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ABSTRACT

A new approach for vector space optimization is presented which enables solution of a
number of signal processing problems, otherwise solvable only in a suboptimal sense.
The method seeks a maximally sparse solution vector to a system of linear or quadratic
inequality constraints. An optimal solution (typically not unique) contains the fewest
possible nonzero terms consistent with the constraints. The relationship between /,
quasinorm minimization and sparse optimization is discussed, and it is proved that for
some p, O<p<1, the constrained /, minimum will be maximally sparse. The related I,
cost function is shown to be a superior objective functional for deterministic sparse opti-
mization, and to yield maximum a-posteriori estimates when random sources are dis-
tributed as generalized p-Gaussian.

Three new algorithms based on the /;/4 cost are presented. The /;,, simplex search algo-
rithm achieves strong local optimality by searching the set of vertices of the convex
polytope formed by linear constraints. The “basic™ solutions corresponding to these ver-
tices are proved to include the optimum. The stochastic search algorithm finds globally
optimum results using techniques of simulated annealing to direct the simplex search.
The convex transformation gradient search finds strong local optima of the quadratically
constrained problem by transformation to a space where gradient search techniques are
more successful.

Three applications are presented as examples of problems best solved using the maxi-
mally sparse criterion. Neuromagnetic image reconstruction produces 3-D maps of brain
neural currents by reconstruction from externally measured induced magnetic fields.
Sparse optimization is shown to be superior to other reconstruction methods which ob-
scure virtually all current dipole position detail. Seismic deconvolution of sparse reflec-
tivity sequences is demonstrated using all three of the algorithms, and design of thinned
beamforming arrays using the stochastic search algorithm is shown to yield great im-
provement over existing methods. The new algorithms provide the only available method
for thinning of arbitrarily shaped arrays in an optimal sense.



CHAPTER 1: INTRODUCTION

1.1. Problem Definition

This dissertation addresses the problem of finding the maximally sparse solution vector to
a system of linear inequality constraints, i.e. a feasible solution with the maximum num-
ber of zero valued elements. The obvious formulation of this problem is the nonlinear
mathematical program:
min f(a;):ﬁl‘; I(x,) such that Hx-b| <eg (1.1)
X i=

1x,=20
MxN - 3
where H e R ® , and I(xl)—{o X,-= 0

Here x is the solution vector, H the system matrix, h the measurement vector, and £ the
error constraint. No acceptable algorithm was found in the literature for solving (1), but

a related nonlinear program was identified which yields maximally sparse results:

N
min g (x) =Y, ;" such that Hx-bl<g,q >1 (1.2)
X =1
It will be shown that for ¢ >> 1, g(x) approximates f (x), and provides a more suitable
objective for iterative maximally sparse optimization. With some restrictions on the value

of ¢, optimal solutions to (1.2) are optimal for (1.1). Since for O<p<l we have

[e@]1= Il jp the [, quasi-norm of x for p =1/q, solving eqn (1.2) is equivalent to
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constrained lp optimization. Though for p values in this range, optimization is difficult, it

is a significant improvement over the indicator function representation of (1.1). Eqn

(1.2) will be referred to as an I,,q program.

The primary concern of this work is the development of practical algorithms for finding
maximally sparse solutions to real signal processing problems. Three algorithms based
on the /;,, program are presented. The utility of this class of problems became apparent to
the author while trying to reconstruct, from the externally measured magnetic fields, 3D
neuromagnetic images of brain neuron currents [1]. With this and other applications,
discussed in Chapters 4, 5, and 6, it was found that the common approaches for con-
strained optimization using /; or /_, norms, entropy maximization, or other objective
functions produced poor results. In these cases the desired solution, which best repre-
sented the true underlying source, was very sparse. Results produced by the common
optimization criteria were overly smoothed and showed no physical relationship to the
true source, even though they were consistent with the sampled measurement data. It is
suggested that a large class of signal processing and more general problems exists which
would benefit from application of the minimum order criterion. In any problem where
extremely “spiked” results are expected, or where the incremental cost of adding a
nonzero term to the solution outweighs the cost of increasing an already nonzero term,
the minimum order solution is desirable. Applications of the technique are presented for
three signal processing problems, including neuromagnetic image reconstruction (NMI),

seismic deconvolution problems, and sparse beamforming array design.



1.2. Motivation and Background

It is proposed that a potentially broad range of applications is untapped due to the lack of
practical maximally sparse optimization algorithms in the digital signal processing (DSP)
literature. Some papers are discussed below which deal with several related problems,
including some which tend to sparse results, but few address optimality. The dearth of
such applications is likely due to the difficulty in finding optimal solutions, rather than a
lack of potential uses. In the short duration of this present research, the availability of a
useable algorithm has led to several useful applications, and it is suggested that the sur-

face has barely been scratched for a large class of related problems.

This dissertation concentrates on applications in various fields of DSP, but it is expected
that many more applications exist in the areas of operations research and general opti-
mization theory. To introduce the basic elements of a generic maximally sparse problem,
the following simplified hypothetical resource allocation problem is presented. Consider
an outdoor public warning alarm system design problem. There are N potential
amplifier/loudspeaker sites, s;, to provide reliable coverage for M listening locations, ;.
Further assume that we are in obstructed conditions where the expected signal path
strength (1/attenuation), a,,, from speaker » to receiver m varies dramatically, and is ef-
fectively zero in same cases. The constraints are that each listening site must receive at
least enough total acoustic energy (assuming incoherent summing) to cross the threshold,
1, of reliable hearing, and must also be below the level, d, which could cause ear damage.
It costs money to build higher powered amplifiers and speakers, but the cost of installa-
tion, cable runs, etc., make it desirable to use as few speaker sites as possible, regard-
less of how powerful we need to make them. If received power at all sites is given by r

and transmitted power is §, then the formulation is:



ay1a12° * ai1nN
r=Ags A=]| - ‘ (1.3)
ami1am2: - amM N

min £(s) =§N_‘; I(s,) such that ['ﬁ]; s[':z] £20

s

A solution to this equation will yield a system design with the fewest possible speaker

sites. For a specific example, if we let

43

242

A=[ 41:|, t=1,d=24
4

then some of the (not unique) maximally sparse solutions are:

1 12 0
0 1 6 0 13

£ =10|> (0|-]0O]-| Of-| Of - - -
1 1 6

1/4 1/4
Using g(s) with g = 2, rather than f{5), as the objective we obtain the unique optimum

s =

1/3
0
1/4

Two classes of DSP problems have been identified to which the minimum order criterion
may be usefully applied. The first class includes system design problems, as above, in
which the dominant cost is the number of nonzero components required to meet a given
set of constraints. An example of this class, which is treated below, is the design of an
array beamformer to meet a given spatial response using the minimum number of array

elements (Chapter 6). Other potential applications include the design of minimum
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computation FIR filters [2]. The second type of application lies in the processing of
signals. Results which demonstrate this class include seismic deconvolution [2] (Chapter
5) and imaging of current dipole sources as a means of locating neural activity in the
human brain from external magnetic field measurements [1] (Chapter 4). Another in-
teresting potential application is the reconstruction of star source images in radioastron-

omy [3].

Previous related work includes both mathematical optimization for concave cost
functions, and applications where sparse solutions were sought. In [4], the basic

behavior of linearly constrained Ip optimization problems for O<p<1 is discussed,

including examples of how the solution changes in a stepwise fashion as p is varied over
this range. The theory of quasi-Banach spaces based on the /, quasinorm, O<p< oo, has
been studied, and is discussed, for example, in [5]. Equation (1.2) is also related to the
linearly constrained concave minimization problem, for which a number of global op-
timization algorithms have been proposed, based on collapsing polytopes [6,20] and
branch and bound procedures [6,7]. While these methods do achieve global optima, they
are probably computationally infeasible for the large dimensions (N=100) considered in
this paper, due to the use of multiple nested linear programming subproblems and the

assumptions necessary to apply them to the general form of eqn (1.2).

For blind deconvolution of seismic reflectivity data, several authors have discussed the

need for optimization norms which increase sparseness or minimize the entropy of the

” &¢,

solution. These authors have proposed the use of the “varimax,” “parsimonious,” and Ip

norms with p<1 [8,9,10]. These examples are closely related to our problem, however
the algorithms used do not in general find the global optimum, and are not directly appli-
cable to the form of eqn (1.2).
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In the area of sparse image reconstruction, linear programming has been applied success-
fully [11] but without explicitly seeking the maximally sparse image. Also, a technique
of “beam subtraction” has been employed to restore sparse astronomical star field images
[3]. Design of sparse beamforming arrays, or array “thinning,” has also appeared in the
literature [12] but the author knows of no published approach for optimally thinned ar-
rays of arbitrary shape.

Additional historical information will be presented in detail with each application dis-

cussed in Chapters 4, 5, and 6.
1.3. Research Goals

The primary goals which have motivated this research effort are presented below, and in-

clude theoretical analysis, algorithm development, and application to engineering prob-

lems. These goals have been achieved to varying degrees, as discussed in the following

Chapters.

1) Investigate feasibility of maximally sparse optimization
The primary focus of this research is the investigation and characterization of the
linearly constrained, minimum order (maximally sparse) optimization problem.
Although the need for such an approach was suggested by difficulties encountered
in NMI applications, it was apparent from study of the literature that little had been
accomplished in the field, and the feasibility of minimum order optimization for
problems of moderately large dimensionality was in question. Demonstration that
the problem could indeed be solved efficiently was paramount to this effort.

2) Develop a theoretical foundation for maximally sparse optimization
Before a useful algorithm can be developed, a theoretical understanding of the

problem must be acquired. A goal of this project was to understand the nature of



3)

4)
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the difficulties posed by maximally sparse optimization, relate the problem to other
classes of optimization which were more tractable, and provide a theoretical, rather
than heuristic, basis for algorithm design. The greater emphasis has been
deterministic optimization, but analysis of related probabilistic models was also a
priority.

Develop practical algorithms for maximally sparse optimization

Since no usable algorithms were found for the specific class of problems studied, a
major goal was to develop algorithms which were significantly faster than an ex-
haustive search, and which gave globally optimum or nearly optimum results.
These algorithms could not be application specific, but must be useable in a wide
range of general related problems. They must deal efficiently with problems of
moderately large dimensionality (several hundred variables).

Demonstrate practical DSP applications using the algorithms

This research grew out of the effort to develop a practical NMI reconstruction
algorithm when it became apparent that none of the conventional algorithms were
acceptable. In this sense, the theoretical and algorithm developments were appli-
cation driven, and NMI was the first application considered for the new algo-
rithms. The maximally sparse approach, and the algorithms developed, were
novel enough to warrant investigation into a broader use of the technique. A major
goal of the research was to validate the algorithms' usefulness, and demonstrate
their scope of application, by successful use in solving several real engineering
problems from different branches of DSP study. It is expected that a significant

pool of potential applications exist, and hoped that this demonstration of practical
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algorithms will motivate a broader interest in the community in a maximally sparse
approach to problem solving.

For the applications presented in this dissertation, the specific goals are as follows.
In NMI the primary goal is three dimensional localization of distributions of dis-
crete current dipole sources in a conducting volume based on synthesized magnetic
field measurements exterior to the volume. This requires a reconstruction algo-
rithm which incorporates the known physics of the system and overcomes the
blurring and position bias encountered with existing algorithms. For deconvolu-
tion problems the hope is to obtain more accurate estimation of sparse sources than
is achieved by algorithms which do not make the maximally sparse assumption.
For beamforming array design, the goal is to demonstrate an improved method for

designing thinned arrays and for element placement in arbitrary shaped arrays.

Contributions of Completed Research

The research presented in this dissertation has made the following contributions and ac-

complishments in the fields of optimization theory and application, biomedical image re-

construction, and digital signal processing.

a)

b)

The importance of a class of linearly constrained, maximally sparse optimization
problems was identified and demonstrated by theoretical analysis, algorithm
development, and successful application to several signal processing problems.
This class of problems has received little attention in the engineering literature, but
it is felt that this research justifies more extensive study in the field.

The close relationship between maximally sparse optimization and /, norm mini-

mization was recognized, and a theorem was proved to show under what condi-



c)

d)

e)

f)

9

tions the two problems are equivalent. This relationship was a key finding because
it is the basis for the sparse optimization algorithms presented here.

A “fundamental theorem for /4 programming” was proved to show that for g>1,
the I;;; minimization problem is optimized at the “basic™ solutions of the linear
constraint equations. This too was essential to development of the algorithms.
Three new or adapted algorithms have been developed for maximally sparse opti-
mization. The /;,, simplex search, for linear inequality constraint problems, is an
efficient finite time algorithm which uses a tableau pivoting approach similar to
linear programming to find good locally optimal sparse solutions. The stochastic
search algorithm applies simulated annealing techniques to achieve asymptotically
optimal results while pivoting the simplex tableau. The convex transformation
gradient search algorithm performs a nonlinear transformation on the system to
enable use of gradient search techniques for sparse optimization of a quadratically
constrained system.

A method has been proposed for reconstructing, from the externally sampled in-
duced magnetic field, neuromagnetic images (NMI) of the electrical activity in the
human brain . A mathematical model suitable for reconstruction was developed,
and analysis performed to demonstrate the inherent ill-conditioned nature of the
problem. Conventional reconstruction algorithms were analyzed and their inap-
propriateness for this application was demonstrated. The superior performance of
a maximally sparse, minimum current dipole, approach was demonstrated by re-
constructing simulated 3-D current distributions from simulated magnetic field
measurements using the [, simplex search algorithm.

The use of maximally sparse optimization for deconvolution problems was

demonstrated. Both the I;;, simplex search and the convex transformation gradient
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search algorithms were used successfully in deconvolving synthesized seismic re-
flectivity sequence data, with results comparable to existing methods.

Design of thinned beamforming arrays was demonstrated using the /;,, simplex
search and stochastic search algorithms. Examples are given which show signifi-
cant improvement over other array thinning approaches found in the literature.
Application to array element placement for arbitrarily shaped 3-D arrays is also
demonstrated.

The stochastic search algorithm introduced here is the only currently available
method for finding true maximally sparse results for beamforming array thinning
and other signal processing applications. Optimally thinned array design had not
been possible for other than special case array configurations. Earlier methods are
either add-hoc, sub-optimal, or are limited to simple element configurations (e.g.
small or linear). This algorithm uses an optimization theoretic approach which is
much more general and powerful, and can be applied to other signal processing
applications which require maximally sparse results and can be expressed in linear
inequality constraint form. In seismic deconvolution based on minimizing some
measure of sparseness [8,9,10,71], the typical algorithms used cannot produce

globally optimum results, while the stochastic search is well suited to the problem.

This work has also been the source for one published [1] and one submitted journal arti-

cle [13], and four conference papers (2,14,15,16].

1.5.

Dissertation Organization

The remaining Chapters of this document are organized as follows. Chapter 2 discusses

the theoretical aspects of maximally sparse optimization and presents two theorems which
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are the basis for the optimization algorithms. It also examines the relationship between
the deterministic approach which is the primary topic of this work, and a parameter esti-
mation interpretation where the data is modeled as generalized p-Gaussian distributed
random data. This probabilistic view gives some justification for accepting results from

the three algorithms presented below when noise or other random data is involved.

Three algorithms for maximally sparse optimization are presented in Chapter 3. The the-
oretical development specific to each algorithm is discussed and detailed algorithm de-
scriptions are given. The use of these algorithms is demonstrated in Chapters 4, 5, and
6, which discuss three major applications of maximally sparse optimization. Chapter 4 is
a somewhat self-contained study of neuromagnetic image reconstruction. It includes a
thorough discussion of biomagnetism fundamentals and a study of the effectiveness (or
lack thereof) of other reconstruction algorithms. Current source reconstruction from
simulated sample data is used to demonstrate effectiveness of the /5, simplex search.
Chapter S deals with seismic deconvolution problems, and includes demonstration of the
I114 simplex search and convex transformation gradient search algorithms. Chapter 6
shows how the I}, simplex search and stochastic search algorithms can be used in the
design of thinned beamforming arrays. Section 9 includes the appendices where proofs

of theorems may be found.
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CHAPTER 2: THEORETICAL FUNDAMENTALS OF
MAXIMALLY SPARSE OPTIMIZATION

2.1. Objective Functionals, Minimum Order from lp
Optimization

As an optimization problem, eqn (1.1) is particularly difficult to solve. We are plagued
with numerous local minima, and f (x) is discontinuous and has zero gradient except at
the discontinuities. In an effort to overcome these limitations, an approach to the mini-

mum order problem is proposed which is based on generalized linearly constrained /, op-

timization. Figure 2.1 illustrates the unit ball surfaces in R? space for the quasi-norm

N lp
"X " = 6> |x,- |7 ) for values of p in the range 0<p<oo. For p 2 1 we have the con-
=1

ventional Ip norm, which is a convex functional and obeys the triangle inequality. Since

for p21, the linear constraints in (1.2) form a convex set it is well known that any local

minimum of || x|l ; satisfying the constraints is a global optimum. Many efficient algo-
P

rithms exist for solving such problems [17,18]. Of particular interest are the cases for
values of p=1,2, and oo, corresponding to linear, quadratic, and minimax objective,
which form the basis of many widely used optimization procedures. However the
resulting solutions for these do not achieve the sparse results of interest in this

dissertation.



Figure 2.1. Unit Balls of the /, Norm for Various p.
Note that as p approaches 0, the unit ball approaches the axes.

For O<p<1, Ip is only a quasi-norm [5], since the triangle inequality does not hold, and

in fact the inequality is reversed for positive x; . Over RN, I |l | is neither convex nor
P

concave, containing many strong local minima and presenting a difficult optimization

problem. Large values of p result in smooth solutions, however, as p —0 the solutions

tend to become more “spikey,” or sparse [8].
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The reason for this can be seen in Figure 2.1. As p — 0, the curves in Figure 2.1 ap-
proach the x;, x, axes, on which the unit ball lies for f (x) in eqn (1.1). We identify

minimum order optimization as a special case of generalized lp optimization. Since with
g@=(llz "1 )? for p = 1/, we have

lim g(x)= Z|x P’Q—ZI(X) f(x) (2.1)
q—ree

This suggests that we may use (at least in the limiting case) eqn (1.2) instead of egn
(1.1) for sparse optimization. In the following section equivalence is proved for finite q.
The utility of this observation is that for ¢ finite, g(x) eliminates some of the handicaps of
f (). g) is continuous everywhere and differentiable except at the axes. Gradients
may be computed for all nonzero terms. This enables use of gradient search techniques at
least for finding local minima. Section 3.1 presents a finite extreme point search algo-
rithm which also benefits from the use of g(x) rather than f (x). For reasonably small
values of g, g(x) is computationally stable, and thresholds are not needed to handle inex-
act zero values. Also, g(x), unlike f (x), can provide some discrimination in cost be-
tween solutions of equal order, thus avoiding a stalled search at a point surrounded by
“adjacent” solutions of equal cost. Adjacency relies on the concept of basic feasible so-
lutions (BFS), presented in the following section, such that two BFS are defined as

adjacent if they contain the same set of nonzero terms, except for one variable.

