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Abstract

In this dissertation we propose and investigate new methods of parametric spec-
trum estimation for two-dimensional random fields which are adequately repre-
sented with spatial interaction models. The maximum likelihood (ML) estimator
is considered optimal for strictly Gaussian fields and, because of its invariance
property, yields the ML estimate of the spectrum. However, many observed fields
do not conform to strict distributional assumptions because of inherent contam-
ination (noise) or other isolated imperfections (outliers) resulting from the data
measurement and recording processes.

When the observed signal is Gaussian we show that a noncausal autoregres-
sive signal plus noise model that accounts for possible contamination yields better
spectrum estimates than conventional signal only models. The theoretical proper-
ties of the ML parameter estimates for noncausal autoregressive plus noise model
are stated and proved, and the numerical properties are experimentally evaluated
and compared with the conventional signal only model for direction of arrival
estimation in planar array signal processing.

When the Gaussian assumption is suspect we propose robust techniques for
estimating the parameters of spatial interaction model spectra. First, we ex-
tend the time series generalized M-estimator to two-dimensional nonsymmetric

half-plane and Gaussian-Markov random field models, and then we analyze this

xvii



robust estimator’s performance in a series of parameter and spectrum estimation
experiments.

The generalized M-estimator is essentially a heuristic weighted LS procedure
with no optimality property. Therefore, we formulate an optimal robust problem
and solve it for the nonsymmetric half-plane model. The result is an optimal
robust estimator which performs significantly better than conventional LS and
ML when confronted with data having various contaminations.

The generalized M-estimator will not perform well for noncausal autoregres-
sive models. Additionally, the covariance and conditional probability structure of
noncausal models preclude a solution to the optimal robust problem. Thus, we
work directly from the observed data and propose empirical estimators for the
noncausal autoregressive and Gaussian-Markov random field models. The robust
empirical estimators performance in the contaminated situation is shown through
a series of experiments to be better than the performance of optimal methods

based on a strict Gaussian assumption.

xviii



Chapter 1

Introduction

This dissertation presents research on model based spectrum estimation tech-
niques for imperfectly observed two-dimensional signals. The observations or,
equivalently, data are assumed to be a two-dimensional (2-D) random field [1,
2, 3, 4). Therefore, the general problem addressed is that of determining the
spectral density function of a 2-D random field given a finite set of observa-
tions from that field. If we denote the autocovariance function of a real sta-
tionary (homogeneous) random field X = {z(k,!) | integers k&! € (—o0,0)} by
E {z(k,)z(:,7)} = q.(k — i,1 — ) for all integers k, [, i, and j and where E {-}

denotes expectation, then the Fourier transform pair

go(k,1) = (—2;—)2 [ [ sulnwn) explolenk + wnbldondun (1)

and

Swnw)= 30 3 qulk, Dexpl=g(wnk + i) (1.2)

k=—00 [=—00

describes the relationship between the covariance function ¢.(k,!) and the spectral
density function or spectrum S;(w;,w:), where w; and w, are spatial frequency

variables.



Given exact knowledge of q.(k,!) for all k£ and [ the problem would be to
simply compute the spectrum from (1.2). However, exact knowledge of ¢.(k,1)
implies one of two things, we either have z(k,!) for all £ and I, from which we
can compute ¢z(k, !), or we have an exact 2nd-order description of the probability
distribution F of z(k,1). In all practical cases we have neither. Usually, we have
only a finite set of data Xyy = {z(k,]) |0 < k<M -1and0<I!< N -1}
and at best a functional description of an approximate F.. Consequently, the
spectrum must be “estimated” from the finite observation set Xy .

This problem has additional complications if we truly want the spectrum of
a process or signal which cannot be observed directly. That is, if )} denotes
the signal of interest and we only have a set of observations Xpyny = {z(k,1) =
gy, Dyn(k, 1)) |0 <k < M—-1and 0 <! < N -1}, where g(y,n) denotes a
scalar function of y and 5, then good estimates of S;(w;,w;) may not be sufficient
since S,(wq,ws) can taint S;(w;,w;) and completely obscure S,(wy,w,). The es-
timation methods investigated in this dissertation concentrate on this aspect of

the 2-D spectrum estimation problem.

1.1 Notation and Other Conventions

In this dissertation boldface lowercase letters, r, s, t etc., and subscripted boldface
lowercase letters, e.g., s;, will denote elements of the 2-D M x M square lattice
QM C 22, 2% is the set of all integer pairs k,! such that k¥ and ! are elements of
the closed set [—00,00]. Hence, Uy = {s = (3,7) |0 < ¢,j S M —1}.
Let s = (i,j) and t = (k,!), thens < tifandonly if i < kori =k and j < |,

and s =t if and only if ¢ = k and j = I. Moreover, ¢ < j if and only if s; < s;,

2



and : = j if and only if s; = s;. If r = (4,7) and s = (k,!), then by t =s + r we
mean t = (m,n) wherem =i+ kandn=j+1
We write the summation of a function ¢ : G X ®™ — R", G C R?, over all

lattice points in 25y by

M-1M-1 M?-1
GEQZ g(s) or 20 ;y(z’,j) or ;) g(sk),

which are equivalent.

Column vectors will be be denoted by boldface roman and Greek letters, which
may include subscripts and superscripts, such as x, y, 2z, x;, 8 etc. For example,
let N be a finite set whose elements are r;, 7 = 1,...,p, where r # (0,0) but
otherwise arbitrary. We will often make use of the p-dimensional column vector
Xs = col {z(s +r), r € N} and the (p + 1)-dimensional column vector x? =
col {z(s),xs} with Ny = N U (0,0)}. The transpose of a column vector x is x!,
which is a row vector. An asterisk (*) will denote the complex conjugation.

Matrices will usually be denoted by capital letters such as A, B, Q etc. with
possible subscripts, @, for example. Superscripts on matrices will usually denote
a matrix operation such as inversion, A~'. When the individual elements of a
n X n matrix A are required to be explicitly displayed we will use the notation
A = mat {a(¢,j), 5,5 =1,...,n}.

Calligraphic letters will be used for several purposes: spectral density functions
as in Sy(w) where w = (w;,w:) and —7 < wy,we < 7, probability distribution
functions such as in F(z), and sets of observations or data such as in Xy =
{z(s),s € O}

Additonal notation and deviations from these conventions will be described

where necessary.



1.2 Motivation and Research Objectives

1.2.1 Practical Applications

Spectrum estimation has much application in the sciences and engineering. Here

we highlight three practical problems which require good spectral estimates.

Direction Finding with Planar Arrays.

An important use of spectral density functions is that of determining the wave-
number or direction of arrival of plane waves propagating in space and impinging
on an array of receiving sensors. This important estimation problem is common
to radar, sonar, seismology, radio astronomy, and other similar array processing
applications. Consequently, an extensive part of signal processing research con-
ducted today is directed towards finding improved spectrum estimation methods
or optimizing existing techniques. We describe this problem here for sources of
narrow-band signals and show how the spectrum of the array output signal can

be used to determine the directions of arrival.

Consider Figure 1.1 which shows a M x M array of receiving antennae equally
distributed in a square lattice pattern over a plane region in space. Let s = (¢, j)
denote the 7, jth sensor of the array and d be the distance between any two sensors
in the same row or column. Impinging on the array are L plane waves generated
by narrow band sources with the same carrier frequency f. which are all located
on one side of the array and at distinct angles ¢y, 0, and 4, relative to the array
plane as shown in the figure. Each source is assumed to be at a sufficient distance

from the array that only far field effects are important. Thus, the wave from each

4
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Figure 1.1: Geometry of planar array with a ray of an incident plane wave.

source is essentially planar as it impinges on the array. Figure 1.1 shows a ray of
the kth incident plane wave.

Assuming that the array lies in the ry,r-plane (r3 = 0) of a Cartesian coordi-
nate system with the origin of the array at the coordinate system center, the kth

traveling plane wave [5] can be represented by

g(t,r) = Ax cos[2n(f.t + vir)],

where .
cos( k)
1
Vi = * cos(0x)
cos() |




is the wave number vector, A, the wave length, and A, the amplitude of the kth
incident plane wave.
Ty

3
is a vector from the origin of the coordinate system to a point in space.
Using this notation the vector from the array origin to the ¢,jth sensor is

rg =d- [ j 0]'. The vector product of v; and rg may be expressed as
; d.. .
Virs = :\—[z - cos(@x) + 7 - cos(0;)],
c

and si(rs,t), the noiseless signal produced at the input of the ¢, jth sensor due to

the kth plane wave, is

2rd
Ac

3i(rg,t) = Ag cos {21rfct + [2 - cos(¢r) + 7 - cos(8k)] + ak} ,

where a;. is the phase of the kth plane wave measured at the origin. The signal

at the input of the 7, jth sensor due to all plane waves is

S(s,t) = isl(rs,t).
=1

However, the signal at the output of each sensor differs from S(s,t) because of
noise from the sensor as well as noise from undesirable signals impinging on the
array. This noise, in general, can be represented by a narrow-band signal (5] given
by

n(s,t) = Bs cos(2w fct + Bs),

where Bjg is the amplitude and [, is the phase of the noise at the 7, jth sensor. Bg

is Rayleigh distributed and f; is distributed uniformly over the interval (0,27).

6



Hence, the true i, jth sensor output, denoted by z(s, ), is
z(s,t) = S(s,t) + n(s, ).

We note that z(s,t) is a function of both the sensor location and the time
variable. At any instant in time, say t = ¢y, we have the output of M? sensors,
called a snapshot, which we denote as Xps(t) = {z(s,t0),s € Qp}. If the array
and the signal sources are relatively stationary over a period of time, then several
snapshots can be taken and used for computational purposes. On the other hand,
one would also like to be able to determine the direction cosines for each signal
source from only one snapshot. That is the problem we concentrate on here.
Thus, we take 5 = 0 without loss of generality, and the observed signal at the

output of the ¢, jth sensor is written simply as
z(s) = S(s) + n(s), (1.3)
where the signal S(s) is a sum of L cosinusoidal signals given by
L
S(s) = ) Aicos(pjs + ). (1.4)
=1

@ = col {y1, pu} is the direction cosine vector with

2nd

ou = T-coswz)
2nd
Y = ;r cos(6r),

and {7(s)} is a random Gaussian noise field.
The direction finding problem is to estimate the parameters ¢, { =1,...,L,
in equation (1.4) from a finite set of observations Xy = {z(s),s € Qys}, which is

one snapshot of planar array data. The power spectrum of {S(s)}, the signal of
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interest, consists of L impulses located at spatial frequencies equal to ;. Thus,
the 2-D power spectrum can be used to estimate the direction of arrival of the L
plane waves. The noise spectrum, however, is also included in the spectrum of the
observations. When 7(s) is independent of S(s) the spectrum of the observations
is

So(w) = Ss(w) + Sp(w) (1.5)

for w = (wy,w2), =7 < wy,wy < 7. Consequently, if the signal-to-noise ratio is
low, the interesting details of Ss(w) may be obscured by S,(w).

The direction finding problem is solved by detecting and resolving peaks in
the spectrum which correspond to the direction of arrival of the plane waves im-
pinging on the array. The problem is complicated by the fact that in practical
applications the received signals are corrupted by noise from several sources. This
noise degrades the estimated spectrum, obscuring the fine structure and making it
difficult to determine and localize the spectral peaks corresponding to the signals.
Generally speaking, researchers have concentrated on the one-dimensional (1-D)
problem, i.e., estimation of signal spectra from linear array data [5]. The 2-D or
planar array problem has usually been approached by adapting 1-D techniques
to the 2-D situation [6, 7]. This is especially true for the model based approach
where 2-D parametric modeling and spectrum estimation reported in the litera-
ture have assumed known covariances [8] or used strictly causal (quarter-plane or
nonsymmetric half-plane) 2-D models [9, 10]. Since causality in two dimensions
has little meaning, causal models usually require large model orders for good per-
formance and result in estimated spectra with directional biases and extraneous
spectral structure. To eliminate this phenomena the extended techniques need

to employ some method of combining multiple estimates to eliminate the biases
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and smooth the spectrum [11]. One would suspect that the elimination of the
causality constraint might permit procedures with improved performance. For
example, Sharma and Chellappa showed in [12] that the noncausal autoregressive
(NCAR) model having far fewer parameters provided results comparable to those
obtained in [13] where a causal model was used. It is generally agreed that appli-
cable models with fewer parameters (the concept of parsimony) are preferable in

any model based procedure.

Texture Analysis.

Texture analysis is an important area of study in image processing where the
spectrum is a useful tool [14]. The spectrum of a texture is computed and various
characteristics (or features) are obtained from the spectrum. These features are
used to describe or characterize the texture for the purposes of pattern classifica-
tion and analysis. For a reliable classifier an accurate spectrum is required. Known
classification procedures assume that the texture is observed cleanly or prepro-
cessing of the texture is performed, i.e., the data is filtered before computing the
spectrum followed by feature extraction. Most commonly occurring textures are
conveniently described by Gaussian random field models [15, 16]. However, the
observed process, in this case the recorded texture image, may be contaminated
with imperfections during the recording process. These imperfections can be re-
garded as additive noise. As one example, consider a texture image recorded on
film: the grain of the film emulsion is a noise added to the real texture signal.
In this case the observed data may not be Gaussian even though the texture is
accurately described by the Gaussian model. Consequently, an accurate estimate

of the signal spectra is required using contaminated texture data.



Image Restoration.

Consider the M x M-pixel image model

z(s) = h(s) xy(s) + n(s), s € Ay

where Yy is the real image, Ay is an additive noise independent of y(s), A(s)
is an impulse response function associated with a spatial degradation such as
blurring or motion, and “x” denotes convolution. Given the observation Xs of
the image the restoration problem is to form an estimate of Yy. A common
performance criteria for the restoration is to minimize the mean square error [17],
emse = E{[y(s) — #(s)]?}, where §(s) is the real image pixel estimate. It is
straightforward to derive the minimizing solution to this problem and show that

the minimum variance filter (Wiener filter) resulting from the solution is

H*(w)
Wiw) =
“)= Hor + =2

where H(w) is the Fourier transform of A(s). Exact knowledge of S,(w) and

Sy(w) is required for optimal results.

In practice one only has an estimate of S,(w) and a nominal model for S,(w).
Thus, the best restoration may not be achieved. For example, Kassam and Poor
[18] have shown that a “trivial filter”, which corresponds to all-pass filtering if the
SNR is positive and no-pass filtering if the SNR is negative, will often do better
than the optimal W(w) filter when the true S,(w) and S,(w) deviate from their

estimates.
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1.2.2 Contamination in Observed Data

In the foregoing examples, as in much of signal processing, a Gaussian assumption
is often made regarding the observed data since this assumption usually reduces
the complexity of the problem from both theoretical and empirical standpoints.
The assumption of normality is often based on empirical evidence or justified in
theory by application of a suitable central limit theorem. But in practical em-
pirical situations, the observed signals contain undesirable imperfections or noise
which is inherent to the system under study or which occur because of measure-
ment errors or isolated phenomena. In many situations the corrupting noise itself
can be considered Gaussian with the result that the observations remain Gaus-
sian but with a more complicated structure. However, measurement errors and
isolated errors can cause observed data sets to contain small fractions of unusual
data points, or “outliers”, which are not consistent with a strictly Gaussian as-
sumption. Such data in principle can be modeled as having a distribution which
is nearly Gaussian in the central region but with heavier tails. In other situations
the rounding or grouping caused by finite bit quantization and computation of
signals can also be viewed as a signal measurement error. Then the observed data
is distributed as though it were Gaussian near the mean but having no tails at
all.

A simple model for a contaminated random field is z(s) = y(s) +n(s), s € Qar.
Two commonly occurring situations are 1) the innovative outlier (I0) model where
n(s) = 0 for all 2y but y(s) is a non-Gaussian signal and 2) the additive outlier
model where n(s) # 0 for a small fraction of Qs but y(s) is Gaussian. Other
situations exist, for example, n(s) may replace y(s), substitutive outliers (SO), or

n(s) may be correlated with y(s).
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Martin and Thomson [19] have suggested that isolated measurement errors or

outliers in time series be modeled with the mixture distribution
F = (1 - h)A(0) + AN (0,0?) . (1.6)

Here A(0) is the degenerate distribution having all its mass at zero and A(0, 0?)
is the standard normal distribution with mean zero and variance ¢2. The 2-D IO
model will be said to hold whenever, z(s) = y(s) for all Qs and the innovations
process deviates from a nominal Gaussian distribution. For example, the innova-
tions may have a heavy-tailed non-Gaussian common distribution which results
from the sum of a normal random variable and a random variable distributed
according to (1.6). The AO model will occur if n(s) has the distribution given by
(1.6). Then the signal is observed correctly most of the time, i.e., z(s) = y(s), but
100k percent of the time y(s) is observed with error. We note that this contam-
ination leads to a non-Gaussian heavy-tailed distribution for the z(s), although
for small k, F(z) will be nearly F(y) = M(0,02). In general, these are only two
of several possible contaminations, and for unknown % the distribution F(z) is
also unknown regardless of whether it is associated with the innovations or an

additive effect.

1.2.3 Spectrum Estimation—Past and Present

Spectrum estimation most likely had its origins in the 17th century work of Sir
Isaac Newton [20, 21). Since that time the subject has been undertaken by many
renowned scientists and engineers. Almost as many approaches to a solution have
been investigated as there have been investigators. The 1982 IEEE Proceedings

paper by Robinson [20] provides an excellent “historical perspective of spectrum
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estimation” and the 1981 IEEE Proceedings paper by Kay and Marple [22] sum-
marizes many of the new techniques developed in the last two decades. Two
collections of papers, [23] and [24] contain much of the current thought relating to
spectrum estimation and its application in practical situations. T'wo recent books
[21]) and [25] are good exposes on the fundamentals of spectrum estimation and

analysis, especially their application to time series.

Work on the 2-D problem, i.e., spectrum estimation for random fields, is com-
paratively sparse. It turns out that large parts of the 2-D spectrum estimation
and analysis work are attempts at extending 1-D techniques to the 2-D problem
[7]. For instance, The Fourier based methods, in which the fast Fourier transform
(FFT) and periodogram play such a vital part, extend directly with extra care
taken to choose smoothing windows that give an everywhere positive spectrum
[26]. Techniques have also been developed that employ 1-D estimators directly
by processing the 2-D data along each dimension. These estimators are usually
called separable estimators [6]. The Capon maximum likelihood method (MLM)
[10] and Pisarenko’s method 7], so often associated with spectral analysis of peri-
odic time series, have also been extended to the 2-D situation. The autoregressive
(AR) time series model has also found application to spectrum estimation of ran-
dom fields in the form of the quarter-plane (QP) and nonsymmetric half-plane
(NSHP) random field models [11, 8, 9]. By lexicographically ordering the lattice
data the 2-D results are very similar to the 1-D AR spectrum estimator.

In one dimension, the AR spectrum estimator is equivalent to the maximum
entropy (MEM) estimator [27], but the correspondence does not carry over to two

dimensions, a consequence of the fact that 2-D polynomials need not factorize.

Moreover, the notion of causal and anti-causal ordering is not meaningful in two
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dimensions. However, a 2-D maximum entropy problem can be formulated and
a solution determined. The 2-D MEM estimate is the spectrum maximizing the
entropy of a Gaussian random field subject to a correlation matching constraint
[7). Several methods have been suggested for the nonlinear MEM optimization
problem [28].

In [29] and [30] the MEM spectrum estimate has been shown to be equivalent
to the spectrum of a stationary Gaussian-Markov random field (GMRF). Thus,
the MEM spectrum estimate can be obtained by computing the GMRF spectrum
[31].

Only recently have 2-D NCAR random field models received attention as 2-D

spectrum estimators [12].

1.2.4 Model Based Spectrum Estimation

In model based spectrum estimation, a parametric model, typically a constant
coefficient difference equation driven by a random input, is proposed to represent
the observed data. An estimate of the spectrum is obtained by fitting the model
to the observed data (estimating parameters) and using the parameter estimates
in the theoretical spectrum expression derived from the model.

The derivation of the model theoretical spectrum is an exercise in system
theory and is relatively straight forward. Consequently, there are two paramount

issues in model based spectrum estimation:
1. Selection of an appropriate model and

2. Selection of a parameter estimation method.
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Both items are critical for good spectrum estimates as will be borne out by the
experimental results in this dissertation. The model is often suggested by the
mechanism which generates the observed process. For example, if the mechanism
is cyclic in structure then the model should be able to accurately represent a
cyclic process. However, the model also dictates, to a large degree, the estima-
tion method required for accurate parameter estimates. In general, parameter
estimators should yield consistent and asymptotically efficient estimates. But
often estimators with these characteristics require significant computational and
memory storage capacity. Hence, the model selection is often one of convenience,
yielding optimal results when all assumptions (e.g., normality) are satisfied and
possessing an estimator which can be implemented with minimum use of comput-

ing resources.

In engineering, especially in the field of image processing, random field mod-
els have found wide application. In particular, the spatial interaction models
[32, 2, 4, 33] are popular. This class of models includes the Markov random
field models [34], of which the GMRF model [35, 36] is of interest, and also the
class of simultaneous models [1, 32]. The simultaneous model class includes the
QP, NSHP, and NCAR models [4, 37, 16}, which are the generalizations to two
dimensions of the familiar time series autoregressive models. Model based spec-
trum estimation using a variety of these models has been evaluated and good
results obtained for data which matches the distributional assumptions about the

observed data [30, 31, 12].

But what happens when the assumptions are not satisfied, especially when the
fine structure of the spectrum is of primary interest? Large deviations from the

assumptions are obviously going to cause problems. But in this case one did a
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predictably poor job of model selection and could do better by choosing a second
model. It is not clear, though, what happens when large deviations occur in a
tiny fraction of the data because of errors in observation or when small deviations
occur in all the data because of strict distributional assumptions. Note that all
measured data are of limited accuracy and are basically discrete; and, therefore,
can only be described approximately by a continuous distribution. In these last
two situations the true signal can be thought of as having been generated by an

assumed nominal model but observed with error.

The concept of robust parameter estimation has received extensive considera-
tion in the statistical literature. A major portion of this literature (e.g., see [38]
and [39]) treats location and linear regression models for independent and identi-
cally distributed (IID) data. The literature on robust spectrum estimation in the
dependent or autoregressive time series case is sparse. Kleiner et al. [40, 41, 42]
have developed several robust estimation techniques for the 1-D case when the
data are represented by an autoregressive model. Very little, if any, work has
been published for 2-D robust model based spectrum estimation; and the 1-D
techniques are not directly extendable without considering the unique properties

of 2-D models.

Two general approaches seem to be prevalent in the statistical literature. The
first, Huber’s minimax approach [39], attacks the problem by considering so-
called “M-estimators”, which are a generalization of maximum likelihood (ML)
estimators for location and scale of independent data. Huber’s method is to
optimize the worst that can happen in a neighborhood of a nominal model, as
measured by the asymptotic variance of the M-estimator. The second, proposed

by Hampel [38] and often leading to estimators similar to Huber’s, is known as
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the “infinitesimal approach” whose main tool is the so-called “influence function”.
The influence function is a directional derivative which describes the effect of
an additional observation on a statistic (or parameter estimate). The influence
function can be used to linearize an estimator and predict its performance in a

neighborhood of a nominal model.

1.3 Thesis

When the primary objective is to estimate the spectrum of ) given the observed
data Ay by the model based methods, care must be taken to choose a model
that accurately represents the observed data. In most previous works (6, 11, 8,
13, 9, 31, 12], models have been proposed for ) and estimates made from X,
with an assumption that the signal y(s) is adequately represented by a spatial
interaction model, either a spatial autoregressive or Markov random field, driven
by a Gaussian random noise. Clearly, a better job of estimation can be done if
one accounts for the differences between Xy and Y. Thus, instead of assuming

that z(s) = y(s) for all s € 2y, consider a model for the observations given by

z(s) = g(y(s),n(s))

for some function g(-, ).

If one knows @ priori the distributions of both y(s) and n(s) then this in-
formation can be used, for example, to write the likelihood function for the ob-
servations X, thus leading to an optimal ML estimator. Consider the case
when g(y(s),n(s)) = y(s) + n(s), where the distributions for both y(s) and n(s)
are known to be Gaussian and ) is adequately modeled by a spatial interaction

model. If X contains contamination then this model should perform better for
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spectrum estimation than the conventional g(y(s),n(s)) = y(s). If Ay is error
free then little is lost since the parameter estimates should suggest that the mean
and variance of n(s) are zero. For the 2-D direction finding problem we claim that
a NCAR plus noise model will perform better than a NCAR only model [12, 13]

because:

1. The error, e(s) = S(s) — y(s), in fitting the model can be included in n(s),
thereby reducing the complexity of the NCAR model required to duplicate

the nonrandom S(s), and

2. The spectrum S,(w) approximating Ss(w) can be computed explicitly with-

out the obscuring §,(w) or Sy(w).

If, on the other hand, one can only make an assumption concerning the dis-
tribution and structure of the random field } and knows neither the distribution
of n(s) nor the functional relationship g(-,-) relating z(s) to y(s) and n(s), then
strict assumptions on the Gaussianity of z(s) can lead to predictably poor spec-
trum estimation results. Robust alternatives which consider a nominal model
for X should perform better than optimal procedures requiring a strict Gaussian

assumption.

1.4 Contributions

The main contribution resulting from the research reported in this dissertation is
the synthesis and analysis of new model based spectrum estimation methods for
2-D random fields. The methods reported here perform significantly better under

a wide variety of practical empirical situations than the model based methods
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previously reported in the technical literature. These contributions include the

following:

¢ A new NCAR plus noise model is defined and applied for 2-D random field

spectrum estimation. Specifically, we make the following contributions:

— The NCAR plus noise model is shown to differ from the linear NCAR

model because of its affine structure.

— The theoretical properties of the NCAR plus noise model are stated

and proved.

— The NCAR plus noise is shown to outperform the NCAR only model
in a variety of practical situations, including the important problem of

direction finding associated with planar array signal processing.

¢ The generalized maximum likelihood (GM) estimator, which has been stud-
ied for 1-D time series, is extended to the 2-D problem. We make the

following contributions in this regard:

— The 2-D GM-estimator is defined for both NSHP and GMRF models.

— We define an influence function for the 2-D GM-estimator and show
how to use it as a tool for selecting the critical parameters of the
estimator that control its performance.

— We suggest an algorithm for solving the 2-D GM-estimator equations.

— We apply the 2-D GM-estimator to the 2-D spectrum estimation prob-

lem and compare its performance with the conventional methods.

o We define and evaluate an optimal robust estimator for NSHP random field

models. Specific contributions include:
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— We generalize the familiar 2-D likelihood function for spatial interaction

models and use this generalization to define a general class of estimators

for 2-D random field models.

— An influence function applicable to a wide variety of contaminated data
problems is defined and used to define Hampel’s optimality problem for
the NSHP model.

— Hampel’s optimality problem is solved for the NSHP model. The result

is an optimal robust estimator.

— The optimal robust estimator is evaluated through a series of exper-
iments and shown to be superior to the conventional estimator when

observation data contain contamination.

¢ Empirical approaches are suggested for noncausal model estimation. These
models are shown through a series of experiments to yield results superior

to conventional methods of parameter estimation from contaminated data.

