariant and antiextensive. The thickening is shift
invariant and extensive. The major properties are in the following:
(a) XQRCXCXQOR
(b) XCY-XO@RCYQ©R
(¢) XCY-XORCYQOR

223

(d) If R C Q (which means R; C @, and R; C Q2), then we have:
RCQ-X@RCXE@RCXCXPOQRCXOR

(¢) XOR=X ©@R* where R=(Ry,R;) and R* = (R, Ry).

224

Appendix C

Proof of Theorems for Low Level

Vision

C.1 Proof of Theorem 4.2

We can easily see that (2) in Theorem 4.2 is a generalization of (1) in Theorem 4.2.
(1) is used for exactly matching shapes (or templates) with shift invariance; (2)
is generalized to more general cases. For example, to consider noise and to have
rotational invariance, we can choose the family {R(6)} to incorporate all aspect
reference image pairs. In the following, we prove (1) and then (2) will follow from
it directly. The proof will demonstrate the mathematical correspondance between
boolean logic and BIA. The notations z(z,) and (¢, j) will be used to represent
the binary values (0 or 1) of pixels at coordinate (i,j) of image functions which
correspond to the images X and R in BIA notations.

First, let us use the boolean logic XOR (excusive or) operation, i.e.
(1,7) XOR r(3,5) = (2(:,5) A r(3,3)) V (2(5,5) AT(3, 5)),

225

to achieve the pixel-wise comparison where the ouput value with ‘0’ means that
‘z(7,7)’ matches ‘r(z,7)’ and the output value with ‘1’ means that ‘z(z,5)’ does
not match ‘r(z,7)".

Second, to check the occurence of the shape (defined by R with M) in the
tested image X at coordinate (i, j), we have to shift the origin of the shape to the
coordinate (z,7) in X. Then the process of the comparison of the shape and the
subimage in X (limited in the mask M) and the indication of “match” (0) and
“not match” (1) will be performed by

V @GE+kj+DArk D)V \ (zGi+k,5+1)AT(EID)).
(khyeM (k)eM
If the above equation is considered as a binary operation operating on two images
z(¢,j) and r(7, 5), then this operation is not commutative; in order to achieve the
commutativity, we change (k,!) with (—k, —1) and denote #(k,!) = r(—k,—!):
V (:'z:'(z —kj=-OAFKDYV (:c(z —k,7 =) ATF(kD).
(~k,~1)eM (~k,—l)eM

If the output value of the above equation is ‘0’, then it means that the location
(2,7) of the image X has the occurrence of the shape (defined by R and M); if
‘1, the shape is not occurred at (z,).

Third, let us run over all coordinates (7, j) (i.e. for all (z,7) € W the universal
image) and then the union of those coordinates with value ‘0’ would be the answer.
The value ‘0’ at a coordinate (2,) corresponds to the null image in set notation
and the value ‘1’ at a coordinate (z,7) corresponds to the point image {(z,7)}.
For convenience, in the following we mix the notations of boolean logic functions
and set notations; if the output of a boolean logic expression is ‘0, it represents

the null image ¢; if ‘1’, it represents the point image {(z,7)}. Thus, we have
g 8

226

UV @E-ki-DafkD)v V (@i-ki-)A7kD)

(i.5)EW (—k,~l)eM (-k,~l)eM

which is the same as

UV @G-ki-Dadtk,D)U U (V (sli—k,i-1)AFED)).

(i.5)EW (—k,~l)eM (1.5)EW (—k,~)eM

Since (%, j) # 0 only when (3,j) € X and #(k,!) # 0 only when (k,1) € R, we

have

U Vick-nem (T ~ k,5 = 1) A#(K, 1))
(t,.7)eW
= {(z$.7)| (i—k,j—l)E-X,(k,l)ER}
= {i+ki+1D|G5) eX, (k1) e R}
= XoR

Similarly, we have

(i.5)eW (—k,~l)eM

Hence, if we use ‘0’ to indicate “match”, we have
Xe®RU(Xa®(M/R));

if we use ‘1’ to indicate “match”,then we have

(X® R)U (X ® (M/R)).

Thus, the locations of a shape, which is defined by a non-null reference image
R with a non-null reference image (called mask) M and R C M C W, are the

image points in the following

(XoRUX®M/R) = XoRUV(XOMUR)

= (X® R n(X o6 (M/R).

