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Abstract

In the research field of artificial neural nets (ANNs), important contributions
have come from cognitive science, neurobiology, physics, computer science, con-
trol, analog VLSI, and optics. This dissertation is iﬁtended to broaden the present
scope so as to achieve an in-depth understanding of neural computing from the
perspectives of parallel algorithm design, digital VLSI array architectures, digital
signal processing, and numerical analysis. Therefore, in a broader sense, the aim
of this dissertation has been to accomplish truly cross-disciplinary research.

A variety of neural nets are considered, including single layer feedback neural
nets (e.g., Hopfield neural nets, Rumelhart memory/learning modules, and Boltz-
mann machines), multilayer feed-forward nets (e.g., multilayer Perceptrons), and
hidden Markov models (HMMs). Algorithmic studies based on algebraic projec-
tion (AP) analysis are presented to deal with two critical and important issues
in back propagation (BP) learning: the selection of the optimal number of hid-
den units and the optimal learning rate. Potential applications of ANNs to two
promising areas, computer vision and robotic processing, are discussed. A system-
atic algorithm mapping methodology is proposed for mapping neural algorithms
into VLSI array architectures. This methodology derives array architectures for
the algorithms via a two-stage design, i.e., dependence graph (DG) design and

xil



array processor design. Programmable ring systolic ANNs (linear and cascaded)
are developed, which can exploit the strength of VLSI and offer intensive and
pipelined computing. Both the retrieving and learning phases are integrated
in the design. The proposed architectures are more versatile than other exist-
ing ANNs; therefore, they can accommodate the most widely used neural nets.
A unifying viewpoint is proposed for multilayer Perceptrons and HMMs, and
the ring systolic array architectures can further be extended to the application
domain of implementing both the scoring and learning phases of HMMs. Fi-
nally, some mathematical aspects for ANNs worthy of further pursuit are also
presented, which include expressibility and discrimination capabilities, general-
ization capability, convergence in the retrieving and learning phases, and merging

of multilayer Perceptrons and HMMs.
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Chapter 1

Introduction

The power of neural nets hinges upon their distinct features of robust processing
and adaptive capability in new and noisy environments. It is estimated that the
human brain contains over 100 billion (10'!) neurons. Neurons possess tree-like
structures (called dendrites) sp.- “alized to receive incoming signals from other
neurons across junctions called synapses. From each neuron, there is a single
output fiber (called an aron) specialized to propagate action potentials so that
the activation values of each neuron can be transmitted to many other neurons.
At least 50 different neurotransmitter molecules, which act across synapses, have
been identificd. These molecules open up neural membrane channels that permit
jonic currents to act, enabling the neurons to communicate. Neurotransmitters
and currents either depolarize the membrane so that the neuron is excited (i.e.,
excitatory weights), or else they hyperpolarize it so that the neuron is inhibited

(i.e., inhibitory weights) [31,140,141,8].



There is a very high degree of specificity in the pattern of inter-neural connec-
tivity. Differing neural types are found in particular regions of the brain, and the
neural interconnections between them occur in what appear to be fairly precise
patterns. There is also a growing body of evidence which suggests that there is
considerable developmental plasticily in the neural interconnections in the ability
to reorganize and regenerate new patterns of connectivity [31].

Studies of brain neuroanatomy indicate more than 1000 synapses on the in-
put and output of each neuron. In other words. although the neurons’ transition
time of a few milliseconds is about a million-fold times slower than current com-
puter elements, the brain has a thousand-fold greater connectivity than today’s
supercomputers [34)].

It has been postulated that the primary function of neocortical neté in the
cerebrum is to form internal representations of classes and subclasses of objects,
using Perceptron-like algorithms. Moreover, it has been observed that the cere-
bellum functions as an associative content addressable memory (ACAM) that
can be “trained” by the cerebrum. The granule cells in the cerebellum perform
the task of decorrelating activity patterns (for efficient storage) arriving along
mossy fibers. The resulting patterns are stored in the cerebellum between gran-
ule and Purkinje cells via the Hebbian learning rule [31]. Furthermore, because
its primary function is memory. the cerebellum has a strikingly regular and simple
architecture.

Many examples of biological applications are also available as a useful clue

for the development of artificial neural nets (ANNs). In the example of natural



vision processing. edge information is extracted in part in the retina via lateral
inhibition between retinal neurons. In the cortex, there is a lateral excitation
process which computes the lightness of a patch of an image bounded by edges.
On the other hand. in primates, depth perception is formed by comparing images
from the two eyes. Finding the correct overall assignment (from the several depth
assignments existing in cach cortical neighborhood) takes numerous trials before
the cortical net finds a “solution.” Interestingly, this process is analogous to
the rclazation process used in many numerical algorithms run on current digital

computers.

1.1 Historical Review of Artificial Neural Nets

Various neural nets models have been proposed with supports of biological ev-
idences during the past 30 vears [8.142.147). recently, due to the successes of
Hopfield's neural circuits [52.53.54.156], Rumelhart’s parallel distributed process-
ing models [140,141], and along with matured VLSI and optical technologies, wide
surge of interests are brought into the research of artificial neural nets. The his-
tory of ANN research can be roughly classified by the evolution of four different
types of learning rules: Hebbian learning. delta learning, competitive learning,

and probabilistic learning.

Hebbian Learning and Associative Memory One line of evolution is to
emulate our human memory, which are not only distributed but also associative—

one memory may elicit another if the two have sufficient overlap. This line of

3



evolution starts from the Hebbian rules proposed by Hebb in his book called The
Organization of Behavior [47]. This book reflected the distributed representation
concept, the antithesis of regional localization, of the brain, i.e., many regions of
the brain is equipotcnt with respect to a function in spite of the regional speci-
ficity (or these regions can implement the same given task). Hebb also proposed
that the connectivity of the brain is continually changing as an organism learns
differing functional tasks, and ccll assemblies are created by such changes. The
mechanism that Hebl postulated was that repeated activation of one neuron by
another, across a particular synapse, increased its conductance so that groups of
weakly connected cells. if synchronously activated, would tend to organize into
more strongly connected assemblies. The cell assembly theory has triggered many
investigations of learning in neural nets.

The studies of neural nets for associative memory was initiated by Taylor net
[158,157] and Learning Matrir [149.150]. These two nets adopted a Hebbian-
like learning rule, called pre-synaptic facilitation, with winner-take-all or grand-
mother cell mechanism so that only a single highly meaningful active cell is
detected. Taylor suggested that the association areas of cerebral cortex and tha-
lamus contained such networks. Following Learning matrix. many other workers
have independently devised similar associative nets. e.g., Anderson [11,9], Will-
shaw [174,173], Marr [114], Amari [6,7], and Kohonen [75,74]. These nets are
now generally referred to as associative content addressable memories (ACAM).

Two researches, Kohonen [75] and Anderson [9], have independently pursued



the same model for associative memory based on a correlation matrix. The lin-
ear associator mode) assumed that the input-output relations of the system were
specified as a simple matrix-vector multiplication. The learning rule proposed
was a generalization of the Hebb synapse, i.e., the synaptic change was propor-
tional to the product of pre- and postsynaptic activities [9], or to the correlation
between elements of the input and output vectors [75]. The connection matrix
then became the sum of the outer products between the corresponding input and
output vectors. By having the same sets of input and output vectors, the system
removed an asymmetry between different elements at the synaptic level, which
allows the feedback of the outputs to the inputs for another pass through the sys-
tem. This system, called “autoassociative” by Kohonen, served as the basis for
several later feedback network models proposed with strong nonlinearity imposed
between the feedback outputs and inputs [10.52]. If the input and the output
vectors are different. Kohonen called the svstem “heteroassociative” (pattern as-
sociation). The major criticism of this class of models is their linearity, but the
useful associative properties. generated by the Hebb synapse, carry over to the
later, more complicated, nonlinear systems.

Expanding earlier linear associator research work. Hopfield and his colleagues
elegantly made use of the notion of an Liapunov energy function to demonstrate
the convergence of an iterative computational model for associative memory and
optimization applications [52,53,54,156]. This resulting model, referred to as the

Hopfield net, initiated the modern era of the neural nets research. Instead of



proposing a learning rule for the neural net, Hopfield tried to show that the func-
tion of the nervous system is to develop a number of locally stable points (attrac-
tors) in the state space. Since deviations from the stable points disappear [52],
this approach provides a mechanism for correcting errors and completing miss-
ing information. Making a symmetric assumption about the synaptic weights of
the net, Hopfield adopted the slightly modified correlation matrix to construct
the weight matrix for the discrete associative memory, this ensures symmetry of
modification magnitude for the two allowable output states (0 and 1) of a neuron
cell. The dynamic evolution of the system state follows a simple rule and is asyn-
chronous (sequential). This evolution can be regarded as an energy minimization
that continues until a stable state (local energy minimum) is reached. Computer
simulations and theoretic analvsis concluded that the number of “memories” that
can be stored was about 15% of the dimensionality. This percentage is similar to
that of the correlation matrix based linear associators.

In a later paper [53). Hopfield discussed networks of neurons that exhibit
graded intermediate states. The purpose of these states was to imitate the con-
tinuous input-output relationship and to simulate the integrative time delay of
real neurons. Hopfield showed that the evolution of this continuous state net is
also decreasing a Liapunov energy function. Hopfield and Tank [54] built analog
circuits based on the continuous state neural net to solve the traveling salesman
problem, a difficult NP-complete problem. Although a globally optimal solution
is not guaranteed, the analog circuits can reliably find the local minimum of the

tour length energy surface nearest to the starting tour. The circuits have also



been used to solve some other less complicated problems, e.g., A/D converter and
linear programming problems [156].

Kosko further extended Hopfield model to perform hetero-association tasks by
introducing bidirectional feedback iterations. The system is called bidirectional
associative memory (BAM) [78]. Instead of feedbacking the outputs (through
nonlinearity) directly. this system iterate through another set of weights to gen-
erate the inputs. The BAM can also be shown to perform the gradient descent

search on a Liapunov energy function.

Delta Learning and Pattern Classification The capability of pattern clas-
sification or recognition is essential to most animals. McCulloch and Pitts net
was the first attempt to explore these capabilities without learning mechanism
[118).

Ten years later, Rosenblatt showed that the McCulloch and Pitts net with
modifiable connections could be trained (by Perceptron learning rule) to classify
certain sets of pattern - this is called Perceptron. Shortly after Rosenblatt’s first
publications there appeared a closely related variant of the Perceptron, invented
by Widrow and Hofl. called Adaline (adaptive linear neuron). Although the delta
learning rule used in Adaline shares some common properties with Perceptron
learning rule (e.g., the error between target and actual output is used), the main
difference is that Adaline computes the error before the nonlinear operation,
while Perceptron computes the error after the nonlinear operation. There are,

however, limits to the performance of Perceptrons and Adaline. Papert and



Minsky proved that the single-layer Perceptron cannot compute simple logical
switching functions like XOR without introducing more layers (hidden layers)
due to the limited linear separabilities [121]. This is the reason why Madaline
(many Adalines) was introduced to overcome this problem [61,123]. Both in the
Perceptron and Madaline nets, the basic idea of multiple layers of neurons has
been mentioned, however, there was no efficient and successful learning rules
proposed. It was not until Werbos [169], Parker [125], and Rumelhart {139]
independently proposed the back-propagation (BP) (a generalized delta) learning
rule for multilayer Perceptron.

The derivation of the weight updating procedure in back-propagation learning
is based on an iterative gradient descent algorithm designed to minimize the
total mean squared error between the the desired target values and the actual
output values. Since the learning is supervised, the actual outputs are compared
with the target values to derive error signals. These error signals are recursively
propagated backward from the output layer to the hidden layers, updating of
the synaptic weights in all the hidden layers. The NETTalk was the first novel
application that a 2-layer Perceptron was trained to read and speak English text

using back-propagation [144].