1.5 Organization of Dissertation

In Chapter 2 we present a short review of the theory of robust statistics. In Chap-
ter 3 we describe the two general classes of spatial interaction models, the GMRI
and NCAR models, which are useful for 2-D spectrum estimation. Here we give
the details of the conventional means of parameter estimation and derive special
model characteristics required in later chapters. Chapter 4 presents the signal
plus noise model for spectrum estimation. We discuss the attributes of this model

and investigate the theoretical bases of the ML parameter estimates for the NCAR
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plus noise model. The utility of the model is demonstrated through a series of
experiments in which we simulate planar array data and compute spectrum esti-
mates for comparing the NCAR plus noise model with a conventional NCAR only
model. Chapter 5 is the first of three chapters in which we investigate 2-D robust
parameter estimation. In this chapter we extend the generalized M-estimator,
employed for robustly estimating parameters in time series, to the 2-D situation.
We develop the necessary tools to evaluate this heuristic estimator and we com-
pare its performance through a series of experiments with that of conventional
parameter estimators. A general notation is derived for the likelihood function
of the NCAR and GMRF models and an influence function, useful for designing
robust estimators, is derived in Chapter 6. By specializing to the NSHP model,
we specify and solve and optimality problem which leads to an optimal robust es-
timator. Through experiments we compare this estimator with the conventional
NSHP estimator and with the 2-D GM-estimator derived in Chapter 5. In the
next chapter, Chapter 7, the ideas of Chapters 5 and 6 are used to suggest robust
estimators for the noncausal models. These “empirical” estimators are shown to
perform much better than the conventional means of parameter estimation when
confronted with contaminated signal data. Chapter 8 summarizes the research

and suggests topics requiring additional investigation.



Chapter 2

Robust Statistics

In this chapter we define robustness and give an overview of the theory of robust

statistics and its application to parameter estimation in time series models.

Robustness signifies insensitivity to small deviations from assumptions. Here,
we will primarily be concerned with distributional robustness where the shape of
the true underlying distribution which generated observed data deviates slightly
from an assumed model. The first use of this notion of robustness may properly
be attributed to G.E.P. Box although eminent statisticians, such as Newcomb, K.

Pearson, Gosset, Jeffreys, and E.S. Pearson, were clearly aware of it [38].

There are three notions of robustness which have been introduced in the lit-
erature: 1) efficiency robustness which requires that an estimator have a high
efficiency, say > 90 percent, at a nominal distribution, and high efficiency at a va-
riety of strategically chosen distributions [43], 2) minimaz robustness introduced
by Huber [39] which requires that a robust estimator’s asymptotic variance be
minimized at the worst model in a neighborhood of models, and 3) gqualitative

robustness introduced by Hampel [44, 38] which requires that large changes in a
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small amount of the data and small changes in a large amount of the data both
produce only small changes in an estimate. Qualitative robustness is a continuity
criteria where infinitesimal changes are measured through the use of an appropri-
ate metric on the space of distributions for the data and the estimate, respectively.
It will be this last notion of Hampel’s that will be of particular concern to us.
This infinitesimal theory, which has the influence function as its central tool for
analysis and synthesis of algorithms, yields useful and computationally attractive
procedures for spectrum estimation. In general, however, a good robust estimator
should clearly possess at least qualitative and quantitative (efficiency) robustness,

with minimax robustness highly desirable.

Strictly speaking a robust procedure should have the following properties: 1)
when the data are “good”, e.g., Gaussian, the procedure should be almost as good
as the conventional (often “optimal”) procedure presuming normality, and 2) when
outliers are present, the procedure should still work well and, in particular, work

much better than the conventional procedure.

2.1 The Influence Function

Suppose we have a set of observations &, = {z,,...,z,} which are independent
and identically distributed. The empirical distribution of the sample will be de-

noted by F,(x) and is given by

ADEES N (21)

=1
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where A(z) is the distribution which places point mass 1 at . We will assume

that the true underlying distribution which generated the data is F(z) and that
Jim 7, (z) = F (=) . (2.2)

An explanation of the notation is appropriate here. A(z) denotes the probability
distribution for the random variate X. This function is mathematically equivalent

to the generalized unit-step function,

0, X<z
Afz) =
1, X>2

We will denote the generalized unit-impulse function as é(z) given by

0, otherwise.

Consider some parametric model {f'¢; ¢ € @} characterized by a family
of distributions .7-'¢ parameterized by ¢ which belongs to some p-dimensional
parameter space ®. In classical estimation we assume that the observations &,
come from one of the Fy (eg., F(z) = .7"¢°), then estimate ¢, based upon a
finite set of observed data. In the robust approach we assume that the parametric
model {.7-'¢; ¢ € ®} is only an approximation to reality and that F(z) may
not equal F, P for any ¢. The task, however, is still to determine a value of ¢
which in some robust sense is “optimal”. For example, .7-'¢ may be the Gaussian
distribution M(u,0?) where ¢ = col {g,0}, but the data z; are generated by a
non-normal distribution.

As an estimator for ¢ consider a sequence of real-valued statistics T,, =

To(z1,...,2,) = To(F,), where the form of the estimator is data independent

24



and can be replaced by functionals, i.e., T,,(Fu(z)) = T(Fa(z)). Furthermore,

assume that the functional is “Fisher consistent?, i.e.,

T(Fg)=¢.

In otherwords, at the model when F(z) = F 4 the estimator asymptotically mea-
sures the right quantity.
In Hampel’s qualitative approach to robust statistics he begins by defining the

influence function.

Definition 2.1 The (p-dimensional) influence function (IF) of T at a distribu-
tion F is given by

T((1 = )F +tA(z)) - T(F)

IF(z;T,F) = lim "

for all z where the limit exists.

The heuristic interpretation of this function is that it describes the standardized
effect of an infinitesimal contamination at the point = on the estimate I'. The IF'
is usually evaluated at the model distribution F, &

Von Mises has shown [45] that T may be expanded at a distribution F in

terms of a Taylor series. If distribution G is “near” F, then
T(6) = T(F) + / [F(z;T, F)d(G — F)(z) + remainder. (2.3)
If we replace G by F,.(z) in (2.3) and note that
/ IF(z;T,F)dF(z) =0,

then
T(F)=T(F)+ / IF(z;T,F)dF,(z) + remainder.
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or using (2.1) to evaluate the integral, then rearranging,

1 & .
Wi ; IF(z;; T,F) + remainder.

Since the x; are IID, so also are the IF(z;; T,F); and hence, this term is

Va(T, - T(F)) =

asymptotically normal by the central limit theorem. In most cases of interest the
remainder becomes negligible as n — oo so that v/n(T, — T'(F)) is asymptotically

normal with an asymptotic covariance matrix given by
V(T,F) = / IF(z;T,F) IF'(z; T, F)dF(z). (2.4)

Rigorous mathematical conditions for this development are available (see [38]);
but as Hampel points out the influence function is mainly a heuristic tool, and
it is often easier to verify the asymptotic properties by methods other than the
necessary regularity conditions required in the above development.

The influence function can also be used to compute the asymptotic Cramer-

Rao inequality for a sequence of estimators. That is, if

160 = [ | 161400 | logf¢(w)]; I

=Yoo

is the Fisher information matrix at a distribution Fo(z) = o, where ¢, € P is
fixed, then
d'V(T,Fo)d > d'I7'(¢y)d foralld € R? (2.6)

where equality holds if and only if

b7/
IF(z;T, %) is proportional to — log fd,(:z:) .
a¢ ¢=¢o
Here, fd’ is the density function corresponding to .7-'¢. It then follows that the

estimator is asymptotically efficient if

TP T, 72) = I7(90) 55508 (@)

=%
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2.2 Robustness Measures

Although the influence function is useful for evaluating the asymptotic properties
of a sequence of estimators, its real utility comes from the several robustness
measures which can be derived from it. These properties were introduced by

Hampel et al. [38].

Gross-error sensitivity.

Definition 2.2 The (unstandardized) gross-error sensitivity of T' at a distribu-
tion F is given by
7" = sup [[IF(z; T, F)| .

where || - || is the Euclidean norm.

The gross-error sensitivity measures the worst influence that a small amount of
contamination can have on the value of an estimator. Consequently, we can regard
it as an upper-bound on the asymptotic bias. It seems intuitively clear that it

should be finite for all good robust procedures.

Local-shift sensitivity.

Definition 2.3 The local-shift sensitivity of T at a distribution F is given by

A=

sup 11F(y; T, ) - IF(z; T, F)||
z#y |y—"’|

Not only should robust procedures be insensitive to gross errors, but small fluctu-
ations in the data, such as rounding or grouping, should also have minimal effect.

The local-shift sensitivity describes the worst effect of a small deviation about a
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point z, or equivalently, the addition of an observation at y and removal of one

at z.

Rejection point.

Definition 2.4 The rejection point of T at a distribution F is given by
p" =inf{r > 0| IF(z;T,F) =0 when |z| > r}

if r ezists, otherwise p* = oo.

A classical robustness concept is to reject extreme points entirely. Often statis-
ticians manually prune a data set, throwing way points which obviously do not
belong due to their relative magnitude, prior to performing a statistical procedure.
This pruning concept is embodied in the rejection point, since if it exists for an
estimator T, i.e., p* < 0o, then all observations farther away than p* are rejected

completely by the estimator and have no “influence” on the estimate.

Breakdown point. By definition the influence function is a local concept usu-
ally evaluated at the model distribution .7-'¢. Consequently, the preceding ro-
bustness measures can ohly be considered good within a small distance from .77¢.
Thus, to complement these local properties Hampel defines a global property,
the breakdown point. Several definitions are possible, although the following one

seems easiest to apply and often leads to the same value as the more rigorously

defined.

Definition 2.5 The asymptotic breakdown point [39] (or gross-error breakdown
point [88]) of T at a distribution F is

e = sm:p{e <1|b(e) < b(1)}
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where

oe) = sup_[T(G) - T(F)l

€F:(¥)

and the contamination “neighborhood” P,(F) is given by

P(F)={G|G=(1-e)F+cH}.

Loosely speaking, €* is the smallest fraction of grossly contaminated data points
which makes the estimate completely unreliable, and it gives an idea of the dis-
tance from the assumed model that the local linearization provided by the in-
fluence function can be used. Note that " is not necessarily dependent on the
distribution F, and that b(1), the maximum bias of the estimator T in a contam-

ination neighborhood, is the worst possible value of b(¢) (usually infinite).

2.3 Robust Parameter Estimation

2.3.1 M-estimators

Huber introduced the class of estimators called M-estimators [39, 38, a general-

ization of classical maximum likelihood.
Definition 2.6 An M-estimator is the value T, = T,(z;,...,2,) such that

> p(zi, Tn) = rrql‘in! (2.7)

=1

where p is some function on X x ®. If p has a derivative

b(z,8) = %p(z,qs),
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then T, satifies the implicit equation

3 (=i, Ty) = 0. (2.8)

i=1
Let G, be the empirical distribution function generated by the sample X, =
{zi,...,2zs} and assume that the real-valued statistic T}, can be replaced by the

functional T'(G,), where T is given by

/ W(z,T(G)) dG(z) = 0. (2.9)

Now, if G is a contaminated distribution, that is, G = (1 — t)F + tA(z), where ¢
is small but fixed, it can be shown by differentiating (2.9) at ¢ = 0 that

IF(z;9,F) = M~ (4, F) ¥(z, T(F)) (2.10)
where the p X p matrix M is given by

dF(y)
$=T(¥)

M, F) = - %ﬁ(y,d»)

and we have replaced T by the defining 1-function. Note that M is independent
of z and ITF(z;,F) is proportional to % (z,T(F)). Therefore, for M-estimators

the influence function can be used for defining the y-function. The asymptotic

covariance matrix for M-estimators is
V(T’f) = M-l('p’}-) Q('b’}-) M_‘('d”}.)

with
Q. F) = [ (s, T(F) ¥'(=, T(F)) dF(2) .
M-estimators can easily be considered in the context of regression models.
Suppose that the data are described by
r;=20+r, i=1,...,n (2.11)
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where z; = col {z;1,...,2p}, 0 = col {01,...,0,},and the ry, i = 1,...,n, are IID
with E {r?} = o2.

M-estimates of the parameters @ and scale o, [39] [38] are obtained for fixed

tglgﬂ{i [p (w;—otz) + B] a,} : (2.12)

=1

B as a solution of

B is chosen to make the estimates consistent at the nominal distribution [41]. By
differentiating (2.12) with respect to 8 and o, we obtain for the estimators @ of

0 and S of o, the implicit equations

i=1

Sz (%) =0 (2.13)

and
gx (“’;Satz—) =0, (2.14)
where
$(z) = op(a)
and

x(z)=z¥(z) — p(z) - B.

Selection of the 1-function to have good robust characteristics, such as being
bounded (7* < o0), yields robust estimates of the parameters, so long as the z

portion of the model is correctly specified [41].

2.3.2 GM-estimators

M-estimators are good when the data X, = {z;,...,2,} are independent. In the

dependent case, for example when the data, z(1),...,z(n), are an autoregressive
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time series

z(k) = Zp:ﬂlw(k— D+r(l), k=1ton.
i=1

where 8 = col {#,,...,6,} and x; = col {z(k - 1),...,z(k — p)}, then the
estimation procedure must be modified. Martin et al. [41, 42] have considered M-
estimators for 1-D autoregressive time series models. Direct application of (2.13)
and (2.14) with z; = x; = col {z(¢i — 1),...,z(i — p)}, may give poor results
since x;1((z(¢) — 6'x;)/0,) is not necessarily bounded due to contamination in
the x;. It can be shown that M-estimates lack qualitative robustness and have
zero breakdown points for autoregressions.

This leads to the following modifications to (2.13) and (2.14).

Definition 2.7 Generalized M-estimates (GM-estimators) 8 of @ and S of o, are
solutions to the following implicit equations.
At
n ) — o R
S xW(xi) 2@)=-0x) g (2.15)
i=p+1 S

and

3 W) (f%) -4 (2.16)

n—2p—-1,27

where xW(x) is a bounded and continuous function of x.

For the GM-estimate, if () is bounded and continuous, then the same is true of
the summands in (2.15). In this case it can be shown that the GM-estimates are
qualitatively robust and have positive breakdown points. However, the breakdown
point is bounded above by .p-:-—l [42], and therefore, for large order autoregres-
sions the breakdown point will be significantly smaller than %, the theoretical

maximum.
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A good choice for W{(.) is
1 t A-1
W(x;)=w ;x,- Cx xi

where w(-) is a non-negative continuous function and Cy is an estimate of the
p X p covariance matrix for the past history vector x;. If w(-) is a redescending

function such that w(z) = 0 whenever |z| > b, then xW(x) will be bounded.
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Chapter 3

Spatial Models for Spectrum
Estimation

The model based approach assumes that a data value at a given point on a 2-D
lattice is statistically dependent upon data at neighboring locations of the lattice.
One way of specifying this dependency is through the use of a 2-D random field
model. There are two nonequivalent classes of models for 2-D random fields
yielding rational spectra which have received much attention in the statistical and
engineering literature [4, 33, 16, 36): the simultaneous models and the conditional
Markov models. Here, for the spectrum estimation problem we are particularly
interested in the autoregressive models from the first class and the conditional
Gaussian-Markov models from the second class. We describe these models in

some detail since they will be used extensively throughout this dissertation.

3.1 Class 1: Autoregressive Random Field
Models

Autoregressive models are generalizations to two dimensions of the familiar time
series autoregressions. Suppose we want to model a set of data Yy = {y(s),s €

Q) on the 2-D square lattice Qp = {5 = $1,8[0 < 81,82 < M —1}. The
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autoregressive model of this data has the difference equation formulation

y(s) = Xl:v()ry(s +r) 4+ w(s), s€ Dy, (3.1)

The input array {w(s)} is an independent and identically distributed (IID) ran-
dom noise field with E {w(s)} = 0 and E {w?(s)} = B2 N, the neighbor set,
has elements r = ry,r, where r; and r, are integers. Noncausal autoregressive
(NCAR) models have no restrictions on the elements of NV, except that (0,0) ¢ N.
If N is a subset of the nonsymmetric half-plane Q% nonuniquely defined by

1. 8§; € Q+,Sg c Q+ =8 +8 € Q+,
2. 5€ Ot = —snot € N7, and
3. (0, 0) not € QF,

then the model is known as a nonsymmetric half-plane (NSHP), semicausal, or uni-
lateral autoregressive model. Figure 3.1 shows this region on the two-dimensional
lattice S2pr. Quarter-plane (QP) models are obtained with the further restriction
that N = {r =r),r; | €0, r, £0, and (ry,r;) # (0,0)}. Obviously, NCAR
models can be considered to include the causal models as a subclass.

In NCAR models when N includes symmetric neighbors, i.e., r € N implies
—r € N, then §; must equal §_, to ensure that the parameters are identifiable
[16]. Moreover, a necessary and sufficient condition on @ = col {fr, r € N} to
ensure stationarity of ), is that

1— Y Onma'g? #0

(1‘1 irﬁ)eN

for all z; and z; such that |z;] = |22 = 1.
In view of the symmetry requirement for the elements of the neighbor set for a

NCAR model with noncausal support we define a model order according to Figure

35



3.2. For example, a 2nd-order symmetric NCAR model has a neighbor set which
contains not only the points labeled with “2” but also those labeled with “1”, i.e.,
N? = {(1,0),(-1,0),(0,1),(0, -1),(1,1),(-1,-1),(-1,1),(1,—1)}. For conve-
nience we may also specify the 2nd-order symmetric NCAR model through the
use of the asymmetric neighbor set N, such that for all r € N, r € N, implies
—r & N,. However, this representation precludes the sublcass of NSHP models.

The spectrum for Y., obeying (3.1) is given by

_ A
Sulw) = 1 — ren Or exp(—ywir)]? (3.2)

for w = (w,ws), -7 S wy,wp < 7.

An alternate representation for the noncausal autoregression on a finite lattice
is obtained by using the M2 x 1 vectors y = col {y(s), s € Qu} and w =
col {w(s), s € Qp} of the lexicographically ordered arrays {y(s),s € N} and

{w(s),s € Qar}, respectively. In this representation (3.1) is written as
B@)y =w (3.3)

where B(8) is a M? x M? block-Toeplitz matrix which depends on 8 and the
specific boun.da.ry conditions. Using this notation, Q, = 5*[B*(8)B(8)]™ .

The representation in (3.1) is not valid for the data lying on the boundary
if the array dimension M is finite; as for some s, the value y(s + r) may not be

defined. The alternative is to assume the specific finite lattice model

y(s) = X;v”ry(s @r)+ ﬁw(s)’ s € Sy, (3'4)

where @ indicates sum modulo M along both the coordinate axes. Equation
(3.4) means that the data are represented on a toroidal lattice, and as a result of

this assumption the autocorrelation is periodic; hence, the power spectral density
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is the discrete Fourier transform of the periodic correlation sequence. Then for

2
We = ﬁﬂs the discrete spectral density for Yy described by the toroidal NCAR
model is
i
S2(ws) = ——, s € Oy, 35
y( B) |ﬂs|2 M ( )

The ps = 1 — 8*¢),, where 9, = col {exp(—jwir), r € N}, for s € Qu, are
the eigenvalues of B*(6)B(8). B(8) for the toroidal model is a M? x M? block-
circulant matrix with each M x M block also a circulant. It follows that the

coefficients @ must obey |ps|? # 0 for all s € Qur for Vi to be stationary.

3.2 Class 2: Gaussian-Markov Random Field
Models

Assume that the random field Yy = {y(s),s € 2} is to have zero mean, Gaus-
sian distribution, and obey the Gaussian-Markov random field (GMRF) model

difference equation

y(s) = ZA:, Orly(s + 1) +y(s — r)] +¢(s), s €y, (3.6)

where the stationary Gaussian noise field {e(s),s € 2} has the property that
—Os_tv, (s—t)EN
E {e(s)e(t)} = v, s=t (3.7
0, otherwise.
We assume that (3.6) has input-output stability. Using (3.6) and (3.7) one can

prove [34] that the conditional density of y(s) given all other values is

f(y(s)lall y(t),t # s) = f(y(s)lall y(s +r),r € N). (3.8)

Alternatively, one can show [32] that the conditional density of (3.8) leads to the

model (3.6).
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The spectral density function for the GMRF model (3.6) is

v

) = T T e Becon(om)

(3.9)

Note that y(-) obeying the NCAR model (3.1) is not Markov with respect to N

if N is not unilateral, i.e.,

f(y(s)lall y(s + r),r # 5) # f(y(s)lall y(s +r),r € N); (3.10)

hence, the NCAR models are different than the 2-D Gaussian-Markov models.
However, for all NCAR models

f(y(s)lall y(s + r),r # 5) = f(y(s)lall y(s +r),r € N') (3.11)

for some N’ where N C N’. Thus, some GMRF models have spectra which
factorize; and hence, for every NCAR model there exists a GMRF model having
the same spectral density function.

Gaussian-Markov random field models can also be represented on a toroidal

lattice. In vector-matrix notation the toroidal GMRF model is
A(Q)y = e, (3.12)

where y and e are column vectors of the respective lexicographically ordered
arrays, and A(@) is the block/block-circulant M? x M? matrix of coefficients

Or,r € N,. The spectral density function for the toroidal GMRF model is

14
S(ws) = -, 5 € M, (3.13)

8
where g5 = 1 — 20'¢c4 and ¢4 = col {cos(wir),r € N,}.
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3.3 Parameter Estimation for Spatial Models

Suppose that the random field Y, = {y(s),s € Q. } is Gaussian, mean zero, and
has a spectral density function given by either (3.2) or (3.9) and that we have
available a set of observations from the M x M lattice Q7. Furthermore, assume
that the appropriate choice regarding the model structure has been made, i.e.,
the neighbor set V is known. Now, the spectrum estimation problem is reduced
to a two step parameter estimation problem: (1) the parameters 6 and 82 or v
are estimated and (2) these estimates are then used in the theoretical expression
for the spectrum, (3.2) or (3.9) as the case maybe.

A popular estimator in 1-D and 2-D is the least squares (LS) estimator. This
estimator is consistent for 1-D and 2-D causal AR models and for the noncausal
GMRF model; but, 8. is not consistent for NCAR models with bilateral neighbor

sets [33]). The LS estimator for the toroidal AR model is

Ors=13 Ysy;} [Z ¥sy(s) (3.14)

seflys €N

and

s = 3 2 bte) = Bl (3.15)

where ys = col {y(s®r),r € N}. A similar expression is obtained for the GMRF
model. A theorem regarding the consistency of the estimate éLS and ¥;s and an
expression for the asymptotic variance of the estimate 815 can be found in [33].
These estimates are not fully efficient.

An asymptotically consistent and efficient estimate can be obtained for all
NCAR and GMRF models by the maximum likelihood (ML) method. Since the

Jacobian of the transformation matrix from the noise variable w(s) (or e(s)) to
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y(s) is not unity in NCAR (or GMRF) models with symmetric neighbor sets,
the log-likelihood function is a complicated function of the parameters even for
the Gaussian case. Assuming the availability of boundary values, the negative

log-likelihood function is

he($) = - log(2n) + 3 logldet{Q}] + 5'Q5y  (316)

where Qy = E {yy*} and ¢ = col {8, 8} (or ¢ = col {8,v}) for the NCAR (or
GMRF model). The ML estimates are obtained by minimizing (3.16) with respect
to the parameters ¢.

However, the solution of this problem requires extensive computation due to
the terms det{Qy} and Q;‘; and an explicit expression for det{Qy} is difficult to

derive. Using the approximation [1, 35, 37, 46}

lim_ {3 logidet{ QM) = Gy [ [ loglSy . @law, (317

one can show that an asymptotically equivalent expression for the negative log-

likelihood function is
s M? M?* r = 1,
in(¢) = —-log(27) + 2@ /_ ) [_ log[$y(w,#)ldw + 5y°Q7y,  (3.18)

with §,(w, @) given by (3.2) or (3.9) for the NCAR or GMRF model, respectively.

For the NCAR model the quadratic form in (3.18) can easily be shown to be

y'Q;ly = iﬁ Y [y(s) - 0'ys)? (3.19)
ﬁ sENQ s
and for the GMRF model
YOy =1 3 ue)ly(s) - 0'vel (3.20)
8€N
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A convenient form of the GMRF quadratic term, which is equivalent to (3.20)

[31], is
M2
Y'Qy'y=—[c(0) =2 3 brc(r)], (3.21)
v reN,
where the sample covariances are

1
cy(r) = i > y(s)y(s+r), re N,
SEflp
and
1
¢,(0) = — z*(s).
Y M2 SE;M
By introducing the toroidal lattice, an approximation for Iy(¢), requiring

many fewer computations to determine a global minimum, is

() = 51

o Py,m(ws)
sezo:u {1og[5,,( s @) + Se(wnd) ¢)}, (3.22)

where P, pr(ws) is the periodogram of the observations, i.e.,

Pym(ws) = |V (ws)[? (3.23)
and
1 2,
Y(we) = 77 tz‘; y(t) exp(—j578't). (3.24)
€y

It turns out that as M — oo there exists a unique &)M 1 that yields the global
minimum of either (3.16), (3.18), and (3.22). Moreover, M|y — o] is dis-
tributed as A'(0,[~!(¢,)) where

06 =g [ [ [ e s 9)] [ 1ogsy(w,¢)]tdw. (3.25)

The matrix I'(¢) is simply related to the Fisher information matrix Ips(¢), defined

as

1u($) = 38 { EXg [g’azm)]'} , (326)
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by the asymptotic relationship

lim_ In(¢) =T(9). (3.27)

Thus, we conclude that the ML estimator for the NCAR or GMRF model is
consistent and asymptotically efficient whenever the data are distributed normally.

The NSHP model has characteristics which makes it the spatial analog of the
1-D time-series model. Specifically, B(8) in (3.3) is a lower triangular matrix
whose main diagonal elements are unity. Therefore, det{B(8)} =1 and

det{8(B‘(6)B(6)]™"}
ﬂ2M"

3t (B(0))
= 1.

det{Q,}

This simplifies the likelihood function for the NSHP model which is

J5i#) = T] (2n6%)}exp {—ﬁzly(s) - G‘yslz}- (328)

8EN A

Note that this likelihood function is the product over all lattice points of the con-
ditional probability density functions. The random field possessing this property

is said to have a one-sided Markov property. In particular,

E{y(s)ly(t),t <s} =E{y(s)lys} = %:vﬂry(s +1), (3.29)

because E {w(s)|y(t),t < s} = 0. This property of NSHP models is identical to

that of the causal time-series models. The conditional variance of y(s) is

E{[y(s) - E{y(s)lys}l’lys} = E{[(s) - 8've]’|vs}
E {w?(s)lys}
= B (3.30)
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3.4 Rules for Model Selection

In the previous section we assumed that the appropriate model from the class
of NCAR and GMRF models was known. From 1-D time series analysis, it is
known [47] that the use of an appropriate model leads to good results in spectrum
estimation. The model selection problem comes under the category of a multiple
decision problem. The procedure is as follows. A priori, we choose a number
of different models of the same kind (e.g., NCAR models with differing neighbor
sets N), compute a test statistic for each model and choose the neighbor set
or model having the minimum value of test statistic. Two different ways have
been employed for computing the test statistic, namely, the AIC criterion [48, 49]
and the Bayes’ method [50]. In the Bayes method the test statistic is chosen so
that the decision rule minimizes the probability of error, i.e., choosing the wrong
model order. It is also a weakly consistent method. Alternatively, the AIC rule
has no optimality property and is not consistent, i.e., even when the number of
observations tends to infinity the probability of error does not go to zero [51).
Suppose we have three sets Ny, Na, and N, of neighbors containing py, ps,
and p, members, respectively. Corresponding to each Nj, we write the toroidal

NCAR models as
W(s)= T by ® 1) + ().

reN;

Then the decision rule for the choice of appropriate neighbors [33] is: choose the

neighbor set N; where
1. k* = a,rg{mkin B}
2. B, = Z log[S;(ws,d);)] + pr log(MQ).
8ENM
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3. 0 and f;? are the maximum-likelihood estimates.

4. g = col {exp(—jwir),r € Ni} and p; is the number of elements in Nj.