227

A more intuitive illustration is that the foreground X should match Rby X6 R
(using multiple-input AND gates to examine the locations where the 1’s should
be), while the background X should match M/R by X ©(M/R). Combining both
results by the intersection (AND), we then implement the shape recognition by
(X © R)n(X ©(M/R)). Replacing R by R, and (M/R) by R;, we obtain the hit

or miss transform (template matching) for shape recognition.

C.2 Proof of Theorem 4.3

(1) The straight forward way for removing the “pepper” noise is the thinning

operation X @Ry (or X © Rs). Follow this, we have

X@R = XUX®I)U(X o M,)

= XUXU(Xe M)

= Xu(XnXe M)

= XUX)N(XUX 0 M)

Wn(.X—UX @M4)

il

= 7UX®M4.

(2) The straight forward way for removing the “pepper” noise is the thickening

operation X © Q4 (or X ® @Qs). Follow this, we have

X0Q = Xu(XeM)u(Xel)

XuXeoM)ux

XuXeMnX)

= (XUX®M)N(XUX)

228

= (XuXeM)NW

= (XuXeo M)

(3)The straight forward way for removing the “salt and pepper” noise is the
difference of X © Q4 by X ® R, (or the difference of X ® Qs by X ® Rg). By a

similar procedure as above we can achieve the desired result.

C.3 Proof of Theorem 4.4

To extract the region whose sizes are between two reference images R and @Q, the

straight forward way is to design a morphological band pass filter:

(XoR)/(XoQ)=((XOR)®R)/(XOQ)®Q).

To obtain the locations of those desired regions, we then perform the skelotoniza-

tion:

S((XoR)oR)/(X0Q)®Q) = S(XOR)/(X0Q)®Q)))
S(XeR)U(XaQaQ)).

229

References

[Abraham86] G. Abraham, “Multiple-valued Logic for Optoelectronics,” Optical
Engineering, Vol. 25, No. 1, p.3, 1986.

[Agui82] T. Agui, et al., “An Algebraic Approach to the Generation and De-
scription of Binary Pictures”, IEEE Transaction on Pattern Analysis and
Machine Intelligence, Vol. PAMI-4, No. 6, pp. 635-641, 1982.

[Aho74] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[Arrathoon86] R. Arrathoon and S. Kozaitis, “ Shadow Casting for Multiple-
valued Associative Logic,” Optical Engineering, Vol. 25, No. 1, p. 29, 1986.

[Bellgs] T. E. Bell, “Optical Computing: A Field in Flux,” IEEE Spectrum, Vol.
23, No. 8, pp. 34-57, 1986.

[Berlekamp82] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for
Your Mathematical Plays, Vol. 2, Chap. 25, Academic Press, New York,
1982.

[Bartelt82] H. Bartelt and S. K. Case, “High-efficiency Hybrid Computer-
generated Hologram,” Applied Optics, Vol. 21, No. 16, pp. 2886-2890, 1982.

[Birkhoft65] G. Birkhoff and S. MacLane, A Brief Survey of Mordern Algebra,
Macmillan, New York, 1965.

[Birkhoff70] G. Birkhoff and T. C. Bartee, Mordern Applied Algebra, McGraw-
Hill, New York, 1970.

[Brandes69] R. G. Brandes, E. E. Francois, T. A. Shankoff, “Preparation of
Dichromated Gelatin Films for Holography”, Applied Optics, Vol. 8, No.
11, pp. 2346-2348, 1969.

(Brenner85] K. Brenner and A. Huang, “An Optical Processor Based on Sym-
bolic Substitution”, Conference Proceeding of the Topical Meeting on Op-
tical Computing, Optical Society of America, March 18, pp. WA4.1-WA4.3,
1985.

230

[Brenner86a] K.-H. Brenner, A. Huang, and N. Streibl, “Digital optical computing
with symbolic substitution,” Applied Optics, Vol. 25, pp. 3054-3060, 1986.

[Brenner86b] K.-H. Brenner, “New Implementation of Symbolic Substitution,”
Applied Optics, Vol. 25, pp. 3061-3064, 1986.

(Brenner87] K.-H. Brenner and G. Stucke “Programmable Optical Processor
Based on Symbolic Substitution,” Topical Meeting on Optical Comput-
ting, Technical Digest Series 1987, Vol. 11, Optical Society of America,
Washington, D.C., pp. 6-8, 1987.

[Burks70] A. Burks ed., Essays on Cellular Automata, Univ. of Illinois Press,
1970.