2.2, Fundamental Theorem of ll/q Programming

To facilitate the development, two specific forms of eqn (1.2) are introduced, forg =0

and g # 0 as follows.

For £ =0 we have:
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N
min gx) =y, ;M st Hx-b=0, ¢>1 (2.2a)
X i=l

Note that unlike linear programming (LP), no positivity constraint on x is needed, as

shown by theorem 1 below. This form may be applied directly to a version of the I,

simplex algorithm which allows bipolar valued variables.

For g€ > 0 the form of (1.2) is
2N ~
min gEB)=D(F)st. HE-5=0,220,¢1 (2.2b)
X i=l
where
- 4
~ [H-H I 01],. X b +e
H=[H _H 0 - ’-l-_. £+ ’ﬁ=[a_;_-|
—&--

xt, x e RN st sse RM ¥ e RN ,be RM ,N'=2N+2M, M' =2M

s* and §~ are respectively slack and surplus variables as commonly employed in linear
programming [18]. Note these variables are not included in the computation of 2®).
This form allows us to confine the search to the nonnegative orthant of the space RV'.
Theorem 1C below provides the equivalence of equations (2.2b) and (1.2) for
x=x*x". The introduction of slack and surplus variables, positivity constraints, and

use of a form of the /,, simplex algorithm which allows pivots only to positive valued

solutions, are needed to deal with the inequality in'egn (1.2).

In solving the /;,, program, we lack the convexity properties which for Ip programming

yield a well posed problem, and imply global optimality from local optimality. Over RY,
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the cost g(x) is nonlinear and neither convex nor concave. Our problem would appear
hopeless, but for the fortunate fact that for g21 we can limit the candidates to a finite set
of “basic” solutions, which are the same as those defined for linear programming. This
is indicated by the “Fundamental Theorem of /;,, Programming” presented here, with
proof in Appendix A. Basic solutions to eqns (2.2a) or (2.2b) satisfy the usual definition
requiring x and X to meet the corresponding equality constraints, and contain at most M
or M' nonzero components respectively. Additionally, we say any X of eqn (2.2b) is

“properly basic” if it is basic and (x*)T (x ") =0.

Theorem 1A
Given a problem of the form (2.2a) or (2.2b), if a solution exists, then a basic so-
lution exists.

Theorem 1B
If a global optimal solution to eqn (2.2a) exists, it is a basic solution, and is glob-
ally optimal to eqn (1.2) fore =0

Theorem 1C
If a globally optimal solution to (2.2b) exists, then a properly basic globally opti-
mal solution exists, furthermore, this solution implies x = x* - x” is a globally op-

timal solution to eqn (1.2) forg > Q

The basic solutions of the forms (2.2a) and (2.2b), are isomorphic with the vertices of
the convex polyhedron defined by their constraints in RY and R?V+2M space respectively
[18]). Consequently, we can restrict our search to these vertices, since one must be the
optimal solution. There are potentially O(Z) of these vertices, making an undirected
search of even this finite set impractical for moderately large M and N. These properties

motivate us to use a procedure similar to the linear programming simplex algorithm,
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traversing the vertices while monotonically reducing the cost. Due to the nonlinear nature

of the cost, modifications to the standard lp algorithm are required, and globally optimal
solutions are not assured. Sections 3.1 and 3.2 present algorithms which are based on

the properties described by the fundamental theorem. Existing algorithms for this and

similar problems are also presented.

2.3.  Equivalence Theorem for [;,, Optimization

If we must allow g—oo before eqn (1.2) leads to a solution of eqn (1.1), then we cannot
benefit from the practical advantages of g(x) mentioned in section 2.1. Theorem 2 pro-

vides justification for minimum order optimization based on minimizing g(x), by demon-

strating that for a bounded solution set there exists a finite g, such that for all ¢ >q,, any
solution to eqn (1.2) is a solution to eqn (1.1). As in linear programming, we define a
basic feasible solution to an MXN system of linear equalities to be any solution containing

at most M nonzero terms.

Theorem 2: Let S denote the set of all basﬁc feasible solutions to Hx =bp s.t.

He RMXN_ If the solutions in S are bounded, then Q=ma§ [loo@] is finite.
1€

Let €= min { lx‘.j | s.. X # 0}. i.e. £ is the smallest nonzero magnitude of
x;€ 8,15jsN

any element of any vectors in S.

Given €>0 and Q<oo, if V is the set of all globally optimal solutions to

N
min f(x) = Y, I(x;) such that Hx=b (2.3)
b4 =l

with r=f (x) for any x € V (i.e. r is the optimal solution order), and U is the set of all

globally optimal solutions to
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N

min gx) =, k; ¥4 such that Hx =p , ¢g>1 (2.4)
X =l

then if g2q, .U is a subset of V , where

Q@
_log(z) s

Nh= r+1
ol

Proof of Theorem 2 is found in Appendix B. In other words, given an upper bound on
vector elements of the basic solutions in S, and a lower bound on nonzero element mag-
nitudes, eqn (2.5) yields a finite ¢ which insures /;;, minimization will lead to a global

solution of the maximally sparse problem of edn. (1.1).

Eqn (1.2) therefore defines a class of problems, indexed by g whose solutions are in-

creasingly sparse as g increases, until g>q,, where an optimally sparse solution is given.
For g< 1 the optimal x changes continuously as a function of g, but for g >1, there is a
finite number of optimal solutions. A given Lot will remain optimal over a range of g
values, and as g increases, we step from one solution to another in a discrete fashion [4].
This behavior is shown in Figure 2.2 for the problem presented in detail in section 3.1.4,
(see Table 3.1 and Figure 3.1). In this example there are five variables and four basic

solutions, with x; optimal for 1<¢<1.64, and x3 optimal for ¢>1.64.
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cost

2 1 1 2 1
1 1.2 1.4 1.6 1.8 2 2.2 24

b

q values

Figure 2.2. ! lig Costs for Basic Solutions as a Function of q.

The value of g(x) is plotted for the basic solutions to the problem of eqn
(3.10) and Figure 3.1. Note that only two different optimal solutions are
found for all values of g>1.

It should be noted that since solutions to eqn (1.1) are not necessarily unique, and lacking
any justification for accepting one over another, we are satisfied with any algorithm
which will select one from the optimal set. Theorem 2 proves that solutions to egn (1.2),

for ¢>q,, form a subset of solutions to eqn (1.1), so we accept any Iy, optimum. In or-

der to improve the computational stability of an algorithm, we wish to use the smallest

value of ¢ which reasonably approximates f (x). The g; as computed in Appendix B is a

conservative upper bound, and in practice a much smaller value may often be used.
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Figure 2.3 is an illustrative example of the effect of changing g on solving eqn (1.2) for

well 912

yielding the optimal solutions for various ¢ as shown in Table 2.1. It is interesting to
note that for this example the bound from Theorem 2 is correctly predicted with Q=10,

e=1,and r=1tobe

q, = log (10/1)/log (2) = 3.32. (2.7)

Linear Programming Min-max Optimum

Optimum
-\ 1 [ Mmlmum Energy

“\ 10 H,

{ D

1 Solution Space Minimum Order Optimum

H 1

Figure 2.3. Example of Iy, Optm'uzanon for Various Values of g.
Solutions to equation 2.6 show minimum order results for ¢>3.32.
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Optimal Solutions v.s. q
q values: Solution Type: Xy Xy X3
0 min-max 91 91 91
5 min energy 98 .20 98
1£9<3.32 linear programming 1.00 | 0.00 1.00
g>3.32 min order (max sparse) 0.00] 10.00] 0.00

Table 2.1. Optimal Solutions to eqn (2.6) for Various Values of gq.

2.4. Comparative Characteristics of l,,q Minimization

In this section the constrained /;;, minimization problem will be classified and character-
ized with respect to the broader field of general optimization problems. It will be shown
that this problem is a member of one of the most difficult classes, and that the success of
the algorithms presented in Chapter 3 is due to exploitation of unique properties of the

specific objective function used.

2.4.1. Problem Classification

Of the endless variety of problems where one wishes to minimize some multivariate con-
tinuous objective functional over a given solution space, the majority of easily solved
problems involve a quadratic objective and a convex constraint on the solution space
[18,19]. For the general optimization problem,

min c(x) suchthat xe Q, Q C RN (2.8)
X
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Both the objective, c(x), and the constraint space, £, can take many forms including lin-
ear, quadratic, convex, concave and nonlinear. The class of problem, and difficulty in
finding global solutions are directly dependent on the forms of c¢(x) and Q. In general,
the only problems for which finite global optimization algorithms exist across the class
are the convex (including linear and quadratic) objectives with either convex (including
linear) or no constraints. Some algorithms exist for global solution of special cases
within a class. Beyond this, for other combinations of c(x) and €2, unless some special
structure in the objective or constraint can be exploited, a global minimum may generally
not be located in finite time. Examples of algorithms for cases related to /4 minimization

are given in Section 2.4.2.

The /4,4 optimization problem of eqn (1.2) has a nonconvex, nonconcave objective func-
tion, with linear inequality constraints. As shown in Figure 2.4, the objective surface
contains many ridges and valleys, and the numerous local minima are extremely strong,
with infinite cost gradient at the minimum. These characteristics place /;;, minimization
in the class of some of the most difficult problems. Our attempts at constrained gradient
search optimization using a penalty method algorithm were completely unsuccessful due

to the strong local minima.
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Figure 2.4. 2-D I, Cost Surface.
Values of g(x) are plotted for for g =8, -2 <x;, xp £ 2.

The fundamental theorem of section 2.2 enables us to transform continuous /;,, optimiza-
tion to a combinatorial problem by limiting our search to the extreme points of the con-
straint space. The symmetry characteristics of g(x) about each coordinate axis lead to an
equivalent representation in R2V+2M space, constrained to the positive only orthant, where
2(x) is strictly concave (see Appendix A). Since a concave function is minimized at the
extreme points of a convex set, we may limit the search to the (Z) basic solutions of eqn
(1.2). Although no proof is presented, it is believed that /;,, optimization (¢g>1) over the
finite set of basic solutions, like the classical “traveling salesman problem,” is a member
of the class of NP-complete problems, for which no algorithm can guarantee solution in a
number of iterations bounded by a power of N [21]. It is proved in [82] that the related
problem of minimizing an arbitrary concave quadratic function over an arbitrary

parallelepiped is NP-hard. Though the most simple minded exhaustive search algorithm
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can deliver finite time (but not in our lifetime!) convergence in searching this set,
algorithms with much better average performance are possible. The methods presented in
Chapter 3 use the ;4 cost to direct an efficient search strategy through the basic solutions
in locating either a global or good local minimum. Though eqn (1.1) could also be
solved directly by searching the same basic solutions, f{x) provides no information for a
search direction when moving between solutions of equal order, and thus cannot provide

the efficiencies of g(x).

A related form of the problem, discussed in section 3.3 uses the nonlinear transformation

1
yi =g n(x), xi>-eo (2.9)

to map the problem to a space where g(y) becomes convex. This problem cannot be in-
terpreted as combinatorial since Theorem 1 does not apply, and must be solved using
conventional nonlinear constrained optimization algorithms. Here the continuous nature
of g(x), as opposed to f{x) from eqn (1.1), is necessary for gradient computation in the

descent algorithms, and permits use of exterior point search methods.

2.4.2. Related Existing Algorithms

For the general class of problems (of which /;, minimization is a member) with arbitrary
Q, c¢(x) nonconcave/nonconvex, and multiple local optima, heuristic algorithms exist
which can yield acceptable results in some cases. The general strategy is to combine any
appropriate constrained descent method (Newton's method, conjugate gradient, etc.
[17,18]) with a scheme to repeatedly restart the search from enough initial points to pro-
vide some confidence that most of the significant local optima have been located. Figure

2.5a illustrates how the solution space may be partitioned with a uniform grid of starting
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points for the descent algorithm. The best solution over all initial points is retained. If
available, bounds on the first and second derivatives of the underlying cost surface can be
used to guide grid spacing to correspond to the size of the major modes of the function.
An often used variation on this basic approach is to randomly place the initial points with
some specified average separation. Figure 2.5b illustrates the basic moves of a pattern
search procedure which is often more efficient than the arbitrary restart approach [80].
When a local optimum is located (2), an “explore” move is executed to locate a distant
point (3) outside of the current “valley,” and a search along a line to this point finds the
minimum cost location (4), from which a new descent search starts. The direction and
length of the explore moves follow a pattern designed to provide thorough coverage of
the cost surface [80]. Each of the above methods fails for /;,, minimization because of the
extremely strong local minima encountered in any continuous search through the con-
straint space. A descent move from any starting point leads to the nearest basic solution
since all basic solutions are local minima (see Appendix A, alternate proof). Using
enough starting points to investigate each local minimum would be as costly as an ex-

haustive search.

In special cases where the steps of the iteration may be represented as a strongly ergodic,
time-inhomogeneous Markov chain, the methods of stochastic relaxation (simulated an-
nealing) may be used to guarantee asymptotic globally optimal results even with arbitrary
c(x) [29]. This approach is discussed in detail in section 3.2 and is the basis for the
stochastic search algorithm presented there. Figure 2.5¢ illustrates how the algorithm
produces a random move direction, favoring reduced cost, which can overcome a local

optimum by allowing some “up-slope” moves.



26

a)
Explore
Move

b)

c)
Stochastic
Search
Sequence

Figure 2.5. Comparison of Global Optimum Search Algorithms

a) Gradient descent restart method with initial solutions at each grid
point for re-running the search. b) Pattern search method with explore
move. ¢) Stochastic search descent path.
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For c(x) concave, and Q2 a convex polytope given by linear inequality constraints, there
have been some recent papers on methods for finding the global minimum much more
efficiently than an exhaustive extreme point search [6,7,20,82]. When I;,, minimization
is transformed to the equivalent positive orthant representation (see Appendix A), it is in
the form addressed by these algorithms. Tuy first demonstrated such an algorithm in
1964, using a cutting plane method to successively subdivide a hypercone which initially
contained the entire feasible set [83]. This algorithm was shown to be nonfinite and to
suffer from cycling, but he [7] and others [6] have recently published modifications
which overcome the problems and are quite efficient. Zwart [6] uses a method of
successively enlarging a convex hull about extreme points until the exterior region con-
tains no lower cost feasible points. All of these related methods require solutions of
multiple linear programming subproblems at each step, work best when few local minima
are present, and contain restrictions (non-degeneracy, inclusion of the origin in feasible
set) which make the algorithms presented in Chapter 3 much more attractive for our

problem.

Falk and Hoffman have presented a much improved concave minimization approach
based on collapsing polytopes, which is more efficient and requires less computation per

iteration [20]. Given a problem of the form
min c(x) st S={x:Ax <b}, x20, Ae RN, M>N, (2.10)
X

c(Xx) concave

we form the N+1 dimension system

D={v=(@ y):Ax +ay<b}, y20is scalar, (2.11)

a=( ||A1||,||A2|| o WAy T where Ay is row m of A
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The feasible set S is thus a face of the polytope D, i.e. at y = 0. The algorithm forms

successive convex hulls in D, which enclose S, by using selected vertices of D as the

hull's extreme points. These hulls are reduced in size until the lowest cost extreme point

is an element of S, which can occur only at a global optimum to (2.10). The algorithm

steps are as follows:

1)

2)

3)

Initialize: Find the initial solution 0 = (x2,y%) in D by solving the linear program:

minimize y € D. Since this yields y = min {b;—A.:x}, where the term in braces
1<isM " ,“

represents the Euclidean distance from x to the hyperplane A;x = b;. The point X0 is
the center of the largest hypersphere contained in S. Set ¢g = ¢o, and let {(V0,co))
be the root node of the tree, T, used to tabulate the hull extreme points in D.

Select a node of Ty to expand: From the current tree, T, select the terminal node,
v with minimum associated cost, ¢;. If vf € S, i.e. if y=0, stop, the optimum is
found.

Step: Expand the terminal node v* by generating all its neighbors, v, by pivoting
the tableau associated with D, such that y* < y* and v%¢ T;. For each new v%i
compute the associated cost, ¢;; at the point w' where the line connecting v and
vhi pierces the hyperplane S. The piercing point occurs where y = 0, and can be
found using simple pivoting operations. Add each {(v,c,;)} to T and increment

k. Go to 2).

This is the most promising existing algorithm studied, since iterations involve pivot op-

erations only, rather than full linear programs, and demonstrated performance is signifi-

cantly better than an exhaustive search. Though it promises global solutions, a number

of problems made it impractical for the applications addressed in this dissertation. No
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degeneracy is allowed and M>N is required, both of which are violated by many of the
examples shown in Chapters 4-6. The code implementation is also significantly more
complex than the algorithms presented below. Future research could include adaptation

of this algorithm to signal processing problems.

2.5. Probabilistic Interpretations of [;,, Optimization

Although the bulk of this dissertation treats the maximally sparse problem as determinis-
tic, a probabilistic view gives some interesting insight which can provide a frame of ref-
erence for justifying the assumptions made and methods used in the rest of the disserta-
tion. Since few real-world problems based on data measurement are truly deterministic,
we are compelled to at least address the situation which includes random sources and
noise. This section will provide a theoretical justification for broad use of the technique
in the presence of stochastic signals. Optimal parameter estimation problems will be
considered which are related to the deterministic constrained optimization covered in the

remainder of the dissertation.

Much of the related work in the literature deals with blind deconvolution of seismic re-
flectivity sequences. In these problems, both the transmitted wavelet shape, and the re-
flectivity sequence corresponding to the reflections sites due to geological strata inter-
faces, are unknown. The deconvolution approach seeks the “simplest” possible repre-
sentation for the wavelet and reflectivity sequence. Several authors have noted that the
observed data is sparse, and non-Gaussian. A number of so-called “minimum entropy
deconvolution” methods have been proposed which minimize a heuristic measure of the

reflectivity sequence entropy, or sparseness. These include objective functions referred
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to as the “varimax norm,” the “parsimonious norm,” and the “variable norm ratio”
[8,9,10]. More recently the relationship of generalized p-Gaussian distributions and the
Ip norm has been discussed, but the proposed algorithms require p21 for globally opti-

mum solutions, and therefore cannot produce maximally sparse results.