This decision rule can be derived by using asymptotic Bayes decision theoretic
methods as in [50]. A similar decision rule has been developed in [33] for GMRF
models. Alternatively, a strongly consistent decision rule is given in [52]. The test
statistic for this rule is given by
Hy = ) log[S;(ws, 1)) + 2px log[log(M?)),
8E€EQM

and one chooses the neighbor set N; where k* = a.rg{n'iin H:}.
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Figure 3.2: Model orders for the symmetric NCAR and GMRF models.
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Chapter 4

2-D Noncausal Signal Plus Noise
Estimators

In this chapter we introduce the NCAR plus noise random field model and the ML
method of estimating its parameters from a finite set of data. We then demon-
strate the NCAR plus noise model’s superior performance, compared with the
NCAR only model, in the practical application of detecting and resolving sinu-
soidal signals in noise. These signals are typical of those encountered in radar,
sonar, seismology, radio astronomy, and other similar planar array signal process-

ing applications.

4.1 Noncausal Autoregressive Plus Noise
Model

Let Xy = {z(s),s € Qur} be a set of observations of a 2-D random field. The

NCAR signal plus noise model representation for &’ is
z(s) = y(s) + n(s), (4.1)

where y(s) obeys a NCAR model, given by (3.1) of Chapter 3, and n(s) is a random

noise field. The spectrum for Y, obeying (3.1) with parameters ¢ = col {8, 8}
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and @ = col {0;,r € N} is given by

B
1 = Xren O exp(—gw'r)F

Sy(w, @) = (4.2)

If n(s) in (4.1) is Gaussian white noise with E {n(s)} and E {n%(s)} = +?, then
Sn(w) = 7%, a constant for all w. If n(s) is independent of the process y(s), then

the spectrum for the observations X, is given by

B 2
+
T — Lren Or exp(—jwir)? |

An alternate representation of the noncausal autoregression on a finite lat-

So(w, d) = . (4.3)

tice is obtained by using the M? x 1 vectors y = col {y(s), s € Qu}, w =
col {w(s), s € O}, x = col {z(s), s € N}, and n = col {n(s), s € s} of the
lexicographically ordered arrays {y(s),s € Qu}, {w(s),s € Qu}, {z(s),s € O},

and {n(s),s € Qp}, respectively. In this representation (3.1) is written as
B@)y=w

and the signal plus noise model (4.1) is
X=Yy+n, (4.4)

where B(8) is a M2 x M? block Toeplitz matrix depending on @ and the specific
boundary conditions (see, for example, [33]). If w(s) is Gaussian with mean zero,
then y(s) is Gaussian with E {y} = 0. Moreover, if {n(s)} is an IID Gaussian ran-
dom noise field with common distribution M (0,+?) and uncorrelated with {y(s)},

then it follows that

Qu E{th} = ﬁzIM?
@ = E{yy'}=4(B'(6)B(6)"
Q. = E {nn‘} =122
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where Ijs2 is the M? x M? identitiy matrix. Also, it follows that E {x} = 0 and
that

Q- = E{xx'} = 8°[B"(8)B(6)]™! + v Iyn.

Since it is known that LS estimates are not even consistent for noncausal
autoregressions [33, 1], we should expect no better results for LS estimates of the
parameters of the NCAR plus noise model. Hence, we concentrate on the ML
method for estimating the spectrum parameters. We begin with the following
definition.

Definition 4.1 The true likelihood function of a finite set of observations, de-
noted by the M? x 1 column vector x = col {z(s), s € Qur}, of a stationary Gaus-
stan random field with spectral density S;(w, ), w = (w1,wy), -7 S wy,wp < 7,

is given by

Lu(¢) = p(x|¢)

2 1 1
= (2r)7% [det{Q2)] "% exp(—5x'Q5"x), (4.5)
where Q, is the M? x M? matriz whose i, j-th element is q.(t; — t;).

Maximizing (4.5) is equivalent to minimizing the negative-log likelihood func-
tion

ha(@) = 5 {logldet @1 +x'Q; x} (46)

The mazimum likelthood estimate of the parameters is the value of ¢ which
maximizes (4.5), or equivalently, minimizes (4.6). This estimate will be denoted

by ¢, and is formally
Bag = arg {n'gn IM(¢)} . (4.7)
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When @, belongs to an open set a necessary condition is that ¢,, solves the

p-dimensional set of equations

(8) = %IM@’) -o. (4.8)

For the NCAR plus noise model (4.8) is not a simple linear equation in the pa-
rameters ¢; and it is not readily apparent that a solution of (4.8), even if it exists,
is unique. So, the solution must be determined by finding the global minimum
of (4.6) using a nonlinear optimization algorithm. However, these procedures re-
quire extensive computation because of the terms det{Q,} and Q.. Thus one is
motivated to consider an approximate version of (4.5) requiring fewer computa-
tions, but one that maintains desirable asymptotic properties. The existence and
uniqueness questions will be addressed again in Section 4.2.

The approximation that we consider here is known as Whittle’s approximation

(see [1]) and is given in the following definition.

Definition 4.2 The approzimate (negative-log) likelihood function of a finite set
of observations, x = col {z(s), s € Qp}, of a stationary Gaussian random field

with spectral density Sy(w,d) and periodogram

Pet(®) = 251X (@) (49)
with
X(w) = Zﬂ: 2(s) exp(—jw's), (4.10)
selipn
is given by

in(9) = s [ [ frosonon+ 228 o ey
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The approzimate mazimum likelihood estimate of the parameters is the value

of ¢ which minimizes (4.11) and is denoted by @,,, i.e.,
bur = arg {minlu(9)} (412)

A practical assumption that reduces the required computations further is that
the lattice £ is toroidal. With this assumption one may consider the model strictly
on the finite lattice 2ps with doubly periodic boundary conditions instead of the
zero-valued boundary conditions assumed for (4.11). In this situation the Fourier

transform (4.10) can be replaced with the discrete Fourier transform X(s) given

by
1

X(s)=M

tzﬂ: z(t) exp(—j%rs‘t) . (4.13)

Now the approximate ML function for the toroidal model reduces to

1 B+ Iuslz‘r*) X (s)|2|us|2]
15,(8 = 1 4.14
u0.67) =530 8;0:” log ( |ps|? Ty |is?7? (4.14)

where the spectrum for the toroidal lattice NCAR only model is

2
52(wa) = 2, s € My, (4.15)
™

and for the NCAR plus noise model
B
S)ws) = W + 9%, s € Q. (4.16)
8

The pg = 1—8'4,, P, = col {exp(—]zﬁ”s‘r), r € N}, s € Qyy, are the eigenvalues
of B*(8)B(8), which for the toroidal model is a M2 x M? block-circulant matrix.
It follows that the coefficients @ must obey |us|? # 0 for all s € Qps for Vs to be

stationary.
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4.2 Approximate ML Asymptotic Properties

We know from earlier work [12, 1, 35, 37] that the approximate ML procedure
provides parameter estimates for the NCAR only model with good asymptotic
properties (e.g., consistency, efficiency, normality etc.). We suspect that these
properties also hold for NCAR plus noise model approximate ML estimates. In
this section we provide a theoretical foundation for the approximate ML estimator
of NCAR plus noise model parameters by stating and proving theorems which

delineate these asymptotic properties.

Although, consistency, asymptotic efficiency, and asymptotic normality of ML
estimates of parameters for independent observations are well known [53, 54, 55,
these statistical facts for dependent situations are not well known because of
additional technical details required for their proof. Furthermore, to the best of
our knowledge rigorous proofs of these results for higher dimensional signal plus

noise processes are not available.

The explicit evaluation of the true ML estimator for the NCAR model is a
difficult task even for Gaussian data and is even more difficult for the NCAR plus
noise model. Therefore, one is interested in obtaining a more tractable problem
by simplifying the likelihood equation. But under what circumstances can one
simplify the likelihood function and still maintain an estimator with good prop-
erties? The answer is provided by the notion of a “principal part”. If I,(¢) is the
true likelihood function given a value of the parameter ¢, see Definition 4.1, then
the principal part is any function I,(4) such that n='[l,(¢) — I.(¢)] converges in
weak probability to zero as the number of observations n increases without bound.

Dzhaparidze (see [56]) indicates that Whittle [1] was the first to use the principal

51



part of the likelihood function for parameter estimation purposes in a time series
case.

The approximate ML function (4.11) for the NCAR plus noise model, as we
have shown, is simpler than the exact likelihood function; and at least empirically,
it provides estimates with desirable error statistics. It turns out, as shown below,
that the approximate ML function fits the definition of the principal part of the
ML and that the properties of the estimates derived from it include consistency,

asymptotic efficiency and normality.

4.2.1 Consistency and Asymptotic Efficiency

Previously presented asymptotic properties of approximate ML type estimators
for d-dimensional random fields (for example, see [35, 37]) have depended upon
a linearity property of the process which permits the factorization of the spectral
density function. That is, if Sp(w) is the spectral density function of the process

Xoo, then
Sz(w)

ol

G(w) =

(4.17)

does not depend on o> where ¢ = V {¢(s)} is the variance of the independent
and identically distributed random field {e(s),s € 0} in the Wold decompostion

[57] of the process:

z(s) = E%g,.s(s —r) (4.18)
and )
G(w) =| Z%gr exp(—yw'r)[’. (4.19)

For example, (4.2) permits such a factorization, but on the other hand, (4.3) does

not.
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In this section we relax the linearity assumption and show that parameter
estimates for the spectral density function (4.3), when computed from a suitable
principal part of the likelihood function, are consistent, asymptotically efficient,
and asymptotically normal. Specifically, we are concerned with the situation
where the 2-D random field is a noncausal autoregression with independent addi-
tive noise whose spectral density function S,(w, ¢) is known except for the finite
set of parameters ¢ = col {¢;, 1 < ¢ < p}. The proofs for the asymptotic proper-
ties of the NCAR plus noise model approximate ML estimates we give here follow
the line of reasoning for times series models given in [56).

To prove these properties for the NCAR plus noise model we need the following
assumptions regarding the process X, its spectral density function S (w) =
Sz(w, @), and covariance function g¢-(t), which are related by (1.1) and (1.2) in

Chapter 1.

Assumption 4.1 ¢, the true value of the parameters, belongs to the closed set

®°¢ contained in an open set & C RP, the p-dimensional Euclidean space.
Assumption 4.2 If ¢,, P, € ¢ and ¢, # ¢p,, then

[ [ 150w, 61) - 5., 6,)ldws # 0.

Assumption 4.3 The first and second derivatives of S;(w,d) and S;'(w,d)

exist and are continuous in w for all p € .

Assumption 4.4 For finite k and K, 0 < k < S;(w,¢) £ K for all w and
¢pecd.
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Assumption 4.5 Tcq_ lg:(t)]?|t]* < oo, where

¢:(t) = E{z(s)z(s + t)} .

The first property we consider is that of the accuracy of the approximate
ML function (4.11). A similar result for the NCAR only model is given by [37,
Proposition 1], which was not proven due to the difficulty of using classical Hilbert
space arguments. The proof presented here is different because it uses a more
stringent condition (Assumption 4.5) on the covariances of the random process,

yet does not rely on (4.17) and is applicable to the NCAR plus noise model.

Theorem 4.1 Under Assumptions 4.4 and 4.5 the approzimate ML function

(o) given by (4.11) satisfies
. 1 >
plim L{1(¢) — Iu(#)] =0, (420)
where Iy(P), the true likelihood is given by (4.5).

Proof: We write

(@) — Tu(9) = (0 + 1) (4.21)
where
b= logldet{Q:l] - o / / log S.(w, ¢)dw (4.22)
= ‘Q-lx'(zw)z LL sx(g(‘;) (4.23)
First, we have that
xtAx = te%, S§M a.(t — 8)z(t)z(s)
- &7 / / sziw :;d (4.24)
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where A is the M? x M? matrix whose i,j-th entry is a,(t; — t;), t;, t; € Qur,

and a,(t) is given by
_ 1 T T -1 ¢
az(t) = ny _/_, /_“ S, (w, d) exp(yw't)dw. (4.25)
Substituting (4.24) in (4.23), I, becomes
I, = X'[Q7! — A]x. (4.26)

It is a simple matter to show that the expected value and variance of the

quadratic form (4.26) are
E{h} =tr {1 — Q:A;} (4.27)

and
V{L} = 2tr {{Ie - Q. A%}, (4.28)

respectively. Consequently, it follows from Lemma 4.3, Section 4.5, that for the

random part of (4.21)

) 1
Al{lr_{l“ ‘A—JE {lz} =0 (4.29)
and
1
lim -V {l}=0. (4.30)

Next we use a result in Kiinsch [35, Theorem 2.5] which (shown under condi-

tions less strict than Assumptions 4.4 and 4.5) proves that
lim - logdet{Q }]——1—/“/"10 Sw,d)dw.  (431)
Jim, 3 osde Qe = g | [ logSilwnlde. (2
It follows from (4.31) that for the deterministic part of (4.21)

lim =0 (4.32)

55



Combining the results (4.29), (4.30), and (4.32) and using a result in [54,

. 1 z .
Theorem 7-2, pg 60}, it follows that H“M(d’(’) — Ip(¢o)] converges in the mean
square to zero as M — oo. Consequently, since convergence in mean square

implies convergence in probability, we have

plim { {1 (o) — Iu(d0)} =0, (4.33)

and the theorem is proved. 0
Theorem 4.1 suggests that the approximate ML estimator ¢, of ¢, possesses
the same asymptotic properties as the estimator ¢, derived from (4.5). In fact,
we have proved here a stronger result than [35] or [37], i.e., convergence in the
mean-square sense. The next theorem addresses the convergence of ¢,.

Theorem 4.2 Under Assumptions 4.1 through 4.5 the approzimate ML estimator

@y converges in weak probability to the true value ¢, i.e., glim s = Do

Proof: Let ¢ € ®° and ¢ # ¢, and consider the function

-A%[TM(dJO) -Tu(®)] = 2—(217,—)5 /_: /_: {l°g [2(&30))

+Pz,M(w) [1 - E’E(_w_’ﬁ’l

5.(w,0) }dw. (4.34)

It follows from (4.24) in the proof of Theorem 4.1 that

x[Ad — A )x =

(2 (2r)? / f Po (w)[871 (w, do) — ST (w, P)dw,  (4.35)

where A2 and A; are M? x M? matrices whose elements are aQ(t; — t;) and

az(t; — t;), respectively, and

al(t) = (2,,)2 [ [ 55w o) exp(pwrtt)du

wt) = Gy [ [ 55" @ @) exputte

56



The quadratic function x*[A2 — A;]x is the random part of (4.34) and has

mean and variance

E{x'[42 - A;x} = tr {Q-(A2 - 4,)} (4.36)
and
\4 {X‘[Ag - A_.,_.]X} = 2tr {[Qz(Ag - Az)lz} ’ (437)

respectively. The trace in (4.36) is computed by using Lemma 4.1, Section 4.5.

This computation yields
Jim_ 2te {Qu(42 — )}
B '(2_11r)—2 /., /. Sz(w,90)[S: ! (w, o) — 57 (w, @)ldw
—i— [ ("-’ 4’0)
(2)? f_, /., [1 So(w,d) ,¢) (4.38)

Applying Lemma 4.1 to (4.37) yields

Jim |+ tr{[Qx A - AP} = (% f / [ (v ¢°) dw. (4.39)

Combining the result (4.38) with the deterministic part of (4.34)
Jim_E {i[iM(qbo) ~Tu(@)l}
-‘S(w ¢0) Sx(w,¢ )
27r)2 /.J_, {1 g[ ’¢)] +1_—8,,(w,¢:)) }dw. (4.40)

However, for any two positive functions f; and f; it is true that

0 10) < @)
® flz) : fa(z)

and the condition is strict for all = such that fi(x) # f2(z). Since ¢ # ¢, implies

-1,

S.(w, @) # Sz(w, d,) almost everywhere (Assumption 4.3), it follows that

Jim E{ llu(o) — (o))} <. (441)
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On the other hand, the variance does not depend on the deterministic part, and

therefore

Jim v { 3liu(g0) ()]}

— . 1 W Saz(w, ¢o) ’
- Al}in.» 2M2(27r)2 '/;-n [-x [1 - Sx(wa ¢o) ] dw
0.

(4.42)

Since ¢y and ¢ belong to the closed set ®¢, there exists positive ¢ depending
on ¢, and ¢ such that

Jim_ E{Sllu(0) - hu(@))} = ~ (90, 9) (443)

For é > 0 an application of Tchebycheff’s inequality results in

Jim P { = liu(d0) ~ Ia(@) + (b0, ) < 6}

> fim_P{|5lin(d0) — (@) + u(o 0)| < 8}
, 1 1 - : ?
> g [1- 2] |5l - (@) + wg0 ) }] . (440

Letting —k(¢g, @) = § — p(Pg, @), (4.44) is equivalent to

Jlim P {Hl;[TM(d)o) = ()] < —k(¢o, ¢)}

> 1- g lim V{solu(@) - @)}  (445)
Using the result of (4.42) we have that
Jim_ P { o ll(o) — hu(@)] < ~k(do, 8)} =1 (4.46)

for ¢ # o,.
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For each ¢, € ®¢ choose 6(¢,), a positive constant possibly depending on ¢,,
such that |¢, — ¢,| < 6(¢,) for all ¢, € ®. Then compute

T R -Sz(wa ¢l)-
2(27)? /_,, /_, {'°g | S (@, b,)]
+Pept ()55 (w, b2) ~ 57 (w, )]} do|
1 " T -S-‘l-'(ws ¢1)
2(27()2 ./-w -[—a* { log _S,;(w, ¢2)
+Pe (@) |57 (w, 2) — 871w, )|} dw
1 " - Sz(w’¢l) _
2(2r)? L f_,{ 5.(@, &) 1|
+Po (W) [S71(w, b;) — 571 (w, 8,)|} dw
= gmy | [ 5:(0,81) 4 Prse(w)]
|85 (@, 82) - 87w, )| . (4.47)

Srallne(81) — Tu(,)

IA

IA

Now, define the set A(@,) = {¢: |P, — ¢| < 6(¢,)} and let

H@ni6) = e {| 2550} (448)

$EA(d1)

Combining (4.47) and (4.48) it follows from the mean value theorem that

Sralln(60) = D) S Hepr(d) (449)

where

Hon(d) = 2B [ 15, 0,8) + Pe(wlldo. (450)

Furthermore, we have that

b {ﬁi [:r /-: [S(w, 1) + 'P:.M(w)]dw}
= (2_;)2/# /” Sa(w, ¢1)d“"+-—1—E {X'IMax}
() i [ [ Sew @) + 5t Q2)
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_ ﬁ'/—i'/-:sx(w’(ﬁl)dw'*‘Qx(o)

= (2—1ﬂ_)2-/-:/.:Sz(w,¢l)dw+(?lm/:/-:«gz(wﬂﬁo)dw
< 0 (4.51)

and

lim_ V{@ [ [ 15:w,) +1>,.M(w)ldw}
= Jim V {717 [ : [ : 'pz,M(w)dw}

&l‘lr_l.‘lm V{ e ] sz}

= lim —tr{Q,}
= Jdm, M2(21r)2/ / S=(w; go)dw
= 0. (4.52)

From which it follows that

jm, B{tu(e)) = fm, QB [ [ 5 S dmld

=0 (4.53)
and

Jim V{Heu($)} = Jim & H oy, 8(41)

{(2 )2] / [Sz(w, 1) + Sz(w, ¢o)]dw}
- (4.54)

The theorem follows from the result contained in [58, Lemma 3, pg 106] which
is applicable under the conditions (4.46), (4.53), and (4.54). The conclusion is

that ¢, — ¢, in probability as M — oo. O
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Next, we establish the asymptotic distribution properties of the approximate

ML estimator ¢,. The Fisher information matrix is defined to be

In(é) = A;2 {[ lm(¢)H Im(¢)]} (4.55)

or, equivalently [54],

1) = ~31z2{ Zlu(9)}. (4.56)

Theorem 4.1 suggests that

62
im_ 1) = Jim_ |32 { (@]

Let us also define the matrix

') = 5o [%logsz(w,m] = logsx(w,¢)]tdw. (457)

Taking the derivative of (4.11) with respect to the parameters ¢ we get

6¢ u(4) = 2(21r)2/ L, lad, log Sx(w, ¢)] [ w ¢)] (4.58)

Differentiating (4.58) we obtain the matrix of second derivatives
1M(¢)

2(21r /.,/ st(w) L’3¢ B S:(w, ¢)] L’?¢ log 52(«, ¢)] &

2(27r)2/ /_[ :(M(‘;,) 57 0B Se(w, @)dw.  (4.59)

Under the assumed regularity conditions it follows that

a¢2

Jim_ %E {%Eu(gb)}
_ ﬁ /_’; /_ : [5% logSz(w,qS)] [ x(("’ ,‘Z"))] dw (4.60)
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a¢*
* 5.(w, o)
2(2,,.)2 /_ N (w’¢°) 5% logSz(w ¢)] [ 5 log S (w, ¢)]
+oa L L [1 - ‘if&fi;")’ 57 08 S:(w, ). (461)

Jim_ —o { Al IM(¢)}

Here, we used

Jim E(Pau(@)) = fim_ 3 B{C.H}exp(xs')
teQ

= S;(w, ¢0)a

where P; p(w) is defined in (4.9) and the biased sample correlations C,(t) are
given by
C.(t) = M"’ Y. z(s)z(s +t).

s+teQin
Letting ¢ = ¢, in (4.60) and (4.61), it follows that

g -
Jim_ %E { > ¢1M(¢o)} —o (4.62)
and
im =8 {-Zi(d0)} = ~T(g0) (463)
W ME | Bg? MO T TPk ’
Consequently,
Alli{_nm Im (o) = I'(¢0) (4.64)

in the sense of convergence in weak probability. We now give the following theo-

rem.

Theorem 4.3 Let Assumptions 4.1 through 4.5 apply, and furthermore, assume
2

that — 3 ¢2 Sz(w, @) ezists for all g € ® and is continuous in w. Then as M — oo
the vector M — @] converges in distribution to N'(0,T-(¢b,)) where T'(9) is
given by (4.57).
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Proof: Let

a(w’¢) =h' [% logsz(wa¢)] (4'65)
and
1
() = =37 | (@], (4.6
where h = col {Ay,...,h,} is an arbitrary p-dimensional vector such that |h| # 0.

Combining (4.58) and (4.66) we compute

h* Ap(das) — ht An(eho)
= s [ [ [ oesitonsol] [t - Zeh
_% L [i 1°gSz(w,$M)] [l - %} dw
oL Lfoenp-222

—a(w,dy) [1 %} }dw, (4.67)

and after some algebraic manipulation this becomes

h*Ap(dy) — h* An(4)

= 2(27r)2/ / [Pe() = Salw, ¢°][a(w ZA:,)) az(f;ﬁf)]

~sy L L “’¢“)[ So3s f:,))]

But ¢,, is a solution of —IM(qS) 0, hence A (@) =0 and for all h

o¢
Wu(@o) = 2‘(247)‘2/ [t i - 2
a(w, Py) _ a(w, ¢o)
2(21r)2 /.,r /_,[ Sa(w, ¢1:,) :(w,d’o)}
[Pep(w) — So(w, o)) dw. (4.68)
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Consider only the first term in (4.68). The mean value theorem implies that

there exists ¢* = (1 — )@, + 6¢b,s, for some 0 < § < 1, such that

sary L [ ‘““[ (5 fﬂ) e

a(w, Pu) -
= 2(27!')2/ / S:r:( ,‘;;!) [Sz(w’¢M) —Sz(w1¢0)]dw

_ " a(w, dy)
= 2(2,,.)2 _/_h/ 5. (w, ¢A:4) [3¢ Sy(w,@" )] [¢M $oldw,
which upon again using the definition (4.65) yields
M ® ® 1 Sx(w)¢ )
sy [ [ ot |1 - S35
- 1 e 1 ) .
= M[¢M - <bO] {2(27!‘)2 [ﬂ[ﬂ_ [Sz(w,éM) a¢sz(w’¢ )]

[ log S, (w ¢M)]‘dw}h (4.69)

Theorem 4.2 showed that glim @r = Do and this implies %)‘lim " = ¢,

Clearly,

Mmoo [ Suw, ) .
2(27)? /;T .[.,, a(w, Ppr) [1 - m dw — M(pp — do)'T(do)h  (4.70)

in probability as M — oo.
Now consider the second term in (4.68). Again, the mean value theorem

implies that for some ¢*,0< 8§ <1,

[ |fd _ ot ip (o) - suto ol

= Mpy - ol {2(27‘-)2 /.,, /_,, ¢ |S [ ‘:;4;))]
[Pastl) = Se(w, 8p)ldor} (a71)

2(21:')2
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It is a simple matter using (4.65) to show that

) [;((‘: q;‘))] - {82(: ¢')3‘1’ Sz(w, ") |
- SX( 2,¢) [a¢ Slw "i")][ (w,qb*)] }h
257w, 4h,

a¢2

and if we use this relationship in (4.71), we get that

a(w ¢M) a(wy ¢0)
2(21r)2 /_,, /_”[ 5.(w, Bar) x(“’ad’o)] [Prm(w) — Sz(w, ¢po)]dw

t 1 " T 82 -1 >
= Mlbw— 6o { oz [ [ g7 ")

[P m(w) — 8,(w,¢o)]dw} . (4.72)

Now let

t
bo(t) = (2,,)2 .- ¢2 H(w, ") exp(yw't)dw (4.73)
and let B; be the matrix whose ¢, jth element is b,(t; — t;), t;,t; € Q. Then,
using the relationship (4.24) and Lemma 4.1, Section 4.5, it follows that
. 1 it D= L ]
Al‘ll;n“ m[x Bzx —tr {QxBx}]
1 T T 32 -1 .
= @ L L 5gs e
'[pz,M(w) - ‘sz(w’ ¢0)]dw' (4'74)

Moreover, we have that

: 3 . 1 » *
lim_ M,E{x'B* x —tr{Q.B3}} = Jim_ —tr {Q:B: — Q=B;)

=0 (4.75)
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and

Lim M4V{x‘B‘ x —tr{Q:B }} = lim LE{["‘B;XF}
= —tl‘{[Qz }

=0 (4.76)

Consequently, since @, is a consistent estimator of ¢y, the left side of (4.71) and
the second term of (4.68) converges in probability to zero as M — co. Hence,
MY (o) [@ar — Dol — An(,) converges to zero in probability.

Now, to complete the proof we need only show that Ap(¢y) is an asymp-
totically normal p-dimensional random vector distributed as N (0,['(¢,)). We
digress for the moment to discuss the log likelihood ratio, a device first suggested
by LeCam [59] to replace the artificial requirements of 2nd and 3rd-order differ-
entiability of the likelihood function used to prove asymptotic normality of ML
estimates. For example, see [60, 61, 62]. The likelihood ratio has been thoroughly
studied by Ibragimov and Has’minskii [63] for ML and Bayesian parameter esti-
mation from independent data. They also suggest that much of their analysis of
the likelihood ratio is applicable to dependent situations. Dzhaparidze [56] ap-
plies this device to prove asymptotic normality of ML parameter estimates in the
more general 1-D time series setting. The results we present below for our 2-D
problem follow Dzhaparidze’s arguments, and so we omit the details. Instead,
for readers interested in the complete proof, which is extensive and encompasses
many preliminary results, we suggest [56] for review.

To conclude the proof of the asymptotic normality of M (¢, — ¢,) we begin by
defining the log likelihood ratio. Denote by Fy(S.(w, ¢)) or equivalently by F M,

the Gaussian probability distribution which corresponds to the set of observations
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Xy whose spectral density function is Sy(w, ¢). The log of the likelihood ratio is
defined to be the log of the Radon-Nikodym derivative given by
dr,, Fugp,
Ay, 8) = log | 222 (4.77)
Mp,
which in the case of the absolutely continuous Gaussian distributions is equivalent

to

A1, 8) = 5 {logldet{@s, 1] - logldet (Qs, )] + x'[Q3! - Q&) (478)

where Qs, and Qs, are the M? x M? covariance matrices for S,(w,¢,) and
Sz(w, @,), respectively.