[CAPAIDMS85a] “Morphological Systems Software,” A Session in Computer Ar-
chitecture for Pattern Analysis and Image Database Management, 1985
IEEE Computer Society Workshop, pp. 429-468.

[CAPAIDMS85b] “Morphological Systems Hardware,” A Session in Computer Ar-
chitecture for Pattern Analysis and Image Database Management, 1985
IEEE Computer Society Workshop, pp. 469-500.

[Capps87] C. D. Capps, R. A. Falk and T. L. Houk “Optical Arithmetic/Logic
Unit Based on Residue Number Theory and Symbolic Substitution”, Top-
ical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11,
Optical Society of America, Washington, D.C., pp. 62-65, 1987.

[Caulfield79] H. J. Caulfield, Handbook of Optical Holography, Academic Press,
New York, 1979.

[Caulfield86] H. J. Caulfield, “Systolic Optical Cellular Array Processors,” Optical
Engineering, Vol. 25, No. 7, pp. 825-827, 1986.

(Chang71] M. Chang, “Dichromated Gelatin of Improved Optical Quality”, Ap-
plied Optics, Vol. 10, No. 11, pp. 2550-2551, 1971.

[Chang76]) B. J. Chang, “Post-Processing of Developed Dichromated Gelatin
Holograms”, Optical Communication, Vol. 17, p. 270, 1976.

[Chang79] B. J. Chang and C. D. Leonard, “Dichromated Gelatin for the Fabri-
cation of Holographic Optical Elements”, Applied Optics, Vol. 18, No. 14,
pp. 2407-2417, 1979,

[Chang80] B. J. Chang, “Dichromated Gelatin Holograms and Their Applica-
tions”, Optical Engineering, Vol. 19, No. 5, pp. 642-648, 1980.

231

[Chavel83] P. Chavel, et al, “Architectures for A Sequential Optical Logic Pro-
cessor,” Proc. 10th Interconnectional Optical Computing Conference, pp.
6-12, 1983.

[ChellappaB85a] R. Chellappa and A. A. Sawchuk ed., Digital Image Processing
and Analysis: Volume 1: Digtial Image Processing, IEEE Computer Soci-
ety Press, 1985.

[Chellappa85b] R. Chellappa and A. A. Sawchuk ed., Digital Image Processing
and Analysis: Volume 2: Digtiel Image Analysis, IEEE Computer Society
Press, 1985,

[Clare73] C. R. Clare, Designing Logic Systems Using State Machines, McGraw-
Hill, New York, 1973.

[Cloonan87] T. J. Cloonan, “Strengths and Weaknesses of Optical Architectures
Based on Symbolic Substitution,” Topical Meeting on Optical Computing,
Technical Digest Series 1987, Vol. 11, Optical Society of America, Wash-
ington, D.C., pp. 12-15, 1987.

[Collier71] R. J. Collier, C. B. Buckhardt, and L. H. Lin, Optical Holography,
Academic Press, New York, 1971.

[Curran70] R. K. Curran and T. A. Shankoff, “The Mechanism of Hologram For-
mation in Dichromated Gelatin”, Applied Optics, Vol. 9, No. 7, pp. 1651-
1657, 1970.

[Demongeot85] J. Demongeot, E. Goles, and M. Tchuente ed., Dynamical Systems
and Cellular Automa, Academic Press, New York, 1985.

[Deutsch72] E. S. Deutsch, “Thinning algorithms on rectangular, hexagonal, and
triangular arrays,” Commun. Ass. Comput. Mach., Vol. 15, pp.827-837,
1972.

[Duda73] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis,
John Wiley & Sons, 1973.

[Duff73] M. J. B. Duff et al., “A cellular logic array for image processing,” Patt.
Recog., Vol. 5, pp. 229-234, 1973.

[Duff81] M. J. B. Duff and S. Levialdi, Languages and Architectures for Image
Processing, Academic Press, 1981.

[Farmer84] D. Farmer, T. Toffoli, and S. Wolfram ed., “Special Issue on Cellular
Automata”, Physica D Nonlinear Phenomena, Vol. 10D, 1984, pp. 273-383.

232

[Fork82] R.L. Fork, “Physics of Optical Switching”, Phys. Rev. A, Vol. 26, p.
2049, 1982.

[Gardner70] M. Gardner, “Mathematical Games”, Scientific American, Vol. 223,
No. 4, pp. 120-123, 1970.