Competitive Learning and Feature Detection The competitive learning
was introduced to perform the regularity extraction, in which the system develop
its own feature representations of the input training patterns without a priori

category assignment. The learning rule is similar to the clustering techniques



used in the vector quantization approach. It iteratively classifies the input train-
ing patterns into a set of clusters to update the centroid information, and those
converged centroid information are memorized in the synaptic weights for the
future match filtering applications. The neural net architecture for this learn-
ing has a basic layer structure, connections between layers are excitatory, and
within layers are inhibitory. Different manipulations of the weight changes lead
to different models. Popular ones are adaptive resonance theory (ART) [44,26],
Cognitron/Neocognitron [38.39], self-organized feature map [77,76].

The ART network implements a clustering algorithm which is very similar
to the simple sequential leader clustering algorithm [109]. The leader algorithm
selects the first input as the exemplar for the first cluster. The next input is
compared to the first cluster exemplar. It follows the leader and is clustered
with the first if the distance to the first is less than a threshold (vigilance test).
Otherwise it is the exemplar for a new cluster. This process is repeated for all
the following inputs.

The brain is organized in many places so that aspects of the sensory envi-
ronment are represented in the form of two-dimensional maps. The feature map
network is attempting to construct an artificial system that can show the same
behavior. This can be achieved by responding nearby neurons similarly. Based on
biological evidences, Kohonen constructed the feature map system where nearby
neurons excite each other, with inhibition for longer distances. The size of the
excitatory region is changed during learning, starting out large and shrinking as

organization proceeds.



Unlike the back-propagation learning. where the target function is specified
only in the output layer, and the weight updatings of hidden layers are performed
by recursively propagating the error backward. The multilayer learning system
Neocognitron proposed in [39] assumed that the teacher knows “roughly” what
features will be required and that learning progresses sequentially from the input

layer to the output layer.

Probabilistic Learning and Global Optimization The final class of learn-
ing rule is the probabilistic learning. Except the hidden Markov model, which will
be discussed in more details, most other neural nets in this class are motivated
by simulated annealing technique to search the global optimum solution.

At about the same time when Hopfield showed how parallel networks can be
used to access memories that were stored as local minimum, Kirkpatrick intro-
duced a p.., sical analogy technique, which allows energy surface smoothing and
occasional uphill climbing to search for the global minimum. This is so called
simulated annealing [72].

The simulated annealing was then used eflectively for image restoration by
Geman and Geman [40]. who also established limits on the allowable speed of
the annealing schedule. Hinton and his colleagues [14,1) applied the simulated
annealing approach to the Hopfield net, the resulting nets is called Boltzmann
machine. Instead of using uniform probability density for generating the state
transition as in Boltzmann machine, the Cauchy machine adopted the Cauchy

density function, which will lead to a faster annealing schedule [153].

10



1.2 Basic ANN Model

Neuroscientists have revealed that the processing power in the human brain lies
in a large number of identical processing units or neurons, linked to each other
with variable strengths in terms of a network of synaptic weights. In order to
provide a certain degree of biological fidelity, all of the existing ANN models
adopt an information storage/ retrieval process which involves altering the pattern
of connections among a large number of primitive cells, and/or by modifying
certain weighting parameters associated with each connection [81].

A basic ANN model comprises a propagation rulc and a nonlinear activation
as shown in Figure 1.1. Each neural processing unit (PU) has an activation value
a;(k) at (time or spatial) index k. This value (either discrete or continuous) is
propagated through a network of unidirectional connections to other PUs in the
system. Associated with e«.n connection, there is a synaptic weight denoted as
w;; which dictates the effect the j-th PU has on the i-th PU. All of the inputs to
the i-th PU from other PUs are accumulated. together with the external input

0; to yield the net input u;(k +1) according to the following propagation rule:

u(k+1)= Zw,-jaj(k) + 0, (11)
J

The net input value u;(k + 1), along with its current activation value a;(k) and
last net input value u;(k), will determine the new activation value a;(k + 1) by

the nonlinear activation function f:

11



PUj

Figure 1.1: A basic ANN model with two operations: propagation rule, and
nonlinear activation.

alk +1) = f(ui(k+ 1),u;(k), ai(k)) (1.2)

The activation function f can be a deterministic or stochastic function. For
example, three popular deterministic activation functions are: step, sigmoid, and

squashing functions [140,141].

1.3 Three Aspects of ANN Research

The three most important aspects of ANN research are: algorithms, applications,

and architectures. Each aspect will be elaborated on in later chapters, here a

brief introduction is provided:
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1.3.1 Algorithms

The algorithms for neural net processing can be divided into two phases: retriev-

ing and learning.

Retrieving Phase

Various kinds of (nonlinear) system dynamics have been proposed for the retriev-
ing phasc of an ANN. Basically, the neuron, say i-th neuron, updates its old
activation value a;(k) based on the system dynamics equations given in Eq. 1.1

and Eq. 1.2 to form the new activation value a;(k + 1). 1.e,

tl,(’.‘-!—l) = Zu-,-ja)-(k)-i»O,-
J

ai(k+1) = fluk+1),ui(k), ai(k)) (1.3)

and the indices k will be continuously incremented until a stop criterion is reached.

Learning Phase

A salient feature of a neural net is its capability of adaptation or self-organization,
i.e., adaptive updating of the synaptic weights by specific “learning” rules [50].
The weight updating for incorporating the knowledge in the m-th presentation

of training pattern (or patterns) can be performed by;!

1To speed up the convergence and avoid leading the system to oscillation, the momentum
factor can be considered [139,126]

wgﬂ+1) = wg") + Awgf’) +8 (ws;ﬂ) _ ws;n-l))

where the momentum factor 3 is an exponential learning decay factor between 0 and 1.

13



(m+1)

w = ™ 4wl (1.4)

To handle different applications. there are two categories of learning algorithms.
In supervised learning algorithms a desired output response must be specified
(e.g., delta learning rule [172]. back-propagation learning rule [139)); whereas in
unsupervised learning algorithms no desired response is necessary (e.g., Hebbian
learning rule [47], competitive learning rule [44]).

Take, for example, one popular supervised learning algorithm, the delta learn-
ing rule (or Widrow-Hofl rule). where a target value vector {{;} is specified for
every set of input vector, and the adjustment is proportional to the difference

between the target values {t;} and the actual output values {a:}, i.e.,

Awi; =1 (1 — a;) a; (1.5)

where 7 is the learning rate which regulates the rate of adjustment of the weights.

1.3.2 Applications

Successfully neural net applications may be grouped into two classes: optimiza-

tion and associative retrieval/classification.

Optimization

For optimization applications, neural nets are used as a state space search mech-
anism. The (fixed) synaptic weights are set before the retrieving (search) process

is started. There is no explicit learning procedure for setting the weights, the

14



derivation of {w;;} usually hinges upon finding a Liapunov energy function for

the specific application.?

For example, if the Hopfield neural net is used for
solving an optimization problem. the Liapunov energy function has the following

form [53,54]:

E= —éZZurijaiaJ - i (1.6)
2975 -

In some applications, the Liapunov energy function is directly available (e.g., reg-
ularized least squares applications [81]). In others, the Liapunov energy function
has to be derived from a given cost function and the constraints in the optimiza-
tion problem (e.g.. traveling salesman problem (54]). Once the synaptic weights
are determined from the energy function, then the retrieving phase can be per-
formed by following the system dynamics in Equations 1.1 and 1.2. Basically,
the iterations execute a gradient descent search of the energy function until they
converge to a (local) optimal state.

In order to reach the global optimal solution, one can resort to the Boltzmann
machine, which adopts the same energy function as the Hopfield net, but uses
the simulated annealing technique [51). Simulated annealing is a search technique
that make it possible to escape from the trap of a local optimum. The mechanism
can be viewed as a flattening of the trap along with a possibility, based on a
stochastic decision, of accepting an updating which (temporally) corresponds to

a worse (higher energy) solution (72,153]. It has been proved that, with a proper

2A Liapunov energy function is monotonically decreasing along a time evolution, i.e., %E <



annealing schedule {40]. the states of the Boltzmann machine will gradually move

toward the global optimal solution.

Associative Retrieval, Classification, and Generalization

Another very promising application of neural processing is that of associative
retrieval, classification. and generalization. The associative retrieval problem is
to retrieve the complete pattern, given partial information of the desired pattern
(auto-association), or to retrieve a corresponding pattern in subset B, given a
pattern in subset A (pattern association). The classification problem is to identify
the corresponding category for any test pattern. The retrieving phase uses the
same system dynamics (see Egs. 1.1 and 1.2) as in the optimization applications.

The generalization problem is discover statistically salient features of the input
population. i.e., detect the regularity. Unlike the classification, there is no a prior
set of categories into which the patterns are to be classified; rather, the network
must develop its own featural representation of the input training patterns. For

this application class, learning schemes are often adopted to train the synaptic

weights.

Applications in Computer Vision and Robotic Processing

To successfully address a particular application requires understanding of the
signal formation process, the algorithm class involved, and the specifics of the
system. The immense computational complexity inherent in mimicking the hu-

man visual perception process, or human dynamic movement control, require
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massive amounts of processing power. On the other hand, humans perform these
tasks easily by using neural nets. It becomes obvious that two potential appli-
cations suitable for ANNs are computer vision and the robotic processing. Most
of algorithms in these two application domains can be either formulated as op-
timization (or constrained optimization) problems or pattern association tasks,

thus they can be efficiently implemented by ANNs.

1.3.3 Architectures

Bv taking advantage of now mature algorithm mapping methodologies [81] and
CAD technology [119]). VLSI arrays can be systematically derived from the de-
pendency structure of neural net algorithms. This dissertation proposes a highly
pipelined systolic/wavefront array design [80,81] for implementing ANNs. These
arrays take advantage of VLSI’s strength in intensive and pipelined computing,
yet circumvent its main limitation on communication. The proposed design can
offer a greater flexibility than the existing neural net architectures, since it pro-
vides a general-purpose programmable array architecture for both optimization
and associative retrieval applications. The functional complexity of the processor
elements (PEs) and the interconnection structure of the array system are influ-
enced respectively by the neural processing units and the connectivity pattern.
An important consideration in the architectural design is to ensure that the
processing in both the learning phase and the retrieving phase can share the
same storage and/or processing hardware. This will not only speed up real-

time learning, but also avoid the difficulty of reloading of synaptic weights for
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retrieving. Another design consideration is to find a proper digital arithmetic
technique (such as CORDIC) to efficiently compute the propagation rule and the
nonlincar activation function.

The overall ANN array architecture is largely dictated by the connectivity
patterns involved. The neural net can be a single-layer (module) feedback network
or a multilaver feed-forward network. In a single-layer feedback neural net, the
neural processing units are interconnected through synaptic weights network as
shown in Figure 1.2(a). Each neuron unit receives the feedback inputs from the
other neuron units in the same laver as well as external inputs from external
sources (e.g., other networks or modules). It is also possible to cascade several
single-laver feedback neural nets to form a larger net [117,107]. In a feed-forward
multi-layer neural net, there are one or more layers of hidden neuron units between
the input and output neuron layers. The neurons of a hidden layer receive the
inputs from the the neurons at the lower layer (or layers) and send the outputs to
the neurons at the upper laver (or layers) as shown in Figure 1.2(b). Inhibitions

within the same laver are also frequently incorporated.