2.5.1. Generalized p-Gaussian Probability Density
Functions

We will investigate maximum likelihood and maximum a-posteriori (MAP) estimation in
the presence of “generalized p-Gaussian” (gpG) distributed data. The gpG probability
density function defines a family of distributions which can be used to characterize
non-Gaussién sample data, and particularly sparse or spiky data. The gpG densities were
introduced by Subbotin [22] in 1923, and used by Miller and Thomas [23] in 1972 for
modelling non-Gaussian noise in detection theory. The density is defined for shape pa-

rameter p and variance 02 as:

i (l x-pl )”
fi(x) =gpGu,0?) = 2?(1%)7_0 e Yo (2.12)
Y= [11:—5%]1/2 () is the gamma function

For p =2 and p = 1 this yields the familiar Gaussian and double exponential distributions
respectively, and as p — oo we have a uniform distribution. Figure 2.6 plots the bivari-
ate density function for two iid gpG random variables. Of particular note is the similarity

between these curves and the /, norm unit balls shown in Figure 2.1, from which one
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might infer a heuristic relationship between gpG distributions and /, optimization. This

apparent relationship will be verified below.

By adjusting the shape parameter, p, we may use this density function to produce a close
match to the statistics of a remarkably wide range of sampled data distributions [8]. For
the problem at hand, the primary range of interest is O<p<1, corresponding to 1<g<ee.
Figure 2.7 shows a comparison between synthesized Gaussian and gpG time series data,
where it is apparent that for small p, the sequence is much more ‘spiky,’ containing pri-
marily small values with a few large outlying spikes. This sparse data is consistent with
our view of how noisy samples from a maximally sparse source should appear. Indeed,
several authors report excellent data modelling using low order gpG distributions
[8,9,10,24]. In seismic reflectivity data produced from sonic impulse logging, the value
of p ranges from .4 to 1.5; atmospheric processes are matched by .1<p<.6; and marine
seismic and voiced speech data samples also require small values of p. The seismic re-
flectivity data is a particularly good example of a gpG model providing a close match to a
problem known to be sparse in nature. The received data consists of the convolution of
an explosive signal wavelet with a series of discrete, spatially separated, reflectivity
spikes corresponding to the interfaces between geologic layers in the earth which cause
reflections due to impedance mismatch. The nature of geologic strata suggests that the
reflectivity series is sparse. With these examples as justification, we will proceed with
the assumption that a gpG distribution with p<1 is a good model for sparse random data,

and that it grows increasingly sparse as p — 0.
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Figure 2.6. Generalized p-Gaussian Density Function Curves.
a) Plot of the 2-D density function for independent gpG random
variables with p=.4. b) Contour plot of the same function.
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2.5.2. Maximum Likelihood Estimation with gpG
Distributions

Maximum likelihood (ML) estimation of the mean and variance of gpG populations has
been studied thoroughly by Pham and deFigureiredo in [24]. For an arbitrary value of p,
pmL is difficult to formulate, requiring solution of complex nonlinear equations, but oMy
is proportional the the I, norm. This second fact leads to maximum likelihood solutions

of unconstrained estimation problems by minimizing the /, norm. Consider the system
y=Hx+n (2.13)

where p is zero-mean white additive generalized p-Gaussian white noise, y is the ob-
served data, H is the system matrix, and %, is the deterministic parameter to be estimated.
This model has been used with gpG data in [8,24] for deconvolution by defining H to be
the Toeplitz matrix representing the known convolutional sequence. The ML estimate of
X is derived as follows:

iz Xl

_2(| '-Hxi|)"
Lplx) e« frxlz) = m e i\ Y° (2.14)

=min 2, | y; - H;x_lp =min |y - H&”l = £ML
X X P

Thus, Q;ML for p-Gaussian data is found by minimizing the /, norm of the error term. In

general, for a given p this is solved using nonlinear programming techniques. Forp 21 a

number of convex optimization methods may be used, including variants of linear pro-

gramming. For p <1 the problem is more difficult, and few global optimization tech-

niques are found in the literature. For p= 2 we have the familiar closed form least

squares solution: QM, = (HTH)'HTy.
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2.5.3. MAP Estimation for Linearly Constrained gpG
Problems

This study is primarily concerned with the linearly constrained problem of eqn (1.2).
The ML approach above is unconstrained and assumes y is sparse for p<1, but does not
impose a sparseness criterion on x. We will attempt to formulate maximum a-posteriori
(MAP) estimates of x which justify using the nonlinear program of eqn (1.2) in the pres-
ence of random signals. The results presented below are strictly dependent on the as-
sumed model and the specific probability density functions cited, but do demonstrate a
duality between deterministic sparse optimization and optimal parameter estimation for

distributions which are likely to produce sparse x.

The following simple signal model for noise corrupted measurements shall be adopted:
y=Hi+n (2.15)

fx(x) = ng(O,of), iid, white zero mean generalized p Gaussian, p<1

Jn() = as specified in the following cases:

Case 1: Uniform iid noise,

1
— lnlse
fa(n) = U(-¢8) = {28
0 otherwise
which leads to the conditional density:
L | y_—Hng <e
Helx) = fa(z-Hx) = {2e (2.16)
0 otherwise

The MAP estimate of x is then:
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. .
Luap = max ﬁr(l|x)=m;x el xf@) (2.17)
| x;
P '2(}?
e i i -Hx| <e
= max {2T(/p)yo | y-Hal
b4
0 otherwise
-lei|p
= max e i such that |y_—Hx_|Se
X

Zuap= min Y, 1x1”  such thar |y-Hzx|se
.4 i
which corresponds exactly with the /;,, optimization problem of eqn (1.2). Thus, if the
generalized p Gaussian distribution (p<1) is an acceptable model for x, and the noise is
uniform, we may use the algorithms presented below in sections 3.1 and 3.2 for optimal
results. It may be argued however that uniformly distributed noise is atypical. We

therefore consider the more realistic case of Gaussian noise.

Case 2: Gaussian noise,

fa(n) = N(O,oﬁ), iid, white zero mean Gaussian (2.18)

C@-HTG -Ho
20,2

Hele = —I—M e
(V27 opn)

which leads to the following MAP estimate of x

Ivap = maz fixly = max £l 2@

_@-HoTg-Ho _z(ﬁT

=max e 20,2 e i|\YOx
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— i @-HyTy-Hy 1 0P
mxfn 20,2 + (YGJ) z‘: Ix;] (2.19)

Equation (2.19) is difficult at best to solve directly, but this form is well suited for
application to the convex transformation gradient search algorithm presented in section
3.3. Rather than attempt an optimal solution, we use the known (or estimated) noise
statistics to specify a confidence region about our solution. An upper bound, consistent
with our uncertainty due to noise, is set on the first term of (2.19) and we then adjust x to

minimize the second term. The resulting constrained optimization problem is

(see eqn 3.23):
min ¥ lx,1? st (Hx 97 (Hx -p) <e, x; 20, p<1 (2.20)
X i

With 6,2 known, we may specify € to give a fixed probability, o, that the true Hx lies

within a distance € from y, i.e. select € such that

2
PLIHx -yl <el y1=a (2.21)

A . . . .
X is then the most sparse vector that maps into this confidence region given by the

hypersphere of radius €.

In deconvolution work reported in the literature, one major aspect of the problem was
determining the value of p which produced the best gpG model fit to the observed data.
An interesting fact for our problem is that since we are assuming a maximally sparse se-
quence, the value of p is not critical. Although the exact value of p may not be known for
the observed gpG data, it has been shown above (section 2.3) that the minimum , solu-
tion remains unchanged over some range of p values less than 1. Also, Theorem 2

proves that we may use any p less than some finite p; and achieve the same solution,
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therefore, the goodness of fit tests used in [8] for evaluating p are typically not needed in

maximally sparse problems.
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CHAPTER 3: MAXIMALLY SPARSE OPTIMIZATION
ALGORITHMS

3.1. The lj/4 Simplex Search Algorithm

3.1.1. Similarity to Linear Programming

With the justification provided by the fundamental theorem of /;,, programming, we can
immediately recognize the similarity to linear programming. The basic solutions which
must be searched for an optimum are identically those found in the corresponding linear
program [18]. As in linear programming, the algorithm described below searches
through the basic solutions contained in the simplex by pivoting between adjacent solu-
tions while monotonically reducing the objective function. A “tableau” structure is also
adopted, as in linear programming methods, to take care of the numerical bookkeeping
during the search. The major difference lies in the objective function used, which in our
case is nonlinear. This requires an entirely different method of selecting which adjacent
solution to move to at each iteration. The proof of global optimality for linear program-
ming also does not hold for the /;,, program, and we must be satisfied with locally opti-
mal solutions, though experience with the algorithm indicates results are usually very

nearly global solutions.

3.1.2. Formulation, Basic Solutions, the Tableau

As in linear programming, we begin by computing any basic feasible solution as a start-

ing point for the simplex search. The two forms presented above describe the constraint
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as a vector-matrix linear equality in R¥™N or RY'®'space respectively. In the following
development we will use Hx = b of form (2.2a), but H X =B from (2.2b) can be substi-
tuted. Selecting any M columns of H for which we can compute a left pseudoinverse,
we permute the matrix columns and corresponding elements of x to place these as the first

M columns. Partitioning H we have

[AID]=H, 3.1)

where A € RM'*M' AT = left pseudoinverse of A

Multiplying by AT leads directly to the basic solution x,

[IIATD Ix=Ath,x; =[Ath, 0, 01T (3.2)

For form (2.2b), somewhat more care than indicated above is required in selecting
columns for A to insure x5 2 0. A linear programming phase one procedure may be used
with either form to compute a non-negative initial basic solution if we first negate the el-
ements of b, and corresponding rows of H required to force & > 0. We identify the vari-
ables x; associated with columns of A as basic variables, and A as the basis. An adja-
cent basic solution is one that is formed by moving (pivoting) one variable out of the ba-
sis and one non-basic variable into the basis by swapping a column in A with one in D,

adjusting x indices, and recomputing A.

Equation (3.2) suggests the structure of the “tableau” used in linear programming to fa-
cilitate the pivoting computations [18]. The tableau is formed by augmenting the matrix

with the right hand side
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Y=[I|ATD [ATh] , (3.3)

The reduced cost row of the Ip tableau does not appear in Y due to the nonlinear cost

functional. Since the first M columns are always the identity matrix, they need not be
stored. During pivoting, all remaining columns of Y are updated using the simple pivot-
ing equations, or with a recursive product form of computing the new inverse A, both
described in many texts [18,19]. Index vectors are maintained to keep track of which
variables are in or out of the basis. At any iteration, Y, the current basic solution can be
read directly from the last column. Two tableaus are said to be adjacent if we can move
from one to the other with a single pivot operation, or equivalently, if their sets of basic

variables differ by one variable only.

For the [, simplex algorithm, we may view the set of tableaus as a connected graph with

a node for each tableau satisfying (3.3).
Let S = the set of all basic feasible solutions (BFS) x to (1.2).
Let T = the set of all tableaus, Y¢ associated with S.
Define a graph, G = (T , ) where U consists of pairs (Y¢, Y/) €  iff tableau Y/

can be generated from Y’ by a single pivot operation (or vice versa).

Each element of T maps onto an element of S (possibly many-to-one due to degeneracy).
This graph is connected and has properties discussed in depth in [25]. The fundamental
theorem implies we may find an optimum by searching only the graph G and ignoring
non-basic solutions. The algorithm performs this search by generating a sequence,

(Y |=1,2, i

nax) Which traverses the graph.along a path of monotonically non-

increasing cost, halting when all adjacent solutions are of greater cost.
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It is noteworthy that the ability to take this approach is entirely dependent on the particular
cost function chosen. Although g(Q) is neither linear nor convex, and has numerous local
minima which would make most gradient based optimization techniques ineffective, the

fundamental theorem proven above implies that it is particularly suited to a simplex search

approach.

3.1.3. Detailed Algorithm Description

The procedure used in the /;,, simplex search for traversing the graph G is described be-
low. Ateach iteration of the algorithm we chose an element of x as an “entering variable”
to enter the basis and become nonzero and a “leaving variable” to be forced to zero. This
process moves the trial solution to an adjacent basic solution and is accomplished by piv-
oting the H matrix and measurement vector b. The selection of an entering variable is
made such that at each iteration the cost is reduced. The leaving variable is chosen to be
the one that first reaches zero value as the solution traverses along the edge of the solution

space in the direction of the entering variable.

The steps of the algorithm are as follows:

1) Find a starting basic solution. The starting tableau, Y?, and initial basic
solution for the /5,4 search are formed by using the L.P. simplex method to solve

the augmented phase one linear program:

min cTx' st [HIIx' =b, &'=[i]. £=[%] (3.4)
x
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where g is the vector of M artificial variables used only in phase one, and ¢ is the
phase one cost. An immediately obvious basic solution to (3.4) is
x'= [Z‘] = [%J, which places g in the basis. This is used as the initial basic so-
lution for the linear programming simplex algorithm. Since all g; have a cost of 1,
and all x; have a cost of zero, the solution to eqn (3.4) will drive all g; out of the
basis, replacing each with some x;. The initial tableau, Y9, and basic solution for
our Iy, simplex search are given by the final pivoted tableau of the phase one linear

program. All columns corresponding to g are dropped, yielding an Mx(N+1)

tableau, Y0 in the standard form:
k k k
Yo YN YIo0
Yk=| - . . (3.5)

k k k
Ym, 1 ° Ym,N Ymo
with & being the iteration number, and the last column, yio through yfn'o giving

the current basic solution, corresponding to the reduced measurement vector b.
The columns of Y* are reordered at each iteration so that the first m columns cor-
respond to the variables (elements of x) which are in the basis. Y* is thus row re-
duced for columns 1 through m which contain a permuted identity matrix. The ini-

tial basic solution is:

% (3.6)

0 .
{y,-'o for 1<ism
ji =

0 for m+1<isN
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where j; is a permuting index which maps the original elements of x to the present
corresponding column of Y*. The solution at any step £ is likewise read from this

last column.

2)  Compute the present cost.The /;,4 cost of the present basic solution is com-

puted as

m 0 .
C=3(,0" g>>1 (3.7)
i=

3) Select entering and leaving variables.

Repeat for s = m+ 1to N until C5 < C:

k
Yi.0 ¢

5= min_ N if y5,>0 (3.8)
i,5

rs = i at this minimum

m ok k
Cs= S () -0
j#r,

The entering variable is identified by the first s value for which Cs < C and the

leaving variable is the corresponding r; .

4)  Test for algorithm termination. If in step 3, 6 could not be computed due to
yf ;S0 for alli and s then stop, the solution is unbounded. If after step 3,

C; 2 C then stop, the present solution is optimum, otherwise let C = Cs and

continue.
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5)  Pivot the tableau. Form Y**! by pivoting Y*. For the s found in step 3) and
r =ry, bring the entering variable into the basis by pivoting on the yf’s element.

For 1Si<m 0<j<N:

k
k+1 ko Yis &k

ij TYijo T Y FET (3.9)
r,s
k
kel Yrj
Yrj =%

r,s
After pivoting, reorder the columns of Y*+ 5o that the first M correspond to basis

variables.

6) Repeat steps 3) through 5).

This algorithm’s approach is similar to one described in [4], although we have not seen it
applied to the minimum order problem. As with linear programming, a practical com-
puter algorithm must contain enhancements to deal with accumulated error from pivoting,
find an initial solution, include an anti-cycling procedure, and handle systems of large

order.

A major difference between this and the linear programming simplex algorithm is the
method in which the entering variable is selected. For linear programming the reduced
cost is computed efficiently for each possible entering variable by using a cost row which
is pivoted with the rest of the tableau. Any row with a negative reduced cost entry can be
used as an entering variable. For the ;4 simplex search algorithm, it is necessary at each

iteration to actually project the solution to each possible adjacent basic solution and com-
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pute the /14 cost. The first adjacent solution with reduced cost is chosen to enter. This is
less efficient, but the maximum possible additional computation is equivalent to one extra
pivot of the tableau per iteration. The algorithm also requires that each y; ; value be avail-
able for computing adjacent costs, thus making the improved performance of product
form inverses as used in the revised simplex method inappropriate since they do not ex-
plicitly store Y [18]. The advantages of computing Alasa running product rather than
explicitly pivoting the tableau would be lost in needing to compute Y at each iteration.
Also, since the cost for a feasible solution remains high everywhere except near basic or
degenerate solutions, it is not likely that an approach like Karmarkar's method for linear
programming would be usable. These new approaches to linear programming perform
searches in the interior of the feasible solution space, where the I1/4 cost, unlike a linear
cost, can give misleading gradient information on a direction to move toward

a solution [26].

3.14. Adjacency Graph Representation and Degeneracy
Issues

A feasible solution to eqn (1.2) with fewer than M nonzero components is termed a
degenerate solution [18,25]. It follows then, that our original problem, (1.1), involves a
search for the maximally degenerate solution, and for g>g; we seek the same solution for
eqn (1.2). In conventional linear programming, degeneracy is handled as a nuisance and
so-called “anti-cycling” procedures, mentioned above, are employed to avoid related
problems. Here, degeneracy is one means of attaining the sparse solutions we seek, par-

ticularly for the equality constraint problems without slack variables.
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The problems associated with degeneracy arise from the fact that zero valued basic vari-
ables may be interchanged with non-basic variables resulting in a different tableau, but
identical corresponding solutions in x. In the non-degenerate case, there is a one-to-one
correspondence between each tableau and its corresponding basic solution. Degenerate
solutions have a many-to-one relationship. A degenerate solution is overdetermined,
with more than one constraint equation active at once [25]. It is important to consider the
effect on algorithm performance of having a finite set of tableaus associated with a single

basic solution.

Consider a degenerate BFS, xe S, and its representation in the graph G described above.

For each such solution we define a degeneracy subgraph, DG/ containing all nodes which

map onto ¥; and their interconnecting arcs. Equation (3.10) defines a system with 5

variables and 3 constraints which has degenerate solutions is shown in Figure 3.1 and
Table 3.1.

1 0 0 1/2 1/6 1
Hx = b, H=i|0 1 0 1/2 1/6, b= 1 (310)
0 0 1 -1/2 1/6 1

Basic Feasible Solutions:
Order of Tableaus in
x1; | x2: | x3. | xa; | xs; ||Degeneracy | Degen. Subgraph
| X 1 1 1 0 0 0 (1)
X2 2 2 0] -2 0 0 (2)
X 0 0 2 0 1 (4),(8)

Table 3.1. Comparison of the Degeneracy of the Feasible Basic
Solutions to eqn (3.10).
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Figure 3.1. A Graph Tableaus for eqn (3.10) Showing Degeneracy.
Nodes of this graph correspond to the tableaus for eqn (3..8.1) and the
solutions in Table 3.1. Each shaded area, DG;, represents the
degeneracy subgraph associated with BFS x; .