[Gardner71] M. Gardner, “Mathematical Games”, Scientific American, Vol. 224,
No. 2, pp. 112-117, 1971.

(Gardner83] M. Gardner, Wheels, Life, and Other Mathematical Amusements,
Freeman, San Francisco, 1983.

[Giardina84]) C. R. Giardina, “The Universal Imaging Algebra”, Pattern Recog-
nition Letters, Vol. 2, pp. 165-172, 1984.

[Gibbs80] H.M. Gibbs, S.L. McCall, and T.N.C. Venkatesan, “Optical Bistable
Devices: The Basic Components of All-Optical Systems?”, Optical Engi-
neering, Vol. 19, p. 463, 1980.

[Gibbs85] H.M. Gibbs, Optical Bistability: Controlling Light with Light, Aca-
demic Press, Inc., New York, 1985.

[Gibbs87] H.M. Gibbs, “Two-Dimensional Arrays of Semiconductor Optical Gates
for Optical Computing”, Topical Meeting on Optical Computing, Technical
Digest Series 1987, Vol. 11, Optical Society of America, Washington, D.C.,
pp. 168-171, March, 1987.

[Gilbert76] G. Gilbert, Mordern Algebra with Applications, John Wiley & Sons,
New York, 1976.

[Golay69] J. E. Golay, “Hexagonal parallel pattern transformation”, IEEE Trans.
Comput., Vol. C-18, pp.733-740, 1969.

[Goodman68] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill,
1968.

[Gray71] S. B. Gray, “Local properties of binary images in two dimensions”, IEEE
Trans. Comput., Vol C-20, pp. 551-561, 1971.

[Haralick87) R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis
Using Mathematical Morphology,” IEEE Transaction on Pattern Analysis
and Machine Intelligence, Vol. PAMI-9, No. 4, pp. 532-550, 1987.

[Hartmanis70] J. Hartmanis and R. E. Stearms, Algebraic Structure Theory of
Sequential Machines, Prentice-Hall, Englewood Cliffs, N. J., 1970.

233

[Hayes78] J. P. Hayes, Computer Architecture and Organization, McGraw-Hill,
Inc., New York, 1978.

(Hopcroft79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, Reading, Mass., 1979.

[Horrigan79] F. A. Horrigan and W. W. Stoner, “Reside-Based Optical Proses-
sor,” Proc. SPIE, 185, 19, 1979.

[Huang79] A. Huang, et al, “Optical Computation Using Residue Arithmetic,”
Applied Optics, 18, p. 149, 1979.

[Huang83] A. Huang, “Parallel Algorithms for Optical Digital Computers,” in
Technical Digest, IEEE Tenth International Optical Computing Confer-
ence, pp. 13-17, 1983.

[Huang87a] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary Image Algebra
and Digital Optical Cellular Image Processors”, Topical Meeting on Op-
tical Computing, Technical Digest Series 1987, Vol. 11, Optical Society of
America, Washington, D.C., pp. 20-23, March, 1987.

[Huang87b] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A Cellular Hypercube
Architecture for Image Processing”, Applications of Digital Image Process-
ing X, Proc. Soc. Photo-Opt. Instr. Eng., Vol. 829, pp. 331-338, August,
1987.

[Huang87¢] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Optical Cellular Logic
Architectures Based on Binary Image Algebra ”, Proc. IEEE Computer
Society Workshop on Computer Architecture for Pattern Analysis and Ma-
chine Intelligence, pp. 19-26, October, 1987.

[Huang87d] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary Image Alge-
bra Representations of Optical Cellular Logic and Symbolic Substitution”,
Annual Meeting, Paper ThA4, Optical Society of America, Rochester, Oc-
tober, 1987; Journal of the Optical Society of America A, Vol. 4, No. 13,
p. 87, December, 1987.

[Huang87e] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Programming A Digital
Optical Cellular Image Processor”, Annual Meeting, Paper ThA6, Opti-
cal Society of America, Rochester, October, 1987; Journal of the Optical
Society of America A, Vol. 4, No. 13, pp. 87-88, December, 1987.

(Huang88a] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary Image Alge-
bra and Digital Optical Cellular Image Processor Design”, accepted for
publication in Computer Vision, Graphics, and I'mage processing.

234

[Huang88b] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “An Image Algebra Rep-
resentation of Parallel Optical Binary Arithmetic”, submitted to Applied
Optics.