1.4 Overview of the Dissertation

In the research field of artificial neural nets (ANNs), important contributions
have come from cognitive science, neurobiology, physics, computer science, con-

trol, analog VLSI, and optics (8,142,147,120]. This dissertation is intended to
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Figure 1.2: (2) A fully interconnected single-layer feedback neural net. (b) A
fully interconnected multilayer feed-forward neural net.
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broaden the present scope so as to achieve an in-depth understanding of neu-
ral computing from the perspectives of paralle] algorithm design, digital VLSI
array architectures, digital signal processing, and numerical analysis. Vertically
integrated array architecture design (see Figure 1.3) depends on a fundamental
understanding of algorithms. applications. and architectures. Therefore, array
processor design involves a very broad spectrum of disciplines, including algo-
rithm analvses, parallelism extraction, array architectures, programming tech-
niques, functional primitives. structural primitives, and numerical performance
of algorithms. Thus. in a broader sense, this dissertation is aimed at accomplish-
ing truly cross-disciplinary research.

Chapter 2 starts from a brief introduction of various widely used retrieving
and learning algorithms for ANNs. For example, single-layer feedback neural nets
(e.g., the Hopfield neural nets [52.53.54.17, the Rumelhart memory/learning
modules [117], and the Boltzmann machine [1.51]). and feed-forward multilayer
Perceptrons [138,121,139.109].

Chapter 3 deals with two critical and important issues in back propagation
learning: the selection of the optimal size of hidden units and the optimal learning
rate [92]. The number of hidden units must be sufficient to provide the discrimi-
nating capability required by the given application [123], but an excessively large
number of synaptic weights may lead to costly and unreliable training. Therefore,
it is very desirable to have an a priori estimate of the optimal number of hidden
neurons. It is also important to determine the optimal learning rate to permit

fast learning without incurring instability of the iterative computation.

20



Y

Applications/
Specifications

|

Problem Formulation
Algorithm Analysis

|

Mapping Algorithm
onto Array

|

Array Processor
Design

|

Implementation

I

Figure 1.3: Vertically integrated array architecture design.



Chapter 4 discusses the two most promising application domains of ANNs:
computer vision and robotic processing. Without loss of generality, typical exam-
ples are given for demonstrating the usefulness of ANNs: e.g.. the stereo matching
problem in computer vision. and optimal path planning and dynamic movement
control in the robotic processing [95].

Chapter 5 advocates a programmable ring systolic ANN, which uses the
strengths of VLSI in terms of intensive and pipelined computing and circumvents
the limitations of VLSI in communication. A systematic mapping methodology
is first introduced via a two stage design. This methodology is used to derive the
array architectures for the neural net algorithms. This systolic ANN is meant
to be more general purposc than most other ANN architectures proposed. It
may be easily adapted to a variety of different algorithms in both the retrieve
and learning phases of ANNs. Hardware implementation for the processing units
based on CORDIC techniques is also discussed.

Chapter 6 further extends the application domain of the systolic ANN to im-
plementation of both the scoring and learning phases of hidden Markov models
(HMMs). A unifying viewpoint between IIMMs and multilayer Perceptrons is
first presented. The array architecture can thus be naturally derived. By ap-
propriately scheduling the algorithm, which combines both the operations of the
backward evaluation and the reestimation procedures, we can use this systolic
array for HMM in a most efficient manner. This ring systolic array for HMM
can also be easily adapted to execute the left-to-right HMMs with significant

time saving, by using bidirectional semi-global links. With little extra effort in
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the computations of forward and backward likelihood variables, this architecture
can also incorporate the scaling scheme used to prevent mathematical underflow
problems.

In the final chapter. Chapter 7, potential future research directions worthy
of further investigation are discussed. These include: expressibility and discrim-
ination capabilities: generalization capability: convergence in the retrieving and

learning phases; and merging of multilayer Perceptrons and HMMs.

1.5 Original Contributions

This dissertation presents unifying research work in the algorithmic, applica-

tional, and architectural studies of ANNs. The significant contributions of this

work are listed in the following.

1. An algebraic projection analysis is proposed to study the dynamic behavior.
of the back-propagation (BP) learning algorithm. The analysis successfully
predicts the optimal hidden units and learning rate for efficient training of

the multilayer Perceptron [101,92].

2. A thorough study of two potential application domains of ANNs, computer
vision and robotic processing. Two unified approaches, optimization and
associative retrieval/classification, are demonstrated to be powerful in the

majority of the algorithms in these two applications [95).

3. A systematic mapping methodology is adopted to derive systolic/wavefront
array architectures for various signal/image and neural nets algorithms [86].
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Successful examples include: Kalman filtering for signal tracking [97,98,
99,94}, dynamic time warping for speech recognition, stochastic relaxation
for image restoration. rank order filtering for image enhancement, Hough
transform for shape analysis, 2-D correlation for pattern matching, and 2-D

rank decomposition for mask processing [82,100].

To facilitate ANN designs using systolic arrays, parallel (synchronous) up-
dating of both discrete and continuous states Hopfield models is proposed,

and the convergence issucs are discussed [95].

Ring systolic array architectures are proposed for both the retrieving and
learning phases of various neural net models, including single-layer feedback
and multilayer feed-forward nets [99,93,96]. Efficient VLSI implementations

of these architectures based on CORDIC techniques are also discussed.

A unifying viewpoint between a multilayer Perceptron and a hidden Markov
model is proposed [57]. Hidden Markov models described by trellis struc-
tures can be regarded as special configurations of multilayer Perceptrons.
Iterative gradient-descent-like approaches are successfully applied to the

trellis structure to derive the Baum-Welch reestimation formulation.

Ring systolic array architectures are proposed for both the scoring and

learning phases of hidden Markov models, including both the general and

left-to-right models [58,59].
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Chapter 2

Algorithms for Artificial Neural

Nets

Popular single-layer feedback neural nets (see Figure 1.2(a)) are the Hopfield
neural nets [52,53,54.156], the Rumelhart memory /learning modules [117], and
the Boltzmann machine [1.51]. On the other hand. feed-forward multilayer Per-
ceptrons (see Figure 1.2(b)) have demonstrated very powerful retrieving/learning
capabilities [138,121,139,109].

In addition, there are other varieties of neural nets worthy of further investi-
gation, such as the adaptive resonance theory model [25], the absolute stability
model [29], the self-organizing feature map [76], the Neocognitron [39], and struc-

tured pattern recognition [123,128].
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2.1 Hopfield Neural Nets

Hopfield neural nets have found many applications, including pattern recognition
36], vowel classification [12]. combinatorial optimization [54.154], linear program-

ming problem [156]. computational vision [73], and parameter estimation [135].

2.1.1 Retrieving Phase

In order to imitate the continuous input-output relationship of real neurons and
to simulate the integrative time delay due to the capacitance of real neurons [53],

Hopfield adopted the following continuous sigmoid activation function f(z),

_ 1
T 14 e-x/wo

f(z) (2.1)

where uo controls the nonlinearity of the function. The following system dynam-

ics, with time indices {k}. were proposed for the retrieving phase [53,154]:

ui(k+1) = Z ngaj(k) +6; (2.2)

1

l + c—u:(k'l'l)/uo (2.3)

ai(k +1)

where u;(k +1) = ryu(k) + xou;(k + 1) introduced the delay effect in the net
input, and &, and &, are proper constants as proposed in [154]. Note that when
the coefficient uo tends to zero, then the activation function of the Hopfield neural

net becomes a step function as given in Eq. 2.4
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1 if wi(k+1)>0

alk+1)=¢0  if ui(k+1)<0 (24)

L a,-(lr) if u,‘(k + 1) =0
In the special case with no time delay, i.e., x; = 0 and x2 = 1, the model further
reduces to a discrete-state neural net where only two neuron states, 0 and 1, are

allowed.

2.1.2 Sequential (Asynchronous) Updating in Hopfield

Neural Nets

A main feature of the associative memory is that there exist a number of locally
stable points (called attractors) in the state space and all other points in state
space flo= in to the attractors. A common way to guarantee convergence is to
find a Liapunov function. i.e a function E on the state space which is nonincreas-
ing along the trajectories. Mathematically. a discrete-time Liapunov function

E(a(k)) is defined for a trajectory a(k + 1) = F(a(k)) so that:

E(a(k +1)) < E(a(k))

Hopfield claimed that if the sequential (asynchronous) updating is adopted
(i.e., at each iteration only one neuron is updated). then the state will change
only if the change results in a decrease of the energy level. Therefore, the final
convergent state will represent a local minimum of the energy function given in in

Eq. 1.6. The proof is briefly presented below: To demonstrate the convergence
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of the iterations. an energy function (Liapunov function in Eq. 1.6) is introduced
[53.54). Let assume that after the k-th updating. we have an energy function

E(k):

.—_——ZZu,Ja (k)a;(k Zﬂa(l.

One more updating will lead us to a new energy level E(k + 1). Without loss of
generality. we first assume that all the neurons are updated in one iteration, i.e.,
paralle! (synchronous) updating. then the energy difference between these two

jiterations is defined as

AGE = E(k+1)—= E(R)
= 1Y T wgalk+ Dok +1) - T biai(k+1)
24575 :
+§>: 3 wpailbes(H) + 32 0.08)
= —2ailk+1) - alh) [ wisa;(k) + 6]
j
-3 Z(as(ﬁ‘ + 1) — ai(k)[ wijla(k +1) — a;(k))]
1 J
= —u(k+ 1T Aak+1) -5 AaT(k+1)W Aa(k+1)
= OvEy 4+ AvE, (2.5)
where symmetric weights {w;; = w;;} are assumed.
In case of sequential (asynchronous) updating, where only one neuron, say

i-th neuron, is updated per iteration. As the a; values evolve, E will also evolve,

the change AE in E due to changing the state of node ¢ by Aa; is:
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ALE = —wlk+1) Aalk+1)— 3 wq Da2(k+1) = DkEy + OEr (26)

As long as wy; > 0, we see that A E, < 0. 1f monotonic nondecreasing activation
functions are assumed (e.g., step and sigmoid), then the signs of {Aai(k+1)} and
{ui(k+1)} are the same. Thus any change in E under the algorithm is negative.
Since E is bounded, the iterations of the algorithm must lead to a stable state

that does not need to make any further change.

2.1.3 Weight Determination in Hopfield Neural Nets

To use discrete state Hopfield neural nets for retrieval/ classification applications,
the unsupervised Hebbian learning rule was adopted by Hopfield to obtain the
values of the synaptic weights [52]. In ~-der to store the M binary reference

patterns, represented by {v™ = ey, o, oo ®ym = 1, 2, .., M}, into

the associative memory:

M (2pm —1)(20™ — £ g
oy o | B DO D) i) o
0 i=j
Note that w;; = wj;. and wi; = 0.
To use the continuous-state Hopfield neural nets for optimization applications
where the attractors are unknown, the most important step is to formulate the

problem into a minimization problem with quadratic cost function, then compare

the cost function with the Liapunov energy function given in Eq. 1.6. The
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synaptic weights for the network can thus be determined. Then the retrieving

phase can be performed by following the system dynamics given in Eq. 2.2, 2.3.

2.1.4 Parallel (Synchronous) Updating in the Hopfield

Neural Nets

In the original discrete state Hopfield neural net for association tasks, the diagonal
weights w;; are all set to zero to guarantee the convergence in the sequential
(asynchronous) updating. In order to allow parallel (synchronous) processing of

the model, one possible approach is to redefine

M
wy = (2] = 1)(] - 1)

m;l
w = S [2vi™ 1] 2v® — 1T (2.8)

m=1
From the proof of asynchronous updating, it can be easily shown that A Ey < 0.
Since the W matrix is formed by an outer product without diagonal nullification

(see Eq. 2.8), it is a nonnegative definite matrix, therefore ArE,; < 0.