One then proves that if S and G are spectral density functions and Gy — G
as M — oo, then

A(Sv g) - A(S7 gM) dl (4'79)

in fM'¢ probability as M — oo. In particular, if S = Sz(w,d,) and Gur =
Sz(w, @py), then

M)~ ey | [ D=2l [ Dot s, )| o

4(27r)2/ / la¢ log 5w, ¢o)] dw
= A(bo,dur) — b Au(do) + h'T(o)h - 0(4.80)

in }-M-d’o probability as M — oo.

This last result requires for matrices of Fourier coefficients Qs, Qa, and Qs
a(w, ¢)
Sz(w, bo)

corresponding to the functions S,(w, ¢,), a(w, ¢,), and , respectively,

that the mean and variance of the quadratic form

x'[Q5' Qo — Quys]x
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are bounded. This fact is guaranteed if ¢-(t) and p.(t), given by

() = oz [ [ 5e(00, ) explrtt)des (4.81)
and
pa(t) = / / ;,(:a d;j) exp(w't)dw, (4.82)
satisfy the conditions
I lasOFf < o0 (4.83)
and
0 < oo (4.84)

That (4.83) implies (4.84) is an open question, but this assumption seems to be no
more a severe restriction than those already imposed by Assumptions 4.1 through
4.5 since the NCAR signal plus noise model satisfies these conditions.

A parametric family of distributions {.7-'M'¢, ¢ € ®} and ¢ C R? is called
locally asymptotically normal (at a fixed point ¢,) if there exists a sequence of
p-dimensional random vectors {Ap(d), M = 1,2,...} and a positive definite

p X p matrix I'(¢,) such that

1. A(@o, o+ 47h)—h*Ap(h)+3h'T(d)h — 0in F ¢ Probability as M — oo

for any p-dimensional vector h, and

2. Ap(y) = N(0,T(¢hy)) in distribution as M — oo.

That the family of Gaussian distributions {F, M, ¢ € ¥} resulting from the
Gaussian random field {z(s), s € )} with spectral density function S (w,¢)
is locally asymptotically normal in the sense that the vector Aps(¢) in (4.80) is
distributed as A(0,I'(¢)) as M — oo is a consequence of [56, Theorem Al.2,
Appendix 1 to Chapter 1].
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The theorem follows. O

Theorem 4.4 Under the conditions of Theorem 4.3 and if z(s) is Gaussian, then

J’M is an asymptotically efficient estimator of ¢,.

Proof: The theorem follows from (4.64) and the fact that the true ML estimator

is an efficient estimator when {z(s)} is a Gaussian process. o

4.2.2 Existence and Uniqueness

Existence and uniqueness questions naturally arise in view of the possibilities that

the approximate ML equation

M) = 5l(9) = 0. (4.85)

may have no solution or more than one. The existence question is easily answered
by the following argument. The approximate ML estimate &M, being consistent
(Theorem 4.2), converges in weak probability to ¢,. Since ¢, lies within an open
set (Assumption 4.1), frr(¢) takes on its minimum value within an open set. The
existence in probability of a root of (4.85) is guaranteed by the fact that when
a differentiable function reaches a minimum in an open set, the derivatives must
vanish at that point [64]. Thus, at the least, ¢, solves (4.85) asymptotically.
On the other hand, uniqueness is not so easily established. For linear 2-D
models uniqueness has been established by showing that the approximate ML
function is convex [12, 35]. However, Sharma and Chellappa’s convexity proof
[12, Theorem 1] has errors even though their conclusion appears correct in view
of the correspondence between Guassian-Markov random field (GMRF) models

[35] and NCAR models. Here, for the NCAR plus noise model convexity of Is(¢)

69



is not readily apparent. But even if the solution is unique in the Gaussian case, it
may not remain that way when working with real data, which is rarely Gaussian
and is certainly not for sinusoidal signals with additive Gaussian noise. Hence, we
only suggest here that the theoretical asymptotic results of consistency, efficiency,
and normality apply to ¢, and not to just any solution of (4.85). Consequently,
for the empirical solution one must guarantee that the true optimum point of the
approximate ML function is computed and not rely on any stationary point when

computing the spectrum estimate.

4.2.3 The Asymptotic Spectrum Estimate

In this section we have proven the theoretically important asymptotic properties
of consistency, normality, and efficiency of the approximate ML parameter esti-
mates for a Gaussian random field having the regularity properties described in
Assumptions 4.1 through 4.5. Since the NCAR plus noise model (4.1) and (3.1)
has these properties, the approximate ML yields a consistent estimate of the spec-
tral density function S,(w, ¢) of X', This follows from the property of consistent
estimators that any continuous function of a consistent estimate is also consis-
tent [54]. That these properties also apply to the toroidal lattice model is clear
from the fact that the discreet Fourier transfrom (4.13) converges to the Fourier

transform (4.10) as the number of observations tends to infinity.

4.3 Solving for the Approximate ML Estimates

Equation (4.14) is highly nonlinear in the parameters, and a good nonlinear min-

imization algorithm is required to solve for the spectrum parameters. There
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are many gradient search algorithms available for this purpose such as Newton-
Raphson, conjugate gradient, or modified Newton method. Regardless of the
algorithm the optimization procedure to minimize (4.14) requires initial starting
values for the parameters. These initial values must be chosen judiciously in view
of the fact that (4.14) may have local minimum or other stationary points where
the algorithm may prematurely terminate and result in parameter estimates yield-
ing inaccurate spectra. The initial values should be as near the global minimum
as possible to avoid local stationarities.

There are several possibilities. For example, least squares (LS) are often used
for initial conditions, but these are not consistent for NCAR models and for low
SNRs the least squares estimate of 8% will be unrealistically large. In [65] bias-
compensated least squares (BCLS) estimates for the signal plus noise model were
proposed. Let xg = col {z(s+r), r € N} be the p-dimensional neighborhood
vector, then these estimates for the NCAR plus noise model are

éBCLS = [ z: xsxf, - ‘:/2MZI,,] l Z xs:c(s)] (4.86)

8EQ (3137}

and

a 1 at R at A
ﬁ%CLs = W Z ["’(3) = oBCLSXS]Z - ’72(1 + 9BCLsaBCLS)- (4~87)
8EfN M

To compute the bias-compensated least squares estimate an initial guess for 42 is
needed. In most array processing applications the signal noise can be measured
during periods when the signal is absent, thus yielding an estimate 42 to be
used in (4.86) and (4.87). For low pass signals a value of |X(8)|? at large spatial
frequencies may be used since the noise power is distributed evenly over the whole
spectrum and the signal power is concentrated near the origin [66]. Alternatively,

the following procedure will yield a good starting value for 42 since {|X(s)|?, s €
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0} for sinusoids in noise contains regions between peaks with contributions from

only noise.
1. Compute the periodogram | X(s)|?,

2. Smooth the periodogram with a n X n averaging window filter to obtain

|X(s)|", and

3. Let 42 = min[X@)[".

Another alternative for initial conditions is to compute estimates of & based
on estimated correlations similar to the procedure in [65). Define y; = col {y(s +

r), r € N}, xs = col {z(s +r), r € N}, and ng = col {n(s +r), r € N}. Then
z(8) = 8*(xs — ng) + w(s) + n(s) (4.88)
and
E{z(s)z(s+t)} = O'E{xsz(s+t)} — 6°E {nsz(s + t)} (4.89)
+E {w(s)z(s + t)} + E {n(s)z(s + t)} . (4.90)

Now let p(t) = Tgeq,, 2(s)z(s + t) and qt = Fgeq,, Xsz(s + t). Equation (4.90)
implies that

p(t) =~ qi6. (4.91)
for values of t = t,,%; outside the local region where the data is correlated.

Generally, for the NCAR model this region is defined by the set {t|t € N’} where
N’ = {r,2r[r € NU(0,0)}. Now define

p = col {p(l)v cos ’p(T)}
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and

| ar |

where T is the number of elements t. Then
p = Q6.
If T is equal to the number of parameters, then take as an estimate of 8
6=Q'p (4.92)

assuming Q! exists. Better results will be obtained if T is greater than the
number of parameters. In this case let € = p — Q8 and I = 1e'e. To estimate 0,

take the value minimizing ¥ which is given by
OLscor = [Q'Q17'Q'P (4.93)

01500 = [Z qu;] [E QtP(t)] . (4.94)
tgN’ tgN

B2 can then be computed by (4.87) given a value for 42. These estimates will be
designated as the least squares correlation (LSCor) estimates.

Finally, one can compute the ordinary LS estimate for 8 and compensate the
LS estimate of #% by using (4.87). These estimates will be designated as the
compensated least squares (CompLS) estimates.

The model order must also be determined. Generally, for Gaussian data the
Akaike criteria [48] can be used to find the optimum order. However, in theory it
is possible to use second order autoregressive models for modeling the spectra of

sinusoids [25). In the presence of added noise an NCAR only model will require
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larger model orders; but, this should not be the case with the NCAR plus noise
model. The added noise should have no impact on the order required of the
autoregressive part of the model. Thus, the model order will be a direct function

of the number of sinusoidal signals present.

4.4 Experimental Results

To compare NCAR plus noise modeling with NCAR only modeling for spectrum
estimation we conducted several experiments using both Gaussian data and sim-

ulated planar array data.

Experiment 1: In this experiment we evaluated and compared the performance
of NCAR plus noise spectrum modeling with that of NCAR only spectrum mod-
eling when confronted with Gaussian data. We began by generating a 64 x 64
array of equally spaced Gaussian data obeying a 2nd-order NCAR random field
having the parameter values shown in Table 4.1. The procedure in [16] was used

to generate the data on a toroidal lattice.

[610=6-10 001 =001 [011=0_11 [0-10=01-1] B |

|| .19450 .05710 | —.13600 .23470 1.0

Table 4.1: Model parameters used to generate NCAR signal data used in the
experiments.

In part 1 of this experiment we computed spectrum estimates by fitting (esti-
mating parameters) a 2nd-order NCAR model and a 2nd-order NCAR plus noise

model to the toroidal lattice noise free NCAR data, i.e., v2 = 02 = 0.0. Parameter
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estimates were computed using a gradient descent algorithm to minimize the ap-
proximate likelihood given in (4.14). Least squares estimates were used as initial
conditions to start the NCAR only minimization while bias-compensated LS esti-
mates were used for the NCAR plus noise minimization. The initial additive noise
variance estimate was arbitrarily selected as 62 = 0.11064. Estimated spectra for
both models were then computed by substituting the estimated values of 8 and
0, shown in Table 4.2 into (4.15) and computing the spectrum S.(ws) = S,(ws)
at the lattice points in the quarter spatial frequency plane. A plot of the un-
smoothed periodogram {10 log |X(s)|?} of the noise free NCAR data is shown in
Figure 4.1, and the theoretical spectrum {10logS,(ws)} using the true values of
the parameters from Table 4.1 is shown in Figure 4.2. Figure 4.3 shows a plot
of the estimated signal spectrum {10logS,(ws)} using NCAR only model pa-
rameter estimates, and Figure 4.4 shows a plot of the estimated signal spectrum
{10log Sy(ws)} using the NCAR plus noise model parameter estimates. For more
exact comparison Figure 4.5 is a plot comparing a slice of each spectrum along the

column { (wl = ’;—;,wg = 1:;2—2#) k=0,... ,31} and Figure 4.6 is a plot comparing

10 k
a slice of each spectrum along the row {(wl = 3—5-,(02 = 3—;-) |k =0,... ,31}.
For this noise free data both procedures, using identical model orders, com-
puted essentially the same values of the signal model coeflicients and yielded
similar estimated signal spectra. The estimated noise variance computed with

the NCAR plus noise model was 62 = .00409, essentially zero, as expected.

In the second part of this experiment we added IID Gaussian noise with mean

zero and variance o2 = 3.87363 to the NCAR signal data, yielding data with an
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approximate signal-to-noise ratio (SNR) of 0db. Here, SNR is defined by

g

o2
SNR = 10log (—g) , (4.95)

where 02 = V {y(s)} and 02 = V {n(s)}.

We computed the toroidal ML estimates of 8 and 8 for the NCAR only model
and S, @, and o, for the NCAR plus noise model. These estimates are shown in
Table 4.2. The unsmoothed periodogram {10 log | X(s)|?} of the signal plus noise is
shown in Figure 4.7 and the estimated signal plus noise spectrum {10log S.(ws)}
and estimated signal only spectrum {10logS,(ws)} using 2nd-order models are
shown in Figures 4.8 and 4.9, respectively. Here, S;(ws) # S,(ws). These results
clearly show that a 2nd-order NCAR only model is not sufficient to estimate the
spectrum well, so the spectrum was estimated using increasingly higher order
NCAR only models. The result of a 5th-order NCAR only model is shown in
comparison to the theoretical signal plus noise spectrum and the 2nd-order NCAR

only model spectrum in the spectra-slice plots of Figures 4.10 and 4.11.

Model SNR 010 Oo.0 011 01, B o

True Values N/A .19450 | .05710 | —.13600 | .23470 1.0 0.0/3.87363
NCAR only | no noise | ..19020 | .06168 | —.13321 | .23432 | 1.01166 N/A
NCAR+N | no noise | .19052 | .06162 | —.13335 | .23454 | 1.00560 0.00409

NCARonly | odb | .09247 | .04638 | —.07035 | .13178 | 5.08819 | nNyA
“ NCAR+N | o0db | .19040 | .04472 | —.13033 | .23165 [ 1.02160 [ 3.86090

Table 4.2: Toroidal ML estimates of 2nd-order NCAR only and NCAR plus noise
model parameters.
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Figure 4.1: Unsmoothed periodogram of 2nd-order NCAR signal with no noise.

Figure 4.2: Theoretical spectrum of 2nd-order NCAR signal with no noise.
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Figure 4.3: Estimated spectrum of NCAR signal with no noise using 2nd-order
NCAR only model.

o e e
S e —
WERNIIIES =,

OO OOPTUTT Sraeaee

T
SIS =

N ‘\“‘:““sg‘:-:“ui—

Spectrum Magnitude (db)

[igure 4.4: Estimated spectrum of NCAR signal with no noise using 2nd-order
NCAR plus noise model.
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Figure 4.5: Column slices of 2-D spectra of 2nd-order NCAR signal with no noise.
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Figure 4.6: Row slices of 2-D spectra of 2nd-order NCAR signal with no noise.
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Figure 4.7: Unsmoothed periodogram of 2nd-order NCAR signal in Gaussian noise
with SNR = 0db.
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Figure 4.8: Estimated spectrum of NCAR signal in Gaussian noise with SNR =
0db using 2nd-order NCAR only model.
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Figure 4.9: Estimated spectrum of NCAR signal in Gaussian noise with SNR =

0db using 2nd-order NCAR plus noise model.
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Figure 4.10: Column slices of 2-D spectra of 2nd-order NCAR signal in Gaussian

noise with SNR = 0db.
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Figure 4.11: Row slices of 2-D spectra of 2nd-order NCAR signal in Gaussian
noise with SNR = 0db.
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Experiment 2: To obtain the performance statistics of signal plus noise spec-
trum estimation we generated ensembles of 32 x 32 arrays of Gaussian data.
The first ensemble consisted of 64 arrays of toroidal noise free data E, = {J* =
{yx(s),s € Qa},k = 1,...,64}, each array Y* generated in the manner of [16] and
according to a 2nd-order NCAR model having the parameters displayed in Table
4.1. To form two additional ensembles of signal plus noise data, E., and E,;, we
added two IID random noise fields having normal distributions with means of zero
and variances 02 = .16 and ¢? = 1.0, thus yielding signal plus noise data with
SNRs, computed by (4.95), of approximately 20db and 5db, respectively. Using
the toroidal ML procedure we computed parameter estimates from all sets of data
in each ensemble for both 2nd-order NCAR only and 2nd-order NCAR plus noise
models. The results of Experiment 1 indicated that 2nd-order was sufficient for
estimating the spectra well with a NCAR plus noise model. The estimate av-
erage, average error (&), and average squared-error (¢?) statistics of the toroidal
ML parameter estimates are shown in Tables 4.3, 4.4, and 4.5, respectively. The

average error was computed by
1 64 - 0
er=— 2. (0f-62), reN, (4.96)
64 .

and the average squared-error was computed by

64
=Y (-0, reN, (4.97)
64 k=1

where 82,r € N,, are the true values of the coefficients from Table 4.1. Similar

equations were used to compute the statistics for S.
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Model SNR )0 fo,1 01,1 6_1, B Oa
N/A .19450 | .05710 | —.13600 | .23470 1.0 0.0/0.16/1.0
NCAR only | no noise | .19466 | .05615 | —.13710 | .23315 | 0.99233 N/A
NCAR+N | no noise | .19658 | .05586 | —.13801 | .23448 | 0.95634 0.02409
NCAR+N 20db .19296 | .05420 | —.13528 | .23484 | 1.00667 0.41096

true values

NCAR+N 5db 19162 | .04648 | —.12978 | .23607 | 1.07997 0.91227

Table 4.3: Average toroidal ML estimates of 2nd-order NCAR only and NCAR
plus noise model parameters for data with various SNRs

" Model ] SNR 010 001
NCAR only | no noise | .00016 | —.00095

NCAR+N | no noise | .00208 | —.00124
NCAR+N 20db | —.00154 | —.00290
NCAR+N 5db —.00288 | —.01062

Table 4.4: Average toroidal ML estimate errors of 2nd-order NCAR only and
NCAR plus noise model parameters for data with various SNRs

" Model I SNR l 01,0 | 001 | 911 |9_1’1 l ﬁ‘ I o’,‘,J

NCAR only | no noise | .00013 | .006019 | .00012 | .00014 | .00282 | N/A
NCAR+N [ no noise | .00015 | .00020 | .00012 | .00015 | .00771 | .00208
NCAR+N 20db .00019 | .00025 | .00014 | .00019 | .01178 | .10922

|| NCAR+N 5db .00030 | .00059 | .00028 | .00035 | .03575 | .02371

Table 4.5: Average toroidal ML estimate squared-errors of 2nd-order NCAR only
and NCAR plus noise model parameters for data with various SNRs
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Experiment 3: Using the data ensembles from Experiment 2, we evaluated the
impact of the various types of initial conditions on determination of the toroidal
ML function global minimum. Table 4.6 shows the average errors of the BCLS,
LSCor, CompLS, and LS parameter estimates obtained from E_;, the ensemble
of 5db data. In all cases 02 = 1.0 was used as the initial estimate of the additive
noise variance. Figure 4.12 compares the average errors of these initial parameter
estimates. Note that the LS estimates are the same as the CompLS estimates

except for Brs which is significantly larger than the compensated value BcompLs-

Clearly, the CompLS and the ordinary LS estimates have smaller errors than
the BCLS and LS correlation estimates suggested by Woods, et. al., in [65]. One
would suspect that the CompLS estimate should provide the best set of initial
conditions. To test this notion we used the initial conditions from Table 4.3
as the starting values for the toroidal ML procedure. The conjugate gradient
minimization routine available in the IMSL library [67] was used to minimize
(4.14). Figures 4.13, 4.14, 4.15, and 4.16 plot the values of the toroidal ML
function at the convergence of the gradient descent algorithm and the global
minimum for each of the 64 arrays of 5db NCAR signal data. From these figures
we note that LS initial conditions lead to the global minimum® in 64 of the 64
minimizations and CompLS led to the minimum in 63 of the 64 minimizations
while BCLS and LSCor estimates did poorly, with the apparent global minimum

being reached in only 24 of 64 and 40 of 64 cases, respectively.

1Theoretically, the global minimum cannot be determined with certainty. Thus, the apparent
global minima were established by selecting the minimum value of the likelihood function from
all the optimization runs for each set of data and then comparing the values of the parameters
at these optimum points to the true known parameter values. If the estimates were very close
to the true values, the minimum computed likelihood function value was taken to be the global
minimum.
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To further analyze this situation we repeated this last experiment with an
initial value of 62 = 1.2. Initial conditions for the 5db data were then computed
using this value of 2. Table 4.7 shows the initial condition values and Figure 4.17
plots the initial condition average errors. Figures 4.18 through 4.21 plot the values
of the toroidal likelihood function at convergence and at the global minimum for
each of the 64 arrays of 5db NCAR signal data. Here the global minimum was
found in 63 of the 64 cases starting from the LS estimates and 61 of the 64
cases starting from CompLS estimates. On the other hand, the apparent global
minimum was reached only 10 of 64 cases from BCLS estimates and 37 of 64
cases from LSCor estimates. It appears that even with a poor estimate of the
additive noise variance LS and CompLS provide better initial conditions than
bias-compensated or LSCor estimates. Moreover, the results suggest accurate
coefficient estimates are more important than accurate 8 estimates for putting

the toroidal ML function in the vicinity of the global minimum.

01,0 00,1 611 b_1n | B |onl
True Values | .19450 | .05710 | —.13600 | .23470 1.0 1.0

Bias-Comp LS | .25406 | .03320 | —.16334 | .31601 | 0.80196 | 1.0

LS Cor .25103 | .03199 | —.13823 | .30709 | 1.00920 | 1.0
Comp LS .20930 | .06068 | —.14666 | .27807 | 0.84650 | 1.0

LS .20930 | .06068 | —.14666 | .27807 | 2.14269 | 1.0

Table 4.6: Average initial conditions for SNR = 5db data computed using various
estimators with high precision noise variance estimate.
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Figure 4.12: Comparison of average initial condition errors for SNR = 5db data
computed using various estimators with high precision noise variance estimate.
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Figure 4.13: 2nd-Order NCAR signal plus noise model toroidal ML global min-
ima and values computed from BCLS initial conditions with high precision noise
variance estimate.
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Figure 4.14: 2nd-Order NCAR signal plus noise model toroidal ML global min-

ima and values computed from LSCor initial conditions with high precision noise
variance estimate.
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Figure 4.15: 2nd-Order NCAR signal plus noise model toroidal ML global minima

and values computed from CompLS initial conditions with high precision noise
variance estimate.
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Figure 4.16: 2nd-Order NCAR signal plus noise model toroidal ML global minima
and values computed from LS initial conditions with high precision noise variance
estimate.

( | 610 | G0a0 | 61y | 60-30 | B |oi]

|| True Values | .19450 | .05710 | —.13600 [ 23470 [ 1.0 | 1.0
|| Bias-Comp LS | 26851 | .01715 | —.16331 | .32809 | 0.51878 | 1.2
|| LS Cor | .25103 | 03199 | —.13823 | .30709 | 0.77216 | 1.2
|| Comp LS | .20930 | .06068 | —.14666 | .27807 | 0.58726 | 1.2
|| LS 20030 | .06068 | —.14666 | 27807 | 2.14269 | 1.2

Table 4.7: Average initial conditions for SNR = 5db data computed using various
estimators with poorly estimated noise variance.
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Figure 4.17: Comparison of average initial condition errors for SNR = 5db data
computed using various estimators with poorly estimated noise variance.
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Figure 4.18: 2nd-Order NCAR signal plus noise model toroidal ML global minima
and values computed from BCLS initial conditions with poorly estimated noise

variance.
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Figure 4.19: 2nd-Order NCAR signal plus noise model toroidal ML global minima
and values computed from LSCor initial conditions and poorly estimated noise
variance.
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Figure 4.20: 2nd-Order NCAR signal plus noise model toroidal ML global minima
and values computed from CompLS initial conditions and poorly estimated noise
variance.
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Figure 4.21: 2nd-Order NCAR signal plus noise model toroidal ML global min-
ima and values computed from LS initial conditions and poorly estimated noise
variance.
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Experiment 4: This experiment was conducted to evaluate and compare the
performance of the NCAR only and the NCAR plus noise models to detect and
resolve 2-D sinusoids in additive Gaussian noise.

We computed spectrum estimates from simulated planar array data. To
simulate this data we generated 64 x 64 arrays of sinusoidal data in additive
IID Gaussian noise in accordance with (1.3) and (1.4) having parameter values
Y, = 3;12-[15, 17}t and ¢, = ;—2[19,21]' and various values of 2. Here, 42 # o2
and SNR is defined by

rd

SNR; = 10log (—) , 7=1,...,L. (4.98)

2
202

2
)

Spectra were estimated by using the toroidal ML procedure for both NCAR
only and NCAR plus noise models of various orders. Least squares and BCLS
estimates, with the initial estimate of 72 computed by selecting the minimum value
of the periodogram averaged over a 7x 7 window, were used as initial conditions for
the minimization procedure. The results are shown in Figures 4.22 through 4.30.
For example, Figure 4.22 shows the unsmoothed periodogram and the estimated
spectra resulting from application of the toroidal ML procedure with 2nd through
6th-order NCAR only models when the SNR = 10db. Figure 4.23 is similar to
Figure 4.22, but here NCAR plus noise models were used. Figures 4.24 through
4.30 are similar plots for SNRs ranging from 5db to —20db.

These estimates were computed by a conjugate gradient minimization routine,
and in all cases stationary points were found, i.e., the likelihood function converged
and at convergence the gradient of the likelihood function was approximately
zero. Many of the NCAR only results were local minima; but local minima were

easily avoided by the conjugate gradient algorithm when using the NCAR plus
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noise model. In several cases, specifically, Figures 4.28(e), 4.29(c), and 4.30(d),
the estimates of 8 yielded exact poles of the spectrum, and we were unable to
compute the spectrum. However, the poles were located correctly.

Additional experiments were conducted to evaluate performance with sinu-
soidal signals having closer spatial frequencies and differing amplitudes. Fig-
ure 4.31 is the estimated spectrum using a 2nd order NCAR plus noise model
on data with ¢, = %[8,9]‘ and @, = %[10,11]‘ and SNR = 0db. Figure 4.32
shows the resulting estimated spectrum of data consisting of two unequal ampli-
tude sinusoids, ¢, = ;—2[15, 17)* and ¢, = -;—2[19,21]‘ with SNR, = 10db and
SNR; = 0db.
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Figure 4.25: Periodogram and estimated spectra for two sinusoids in Gaussian
noise with SNR = 5db and using NCAR plus noise model.
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Figure 4.29: Periodogram and estimated spectra for two sinusoids in Gaussian
noise with SNR = —10db and using NCAR plus noise model.
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Figure 4.31: Estimated spectrum for two closely spaced sinusoids in Gaussian

noise with SNR

0db and using NCAR plus noise model.

Figure 4.32: Estimated spectrum for two unequal amplitude sinusoids in Gaussian

0db and using NCAR plus noise model.

noise with SNR = 10db and SNR
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4.5 Useful Lemmas

We prove the three lemmas used in the proofs of Theorems 4.1 through 4.4.

Lemma 4.1 Let A;(w) and B,(w) be two strictly posilive and continuous func-
tions of w. Futhermore, let A and B be the M? x M? matrices whose i,j-th

elements are az(t; — t;) and by(t; — t;), respectively, and where

az(t)

ﬁi ./-: /_: Az(w) exp(yw't)dw
) = (211r)'~‘ /_: /_: B.(w) exp(yw't)dw

Then,
Jim = —tr{AB} = (2 7 j / ) By(w)dw

Proof: The i, j-th element of the product of the matrices A and B is given by

[AB)i; = ) ax(ti — t)b(t — t;)

teQy

so the trace is
tr{AB}= Y > a.(s—t)b(t —s).
8€QM teQy
Consequently, we have

= Au_pw M—z Y Y au(s —t)b(t —5)
= lim

8€flp tepr
M=o A_JE €y tenu (2"")4 / /_,, / / A:(w)B:(7)
-exp[yw'(s — t)] exp[s7*(t — s)|dwdr

= },‘E‘N'Aﬁteﬂ (2#)2./” L L L Ao

105



.exp[](c.u—‘r)‘t](2 7
80y

= J,lﬁzrw—zteﬂ m) s L A)B)

exp[;(w T)‘t]6(w - 7)dTdw

- e g L L

(27r)2 ~/;1r /_,, Az (w)Br(w)dw.