[Huang88c] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Optical Symbolic Sub-
stitution and Pattern Recognition Algorithms Based on Binary Image Al-
gebra”, ICO Topical Meeting On Optical Computing, Toulon, France, Au-
gust 29 - September 2, 1988; to be published in Proc. Soc. Photo-Opt.
Instr. Eng., Vol. 829, 1988.

[Huang88d] K. S. Huang, et al, “Implementation of A Prototype Digital Opti-
cal Cellular Image Processor (DOCIP)”, ICO Topical Meeting On Optical
Computing, Toulon, France, August 29 - September 2, 1988; to be pub-
lished in Proc. Soc. Photo-Opt. Instr. Eng., Vol. 829, 1988.

[Huang88e] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Image Processing Ap-
plications of Binary Image Algebra”, to be presented at Annual Meeting,
Optical Society of America, Santa Clara, California, October 30 - Novem-
ber 4, 1988; to be published in Journal of the Optical Society of America
A, 1988.

[Huang88f] K.S. Huang, et al, “A Computer-Controlled Optical System for Fabri-
cating Multi-Facet Interconnection Holograms”, to be presented at Annual
Meeting, Optical Society of America, Santa Clara, California, October 30
- November 4, 1988; to be published in Journal of the Optical Society of
America A, 1988.

(Huang88g] K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A Digital Optical Cel-
lular Image Processor (DOCIP): I. Theory and Architecture”, to be sub-
mitted to Applied Optics.

[Huang88h| K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “A Digital Optical Cel-
lular Image Processor (DOCIP): II. Control and Programming”, to be
submitted to Applied Optics.

[Huang88i] K. S. Huang, et al, “A Digital Optical Cellular Image Processor (DO-
CIP): I1I. Experiment”, to be submitted to Applied Optics.

[Hurst86] S. L. Hurst, “Multiple-valued Threshold Logic: Its Status and Its Re-
alization,” Optical Engineering, Vol. 25, No. 1, p. 44, 1986.

[Hwang84] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Pro-
cessing, McGraw-Hill, New York, 1984.

235

[Jenkins83] B. K. Jenkins, A. A. Sawchuk and T. C. Strand, “Spatial Light Modu-
lator Requirements for Sequential Optical Logic,” Annual Meeting, Optical
Society of America, New Orleans, October, 1983; Journal of the Optical
Society of America, Vol. 73, p. 1950A, 1983.

[Jenkins84a] B. K. Jenkins, et al., “Sequential Optical Logic Implementation,”
Applied Optics, Vol. 23, No. 19, pp. 3455-3464, 1984.

[Jenkins84b] B. K. Jenkins, et al., “Architectural Implications of A Digital Optical
Processor,” Applied Optics, Vol. 23, No. 19, pp. 3465-3474, 1984,

[Jenkins84c] B. K. Jenkins, Optical Logic Systems: Implementation and Archi-
tectural Implications, Ph.D. Thesis, University of Southern California, Los
Angeles, 1984.

[Jenkins85] B. K. Jenkins and A. A. Sawchuk, “Optical Cellular Logic Architec-
tures for Image Processing,” IEEE Computer Society Workshop on Com-
puter Architecture for Pattern Analysis and Image Database Management,
Florida, , pp. 61-65, Nov. 1985.

[Jenkins86] B. K. Jenkins and A. A. Sawchuk, “Binary Optical Computing Ar-
chitecture,” Optics News, Vol. 12, No. 4, p. 25, 1986.

[Jeon87] Ho-In Jeon, “Digital Optical Processor Based on Symbolic Substitution
Using Matched Filtering”, Topical Meeting on Optical Computing, Tech-
nical Digest Series 1987, Vol. 11, Optical Society of America, Washington,
D.C., pp. 115-118, 1987.

[Jewell84a] J.L. Jewell, M.C. Rushford, and H.M. Gibbs, “Use of a Single Non-
linear Fabry-Perot Etalon as Optical Logic Gates”, Appl. Phys. Lett., Vol.
44, p. 172, 1984.

[Jewell84b] J.L. Jewell, M.C. Rushford, H.M. Gibbs, and N. Peyghambarian,
“Single-Etalon Optical Logic Gates”, in Technical Digest Conference on
Lasers and Electrooptics, Optical Society of Amera, Washington, D.C.,
paper THg2, 1984.

[Jewell85] J. L. Jewell, et al, 3-PJ, 82-MHz Optical Logic Gates in A Room-
temperature GaAs-AlGaAs Multiple-quantum-well Etalon, Appl. Phys.
Lett., Vol. 46, pp. 918-920, 1986.