The set of tableaus and basic feasible solutions are shown in Table 3.1 and the associated
graph, including the degeneracy subgraphs associated with the degenerate solutions, are
shown in Figure 3.1. Note that the tableaus in DG, are not all mutually adjacent. This
Figure also illustrates the increased number of paths to a degenerate solution. The
number of nodes in DG/ increases extremely rapidly as the order of degeneracy increases,

and it is likely that many, if not most, of these nodes are not mutually adjacent [25]. This
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poses a problem for the /;,, simplex algorithm if such a subgraph is encountered prior to
reaching the optimal solution. All nodes in DG/ are of the same cost, yet we must
traverse the subgraph to insure access to any lower cost nodes in G which are adjacent to
distant nodes of DG/. One cannot use a single pivot operation to reach all BFS’s
connected to the degeneracy subgraph associated with X;. Procedures must be employed
to insure that we do not terminate prematurely in DG’ without accessing all external nodes
connected to the subgraph, of potentially lower cost, and that we do not “cycle” endlessly
in DG/. A number of approaches to this problem have been used, including a very simple
anti-cycling procedure due to Bland, perturbation methods [18,27], and algorithms to
find the minimum spanning tree for DG’ to guarantee no cycling and access to each
external connected point [25]. The stochastic seafch algorithm described in section 3.3
randomizes the selection of adjacent nodes to pivot to, and thus eliminates the problem of
cycling or missing lower cost adjacencies at a degenerate solution. Degeneracy of the
optimal solution however provides advantages which contribute to the success of the

algorithm. As the /;,, simplex algorithm traverses the graph from an arbitrary starting

point, it can find the global optimum only if a path of monotonic decreasing cost exists

through adjacencies. With the many to one mapping of the nodes of DG/ onto X there

are many more paths from an arbitrary point in G to a node mapped to a degenerate
solution x; than would be found for a non-degenerate solution. Thus the optimum is
adjacent to more nodes and it is less likely to be an isolated minimum (see the example of

Figure 3.1).

The algorithm’s operational modes differ for forms (2.2a) and (2.2b). With (2.2a), the
degeneracy properties described above dominate algorithm performance, but with eqn
(2.2b), cost reduction is obtained primarily by pivoting zero cost slack variables into the

basis. Few examples of degenerate solution results have been observed for form (2.2b).
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3.1.5. Algorithm Performance

The author’s experiments have shown that the /5,4, simplex algorithm converges in ap-
proximately the same number of iterations as the linear algorithm would for a similar
sized system. Since the cost at adjacent tableaus can be computed without pivoting the
entire tableau, the processing load involved in computing costs at all adjacencies in step
2) above is equivalent to a single pivot operation. Thus computation time is approxi-
mately twice that of the linear programming simplex method overall. With a convergence
time comparable to the O (5N) iterations of the simplex method, this algorithm is

dramatically more efficient than an exhaustive search.

Performance of the I;,, simplex search algorithm has been evaluated using both simple
low order arbitrary linear systems and simulations of the reconstruction problems pre-
sented in chapters 4, 5, and 6. Initial tests used simple synthesized system matrices, H,
constructed with known rank and condition number. In all tested configurations of H,
including orthogonal, ill conditioned nonsingular, and rank deficient matrices, the I,
search outperformed all other algorithms in correctly reconstructing sources involving a

small number of nonzero terms.

In general, the algorithm does not guarantee convergence to a global optimum. How-
ever, the author has found that surprisingly, in virtually every case, acceptably sparse
solutions were found. The reasons for this observed performance is not fully under-
stood, but the increased adjacency due to the degeneracy of optimal solutions provides
more paths through G which lead to the optimum. It was shown by exhaustive evalua-
tion [81] that due to degeneracy alone, the algorithm is guaranteed optimal results for an
MxN system in the following special cases:

1) M<NandN=23,4,0r5.
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2) M=N-1

3)  Any system with an order 1 solution (i.e. only one x; nonzero).

For N>5, M<N-1, or solution order >1, the analysis gets difficult, but the trend may
continue. For example, any basic solution in an N=6 system is never more than two

pivots from a global optimum.

Another possible explanation, requiring further analysis, for the algorithm's favorable
performance is the cost gradient structure of the graph G. By eliminating all but the basic
solutions from our search, it appears that the extreme cost gradients and ridges are elimi-
nated. The cost structure of G may be inherently better behaved than the entire continu-
ous solution set, with many monotonically decreasing paths to low order nodes. Perhaps
some algebraic analysis of H and b could provide a bound on deviation from the opti-

mum for the algorithm.

The I;,4 search algorithm is much more efficient than the globally optimum stochastic
search algorithm described in section 3.3, so if a good, near optimal solution is accept-

able, this algorithm is recommended.

3.2. The Stochastic Search Algorithm

The algorithm described in this section uses the techniques of simulated annealing
[28,29] to arrive at globally optimal solutions to problem (1.2). The algorithm still limits
its search to the graph of basic solutions and traverses the graph across adjacent node
arcs. A Markov chain is generated using the Metropolis algorithm [28,29] to randomly

select from the adjacent solutions.
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3.2.1. Overview of the Stochastic Relaxation Technique

Stochastic relaxation, or simulated annealing as it is often called, has been used by a
number of authors in recent years for a wide range of combinatorial optimization prob-
lems of high dimension [21,28,29,30]. Kirkpatrick, et al. first used simulated annealing
in solving function partitioning, wire routing, and other computer design problems, and
demonstrated favorable algorithm performance with the classical traveling salesman
problem. Geman and Geman applied the technique to image restoration by use of a
Markov random field model. The power of the technique lies in its ability to overcome
the “frustration” component of an optimization problem and thus avoid being trapped in a
local minimum. By randomizing the direction of each iterative step, these algorithms can
climb “hills” of increasing cost while on average reducing cost, so that in the limit they

find a globally optimal minimum.

The term “simulated annealing” is coined by analogy to the statistical mechanics process
of gradually cooling a material (e.g. metallic alloy etc.) until the individual atoms, or do-
mains, reach a joint state of globally minimum energy, thus forming a crystalline struc-
ture. Too rapid cooling may produce a higher energy glass-like metastable form by being
trapped in an atomic configuration of local minimﬁm energy. The probability of reaching

a given configuration, r;, is given by Boltzmann's probability factor,

exp Elr) , where E{r;} is the energy of the configuration, k;is Boltzmann's constant,
ksl

and T is the temperature.

Kirkpatrick, et al. observed the similarity between annealing and random search algo-

rithms for combinatorial problems. They replaced the energy term with the cost function
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to be minimized and included a normalizing factor, 2(T), to yield the Gibb's probability
measure (T) exp {—Q{fl} The Metropolis algorithm was then used to simulate the

random state changes in the atomic system by randomizing the selection of transitions in
the search algorithm in accordance with the Gibb's probability. This produced a time-
inhomogeneous Markov chain of state changes with the probabilities of the succeeding
state depending only on the present state and on 7. Although the temperature has no
physical significance for the general combinatorial problem, it is retained as the parameter
which controls the rate of convergence to the solution. For high “temperatures,” T, the
distribution is nearly uniform, with all states equally likely, but as T is decreased, the
modes of the distribution corresponding to the cost function surface become more promi-
nent, and the instantaneous state tends to be of iower cost. Geman and Geman [28]
proved that if a satisfactory “annealing schedule” is used for reducing T at each step, this
heuristically satisfying technique does in fact converge in the limit to the global minimum
with probability one, and Mitra, et al. [29] refined and generalized this proof, and ana-
lyzed the finite time performance of the algorithm.

3.2.2, Markov Chain Representation of the Simplex Graph

In order to apply the stochastic relaxation technique, we must prove that we may define a
Gibb's measure, and use the Metropolis algorithm, to randomize traversal of the simplex
graph, G, and produce a time-homogeneous Markov chain for fixed T. This done, we
may use the results of [29] to infer that for the given annealing schedule, the time-inho-

mogeneous chain is strongly ergodic, and thus converges to the global optimum.

Using the graph notation described above, let N(Y ) T denote the set of neighbors in G
to the node Y!. Y/ e N(Y’) iff Y/ is an adjacent node (reached by a single pivot opera-
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tion) of Y. Let Y’ be mapped onto the BFS <SS, along with all other nodes contained

in the degeneracy subgraph DGj associated with xj.

The simplex algorithm described in section 3.1 generates the pair of sequences

{Y" |n=1,2,n (3.11)

max max ]

} = {x* |n=1,2,n

according to the rule Y1 & N(YV) such that g(x¥+!) < g(x), where {x"}) may have

repeated elements due to degeneracy. Thus the cost is non-increasing at each iteration

and the sequence Y” is deterministic. The sequence terminates at the first element,xj such

that all tableaus adjacent to the degeneracy subgraph DGj of X have corresponding solu-

tions of higher cost.

Since each element of the sequence { Y"} belongs to the neighborhood of the previous el-
ement, as defined by the graph G, it follows that randomizing the choice of Y**/ from the

neighbors of Y” will produce a Markov chain, since for any randomizing rule

PYr+l Yrynrl Y0y = P(Yr+]| YP) (3.12)

The key to use of the simulated annealing algorithm is to choose a Gibb’s measure,
P,(Y) and randomize the updating rule (choice of tableau) such that for a fixed

temperature parameter, T, the resulting quasi-stationary Markov chain is homogeneous

[29]. The temperature parameter T is introduced to simulate the annealing process so that

as T—0, the measure P;(Y) becomes concentrated at the tableaus corresponding to the
global minima of g(x) for all xeS. The Gibb’s measure is chosen to reflect the cost

function of our problem:
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ﬂ] YeT (3.13)

P (Y) =;('IT—.)'exp [ T

where z(T) acts like the partition function of statistical mechanics to normalize the Pt such

that 3P (Y)=1 and g(Y) denotes the cost g(x) of eqn (1.2) where x is the BFS associ-
YeT

ated with Y. For a time homogeneous Markov chain, the Gibb’s measure must obey

[29]

Py (YH) = Z Pr(i.j)P(Y)) forall Y! Y/ eT (3.14)

YeT
where P denotes the one step transition probability matrix. The choice of the updating
rule explicitly determines the matrix P;. The Metropolis algorithm is used for the fol-
lowing development, and a proof is given that the resulting matrix P, satisfies (3.14)
with P (Y) as defined in (3.13). Each point Y’ has a neighborhood, N(Y?), with cardi-
nality K; = |[N(Y?)|. Let &Y?) denote the degeneracy degree of Y! [25], i.e. the number

of zero valued elements in the BFS x‘ corresponding to tableau Y, and
8 =max [8(YD). Then |Kil < (8,,+1)N-M) = |K |, is the maximum number
YeT

of adjacent tableaus [25]. Let

Yi)-g(Y'
PT(iJ)=z(iJ)min[l,exp(-( )T( ))] (3.15)
where
1 o .
Ko if Yie N(Y¥)
2if)=\1 - LPp(i.,j") ifi=j (3.16)

J'ei

0 if Yie N(Y?), i#j
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The Metropolis algorithm [28,29] which produces this transition probability is described
below. We first verify that eqn (3.15) satisfies eqn (3.14). For (3.14) to hold, it is suf-
ficient to verify the detailed balance equation [29,30]:

Py (Y!) Py (ij)=Py (Y) Py (i) forall Yi,Yie T (3.17)

Case 1 For jzi, Y/g N(Y’) from eqn (3.16), 2(i,/)=0 hence P(i,/)=0. If Y/e N(Y?)
then Y e N(Y/), thus both sides are identically zero.

Case 2: For j=i, equality clearly holds.

Case 3: For Y/ € N(Y?), rewriting eqn (3.17) we have

Pr(YH Pr ()

P (Y) ~ P (i) G189
from eqn (3.13)

Py (Y) g(Y)-g(Y)
From eqn (3.15)

PrGii)  2(j,i) min {1, exp-[g(Y?) - g(Y)]) (3.20)

P (i) ~ 2(ij) min (1, exp-[g(Y)).- g(Y)]}

and since 1 is minimum in either the numerator or the denominator, both cases yield
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- ey P (Y
exp (£ £00) T (3.21)

T Pr (YD)

thus eqn (3.17) and (3.14) are satisfied.

3.2.3. Algorithm Description

To generate the corresponding time homogeneous Markov chain, we would use the fol-
lowing implementation of the Metropolis algorithm [29]:
1)  Selectinital basic feasible tableau, Y”, n=0.

2)  Let |IN(Y"|=K,,, then select a tableau Y/ € [N(Y")U Y"] according to the proba-

bility:

1/K ifYie N(Y™)

P’(Yj)={ UK. ifYi=yn

KK (3.22)

max
3)  Compute cost g(Y/) for new candidate tableau.
If A g=g(Y/) - g(Y") <0

Then: Y*H =Y/

Else: generate random variable r ~ U [0,1]

If r< exp(-A g)
n
Then: Y*+/ = Y/,
Else: Yt = Y"
4) n=n+1, goto2).



58

Additionally, the algorithm requires an annealing schedule to monotonically decrease T,
at each step. As T,—0 the Gibb’s measure, P (Y), will converge to the limit

- 1—* Y eT*®
PY™) =4 1Tl (3.23)
0 Y eT"®

where T*= {Ye T:g(Y ) < g(Y?) for all YieT} . For global convergence of the simu-
lated annealing algorithm, i.e. the sequence x" converges with probability 1 to some ele-
mentx* € S*—T", it is necessary that the time inhomogeneous Markov chain is strongly
ergodic. The algorithm described above, produces a strongly ergodic Markov chain,
provided the annealing schedule is of the form [29]

T Y

"~ Tog (ninge1)  OL2 - (3.24)

where n, is any parameter 1 < n, S oo, and y2 rL. The graph radius,

r = min max d(Y.,Y/), where d(Y:,Y)) is the distance between the two nodes mea-
YieTt YeT

sured as the number of edges in the minimum length path from Y¢ to Y/, and Tt is T less
all nodes of locally maximum cost. L is a Lipshitz-like constant which is a measure of
the maximum cost differential, | g(Y/) - g(Y?)| over all possible pairs, i and j, of neigh-
boring nodes in G. Though (3.24) is a powerful theoretical result sufficient for guaran-
teed optimal convergence, in real applications these parameters may be hard to obtain,
and if known, would be too large for reasonable computation times. In both [28] and

[29] it is indicated that much smaller values of 'y may be used with acceptable results.
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Since the simulated annealing algorithm exhibits only asymptotic convergence, and yet
the graph G has only a finite number of nodes, this algorithm is of practical importance
only if its finite time behavior yields improved solutions over the deterministic simplex
search. In [29] the finite time behavior of the algorithm is analyzed, and a bound com-
puted for the deviation between the optimal cost and the finite time cost. For a finite se-
quence, the terminal result is not guaranteed to be the lowest cost solution in the sequence
due to the random search. Therefore, truncated procedures can improve performance by
maintaining memory storage of the lowest cost solution achieved up to the current itera-
tion. This storage is updated only when the current result is better than all previous
points in the sequence. As discussed below, our experiments verify that the truncated se-

quence produces improved results over the deterministic simplex search.
3.2.4. Algorithm Performance

The stochastic search algorithm was applied successfully to seismic deconvolution and
sparse array design problems, as described in Chapters 5 and 6. In both applications,
examples of lower order solutions than those obtained with the /;/, simplex search were
demonstrated, thus validating the algorithm's utility. In some cases however, no im-
provement was achieved, but no stochastic search result was less sparse than that of an
1114 simplex search. It is proposed that when equivalent results arise from the two algo-
rithms, it is not due to failure of the stochastic search, but to the usually high quality so-
lutions found by the the /;;, simplex search. Though in the worst case the [}, simplex
search may theoretically find only a poor local minimum, as Kirkpatrick, et al. argued
[21], when the size of the optimization problem is large, it is the average performance that

dominates, not the worst case. Verification of finding a global optimum has been diffi-
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cult to establish, since most problems of significant size have unknown optima. Itis very
difficult to synthesize a problem with a known optimal solution which is also complex
enough that both algorithms do not find the solution in a few iterations. Validation has
therefore consisted of demonstrating improved solutions over those obtained with other

algorithms.

The major algorithm drawback is the need for very many iterations to meet the slow an-
nealing schedule needed to insure optimal convergence (eqn (3.24)). This is particularly
troublesome when traversing the graph, since error accumulates at each pivot move. A
problem requiring several hundred iterations with the /;/, simplex search will retain high
precision, but the stochastic search would require many thousands of steps, introducing
unacceptable accumulative error. This necessitates periodic “reinversion” to directly

compute, from the original matrix, the inverse of the current basis.

Three types of annealing schedules have been used for updating T: 1) eqn (3.24) was
used directly, but with very small ¥, 2) exponential decay, and 3) manual control by
the operator was used to reduce temperature stepwise and control the number of iterations
at each setting. Method 1) was found to be prohibitively slow, even for small y, but both
2) and 3) were used successfully. For a typical problem, the /;/, simplex search was first
computed for comparison, then method 2) or 3) was used repeatedly until a temperature

decay rate was found which improved the solution but terminated in reasonable time.
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3.3. The Convex Transformation Gradient Search
Algorithm
3.3.1. Quadratic Constraint Minimum Order Problems

In some applications the constraints may be better expressed as an upper bound on the /,

norm of the deviation of Hx from the desired vector b, as in the quadratic form:

N

ming@) =Y, |x;|1 s.t. Hx -b)T (Hx -b) <&, x; 20, ¢>1 (3.25)
X =1

The convex transformation gradient search presented here is an efficient algorithm which

can handle systems of large dimension. Though global optimality of the result is not as-

sured, as with the /;,, simplex algorithm, it produces locally optimal solutions which in

practice achieve low order.

If the hyper-volume defined by the constraint (Hx -b)T (Hx -b) < € does not contain the
origin, then the globally optimal solution must lie on its surface. The surface is smooth
and contains no isolated extreme points, soO we must search a continuous surface, rather
than a finite set of points for the optimum. For problems of this form we may not define
a finite set of basic solutions, and therefore cannot rely on a simplex search approach.
Attempts at straightforward constrained optimization gradient search techniques are

doomed by the numerous extremely strong local minima of the objective function g(x).
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3.3.2. A Convexity Transformation for Objective Function
Regularization :

The convex transformation approach maps the system into a space which eliminates the
extremely steep sided local minima, and improves the computational and numerical as-

pects of a gradient search by giving us a convex cost objective functional.

For each point x in the original space we define the isomorphic one-to-one mapping:

(z lxe RV ,x,50) & (v ly, =7In(x;), xe RV, yi>-)  (3.26)

Equation (3.25) then becomes
N .
inf h(p) =Z el s.t. (Hedx -p)T(He: -p) < ¢, and y;>-e (3.27)
¥y i=l

where e¥ denotes point by point exponentiation of each element of a vector y.