Lemma 4.2 Let S;(w) 2 k > 0 and define

elt) = gz [ [ S:() explauttyds

and

£) = (2+)2 i / :g;l(w)eXp(Jw‘t)dw,

then Tiea., la=(t)PIt|? < oo implies Tieq,, laz(t)[?|t]> < co.
Proof: The inverse Fourier transform gives
= Y g(t)exp(—jw't).
tefe

Differentiating (4.101) with respect to w,

d
d_sr(“’) = Z —stg(t) exp(—Jw‘t)
d tENoo

Y expl—j(w — 7)'t|drdw

(4.99)

(4.100)

(4.101)

(4.102)

Hence, ]%Sz(w) and tq.(t) are a Fourier transform pair, and by Parseval’s the-

orem

(27")2 t€000
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Similarly, since

S (w) = tZﬂ: a(t) exp(—jw't),
€flco

we have that

oL

tefle
But
d 2
o] = sl
and consequently,
a:(t)It} = 5- dw
X lex(0l (2,,)2 i
4 T d
- (2«)2 /_/_, S3(w) |d_w @
™ T 2
< —
= ki(27)? dw
- 4 z lqz(t)|2|t|’<oo
t€Reo

2
dw= Y la(t)PIt

2
dw

(4.104)

(4.105)

(4.106)

(4.107)

Lemma 4.3 Let Tieq,, |g:(t)2t|? < 00 and Tieq,, Ja=(t)*[t]* < oo, where g(t)

and a.(t) are defined as in Lemma 4.2. Then

|tr {Ipr2e — @z Az} | < 00

and

tr{[IMz - Q,Az]""} < oo.

(4.108)

(4.109)



Proof: On the first hand, the (7, j)-th entry of Ipz is 6(t; — t;) = Tieq,, ¢=(t —

t;)a-(t — t;). This is shown as follows:

E gz(t — ti)az(t — t;)

teQoo

= 5 Gy [ [ Setw) explats - el
ﬁ /_ : f_ z S;HT)exppTi(t — t;)]dT

= ﬁ [_ : /_ : Sz(w) /_ : /_ : 871 () exp[—y(w'ti + 7't;)]
' {(217)2 > expliw + r)‘t]} drdw

tee

- ﬁi /_: /.: Sa(w) /_i /_1:, 871 (T)exp[—y(w'ti + T't;)]
S(w + T)drdw

= 6;—)5/-: [:exp[—jw‘(t;+tj)]dw
= §(t; —t;). (4.110)

On the second hand, the 2, j-th element of @, A is

[QzAz]iJ' = Z qr(ti - t)a-"-’(t - t;) (4.111)

teQnr
Combining (4.110) and (4.111) we have the 7, j-th element of Ip2 — Q- A as

U2 — QuAslij = Y ulti — t)as(t — t;) — Y go(ti — t)as(t — t;), (4.112)

teoo teny
and since ¢(t) = ¢gz(—t) and a(t) = az(—t), (4.112) can be written as

[z = QzAs)i; = D galt —ti)az(t —t5) = 30 ga(ti — t)as(t — t;)

= 2 @(t —ti)a:(t — t;). (4.113)
tgQn

The trace can now be written as

tr {IM" - Q::A:r}
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= Y. Y. g(t—s)a(t—s)

SEQM tEQ)s
= ¥ T alt-salt-s)
8€ENQM teQe
- ) 2 t:(t—s)a(t—s)
8€fN LENy
= z Z ¢z(t)a=(t) — E E 2:(t — s)az(t —s)
8EN M teQoo 8€EQr tEQM
= M? z q,,.(t)a,,(t)
teloo

M-1M-1M-1M-1

—Z Z Z Zqz(i—kaj_l)ax(i_kaj_l)

k=0 =0 =0 j=0

= M? 3 g(t)as(t)

- Z (M - Ikl)(M - |l|)q;'(t)aa:(t)
t=(k.)ERr

Y. min{M? (|k] + [I)M — || }g.(t)az(t) (4.114)
t=k €N

A simple application of Schwarz’s inequality yields

2

[tr {Ipz — QzA} P = ;?:_':n min{M?, (|k| + [I))M — |kl]}gz(t)a=(t)

t=klefleo

< > min{M? (K + 1M — |kl]}g(t)I*
t=k,leQo0

Y. min{M? ([k| + )M - |k} az(t)]?
t=k,l€EQe0

< Y PP 30 lac(t)P1t)
tefle tel

< oo. (4.115)

The second part of the lemma follows from the fact
tr {Az} = Z E |a,'j|2
i=1j=1
for any symmetric matrix A. Therefore, from (4.113), we have
2
tr{[IMa - Q,,A,,]z} =5 > | g(t—s)a(t—r) (4.116)
8€a TEQ s |EE0As
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and, applying the Schwarz inequality and (4.114),

w{lhn - QAl} € X X | X lalt-s)P ¥ le(t - )P
‘ SEQ e | t2QM tgas
< Y Y laE=s)P- Y 3 la(t -1
SEQr tEQN rENAr tEQM
< X Y le®PrP- Yo > las(t)PIt?
SEQs tEQasr SEQar tZ s
< oo. (4.117)

]
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Chapter 5

2-D Generalized M-Estimators

In many situations contamination in observed data is not Gaussian or its distri-
bution is unknown. This situation can occur when measurement errors or isolated
errors cause observed data sets to contain small fractions of unusual data points,
or “outliers”, which are not consistent with a strictly Gaussian assumption. When
the “outliers” have a large scale relative to the aggregate the observed data can
be modeled in principle with a distribution that is nearly Gaussian in the cen-
tral region but having heavier tails. In other situations the rounding or grouping
caused by finite bit quantization and computation of signals can also be viewed
as signal measurement error. Then the observed data is distributed as though it
were Gaussian near the mean but having no tails at all. The signal plus noise
model considered in Chapter 4, where strict distributions were assumed, may not
perform well in this instance. In this chapter we propose a heuristic parameter
estimator, the 2-D generalized maximum likelihood (GM) estimator, for NSHP
and GMRF models. No strict assumption on the distribution of the observed data

is made.
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Martin and Thomson [19] have suggested that isolated measurement errors or

outliers in time series be modeled with the mixture distribution
F = (1 - h)A(0) + AN(0, 02), (5.1)

where 0 < h < 1. Here A(0) is the degenerate distribution having all its mass at
zero and N (0, 0?) is the standard normal distribution with mean zero and variance
o2. Let y(s) represent the signal of interest. The 2-D innovative outlier (I0) model
will be said to hold whenever, z(s) = y(s) for all s and the innovations process
deviates from a nominal Gaussian distribution. For example, the innovations may
have a heavy-tailed non-Gaussian common distribution which results from the sum
of a normal random variable and a random variable distributed according to (5.1).
The additive outlier (AO) model will occur if z(s) = y(s) + n(s) and n(s) has the
distribution given by (5.1). Then the signal is observed correctly most of the
time, i.e., z(s) = y(s), but 100 & percent of the time y(s) is observed with error.
We note that this contamination leads to a non-Gaussian heavy-tailed probability
distribution F(z), although for small k, F(z) will be nearly F(y) = N (0,03).
Even when A is small, say h < .10, the outliers may have a detrimental effect
on parameter estimates; and consequently, the model based spectrum estimate.
In this situation the optimally designed estimation procedure based on the as-
sumption of strict normality is not fully efficient. For example, the parametric
methods of 2-D spectrum estimation described in [31] and [12] are vulnerable to
even a few outliers, as are their counterparts in 1-D [19]. Therefore, a procedure
is required whose performance remains quite good for a broad class of underlying
distributions (in the neighborhood of the Gaussian distribution) but which may

not necessarily be best for any of them. Such procedures are called robust.
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5.1 2-D Robust Parameter Estimation

Robust spectrum estimation for time series has been suggested in [40, 41, 19].
Since LS estimates are consistent for NSHP and GMRF models, the arguments
used in the 1-D case can be followed and a robustified least squares problem
defined. Suppose the signal is a NSHP Gaussian random field and modeled by
(3.1) of Chapter 3 with a neighbor set N C Q*. Then robust parameter estimates
Ogar of 0 = col{fy, r € N} and Sgpr of B are computed by solving

sezn:M xs W (xs )Y (%ﬂ) =0 (52)

and

T W(xe) [c3¢2 (M) _B| =0, (5.3)

8€QM wSem
where the past history vector is defined by xgs = col{z(s + r), r € N}. The

estimators (5.2) and (5.3) are known as the 2-D generalized maximum-likelihood
(GM) estimators. The equations to be solved are identical for a GMRF model,
(3.6) of Chapter 3 with a possibly noncausal neighbor set N, but then Sgps is
an estimate of \/v. Since both models will be treated identically in the following
development we shall denote the scale for either the NSHP or GMRF innovations
process by S, i.e., S = # for the NSHP model or S = /v for the GMRF model.
In (5.2) and (5.3) ¢, and B are tuning constants selected to adjust robustness
and yield consistent estimates when the observed data X = {z(s),s € um}
are normally distributed. The function #(-) is to limit the influence of those
summands of (5.2) and (5.3) for which v(s) = z(s) — 6'x, is a poor estimate of
the residual and W(.) is a weight function to down-weight those summands with
outliers in the components of xg. The choice of () and W(:) functions with good

robustness properties will be discussed in subsequent sections.
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Equations (5.2) and (5.3) can be solved with an iterated weighted least squares
procedure as suggested by Huber [39] and the robust estimates 8 = 8¢y and 8 =
Scm then used to compute the estimated spectrum from the model’s theoretical
spectral density function.

The main tool in the analysis and synthesis of robust estimators for inde-
pendent data is the influence function [38] which has been proposed on heuristic
grounds but, nevertheless, contains information on the asymptotic bias and vari-
ance of robust maximum-likelihood (M) estimators of location and scale. For
dependent data the situation is complicated by several technical arguments which
have not yet been clearly resolved (see, for example, [68] and [69]). In the next
section we generalize the 2-D GM-estimator as an asymptotic statistical functional
for which we define a directional derivative (viz., an influence function) that can

be used to guide the selection of the functions ¥(-) and W(-) in (5.2) and (5.3).

5.1.1 An Asymptotic GM-Estimator

In the following assume E{z(s)} = 0, otherwise, robustly center the observations
by replacing them with z(s) — £y where Zp is an ordinary M-estimate (see {39])
of the mean of z(s). Let x and x° represent dummy variables for the observed
data neighbor set vectors xs and xJ2, respectively, as defined in Section 1.1 of
Chapter 1. The joint marginal probability distribution function of xJ will be
denoted by F™e(z). Then the asymptotic GM-estimates 6 acar of 0 and Sygp of
B are defined by the functional T(F™) = col{6(F™), S(F™)} and computed as

a root of the p 4+ 1 equations

Ezno {xW (x)9(x%; (FN°), S(FM))} = 0 (5.4)
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and

Erno {W(x)[$*(x"; 8(F™), S(F™)) — B]} = 0. (5-5)

Here, the constant ¢, has been included in the definition of (-) for simplicity.

Note that if the empirical distribution function of the observed data on an
M x M lattice is given by

@) =31 T A6, (55)
8€Q s
then the solution of (5.4) and (5.5) for FNo = F(x) yields the estimates Ogp
and Sgps defined by (5.2) and (5.3).

By a suitable definition of the boundary conditions, Fi°(z) is a reasonable
estimate of FM(z) in a variety of ways [70]. Furthermore, we expect that T'(Fae)
relates to 7'(F™°) in a similar fashion if 7'(-) is sufficiently well behaved. Hence,
analysis of (5.4) and (5.5) should lead to reasonable prediction of the behavior of
(5.2) and (5.3) for sufficiently large M.

Consider the following minimization problem:
min { Jweeec;e, S)df‘”°} (5.7)
for fixed S where p(x% 8, S) is related to (x?%; 8, S) by
d o 0
a—a-p(x ;0,5) = x¥(x"; 0, 5). (5.8)

The solution of (5.7) is also a root of (5.4). Moreover, if p(v) is a convex function
in v, implying that 1(v) must be strictly monotone, then the solution to (5.4) is
unique. This follows from the fact that if p(v) is continuously differentiable and
convex, then (5.4) is both necessary and sufficient for the solution to be a global

minimizing point [71]. Existence of the solution is guaranteed if p(v) is symmetric.
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5.1.2 An Influence Function for the GM-Estimator

Von Mises [45] has shown that a statistical functional T(-) at a distribution G,
which is “near” a distribution F, can be written as a Taylor series expansion at
F asin

T(G) = T(F) + / #(z)d(G — F) + remainder, (5.9)

if there exists a real function #(-) such that for all G in domain{7'} it holds that

T'(F;G — F) = lim T(F +4g _hf N-T(F) _ / t(z)dgG. (5.10)

T'(F;G — F) is known as the 1st-order Gateaux derivative of T(F). Note that
T'(F;G — F) is simply the ordinary right-hand derivative in the direction of G, at
= 0, of the functional T'((1 — 2)F + kG). The derivative T'(F; G — F) depends,
in general, not only on F but also on the measure G — F. If T'(F;G — F) is
evaluated at G = F, then 7"(F) = 0, and consequently, / t(z)dF = 0.
Letting G = A(z) in (5.10) we see that T'(F; A(z) —F) = t(z), which Hampel
[38] calls the influence function (IF') of T at F, which we write as IF(z; T(F)).

Thus, it is true that
T(G)-T(F)= /IF(a:;T(}'))dg + remainder. (5.11)

When (5.11) is evaluated with G equal to the observed sample distribution,
Fa(z) = %ZA(:::.-), in most cases [38] the remainder becomes negligible for

i=1
n — 0o so that

T(F.) - T(F) S IF(z; T(F)), (5.12)

i=1

which is the estimation error in the estimate T'(F,) of T(F). It is this last expres-
sion that gives I F(z; T(F)) its name, for I F(z;; T(F)) represents the approximate

contribution, or influence, of the observation z; toward the error. Moreover, if the
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z; are independent, then the terms on the right side of (5.12) are independent,
and by the central limit theorem /n[T(F,) — T(F)] is asymptotically normal,

and it is a simple matter to show that asymptotic variance equals
V(T,F) = j IF?(z; T(F))dF . (5.13)

For the IID case we see that the bias and asymptotic efficiency of the estimator
T(F,) depend explicitly on IF(z;T(F)). It turns out that M-estimators for
the IID or regression model, defined by [ ¥(z; T, F))dF, have an IF(-) which is
proportional to ¥(:). Thus, the desired robustpess properties for the estimator
may be achieved by simply selecting a ®-function dictated by analysis of the
results (5.12) and (5.13).

The approach that we take in this chapter is to define a similar device for
T(F™e), then use it to guide the selection of ¥(-) and W(-) used in the GM-
estimator. Unlike the IID case, the (p + 1)-dimensional distribution FNe* =
(1=h)FNe 4 hA(x®) for 0 < h < 1 does not correspond directly with any naturally
occurring contamination in the random field [68]. This problem occurs because
A(x?) is not a stationary distribution in the set of (p + 1)-dimensional marginal
distributions, and it matters not only the magnitude of x° but also the location
of the contamination. Patchy outliers will have quite a different effect than will
isolated outliers. Nevertheless, we show that we obtain an equation similar to
(5.12) and that an influence function defined with F™Ne* is proportional to the
kernels of (5.4) and (5.5) except for a constant multiplying factor. Thus, similar
reasoning to the IID case is used for selecting the GM-estimator #-function which

is composed of ¥(-) and W(.).
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Let 8, = O(FNoh) and S, = S(FM*) and note that 8y and Sy are the
asymptotic GM-estimates when the data are distributed with marginal 7™, i.e.,
when h = 0. Substitute 7o} in (5.4) and (5.5) and differentiate with respect to

h at h =0, obtaining

aih /xW(x)z/)(xo; 81, Sp)dFNosk

=0 (5.14)
h=0

and

2 [WeWwee;0,,50) - Blar™4  ~o. (5.15)

Here we make the assumption that (-) and W(:) are sufficiently well behaved so
that the processes of integration and differentiation are interchangeable.

If we define a (p + 1)-dimensional GM-estimator influence function for 6 and

S under FMo as
Ich(x 9 S [ ]
h=0

and carry out the indicated differentiation in (5.14) and (5.15), the result in

matrix-vector form is

-1

w 0-9,5
IFGM(XO;O,S)= Mo mas XW(x)p(x';8, ) , (5.16)
m§, ms W (x)[$*(x°; 8, S) — B]

assuming the inverse exists and where

=
[

/ W (x)¥'(x% 6, S)xx'dFNo

mes = < f XW (x)9'(x% 6, S)( —0'x )dfm
msy = s 2 [ xW(W (0, S)p(x; 8, 5)dF™

ms = /W(x)r/)'(x 8,5)y(x"% 0 S)( —0 x) dFNo
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and ¥'(v) = %z,b(v). We have dropped the subscript on 8y and Sy, but it is
kept in mind that IFgp(x%;0,S) is usually evaluated at the values of # and S
corresponding with the model distribution F™e,

We note here that for symmetry reasons (which will become evident in sub-
sequent sections) if outliers occur only in the innovations and the innovations
distribution is symmetric, whether or not Gaussian, then my s and mg g are both

zero vectors. In this case the influence function separates, i.e.,

IFau(x0) [ | My'xW(x)(x’8,5) (517)
IFeu(x°%S) mg' W(x)[*(x;,5) - B
where IFgp(x% 8) and IFgp(x%; S) are the influence functions for the separate
estimates @ 455 with S known and Sugps with 8 known, respectively. When the
observed data obey the AO model and n(s) is not identically zero, then (5.17)
should hold approximately for the AO model as well.

The importance of this separation is that the asymptotic robustness proper-
ties of the estimate 8gp do not depend on Sgys, and vice versa. This suggests
an alternative to simultaneous solution of (5.2) and (5.3): compute any robust
estimate of scale and then use this in solving (5.2). Additionally, we can evaluate
the asymptotic properties of the parameter estimates 8¢y by considering a fixed

scale S.

By an expansion similar to (5.9) we obtain

T(Fy) — T(F*) = 'A% % IFgp(x9; T(F™°)) + remainder. (5.18)
s€fln

where the remainder, under suitable regularity conditions [70], becomes negligible

when M — oo. Also, we find that
M[T(FNo) — T(FN)] — N(0, V(T, F™)), (5.19)
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where
VT, F%) = [ Lo (3 T(F™)IFlpy (<% T(FM))dF ™. (5.20)

Proof. Clearly, [ IFgm(x%;8,S)dFN = 0. By a suitable selection of ¥(-) and
W(-), IFgm(x2; 8, S) for all s will be uniformly bounded and a stationary process.
When s—t ¢ NU(0,0), then IFgp(x2; 8, 5) and IFgp(x?;8,5) are independent
and IFgp(x3;0,S) is a-mixing. Under these conditions a central limit theorem
for dependent random vectors [72] applies and (5.19) follows. Since NSHP and

GMRF models have a Markov property it is easy to show that
/ IFap(x%; 80, S)dF (zo|x) = 0.

Then IFgm(x3;8,5) is a martingale difference so that IFgap(x?;80,S) and
IFgum(x3;0,S) are uncorrelated for s # t and (5.20) follows [38].

5.1.3 Selection of the Robustifying Functions

Note from (5.17) that the 2-D asymptotic GM-estimator influence function for 8
is proportional to ¥*(x% 8, S) = xW(x)¥(x%8,S) and for S is proportional to
x"(x%8,S) = W(x)[$*(x° 8,5) — B]. Hence, robustness criteria for the influ-
ence function translate directly into similar requirements for the kernel functions
¥*(x% 6, 5) and x*(x%8,S). Therefore, selection of 1(-) and W(-) determine the
performance of the estimator.

Hampel [38] has suggested that the influence function for M-estimators meet

the following robustness criteria:

1. The influence function should be bounded. This guarantees that no single

observation can have an unlimited influence on the value of the estimate.
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2. The influence function should be continuous so that small perturbations of

the data will result in small changes to the estimation error.

3. The influence function should return to zero. Ridiculously large outliers in

the data should have no influence at all on the estimate.

These criteria correspond directly with the more technically defined criteria of
gross-error sensitivity, local-shift sensitivity, and rejection point, which may be
found in [38]. Two functions proposed for M-estimators in the IID case are Huber’s

u-function and Tukey’s bisquare ¥ g-function. The former, defined by

z, |zl <1
Yu(z) =41, 2z>1 (5.21)
-1, 2< -1

is shown graphically in Figure 5.1 and meets the first two basic criteria. Tukey’s

¥p-function, defined by

z(1-2%)%, |z|<1
¥p(z) = (5.22)

0, |2] 21
and shown graphically in Figure 5.2, is a redescending function which meets all
three criteria. Because 1 returns to zero, it provides an extra measure of robust-
ness against extremely large outliers while sacrificing efficiency at the nominal

model.

In view of the similarity between the expansions (5.9) and (5.18) we take these
criteria to also apply to the 2-D GM-estimator influence function. Specifically,
the influence function, and consequently the kernel functions %(x?;8,S) and

x*(x%; 8, S), should also have the same kinds of properties as ¢y and ¥g. For

example, if ¥(-) = ¥y(-), then W(-) should be chosen so that xW(x) is bounded

121



Figure 5.1: Huber’s ¥y-function.

for each element of x, i.e, W(:) should down-weight elements of x which contain
outliers. A natural way of accomplishing this is to let W(z) = %g(g), where d is
a measure of the largeness in x obtained from d* = lx‘C,,; 'x. Here c is a constant
and Cx = E{xx'} is the p X p covariance matrix for the past history vector xs of
the clean process. In practice, a function, such as Tukey’s bisquare ¥g(-), which
redescends to zero is used for g(-) to insure that xW(x) remains bounded for
arbitrarily large elements in x. Several procedures are available for determining

an estimate of Cyx; for example, see [42]. In this paper we will not discuss this

topic but instead assume that Cy is known or estimate it from clean data.

5.1.4 Tuning Constants

The tuning constant B is chosen to make the estimate Ssgm consistent when the

signal y(s) is observed without error and the innovations process is distributed as
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-1.0 -}

Figure 5.2: Tukey’s redescending bisquare yg-function.

N(0,1). Under these circumstances, (5.5) becomes

/ W(x) [cw (“ = So t") - B] dFNo(x%) = 0. (5.23)

The tuning constant is then computed by
B= [y (" ) fo(v)dv (5.24)

where f,(v) = (2x)"% exp(-—)

Proof: Clearly, the data is normal with F(z) = F(y) = N(0,02). Let f,(y°)
be the density function for F™(y), i.e., FM(y) = /_ ! J,(x®)dx°. This joint
density can be written in terms of a conditional density a:;d a p-dimensional joint

density as f,(y) = fy(voly)fy(y). Using these relationships (5.5) becomes

/ W (x) { / [W (“ 0") ] f,,(mo|x)dzo} f(x)dx=0.  (5.25)
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Since the NSHP and GMRF models possess the Markov property the conditional

density f,(yoly) can be shown to be

1 [y - 0%\’
f(woly) = (275%)~% exp [—5 (y" 3 y) ] , (5.26)
where S = 8 for the NSHP model and S = /v for the GMRF model. Now, let

Tg — 0‘x

S

[we) { / [ %/ﬂ( ) B] (27)} exp (-—) dv} f(x)dx=0. (5.27)

The integral in braces is independent of x, therefore, if W(-) is a non-negative

v= and make this change of variable in (5.25), yielding

and symmetric function, then

[l (2) -8l enr ’exp(——)dv_

and the result (5.24) follows. The constant B, evaluated for selected values of ¢,
using both ¥y(-) and ¥p(-), is shown in Table 5.1.

The constant ¢, adjusts the robustness properties of the GM-estimator. Gener-
ally, for smaller values of ¢, the estimates are more robust with respect to additive
effects in the observed data. The compromise, however, is a reduction in the ef-
ficiency of the estimator at the nominal, or Gaussian, model. To show this and
to obtain insight into the selection of values for ¢, we compute the asymptotic

variances for the GM-estimator under a Gaussian IO model. Let

My m
M, F¥y=| 77 7 (5.28)
m‘s,a ms
and rewrite the influence function as
*(x%80,S
I (O T(F™)) = M-, 7% | OO | (509
x*(x%8,5)

124



The asymptotic variance in (5.20) becomes

[YTYTaFN [pxdFN
Ix g dFte [ x*2dFNe

V(T,F™%) = M7} (9, F™) M~ (p, ™).

(5.30)

For the IO model with Gaussian distribution the asymptotic estimates 8 som
_at

and Sagm equal the true values, and v(s) = 2(s) —07xs is distributed f,(v) =

S
N(0,1). It is now a simple matter to show that

M7'Q(¥", Fo My 0

V(T, F¥) = (5.31)
o mg®P(x", F'°)
where
QW' F™) = Cuwg [¥*(0)fu(v)dv
POC,FY) = Ws [67(0) - BIfulv)do,
and

Cwz = E{W*(x)xx'}

W, = E{W?(x)}.
The expressions for My and mg can also be simplified to

M,

Cwse [ ¥/(0)fu(v)dv
ms = 2 [()p()ofu(v)de,

where

Cwy = BE{W(x)xx'}
W, = E{W(x)}
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It is clearly the case that under the same conditions and the fact that if ¥(-) is
an odd function, then my s = 0 and mgy = 0.
Using these results in (5.31) the asymptotic covariance matrix for the estimate

] AGM 18 then

0) — Q2 f¢2(v)fv(v)d”_ -1 -
V(8,FM) =5 OO dvlzcwxcw;‘cw;, (5.32)

and similarly the asymptotic variance of the estimate S is

52 J[#'(v) = BPf(v)dv W
4 [ ' (v)o(v)vfo(v)dv]* W

Ordinary M-estimators are defined when W(x) = 1 for all x. In this case

V(S,FN) =

(5.33)

Cwy = Cwz = Cx, the covariance matrix of the p-dimensional data vector xs,
W, = W3 = 1, and (5.32) and (5.33) are the asymptotic variances of the M-
estimators for 8 and S.

If in addition ¥(v) = v for all v, then the GM-estimator reduces to the LS
estimator of 8 and S. Carrying out the computations in (5.32) and (5.33) for the

Gaussian situation yields
Vis(8,N(0,02)) = S*°Cy? (5.34)
and
52
Vis(S, N (0, 3)) = = (5.35)

When the data comes from the Gaussian 10 model by definition there are no
outliers. The optimal function W(.) should be W(x) = 1 for all x. In this case

the asymptotic GM-estimator covariance matrix for 8 reduces to

o PO
VN = S el (5.36)
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In most situations the true values of the parameters are not known. Con-
sequently, the evaluation of a Cramer-Rao bound is not possible, although an
analytical expression can easily be computed using the joint distribution F™o
or the influence function in the Gaussian case. The limiting Fisher information

matrix I'(@) turns out to be given by

1(0) = %Cx + fT,(%)" (5.37)

where f'(x) = % f(x) which is a complicated function of the parameters 8. Our
stated purpose though is to determine guides for selection of the tuning constant
¢y- Actual efficiencies are best obtained from Monte Carlo results. In fact, analyt-
ical results for the AO model are extremely difficult since the distribution function

is not even available.

We are motivated then to define an asymptotic efficiency relative to the LS

estimates, which are consistent for the NSHP and GMRF models,. Thus,

tr {VLs(a,]‘_N")}
tr{V(6,FM)}

Effgp = (5.38)

Substituting the expressions for Vis(8,N(0,02)) and V(8,N(0,07)) in (5.38)

yields the relative GM-estimator efficiency

_ Uy (v)fu(v)dv)?
e B TAOTR (5.39)

Values of REffgas, computed for various values of the tuning constant ¢, are shown

in Table 5.1.
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Yy Y8 I
Cv B _|REfig | B | REfigm |
1.0 | 0.5161 | 0.9031 | 0.0266 | 0.1250 "
1.1 | 05777 | 0.9191 | 0.0343 | 0.1368
1.2 | 0.6352 | 0.9330 | 0.0433 | 0.1632
1.3 | 0.6880 | 0.9451 | 0.0537 | 0.1954
1.4 | 0.7358 | 0.9555 | 0.0652 | 0.2309
1.5 | 0.7785 | 0.9642 | 0.0778 | 0.2685
2.0 | 0.9205 | 0.9897 | 0.1552 | 0.4666
3.0 | 0.9950 | 0.9996 | 0.3434 | 0.7727
40 |1 0.9999 | 1.0000 | 0.5134 | 0.9100
5.0 | 1.0000 | 1.0000 | 0.6395 | 0.9611
6.0 | 1.0000 | 1.0000 | 0.7277 | 0.9810
10.0 | 1.0000 | 1.0000 | 0.8886 | 0.9976
20.0 | 1.0000 | 1.0000 | 0.9706 | 0.9998
oo [ 1.0000 | 1.0000 | 1.0000 | 1.0000

Table 5.1: Tuning constant B and relative efficiency for selected values of ¢, using
I,by and 1/)3.