[Jewell86] J. L. Jewell, et al, Parallel Operation and Crosstalk Measurements in
GaAs Etalon Optical Logic, Appl. Phys. Lett., Vol. 48, pp. 1342-1344, 1986.

[Jewell87] J. L. Jewell, et al, GaAs-AlAs Monolithic Microresonator Arrays, Appl.
Phys. Lett., Vol. 51, pp. 94-96, 1987.

236

(Johnson85] K. M. Johnson, et al, “Multiple Multiple-exposure Hologram”, Ap-
plied Optics, Vol. 24, No. 24, pp. 4467-4472, 1985.

[Katevenis85] M. G. H. Katevenis, Reduced Instruction Set Computer Architec-
tures for VLSI, The MIT Press, Cambridge, Massachusetts, 1985.

[Klein72] J. Klein and J. Serra, “The texture analyzer,” J. Microscopy, Vol. 95,
No. 2, 1972, pp.349-356.

[Kogelnik69] H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,”
Bell Syst. Tech. J., Vol. 48, No. 9, pp. 2909-2947, 1969.

[Lee86a] Y. H. Lee, et al, Streak-camera Observation of 200-ps recovery of an
optical gate in ¢ windowless GaAs Etalon Array, Appl. Phys. Lett., Vol.
48, pp. 754-756, 1986.

[Lee86b) Y. H. Lee, et al, Speed and Effectiveness of Windowless GaAs Etalons
as Optical Logic Gates, Appl. Phys. Lett., Vol. 49, pp. 486-488, 1986.

[Levialdi72] S. Levialdi, “On shrinking of binary patterns,” Commun. ACM, Vol.
15, pp. 7-10, 1972.

[Lin69) L. H. Lin, “Hologram Formation in Hardened Dichromated Gelatin
Films,” Applied Optics, Vol. 8, No. 5, pp. 963-966, 1969.

[Lougheed80] R. M. Lougheed, D. L. McCubbrey, and S. R. Sternberg, “ Cy-
tocomputers: Architectures for Parallel Image Processing,” Proc. IEEE
Workshop Picture Data Description and Management, CA, pp. 281-286,
1980.

(Mait87] J. N. Mait and K.-H. Brenner, “Optical Systems for Symbolic Substi-
tution,” Topical Meeting on Optical Computing, Technical Digest Series
1987, Vol. 11, Optical Society of America, Washington, D.C., pp. 12-15,
1987.

[Mandeville83] J. Mandeville, “Novel Method for Automated Optical Inspection
of Printed Circuits,” IBM Research Report RC-9900, IBM T. J. Waston
Research Center, Yorktown Heights, N. Y., 1983.

[Matheron75] G. Matheron, Random Sets and Integral Geometry, Wiley, New
York, 1975.

[McCormick65] B. H. McCormick, “The Illinois pattern recognition computer”,
Trans. Electron. Comput., Vol. EC-12, pp. 434-443, 1965.

[Meyerhofer72] D. Meyerhofer, “Phase Holograms in Dichromated Gelatin,” RCA
Review, Vol. 33, pp. 110-130, 1972.

237

[Michaelson79] J. D. Michaelson, Characterization of Liquid Crystal Light Valves
and Their Applications to Real-Time Nonlinear Optical Processing, Ph.D.
Thesis, University of Southern California, Los Angeles, 1979.

[Miller82] D. A. B. Miller, “Bistable Optical Devices: Physics and Operating
Charactristics”, Laser Focus, Vol. 18, No. 4, p. 79, 1982.

[Miller85] D. A. B. Miller, et al, The Quantum Well Self-Electrooptic Effect De-
vice: Optoelectronic Bistability and Oscillation, and Self-Linearized Mod-
ulation, IEEEE Journal of Quantum Electronics, Vol. QE-21, No. 9, pp.
1462-1476, 1985.

[Miller86]) D. A. B. Miller, et al, Integrated Quantum Well Self-electro-optic Effect
Device: 2 x 2 Array of Optically Bistable Switches, Appl. Phys. Lett., Vol.
49, pp. 821-823, 1986.

[Minkowski03] H. Minkowski, “Volumen and Oberflaeche,” Math. Ann., Vol. 57,
pp. 447-495, 1903.

[Minsky67] M. L. Minsky, Computation: Finite and Infinte Machines, Prentice-
Hall, Engelwood Cliffs, N. J., 1967.