In the continuous state, the convergence of parallel updating can be assured
only when the step coefficient x; is small enough [127]. This will lead us to small
values of Aa(k + 1). Hence Ay E; dominates the level of the energy change and

the contribution of the energy term AE; in Eq. 2.5 can be neglected.
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2.2 Rumelhart Memory/Learning Module

Rumelhart’s memory /learning module is another example of single-layer feedback

neural net with parallel updating mechanism [117).

2.2.1 Retrieving Phase

The neurons used in the memory/learning modules have continuous activation
values ranges from —1 to +1. The weights on the connections can be any real
values: positive, negative, or zero. At the k-th iteration, the states a;(k) are

updated synchronously (in parallel):

ui(k + 1) = Zu-;jaj(k) +0; (29)

wy gk +1) 1 = (k)] — K2 aitn) if ui(k+1)>0
afk+1) = { ’ ( (2.10)
wy ui(k+ 1) [1 +a;(k)] = k2 ai(k) if ui(k+1)<0
where the parameters x; and x, determine the rates of excitation and decay;, re-

spectively. Instead of the sigmoid activation, this net uses the nonlinear squashing

activation function given in Eq. 2.10.

2.2.2 Learning Phase

This neural net extracts regularities from an ensemble of inputs without the
aid of a sophisticated generalization or rule-formulating mechanism to oversee

the performance of the processing system [117). To adjust the weights in the
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presentation of m-th training pattern, the net adopts a simple variant of the

delta learning rule shown below [117)].

5,!’“) — ofm) _ Z wgn)a;
i#i
wirt = w4 NS
u',(Jm) + 9 8™ a; (2.11)

where a; denotes the converged activation value of j-th neuron in the presentation

of m-th training pattern.

2.3 Boltzmann Machine

If we replace the sigmoid coefficient ug in the Hopfield neural nets (see Eq. 2.3)

by a temperature control parameter T, then Eq. 2.3 becomes

a,~(k+l) = f[u,(&+1)]

1
1 + e—ulk+1)/T

where no time delay is introduced.

2.3.1 Retrieving Phase

Let us confine the neuron response to be binary valued (0 or 1), and let the

deterministic activation operation in the Hopfield neural net be replaced by a

32



stochastic process defined below.

u,~(k+1) = ZU,‘U(IJ(I\')-{-O,' (213)
J

1

1+ e—uilk+1)/T (2'14)

Priai(k+1)=1)

More precisely. a;(k+1) is sct to “1” with probability given in Eq. 2.14, otherwise
ai(k + 1) = 0. It was shown in [51] that the system dynamics given in Eqgs.
213 and 2.14 ensure that “in thermal equilibrium the relative probability of the
two global states is determined solely by their energy difference, and follows a
Boltzmann distribution.” Therefore. this modified version of the Hopfield neural
net is called the Boltzmann machinc [1,51]. If T follows an annealing schedule,
i.e. T gradually decreases during the iterations of the neural net, the sigmoid
activation operation in Eq. 2.3 becomes an annealing operation. With a proper
annealing schedule, the states of the Boltzmann machine will gradually move

toward the global optimal solution.

2.3.2 Weight Determination

Using Boltzmann machine for solving global optimization problems, the weight
determination procedure is basically the same as that for the Hopfield net, ie.,
starting with formulating the cost function. The synaptic weights can be deter-
mined by comparing this cost function with Eq. 1.6. The retrieving phase can

be performed by the system dynamics of Egs. 2.13, 2.14.
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2.3.3 Learning Phase

While the retrieving phase of a Boltzmann machine is similar to the Hopfield
net, the Boltzmann learning rule has a very different form. It may be regarded
as a two-step batch-updating Hebbian rule [140,1,4]: In the first step (denoted
phasc*), some outputs of the neural units (visible units) in the neural net are
clamped to predetermined desired values. and then the rest of the neural units
(hidden units) iterate through a proper annealing schedule based on Eqgs. 2.13
and 2.14 until convergence. In the second step (denoted phase™), none of the
neural units are clamped and the neural net again iterates (following the same
annealing schedule) until it reaches a new convergent state. If there exists any
discrepancy between the convergent states for the phase* and the phase™, then

the synaptic weights should be adjusted as follows:

Awiy =1 (pf - r5) (2.15)
where p; (respectively, p;) represents the correlation between the two neurons
i and j in the phasct (respectively, in the phasc™). These correlations can be
determined by the average probability that both neurons are on (r.e., af'") =
agm) = 1) over many training patterns (m =1, 2, ..., M). Instead of modifying
the weights immediately after the exposure of each training pattern, as in the
conventional Hebbian learning rule (see Eq. 5.6), the weight adjusting (i.e., Eq.
2.15) is performed only after enough training patterns are taken. The goal of this

learning rule is to find a set of synaptic weights such that the activation outputs

in the phase~ match the desired outputs in the phase* as closely as possible.
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2.4 Multilayer Perceptron

Multilayer Perceptrons are feed-forward neural nets, which have one or more
layers of hidden neuron units between the input and output neuron layers [123,
121). For example, a 3-layer net is shown in Figure 1.2(b), where the three layers
consist of the two hidden lavers and the output layer. Multilayer Perceptrons

have been demonstrated to be useful in various applications [103,24,143,109,41].

2.4.1 Retrieving Phase

The mathematical formulation of the multilayer Perceptron basically follows the
single layer feedback case. except that the iteration time is now replaced by the
layer number. That is the time indices {k} previously representing the iteration
number in a single layer feedback net are now replaced by the spatial indices {l}
representing the layer number. The system dynamics in the retrieving phase of

an L-layer neural net can be described by the following equations:

Ny
w(l+1) = Z‘w,'_,'(l + l)aJ(l) +6;(1+1) (216)

=1

a(l+1) = fu(l+1) 1<i<Ny, 0SISL-1  (217)

2.4.2 Learning Phase

The learning phase of a multilayer Perceptron adopts the back propagation learn-
ing rule, an iterative gradient descent algorithm designed to minimize the mean

squared error between the the desired target values and the actual output values
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[140] (for a more detailed derivation. please refer to Section 6.1.3).

The learning rule involves two steps (here we assume that the m-th training
pattern is used): (1) In the forward step, the input training data are propagated
forward across the multi-laver net and the activation values of all the layers
{aﬁ’“’(z), l=1,2,..., L} are computed (same as in retrieving phase) according
to Eqgs. 2.16, 2.17; (2) In the backward step, the actual outputs {asm)(L)} are
compared with the target values {t'™} to derive the error signals {6™(L)).
These error signals are propagated backward layer by layer to be used recursively
for the updating of the synaptic weights in all the lower layvers. More elaborately,

the synaptic weights between the (I-th and (I — 1)-th) layers can be updated

recursively (in the order of /=L, L =1, ..., 1):
w0 = w0+ Aw ()
= PN +7 870 V- 1) (2.18)

where the error signals 6,("')(1) are recursively computed as follows (again in the

orderof I=L,L—1,...,1):

ifi=L, &™) = SEME) e -am) (2.19)

ifl<L, &™) = f™( 1))25""’(1+1) wiM(l+1)  (220)

where f'(u{™ (1)) denotes the derivative function of f(x!™(l)). I the nonlinear

activation function f of Eq. 2.17 is the sigmoid function with unity gain, i.e.,
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a;(l) = flui(l))

_ 1
- 1+ e_ul(l)

1 ‘u,'(l)
= ‘5(1 + tan —2—)

then the error signals {6,('")(1)} can be simplified as:

§m™(L) = a™(L) (1 —af™(L)) (™ - o™ (L))

M = o™y (1 -a™() &M+ 1)l (1 +1)
J

It is suggested in [103] that the ability of multilayer Perceptrons to infer the
inherent rule is a ki * of real valued function interpolation. The neural net
approximates an arbitrary function by using weighted sum of various nonlinear
sigmoid functions, i.e.. weighted sum of some basis functions “bumps,” which is
analogous to the method of splines for approximating arbitrary functions [15].
Just like splines, the smooth hyperbolic-tangent tanh functions are constructed
in such a way to maximize smoothness. By taking advantage of the capabilities
of this real valued function interpolation, two classes of promising applications
of multilayer Perceptrons can be observed, associative retrieval and associative

classification.
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Chapter 3

Algebraic Projection Analysis of

Back-Propagation Learning

Two critical and important issues in back propagation learning are discussed
in this chapter: the selection of the oy .xmal number of neurons in each hidden
layer and the optimal learning rate in the gradient descent search [50]). The
number of hidden units must be sufficient to provide the discriminating capabil-
ity required by the given application [123], but an excessively large number of
synaptic weights may lead to costly and unreliable training. Therefore, it is very
desirable to have an a priori estimate of the optimal number of hidden neurons.
This paper proposes an algebraic projection analysis—an adapting scheme based
on the “minimum perturbation principle”—to provide an analytical insight to
the problem. More significantly, the same analysis also allows the designer to de-
termine the optimal learning rate in which learning occurs as quickly as possible

without incurring instability in the iterative computation.
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3.1 Retrieving/Learning Phases of Two-Layer
Perceptrons

3.1.1 Retrieving Phase

Without loss of generality, a two-layer Perceptron is used for the following discus-
sion (see Figure 3.1). The system dynamics in the retrieving phase of a two-layer

neural net can be described by the following equations:

No No+1
w, = ) w,r;+0i= ) wiT;
j=1 J=1
a = f(_’i)
P P+1
U o= ZT,J'(IJ‘-}-?,‘: w4
J=1 J=1
yvi = J( , 1=1,2,..., N (3.1)

where {w;;. 1;. 8;} denote the parameters used in the lower layer, while {@;;, T, 0;}
denote the parameters used in the upper layer.

The notation is explained as follows: f denotes the nonlinear (differentiable)
activation function: {r;} denote the input patterns: {a;} denote the activation
values of the i-th neuron in the hidden layer; {y;} denote the activation values in
the output layer; {8;} ({6;}) denote the internal offsets of neurons in the output
(hidden) layer; and {@;;} ({1;,}) denote the synaptic weights between the output
(hidden) layer and the hidden ( input) layer of neurons. For simplicity, the internal
offset 0; (8;) is treated as a synaptic weight T; p41 (i Ng+1)» Which has a clamped
input apy; = 1 (Tnp41 = 1)- Suppose that there are A distinct training patterns,
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ith one hidden layer.