Since €’ is a strictly convex function, and sums of convex functions are convex, h(y) is

a strictly convex functional over y. Note that although we have to restrict x#0
(i.e. y>-o0), we may allow x; to be arbitrarily close to zero, and thus consider low order
solutions as having the largest possible number of elements within an € neighborhood of
zero. This transformation is similar to one used in solving the geometric programming
problem by transformation to a convex program [31,32]. In our case however, analysis
of the Hessian matrix for the constraint indicates that it is in general not positive definite,
and therefore the original convex set defined by the constraint becomes nonconvex. This
complication prohibits us from proving optimal convergence for a descent algorithm, and

requires us to use a nonlinear constraint optimization algorithm. This penalty is offset by
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the regularization performed on the objective function which is necessary to even con-
sider using a descent algorithm. A(y) has no strong minima or cost ridges to sidetrack a
descent algorithm, and VA(y)—(Q near the optimal solution, while at the same point

Vg(x)—too,

3.3.3. The Schittkowski Nonlinear Optimization Algorithm

Equation (3.27) has been solved successfully for a number of sample problems using an
exterior point, nonlinear constrained optimization algorithm due to Schittkowski [33],
while this and other algorithms failed with the original form, eqn (3.25). This algorithm
is available in the IMSL library of computer utility programs and uses successive

quadratic programming method to solve the general nonlinear programming problem.

We define the constraint as s(y) = € — (He%® -p)T(He® -p) 2 0, y/<y<y,, with y;and y,
selected to insure computation of s(y) remains within the limits of machine precision.
The algorithm uses iterative formulation and solution of quadratic programming sub-
problems by quadratic approximation of the Lagrangian and by linearizing the constraints

as follows:

min dTBid + Vh(w)Td (3.28)
deRN

subject to:

Vs(ye)Td +s(w) 20, yr-yxsd<yu-Yi

where By is the positive definite approximation of the Hessian at iteration £, and yx is the
current iterate. With d;. the solution of the subproblem, a line search is used to find the

new point Y41,
Xk-’-l =Xk + A'd.kv l € (0’1] (3.29)
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such that the augmented Lagrange merit function [33] is reduced at the new point. The

gradients for our system are computed at each iteration as:
Vh(y) = e

Vs(u) = 2ge™% o [ HTp - HTH e‘”’"]

(3.30)

where e indicates point-by-point vector multiplication. When optimality is not achieved,
By is updated according to the modified BFGS formula [34]. At each iteration, cost
function and constraint error evaluations, and their gradient vectors, are computed from
the current estimate of y. Algorithm termination is accomplished when an error measure
of the Kuhn-Tucker conditions is sufficiently small . Execution times in our experiments
compare favorably with the [, simplex algorithm for similar sized systems. By using a
least squares solution as a search starting point, the algorithm has been successful in
yielding very low order solutions for systems as large as 100 or more variables. A
penalty method approach [17,18] for constrained optimization has also been used suc-
cessfully in solving eqn (3.27). Chapter 5 contains examples of applying the convex

transformation gradient search.
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CHAPTER 4: MAXIMALLY SPARSE OPTIMIZATION FOR
NEUROMAGNETIC IMAGING

4.1. Problem Definition

The aim of Neuromagnetic Image (NMI) reconstruction is the production of three dimen-
sional vector maps of neuron current densities arising from brain activity. These image
maps are produced by measuring the extracranial induced magnetic field around the skull
and performing a numeric inverse reconstruction to infer the underlying neuron currents.
The ability to measure this very weak magnetic field is provided by Superconducting
Quantum Interference Device (SQUID) detectors, which have been used for a number of
years in the study of biomagnetic phenomena [35]. Evoked responses to sensory stimuli
(visual, auditory, somatic) and some higher brain functions have been studied as neuro-

magnetic sources and hold potential for NMI [35,36,37].

For NMI, the brain volume of interest is divided into a grid of 3-D volume or voxel cells,
each of which will be assigned a vector value which will represent the average directional
current flow through the cell's volume at a given instant of time. The magnetic field is
measured at the skull surface on a grid of sample points as in Figure 4.1 by moving the
SQUID to each new position and repeating the stimulus, or by using an array of detec-
tors to get a simultaneous measurement. From these sampled measurements, the 3-D
source image estimate is reconstructed. NMI thus does not attempt to precisely locate ac-
tual individual neuron currents, but produces an image of the average current for all neu-

rons within individual discrete fixed voxels in the brain.
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Manbir Singh et al. first demonstrated NMI with two dimensional reconstructions of
sources constrained to lie in a single plane whose depth was adjusted to produce the low-
est squared error in the solution [38]. They produced images of the visually evoked re-
sponse from data acquired from human subjects using a single channel SQUID. The case
of reconstruction in a 3-D volume rather than on a plane is considerably more difficult
since there is no unique solution to a current source in a closed volume even if the exter-
nal magnetic field is known everywhere [39]. For example, in a spherical volume con-
ductor like the brain, any radial current flow, or current distributions with self spherical
symmetry, produces no external magnetic field. It is the intent of this study to extend the
2-D results to the 3-D case and identify algorithms which will lead to meaningful solu-

tions.

NMI is an attractive medical imaging mode for several reasons. It is a non-invasive pas-
sive technique using only biologically induced fields. It will provide a method of func-
tional rather than structural imaging of the brain which, though it may not be high resolu-
tion, can provide information not available from other techniques. The methods of NMI
may also be useful for other applications of current imaging in closed volumes, such as

cardiac magnetic imaging and geomagnetic surveys.
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4.2. Previous Work Related to NMI

4.2.1. The SQUID Detector

Biomagnetic fields of the heart were detected in shielded rooms with wire loop magne-
tometers by Baule and Mcfeen more than twenty years ago [40], but the area of biomag-
netic research did not flourish until the development of the Superconducting QUantum
Interference Device (SQUID) in the early 1970's. Using a SQUID detector in a shielded
room, Cohen measured magnetic fields of the brain and many other organs [41,42]. The
SQUID uses a liquid helium cooled superconducting pickup coil and Josephson junction
device as a very sensitive low noise magnetic detector with ability to measure fields from
d.c. to several kilohertz. A noise threshold of 10-13 T /Hz!/2 (Tesla per square root
Hertz), which is in the range needed for biomagnetic research, is attainable in urban lo-
cations [43]. Another key to widespread use of the SQUID is the application of a second
order gradiometer pickup coil configuration to reject all signals but those with second and
higher order spatial gradients. This rejects distant interfering sources due to the weak
gradients they would have while near sources are detected. The gradiometer consists of
three sets of counterwound coils as shown in Figure 4.2. A typical system consists of a
set of magnetic pickup coils wound in the gradiometer configuration, the SQUID detec-
tor, associated electronics, and a dewar to encase the coils and SQUID in liquid helium in
order to keep them at superconducting temperatures. In a closed superconducting coil the
magnetic flux through the coil is constant, so any external magnetic field threading the
coils causes a current to flow to oppose the external field. This current is coupled to the

SQUID detector which serves as a low noise, high gain, current to voltage amplifier.
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The SQUID biomagnetometer in this configuration provides sufficient sensitivity and
noise immunity to make neuromagnetic measurements in an unshielded laboratory envi-
ronment possible [36,37]. However, shielded rooms are still useful in reducing the noise
level and are used by many researchers, [35] and since the brain's fields are among the
weakest of those generated by the body, it is still necessary to do signal averaging to in-
crease signal to noise level. This is accomplished by repeating the stimulus for an evoked
response to synchronize a series of data sampling windows while the SQUID is held sta-
tionary. Since spontancous brain activity and external noise are uncorrelated with the
stimulus, a point-by-point averaging across the data sampling windows reduces the in-
terference level, while the synchronized evoked waveform adds coherently. The expected
measurement accuracy for NMI uses will require both signal averaging and shielded
room data acquisition. SQUID systems are commercially available in several configura-
tions including single channel and five or seven channel array devices with typical pickup
coil diameters in the range of one to two centimeters. The need to use liquid Helium to
maintain superconductivity is a costly inconvenience which may soon be overcome.
There is much active research now that is identifying high temperature (liquid Nitrogen
and above) superconducting materials. It is hoped that this will lead to less costly instru-
ments and to larger array SQUID devices which will be a major factor in opening up new
applications to magnetic imaging. IBM recently announced that it is working on a proto-

type high temperature SQUID.

4.2.2, Early Neuromagnetic Studies

With the use of SQUID detectors, a number of measurable biomagnetic sources in hu-

mans have been observed, including fields of the heart, eye, skeletal muscles, lungs (due
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to contaminations), fetus, and brain. In most cases, the incentive to seek measurable
magnetic fields was provided by the existing base of knowledge of electrical potentials
produced by these sources, as with the electrocardiogram (ECG) and electroencephalo-
gram (EEG). Figure 4.3 plots the relative electrical and magnetic field strengths for many
of the important biomagnetic sources. It can be seen that the cardiogram is by far the
strongest signal and that the brain fields are the weakest, with the evoked responses the
weakest of these. This indicates the technical challenge inherent in imaging using neuro-
magnetic sources where even other biological sources can produce major levels of inter-
ference and why the neuromagnetic fields have been some of the most recent to be mea-

sured.

The first fields of the brain to be observed were due to the spontaneous activity known as
the alpha, beta, and delta rhythms which had been studied in electroencephalography
[44]. The study and recording of these time domain magnetic waveforms has been called
magnetoencephalography (MEG) and still constitutes an active area of research in neuro-
magnetism [45]. The magnetic signals have been used simultaneously with EEG mea-
surements to provide complimentary information, and it has been found that the magnetic
fields can provide a better localization of the source [46]. It is theorized that the improved
localization is because the skull provides an insulating barrier which spreads the potential

out over the scalp while the magnetic field is essentially unaffected due to the skull's low

permeability.

Brenner, Kaufman, and Williamson first demonstrated measurement of the somatic and
visually evoked fields in 1978, and since then these, and the auditory evoked response,
have been widely studied [35,36,37]. The somatic evoked field is produced at the so-

matisensory cortex of the brain with an electrical shock to a finger, the visual field at the
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Response = AER. (after Williamson [43]).
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visual cortex by repeatedly changing a regular geometric pattern or grating in the field of
view, and the auditory field at the auditory cortex in response to short tones. They are of
particular interest for NMI because images can be used to identify functional regions in-
volved in these responses and their extent, and because these fields are induced by an
external stimulus which can be repeated so as to allow synchronization of signals ac-
quired during movement of the SQUID to the many sample grid positions. More recently,
an MEG approach has been used to identify the epileptiform spike waveform associated
with epilepsy, and other abnormal brainwave functions have been studied using
SQUID's [47]. Presently the leading edge of neuromagnetic research is the measurement
of fields related to higher brain functions. E.Flynn and D. Arthur of the Los Alamos Na-
tional Laboratory Physics Division are presently studying the “attention wave” which is a
measure of loss of mental concentration on a repeated task related to auditory stimulus.
Perception and event related brain potentials associated with higher brain functions such
as sentence processing and visual interpretation are being studied and are leading to cor-
responding neuromagnetic analysis [48,49]. Also, study of neuromagnetic fields related
to learning has been proposed by the Los Alamos group. It is felt that these higher brain
functions will have more complex and distributed underlying neuron current structures,
and will therefore be best analyzed by an imaging technique which can reveal the detail of

this structure.

4.2.3. Neuromagnetic Source Models

The brain currents of interest for NMI are the neuron intracellular currents in the cortex.
There is an overall characteristic laminar and columnar organization in the cerebral cortex

with 6 or more distinct horizontal regions and the majority of the cells extending verti-
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cally. Over 70% of the neuron cells of the cortex are of the pyramidal cell type and are
organized into repetitive vertically oriented (with respect to the local cortex surface)
columnar units of about 200-300 pm in diameter [50,51]. The columnar units contain
many cells but they have been shown to operate or “fire” in unison. The direction of cur-
rent flow, either up or down, depends on whether inhibitory or exitory stimulus is re-
ceived at a cell's synapses. The dendrites that interconnect local cells, and the afferent
fibers which provide longer interconnections in the white matter layer beneath the cortex,
carry currents that are not vertical, but which have been shown to be of low enough level
so that the intracellular currents in the pyramid cells remain dominant. This orderly
structure of the cortex lends itself well to a model of the neuro-current sources as sets of
current dipoles. A current dipole is a vector quantity with a spatial orientation and a
dipole moment, the orientation being the direction of a linear current flow between a point
source and sink, and the moment being the product of the length of the current path and
the current magnitude. The magnetic field produced by a current dipole is shown in Fig-

ure 4.4 and has a magnitude of

. 0
By = uoQ sin A7r2 (4.1)

where Q is the dipole moment, € and r the angle and distance to the magnetic mea-

surement point, and pg the permeability of freespace. It is notable that the field drops off
less rapidly with distance than the ;lzloss for a magnetic dipole. Based on the above

physiological arguments, most researchers in neuromagnetism have used the current
dipole model for brain activity rather than continuous current fields or magnetic dipoles,
even when gross brain currents are averaged over a large region several centimeters in
cross section [43]. The majority of neuromagnetic research has assumed the source could

be represented with a single equivalent current dipole [35,43,52,53] but recently more
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complex multiple dipole sources have been shown to be required to fit the measured

data [54,55].

It has also been common to model the brain and skull as a nonconducting sphere filled
with a homogeneous conducting medium or fluid in which the current dipoles are
embedded. The source and sink of the dipole create an electric field in the conducting
medium which leads to a primary dipole current path and volume currents as shown in
Figure 4.4. These volume currents are considered noise sources since it is the primary
impressed current that is of interest. The assumption of a homogeneous conducting
sphere model however offers some important simplifications. In such a geometry, the ra-
dial component of any current source contributes neither to the tangential nor radial com-
ponents of the surface magnetic field [*51]. Also, the volume currents induced by any
dipole will not contribute to the radial magnetic field. This means that the tangential
component of the primary current dipole can be measured without interference from vol-
ume currents by observing the radial magnetic field. The skull, however, is not a sphere,
and the brain and its fluids do not present a homogeneous conductor, so there had been
some doubt as to the validity of this model. However, in [56] Barth et al. reported a re-
cent experiment using a real cadaver head with an implanted current dipole to demonstrate
that the spherical volume conductor model was a good fit, even with large anomalies in

the conducting volume.

4.2.4. Previous Solution Methods

Much of the neuromagnetic data gathered is displayed in direct methods such as the MEG
or isofield maps [45,57]. With the MEG, data is displayed as a plot of the time series

measured at each SQUID location. Isofield maps plot contour lines on the skull of the
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amplitudes of the normal component of the magnetic field at a single instant by interpo-
lating between the SQUID sample grid points as shown in Figure 4.1. The amplitudes
shown in these maps are a static representation of a time sample of a single component of
an evoked response. Although useful, neither of these approaches draw inferences on the

underlying source locations; we are more interested in the inverse solution.

4.2.4.1. Dipole Fitting

The most widely used inverse solution is the single dipole fit. This technique assumes
that the entire magnetic field is produced by a single equivalent current dipole. The solu-
tion is often obtained by simply measuring the distance, d, between the positive and neg-

ative extreme field points in the isofield map [58]. The dipole source lies midway be-

tween them, perpendicular to the connecting line, and at a depth equal to ’ -2-“. This sim-

plistic approach seldom yields accurate solutions for real data. A more sophisticated ap-
proach to the single dipole solution is the moving dipole fit algorithm [52,53]. The solu-
tion is obtained as a six dimensional parameter estimation problem where 3-D position,
orientation, and amplitude are determined. These parameters are adjusted in a continuous
fashion until the solution which minimizes the squared error between the forward pro-
jected data and the measured data is found. This approach has been extended to two or
three dipoles, but becomes computationally intractable beyond that. Arthur and Flynn
[59] have enhanced the moving dipole fit by computing rectangular confidence regions
around the location in which the source must lie. They showed non-overlapping confi-
dence regions for different auditory evoked responses indicating the change in location

was not due to noise in the data.

Often the measured fields are a very poor match to a single equivalent dipole [54]. There

have been a few attempts to deal with solutions involving multiple dipoles. One approach
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is to perform a “multipole expansion” where a single dipole is fit in a least squares sense
to the data using eqn (4.2.1), and the forward projected field from this dipole is sub-
tracted from the data to obtain the error term [60,61]. This process is repeated with addi-
tional dipoles until the remaining error reaches an acceptable level. The resulting distri-
bution, however, can be very different from the actual source. For example, two parallel
dipoles would be represented as an infinite series of dipoles of decreasing magnitude, the
largest located midway between the two. In one experiment, twenty dipoles of fixed lo-
cation and orientation have been used to provide a least squares solution to cardiac current
sources [62]. More than twenty magnetic measurements were taken to provide an
overdetermined system. In each of these multipole approaches the problem interpretation
was one of parameter estimation for a limited parameter set rather than image reconstruc-

tion.

4.2.4.2. Image-like Solutions

As mentioned above, Singh, et al. first demonstrated neuromagnetic imaging by recon-
structing visually evoked response data on a single plane [38]. They made the simplify-
ing assumptions that all sources were contained in a single plane and that they were all
oriented parallel or antiparallel. The plane was divided into equal size square pixels, each
of which was allowed to contain a single dipole. A linear matrix system equation was
developed to relate the dipole amplitudes to the magnetic measurements by using a dis-
crete form of the Biot-Savart equation (this will be discussed in section 4.3). For a given
assumed reconstruction plane depth they computed the solution image using an additive
algebraic reconstruction technique (ART) algorithm. This iterative algorithm will con-
verge to the minimum norm solution if the data are consistent [63]. For noisy data, ART

will converge to a solution where the difference between the measurements and the for-



79

ward projected solution is on the order of the measurement noise. To locate the unknown
depth of the dipole plane, Singh computed reconstructions at a series of depths to find the
one with least error between measurement data and the forward projected solution. This
technique appears usable when the source is constrained to a single plane, but the author

has shown that it may bear no relationship to an actual 3-D source [1].

An alternative formulation was proposed by Dallas in [64] based on Maxwells equations
for non-time-varying fields:
VxB=ioJ , V'B=0 ' (4.2)

Taking the Fourier transforms of (4.2) yields a set of linear equations relating the current
and magnetic fields. By sampling the Fourier transform of the two fields and decom-
posing the magnetic field into two regions, the measurement region and a “forbidden re-
gion” over which the field cannot be measured, a large set of linear equations can be
formed. The unknowns in the equation are the samples of the Fourier transforms of the
current field and the magnetic field in the forbidden region. In the algorithm, the recon-
struction volume and measurement region are discretized into sample cells as in our
model. This formulation has the advantage that it provides simultaneous reconstruction
of the internal current and magnetic fields. Dallas has demonstrated successful two di-
mensional reconstructions of simulated data. The Fourier space solution approach how-
ever does not eliminate the ill-posed nature of the problem . The reconstructed images
using the Fourier domain approach appear to be of minimum norm type and should lead
to the same problems if applied to 3-D distributions that the 2-D ART reconstruction

does.
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4.3. Models for Static NMI

For NMI reconstruction we adopt the simple physical model of Figure 4.5. A spheroid
shaped reconstruction volume represents the interior of the skull which will contain a 3-D
distribution of neuron currents. Measurements of the external magnetic field are taken at
points on the sampling surface represented by the hemispherical shell. These points cor-
respond to the positions on the skull where measurements with the SQUID gradiometer

are taken. Our goal is to infer the current distribution from these measurements.