[Neumann51] J. von Neumann, “The General Logical Theory of Automata,” in
Cerebral Mechanisms in Behavior-The Hizon Symposium , L. A. Jeffress,

Ed. New York: Wiley, 1951.

[Neumann66] J. von Neumann, Theory of Self-reproducing Automata, edited by
A. W. Burks, Univ. of Illinois Press, 1966.

[Oppenheim75] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,
Prentice-Hall, 1975.

[Packard85] N. H. Packard and S. Wolfram, “Two-Dimensional Cellular Au-
tomata,” Journal of Statistical Physics, Vol. 38, Nos. 5/6, pp. 901-946,
1985.

[Poundstone85] W. Poundstone, The Recursive Universe, William Morrow and
Company, New York, 1985.

[Poel56] W. L. Van der Poel, “The Essential Types of Operations in an Automatic
Computer,” Nachrichtentechnishe Fachberichte, Vol. 4, pp. 144-145, 1956.

[Pratt78] W. K. Pratt, Digital Image Processing, John Wiley & Sons, 1978.

[Preston79] K. Preston Jr. et al., “Basics of Cellular Logic with Some Applica-
tion’s in Medical Image Processing,” Proc. of IEEE, Vol. 67, No. 5, 1979,
pp. 826-856.

238

[Preston83] K. Preston Jr., “Cellular Logic Computers for Pattern Recognition,”
IEEE Computer, Jan. 1983, pp.36-47.

[Preston84] K. Preston and M. J. B. Duff, Modern Cellular Automata — Theory
and Applications, Plenum Press, New York, 1984.

[ProcIEEE84] Proc. IEEE, Special Issue on Optical Computing, Vol. 72, No. 7,
1984.

[Psaltis79] D. Psaltis and D. Casasent, “Optical Residue Arithmetic: A Correla-
tion Approach,” Applied Optics, 18, p. 163, 1979.

[Psaltis86] D. Psaltis and R. A. Athale, “High Accuracy Computation with Linear
Analog Optical Systems: A Critical Study”, Applied Optics, Vol. 25, No.
18, pp. 3071-3077, 1986.

(Ramamoorthy87] P. A. Ramamoorthy and S. Antony “Optical MSD Adder Us-
ing Polarization Coded Symbolic Substitution”, Topical Meeting on Opti-
cal Computing, Technical Digest Series 1987, Vol. 11, Optical Society of
America, Washington, D.C., pp. 111-114, 1987.

[Ritter87] G. X. Ritter and P. D. Gader, “Image Algebra Techniques for Parallel
Image Processing”,Journal of Parallel and Distributed Computing, Vol. 4,
No. 1, pp. 7-44, 19817.

[Rosenfeld70] A. Rosenfeld, “Connectivity in Digital Pictures,” J. Assoc. Comput.
Mach., Vol. 17, pp. 146-160, 1970.

[Rosenfeld82] A. Rosenfeld, A. C. Kak, Digital Picture Processing, Academic
Press, 1982.

[Rosenfeld83] A. Rosenfeld, “Parallel Image Processing Using Cellular Arrays,”
IEEE Computer, Jan. 1983, pp. 14-20.

[Sawchuk84] A. A. Sawchuk and T. C. Strand, “Digital Optical Computing,”
Proc. IEEE, Vol. 72, pp. 758-779,1984.

[Sawchuk85] A. A. Sawchuk and B. K. Jenkins, “Optical Cellular Logic Proces-
sors,” Annual Meeting, Optical Society of America, Washington, D.C.,
October, 1985; Journal of the Optical Society of America-A, Vol. 2, p.
P22, 1985.

[Serra82] J. Serra, Image Analysis and Mathematical Morphology, Academic
Press, Inc., New York, 1982.

[Shankoff68] T. A. Shankoff, “Phase Holograms in Dichromated Gelatin”, Applied
Optics, Vol. 7, No. 10, pp. 2101-2150, 1968.

239

[Sharfin86a] W. F. Sharfin and M. Dagenais, “Femtojoule Optical Switching in
Nonlinear Semiconductor Laser Amplifier”, Appl. Phys. Lett., Vol. 48, pp.
321-322, 1986.

[Sharfin86b] W. F. Sharfin and M. Dagenais, “High Contrast, 1.3 gm Optical
AND Gate with Gain”, Appl. Phys. Lett., Vol. 48, pp. 1510-1512, 1986.