Figure 3.1: A two-layer Perceptron wi
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each consist of a pairs of input and target patterns {x(™, t(™}. Moreover, the m-

th input training pattern x(™) = (™, 2™, ...,:rg\'.:l,)T. vields the activation
values of hidden laver a™ = (a{™, alm™, ...,a(P"_?,)T and the activation values
of output layer y™ = ({™, L G T

3.1.2 Learning Phase

The learning phase of a multilayer Perceptron adopts the BP learning rule, which
shares the common formulation of most learning rules (assume that the m-th
training pattern out of total M/ patterns is cyclically presented):

u*,(;-""'” = u*g") + Au',(jm) m=1,2,---,M 1,2, .- (3.2)
Here {u.',(;"’} can be the synaptic weight between any two adjacent layers, {wg-))}

specifies the initial weight, and
Aw,(-;") X —F—

The error function ¢ is defined as

M N
¢= 3 o - yimy? (3.3)

m=)i=1

More specifically,

Aﬁg") = qEE"" agm)

= 7 @) (@™ - yi™) o™ (3.4)
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Aw'™ = n 5%"‘) (_m)

—p J

= 0 ) (5 T ) o (3.5)

Each “training sweep” consists of the presentation of all the M training patterns.
Usually a large number of training sweeps (most of time in cyclic order) are re-
quired for accurate learning. Note that the updating step ({Aw(m)} or {Aw(m)})
in the BP learning is linearly proportional to f’. In the following discussion, the

nonlinear activation function f adopts the widely used sigmoid function [139],

1
1+e'u

(1 + tanh u/2)

N:I'—‘

f(u) =

The derivative term then simply reduces to

fi(u) = fu) (1 = f(u))

3.2 Algebraic Projection Analysis — Kaczmarz

Method

Let us now establish the relationship between traditional BP learning and alge-
braic projection (AP) analysis. Since the nonlinear sigmoid activation function

is monotonically increasing; we can define a new set of the transformed target

values b{™:

o™ = ™), i=1,2,-.-,N, m=1,2,---, M.
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From basic calculus. if bfm) is close enough to 'iifm) (which is true in the later

stage of the learning process that fine tuning of the weights are performed), then

) _ ) FH™) - £ 7™ = fE™) (o™ —a™h (3.6)

Using this approximation, the error function ¢ in Eq. 3.3 can be rewritten as

M & o
¢ = ZZU: xm )2
m=11i=1
AN
~ szf(—(m)) (b(m) _Em))'z (3.7)
m=1i=1

If we further assume {f'(7\"™)} to be constants, a new formulation of the mean

squared error in the output layer can thus be defined

\

-("2)

P+1
(m) _ -ﬁ-(m) (m) (3.8)

> 50

7": =

M N

2 2.
=11=1 q=1

As far as the weight determinations of the output layer are concerned, the mini-

mization of the overall mean square error ¢ is equivalent to independently mini-

mizing the mean squared error measure for the individual neuron at the output

layer,

M
=S (™ - Z‘E‘m) m)? =1,2.., N (3.9)

m=1

Now let us form an M x (P + 1) matrix A, whose rows are the vectors
{at™}, ie, A = [a®7, a®", ..., a7 |7, Similarly, an M-dim vector b; =

43



[bfvl), b,m, ey bf"”]T. To minimize the error function ¢; defined in Eq. 3.9, one
can solve the following linear system, which corresponds to a least-square error

system

AW,' = b,' (3.10)

where w is the (P+1)-dim vector with its elements being {w@;;, j =1, 2, ..., P+
1}. Note that here we only deal with the P + 1 synaptic weights linking the :-th
neuron in the output layer. The same considerations can be carried through to
all the other weights linking other neuron; in the output layer.

For solving the linear system given in Eq. 3.10, an iterative algebraic projec-
tion (AP) scheme—called the Kaczmarz method—can be adopted [27,155]. This
AP scheme is a row action method originally proposed for solving huge and sparse
linear systems [27]. Basically, this method starts from an initial vector w!® and

iteratively converges to the solution vector w]. In one iteration step, the vector

() (m 1)

w; which may better match the m-th row

is refined into a new vector w

of the linear system in Eq. 3.10.

m) X m) (m)

—| M m f— 1] m m

= ()+n (& > W, ag ))aj
=1

- ——(m)+n (b(m) —(m))a(m) (3.11)

where the learning rate 7' of the AP scheme is defined as:
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Figure 3.2: The geometric interpretation of the AP scheme for solving a 3 x 2
linear system. Here the relaxation parameter A is 1.

, A

yrH(ai™)?

n (3.12)

and X is the relaxation parameter, 0 < A < 2. For unity relaxation (A = 1), the

geometric interpretation of this AI> method is provided in Figure 3.2. Given a

(P + 1)-dimensional point vector w!™ _then w{™*") is the orthogonal projection

of w,(-m) onto the P-dimensional hyperplanc subspace H,, (see Figure 3.2), where

the m-th hyperplanes H,, is defined as:

P+1

H, = {wi€ R | 3 al™uy, = 8™} (3.13)
g=1
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3.2.1 Exponential Convergence of the AP Method

The exponential convergence behavior of the iterated weight vector wf'") during
the AP learning is similar to the normalized LMS techniques used in the adaptive
signal processing [71,171]. A simple description of the exponential convergence
behavior of the AP method is given below [21]. Let us first assume that a consis-
tent (exact) solution w; can be obtained. i.e., Aw] = b;. A difference variable
v{m+1) is defined. which specifies the difference between the consistent solution

w! and the actual iterated estimate wfm'H) in the (m + 1)-th iteration.

v(m+l) = “y; _W‘(m+l)
(m)
. { T a
= W, - me) -2 (b:'m} - at™ w}m)) |a(m)|2
(m)
= ylm) _ (m)T gm _ alm)T o (m)y 8
= v A@™ wr—a" wi™) A
(m)
— ylm) ) atm)T ym) 8
|atm)]?
{m) o (m)7
al™a
= oy & S Wi
= (I-2 S W (3.14)
m mT .
where w{™ = [ Ty, wa, -, @ p,; ). The matrix a_(l-i%%-l.;— has a single

eigenvalue (or singular value) of one and remaining eigenvalues of zero,

alm) g (m)7

U{—l—a(—mTI';—}=[1, 0, 0, veey 0]

where o(-) represents the eigenvalues operator. It can be seen that to guarantee

convergence [170]

0<A<?
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In situations where a consistent solution is not available, a minimum norm so-

lution is preferred. The minimum norm solution introduces an estimation residual

r; = [1‘,‘-1),

2
T, e

A . . .
. r,(- n ]7 into the system equation, Aw} + r; = b;. Equation

3.14 can thus be rewritten as:

vim+1)

It

W; _ w5m+l)

- (771) ("1) (m)T (m) a(m)
w, - W, + A (bl —a w; ) |—a(m—)|5

(m) A (m)T - (m)‘f (m) a(m) (m) a(m)
v —x @™ wi = a™t w™) Tt + A r AP

(m) (m)

(m) _ y o(m) ym) 2 (my & "

v =2 am VT rEE AT e
(m)g(m)T (m)
a a a
12 yWwm (m)

(I-A = V7 Ar P

(3.15)

In order to avoid the increase of the estimation residual, a practical range for A

is

0<A<1

It has been shown that for the unity relaxation case (A = 1), the weight

updating formulation in Eq. 3.11 will converge to the exact solution when Eq.

3.10 is a consistent linear system, and will converge to a minimum norm solution

when an inconsistent or singular system is encountered [155,116].
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3.3 Selection of Optimal Number of Hidden

Neurons in BP Learning

The number of hidden units per layver dictates the space partitioning separability
(and thus the discriminating capabilities) of a multilayer Perceptron (123,121].
The computational complexity is also significantly dependent on the number of
hidden units. The number of hidden units must be large enough to form a
decision region that is as complex as is required by a given problem. However,
if it is too large. then the weights become difficult to reliably estimate from the
training data. Thercfore. the use of an optimal number of hidden units per layer
is highly desirable for the purpose of efficient learning. Note that our definition
of optimality is in terms of learning time required to lead to a convergence.
There are some other alternatives can be used, e.g.. in terms of fault tolerance or
generalization capabilities [148].

In order to understand the roles plaved by the hidden units, it is useful to link
BP learning with the AP scheme to take advantage of the numerous AP studies
in the numerical analysis literature. Due to the high similarity between the
weight updating formulas in the AP scheme and in BP learning, the numerical
convergence properties of the AP scheme can be used to explain the dynamic
behavior of BP learning, and furthermore, to help estimate the optimal number

of hidden units for BP learning.

48



3.3.1 Convergence of the A Matrix

It should be noted that within a training sweep, the matrix A remains constant.
However, the matrix A changes from one sweep to the next sweep. Hopefully,
after a certain number of sweeps, the matrix A will converge to a constant. Then
the AP analysis can be adopted to analyze the BP learning rule. This assump-
tion may be justified by some observations reported in [130,55]. When the weight
values are close to the desired values, the lower layer weights are changing very
slowly and can be assumed to be almost fixed (i.e., A is a constant matrix), thus
the upper layver weight updating dominates the subsequent stage of learning and
seems to consume most of the computation time [130). In fact, some studies have
shown that those lower laver weights (or the partitioning hyperplanes) may be
fixed from the very beginning. If the hyperplanes are near certain decision bound-
aries that are required in a specific problem, tl.” method offers impr. ¢ment in

convergence speed [55].

3.3.2 Effective Dimension M* and Hidden Units Size P

The convergence properties of the AP scheme have been studied [155,71]). It is
noted that the solution may wander in the weight space in either the overdeter-
mined case (too few hidden units), or in the underdetermined case (too many
hidden units) [92). Let us define an effective dimension M= to be the effective
numerical cluster (not rank) formed by the converging matrix A, (obviously,
M= < M). In terms of a geometric interpretation, the effective dimension M~

can be regarded as the distinct bundles of hyperplanes created from A matrix.
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M =3
M =5

Figure 3.3: There are A" = 3 bundles of distinct hyperplanes (lines) in the
presence of A/ =5 hyperplancs.

For example, in Figure 3.3 there are A{* = 3 bundles of distinct hyperplanes

(lines) in the presence of M = 5 hyperplanes.

Nonsingular Case M~ = P+ 1 In the case of nonsingular ystems (M= =
P + 1), where a unique solution exists, the fast convergence of the AP scheme
has been shown by Kaczmarz [68]. Similar results have been reported in another
theoretical numerical study [155]. This leads to a good choice of the optimal
number of hidden neurons. P = A" — 1, especially in the associative retrieval

applications which will be discussed momentarily.

Overdetermined Case, M* > P+ 1 As shown in Figure 3.2, an overdeter-
mined system (M* > P + 1) is not guaranteed to have a unique solution. In

this case, the AP scheme will oscillate in the neighborhood of the region of the
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intersections of the hyperplanes, which slows down the learning significantly.

Underdetermined case, M~ < P+ 1 In the underdetermined case (M* <
P 4 1), where an infinite number of solution are possible, the AP scheme can be
forced to converge to a solution w,(m), such that Iw,(m) - w$°)| is minimized. The
solution is nonunique, and the system will pick any convenient converging point

[155].

3.3.3 Totally Irregular/ Regularly-Embedded Training
Patterns

Totally Irregular Training Patterns (Clusters) If the training patterns
(clusters) are totally irregular, then the effective dimension M* should be equal
to total number of training patterns (clusters), which can be easily pre-computea
from the training patterns. Therefore, the convergence properties of the AP
method can be used to predict that the optimal number of hidden neurons P
should be approximately equal to M* — 1 for efficient learning. It should be
noted again that this conjecture is suitable only for totally “random” or “irreg-
ular” training patterns, e.g., most pattern association and pattern classification
applications. This result is consistent with the concept of the distributed “grand-

mother cell” in the associative content addressable memory [18].

Regularly-Embedded Training Patterns For those tasks which have inher-
ent regularities in the training patterns (e.g., orthogonal encoding [139], parity

checking [140,159], 3-in-8 detecting [148], etc), the optimal number of hidden
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units size is still equal to P = M* — 1. However, the determination of the effec-
tive dimension M~ is much more involved and very problem dependent.

After some number of training sweeps duril;ng learning, regularity is established
in the internal representation stored by the hidden units. At this point the
BP learning algorithm is supposed to switch from rofe learning to some kind of
regularily enhancing or predicate establishing process.! In this case, the effective
dimension M* is dictated by the number of regularity features or the order of

predicate in the problem, instead of the number of training patterns.

3.3.4 Simulations for Optimal Hidden Units Size

Simulations have been conducted for the verification of the prediction of the
optimal hidden units size in various real-valued pattern association and pattern

classification tasks using BP learning [101,92].