5.2 Experimental Results

Experiments with synthetic data were conducted to evaluate the performance
of the 2-D GM-estimator. The first experiment compares robust spectrum esti-
mation results for two sinusoids in noise with the conventional approach of LS
estimation. It is well known that NSHP modeling of complex spectra requires
large model order to resolve details [12]; and since the robust technique requires
extensive computational capacity due to its iterative nature, the GM-estimator
was evaluated on smaller data sets and low order models in Experiments 2, 3, and
4. In these experiments many runs were made against different data sets to obtain
a feel for the statistical performance of the GM-estimator. The raw data from
which the graphs in this paper were made can be found in [73]. No spectra were
computed in Experiments 2, 3, and 4 since the spectrum for low order models has

no interesting detail.
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Experiment 1: An important application of spectrum estimation is the de-
tection and resolution of two closely spaced sinusoids in noise. In one and two
dimensional studies this problem is usually formulated as sinusoids in Gaussian
white noise. Here, for evaluating the performance of the GM-estimator we com-
pare the Gaussian white case to the case when the contaminating noise has a
heavy tailed non-Gaussian distribution. The LS and GM procedures were used
to compute estimates from both Gaussian and non-Gaussian data, thus yielding

four spectra for comparison.

We generated a 64 x 64 set of lattice data according to
y(8) = Ay cos(ips + 1) + A cos(3s + @) + 1(s)

with ¢, = 6—7;[16.0, 16.0)%, ¢, = 6—7;-[16.0, 200), Ay = A; = 1.0, & = 2, 0 = .3
and n(s) IID with common distribution A(0,.05), equivalent to a SNR = 10db.
In this experiment a NSHP model with a 40 element neighbor set, shown in

Figure 5.3, was used.

The estimated spectrum of the signal plus Gaussian noise using conventional
LS estimates is shown in Figure 5.4, and the spectrum using the GM-estimator
on the same data is shown in Figure 5.5. Huber’s ¥ y-function was chosen for
¥(x%6,5) and W(z) = %g(é) with Tukey’s bisquare function used for g(-). The
tuning constant B = 0.7785 was chosen from Table 5.1 for ¢, = 1.5. The constant

¢ = 6.0 was used for W(.). The LS and the GM-estimates result in similar
8r 8w 8z 10m1* .

:—35, 3—2' ﬁ’ -E N which

are correct. Thus, the GM-estimator does almost equally well as the conventional

t
spectra, both resolving two peaks at w; = [ ] and w, =

procedure in the Gaussian situation.
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Figure 5.3: Neighbor set.

Next, data contaminated with a heavy-tailed distribution were formed by
adding outliers from a distribution A(0,1.0) to 10 percent of the signal plus
Gaussian white noise at uniformly distributed lattice sites. The estimated spec-
trum using LS estimates from the contaminated data is shown in Figure 5.6, and
the spectrum computed using the GM-estimate is shown in Figure 5.7. Here, the
spectrum computed using LS-estimates from the heavy-tailed data is relatively

poor; but the GM-estimator does almost as well as when the data are Gaussian.
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Figure 5.4: LS estimate of the spectrum of two sinusoids in Gaussian noise with
SNR = 10db.
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Figure 5.5: GM-estimate of the spectrum of two sinusoids in Gaussian noise with
SNR = 10db.
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Experiment 2: In the first part of this experiment we generated data using
a lst-order GMRF model on a 32 x 32 toroidal lattice with parameter values
shown in Table 5.2. Contaminated data were formed by adding outliers from a
distribution N(0,20.25) to 5 percent of the data at uniformly distributed lattice
sites. Both LS estimates and robust GM-estimates from the contaminated data
sets were computed and compared to the theoretical parameter values and the
LS estimates from the clean data. Twelve cases were run by using different sets
of outliers. The t-functions and tuning constants were chosen to be same as in
Experiment 1. Results are shown in Table 5.3. Figure 5.8 compares graphically
the squared errors, given by

1 .
or == (6: — &),
Pren

where 82, r € N, are the true values of the parameters from Table 5.2.

[010=6-10[001=60-1] v |

.23400 .10110 I 1.00000 ||

Table 5.2: Neighbor set and coefficients for the GMRF model.

One easily sees that the GM-estimates for both 8 and v in the non-Gaussian
AO model situation are better than LS-estimates for the same data in every
simulation run. On the other hand the LS and GM-estimators yield similar results
for Gaussian data.

In the second part of this experiment we generated 12 sets of contaminated
data by using 12 different GMRF data sets and adding 5 percent outliers to
each set of data. The LS and GM-estimation errors for each run are shown in

Figure 5.9. The conclusions are identical to the first part of this experiment.
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Run No. Est Method — I 0(1'0) =—0(__“2)._0(2‘9 = 8(0’_’1 v sq Emr “
Theoretical Value — .234000 _____ .101100 __ 1.00000
LS Clean Data .236163 .106680 1.00565
. GM Clean Data 229264 103671 1.03459 .000028
1 LS Contaminated Data 1133592 045695 2.48139 .007120
GM Contaminated Data .159626 076479 1.27725 .003385 "
2 LS Contaminated Data 134956 062564 1.70262 _ .006095
GM Contaminated Data .167096 077300 1.17206 .002817
3 LS Contaminated Data 179539 076275 1.725644 .002065
GM Contaminated Data 182444 085116 1.16808 .001675
1 LS Contaminated Data 137559 093601 2.05112  .004947
GM Contaminated Data 157125 090598 1.17712  .003253
5 LS Contaminated Data 205881 067976 1.66953  .001208
GM Contaminated Data .197621 079790 1.18175  .001104
S .5 Contaminated Data 162913 065956 1.84768  .003512 |
GM Contaminated Data 175196 077595 1.18580 002281 ||
7 LS Contaminated Data 121111 .102253 2.08793 .006628
GM Contaminated Data .166067 086082 1.19599 003107
8 LS Contaminated Data 115475 090131 2.21251  .007420
GM Contaminated Data .160979 .103696 1.18926 .002831 “
9 LS Contaminated Data 135594 106215 2.02817 .005057 "
GM Contaminated Data 177840 077823 1.22309  .002117
10 S Contamuinated Data 175925 2046927 2.07145  .003600
GM Contaminated Data .180178 085476 1.21113 001792
11 LS Contaminated Data 169912 062514 1.88382 .003170
GM Contaminated Data .186321 088134 1.16140 .001414
12 LS Contaminated Data 188894 .080131 1.76692  .001470 |
GM Contaminated Data 186448 084844 1.20755 .001474

Table 5.3: GM-estimator results
contamination.
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Figure 5.8: Errors for the results shown in Table 5.3.
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Figure 5.9: Estimation errors for additive outliers in a changing GMRF.
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Experiment 3: We evaluated the GM-estimator’s performance under different
types of contamination, i.e., innovative and substitutive outliers. First we gen-
erated 12 sets of 2-D NSHP data using a causal neighbor set and 12 sets of IID
Gaussian random noise. The model parameters were are shown in Table 5.4. Next,
we simulated innovative outliers by taking the same IID Gaussian random noise
fields and adding outliers from a distribution A(0,20.25) to 5 percent of the noise
data at uniformly spaced lattice sites. The autoregressive data was then regen-
erated using this driving noise with a heavy-tailed distribution. The ¥-functions
and tuning constants were chosen to be same as in Experiment 1. Least squares
and GM-estimates of the clean data and contaminated data are listed in Table 5.5

and the squared errors graphed in Figure 5.10.

[ 0-10 | 61 | 622 | v |

97040 | 97350 | —.96860 | 1.00000

Table 5.4: Neighbor set and coefficients for the NSHP model.

Note that for the IO model LS and GM-estimators do equally well in estimating
@ in both Gaussian and non-Gaussian situations. However, the GM-estimator
outperforms the LS-estimator for estimating the scale 8. This is as expected
since symmetrically distributed innovative outliers effect only the scale and not
the structure of the spectrum, and both the LS and GM-estimator are consistent
estimators of @ for the IO model.

In the second part of this experiment we used the 12 sets of 2-D GMRF data
used in the second part of Experiment 2. Data contaminated by substitutive

outliers were formed by substituting outliers from a distribution A/(0.20.25) for
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5 percent of the clean data at uniformly distributed lattice sites. Errors for the
LS and GM-estimates were computed and compared with the LS estimates from
the clean data. The squared error results are shown in Figure 5.11. Again the

GM-estimator outperformed the LS-estimator in the non-Gaussian situation.

0.0002
l LS Cont Data
[0 GM Cont Data
[ B GM Clean Data
0.0001 - N
0.0000 — A

1 2 3 4 5 6 7 8 9 10 11 12
Run No.

Figure 5.10: Errors for the results shown in Table 5.5.
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" Run No. ] Est Method | %100 ffo,.-1) 8(1,-1) 8 SqEm ||

heoreti ue 970400 973500 -—0.968600 1.00000
LS Clean Data 087543 .990750 —0.989205  1.00068
1 LS Contaminated Data 979687 984730 -0.986289 2.49886 .000036
GM Contaminated Data | .989580 .989391 —1.002531 1.22117 .000060
GM Clean Data 986765 980741 —0.98%043 1.04411 .000000
" LS Clean Data 078444 983040 —0.980719 0.983%4 |
2 LS Contaminated Data 979591 988116 -—0.978982 1.54501 .000010
GM Contaminated Data | .980168 990954 —0.987684 1.13906 .000038
GM Clean Data 976672 983041 -0.978850 1.01879 .000002
LS Clean Data 985621 987905 —0.985635 0.99660
3 LS Contaminated Data | .984006 .987576 —0.985954 1.62352 .000001
GM Contaminated Data | .989386 991061 -0.997082 1.11063 .000052
GM Clean Data 085942 987097 ~0.985748 1.00305 .000000
LS Clean Data 983659 987190 -0.982041 1.04070
4 LS Contaminated Data | .982791 987659 —0.982092 1.92547 .000000
GM Contaminated Data | 991139 994523 -0.998166 1.15460 .000123
GM Clean Data 984271 987338 -0.982968 1.00193 .000000
LS Clean Data | .985335 991773 —0.987939 1.03691
5 LS Contaminated Data 980742 988022 -0.984732 1.64153 .000015
GM Contaminated Data | 9848906 990145 -0.993127 1.25468 .000010
GM Clean Data 084787 992368 -0.988579 1.09527 .0000CO
LS Clean Data 985653 985634 -0.983150 0.95784
6 LS Contaminated Data | .987582 989621 -0.985784 1.77971 .000009
GM Contaminated Data | .992080 995766 —1.000052 1.12274 .000143
GM Clean Data 985511 987048 ~0.984666 0.97672 .000001
LS Clean Data 983893 986260 -0.984334 0.89570
7 LS Contaminated Data | .986830 986725 -—0.987343 1.96666 .000006
GM Contaminated Data | 994321 992332 ~1.004607 1.07080 .000186
I GM Clean Data 982811 985403 -—0.982872 0.92354 .000001
LS Clean Data 986759 987601 -0.990171 1.00272
8 LS Contaminated Data 982307 986697 -0.987574 2.05374 .000009
GM Contaminated Data | .989451 .993037 -1.001807 1.21356 .000057
GM Clean Data 987400 ﬂ(ﬂﬁ =0.990468 1.02488 .000C00
LS Clean Data 088944 987261 —0.987261 1.00454
9 LS Contaminated Data 991466 991042 -—-0.988385 1.95325 .000007
GM Contaminated Data | .993732 994287 -1.000144 1.15843 .000075
GM Clean Data 989334 988319 -0.988145 0.97535 .000000 ||
LS Clean Data 985354 986986 —0.985492 0.97958
10 LS Contaminated Data 979887 985451 —0.984810 2.06648 .000011
GM Contaminated Data | .988242 .991869 -—1.001101 1.15539 .000092
GM Clean Data 084484 986933 -0.985738 0.99613 .000000
ean Data 985522 986145 -—0.989582 0.97128
11 LS Contaminated Data 088188 .091835 -—0.987793 1.69048 .000014
GM Contaminated Data | .990950 995895 —0.998284 1.10968 .000067
GM Clean Data 085292 .986050 —0.989459 0.99013 .000000
LS Clean Data 986957 989961 -~0.990111 1.02466
12 LS Contaminated Data 084518 .986245 -0.990286 1.55146 .000007
GM Contaminated Data | 088375 988803 -—0.997312 1.16567 .000018
GM Clean Data 085825 991247 -0.990510 0.99350 .000001

Table 5.5: GM-estimator results for innovative outliers in a changing NSHP field.
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[ LS Cont Data
[0 GM Cont Data
ll GM Clean Data

0.01 ]

0.00 -
1 2 3 4 5§ 6 7 8 9 10 11 12

Run No.

Figure 5.11: Estimation errors for substitutive outliers in a changing GMRF.
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Experiment 4: Next we evaluated the GM-estimator when both the (-) and
W(-) functions redescend. Here we repeated both parts of Experiment 2 using
Tukey’s bisquare function (5.22) for both (-) and g(-). The tuning constants were
B = 0.7277 and ¢, = ¢ = 6.0 in accordance with Table 5.1. The estimate squared
errors are shown in Figure 5.12 and Figure 5.13 for parts one and two of the
experiment, respectively. No conclusions can be drawn regarding improvement in

estimates of @ using a redescending ¥-function.

0.008 |
Hl LS Cont Data
(0 GM Cont Data
0.006 Il GM Clean Data
0.004
0.002
0.000

1 2 3 4 5 6 7 8 9 10 11 12
Run No.

Figure 5.12: Estimation errors for additive outliers in a GMRF with changing
contamination and redescending ¥g-function.
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0.02 - |

[ LS Cont Data
[ GM Cont Data
Il GM Clean Data
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0.00 -
1 2 3 4 5 6 7 8 9 10 11 12

Run No.

Figure 5.13: Estimation errors for additive outliers in a changing GMRF with
redescending 1 g-function.
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Summary. Tables 5.6 and 5.7 summarize the results of Experiments 2 , 3 and 4.
Table 5.6 shows the average of the squared errors for the coefficients {0, r € N}
estimates, and Table 5.7 shows the average of the absolute values of the errors for
the residual’s variance 82 estimates. All errors are computed relative to the LS
estimates of the clean data.

The GM-estimator yields estimates from the contaminated data which are
closer to the true (LS Clean Data) values than the non-robust LS estimator in both
the additive and substitutive outlier cases. This is true for both the coefficients
and scale estimates. For the innovative outlier case the LS and generalized M-
estimators do equally well for the coefficients, but the robust procedure does much
better for the variance estimates. This is as expected since innovative outliers
(from symmetric distributions) have little effect on the shape of the spectrum
(see Section 1.2.2) but will effect scale estimates. Too few experiments were run

to draw any significant conclusions regarding the use of redescending 1-functions.

GMRF/AO NSHP/IO | GMRF/SO
Estimation Method Exp. 2.1 | Exp. 4.1 | Exp. 2.2 | Exp. 3.1 Exp. 3.2
YH Y8 1244 12:4 421

LS Contaminated Data | .004358 .004358  .012020 .000010 .006959
GM Contaminated Data | .002271 .002282  .004832 000077 .002581
GM Clean Data .000028 .000018 .000017 .000000 .000017

Table 5.6: Estimated coefficient error summary for the GM-estimator. Entries
are the averages of the squared errors from each run.
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GMRF/AO NSHP/IO | GMRF/SO ||
Estimation Method Exp. 2.1 | Exp. 4.1 | Exp. 2.2 | Exp. 3.1 Exp. 3.2
Yu ¥B 2 Yu YH II
LS Contaminated Data 0.95007 95007 1.50748 0.86675 0.90353
GM Contaminated Data | 0.19022 .11854 0.26068 0.16510 0.18419
GM Clean Data 0.02894 01949  0.02519 0.02917 0.02519

Table 5.7: Estimated scale error summary for the GM-estimator. Entries are the
averages of the absolute value of the errors from each run.
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Chapter 6

2-D Optimal Robust Estimators

The influence function has been proposed on strictly heuristic grounds as a tool
for analysis and synthesis of robust location and scale estimators of independent
observations [38]. The importance of the influence function for estimators in the
IID case lies in its heuristic interpretation: it describes the effect of an infinitesimal
contamination at the point z on the estimate, standardized by the mass of the
contamination [38). For independent data the location of an additional observation
is unimportant since data are processed without consideration for temporal or
spatial ordering. Hence, the distribution F* = (1 — h).F + hA(z) used in defining
the influence function, where A(z) is the degenerate distribution with all of its

mass at z, is satisfactory for describing the contamination.

For random fields the contamination model FM* = (1 — h)FNe 4 BA(x?),
where FM is a (p + 1)-dimensional distribution and & is the fraction of the data
which is contaminated, used in Chapter 5 provides a tool for gauging the per-

formance of the heuristic 2-D GM-estimator. In general, this distribution is not
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satisfactory for data with contamination more complex than additive outliers oc-
curring at widely separated and uncorrelated lattice points. For example, the
same value of h is obtained for two data sets with 5 percent contamination, one
set having additive outliers at widely separated lattice points and other with ad-
ditive outliers occuring in strings or small patches. In other words, the value of x

matters and also where x is placed.

For 1-D autoregressions having general contamination, Kiinsch [69] has pro-
posed an influence function for a class of estimators depending only on a finite
p-dimensional marginal distribution denoted by FP. This influence function is
unique up to an equivalence relation, but there is a unique version which has
the interpretation as the influence of an additional observation on the estimate.
The unique version depends upon a conditioning on past observations-namely,
the influence of an additional observation should have conditional expectation
zero given the past, which is faithful to the heuristic interpretation attached by
Hampel [38] to the influence function for independent data. For 1-D dependent
data sets the additional observation can be placed at the end of the observations,
motivating Kiinsch’s use of the conditional expectation given past values to isolate

a unique influence function.

In this chapter we take a similar approach to the specification, design, and
analysis of a 2-D random field model robust parameter estimator. First, we gen-
eralize the formulation of the ML equation for spatial interaction models to create
a general class of ML estimators. Then, using the new formulation we specify an
optimality problem which we solve to yield a new robust estimator for NSHP

models.
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6.1 The ML Estimator for Spatial Interaction
Models

Let X = {z(s),s € 2} be a 2-D field of random variables obeying the spatial

interaction model

z(s) = )_ Orz(s + 1) + ((s) (6.1)

reN
where ((s) is an identically distributed, stationary, possibly correlated, Gaussian

random noise array with variance V{(}. Thus, both the simultaneous autoregres-
sive and Gaussian-Markov models are included in this description of X.

When N in (6.1) is symmetric, i.e.,, r € N implies —r € N, (6.1) can be
written in terms of the asymmetric set N, where r € N, implies —r ¢ N,. In this
representation (6.1) is

z(s) = ) Oe[z(s +r1) + (s — )] + {(s). (6.2)

reN

We shall use this representation for the GMRF model in the development below,
but shall retain the representation (6.1). for the NCAR model since this allows us
to include causal NSHP models as a subset of the NCAR models. Thus, it should
be clear that 8 = col {f;,r € N,} and x5 = col {z(s + r) + z(s — r),r € N,}
are p-dimensional vectors for the GMRF model and @ = col {0r,r € N} and
xs = col {z(s +r),r € N} are p-dimensional vectors for the NCAR model where
p is the number of elemets in N, or N.

The negative of the log of the likelihood function for the random field Xs
with respect to the (p+ 1)-dimensional parameter vector ¢ = col {8,V {(}} given

observations from the finite lattice s is asymptotically equivalent to

(@) = 103(2“) +

o | [ oglS (0, ) + 305x
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Here, for the GMRF model

v
Sz(wa ¢) = m’
where v = V({) and c,, = col {cos(w'r),r € N,}. For the NCAR model
__~Z
S=d) = g

where 82 = V() and %, = col {exp(—jw'r),r € N}.
Denoting the derivative of Iy(¢) with respect to the parameters ¢ by the
(p + 1)-dimensional vector Ap(¢) and using the equivalences (3.19) and (3.20)

given in Chapter 3 for the quadratic term x‘Qxx, the derivative is written as

Au(#) = 3 [x(xg; 6) - h(¢)],

.
where for the GMRF model
KOid) = 5 {~goe(e)ie(s) - O]} (6.3)
h6) = gemye | [ 5 oS- Ol (64
and for the NCAR model
K(i) = 5 { ~ggalete) 0P (63)
h8) = ey [, [, g oiSe(er Dl (6.6)

Letting subscripts denote the derivatives with respect to the specific parame-

ters, (6.3) and (6.4) become
1

K%)= Hoxea(s) (6.7)
5(89) = 572(0)la(s) - 0'%, (63)
hi(@) = 5o [, [ Selw.d)eude (6.9)
h(d) = o (6.10)
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for the GMRF model, where ¢, = col {cos(w’r),r € N,}; and (6.5) and (6.6)

become
%o(59) = Zxale(s) - 6'xi (6.11)
%o(0%i9) = Z5la(e) - O'xal’ (6.12)
ho(@) = gy [ [, S, 9les —Cubldw (619)
ho(®) = 3 (6.14)

for the NCAR model, where ¢, = col {cos(w'r),r € N} and C, = mat {cos[w’(r—
t)),r&t € N}.
We conclude from the asymptotic properties of the ML estimator (see Chap-

ter 3) that ¢, is a solution of the equation
Aum(¢) = 0. (6.15)
Moreover, as M — oo this estimate for both the NCAR and GMRF model is
unique and distributed such that M[¢,,, — @] is N(0,T-1(¢,)) where I'(¢,) is
the asymptotic value of the Fisher information matrix Iy(¢) defined by
1 8 9 ‘
_1rllZ 2 6.
In(#) = 35 { [ 100 10319)] [ 18 110 } (6.16)
and evaluated at the true value of the parameters ¢»,. The asymptotic value is

easily shown to be
I(¢) = —— / i / "2 10g 5.w, )| |2 10g 5. (w, ) o, (6.17)
2(r)? Jon ) |80 ") [o¢ ’
Evaluation of limps_.e Ips(@) or I'(¢) for the GMRF model gives
_ 2 T T 2 ¢
re) = v¥(2m)? ./—1r /:.n Se(w, p)ewe,dw
1
1) = 32

¥(6,v) = m j_: [ Suw, #)cudw
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where
I'6) ~(8,v)

v'(6,v)  v(v)
A similar evaluation for the NCAR model gives

I(¢) =

2 z T 2 .
T6) = Zimy /_ ) /_ 82w, ®)lcw — Cublc, — CuB'dw
1B) = 325
+(6,8) = W [ [ 5w #)le - Cublde

When &' is modeled by a NSHP model, the limiting Fisher information matrix

has the special form

I‘(G) = 'B;Qx
1B) = %
7(07 ﬂ) = 0,

where Qx = mat {E{z(s +r)z(s+ t)},r&t € N}. This results from the fact
that qx — @x8 = 0 if gx = col {E {z(s)z(s + r)},r € N}; and hence, hs(¢) = 0.
Therefore, with h(¢) = 0 the derivative of the log likelihood is

Am(@) = D K(xg; )

8EQ)
and where now
1
Ko(Xs; ) = Eixs[a:(s) — 0'xg] (6.18)
11
alid) = 5 {Zplale) -0 -1} (6.19)
Consequently, a solution to (6.15) is easily computed by
-1
Ors=1|> xsx;] [ 3 xsm(s)] (6.20)
SEQ s S8EfIrr
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and

Bis =13 > le(6) - Ol (6.21)
8€lly

which are the classic LS estimators.

We offer the following proposition which will be useful in latter discussions.

Proposition 6.1 For the NSHP model the limiting Fisher information matriz,
A}i—IPoo IM(¢): is

I(¢) = E{x(x" ¢)x!(x ¢)} . (6.22)

The proof of this proposition is as follows. First, in view of the results (3.29) and
(3.30), the conditional mean of £(x2; @) given all past observations {z(u);u < s}
is E {x(x3; ¢)|z(u),u < s} = E {(x; ¢)|xs} = 0. Next, suppose t < s. Then

E {r(x3; ¢)r'(x3; ) }
= [ [ 5 )6 (x3 8)f(2(5)la(), u < 8)f(z(u),u < s)da(s)dxu,

where xy = col {z(u),u < s}; and since x{ does not include z(s) we conclude

that

E{(S o (x0)} = [E{n(xS)lxe)} w'(xk; 6)f(a(u), u < s)dxu
= 0.

If t < s, we draw the same conclusion. Finally, the NSHP Fisher information

matrix is

(@) = 2E{An()X(®)}
= 5 2 ¥ E{(So)e(d9)}

8€ s teas
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= E{s(x’;¢)x'(x" ¢)}.

Thus, the proposition is proven. Note, that for the bilateral NCAR and GMRF

models, which contain symmetric neighbors, this proposition is generally not true.

6.2 A General Estimator for Spatial Interac-
tion Models

We can define a more general class of estimators which includes the estimators
defined by (6.15). Consider an observation set X and let D be an arbitrary
neighbor set such that Ny € D and D may include (0,0). Let d be the size of D.

Thus, d > p+ 1. The empirical d-dimensional marginal distribution

Fh) = o 3 AW, (6.23)

where A(x?) is the distribution having all of its mass at x3 = col {z(s+r),r € D}.
Then a general estimator ¢, = T(FD) is defined as any functional T'(-) of the

empirical marginal distribution where
T(FP) = ¢ if and only if / Y(x% ¢)dFP =0, (6.24)

and % is chosen to provide “good” estimates, consistent at the true underlying
d-dimensional marginal distribution FP2(z). For example, if D = Ny then sub-
stituting the empirical distribution (6.23) into (6.24) and choosing ¥(x?;¢) =
k(x% @) — h(¢) yields (6.15).
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6.3 A General Contamination for Lattice Data

In Chapter 5, Section 5.1.2 we derived an influence function for the GM-estimator
using the (p + 1)-dimensional mixture distribution FNo:*, which may not have
any direct relationship with the contamination of the observed data [38]. Conse-
quently, the GM-estimator influence function may not generate a good approxi-
mation for the estimator at the distribution of generally contaminated data, for
example, data that includes outliers more complex than occurring only at widely
separated points on the lattice. However, the (p + 1)-dimensional marginal dis-
tribution F¥o(z) of the observed data in the more complex case is not a simple
mixture of the (p + 1)-dimensional marginal distribution of the clean data and
some contamination; because, unlike in the independent data case, the location of
the contamination is also important. A more representative model of the observed
data which includes the additive and innovative outlier models as subsets. We
then give an approximation for the d-dimensional marginal distribution F2(z) of
the observed data.
Let the random field data X = {z(s),s € @ be modeled as

z(s) = [1 - z(s)]y(s) + =(s)n(s) (6.25)

where Y = {y(s),s € 2} is a stationary random field (NCAR or GMRF) with
common distribution F(y), N = {n(s),s € N} is a random noise field, and z(s) is
a random variable whose range is on [0,1]. If z(s) = z is a constant for all s and
n(s) = y(s) + v(s), then (6.25) becomes the signal plus noise model with additive
noise n(s) - v(s). If z > 0, then the AO model holds with a suitable distribution
F(v). In the latter case patchy outliers occur when v(s) is dependent on y(s),

otherwise isolated outliers occur. On the otherhand, if z(s) is a 0-1 process with
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Pr(z(s) = 1] = h, then we have substitutive outliers, i.e., we observe y(s) perfectly
100(1 — k) percent of the time while the other 100% percent of the time we observe
only noise. Clearly, this model includes many types of contamination.