[Smith69) H. M. Smith, Principles of Holography, Wiley, New York, 1969.

[Smith81]) P. W. Smith and W. J. Tomlinson, “Bistable Optical Devices Promise
Subpicosecond Switching”, IEEE Spectrum, Vol. 18, No. 6, pp. 26-33,
June 1981.

[Smith87] S. D. Smith, et al, “Restoring Optical Logic: Demonstration of Exten-
sible All-Optical Digital Systems”, Optical Engineering, Vol. 26, No. 1,
pp. 45-52, 1987.

[Sternberg82] S. Sternberg, “Biomedical Image Processing,” IEEE Computer,
Jan. 1982, pp. 22-34.

[Sternberg85] S. Sternberg, “An Overview of Image Algebra and Related Archi-
tectures”, in Integrated Technology for Parallel Image Processing, Edited
by S. Levialdi, Academic Press, New York, 1985, pp.79-100.

[Sternberg86] S. R. Sternberg and J. Serra ed., “Special Section on Mathematical
Morphology”, Computer Vision, Graphics, and Image Processing, Vol. 35,
1986, pp. 273-383.

[Stout88] Q. F. Stout, “Supporting Divide-and-Conquer Algorithms for Image
Processing” ,Journal of Parallel and Distributed Computing, Vol. 4, No. 1,
pp. 95-115, 1987.

[Stucki79] P. Stucki, Advances in Digital Image Processing, Plenum Press, 1979.

[Taboury87] J. Taboury, et al, “Cellular Optical Processor Architecture with
Modulable Holographic Interconnections”, Topical Meeting on Optical
Computing, Technical Digest Series 1987, Vol. 11, Optical Society of Amer-
ica, Washington, D.C., pp. 31-34, March, 1987.

[Tai79] A. Tai, et al, “Optical Residue Arithmetic Computer with Programmable
Computation Modules,” Applied Optics, 18, p. 2812 , 1979.

[Tanida85) J. Tanida and Y. Ichioka, “Optical-logic-array Processor Using Shad-
owgrams. II. Optical Parallel Digital Image Processing,” J. Opt. Soc. Am.
A, Vol. 2, No. 8, pp. 1237-1244, 1985.

240

[Ta086] T. T. Tao and D. M. Campell, “Multiple-valued Logic: An implementa-
tion,” Optical Engineering, Vol. 25, No. 1, p.14, 1986.

[Taso87] M. T. Taso, et al, “Symbolic Substitution Using ZnS Interference Fil-
ters”, Optical Engineering, Vo. 26, No. 1, January, pp. 41-44, 1987.

[Ulam62] S. M. Ulam, “On Some Mathematical Problems Connected with Pat-
terns of Growth of Figures”, Proc. Symposia Appl. Math., Amer. Math.
Soc., Vol. 14, pp. 214-224, 1962.

[Ullman84] J. D. Ullman, Computation Aspects of VLSI, Computer Science Press,
1984.

[Unger58] S. H. Unger, “A Computer Oriented Toward Spatial Problems,” Proc.
IRE, Vol.46,1958, pp. 1744-1750.

[Unger59] S. H. Unger, “Pattern Detection and Recognition,” Proc. IRE, Vol. 47,
1959, pp.1737-1752.

[Verbeek84] P. W. Verbeek, “Implementation of Cellular-Logic Operators Using
3*3 Convolution and Table Lookup Hardware,” Computer Vision, Graph-
ics, and Image Processing, Vol. 27, 1984, pp. 115-123.

[West87] L. C. West, “Picosecond Integrated Optical Logic,” Computer, pp. 34-
46, December 1987.

[Wheatley87] P. Wheatley, et al, “Three-terminal Noninverting Optoelectronic
logic device”, Optics Letters, Vol. 12, No. 10, pp. 784-786, 1987.

[Wolfram84] S. Wolfram, “Cellular Automata as Models of Complexity”, Nature,
Vol. 311, No. 4, 1984.

[Wolfram86] S. Wolfram, Theory and Application of Cellular Automata, World
Scientific, Singapore, 1986.

[Yatagai86] T. Yatagai, “Cellular Logic Architectures for Optical Computers,”
Applied Optics, Vol. 25, pp. 1571-1577, 1986.

[Zhuang86) X. Zhuang and R. M. Haralick, “Morhological Structural Element
Decomposition”, Computer Vision, Graphics and Image Processing, Vol.
35, pp. 370-382, 1986.

241