Pattern Association Tasks Simulations were conducted for pattern associ-
ation tasks with different numbers of layers (2 and 3) and different number of
hidden units per layer. Figure 3.4(a) shows the convergence time (i.e., training
sweeps) vs. the number of hidden units per layer. In our simulations, the learn-
ing convergence criteria is set so that the average error (among all the output
neurons and all the training patterns) is below 0.05 per neuron output. There are
M= = M = 9 pairs of randomly generated 5-dimensional input and 5-dimensional

output distinct training patterns (each dimension contains a random number

1The definition of the predicate follows that of in [121].
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picked from a uniform distribution between 0 and 1). A 3-layer (L = 3) per-
ceptron is used in which the number of the hidden units per layer, which is
set to be equal in both hidden layers varies from 5 to 14. We observed that
the net with more hidden units per layer leads to a smaller number of training
sweeps. The neural nets stopped learning after they converged to the pre-specified
mean-squared error accuracy, or after 10* training sweeps without reaching the
pre-specified mean-squared error accuracy. It is important to note that there 1s
consistently an abrupt reduction of training sweeps around A/ —1 (i.e., 8) hidden
units. This matches with the theoretical optimal hidden units predicted by AP
analysis. (Note that this simulation also suggests that the AP results appear to
be valid for ANNs with more than one hidden layer).

In another simulation, randomly generated 5-dimensional input and output
pairs are used as training patterns for a two-layer Perceptron. Two different
numbers of pairs of training patterns. i.e., Af* = Al = 9,19 are used in this
simulation. The simulation results comparing convergence time with the number
of hidden units per layer is shown in Figure 3.4(b). Note that the number of
training sweeps in these simulations dives consistently when the number of hidden
units is near or equal to A7~ — 1. This further supports the theoretical results of
the AP analysis.

Pattern association tasks with clustered input training patterns were also sim-
ulated for two layer Perceptrons. In these simulations, 20 clusters of training pat-

terns were used (i.e., M~=20). Each cluster consisted of 5 similar 10-dimensional
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Figure 3.4: (a) The convergence time vs. the number of hidden units with 1 or
2 hidden layers. (b) The convergence time vs. the number of hidden units with

various numbers of training patterns.
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Figure 3.5: Simulation for the optimal selection of hidden unit size in the pattern
association tasks. The relative total computation counts vs. the number of hidden
units with clustered random training patterns.

input patterns (i.e.. A/=100) with each dimension containing a random num-
ber picked from a uniform distribution between 0 and 1 and corrupted with
noise uniformly distributed between —0.1 and 0.1. For all 5 input patterns in
the same cluster, there is only one associated output pattern (which is either a
90-dimensional or a 5-dimensional vector with elements being random numbers
uniformly distributed between 0 and 1).

For ease of later comparisons with pattern classification tasks, the simulation
result is shown in terms of the relative total computation counts (instead of using
training sweeps) vs. the number of hidden units (see Figure 3.5). Note that all
the lowest computation counts in these simulations fall consistently on the point

where the number of hidden units is near or equal to M* —1 =19.
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Pattern Classification Tasks Pattern classification tasks with clustered in-
put training patterns were also simulated in a two-layer Perceptron. The same
set of clustered input training patterns used in the pattern association tasks are
used for the pattern classification tasks. In these simulations, each cluster can be
specified by one neuron in the output layer (i.e.. a 20-dimensional binary output
pattern with a single one value). or it can be specified by a binary coded output
(i.e., a 5-dimensional binary output pattern).

The simulation results comparing the relative total computation counts vs.
the number of hidden units are shown in Figure 3.6. Compared to the random
output pattern association tasks as shown in Figure 3.5, the pattern classification
tasks are much easier to train. This phenomenon is due to the nonlinearity of the
sigmoid function, which maps a very large range of net input values to the two
extreme output activation values (i.e., 0 and 1), this results in faster convergence
under the same error criterion.

It is interesting to note that due to the binary values (0 or 1) used in the
neurons of the output layver. ambiguities are created in defining the corresponding
transformed target values {5{™}. This implies the projection hyperplanes {H;}
in Eq. 3.13 have more freedom for horizontal movement, so that the convergence
behavior of the algebraic projection can be relaxed. As shown in Figure 3.6,
instead of a single optimal number of hidden units size, a larger span (range) of
optimal sizes (i.e., lowest computation counts) can be observed around the point

where the hidden unit size is near or equal to A/~ —1 = 19.
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Figure 3.6: Simulation for the optimal selection of hidden unit size in the pattern
classification tasks.

3.4 Selection of Optimal Learning Rate in BP

Learning

It has been conjectured, based on a fan-in argument, that the learning rate # in
BP learning should decrease as 1/ Ny, where No is the number of input dimensions
(130). There is another conjecture, based on empirical studies for the party
checking problem, that the learning rate should decrease somewhat faster than
1/Np [159,50]. Here we propose a svstematic approach using AP analysis, to

determining an optimal value of the learning rate parameter 7 in BP learning.
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3.4.1 Comparison of n and 7/

Based on Eq. 3.6, which gave the relationship between (6™ —7i™} and {t™ -

y™}, we can rewrite Eq. 3.11 as:

) = w4 (07 -

&

o+ (S @) (@™ = y*) oM (3.16)

By comparing the two weight updating formulations for the output layer shown

in Eq. 3.4 and Eq. 3.16. we note that:

BP Updating Step: o« 7 f (3.17)

'

AP Updating Step: o« 9'(f)™! (3.18)

This results in the following relationship between two learning rate:

=) (3.19)

As shown in Eq. 3.12, the exact value of 7' in AP learning depends on
the values of {a{™}. However, if {a{™} are treated as random variables with
equal probability (50%) of being 0 and 1 (due to the high nonlinearity), then
an ezpectation value of the optimal learning rate E[n’] for AP learning can be

derived as (assuming that the relaxation parameter A is set to 1)

1 2
(P+1)El(af™)]  P+1

Eln] =
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In order to estimate the expectation value of the optimal learning rate E[n] for BP
learning through AP analysis (see Eq. 3.19), the expectation value of the deriva-
tive of the nonlinear sigmoid function E[f’] should be computed first. Remember

that,

_ 1
T 14e

f(u) and  f'(u) = f(u) (1 = f(u))

where 0 < f(u) < 1. The expectation value of f'(u) can be calculated, i.e.,

>

E[f'(u)] f'(v) Pr(u) du

I
—

-

F(fu)) Pr(f(u))df(x)
' f) (1= f(w)) df (u)

a(l—a)da

—t

fl
D= S T

where Pr(u) denotes the probability density function of random variable u, and
we assume f(u) is uniformly distributed between 0 and 1, i.e., Pr(f(uw)) = 1.
Now from Eq. 3.19, the expectation value of the optimal learning rate E[n] for

BP learning can be derived:

72

Ely) = E[fT* Elr) =36 Eln) = 5

3.4.2 Simulations for the Optimal Learning Rate

Simulations have also been conducted for real-valued random pattern association

tasks to test the validity of the conjecture of the optimal learning rate in BP
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learning. In the following simulations. we used two layers Perceptron in which
the size of the hidden units equaled the number of training patterns, i.e., P =
M* = AL

Figure 3.7(a) shows the average convergence time vs. various values of the
learning rate. There are M = 10 pairs of randomly generated 5-dimensional input
and 3-dimensional output training patterns (each dimension contains a random
number picked from a uniform distribution between 0 and 1) to be trained by
BP learning. In our simulations. the algorithm cannot converge (within 10,000
sweeps) to a pre-specified error accuracy if the values of 7 are outside of the region
shown in Figure 3.7(a) and (b). As shown in Figure 3.7(a), the average training
time curves dive around the vicinity of # = 7.2, which is perfectly matched to

the optimal learning rate conjecture, i.e., n = p=; = 1. Simulations using M =

—

20 patterns were also conducted. and also support the learning rate conjecture.

Figure 3.7(b) shows the average training time curve dive around the vicinity of

72
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Figure 3.7: (2) The average convergence time vs. various values of n in BP
learning M = P = 10. (b) The average convergence time vs. various values of 7,

M = P =20.
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Chapter 4

Applications of Artificial Neural

Nets

Research in ANNs involves a very broad spectrum of disciplines, including al-
gorithm analysis, parallelism extraction, array architectures, programming tech-
niques, functional primitives, structural primitives, and the numerical perfor-
mance of algorithms. In striving for a more cohesive exploration, cross-disciplinary
discussions on applications are necessary.

A successful applicational study requires an understanding of the signal forma-
tion process, the algorithm class involved, and the specifications of the intended
applicational system. The immense computational complexity inherent in mim-
icking either the human visual perception process in computer vision, or dynamic
movement control in robotic processing, exhaust massive amounts of computa-
tions. On the other hand, humans perform these tasks easily via biological neural

nets. It becomes obvious that two potential applications suitable for ANNs are
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computer vision and robotic control. Most algorithms in these two applicational
domains can be formulated either as optimization (or constrained optimization)
problems or pattern association tasks, and thus can be efficiently implemented

by ANNs.

4.1 Applications in Computer Vision

Modern computer vision. with the goal of understanding images of complex 3-
D scenes, was first attempted in the early 1960s. The immense computational
complexity inherent in mimicking the human visual process soon became appar-
ent, and devoting massive amount of processing at the early stages of vision was
technically and economically impossible, so in the 1970s a cognitive approach
to computer vision emerged which conveniently minimized image-level numerical
computation and emphasized symbolic manipulation. In the 1980s, the consensus
of the computer vision community is that the gap between the early vision and
image understanding is best bridged by producing a redundant set of interme-
diate visual data representations formed before object recognition is attempted.
While the human vision system copes very easily with vision by using biological
neural nets, computer vision requires a huge amount of computation just to form
the intermediate representations [56]. These image-like representations are reg-
istered with the input image and contain values of physical parameters of scene
points such as the distance from a sensor to a point, the reflectance/brightness

of surfaces, the direction of motion of objects, the orientation of surfaces, and so

63



forth. The fact that human vision work so well imply that those neural nets rely
on natural constraints or assumptions about the world to derive an unambiguous
output [122,15].

It seems that although new algorithms and architectures are making an impact
on what can be achieved, there is still a long way to go before artificial systems
will compete with the speed and flexibility of the human visual system. The
demands of the computation required to perform even very specific visual tasks
in real time outstrip current parallel architectures. This fact, together with the
requirement for automation involving visual sensors. means that computer vision
applications are a major driving force in the development of more powerful neural
net algorithms and architectures [124].

Two main goals of computational vision processing are to develop image un-
derstanding sys*~ms, which automatically construct scene descriptions from im-
age input data, and to understand human vision. Much of the current research
has analyzed processes in early vision because the inputs and the goals of the
computation can be well characterized at this stage. Several problems have been
solved and several specific algorithms have been successfully developed. Examples

i
are stereo matching. motion and optical flow estimation, shape from shading, and
surface reconstruction [131]. In the following, stereo matching using constrained

optimization techniques implemented by ANNs is demonstrated.

64



4.1.1 Stereo Matching

Traditionally, sonar sensors have been very popular for depth determination [63]).
However, stereo matching techniques are a more reliable but more computation-
ally costly alternative. Stereo matching recovers 3-D depth information from two
images taken from two cameras. Usually, the geometry of the imaging system
(e.g.. the camera positions and their orientations) are known. The main task
of stereo vision is to match the feature primitives of the two images. This is
called the correspondence problem, and consists of detection of feature primitives
(e.g., edges [151]) and the determination of valid matches between feature prim-
itives. As discussed next, the latter task may be formulated as a constrained
optimization problem [115,151,152,175}.