The relationship between a continuous vector current field and its induced magnetic field
at a point r under in space is given by the vector integral form of the Biot-Savart Law:

Ho (J(r') x (r-L')
BO=4z)" el

d’r’ (4.3)

where J(r') denotes the vector current density at ' and y the magnetic permeability of the
medium, which we approximate with o, the permeability of free space. Although the
brain's current field consists of discrete firings of individual neuron cells, the high den-
sity of neurons in brain tissue and the inability of present instrumentation to resolve sin-
gle cell current flow make this continuous field model an accurate one. However, we can
take only a finite number of magnetic field measurements, and in order to reduce the di-
mensionality of the problem and express this nonlinear relationship as a set of linear
equations we approximate eqn (4.3) with a discrete sum. The vector current field is re-
placed by a finite number of current dipoles, O(r;) located in a three dimensional grid,
where a dipole’s orientation and magnitude are determined by integrating the current field

over the volume cell (voxel) surrounding the dipole. Equation (4.3) becomes:
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*

2-D grid of 3-D grid of
magnetic samples discrete dipoles
on measurement in reconstruction
surface space

Figure 4.5. Basic Physical Model for Neuromagnetic Imaging.
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Q(£,) X (Lm-La)
B(z.) = 4”2 FE (4.4)

where N is the total number of dipole cells and m and n are the indices on the discrete
sample points in space. This equation can be rewritten in vector-matrix form as the linear

system

B=WQ (4.5)

where

B =[Bxs By ,Ba1, Bxsr » Bym, B 17

Bym = x component of B(r.)

Q=[0x, le » Qat,y -OxM , QyM’ O:m ]T

Wi - - - Win

W= , a(3m by 3N) block matrix
Wuyr1-- - Wuynw

Lo 0 'z:mn ~Ty:m,n
Woun = 3| Tz:m,n 0 Yx:m,n
» 4 -
%l Ln~La 'y:mn ~Tx:m,n 0

I'z:mn =X component of (Lm-L,)

With the addition of an independent noise term, y, to represent measurement error, the

system is expressed in a form suitable for applying digital image reconstruction tech-
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niques, i.e. we may solve the inverse problem of finding Q given the measurement vector

B where:
B=WQ+y (4.6)

The formulation of the entries in matrix W can be adjusted to compensate for the fact that
a squid gradiometer does not provide an exact measurement of the point flux density.

Methods for doing so are discussed in section 4.2.

The commonly used model of the brain and skull as a nonconductive spherical casing
filled with a homogeneous conductive medium in which current dipole activity exists
[35,43] enables the introduction of several simplifications and constraints. As previously
mentioned, volume currents do not contribute to the external field normal to the surface
[35,65], and dipoles aligned with the sphere's radii, and radially symmetric dipole dis-
tributions produce no measurable external magnetic field [43]. The “invisibility” of these
sources makes their inclusion in a reconstruction solution meaningless, so we may ne-

glect them.

The skull is not a perfect sphere, however Barth's experiment has shown that the mea-
surements on the skull show little deviation from that predicted by a spherical model.
Also, most areas of the skull can be fit to a spherical segment with a local radial center.
These considerations enable us to utilize the constraints offered by the spherical conduc-

tor model even when our reconstruction space is not exactly spherical.

The brain region of primary interest for NMI is the cortex. As we have seen, neurons
within the cortex, and thus the current paths, are arranged predominantly normal to the
local surface [50]. If the structure of the cortex surface shape can be mapped a-priori

(e.g. by magnetic resonance imaging) we can assume the locally normal orientation to
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provide an additional constraint on the source dipoles and simplification to the formula-
tion. This approach could also be used in other current field reconstructions where the

currents flow directions a known, but not their magnitudes.

These constraints are incorporated in the system by modifying eqn (4.4) as follows:

B = 47:2 | inlrénﬁfi’l)l(a(ﬁm'ﬁn) @

where z,(r,) denotes the unit vector representing the orientation of the n*# current dipole of
magnitude | On l . Expressing this as a vector-matrix equation, we modify (4.5) as fol-
lows: let Q= D Q' where D is a tri-diagonal matrix of the known direction cosines of

constrained dipole orientations and Q' is an N element vector of the dipole magnitudes.

B=WDQ'+y (4.8)
-(110 . 0-
B0 0
70 0
Oaz .
D=1 0/ .
0p 0
-0 aN
.. ﬁN
.00 - - - wd

o =tloil, lgal,- - lenlt"
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then eqn (4.5) becomes:
B=HQ'+y (4.9)
Hy,; - - - Hyy
H=WD=|
Hy,---Hunw
1o Bnrz:mn = Yaly:m.n

H =—|—-—|— ~Oplrz:mon + Ynl'x:
m,n 47: L,,-L,, 3 n .mn Yn xX.m,n

&nry:m,n - Bnlx:m.n

Note that (4.9) includes the measured data in B for all three vector components of the
field at each sample point. If only normal measurements are taken, then the projection of
the normal field onto these rectangular vector components is used. This formulation and
model permit significant reduction in the dimensionality of the problem, but in general

still do not lead to a unique solution.

4.4, Inverse Solution Feasibility

The NMI problem has several physical restrictions which limit the ability to produce high
quality reconstructed images, and ultimately provide the motivation for using the

“minimum dipole” approach. These difficulties include:

(i) Theill-posed nature of the system equations.

(i) The resolution characteristics of the SQUID gradiometer.
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(iii) The high noise level of the background magnetic fields compared to the

neuromagnetic field

4.4.1. System Equation Considerations

Consider the linear problem B=H Q' + ¥ of eqn (4.6) where the system matrix H is of
dimension 3MxN. We will investigate the properties of this matrix. Expanding H using
the singular value decomposition [66]:

H=UA"?VT (4.10)

where U and V are matrices of the eigenvectors of HH' and H'H respectively, with A
the diagonal matrix of corresponding eigenvalues. From the orthogonality of the columns

U; and ¥; of U and V we can rewrite the expansion as [66]:

R 112
H=Y 2, "u; v/ (4.11)
i=1

S 112
B=YA UV Q +vy
i=1

where R is the rank of H. We can form the pseudoinverse HY, of H, by inverting each

nonzero A; and write the least squares minimum norm solution of (4.9) as

R
1
Q'=Y TEV'E (4.12)
~ 2,

In (4.11) the component of B due to the projection of Q' through Q;Z,-T is weighted by

A/ thus if /'l,-uz is small the resulting contribution to the data is small. In the pseudo in-
verse however, %wﬂl be large and hence the component of the noise vector projected
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through V; _U,'T will be disproportionately amplified. To avoid this problem it is common
to truncate the summation in (4.12) to sum over P < R values so as to reduce the error in
Q' due to measurement noise. This truncation however produces another type of error in
the solution image by reducing the resolution and fine detail available from the small sin-
gular values. An optimal truncated pseudoinverse solution is obtained when P is chosen
to minimize the sum of noise error plus resolution error [66]. This optimal truncation

index, under the assumption that O and y are independent, white Gaussian vectors, is

given by:
= ; 5 El¥Ty} r’xl]
Pops = max [z | 4; 2 E(BTB] (4.13)

with the A; 's ordered in a descending manner. The number of terms P used in the sum-
mation of eqn (4.12) determines the possible dimension of the solution. As P is increased
towards R, the dimension of the solution, and hence potential resolution, is increased,

but at the cost of increased sensitivity to noise.

This development of an optimum truncated pseudoinverse solution suggests that much
can be learned about the stability, and attainable resolution and dimensionality of an im-
age solution by analyzing the singular values of the system matrix H. The H obtained
from several configurations of reconstruction volume and sampling surfaces has been
analyzed. Figure 4.6b is a plot of the square of the ordered singular values for H ob-
tained from a sampling surface and a reconstruction space as shown in Figure 4.6a. It
can be seen that A; drops off rapidly, that H is not of full rank, and that 90% of the
“energy” is contained in the first 10 values. Since the number of independent features in
the source which may be recovered in the reconstruction is limited by the number of sig-

nificant singular values, we should not expect successful reconstructions of an arbitrarily
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dense distribution. If however we assume a-priori knowledge that the source distribution
is maximally sparse, with fewer sources than large singular values, then full resolution
reconstruction may be possible. Figures 4.6c and 4.6d show similar results for sample
points on concentric nested hemispheres and sampling on a more widely separated grid,
respectively, indicating little additional information is gained by additional external sam-

ples.

4.4.2. SQUID Resolution

Usable resolution of the SQUID biomagnetometer is limited by pickup coil size,
gradiometer sensitivity as a function of distance, and data acquisition time. Pickup coil
diameter and the gradiometer coil configuration affect resolution and sensitivity as a
function of range. Figure 4.7 shows biomagnetometer response to an isolated dipole as a
function of lateral distance and axial range, as compared to the ideal magnetic point de-
tector. This non-ideal response characteristic must be accounted for in the system matrix

H by modifying the expression for the submatrixes W.

A usable approximation is obtained if coil diameter is neglected and W is formed as a
sum of matrices corresponding to the different coil positions in the gradiometer. In our
device there are three coils with axial spacing between them of 50 mm, the center one is
counter-wound and contains twice as many turns as the other two. With this configura-

tion, W is computed as follows:
W = Wl. 2W2+ W3 (4.14)
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where W1, W2, and W3 are matrices computed separately as in eqn (4.5) for the three
coils, but using the centers of the three coils respectively when computing the position
vectors r,,. A more accurate expression for Wi, i=1,2,3 can be found by averaging each
submatrix found in (4.5) over the cross section area of each coil, i.e.

i 4

Won=—o5 W n.n dLm (4.15)

om
Where W, _ is the m,n th submatrix in W, ¢, is the integration surface, corresponds to

the disk enclosed by the i th pickup coil for sample position r,,, and d is the diameter of

the coils.

The logistics of data acquisition also impose a practical limit on the number of data points
which can be gathered. Functional neuromagnetic fields of the brain are weak enough
that it is essential to perform time averaging between successive sets of data for noise
suppression. For measurements from evoked responses, ten or more sample windows,
each approximately one second long and synchronized to the patient stimulus, are needed
at each sample point. With a single channel SQUID, this acquisition time and the time re-
quired to reposition the SQUID detector imply that data from the small 17 by 17 cell grid
used in some of the experiments could take several hours to gather. The seven channel
array devices are an improvement, but we look to future large array SQUID detectors to

eliminate this restriction on resolution.
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4.4.3. Noise and Background Magnetic Fields

The functional neuromagnetic fields of the brain which are of interest in neuromagnetic
imaging are on the low end of the detectable scale. Somatically, visually, and auditory
evoked fields have been measured at levels near .1 pT [43], and as shown by Figure 4.3
this is orders of magnitude below some other nearby biomagnetic fields. The earth’s
steady state magnetic field has an amplitude at 40 degrees latitude of approximately 50 uT’
and interference from commercial power and nearby feromagnetic objects can cause seri-
ous noise and interference problems. The second-order gradiometer configuration of the
pickup coils can attenuate the zero and first order gradients of these fields to acceptable
levels, but care must still be taken to reduce local interference. This background noise
level will set a limit on the system sensitivity, and thus on the achievable resolution when

dealing with the weak signals of interest.

4.5. Poor Conventional Reconstruction Results

A major motivation for considering the maximally sparse minimum dipole approach for
NMI was the unsatisfactory results obtained using more convectional optimization criteria
which permit solutions with nonzero components in every element. There are several well
known algorithms used in image reconstruction problems where solutions to ill posed
underdetermined linear systems are required [63]. These algorithms use a cost criterion
to select a single solution from the infinite possible solutions to the underdetermined sys-
tem where M < N. Given the data vector B and assuming there is no noise, then a single

solution can be obtained by solving the general constrained optimization problem
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min N [g(Q) subjectto B=HQ, 020] (4.16)

eR
where g(Q) denotes some functional on the solution vector. The choice of the cost func-
tion will determine the class of solutions. Two different cost functionals, associated
algorithms, and analysis of simulated experimental reconstruction results will be dis-

cussed in the following sections.

4.5.1. Minimum Norm, Additive ART Algorithm

A common optimization cost function is the minimum norm solution, with g(Q)= QT Q,
which can be found by numerous pseudoinversion and quadratic optimization techniques.
An additive version of the Algebraic Reconstruction Technique (ART), which is an itera-
tive algorithm popular in medical imaging, was used to evaluate NMI performance. The

algorithm steps are as follows:

let H;” be the ith row of H, then for iteration step k:

- H:Tok
Qk+1= O %ﬁ—m fork =0,L; - ke ,i= knoay +1 (4.17)
L

ex=B-H Qk

Iterations terminate at k, when the error e, drops below a predetermined limit. The con-
strained ART algorithm was also evaluated for the case of solving eqn (4.9) with prior

dipole orientation information.

The minimum norm approach favors smooth solutions, and it tends to force the solution
dipoles as close as possible to the SQUID detectors since the field falls off as the inverse

square of the distance between the detector and source. g(Q) is minimized when smaller
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current dipole magnitudes are located near the detectors to yield equivalent magnetic field
measurements. The bias toward a solution near the detector and the underdetermined na-
ture of the system make depth resolution difficult or impossible with a straight-forward

minimum norm solution.

4.5.2. Maximum Entropy Solution

Another technique is to produce the maximum entropy solution where we minimize the

functional

N N
N0 Qi . _ .
g(Q)_igi"Q“u In “Q"”' 0i20, "Q"H—i:le; (4.18)

This technique is favored by many researchers [67,68] as it yields the maximally uniform

image consistent with the data.

There are a number of algorithms for maximum entropy restoration. Most require the el-
ements of H to be non-negative [63,69], which does not meet our needs. Non-nor-
malized algorithms are unacceptable due to the nonlinear effect on the solution caused by
scaling the data. An algorithm based on techniques described in [69] was used for a nor-
malized maximum entropy reconstruction with a general system matrix H. The iterative

steps are as follows:

0=[1010,---17 (4.19)

k+l_

0*'= Qfexp (T A4)]

8- H 0K

& =""IaT,

for k=0, 1,---k., i = kmoam +1
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@ is a relaxation constant to control convergence. As above, iterations are terminated
when e; drops below an acceptable limit. The entropy expression is defined only for

Qf 20, so we are required to use our dipole orientation constraint model of eqn (*8) so

that Q becomes a vector of non-negative magnitudes. This maximum entropy approach
has shown in our simulation experiments to suffer from the same bias toward near de-

tector solutions as the minimum norm image.

4.5.3. Simulation Results

Simulated noiseless magnetic field point measurements were used in a comparison of the
algorithms discussed above. Three disjoint current dipoles of differing magnitude within
a sphere were modeled, and noiseless measurements on a hemispherical surface sur-
rounding them were computed. The sphere was 3 cm in radius centered at (0, 0, 0) and
divided into 1 cm3 voxels. The simulated magnetic samples were taken on a hemisphere
of radius 4 cm with z 2 0. In reconstruction, all dipoles were constrained to be in the +x
direction. The three dipoles were located at (x,y,z) coordinates (1, -1, 1), (1, -1, -2),
and (1, 2, 0) with magnitudes 1.0, 1.5, and 2.0 respectively. This set of sources was
chosen to demonstrate problems associated with the minimum norm and maximum en-

tropy solutions, i.e. their inability to resolve depth from the measurement surface.

A single plane (x=1) of the original source and reconstructed 3-D images from the ART
and maximum entropy algorithms are shown in Figure 4.8. The magnetic sample hemi-
sphere surface surrounds the left half of the images. Since all three sources are located in
the x=1 plane, this allows a comparison of the depth resolution for each algorithm. It can

be seen that the minimum norm and the maximum entropy images shift energy toward the
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b)

Figure 4.8. Noiseless Image Reconstruction for a 3 Dipole Source.
x=1 plane shown. Intensity is +x component of Dipole Field. a) ART
(minimum norm) solution. b) Maximum entropy solution. c¢) Original
source distribution. -
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sphere surface and blur the dipole locations. The maximum entropy entirely misses the
deeper lying dipoles. The ART image produced a smoothed cluster of intensity near the
(1, 2, 0) dipole, but the maximum voxel, not shown, is at (2, 2, 0) which is near the
sphere edge. The maximum entropy criterion produced a slightly less disperse solution,
but still had a smoothed cluster around (1, 3, 0). It did however produce a more uni-

form field of near zero values away from this cluster than did the ART algorithm.

Figure 4.9 shows results of reconstructing a larger more complex source distribution.
The image sphere is 13 cm in diameter and the measurement hemisphere is in the z > 0
half-plane with radius 8 cm. Figure 4.9a and shows planar slices through the original
source while 4.9b and 4.9¢c give the corresponding minimum norm ART and Max En-
tropy reconstructions. The source contains a 2 by 2 by 20 cell bar of current running di-
agonally through the sphere and a 7 cell diameter solid disk of current lying in the z=2

plane. Note the complete loss of internal detail in the reconstructions.

The fact that these results differ so dramatically from the true source confirms the need to
select the model and algorithm best suited to our current knowledge of the physical pro-
cesses involved in neural activity. It is clear from the above examples that the minimum
norm or maximum entropy methods result in unacceptable solutions. This conclusion
motivates our effort to identify a new class of solutions which will more closely represent

an underlying current.
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Figure 4.9. Reconstruction of Bar and Disk Source in a 13cm
Diameter Sphere. a) x=1 (left) and z=2 (right) planes of the source
distribution. b) ART reconstruction. ¢) Maximum entropy
reconstruction.

98
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4.6. Minimum Dipole, Maximally Sparse Solutions

With the intent of overcoming the errors in the reconstructed images described above, a
new alternative class of solutions was proposed which attempts to minimize the number

of dipoles and expresses the problem as an /;,, optimization.

This formulation is appealing since choosing the minimum number of dipoles is maxi-
mally noncommittal in the sense that unless we have good reason to believe otherwise,
the minimum order solution is the least activity which could have given rise to the data.
For the NMI problem, it is proposed that the number of dipoles required to create the
magnetic field be the measure of source complexity we wish to minimize. It is hypothe-
sized that this minimum dipole solution is most likely to correspond to the physical
source distributions we will study. If the minimum dipole representation is a reasonable
model of the actual current distribution, then this approach also enables resolving current

dipoles in depth by removing the underdetermination in the system.