The determination of a common distribution F(z) for the z(s) in (6.25) is
generally a straight forward procedure when the distributions F(z) and F(n)
are known. With more effort one could also derive the d-dimensional marginal
distribution. But in the spirit of robustness we do not have exact knowledge of
the corrupting processes, nor are we assured that the data follows (6.25). This
leads us to consider an approximation to the marginal distribution of the observed
data, that is, we will approximate the true marginal distribution FP*(z) of the

observed data z(s) by
FPh(z) = (1 — h)FP(z) + hG°(z) (6.26)

where GP(z) is a d-dimensional distribution depending on the y(s), z(s), and n(s).

(See [38), [69), and [68]).

6.4 Asymptotic Properties of the General Es-
timator

The typical approach to designing robust estimators by the infinitesimal method
[38] is to compute the asymptotic bias and error variance via an influence function
which can be interpreted as the influence of an additional observation on the value
of the estimate. For estimators given by (6.24) the design procedure then involves
selecting a v-function that yields the smallest error variance subject to a bound
on the bias. In this section we proceed in this manner to design a robust estimator

of the parameters ¢ for the models (6.1) and (6.2). However, as we shall see, a
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simple expression, tractable to a solution, requires a simplifying assumption not
applicable in general to 2-D models having bilateral neighbor sets. This is because
these models have correlations which extend in all directions. The unilateral 2-D
model, on the other hand, has statistical properties similar to 1-D time series,
i.e., a one-sided Markov property. This property can be exploited to identify a
unique influence function leading to a simple expression for the asymptotic error
variance. In this case the analysis is similar to [69] where robust estimators for
causal autoregressive time series are proposed. We initially carry out the analysis-
without restricting the neighbor set; and proofs of results which are analogous
to the 1-D situation are not provided since they are simple extensions to those

contained in [69].

6.4.1 Influence Function

To simplify notation in the following analysis we drop the superscript “d” on the
data vector x. The dimension of x is easily determined from the context in which
it appears, and unless otherwise noted xg = col {z(s + r),r € D}. To derive an
influence function for the estimator (6.24) consider the functional T'(-) evaluated

at the distribution FP* given by (6.26), i.e.,
/ $(x; T(FPH))dFP* = 0. (6.27)

Taking the ordinary derivative of (6.27) with respect to k and evaluating at h = 0,

we obtain

a - -
0 = o [Y(xT(FOH)aFP

h=0

= [ Gt @+ [wsou |

h=0 h=0
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- (2 el ¢)[ T(f”")] d7P + [ (x; ¢)d [—f”"]

h=0 h=0

or
9 =D,k 9 . D _ ) D D
[ahT(f )],.=o / [%1/;(;(, ¢)] dFP = — [ $(x; $)d(G® ~ FP)

Let GP be a d-dimensional distribution which is “near” FP. The von Mises

derivative of T(-) at the distribution FP [74] is defined to be

v 4. D D — 2_ 7~D,h

h=0
= Jim %[T((l — h)FP 4 hgP) — T(FP),

if there exists a real valued function ¢(x,FP) independent of G? such that
T'(¢;6° - FP) = [ t(x, FP)d(G® - FP). (6.28)
Clearly, the von Mises derivative of T'(-) is
T'($6° - FP) = M~ (%, 7P) [ (x; ¢)dg”
where
M(p,FP) = [ —=¥(x; ¢ ] dFP. (6.29)
Another expression for the matrix M (1, FP) is obtained by differentiating the

defining equation (6.24) with respect to ¢ as follows:

ij
55/ Y6 9)F" =0,

/ [ 550 ¢)] dFP + / (x; ¢)d [—.’FD] =0,

[ v = - [v:0) [ 57 ax
=~ [¥58) [ 5 rour2)] 1200
= - [¥(x¢) [N 9)] aF®,
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2
where A%(x; @) = 3% log(fP(x)), fP(x) is the joint probability density function

associated with 2, and 04 is the d x d matrix of zeroes. Comparing this last

equation with (6.29) we see that
M, 7P) = [w(x¢) [\(x;9)] dFP. (6.30)
Any function IF(x; ) such that
T'(¢,6° - P) = [ IF(x;¢)dgP

will be called an influence function for the functional T(-). Thus, an influence

function for the general estimator defined by (6.24) is

IF(x;¢) = M~ (%, FP)$(x; ¢). (6.31)

Note that
/ IF(x;$)dFP =0 (6.32)

and that the influence function is determined by the t-function alone.

In particular, an influence function for the NCAR and GMRF models ML
estimator, where ¥(x?%; ¢) = x(x%; @) — h(¢), is easily shown to be IF(x% ¢) =
I=1(¢)[k(x"; ¢) — h(e)].

6.4.2 Bias and Variance

Let us compute the bias and asymptotic covariance matrix of the estimator defined
by T(-). Clearly, if ¢p; = T(FD), then for sufficiently large M a von Mises

expansion of the functional T'(-) about FP yields the bias in the estimate, i.e.,
T(Fy) - T(FP) = / IF(x;)d(Fg — FP) + remainder,
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where the remainder becomes negligible as M — oo [70, for example]. Evaluating
the integral over 5} and making use of (6.32) yields the bias in the estimate from

an observation set X)s:

Miby — dol % 32 3 TF(xs; ). (6:33)

SEQM

The asymptotic bias is then computed as

b(T,FP) = lim_ E{dum— o}
= Jm_[IF(x¢)dFg
- / IF(x; $)dFP

= 0.
The asymptotic covariance can now be computed as
V(T,7%) = lim_E{M*[$s — ollbn — $ol'}
t
= lim [ Y IF(xs; ¢)] [ > IF(xt,fl’)] dFP

M=o s€0 teas

= Jm o X T [IFesoIFxad)dF.  (634)

8€flp teNNy
At this juncture in order to simplify (6.34) we specialize to a particular form

of the influence function. For example, if
/ 1F(xs; $)dF(2(s)|z(u),u < 5) = 0, (6.35)
then by using the arguments supporting the proof of Proposition 6.1 we have that

VIT,FP) = Jim 35 > / 1F(xs; §)1F*(xs; §)dFP
sen

= E {IF(x, @) F(x; ¢)} .
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However, we note that of the models considered in Section 6.1, only the NSHP

model has this property, in which case

/ TF(%; ¢)dF (zolx) = 0 (6.36)

and

V(T,F%) = E{IF(x"¢)IF(x’¢)}
= M7(4,F)Q(%, )M~ (9, F™), (6.37)
where

Q) = [ (<% SY'(x" $)dF™ (6.38)

and
M, 7%) = [ $(x% @) (x% $)dF™. (6.39)

At this time we know of no property of either the bilateral GMRF or NCAR
model which simplifies the covariance matrix expression (6.34). Consequently, in
the remainder of this chapter we specialize to estimators whose influence function
satisfies (6.35) which, in particular, includes the NSHP model. Optimal estimators
for the bilateral GMRF and NCAR models will be addressed further in the next

chapter.

6.4.3 Asymptotic Cramer-Rao Inequality
Let ¢ be fixed and ¢ = T(FP), then
d—¢= / IF(x; @)dFP + remainder.
Differentiating with respect to ¢ at ¢ = ¢ yields
a - ¢
= I1F(x; —fP d
L= [1re) | e e
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t
= [ 176 [ 1oa(sx)] 47
= / IF(x; $) [M(x; ¢)]" dFP (6.40)
where I; is the d x d-dimensional identity matrix.
Now, let a(x; ¢) = col {IF(x; &), A(x; @)}. The covariance matrix of a(x; ¢)
is
V(Ta F D) Id

E{a(x;¢)a‘(x;¢)} = - (6.41)
d

which is a nonnegative-definite matrix. Therefore, for any b € R? and letting
b = col {b,—I'"!(¢)b}, it follows that
V(T1 F D) I

I I'(¢)
= b'V(T,F2)b - b (¢)b.

0 < b

Consequently, b'V (T, FP)b > b'T'-1(¢)b for all b € R?.

6.5 An Optimal Robust Estimator

6.5.1 Optimality Problem

For multi-dimensional estimators Hampel et al [38] have suggested the following
extremal problem: minimize the trace of the asymptotic covariance matrix among
all estimators of the type (6.24) which have an influence function and for which
Ys = sup {IIF(x,)|} < c(@). ~; is called the gross-error sensitivity. In the
present context (6.35) and (6.40) are additional constraints. Thus, an optimal

robust estimator is a solution to the following constrained optimization problem:
min {tr { [ 1Pes ) IR (x; ¢)de)}}
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subject to

Condition 1: /IF(xs; P)dF (z(s)|z(t),t <8) =0
Condition 2: / I1F(x; ) [X‘(x; ¢)]‘ dFP =1,

Condition 3: s?cp{|I F(x; @)} < ¢(¢).

In a practical sense, though, one would want the third constraint to be indepen-
dent of ¢. This can be accomplished by considering the information-standardized

sensitivity

7 = sup {IF(x HIUAIF(x )}
= s {V@IFx P} <o, (642)

where J(¢)J!(¢) = I'(¢), or by considering the self-standardized sensitivity
7; = sup {IF(x; $)V-\(T, FO)IF'(x; )} (6.43)
X

Proof of the invariance of 4} and 4] to parameter transformations can be found
in [38, Chapter 4].

However, these standardizations of the sensitivity are not consistent with use
of tr{V(T, fD)} as the criterion to optimize (38]. To see this, note that the

criterion can be interpreted as the asymptotic mean-squared error, viz.,

w{V(T,7P)} = u { [ 1R )P (x; ¢)de}
= [UF(x¢)PdF®
= E{IT(F%) - &ol’}-
Consequently, the same metric should be used to measure the asymptotic mean-
squared error. For example, if 47 is used, then the criterion to optimize should

160



be

[ @IFaPar® = w{1) [ 1F0s8)IF(x4)77] 5(8)}
tr {I‘(¢) [ [ 1P ) IF(x; ¢)de] } . (6.44)

The optimality criterion using the self-standardized senstitivity is

min tr {r(¢) [ [ 1F(x;$)1F(x; ¢)d.7-'”°] } .

Since the influence function is completely determined by the -function, we re-
place IF(x; ¢) with 1(x; ¢) where the matrix M (1, ™) has been absorbed in
¥(x; ¢). For the NSHP model D can be taken as Ny, in which case d = p+1
and A*1(x; @) = k(x% ¢). The asymptotic variance expression has the simple

representation (6.37). With these changes the optimality problem becomes

minte {T(8) | [ 9<% $196c% $)ar™] | (6.45)
subject to
Condition 1: / B(x°; ¢)dF (zolx) = O (6.46)
Condition 2: / (% §)KH(xO; @)dF™ = I, (6.47)
Condition 3 sup(IJ(B)¥(; )} <c. (6.43)

The solution to this problem is an optimal robust estimator for the NSHP autore-

gressive model.

6.5.2 Optimal Solution

Consider (6.45). Let A(@) be an arbitrary matrix depending only on the param-

eters ¢. In view of (6.44) solving (6.45) is the same as minimizing
[ @y @) PdF™e
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= [T 8) - ABI(x; $)dF™
+tr{ [ 1% B )41 ($)dF ™}
+tr{ [ AR B9 )74 ()aF™ )
—te{ [ AR $)6! (% $) 44($)dF™ |
= [I@10(x ¢) — AD)(x; §)2dF™
+2tr {A(¢)J(8)} — tr {A(S)T(¢) A ()}
This last expression is minimized when J!(¢)%(x?; ¢) = A(¢)x(x%; ¢). This
yields, in the ML case, that A(¢) = J~!(¢), as expected. In the robust situ-

ation, though, x(x% ¢) may be unbounded due to contamination in the data,

leading to an unbounded influence function and, possibly, poor estimates. The

robust 1(x% @) must be chosen such that J*(¢)¥(x% @) is as close as possible
to A(@)x(x% @) but yet have the properties that yield good estimates when the

data is contaminated. This suggests that the optimal 9 be taken so that

J{(@)$(x%; ¢) = h(A($)r(x" 8)) (6.49)

where h, is the (p + 1)-dimensional Huber function given by

he(z) = z - min {1, ITCI} (6.50)

and [z|? = z'z for z € RP1.

By design this %-function satisfies the sensitivity constraint in (6.48). Equa-
tion (6.46) is also satisfied for any symmetric distribution F(zo|x) and, in particu-
lar, the Gaussian NSHP case where f(zo|x) = (2#62)‘% exp [—%ﬂz(mo - G‘x)z] .

The matrix A(®) can be determined from (6.47) which is

[ BB S)I (B A = L.
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We make the initial guess that A(¢) is a constant times J—!(¢), which is reason-

able in view of the fact that for the unstandardized case
I-'(¢) / K(X%; @)k (X% §)dFNo = L.,

To determine the constant we adopt the method of Kiinsch [69, Lemma 2]. Con-

sequently, we assume 8 is known and define the p-dimensional vector
1.
Vs = FI (0)xs, (6.51)

where J(0) is any p X p matrix such that J(8)J*(6) = I'(8) = %Qx. The vector

¥s 18 Gaussian with zero mean and covariance matrix

B{nyi} = 7/ OB {xxi}I )

1 .. -
= 'ﬂ_z’] 16)r(9)J-*(9)
= I,
Thus, the joint density function of the elements of ys is 7(ys) = [Tren 7(¥s(r)),
where 7(-) is the standard normal density function.

Let ¢(b) be a positive scalar function of a positive scalar b, and consider (6.47)

with A(8) = [¢(b)J(8)]7?, Thus,
/ he(c™ (8)71(0)ke(x%; B))[J " (8)ko(x"; $)]'dF ™ = I,. (6.52)
Using (6.51) we note that

J7H(8)Ko(x" @) = yw,

1
B

dFNe = f(z4]x)f(x)dzodx; and with the change of variables from zo and x to w

where w = —(zo—8'x), which has the standard normal distribution (w). Clearly,
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and y, respectively, dF™ = n(w)dw - n(y)dy. So, consequently

B = [ h(yw) - wy'n(w)dw - n(y)dy,

since h.(az) = ah./,(z) for any positive scalar a and where b = ¢-¢(b). The Huber

function in the above integral is explicitly given by

yw, |w] <

b-sign{w}- %, |wl 2 ]%[

Then, using this explicit expression the integral can be split so that

hy(yw) = (6.53)

/ f_ i;{ wlyy'n(w)dw - 9(y)dy

c(b)1y

+|—3—| / /; wyy'n(w)dw - n(y)dy

_b
|yl

= 2]yy‘ [/o&l win(w)dw + |76|/1; wn(w)dw] 7(y)dy.

/ ]_ _jT wyy'n(w)dw - n(y)dy

By taking the trace of both sides of this last equation and replacing tr {yy*}

with |y|? we have

o)== [Ivr [ [P vty + /i wn(w)dw] ”(y)dy.

This expression can be further simplified by noting that |y|> = Tren ¥%(r) is a
chi-squared distributed random variable with p-degrees of freedom. Therefore, let

z = |y|? so that

co z'* 1 fo°
c(b) = -12;/0 z [/0" w?n(w)dw + bz~2 /bf* wq(w)dw] X3(z)dz. (6.54)

The constant ¢(b) for various values of b has been computed for a NSHP model
with neighbor set consisting of the three nearest neighbors (p = 3). The results

are shown in Table 6.1.
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b c(b) ¢*(b) | Efficiency 1!
0.39525 | 0.20945 | 0.74584 | 2.53008
0.46161 | 0.27389 | 0.77798 | 2.59960
0.55121 | 0.37046 | 0.82015 2.72130
0.67444 | 0.51943 | 0.87570 | 2.96544
0.76812 | 0.64430 0.91574 3.25468
0.81224 | 0.70650 0.93380 | 3.44727
0.83732 | 0.74285 | 0.94381 | 3.58286
0.85934 | 0.77537 0.95240 3.72381
0.92274 | 0.87242 | 0.97596 | 4.33493
0.96462 | 0.93979 | 0.99011 5.18337
0.98424 | 0.97258 | 0.99604 6.09606
0.99706 | 0.99472 0.99940 8.02363
0.99919 | 0.99853 | 0.99986 | 9.50766

Table 6.1: Efficiency and gross-error constants for NSHP optimal robust estima-
tor, p = 3.

Let the optimal %)-function be defined by (6.49). Then

$O%4) = BT HhH(Br( )
N b
= BN GR(; ) - min {1, e 4,)'},

where

)= B
3(w? —a)

and « is selected to make the estimate of 8 consistent when the data are Gaussian.

Clearly, any matrix multiple of ¥ (x% ¢) yields the same estimator, so take

P ) = (w:‘i’a) '"ﬁ“{l’d—l}’

where

&o = |77(@)
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Substitute this 4 in the defining equation (6.24) and evaluate at the empirical
distribution to obtain the optimal robust estimator for the NSHP model:

Y T (@)ho(c (B)T ($)R(x% $)) = 0.

SENM

Using (6.18), (6.19), and (6.50) and upon simplification, the NSHP optimal robust

estimator becomes

203 Xsw(s) - Wi(dyg) =0 (6.55)
s€lly
Y- [w(s) — o] - Wi(dyg) = 0 (6.56)
8€fn
where
w(s) = %[:c(s) — 0'%] (6.57)
. b
Wb(dxg) = min {1, FJXTJ} (658)
ds = w(s)-xQx %s + %[wz(S) —af (6.59)
@x = BEfxext}. (6.60)

and the consistency constant o is determined from

_a (e, b)
as (a, b)

o (6.61)

where
oo L2~ (v-a)?]
atet) = [To[ [ waterae
= 1 2 2
+bv/£-[b’-%(v—d)3] Idv,zlxp(Z)dz] X1(v)dv
oo 1 b’-l(v~a)2]
az(a,b) = ./o [/0[ : x:(z)dz
1

° 2 2
T |xp(z)dz] 2 (0)do
dv,z = dx°||y|?=z,w3=v‘
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The consistency constant « for several values of b has been computed for a NSHP
model (p = 3) by an iterative technique and the results are shown in Table 6.2.

Figure 6.2 plots the consistency constant versus cutoff for several NSHP models.

0.58435
1.2 | 0.63285
1.5 | 0.69540
2.0 | 0.77747
2.5 | 0.83797
2.8 | 0.86627
3.0 | 0.88237
4.0 | 0.93852
5.0 | 0.96809
6.0 | 0.98352
7.0 | 0.99153
8.0 | 0.99564
9.5 | 0.99835

Table 6.2: Consistency constants for the optimal robust NSHP estimator.

The solution of the p + 1 equations (6.55) and (6.56) is the optimal robust
estimate of @ and S for the NSHP model. The constant b determines both the
robustness and efficiency of the estimator. In the next section we suggest a pro-
cedure for determining b. Note that if b = oo, then (6.55) and (6.56) reduce to
the ML or, equivalently, the LS estimator for the NSHP model.

We note that the estimator given by (6.55) through (6.61) is different than
Kiinsch’s estimator given in [69] for time series. Kiinsch’s estimator is actually
a hybrid estimator, consisting of an estimator in the spirit of (6.45) for 6 but
utilizing another estimator, Huber’s “Proposal 2” [39, pg 137), for the parameter
B. This is justified in view of the result [69, Theorem 2.6] that estimates of @ and

B are asymptotically independent.
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6.5.3 Estimator Efficiency

The critical parameter in (6.55) and (6.56) is b. As noted in the previous section
for b = oo the efficiency of the estimator is optimal since then it corresponds to
the ML estimator; but then, robustness suffers. For robust estimators it has been
suggested [69] (see also Chapter 5) that, in general, they be designed by choosing

an acceptable efficiency.

We define the efficiency (Eff) of a (p+ 1)-dimensional estimator T(F™°) to be

tr {Cramer-Rao Bound} tr {I'"}(¢)}

Efi(¢) = tr {Covariance of Estimator} ~ tr {V(T, FN)}’

(6.62)

For the NSHP optimal robust estimator the trace of the asymptotic covariance
matrix can easily be computed from the t-function via (6.37). This computation

shows that

e {W@ )} = {96060}
= @) {I7(6) [ mywhiyw)nm)ds - ny)dy]7-0)}
= ?(B)tr {I(8)Qn},

where @n = [ hy(yw)h(yw)n(w)dw - n(y)dy.

Let [@Qn)rt be an element of the p X p matrix Qn, and let y(r),r € N be the

elements of y = lJ ~1(8)x, then
B
[@ulee = [ (ha(yw)l, [ha(yw)le n(w)dw - ny)dy
= / w?y(r)y(t)min? {1, ITI:DT} n(w)dw - n(y)dy

= 2 [yt [ [P ta(aro + /i n(w)dw] o(y)dy (6.63)
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Let g(b,ly|) denote the integral inside the brackets in (6.63). Then, for r # t, we
write
00
(@ulee =2 [v(8) [ 4(e) - o6, Iy Dty (e)ay(e)] TT n(o(e))d(e)
—oe t#r
However, the function y(r) - g(b, |y|) is an odd function with respect to y(r); and
therefore, the integral inside the brackets is zero.
This proves that Qy, is a diagonal matrix whose diagonal elements we denote
as c¢*(b). Letting 2z = |y| as before, we can easily compute the trace of @), and

determine that

©o z‘& 00
c*(b) = %L z [/: wn(w)dw + b*27? /;;-* q(w)dw] X3(2)dz. (6.64)

Hence, Qp = ¢*(b)1, and the trace of the asymptotic covariance matrix is
tr {Vo(T, F™)} = c*(b)c" (b)tr {T1(6)} . (6.65)

The constant ¢*(b) for several values of b has been computed for a NSHP model
with neighbor set consisting of the three nearest neighbors (p = 3). The results
are shown in Table 6.1.

Efficiency for the NSHP optimal robust estimator is determined to be

(b)

Eff(8) = =0

(6.66)

Values of Eff(8) for selected values of b and a NSHP model (p = 3) are shown in

Table 6.1. Figure 6.1 plots the efficiency versus cutoff for several NSHP models.

b
Also, in Table 6.1 are values of 4] = @
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Figure 6.1: NSHP optimal robust estimator efficiencies for selected model orders.
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Figure 6.2: NSHP optimal robust estimator consistency constant for selected
model orders.
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6.6 Experimental Results

Experiments with synthetic data were conducted to evaluate the performance

of the 2-D optimal robust estimator for the NSHP model. The optimal robust

(OR) estimates were compared with the results obtained from applying the LS

estimator, the 2-D GM-estimator of Chapter 5, and the optimal robust estimator

of Kiinsch [69] adapted for the 2-D NSHP model. This estimator, designated

“OR(K)”, is given by (6.67) through (6.73).

E xsw(s) - Wp, (dxs) = 0

8€0y
Y- [w(s) - W (w(s)) —an] =0
8€NAr
where
wle) = 5——o(e) = Fomsorx]
OR(K)
. b
Wi(z) = mm{l,m}
&, = %Qx'%s
Qx = E{xaxg} .

and the consistency constant oy is determined from

ag = /_: v*WE (v)n(v)dv.

(6.67)

(6.68)

(6.69)

(6.70)
(6.71)

(6.72)

(6.73)

The consistency constant ay for several values of b has been computed for a NSHP

model (p = 3) and the results are shown in Table 6.3.

We used the procedure in [16] to generate an ensemble E, = {V* = {yi(s),s €

Qa2},k = 1,...,64} of 64 sets of Gaussian NSHP data on a 32 x 32 toroidal

lattice where each set Y* used a unique seed for the Gaussian random number.
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.0 | 0.51606
1.2 | 0.63522
1.5 | 0.77847
2.0 | 0.92054
2.5 | 0.97756
2.8 | 0.99063
3.0 | 0.99501
3.2 | 0.99744
4.0 | 0.99988
5.0 | 1.00000
6.0 | 1.00000
8.0 | 1.00000
9.5 | 1.00000

Table 6.3: Consistency constants for Huber “Proposal 2” scale estimator.

The parameters of the NSHP model were identical for each set and are shown in

Table 6.4.

Bo—1 | 010 | 611 | B°

Ir.S .6 -5 |10

Table 6.4: Model parameters used to generate NSHP data used in the experiments.

Least squares parameter estimates, (6.20) and (6.21), were then computed
from each set of the ensemble for a NSHP model with neighbor set
N = {(0,-1),(-1,0),(=1,-1)}. These 64 sets of LS estimates of 8 and #*
are denoted as ¢5¢ = col {8%, Bk}, k =1,...,64, and used for comparing the
performance of the optimal robust and other estimators.

We conducted five experiments using data ensembles composed of E, and
various contaminations. In each experiment the comparisons of the estimators
were made by computing the average error, €, and the average squared errors, ¢2,

relative to the LS estimates from E, for each of the estimators. The coefficient
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average errors were computed by

1 & .
& =51 D (0 -0 is), TeN
k=1

and the coefficient average squared errors by
2_ 1 & s e 2
r = _Z(or "or,LS) , TEN.
64 k=1

The errors for % were computed in a similar fashion.

The equations (6.55) and (6.56) for the OR estimator and (6.67) and (6.68)
for OR(K) were solved by an iterative technique starting from LS estimates of
the parameters and continuing until the change in the solution was less than a
specified value 8. The iterative technique followed the general outline given below.

Algorithm:

1. Estimate Qx. This was accomplished by computing the sample covariances
from the clean data E,. However, when E, is not available Qx can be
estimated by any of the robust covariance matrix estimators discussed in

[38, Chapter 5] or [39, Chapter 8]. See, also, Chapter 7.
2. Obtain cutoff constants b (b;, b;) and compute o (az).

3. Compute LS estimates from the given data and set 8, = 05 and 52 = Bis.

Set j = 0.

4. At Step j, compute for OR

bis1 = [Z Wb(dxg)xsxi] Y. Wi(dyg)xez(s)

€Nn s€fly

a _ 1 _ , _ At' 2
= & Tocnns Woldeg) SEZQ:M Wi(dxo)[z(s) — 6,;%s]".

Similar equations are solved for OR(K).
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5. If [col {841, AJ?H} —col {é,,ﬁf}l > 6, 7 =3+ 1 and goto Step 4.
6. Otherwise, stop.

In all experimental runs the above algorithm converged in fewer than 10 iterations

for both OR and OR(K).

Experiment 1: In this experiment OR and OR(K) were used to estimate the
parameters of a NSHP model from the clean Gaussian NSHP data in E,. The
cutoff constant for OR was b = 2.0. The cutoff constants for OR(K) were b =
b, = 2.0. The resulting average errors and average squared errors are shown in

Figures 6.3 and 6.4.

Experiment 2: An ensemble of data with additive outliers at uncorrelated
lattice points was generated by creating 64 sets of Gaussian noise E, = {N* =
{nk(s),s € N32},i =1,...,64} where E {n(s)} = 0.0 and V {n(s)} = 5.0, yielding
an approximate signal-to-noise ratio of —5db. Another ensemble of 0 — 1 random
data E, = {2* = {z(s),s € Q32},k = 1,...,64} was created with a binomial
distribution having P {z(s) = 1} = .05, equivalent to a 5 percent contamination.
The data in E,, E,, and E, were then used in (6.25) to compute and ensemble
E. of contaminated NSHP data. Least squares, OR, OR(K), and GM-estimates
were computed and errors calculated relative to the LS estimates from E,. The

results are shown in Figures 6.5 and 6.6.
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Figure 6.5: Average parameter estimate errors from uncorrelated additive outlier
data.
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Figure 6.6: Average parameter estimate squared errors from uncorrelated additive
outlier data.
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Experiment 3: Data with additive outliers at correlated lattice cites were gen-
erated by creating an ensemble E, = {Z* = {z(s),s € Q,},k = 1,...,64} of

0 — 1 random data 2(s) with a binomial distribution such that

Yreadrz(s+r)

Plale) =1} = 3. Yrealax|

+0.1

and the a, and A are given in Table 6.5. Consequently, lattice sites at which
2(s) = 1 occured in clusters. The contaminated ensemble F, was formed by
using E,, E,, and E, in (6.25). Least squares, OR, and OR(K) estimates were
computed and errors calculated relative to .5 and f%¢. The results are shown

in Figures 6.7 and 6.8.

dp,-1 | G0,-2 | G_1,0 | G—1,—-1 | 8-1-2 | G_20 | G_2-1 | G322

Table 6.5: Neighbor set and coefficients for correlated 0 — 1 binomial data.