As shown in Figure 4.1, the stereo matching problem involves two cameras
with focal length f and focal poi~*s lying at (0,+d,0) respectively. The lines of
sight of the cameras are assumed to be parallel to the z-axis. A point (z,y,2)
appears at the (i,7) pixel in the left image and at the (i, j’) pixel in the right
image. Without loss of generality, let us assume that the epipolar scanline is along
the horizontal (J-axis) direction, so that i = i’ and the search for a candidate
match for a point in one image can be limited to the same row in the other image.
The value (j — j') is called the disparity value between two matching points. The
depth information z can be generated from the disparity value, i.e. z = ~2d

(j=3')"

4.1.2 Neural Nets for Constrained Optimization

Consider the following constrained optimization problem {112]:
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(0, -d, 0) (0, d.0) Y

Figure 4.1: A standard stereo matching problem involves two camera with focal
length f and their focal points lying at (0,%d,0).

minimize  ¢(a)

subject to the constraints Pi(a)=0 i¢=1,2,---,p (4.1)

where ¢ is a continuous function of n-dimensional vector a and {P;(a)} are non-
negative and continuous functions. The above constrained optimization problem
may be approximated by an unconstrained optimization problem, which involves

minimizing a new energy (or penalty) function [112]:

minimize E’ = ¢(a) + Zp: ciPi(a) (4.2)

=1

where {¢;} are large positive constants. This formulation leads naturally to the
Hopfield neural net. The synaptic weights {w;;} and the external inputs {6;} can
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be derived from the (Liapunov) energy function.

One famous example is the Hopfield neural net for solving the (N cities) trav-
eling salesman problem. In the problem formulation, an array of N x N neurons
are used to solve the problem. The desired solution minimizes the traveling length
among N cities, under the constraint that the matrix of neurons should represent

a permutation matrix (valid solution).

4.1.3 Neural Net Formulation for Stereo Matching

Suppose that there are two Af x N image intensity arrays, which can be primitives
extracted, {b};} and {I],} as taken by the (left and right) cameras. A 3-D binary
matching data array {aj;x 1 <1< M, 1<5< N, 0 € k < D} may be defined
to represent the status of matching [115,175]. When the a;;« is 1, this means
that the disparity value is k at the point (7. j). In this discussiol *he maximal
disparity value is limited to D. The goal of the correspondence problem is to

minimize the following cost function ¢:

o = 1+
M N D .
> (B, = Vi jer)” @i +
i=1 j=1 k=0
N D

MM
AY XY X (aik—avgw) (4.3)

i=1 j=1 k=0 (i’',5')e¥

with the constraint

N D

M
P=Y > (X aix—1)=0 (4.4)

i=1 j=1 k=0
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where

1. ¢, is a measurement of how two images are matched after alignment in a
least squares sense. The symbol & denotes that
tors HO0<a+b< N

taeb =
0 otherwise

2. ¢, is a measurement of the continuity of the depth value [115,173], where A
is a proper weighting constant and ¥ denotes the the neighborhood around

the pixel (7, j). defined by a g x ¢ window centered at (7,7)-

3. The constraint P in Eq. 4.4 is introduced to assure the uniqueness property
is preserved. That is any point {from each image can assume one and only

one depth value [115.15].

Following Egs. 4.2, 4.3, and 4.4, the constrained problem can be reformulated

as an unconstrained problen. i.e.,

min E'= ¢+ cP (4.5)

a4 pk

The Hopfield neural net can be used to solve the above unconstrained problem.
Each matching data element a; ;i can be regarded to be an activation value of
one neuron. As discussed in Sec. 1.3.2, the synaptic weights w; jxmn» and the
external input 6;;x of the neural net can be derived by equating the energy
(penalty) function in Eq. 4.5 to the Hopfield energy function E in Eq. 1.6

[54,175), i.e.,
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4.2 Applications in Robotic Control

There are three levels of processing in a hierarchical robotic control system: task
planning, path planning, and path control {145]. In the task planning level, the
robot will receive instructions about task plans and manage information (e.g..
target depth. obstacle locations) about the workspace. At the path planning level,
a sequence of desired path trajectories (e.g., robot positions, arm orientations)
is produced. The path control level generates the necessary motor commands
(torques and forces) in the joint coordinates to drive the robot or robot arm to
follow the desired trajectory.

The computational requirements of robotic control are very demanding. At
the level of task planning, primitive image/vision analysis is required to obtain
3-D information. At the level of path planning, an optimal path in a workspace
has to be selected by using optimization techniques. In the path control level,
real-time computing of inverse dynamics and kinematics must be provided.

Neural net techniques for processing the various algorithms in the three levels
of robotic control have been proposed. The approach is to formulate each algo-
rithm either as an optimization problem or a pattern association problem. These
algorithms include stereo vision in task planning [115,151,152,175], autonomous

robot path planning [161,64], manipulator position control [163,132], and robotic
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voluntary movement contro! [70]. In the following. two examples are provided as

demonstrations of the use of ANNs in robotic control.

4.2.1 Path Planning Using Neural Nets

The problem of path planning for a robot can be stated as follows: Given the
locations of a set of obstacles, and the initial position and the final target of
the robot, find a continuous path from the initial position to the target while
circumventing the obstacles along the way. Two types of planning are often en-
countered: one is called global planning, which derives the optimal path from
an overall topographic map. The other is called local planning, which relies on
line of sight information, available to the robot sensors or cameras from particu-
lar perspectives. We note that human beings perform very well in path planning
through a two stage anticipatory planning process [64]: First they recall the com-
plete global environment from the local line of sight information via associative
retrieval. Then they recursively search for the optimal path from the retrieved
global information. In a manner very much similar to that of the human being,

artificial neural nets may be adopted to implement the operations in both stages.

Global Terrain Retrieval via Pattern Association The robot navigation
area can be divided into 2-dimensional or 3-dimensional grid cells. A binary
value may be assigned to each grid cell to indicate the clearness status. Namely,
a value “1” implies that the cell is fully occupied, while “-1” implies that the cell

is unoccupied. Continuous values between -1 and 1 may also be used to indicate
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partial occupation of a grid cell or any ambiguity due to vision/sensor process-
ing. The values of the grid cells can be trained and recalled using associative
retrieval neural nets. When a robot “perceives” an environment similar to one
previously trained on. the neural net uses the (continuous) values of the local
grid cells to retrieve the best fitting global terrain features based on the training
data. Possible candidates for this associative retrieval task are the Rumelhart’s
memory /learning modules (see Section 2.2) and multilayer Perceptrons (see Sec-
tion 2.4). The reasons for adopting such neural nets are that they work well
with continuous input values and they exhibit good fault tolerance capabilities

(117,139).

Boltzmann Machine for Optimal Path Finding Once the information
about the global grid cells is retrieved, then the neural net is ready to plan
the optimal path to reach a iemote goal. In order to find the global optimal
path, a constrained optimization formulation can be adopted and neural nets ap-
plied. The key is to define a cost function ¢. It is a function of several important
variables, e.g., the distance between the current location and the starting posi-
tion of the robot or the distance between the current location and the goal, etc.
Some constraints need to be satisfied, e.g., the path should not be allowed to pass
through the grid cells with high clearness values. The robot will stop and start
a new path planning process when an unanticipated obstacle is sensed before it
reaches the final target position. In order not to be trapped in local optimum,

simulated annealing techniques such as a Boltzmann machine can be adopted. It
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is important to provide a good (although not optimal) path as an initial state for
the optimization process. The recalled global map is very useful to generate such
a preliminary path. Based on the map, thosc unlikely cells e.g., cells outside the
boundary or cells occupied with obstacles, can be ruled out. Then the cells with
a minimum traversal distance of the path may be selected to be the preliminary

path.

4.2.2 Path Control Using a Multilayer Perceptron

After the determination of the desired trajectory in the path planning level,
the task of path control is to generate the motor control signals (torques and
forces) so that the robot may be driven to follow the trajectory. Based on some
physiological model (70,133}, the dynamic movement of a robot or a manipulator
zan be controlled by a feed-forward controller. as shown in Figure 4.2. It consists
of three major components: two identical inverse dynamics systems (IDS, =
IDS;) and the robot (or manipulator).

The IDS, receives the desired trajectory information Il; and produces the
corresponding desired motor command Ty to drive the robot so that the actual
movement of the robot (denoted as IT) may follow as closely as possible the
desired trajectory I14. The IDS;, on the other hand, takes the actual movement
II and produces the reference motor command T, as shown in Fig. 4.2.

To efficiently train the /DS to implement the feed-forward controller as shown
in Fig. 4.2, a two stages learning procedure can be adopted (70,132]. The first

stage is called generalized learning and its configuration is shown in Fig. 4.3(a)-
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Figure 4.2: A simplified schematical diagram for the feed-forward controller.

The second stage is called specialized learning and it uses the different configu-
ration shown in Fig. 4.3(b). In the generalized learning stage, a set of desired
motor commands, denoted as {T4}. are used to drive the robot and the set of re-
sulting trajectories is denoted as {IT}. The IDS receives {I1} as input and yields
a set of reference motor commands, denoted as {T.}. The goal of the generalized
learning is to minimize the errors between {T,} and {T4} in the least-squares
sense [133]. After the IDS is well trained. if a real input IT is sufficiently close to
one trajectory in the set {IT}. the controller should be able to retrieve the proper
motor commands ‘T, making the actual movement I1 closely follow IT'.

Due to the lack of knowledge about the operating range of the desired motor
commands {T;}, an unnecessarily large set of {T4} may have to be used for

training. This difficulty can be overcome by incorporating a specialized learning
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stage into the controller system (see Fig. 4.3(b)), in which the IDS is trained
based on the desired trajectory {Il; = M, ..., N1} and outputs the appro-
priate motor commands {T} to drive the robot. The actual movement trajectory
of the robot is a function of T. denoted as II(T) = [I, -+, II;x]. When the
operating points of the system change or when new training patterns are added,
it should be adequate to use specialized learning to fine-tune the system.

A severe weakness in the specialized learning approach is that, in the initial
step, the training of the IDS may be very inefficient due to the lack of knowledge
about the dynamic model of the robot. Therefore, it is advantageous to properly
combine the generalized learning and the specialized learning. For example, it is
possible to first perform the generalized learning until the dynamic model of the
robot is approximately learned, then the specialized learning follows to fine-tune
the IDS. By switching back and forth between the two learning stages, the system

can also avoid being trapped by local minimum [132].

Multilayer Perceptrons for Generalized Learning An L-layer neural net
can be used to implement the IDS in a generalized learning system [133]: An
input Ty = [T{?Y, .-, T19] is selected and applied to the robot to obtain a corre-
sponding TI, and the network is trained to reproduce T, = (T} T, (r), ooy TN
at its output from Il (see Figure 4.3(a)). The mathematical formulation for the

updating of weights w;;(!) using the back propagation learning is:
Aw;;(1) = 7 6(1) ¢;(1-1)

where
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Figure 4.3: (a) Generalized learning configuration. (b) Specialized learning con-
figuration. Note that the IDS can be modeled by an L-layer Perceptron.
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Note that the weight training here is based on the least squares errors of |Tq —
T,|?, although the real objective of the robot training should have been minimiz-

ing |TI; — II|.