Figure 4.10 shows results of reconstruction of simulated NMI measurement data with
dipoles constrained to be oriented in the positive x direction. The image in Figure 4.10a is
an Iy, search reconstruction of the source used in Figure 4.8. Note that it exactly locates
and scales the three dipoles and that it did so in an elapsed time of about 20 minutes as
compared to 3 days for the exhaustive search. Figure 4.10b and ¢ show the x and z axis
projections respectively of the reconstruction form another source involving 11 dipoles.
This image used the same spherical reconstruction space and hemispherical sample sur-
face centered on the positive z axis as in Figures 4.8 and 4.10a. The solution image

shown exactly matches the original source to within 5 significant digits.
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Figure 4.11a shows the x and y axis projections of a 20 dipole source. Figure 4.11b
shows the corresponding planes of the /;;; SA solution for 5.11a, in which a line of five
dipoles was replaced with a single dipole at (1,0,-2), producing a 16 dipole, lower order
equivalent of the original. Note that the replacement dipole is located precisely in the cen-
ter of the original current line. Although this solution differs from the original, it main-
tains all the major features and properly locates the centers of activity. Since the induced
magnétic fields of Figure 4.11a and 4.11b are identical, there is no justification without
prior knowledge to presume more dipole sites are involved than in the least order solution
of 4.11b. The system matrix used for each image in Figures 14 and 15 involved 41 mea-
surements and 125 dipole voxels and the algorithm execution time was approximately the
same for each, while an image like 4.11b would be unattainable with the exhaustive
search because of the number of iterations being proportional to N!. Though the
exhaustive search could find Figure 4.10a, it could take ten orders of magnitude as many

iterations to find 4.11b.
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Figure 4.10. Exact [y, Simplex Search Algorithm Solutions.
a) 3 dlpole source of F1gure 4.8. b) An 11 dipole source, projection
along x axis (left) and projection along z axis (right).
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b)

Figure 4.11./;, Simplex Search Reconstruction of a 20 Dipole
Source. a) x axis (left) and y axis (right) projections of the original
source. b) Reconstruction results. Note solution is lower order than
source.
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CHAPTER 5: SPARSE OPTIMIZATION FOR SEISMIC
DECONVOLUTION

5.1. Seismic Deconvolution

Seismic deconvolution is a widely used reconstruction technique for recovering subsur-
face geological strata location information from reflected acoustic signals. This sounding
method, known as reflection seismology, is most often used to aid in oil exploration by
generating maps, or image-like reconstructions, of the deduced strata positions over a
large enough region to permit identification of geologic structures likely to contain oil de-
posits. The techniques are also applied to well logging [8] and marine seismic exploration
[70]. A typical field instrumentation arrangement is shown schematically in Figure 5.1.
A large acoustic vibrational source (often explosive) is activated at the surface to generate
a wave which propagates down through the strata, and the acoustic impedance
discontinuities at the layer boundaries cause reflections which are in turn received by the
array of geophones placed along the surface. By using a linear array of phones, multiple

reflection ray paths can be detected and a 2-D “slice” of Earth covered by these rays can

be mapped.

A simple discrete model of this process is used as the basis for many digital seismic de-
convolution algorithms [70]. The following assumptions are made to support the model:
a) the reflection process is approximately linear so that superposition holds, b) the reflec-

tion angle is approximately normal, c) negligible ray bending occurs, d) sound propaga-
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tion speed is constant, and e) the reflection sites are at discrete locations rather than

smoothly distributed. Experimental data indicates these are reasonably accurate assump

Instrumentation

Explosive |_|
N Geophones

’////
Y ]

NN

Figure 5.1. Basic Equipment Configuration for Reflection
Seismography

tions, so we may represent the signal received by each phone as:

k
2(k) = Y, p()V(k-j) + n(k) (5.1)

j=1
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where z is the observed signal, u is the reflectivity sequence representing the discrete im-
pulse response from the Earth, V is the acoustic source signal, and » is the measurement
noise which incorporates the effects of sensor noise, distributed backscatter, and model
error. The index, j, has units of time corresponding to propagation distance to a reflec-
tion site. V usually has much longer duration than the separation between nonzero p(j)
samples, so the convolutional from of eqn (5.1) causes corresponding components in
z(k) to overlap and obscure reflection site locations. A deconvolution procedure is thus
needed to recover u from z, and must also deal with the corrupting effect of the noise
term n. The class of seismic deconvolution problem is determined by how many of the
terms and parameters associated with eqn. (5.1) are known a-priori. If all parameters,
including V, must be estimated from the received data, z, we have a problem of “blind
deconvolution” [8,9,10,70]. Often though, it is possible to obtain independent, reason-
ably uncorrupted, measurements or estimates of the source wavelet and of the noise
statistics so that the deconvolution algorithm need only estimate y. The techniques de-
scribed in sections 5.2 and 5.3 assume that an accurate model of the source wavelet and

the second moment of the noise signal are known.

Our interest in seismic deconvolution lies in the typically sparse nature of recovered se-
quences p(j), which makes it a likely candidate for maximally sparse optimization. A
simple view of the Earth's structure, consisting of layers or bands of homogeneous
material separated by abrupt boundaries where reflections occurs, suggests a heuristic
expectation that reflectivity sequences will contain large impulses corresponding to these
boundaries, separated by many near zero samples. Several authors [8,9,10] have con-
firmed this sparse characteristic in real data, (see section 2.5) and have used the general-

ized p-Gaussian (gpG) distribution with p in the range of .4 to 1.5 to model the reflectiv-
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ity sequence. u(j) is assumed to contain independent, white samples with gpG zero

mean distribution, and n is modelled as either white Gaussian or gpG.

aroi
fu(u()) = m e ( re ) (5.2)
_ [T - _{62 for i=j

This model is particularly well suited to the /;, norm based algorithms presented in this
work due to their relationship to maximum likelihood estimation (see section 2.5).
Mendel [70] used a different Bernoulli-Gaussian model to represent the sparse, impulsive
data. The Bernoulli component expresses the (small) probability of a reflection boundary
occurring at each of the discrete depth (time) samples, while the Gaussian component
controls the amplitude of the reflection. Let b(j) be a sequence of independent, Bernoulli
distributed samples, and r(j) be an equal length sequence of independent zero mean

Gaussian variates. u(j) can then be simply represented as:

1w =r() bG),  1sjsN (5.3)
fo(b) = (1-2) 8(b) + A8(b-1)
fr(r) = N(0,0), yielding: E{u2(j)} = 024

Typical values of A=.05 and ©0=.30 are given in [70]. Using this model a number of
successful techniques were developed for both the blind deconvolution and known
wavelet cases, including minimum variance, maximum likelihood, and maximum a-pos-
teriori estimation methods [70]. Due to the independence of b and r, the problem is
separable so the optimal solution when V is known is given by first computing the maxi-

mum likelihood estimates of the reflection locations, b(j), and then their amplitudes, r()).
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A number of heuristic “minimum entropy” optimization approaches have been proposed
for blind seismic deconvolution. These problems are related to the approach of section
3.2, and some utilize the gpG distribution model for u(y) [8,9,10). These methods are
minimum entropy only in the sense that the desired reconstruction is as “simple” as pos-
sible, where simple is defined as consisting “of a few large spikes of unknown sign or
location separated by nearly zero terms” [71]. This is assumed to be a maximally struc-
tured result, and to be the opposite of maximum entropy solutions which are the most
smooth or unstructured. Deconvolution involves solving for the inverse filter corre-
sponding to the wavelet by minimizing a heuristic “norm” measure of sparseness. A va-
riety of these “norms” have been used as objective functions, including the varimax norm

ratio proposed by Wiggins [71]:
m =l N

v =Y S
Aiga
i=1

(5.4)

with j indexing the geophone channels, and i the time samples. The parsimonious norm,
a generalization proposed by Claerbout is:
n o
PMEZ
< __i=l
v(x) = Y, (5.5)

n

4 ol/2
FL(Y 1x1%)
i=1
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Gray used the variable norm ratio:

p (55 11"
v(@) = log [] —& (5.6)

n n/o2

FLEY 11"
i=1

Each of these functionals is scale invariant and favors sparse solutions, but not in any
optimal sense. While methods based on these norms as cost functions have met with
some success, they are nonconvex, and since the methods are formulated as uncon-
strained optimization problems [9}, the search is carried out over a continuous parameter
space, converging to a local optimum. These methods do not adapt well to the case in
which the source wavelet is known and the problem can be formulated in terms of a set of
linear constraints, since local minima are not confined to the vertices of the convex poly-
tope where the optimal solutions lie, as proved in section 2.2. It is proposed that the /4
cost function is superior since it was shown in Theorem 2 (section 2.3) to yield maxi-
mally sparse solutions, and is optimum for maximum likelihood estimation when the gpG

distribution model applies.

The generalized p-Gaussian model is used in section 5.2 below for synthesis of the data
sequence and as the basis of the algorithm design, while in section 5.3 a Bernoulli-Gaus-
sian model was used. The I}, simplex search algorithm assumes no statistical model
other than for the noise term. The reflectivity sequence is interpreted as deterministic and
the maximally sparse configuration of elements consistent with the measurement data is
sought. The results obtained by Mendel's algorithm using the Bernoulli-Gaussian model
are presented in section 5.3 to compare with the deterministic results. All measurement

data presented in the algorithm demonstrations was synthesized using computer models.



109

The transmit wavelet used in both sections following was synthesized using a

representative fourth order ARMA model taken from [70]:

-.76286+1.58842°1-.823562-2+0.00022242°3
- 2.2633z1+1.777342-2-.498032-3+.0455467-4 1)

V(z) = 1

A digital filter was implemented with these coefficients and driven with an impulse to

generate the wavelet samples used below and plotted in figure 5.2.

0 5 10 15 20 25 30 35 40 45 50

Figure 5.2. Fourth Order ARMA Wavelet Used in Seismic
Simulations.

5.2. Convex Transform Gradient Search Solutions for
Seismic Deconvolution

In this section, the convex transform gradient search algorithm described in section 3.3 is

applied to seismic deconvolution using the reflectivity sequence model of eqn (5.2).
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Based on the arguments of section 2.5.3, the algorithm is well suited for near optimal
solution, in a maximum a-posteriori sense, when using this model, and is preferred over
the simplex search approach. Various shape parameters, p, in the range of .2 to .5 were

used for the gpG reflectivity sequence, and Gaussian measurement noise is assumed.

Using matrix notation, for a single geophone with M samples, and N depth sites we
have:
z=Vyu+n (5.8)
where V is the MXN Toeplitz convolution matrix, i.e.

_ {V(i-j+1) for N2izj, jsM
Vii = lo otherwise

n; distributed iid N(0,0p)
Wi distributed iid gpG(0,0y)

We assume that V and g, are known. The maximum a-posteriori estimate of 4, as given

ineqn (2.19) as:
. -vT@z-V 1
Lvap = min LT e i) +( )’Z | i)? (5.9)
u 20,% YOu) 5

We cannot solve this directly, but we can guess at a reasonable lower bound on the first
term since g, is known and the »; are independent. We then concentrate on minimizing
the second term. Letting &€ = Mo,, , we express (5.9) in a form suitable for the algo-

rithm:

min Y |u;lP st (z- V)7 (z-Vu) <,y 20, p<l (5.10)
L i
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Letting ¢ = 1/p, performing the convex transformation from K to i, and doubling the
number of variables allow for a bipolar representation the the transformed space, we

have:

N
4 =inf Y, e* st (Vedk -z2)T(Vedk -z) < g, and u;>-00  (5.11)
g =l

where

u* - 1 %
V=[V]-v], “L[u:] , u:=(u§'-u,-), up = ln (u;)

This is solved using the Schittkowski or other nonlinear constrained optimization algo-

rithm, after which the inverse transformation is performed.

Figure 5.3 shows the synthesized data used in this deconvolution example. The reflec-
tivity sequence shown in Figure 5.3a has a shape parameter p=.2, and was produced by
transforming computer generated uniform variates to gpG samples. For any random
variable, x, with a continuous cumulative distribution function, Fy(.), y = F(x) is uni-

formly distributed, U[0,1]. Since Fx(.) is monotonically increasing for a continuous
distribution, the inverse function, F’xl(.) always exists, and

z= F;l(y), for y a uniform random variable, has the same distribution as x. If F;l(.) can

be computed for the gpG density, we can synthesize gpG random samples, z; by trans-

forming uniform samples, y;.

The gpG density function cannot be integrated in closed form, so Fx(.) was obtained by
numerically integrating gpG(x) on a dense sample grid. The inverse function was

implemented using a table lookup and linear interpolation, which provided an efficient
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generation of a gpG sample from each uniform sample for any desired value of p.

1
a
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Figure 5.3. Simulated gpG Seismic Reflectivity Sequence and
Received Data. a) Generalized p-Gaussian reflectivity sequence, p=.2,
80 samples. b) Noiseless received data after convolving with Figure

5.2, decimate by 2. ¢) Gaussian noise added, o= 1.0.
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Figure 5.3b shows the noiseless reflectivity sequence resulting from convolving 5.3a
with the wavelet of Figure 5.2. Figure 5.3c is the same received data with Gaussian

measurement noise added with ¢,=1.0.

The convex search algorithm has shown particular improvement over least squares and
pseudoinverse solutions in underdetermined and extremely noisy cases. To simulate an
underdetermined problem, after convolving with the ARMA wavelet, the received data
sequences were decimated by a factor of two to generate Figures 5.3b and c. These last
two sequences, consisting of 40 samples each, were the measurement data used to
reconstruct the 80 sample reflectivity sequences of Figures 5.4 and 5.5. The Moore-
Penrose pseudoinverse solutions for noiseless and 6,=1.0 cases are shown respectively
in Figures 5.4a and 5.4b, while Figures 5.5a and 5.5b give the convex transformation

gradient search results .

It is notable that these solutions retain all of the major spikes of the original sequence,
while forcing the majority of the other samples to zero. There is significant improvement
over the pseudoinverse results in terms of fewer false detections, which is particularly
useful for noisy data since there is no justification for retaining smaller valued reflection
points when the noise level is high enough to have produced equally prominent spikes.
Both Figure 5.4c and 5.4d required approximately 100 iterations of the Schittkowski al-
gorithm and used a 40x160 system matrix V. In each of the examples, the pseudoin-
verse solution was used as the initial g guess to start the Schittkowski algorithm. For the
noisy case, an € = 35 = Mo, was used, and convergence to this value was obtained,
while for the noiseless case € = 10 was used. Since prior knowledge of the value of p
was not assumed, the maximally sparse approach was taken by using arbitrarily chosen

smaller p values in the algorithm than were likely to be required by any typical gpG seis-
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mic reflectivity data. For the noiseless data p = .125 (g = 8) was used, and p = .143

(g =7) for the noisy data.

6 v

A 4] ]
2k .
0 VV\/I
-2k .

0 10 20 30 40 50 60 70 80

b)

1020 30 40 50 60 70 80

dh

Figure 5.4. Pseudoinverse Deconvolutions of gpG Seismic Data.

a) Moore-Penrose pseudoinverse result for deconvolution of noiseless
sequence of Figure 5.3b, compare with Figure 5.3a. b) Result using
noisy sequence of Figure 5.3c, compare with Figure 5.3a.



b)

-100

115

10

10 20 30 40 50 60 70 80

15 r

10} -

G——6—20 30 40 30 60 70 80

Figure 5.5. Convex Transformation Gradient Search Deconvolution
of gpG Seismic Data.

a) Result for deconvolution of noiseless sequence of Figure 5.3b,
compare with Figure 5.3a. b) Result using noisy sequence of Figure
5.3c, compare with Figure 5.3a.
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5.3. Seismic Deconvolution using the I;;;, Simplex Search

The following application of the I, simplex search algorithm to seismic deconvolution
was conceived and implemented by Mr. Zhenyu Wu in collaboration with the author, and
is reported in [2] and [13]. Itis included here as another example of the excellent per-
formance of the algorithm in sparse data environments. As before, the problem ad-
dressed here assumes that the source wavelet is known, and that a rough estimate of the

combined backscatter and measurement noise level is available.

For the simplex search, the linear system formulation of equation (5.9) is shown in eqn
(5.12). We cannot implement a constraint on the squared error term as was done in sec-
tion 5.2, but this formulation differs from the other /;;4, simplex search problems pre-
sented, because an /; norm constraint on the error is used rather than individual error

bounds on each measurement, z;.

]
V -VI 00]|u zi
Vu=z :|Vi-vio.r# o} s+ =|:g_:l::| (5.12)
0 01 L 1. ¢
-

Here y = u* - i, and i indicates that some rows are negated to force all right-hand-sides

to be non-negative. The last row of the system matrix, V, places a constraint on the sum

M M
of the plus and minus slack variables, i.e. Y |ei| =Y (s;t+s5;7)Sc. Thisis
=l &=l
equivalent to the problem
N
min Y ;1Y% such that ||Vg-z Il <c,q>1 (5.13)
1 &=l

A suitable choice of ¢ could be found from an estimate of the variance ©,.
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The seismic signal was simulated by convolving the reflectivity sequence in Figure 5.6a,
generated using a Bernoulli Gaussian model (1=1/16, 62 =1), with the ARMA wavelet of
Figure 5.2. The resulting signal, corrupted with i.i.d. Gaussian noise at an SNR of 10
dB, is shown in Figure 5.6b. A second set of data, shown in Figure 5.6c, was generated
to incorporate convolutional backscatter [70]. In this case an i.i.d Gaussian sequence, of
variance 052 =0.01, was added to the reflectivity sequence prior to convolution with the
wavelet and i.i.d Gaussian noise was added to the resulting data at an SNR of 10dB. It
is noteworthy that a backscatter component is implicit in the gpG model used in section

5.2 due to the numerous small valued samples between isolated large spikes.

The results of deconvolution are shown for Mendel’s optimal seismic deconvolution
method (OSD) are shown in Figures 5.6d and 5.6e for the with and without backscatter
cases respectively. Event detection was performed using the ‘single most likely replace-
ment’ detector [70]. The /;,, simplex search results are shown in Figures 5.6f and 5.6g.
The square boxes in the graphs show the locations of the detected events, the solid lines
the locations of the actual events. In the backscatter case, we are interested only in the
larger events, the smaller ‘events’ being due to backscatter from small scatterers and not
of primary interest in this problem. When applying the OSD method we assumed only
knowledge of the wavelet parameters; all variances and the Bernoulli parameter were es-

timated from the data.