Experiment 4: In this experiment the contaminated data consisted of substi-
tutive outliers at uncorrelated lattice sites. The data was created by using the
data E,, E,, and E, in (6.25). The computed errors of LS, OR, and OR(K)

estimates relative to the LS estimates from E, are shown in Figures 6.9 and 6.10.

Experiment 5: Here we formed and ensemble of data E, with correlated sub-
stitutive outliers by using E,, E,., and E, from the preceding experiments and
computing (6.25). Least squares, OR, and OR(K) estimate errors are shown in

Figures 6.11 and 6.12.
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Figure 6.7: Average parameter estimate errors from correlated additive outlier
data.
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Figure 6.8: Average parameter estimate squared errors from correlated additive
outlier data.
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Chapter 7

Empirical Robust Estimators for
Noncausal Models

In Chapter 6 a robust estimator with optimal properties was developed for a
specific 2-D random field model, the NSHP autoregressive model. This estimator’s
structure depends directly on the unique statistical characteristics of the NSHP
model and, in particular, on its one sided Markov property. In this chapter we
suggest some robust estimators for noncausal models which seem justifiable in
view of the developments in Chapters 5 and 6. These estimators do not have
any theoretical underpinnings as does the optimal robust estimator for the NSHP
model in Chapter 6, but are, more or less, based on the general theme that robust
estimators are characterized by a mechanism which down-weights data which
seem extreme relative to the aggregate data. Both the 2-D GM-estimator and the
NSHP optimal robust (OR) estimator have this mechanism. We note that both
the GM-estimator and the optimal robust estimator are essentially weighted LS
algorithms whose weights depend directly on the data.

Although one can think of many schemes to accomplish this down-weighting,
care must be taken in selecting a method since resulting estimates should be con-

sistent and efficient, or nearly so. Thus, in this chapter we suggest several NCAR
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and GMRF robust estimators, each developed from the ML estimator. The ML
estimator is known to yield consistent, efficient and asymptotically normal esti-
mates for NCAR and GMRF models when the data are Gaussian. The estimators
we suggest can be categorized in two classes, characterized by the technique used
to achieve robustness. The first class uses robust covariance estimates in place of
sample covariance estimates, while the second class uses the idea that bounding

the influence of outlying data produces robustness.

7.1 Robustifying the Likelihood Equation by
Robust Covariances

Let A% be known and consider the ML equation (6.15) from Chapter 6, rewritten
for the NCAR model using (6.11) and (6.13) with xg = col {z(s+r)+=z(s—r),r €
N,}:

% Y {xsla(s) — 6xe] — B*ho()} = 0, (7.1)
SENAs
where
he(p) = ,32_(2155./:: /-:Sz(w,tb)cw[l — 26%c,}dw (7.2)
‘32
5:(w,9) = Togep

and ¢, = col {cos(w'r),r € N,}. Here, we use the asymmetric neighbor set
N, and enforce the requirement that for every r € N implies —r € N and that
0, = 0_; in order that the parameters be identifiable [16].

Let us define sample covariances

el(r) = ,—Ml-a 3 22(s)els + ) +2(s ) (7.3)
8€l M
alnt) = 35 T e+ +ele—nlels + ) +ale -] (74
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the neighbor set sample covariance matrix
C; = mat {c;(r,t),r&t € N,}
and the neighbor set sample covariance vector
¢z = col {c.(r),r € N,}.

Then, using these sample covariance expressions in (7.1), the ML equation for the
parameter 8 is

C.0— %c, + Bhe(¢) = 0. (7.5)

Equation (7.5) suggests that C; and c; must be accurate estimates of the true
underlying NCAR asymmetric covariances, @, = E {xsx} and q, = E {2x:z(s)},
for the ML estimate of @ to be accurate. In the presence of outliers, if (7.3) and
(7.4) are used to compute the sample covariances poor results may be obtained.
We suggest that robust estimates be used in place of C; and ¢, in (7.5). Robust
estimators of covariance and correlation matrices are adequately discussed in [38,
Chapter 5] and [39, Chapter 8]. For our purposes here, we suggest one simple
estimator which requires only robust scale estimates. Let z; and z; be random

variables with zero mean and finite variance. Then,
cov{z,, 27} = ﬁ [V {az; + bz2} — V {az, — bz2}]. (7.6)

Hz, =z(s+r)+z(s—r) and 2z, = z(s + t) + z(s — t), then ¢;(r,t) can be
computed from (7.6). By replacing V {-} with a robust alternative, S{-}, (7.6)
becomes a robust estimator of the covariance which we denote by c;(r,t). Huber

1
suggests that a = ——— and b= ; in which case,

_1_
S{z} S{z2}

% [Sz (Sgl} + SEL:z}) -5 (Sf;l} B Sz:z}ﬂ
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is a robust correlation estimate which may not be limited to the interval [—1, +1].

Therefore, it is further suggested to use

ety = sty + sfiy) = 5° sty — sfy)
5* (st + stay) + 5° (st — st)

then compute the robust covariances from

cz(r,t) = r}(r,t)S{z(s + r) + z(s — r)}S{z(s + t) + z(s — t)}. (7.7)

Several possible choices exits for the scale estimator. For example, S{-} can

be computed as the median absolute deviation (MAD) estimate [39]

median {|z; — median {z;} |}

S{ai} = 6745 ’ (7.8)
or S{-} can be computed from Huber’s “Proposal 2” [39] by solving
2
3 |min {b”, “”—(‘"l} - a,,] =0 (7.9)
8€flar 5?

for S, where ay is given in Table 6.3 of Chapter 6. M-estimators and optimal
robust estimators fbr the covariances also exist. See [38] for details.

We note that equation (7.5) is independent of 2. This suggests that the
estimates of 8 and % can be determined independently without affecting the
other. With this in mind we have the following algorithm for determining a
robust estimate of ¢ = col {8, 3%} for the NCAR model.

NCAR Robust Algorithm 1:

1. Compute C; and c; using (7.7) and a robust estimator of scale.

2. Solve
- 1 - N
C;0 — §c; + ﬂ2h9(¢) =0
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and

> [min{t?, w*(s)} — an] = 0

8EQN

for 8 and B2, where w(s) = %[m(s) - @‘xs].

A similar approach can be taken to develop a robust estimator of GMRF model

parameters. The ML estimator equation for the parameter vector 8 of a GMRF

model is
2% 3 [xsz(s) — 2vhe(¢)] = O, (7.10)
8€EQM
where
ho(¢) = Wlw)? [ [ 8u(w,g)eude (7.11)
S.(w,¢) = —

1 —26%,
and ¢, = col {cos(w’r),r € N,}. Using the sample covariance definition (7.3) the
GMRF ML equation for @ can be written in the form

%c, — 2uhy() = 0.

This suggests that by replacing c; with the robust c; a robust estimator of # can
be obtained. However, a simpler, explicit estimator is possible.

Let q,(8) be determined from the inverse Fourier transform of (7.11), that is,

iq_,(a) = (—2;_—)2- /_: /_: S:(w,P)c,dw.

Clearly, q;(0) depends on the parameter vector 8 and is equal to the data
covariance vector q; = E{2xsz(s8)} when 8 is the true value. Consequently,

he(dp) = éq,(a). But we know for the GMRF model that %qx = @Qx6. Hence,
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hy(¢p) = -ZlV-Qx(O)O and the GMRF ML equation can be rewritten and solved for
8 to yield

0 = Q7' (6)e
Whereupon, replacing Q-(8) with C; yields the familiar LS estimator. Using
the same rationale applied for the NCAR model robust estimator, the GMRF LS

estimator is robustified by replacing the sample covariances with robust estimates

Of the cova.ria.nces and obta.ining
1 :'
2 ; ! c:"

Two approaches can be used for estimating the residual variance v. First,

consider

Mz sezn:M[w(S) 60'xs)?,

an estimator proposed by Chellappa [33]. For the robust case this estimator

suggests that we again use Huber’s “Proposal 2”, i.e.

) Y [min{t?, w?(s)} — an| =0 (7.12)
8€fln

1 t
W[x(s) — 0'xy).

Alternatively, we can robustify the ML equation for v,

where w(s) =

> {x(s)lz(s) — 8'xs] — 20°h, ()} = 0

2” senu

where h,(¢) = —. In terms of the sample covariances,

1 1
ZC,,-(O) - 50‘6,,- —v=0.

By replacing sample covariances with robust estimates of the covariances we ob-

tain
1

t =
v= 22c(O) 0cx].
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A robust algorithm for computing robust estimates of ¢ = col {8, v} for the
GMRF model is proposed.
GMRF Robust Algorithm 1:

1. Compute C; and c; using (7.7) and a robust estimator of scale.

2. Compute
b= %C’;'lc;
and
. 11, t,
b=3 2c:,(O)—O -

7.2 Robustification of the Likelihood Function

The influence function for estimators which may be expressed as functionals have
especially nice properties for NSHP models. For example, the error covariance
matrix for the NSHP model estimator can be expressed as simply the expected

value of the outer product of the influence function, viz.,
V(T, ) = / TF(x°, §)IF(x°, p)dF™.

This is a consequence of the fact that the NSHP random field possesses a one-sided
Markov property and the conditional mean (given all past observations) of the
influence function is zero. For NCAR and GMRF model estimators, the asymp-
totic error covariance matrix in terms of the influence function does not reduce
to a similar expression and the conditional mean (given all other observations) of
the influence function is not necessarily zero. Consequently, the asymptotic error

covariance matrix for the NCAR and GMRF estimators is

VT,F*) = Jim <o ¥ X [IF(E,6)IF (x5, ¢)dF™.
© M 8€fla teQyy
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and a simpler expression does not seem to exist. Solutions to Hampel’s optimality
problem for the NCAR and GMRF model seem remote. However, in analogy with
the NSHP case, it seems reasonable to expect that a bound placed on the bias, or
equivalently, an influence function, will result in an estimator yielding parameter
estimates closer than ML estimates to the true underlying model values when
confronted with data containing outliers. No optimal property regarding the error
covariances can be expected.

For instance, let us consider the NCAR model with 8% known and specializing
to the case when r € N implies —r € N. An influence function for the estimator

of the NCAR model parameter vector 8 of the form (6.24) is
IF(x", 8) = T1(8)[a(x°, #) — ho(&)], (7.13)

where x4(x° @) and hy(@) are given by (6.11) and (6.13), respectively, and x5z =
col {z(s+r)+z(s—r),r € N,}. Obviously, outliers in the data affect only K4(x°, @)
and not hy(¢). So, instead of K4(x?, ¢) use some robust alternative, K}(x%, ¢),
so that when the data are truly a Gaussian NCAR random field «3(x°, @) looks
like k4(x°, ¢); but when x° contains outliers, £3(x°?, ¢) < Kkprax < 00.
Therefore, as suggested by the NSHP OR estimator we propose the following

robust estimator for the NCAR model parameters.

NCAR Algorithm 2:
1. Solve
1 N
5 [3renle): Waldg) - (@) =0
8EflM ﬂ
and

> [min {82, w*(s)} - an] = 0

8€Nar
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for § and §2, where w(s) = -;-[a:(s) - étxs] and

be(z) = min {11 b_l}
dig X;Q;lxs

Qz = E {xsx;} .

As a second alternative, one can robustify the likelihood function directly.

Consider the NCAR negative log-likelihood function rewritten in the form

(@) = ZQI [H(®) + prr(x3; @), (7.14)
where
@) = 5575 |, [ loglS.(w, $)d
and

(% @) = 2%2[:.:(5) pTe

and where the constant terms not involving the parameters have been neglected.
Clearly, only the last term of (7.14), having the functional form ppr(w) = —;-wz
for the ML function, involves the possibly contaminated data which can have
unlimited influence on Iy ().

As a robustified negative log-likelihood function consider,

ha(#) = 2 [H() + p(xg; &)] (7.15)

8Efln

where p(xg; @) is a function which looks like parr(xs; @) if the data are truly a
Gaussian NCAR random field but limits the influence of outliers.

Letting 9(x3; @) = %p(xg;qﬁ), the likelihood equation becomes

(@) = 3 [96S 6) — ho(9)] (7.16)

SGQM
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with an influence function
IF“(x°; @) ~ ¢(x°; @) — hye(P). (7.17)

Therefore, choose p(x% ¢) such that ¥(x% ¢) yields a bounded IF(x% @) as a
function of the data.

In keeping with the general rules of robustness, 4(w) should be a continuous
function so that the local-shift sensitivity A* (see Definition 2.3, Chapter 2) is

small and the gross-error sensitivity 4* (see Definition 2.2, Chapter 2) is bounded.
i

Thus, if we let ¥ (w) = %6 (w) where ™ 3(w) = £ p(w), then choose
c, w>c
Ppw)={ w, |w/<e - (7.18)
—c, w<—c
Integrating this #-function yields
2cw — %, w>c
p(w) =9 Luw?, w|<ec - (7.19)

—2cw — -°23, w< —¢

When using this p(w) extremely large outliers still affect I3,(¢). For additional
robustness a ¥-function which returns to zero could be used, yielding a rejection
point p* which is finite (see Definition 2.4, Chapter 2). In this case, possible

candidates for (w) and p(w) are

0, w>c
P(w) =1 w(?-v?)? |jw<ec (7.20)
0, w< —c¢
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£, w>c
p(w) = %(64_021,,2_,_%*)’ lw|<ec - (7.21)
%, w< —-C

Thus, we have the following algorithm to compute robust estimates of the
NCAR model parameters.
NCAR Algorithm 3:

1. Minimize with respect to # and 8

(@) = > [H() + p(x3; @),

8EQ s

where p(w) is given by (7.19) or (7.21).

7.3 Experimental Results

We conducted several experiments to compare the robust estimators with the

classical ML and LS estimators for noncausal models.

Experiment 1: We synthesized 64 sets, Y* = {yi(s),s € Q32},k = 1,...,64,
of 2nd-order Gaussian NCAR data on a 32 x 32 square toroidal lattice using
the procedure in [16]. The parameter values for the NCAR model are given in
Table 7.1. To create contaminated data we generated 64 sets, N'* = {ni(s),s €
Q},k = 1,...,64, of Gaussian noise with E {n(s)} = 0.0 and E {n?(s)} = 25.0
and 64 sets, 2% = {zi(s),s € Qa2},k = 1,...,64, of uncorrelated 0 — 1 random
variates with P {2(s) =1)} = 0.02.

We then computed

zi(8) = zk(8) + 2x(8) - ni(s) (7.22)
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010 o1 (2% 011 B
" .19450 | 05710 | -.13600 | .23470 | 1.00000

Table 7.1: Neighbor set and coefficients for the NCAR. model.

fors € Q3 and k = 1,...,64 to yield 64 sets, X* = {zx(s),s € U}, k =1,...,64,
of 2 percent additive outlier (AO) contaminated data. The ML estimator and
NCAR Robust Algorithm 1 with b = 2.5 were used to compute parameter esti-
mates from each set J* and X’* of data. The results are shown in Figure 7.1 and

Table 7.2, where the average errors
64 -~
€& = (65— 6kars), TEN, (7.23)
and the average squared errors
1 & . 2
2 _ k _ pk
C,. - ‘62 ’g (0,. or'ML) ) r e N,, (7.24)

relative to the ML estimates, are compared for the ensembles of clean data, E, =

{Y*,k=1,...,64}, and contaminated data, E, = {X*, k=1,...,64}.

| [ ML - AO Data | Robust - Clean Data | Robust - AO Data ||
€p —0.68920 0.00022 —0.22183
c§ 0.54389 0.00011 0.05526

Table 7.2: NCAR sample average error and squared error of the parameter 42.
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Figure 7.1: NCAR sample average error and squared error of the parameter ;.
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Experiment 2: As in Experiment 1 we generated an ensemble of clean GMRF
data, E, = {Y* = {yi(s),s € Qa2},k = 1,...,64}, with parameter values given
in Table 7.3, and an ensemble of 2 percent additive outlier contaminated data,
E. = {X* = {zi(s),8 € Q32},k = 1,...,64}, using (7.22) with E {n(s)} = 0.0
and E {n?(s)} = 5.0. The average errors (7.23) and average squared errors (7.24)
of @ and v using LS and robustified LS estimates, GMRF Algorithm 1, are shown
in Figure 7.2 and Table 7.4. The robust covariance estimates c; and C. were
computed using (7.7) and Huber’s “Proposal 2” (7.9) [39] with b = 2.5 for the

robust scale estimates.

" (1,o) | (0,1) | (1,1) |(—l,l)| v "

|| .19500 | .05000 | —.13500 | .10100 | 1.00000 "

Table 7.3: Neighbor set and coefficients for the GMRF model.

[ LS- AO Data | Robust - Clean Data | Robust - AO Data
€y —0.11596 —0.00054 —0.06325
g2 0.01641 0.00007 0.00468

Table 7.4: GMRF sample average error and squared error of the parameter v.

200



0.02
. LS - AO Data
Robust - Clean Data
0.01 D Robust - AO Data
€ 0.00 - m |
-0.01 I
-0.02 - : ,
8(1,0) 6(0,1) 8(1,1) 8(-1,1)
0.0005
B LS-AOData
7 .
0.0004 - Robust - Clean Data
[0 Robust- AO Data
0.0003
2
0.0002 ]
0.0001
0.0000 - Z

6(1,0) | 6(0,1) 6(1,1) 8(-1,1)

Figure 7.2: GMRF sample average error and squared error of the parameter &,.
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Experiment 3: To evaluate the statistics of the estimates from NCAR Algo-
rithm 2 we used the clean and contaminated data ensembles from Experiment
1. The average errors (7.23) and average sqaured errors (7.24) of the parameter
estimates using this algorithm are compared in Table 7.5 and Figure 7.3. The

cutoff constants were b, = 2.5 and b, = 2.0.

|| | ML - AO Data | Robust - Clean Data | Robust - AO Data ||

-0.11596 —0.00054 —0.06325
0.01641 0.060007 0.00468

Table 7.5: NCAR sample average error and squared error of the parameter 32.

Experiment 4: NCAR Algorithm 3 was evaluated similarly. Using the clean
and contaminated ensembles of data from Experiment 1, estimates of § and 8°
were made and the error statistics computed and compared with the ML esti-
mates. The results are shown in Figure 7.4 and Table 7.6. Here, we use the
p-function, given by (7.19), corresponding to a non-redescending 1-function. The

cutoff constant was ¢ = 1.5.

it [ ML - AO Data | Robust - Clean Data | Robust - AO Data ]|
€p -0.11596 —0.00054 ~0.06325
3 0.01641 0.00007 0.00468

Table 7.6: NCAR sample average error and squared error of the parameter §2.
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Figure 7.3: NCAR sample average error and squared error of the parameter 0,.
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Summary. The results speak for themselves. In every case the robust estima-
tors perform well on uncontaminated data and do much better than the optimal
Gaussian estimator when the data are contaminated. The robust estimates have
smaller sample bias and sample variance then the nonrobust estimates in very
experiment except for the estimate of fp; from NCAR Algorithm 1, where the

robust 90'1 sample error is slightly larger than the non-robust estimate.
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Chapter 8

Conclusions and Topics for
Future Research

8.1 Conclusions

Two theoretical approaches have been researched to solve the 2-D spectrum es-
timation from contaminated data problem. These approaches can be classified
according to the amount of information available regarding the distribution of the
observed data and the structure of the contamination process.

If the distribution functional form is fairly well established as Gaussian and
the contaminating noise, if present, is additive to the signal of interest, then
the NCAR plus noise model provides superior estimated spectra when compared
with the conventional NCAR only model. We have shown that the NCAR plus
noise model has practical application to the important planar array processing
problem of direction finding. Moreover, the theoretical properties of the NCAR
plus noise model ML estimator include optimality in Gaussian situations, and its
empirical properties, evaluated by simulation, suggest that numerically the NCAR
plus noise model is far superior to the NCAR only model when optimizing the

likelihood function.
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When the distribution functional form is established to lie only within a neigh-
borhood of a nominal, say Gaussian, distribution, then a robust parametric ap-
proach is deemed appropriate. For simple contamination in NSHP and GMRF,
such as widely scattered additive and innovative outliers, the weighted LS esti-
mator with data dependent weights, i.e., the 2-D GM-estimator, works well and
performs better in the contaminated situation than the conventional LS estimator

and performs almost equally as well as the LS when contamination is nonexistent.

However, the 2-D GM-estimator possesses no optimality property and may
not perform well when the structure of the contamination is more complicated.
Therefore, an optimal robust problem was proposed for a general class of ML type
estimators. This optimality problem was solved for the NSHP model and an opti-
mal robust estimator was synthesized. The experiments clearly establish this esti-
mator’s superior performance and optimal properties in a variety of contaminated
data situations when compared with the performance of the 2-D GM-estimator

and the optimal ML estimator based on a strict Gaussian assumption.

Estimators for NCAR and GMRF models were also derived from the basic
robust statistical principles. These empirical estimators also perform better than

the ML estimator when the observed data has contamination.

8.2 Topics for Future Research

Several topics requiring investigation have become apparent as a consequence of
the research conducted in this dissertation. In general, the field of parametric

spectrum estimation for contaminated random fields remains open in so far as
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the dependent situation is concerned. The optimal robust estimator in Chap-

ter 6 is not the complete answer since it only applies to estimators of the form

E {9(x3; ¢)|z(t),t < s} = 0, a class which excludes noncausal random field mod-

els. Specifically, we have the following problems which require more analysis and

future research.
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e For detection and resolution of 2-D spectra with peaks a primary benefit

of model based spectrum estimation using noncausal models is a significant
reduction in the number of unknown parameters requiring estimation when
compared to QP and NSHP models. This advantage is present in both
the clean and contaminated data situations. The experimental example in
Chapter 5 showed that 40 neighbor NSHP models were necessary to detect
and resolve two closely spaced sinusoidal signals in noise. Contrast this
with the examples in [12] where only a 5th-order (12 neighbors) NCAR only
model and in Chapter 4 where only 2nd-order (4 neighbor) NCAR plus noise

model detected and resolved two closely spaced sinusoidal signals in noise.

All other things being equal one chooses an optimal estimator over oth-
ers. Although the estimators evaluated in Chapter 7 perform well from an
empirical standpoint, nothing much can be said regarding their optimality.
Consequently, an optimal robust estimator for the noncausal situation is

required.

Suppose X, = {(s),s € N0} is an a-mixing process in the sense given
in [72]). Then, we suggest that the asymptotic covariance matrix in terms of

an influence function IF(x?; ¢) ~ 9(x° ¢) for the ML type NCAR model



estimator is given by
V(T, %) = E{IF(x’¢)IF'(x";$)}

+ :(t )E{IF(x"; OIF (x5 4)}.  (81)

We suspect that tr {V(T, 7™)} is dominated by the trace of the first term
in (8.1). Hampel’s optimality problem can then be stated as “minimize
tr {E {IF(x"; ¢)IF'(x% ¢)}}, where IF(x% ¢) = 9(x° ¢) — h(¢), subject
to a bound on the bias”. The solution to this problem requires further

investigation.

The ML approach to parametric spectrum estimation possesses two major

shortcomings:

1. Computational intensive nonlinear optimization is usually required to

solve for the ML parameter estimates, and

2. Global solutions are usually only possible when the observed data are
infinite in extent and the empirical distribution exactly matches the

assumed distribution.

Global optimization algorithms available to date only ameliorate and not
eliminate the second shortcoming and usually do so with increased com-
putational requirements. Toroidal lattice assumptions and the fast Fourier
transform have reduced computational requirements but not conquered the

first shortcoming.

Attempts have been made by several researchers to adapt the ideas of
stochastic relaxation and simulated annealing [75, 76, 77] to the determin-

istic optimization problem [78]. Interest in this subject is motivated by two
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potential benefits: 1) The promise of an algorithm that yields with high
probability the global solution and 2) the promise of parallel algorithms
solvable on neural network computers. However, the simulated annealing
method is generally applicable to optimization of discreet systems with at
most a countable number of distinct states. The ML optimization is con-
tinuous in nature and application of discreet method will not necessarily

guarantee the global solution.

An approach to the continuous problem is by application of stochastic
diffusion equation theory [79, 80, 81, 80, 82, 83] which seems on the surface
a viable alternative to deterministic nonlinear optimization for determining

the global minimum of the negative log-likelihood function.

For example, a possible procedure for determining the global minimum

of the negative log-likelihood function, lx(¢) = — log f(x|¢), is to compute

¢k+l = ¢k _ akAM(d’) +ak”’k

until convergence, where k is the step count, Ays(¢) is the gradient of Iys( ),
pf = col {u¥,i=1,...,p+1} is a (p + 1)-dimensional vector of zero mean
and identically distributed Gaussian random variables, and the step size ax

is given by
Ao
% = Tog(k + A

for Ag > 0 and A; > 0. The term aipu® is the “annealing” term to force

the sequence {¢*} to jump around until it eventually settles near a global

minimum of Ia(¢).

Our initial empirical investigation of a diffusion optimization algorithm

for minimizing the negative log-likelihood function was less than satisfactory.



The procedure is sensitive to the choice of the step size constants Ay and
A;, and no theoretical rules are suggested for their selection. This is a topic

for future research.

Having obtained model based spectrum estimates one would also like to
know how good they are. This problem remains open, even for the 1-D
situation, since statistical analysis of the model based spectrum estimate
is difficult and, in general, can only be achieved for asymptotic conditions.
Sharma and Chellappa [12] have computed confidence bands for NCAR and
GMRF spectra which specify that as M — oo the probability is at least
(1 — «) that simultaneously for all w

Ll <sw)< L S—
S;‘(w,tb) +a(w,¢) Sy_l(“"1¢) —a(w’¢)

(8:2)

where a?(w, @) depends on the upper a critical value of a x2-distribution
having (p + 1) degrees of freedom and the asymptotic covariance matrix
of the ML parameter estimates. The only requirement is that ¢ be an
asymptotically normal and efficient estimator of ¢. Such is the case for the
NCAR plus noise model estimates of 8, 8, and . Thus, the confidence bands
can be computed similarly for the NCAR plus noise model. For example,
use (8.2) with the NCAR plus noise model estimates of # and § and the
associated asymptotic covariance matrix. This gives a confidence band for

S,(w) without the additive S,(w) = 7*.

Another method to compute confidence bands and obtain statistical in-
formation regarding S (w,&) is as follows. If §, = col {S,(ws, ?),s € U},

then as in time series case [25] 8, should be multivariate Gaussian with

211



212

E {8,} = s, and covariance matrix
E{(, - s,ll8 — 5} = T ($)J",

where J is the M2 x (p+1) Jacobian matrix of the transformation from 8, §
to s,. Consequently, a confidence band, dependent on w, can be computed
from the covariances. This conjecture requires further analysis and proof.

It may also be extendable to s, = s, + 4°1 with 1 = col {1,...,1}.

We suggest that robust techniques can provide improved results in adaptive
array signal processing and adaptive array beamforming. Moreover, robust
techniques can be applied to Kalman filtering which finds widespread use
in radar, sonar, geophysics, and radio astronomy signal processing. All of
these practical applications contain their own unique problems which require

analysis and solutions, hence, are topics for future research.

Higher-order statistics have become an important research topic in recent
years [84]. For example, cumulant-based parameter estimates of stochastic
models [85] have been studied for their promise of good performance in non-

Gaussian situations and lower sensitivity to noise. A 3rd-order cumulant,
(5,1) = E {a(s)z(s + r)a(s + )},

can be used to estimate the parameters of a causal model (3.1). However,
estimates of c(s,t) directly from the data suffer the same sensitivity to con-
tamination as do the conventional second order sample covariances. We
suggest that robust techniques may prove useful in cumulant-based proce-

dures.
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