It is interesting to note that there is very little difference between the results obtained from
the two approaches, even though the minimum variance deconvolution was based on the
exact statistical model by which the data was generated, while the new method uses only

the 1/g cost function and a rough approximation of the expected /; error. In the case for
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data plus noise the OSD method produces a spurious event at about the 80th sample point
(Figure 5.6¢) which is not present in the /;/4 simplex solution. In the case with backscat-
ter, the OSD performs slightly better and detects only ‘true’ events while the new method
also detects several of the larger ‘backscatter events’. In both cases however, the number

of events detected may be altered by modifying either the level of the threshold in the

event detection in OSD [70] or the upper bound, c, on the /, norm of the residual error.
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Figure 5.6. Seismic Deconvolution of Bernoulli-Gaussian Data.

a) Reflectivity Sequence. b) Received data, 10 dB SNR. c) Received
data with backscatter. d) OSD deconvolution of b. e) OSD
deconvolution of ¢. f) /;;, Simplex deconvolution of b. g) /14 Simplex

deconvolution of c.
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CHAPTER 6: SPARSE ARBITRARY BEAMFORMINNG
ARRAY DESIGN

In this chapter the problems of array element shading and placement are considered for
arbitrarily shaped symmetric 3-D arrays in narrow-band phased beamformer operation.
The goal is to achieve “thinned,” data independent (i.e. not statistically optimum) array
designs which have spatial response patterns comparable to more conventionally de-
signed arrays which use more elements. The “least elements” optimality criterion allows
us to reduce the beamforming processing load by identifying the unnecessary phones for
a given beam; a task which is difficult using other design approaches. Also, if we use a
fine grid of potential element locations, then the minimum order solution can be used for

optimal element placement analysis.

6.1. Beamforming Fundamentals

Array beamforming may be viewed as spatial-temporal filtering designed to extract a de-
sired signal in a specific direction from other interfering signals and noise in a three di-
mensional propagation medium. Classical beamforming designs used in communica-
tions, RADAR, SONAR, and other acoustic and electromagnetic applications typically
utilize a linear or planar array of sensor elements to form a strong response from the di-
rection of interest, while rejecting signals from other directions. However, it is not nec-
essary to maintain linear configurations, or to require uniform spacing since, as pointed

out by Van Veen and Buckley, “there is no compelling reason to space sensors regularly.
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Sensor locations provide additional degrees of freedom in designing a desired re-
sponse . .. ” [78]. Utilizing these degrees of freedom can be very difficult, due to the
multidimensional nature of spatial sampling and the complex relationship between desired
response characteristics and array geometry. The maximally sparse optimization tech-

nique will provide a methodology for addressing this problem.

We shall consider design of arbitrarily shaped narrow-band beamforming arrays with the
basic architecture shown in Figure 6.1, but which contain the least possible number of

elements for a desired spatial response.

Narrowband plane-
wave signal

X1k

>— ¥
> X2,k '}’2

X3
>_" 3

x(t)
Yk

> XNk %

Figure 6.1. Narrowband Arbitrary Beamformer Architecture.

The processing in Figure 6.1 may be expressed as:

Y = ¥ Xk (6.1)
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where x; is the vector of array data samples at time index &,  the vector of complex el-
ement beamforming coefficients, and y; the kth time sample at the beamformer output.
This structure is best suited to cases where the signal of interest is narrowband with a
known center frequency, , since only at the design frequency do the phase shifts in y
correspond to element phase shifts due to differing plane wave propagation distances
across the array. The spatial magnitude response, R(s,®), at frequency @, and any az-

imuth and elevation specified by a unit direction vector, s, is given by

N O )
R(s,0) = | X 7, 7% | (6.2)
j=1
where c is the wave propagation speed, r; is the position vector for the jth array element,

and “ - ” indicates vector dot product.

Once the element positions are given, the primary focus of most array design problems is
to solve eqn (6.2) for a y which satisfies a specified R(s,), or some other optimization
criterion. In statistically optimum beamforming, it is the average response relative to
some desired signal characteristic which is optimized. A classical example is the maxi-
mum signal to noise ratio design [78]. Let x; = 5z + nx where s is a narrowband signal at

direction sg, and ng is the noise signal with known covariance matrix R, = E{z nT}.
E{(#¥9?)
E{(¥n)?)

The signal to noise ratio at the beamformer output, , is maximized when:
-1 2. )
y=aR'y, vj=e i (6.3)

Here a is an arbitrary scaling constant, and z and § are assumed zero mean. This type of

design adjusts the beam response, R(s,®), in any fashion necessary to maximize the
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SNR. Response nulls are placed on plane wave noise signals, and the sidelobes can be

arbitrarily high in directions with little noise.

In data independent beamforming, which is the approach used in the examples below, no
prior knowledge of the existing noise and interference field is assumed, so the beam-
former is designed to provide a response which will perform acceptably in a variety of
noise environments. R(s,®) is specified so as to have maximum response in the direc-
tion of interest, and maximum attenuation in all other directions. Figure 6.2 illustrates the
method we shall use to set upper and lower constraints for R(s,®) on a finite grid of
sample directions, s;. Sample spacing must be fine enough to eliminate sidelobe leakage
between samples, and is a function of the array aperture size. Conventional methods of
data independent design include [78] windowing and inverse transformation of the de-
sired spatial response, minmax design with the Remez exchange algorithm [84], spatial
response sampling and linear weighted least squares, and pattern search nonlinear opti-
mization algorithms [76,80]. For equally spaced line arrays it is possible to use
transversal filter design techniques, but for arbitrary shaped arrays this is not possible.
For example, Chebyshev tapered line arrays offer optimally low uniform sidelobe levels
for a given mainlobe width, but for non-square planar arrays, and virtually all arbitrary
arrays, the Chebyshev polynomial cannot be factored accordingly, and thus can not be
used [85]). The I;, optimization method however functions independently of the array

configuration.
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Figure 6.2. Beam Response Constraint Sampling Grid.
This constraint sampling technique is used in the /5, search algorithms to

specify the beam spatial response. For 2-D case s; = (sin 6; cos 6; 0).

6.2. Related Work in Array Thinning, Placement, and 3-D
Array Design

The need for thinned array designs arises in both hydrophone arrays for SONAR systems
and in antenna arrays where the cost of array elements, or associated computational load,
is a significant design factor. Thinning implies that an existing array design, typically
with uniform element spacing, has some elements removed (i.e. corresponding =0)
while weights are adjusted to maintain a response criterion [12,72]. Alternately one may

use the nonuniformly spaced array approach [12,72], where placement of a fixed number
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of elements in a continuous space (colinear, coplanar, etc.) is adjusted to optimize the de-
sired response parameters. This corresponds to simultaneously solving (6.2) for ¥ and
rj, 1sjSN. The two problems can be viewed as essentially equivalent, if the original

thinning array is spaced very densely.

A related problem is element placement in unusually shaped or “conformal” arrays, where
elements are located on some nonplanar supporting structure (as the hull of a submarine)
[73,74,75]. In this case, conventional uniform element spacing is not only difficuit
(impossible on some shapes), but can lead to wasteful oversampling when the local array
surface is not perpendicular to the signal direction of interest. Thinning can become a
trial and error proposition. Efficient element placement is thus a critical design issue for
unusually shaped arrays unless there is no limit to available sensor elements and compu-
tational power. The available shading methods for conformal arrays, including maxi-
mizing the target signal to noise ratio with respect to a known noise field [77,78], linear
programming methods, or using a pattern search algorithm [76,78], can yield useful
shadings for these arbitrary arrays, but can give no information on how many elements

are needed, or where they should be placed.

In the literature, the problems of thinning, nonuniform array shading, and element place-
ment are generally solved only for specific array configurations (e.g. [72,76]).
Maximally sparse optimization however, can be used in all these cases with the only con-
straint being that the element placement be symmetric about the origin. This uniform ap-
proach is possible since each case can be posed as an order minimization problem, and
the algorithms of Chapter 3 are general in nature, requiring only that the problem be ex-
pressed as a set of linear inequality constraints. It should be noted that array thinning is

usually most effective when very narrow mainlobe response is required [72].
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Although little is known about the general properties of nonuniformly spaced arrays, a
number of more or less effective design methods have been introduced for specific cases
[12,72,88,89,90]. One classical method of thinning line arrays is equivalent to the de-
sign of “N*s-band” transversal filters [86,87]. Let h; be the filter impulse response, with
corresponding frequency response H(e/®). If the frequency response is designed such

that
N1 ok
Y H(e" ¥)=Nhy (6.4)
k=0

then it is easily shown that the zeros of the inverse transform of H(e/®) fall exactly on

multiples of N, i.e.
hni=0 fori=0. (6.5)

For example, a lowpass filter design with frequency response symmetric about 7/2 satis-
fies eqn (6.4) for N = 2, and has every even filter tap (except hg) set to 0, thinning by
nearly 50%. The equivalent beam response requirement for a A/2 uniformly spaced line

array is:

N-1 2wk

(0]
Z R(e ¢ sin(®) +?) = N7 (6.6)
k=0

Yvi=0 fori=+0.
where 0 is the bearing response angle, and ¢ the wave propagation speed.

Jarske, et al. have recently shown that for small symmetric linear arrays, a nonuniformly

spaced design with element positions constrained to be placed at multiples of A/2 spacing,
can match the optimal response obtained with continuous nonuniform spacing [72].

They speculate that this property will follow for larger line arrays, and produce at least
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locally optimum results. In their simple construction method, elements are positioned as

symmetric pairs, and thinning is done by removing pairs of elements as follows:

1)  Choose the number of free element pairs, M, to be included in the final design.
Choose the maximum array length, 2D,,,,, and form a filled array this long using
A/2 spacing and uniform coefficients.

2)  Remove one pair of elements such that the resulting array has the smallest possible
sidelobe level over the stopband interval.

3)  Repeat step 2) until the number of elements is 2M+1.

4)  Calculate the optimal weights, ¥, for the remaining elements using linear program-
ming.

This is the approach used in the example comparisons of section 6.4. These examples

show how the /;,, optimization algorithms can be applied directly without restriction on

the array configuration, and how the maximally sparse optimization approach can im-

prove on other thinning methods.

6.3. Formulation for I;;;, Search Algorithms

In order to apply the algorithms of Chapter 3 to the beamformer of Figure 6.1, we will
use the presteered beamformer approach, where % = a;¢;, with ¢ the vector of precom-
puted unit magnitude phase shifts to steer the maximum response angle (MRA) to the di-
rection of interest, and g the real valued weights, or shades, which are to be optimized.
Additionally we require the elements to be placed symmetrically about the origin. We
wish to solve for the maximally sparse Y which meets the spatial response constraints.

As in section 6.1, we take M samples of the desired upper and lower spatial magnitude
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response bounds from a dense enough grid on an enclosing sphere to control sidelobe
leakage. Let s; be the vector of direction cosines to the point on the sphere where the up-
per and lower response constraints, by; and by, are sampled. Let s, be the vector direc-
tion cosines of the MRA, and r the position vector for the jth array element. Let a; be

the computed shade for the jth element, with g = g* - g~ where aj+ a2 0 so we may

obtain positive or negative shade values while using the positive only vectors g* and g~ in
the algorithm. We require symmetry about the origin to insure a real response value, y;,

ie.:

I‘J= = I‘N_J_], and aj= aN.j-l (6'7)

where N is the number of array elements, therefore we need only solve for N/2+1 shades
(coefficients) in g. The real amplitude response at the constraint points is then given by a

cosine transform, and is expressed in matrix form as:

ij=%cos[rj -(5;- §9) w/c], for i=1,--M, j=1---N/2+1 (6.8)

We introduce slack vectors z* and z” of length M, and have the final form of the system:

a+

H-HI 0 | Tes
Hx=h: |Ht -H¥ 0 -IH[|% |=[p} (6.9)
Z
110 0 - d

where 3 indicates rows may have been negated to force Q,* to be non-negative. The bot-

tom row of H is added to constrain the sum of shade absolute values. Simulations have
shown d can be adjusted to improve beamformer stability and array gain relative to a

noise field . Without the bottom constraint row, results often contain very large positive
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and negative values. Although this does not affect the array spatial response, R(w,s), the
magnitude squared response to independent noise at the sensor elements is || y" 20?,
where 62is the noise variance. This can be significantly larger than the mainlobe re-
sponse R(®,s0) when ycontains large negative values. Array stability, or lack of critical
sensitivity to element gain or positions errors, is also better for designs with not large
negative ¥. By choosing d slightly larger than the expected mainlobe magnitude

response, this problem can be avoided.

From eqn (6.9) we first use a phase one algorithm to find any basic solution and then
optimize using the simplex or simulated annealing algorithms. With a low order solution

a computed, the final complex element weight for the beamformer is

.m .
y= ajt; = a7 <0) (6.10)

6.4. Results

Consider the 60 element transparent concentric ring array of Figure 6.3a. We wish to
form beams, steered horizontally, in the plane containing the array. This is similar to the
configuration used by some “dipping” sonar systems which suspend a cylindrical ring
array in the water from a helicopter and form horizontal search beams. Figure 6.3b
shows the beam response for the full array using unity magnitude shading, with complex
phase shifting at each element equal to the conjugate of the elemental propagation phase
delay for a plane wave arriving from the maximum response angle (MRA) of zero de-
grees. A sinusoidal signal at 1 kHz is assumed, which gives an average element to ele-

: . A . o .
ment spacing of just over 7 We require the element positions to be symmetric about the

origin.
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a) Element positions. Elements omnidirectional. b) Umty shaded beam

response at 1 kHz in seawater.
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For the thinned array design, we use the same element phasing as in Figure 6.3, but let
the algorithm adjust the real amplitude shading. The mainlobe width is constrained to be
the same as Figure 6.3b, with sidelobes no larger than the first sidelobe of 6.3b.
Allowing some of the secondary sidelobes to come up to level of the first allows some
degree of freedom which is used by the algorithm in order minimization. Figure 6.4a
shows the remaining elements of the array after thinning by the ;,, simplex search algo-
rithm for g=15, and 6.4b shows the corresponding response pattern. Only 16 of the
original elements are needed to maintain the original mainlobe shape and maximum side-
lobe level, and the results agree with earlier observations that the outer elements of a ring
array are the primary contributors to beam response. Note that the algorithm simultane-

ously selects the elements and computes the optimal shade weighting.

In [72], Jarske, et al. propose a simple thinning procedure for narrow beam arrays. In
their example 4.1, a symmetric line array is designed with length constrained to be <
50X, and a mainlobe width constraint of +/-3.6 degrees (wavenumber = .08 ©/A). The
thinning procedure used in [72] requires the elements to be placed at multiples of /2
from the array center. Figure 6.5a shows the final element positions for the best solution
in [72], which produced a maximum sidelobe level of .217 (-13.27 dB), using 25 ele-
ments. Figure 6.5b shows the element positions for the /;,, simplex search (¢=15) solu-
tion to the same problem, but with the mainlobe further constrained to +/-2.06 degrees.
26 elements were required. Figure 6.6 shows the corresponding response pattern, The
initial array used in the search was 251 elements long, with .2A spacing, for a total length
of 50A. Using the stochastic search algorithm and truncating the sequence prior to

reaching a temperature of zero, this solution was improved to that shown in Figures 6.5¢
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and 6.7. Note that here only 22 elements were needed, the aperture is slightly smaller,
and the mainlobe narrower than example 4.1 of [72]. The difference between the /;,, and
the stochastic search solutions is a example of termination at a local optimum which is
overcome by the simulated annealing randomization of the search. Figure 6.5d shows
the final element positions, and Figure 6.8 the corresponding beam response for the [y,
search with all constraints (including mainlobe width) identical to the example in [72].

Only 16 elements were needed and the aperture was reduced further.

Figure 6.9 shows the results of the /;;, simplex search (g=11) for a more complex array
response specification, demonstrating the flexibility of the technique. The response
constraints included:

1)  MRA steered to +15 degrees

2) Mainlobe width +/- 4 degrees at -20 dB

3)  -35dB null in the range of 35 to 45 degrees

4)  Response at less than -70 degrees and greater than +70 degrees unconstrained

5)  Sidelobe level <£-20 dB.

As can be seen in in figure 6.9a, each of these requirements were met by the 30 element
final design with element positions as shown in 6.9b. The starting array contained 200
elements, evenly spaced over 61 meters at approximately .2A. The phase one linear pro-
gramming solution contained 66 elements, which were then reduced to the final 30 in the
l1/q search. This result is not a global optimum. The stochastic search could be used to
further reduce the number of elements, and starting with the unnecessarily large 200 ele-
ment array complicates the search process and makes less than optimum local solutions

more likely.
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6.5 Extension to Broadband Beamforming Designs

The development and examples above assumed that beamforming was to be performed
only over a very narrow band of interest, so that a single complex beamforming coeffi-
cient could be used for each array element. In this section, the broadband case is consid-
ered, and beamformer architectures and application approaches are proposed which could
potentially yield sparse array designs. The following discussion addresses theoretical
aspects and implementation issues, while experimental evaluation is left for future re-

search.

6.5.1. Sidelobe Control for Small Percentage
Bandwidth Beamformers

The beamformer architecture of Figure 6.1, though designed for a single frequency, can
often be operated over a reasonably broad bandwidth under the following conditions:

1)  The band of interest is a small percentage of the center frequency:
W41 = 01

2]

<< 1, where wp= band center frequency, @,; = band upper edge,

and @.; = band lower edge. A percentage bandwidth of 10% is often used.
2)  Inter-element spacing is no greater than A /2 at the maximum frequency of interest.
3)  The complex beamformer coefficients and element placement are of non-critical
design. This condition will not be defined explicitly, but acceptable examples in-
clude line array designs using eqn (6.10) with a set of a; which are rectangular
window, Hamming window, Kaiser-Bessel Window, or Chebyshev shaded. A
rectangular windowed, phase shift shading beamformer is an example of an

unacceptable critical design.
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With these conditions met, the performance of most uniformly spaced beamformers per-
formance is still degraded at off center frequencies by a mis-steering of the beam's MRA,
proportional to sin"!(MRA), and variation in the mainlobe width. Sidelobe levels are not
affected for most shading designs until frequencies are high enough to cause spatial un-
dersampling, at which point grating lobes appear due to spatial aliasing. The thinned ar-
ray designs of Section 6.4 do not generally meet criteria 2) or 3). As shown in Figure
6.10, the thinned line array of figure 6.8 shows no degradation at half the design fre-
quency other than mainlobe widening, but at 1200 Hz, severe grating lobes appear. This
occurs at a lower frequency for thinned arrays than for 4/2 spaced uniform arrays since
the degrees of freedom in the “invisible response region™ are utilized in the thinning pro-
cess [72]. Figure 6.11 shows the effect of frequency changes on the response of the
thinned circular array of Figure 6.4<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>