Multilayer Perceptrons for Specialized Learning The same L-layer neural
net can be used to implement the IDS in a specialized learning procedure [133):
Referring to Figure 4.3(b), the dynamic model of the robot can be regarded as
an additional layer, i.e., the (L + 1)-th layer. However, BP learning may not be
applicable to this last layer, since the layer has no synaptic connections defined in
the conventional sense. Instead. a modified back-propagation formula is proposed

[132]:

F L) S+ 1))

§(L+1) = (M -1y

(L)

where I1;(T) denotes the j-th element of the robot movement trajectory. In
case the dvnamic model of the robot is unknown, the partial derivative can be

approximated as

oI;(T) - ;(T + ATL) - I1;(T)
T, AT,

76



where; = [0, 0, --+, 1, 0, «-+, 0]). For the training of the remaining L layers of
the multilayer Perceptron. the conventional back propagation learning algorithm

(see Egs. 2.19 and 2.20) can be adopted.
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Chapter 5

Architectures for Artificial

Neural Nets

This chapter advocates digital VLSI architectures for implementing a wide vari-
ety of artificial neural nets (ANNs). A programmable systolic array is proposed,
which maximizes the strength of VLSI in terms of intensive and pipelined com-
puting and yet circumvents its limitation in communication. The array is meant
to be more general purpose than most other ANN architectures proposed. It may
be used for a variety of algorithms in both the retrieving and learning phases of
ANNs: e.g., single layer feedback nets and multilayer feed-forward nets. Although
design considerations for the learning phase are somewhat more involved, our de-
sign can accommodate very well several key learning rules, such as Hebbian, delta,
competitive, and back-propagation learning rules. Hardware implementation of

the processing units, based on CORDIC techniques, is also discussed.
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5.1 Alternatives for ANN Implementation

The hardware most suitable for implementing an ANN depends on both the
application type (optimization or associative retrieval) and the intended appli-
cation domain (general-purpose or special-purpose). They affect many design
factors e.g., speed, learning and weight updating capabilities, system size, lin-
ear/nonlinear functionality and control circuit, 1/O data link and interface, mem-
ory size, word-length, clock rate, power consumption, and so on.

This dissertation proposes digital parallel (systolic) architectures for the im-
plementations of ANNs [93,95,90,92]. There are several existing ANN implemen-
tations worthy of consideration [48]: digital parallel architectures [162,60,3,65],

analog (VLSI) electronics [54,146,4,42], and optical technologies [36,102,167,37].

5.1.1 Digital (VLSI) Parallel Implementations

Due to the parallel processing nature of the ANNs, various existing or new par-
allel architectures have been proposed for their implementations. As compared
to the analog neural circuits, digital implementations offer higher flexibility, pro-
grammability, and precision in computation (65,162,60,3].

A single-instruction-multiple-data (SIMD) machine is a parallel array of arith-
metic processors, with local connectivity between them and with local memory
associated with each. Instructions are broadcast from a host, with all processors
executing the same instruction simultaneously [81]. One potential SIMD candi-

date for ANN implementation is the Connection machine [49,65,162]. However,
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such machines are not naturally suited to ANN connectivity patterns, modifica-
tions to communication scheme are required.

Another potential ANN implementation candidate are hypernets, which are a
type of hierarchical network that can be constructed incrementally by methodi-
cally putting together a number of basic modules [60]. Each module consists of
a set of interconnected nodes. Each node has multiple ports to connect to other
nodes through dedicated bidirectional links or via shared buses.

Digital electronic implementations appears to be a promising way to realize
multi-layer Perceptrons. In order to implement the global interconnectivity on
a locally interconnected parallel array, special routing hardware for locally inter-

connected multi-layer Perceptrons has been proposed to overcome the difficulty

3]-

5.1.2 Analog (VLET) Electronic Implementations

Analog VLSI technology, providing direct implementations of the differential
equations of neural dynamics and exploiting the asynchronous updating prop-
erties of analog devices, can provide extremely high speed computations which
are qualitatively different from those of any digital computer. Using analog com-
putation, a neuron can be easily implemented by a differential amplifier and the
synaptic weights implemented via resistors. In this way, many neurons can be
“ft” into one single chip. Analog techniques have been adopted for implementing
various kinds of neural nets [-54,28,28,160,42,43,4,5,146].

Hopfield and Tank [54] built analog circuits, based on the continuous state
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neural net, to solve the traveling salesman problem, which is a difficult NP-
complete problem. Although a globally optimal solution is not guaranteed, the
analog circuits can reliably find the local minimum of the tour length energy
surface nearest to the starting tour. The circuits have also been used to solve
some other less complicated problems, e.g., the A/D converter and linear pro-
gramming problems [156]. For implementing a more general purpose neural-like
analog circuit, Chua and Lin developed an optimization theory for analog circuit
implementation that can be used to solve a wide class of nonlinear optimization
problems [28].

Analog VLSI implementation of associative memory based on a discrete state
Hopfield neural net have been reported [160,42,43]. The maximum allowed ca-
pacity of one of these associative memories with N neurons is about 0.15N stable
states. Furthermore, as the system nears maximum capacity, many spurious sta-
ble states can appear. In order to solve the nmited memory capacity problem
encountered in the Hopfield type neural nets, the analog circuit system is modi-
fied to be a grandmother cell circuit with differential dynamics being used in the
winner-take-all mechanism [42].

By incorporating both the simulated annealing technique and a stochastic
learning mechanism. an analog VLSI system based on Boltzmann machine has
been implemented. Each neuron is a differential amplifier with two complemen-
tary outputs. The temperature cooling and random decision mechanisms required
by the Boltzmann machine are realized by amplified thermal noise. The synaptic

weights are implemented digitally by pass transistors, and the weight strength is
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stored as a signed R-bit number in a set of flip-flops, this implements the learning
capability of the analog Boltzmann machine [4,5).

Analog VLSI has also been used to implement neural nets to perform hu-
man early vision processing, e.g., retina processing [146). A large fraction of the
retina processing is dedicated to extracting motion features (e.g., edges), which
involves extensive lateral and temporal inhibition computation. Neither formu-
lated as an optimization nor an associative retrieval problem, the pre-processing
conducted by our retinal ganglion cells can be efficiently implemented by locally

interconnected analog V'LSI neural circuits [146].

5.1.3 Optical (Electro-Optical) Implementations

Optical computing approaches, exploiting the global interconnectivity of optical
signal flow, have been proposed for the implementations of ANNs (36,113,35). No
virtual optical ANN system (purely optical PEs and synaptic weights that can be
time multiplexed) has been built yet. Systems of this type may someday become
the most important class of ANN implementations due to the capabilities of
massive optical storage, global interconnectivity, and high speed processing [48].

An optical implementation of content addressable associative memory based
on the discrete state Hopfield neural net has been proposed [36]. This optical
implementation performs the associative recall (a matrix-vector multiplication
operation) by means of outer-product technique. The synaptic weights are im-

plemented as a photographic transparency (i.e., a mask), and the neuron output
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are sent into and pass through the weight mask (the Bragg cells) via parallel pla-
nar laser beams. The weighted sums are collected by converging the attenuated
beams onto a linear detector array. The film optical amplifiers are then used
to perform the threshold neuron activations. This implementation also provide
useful links between optical neural processing and pattern recognition/machine
vision.

Due to the low memory capacity in the Hopfield associative memory model,
the weight matrix formed by the outer product method has low rank which can
be exploited to reduce the computation. An inner product technique to perform
the matrix-vector multiplication has also been proposed [102]. This technique
achieves a considerable amount of hardware savings. More significantly, real-time
inputting and updating of the synaptic weights can be potentially implemented
with existing space-variant holographic elements and recently discovered liquid
crystal television spatial light modulators.

A modular electro-optical ANN system capable of pattern learning has been
proposed [37]. Each module is a complete associative memory which adapts as it
is exposed to associated information patterns. All these modules can be optically
cascadable, with all inputs and outputs in the form of 1-D or 2-D image beams
or intensity arrays. Various learning modules have been proposed, e.g., delta
learning, Hebbian learning, and differential learning.

A new approach to learning in multilayer optical neural nets based on holo-
graphically interconnected nonlinear devices has also been proposed [167]. This

optical net uses self-aligning volume holograms to bidirectionally interconnect
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nonlinear etalons which act as the bidirectional optical neurons. This archi-
tecture combines the robustness of the distributed neural computation and the
back-propagation learning procedure with the high speed processing of nonlin-
ear etalons. the self-aligning ability of phase conjugate mirrors, and the massive
storage capacity of volume holograms to produce a powerful and flexible parallel

optical ANN.

5.2 Mapping Algorithms to Systolic/Wavefront

Arrays

The major emphasis of VLSI system design is to reduce the overall intercon-
nection complexity and to keep the overall architecture highly regular, parallel,
and pipelined. It stresses the importance o: local communication in the array
processor. Systolic and wavefront arrays are a new class of pipelined array ar-
chitectures, well suited to VLSI implementation, because of their properties of
modularity. regularity. local interconnection. and pipelining. A systolic array is
a network of processors which rhythmically compute and pass data through the
system [80,79]. In contrast. a wavefront array is an asynchronous, self-timed,
data-driven computation array, which features high regularity, modularity, and
local interconnection [91,89.86].

The main concern in algorithm-oriented array processor design is: given an
algorithm, how is an array processor systematically derived? In the following, a

systematic mapping methodology for deriving systolic/wavefront arrays for ANNs
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is introduced. Our design begins with a (data) dependence graph (DG) to express
the recurrence and parallelism. Next, this description will be mapped onto a sys-
tolic/wavefront array [81,110,84]. Although in the later part of this dissertation
we onlv concentrate on mapping algorithms to systolic arrays, similar methods

can be used to map algorithms onto wavefront arrays [81].

5.2.1 Deriving DGs from Given Algorithms

A DG is a directed graph which specifies the data dependencies of an algorithm.
In a DG, nodes represent computations, and arcs specify the data dependencies
between computations. In our notation, a dependence arc’s terminating node
depends on its initiating node. From an initial sequential algorithm description,
a DG for the algorithm can be derived by first converting the algorithm to a single
assignment form. in which the value of any variable is assig...d only once in the
algorithm [81]. A single assignment form can clearly show the data dependencies
in the algorithm. For regular and recursive algorithms, the DGs will also be
regular and can be represented by a grid model; therefore, the nodes can be
specified by simple indices, such as (7,5,k). Design of a locally linked DG s a

critical step in the design of systolic arrays.

5.2.2 Mapping DGs onto Systolic Arrays

Two tasks are involved in mapping a DG onto a systolic array. The first task is
processor assignment and the second is schedule assignment [81]. It is common

to use a linear projection for processor assignment, in which nodes of the DG
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along a straight line are projected (assigned) to a PE in the processor array (see
Figure 5.1(a)). A linear scheduling is also common for schedule assignment, in
which nodes on a hyperplane in the DG are scheduled to be processed at the

same time step (see Figure 5.1(b)).

Processor Assignment via Linear Projection

Mathematically, a lincar projection is often represented by a projection vector d.
Since the DG of a locally recursive algorithm is very regular, the linear projection
maps an n-dimensional DG onto an (n — 1)-dimensional lattice of points, known
as the processor space. As an example, the 2-D index space of the DG shown in
Figure 5.1 may be decomposed into a direct sum of a 1-D processor space and

1-D dclay spacc. The delay space is related to the scheduling as explained below.

Schedule Assignment via Linear Scheduling

A scheduling scheme specifies the sequence of the operations in all PEs. More
precisely, a schedule function represents a mapping from the n-dimensional index
space of the DG onto a 1-D schedule (time) space. A linear schedule is based on
a set of parallel and uniformly spaced hyperplanes in the DG. These hyperplanes
are called equitemporal hyperplanes—all the nodes on the same hyperplane must
be processed at the same time. A linear schedule can also be represented by a
schedule vector §, which points in the direction normal to the hyperplanes. For
any index point i in the DG, its time step is §7i. A set of (linear schedule)

hyperplanes and their associated schedule vector are illustrated in Figure 5.1(b).
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Figure 5.1: (a) A linear projection with projection vector d; (b) A linear schedule
§ and its hyperplanes.

Systolic Schedules

Given a DG and a projection direction d. not all schedule vectors {5} qualify
to define a valid schedule for the DG. Some of them may violate the precedence
relations specified by the dependence arcs. For systolic design, the schedule vector

§in the projection procedure must satisfy the following conditions:

e > 0 (5.1)

Td #£ 0 (5.2)

where € is any dependence vector in the DG. Equation 5.1 means that every

edge of the resulting systolic array will have one or more delay elements, which
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satisfies the {emporal locality condition in the definition of the systolic array [81].
Equation 5.2 implies that nodes on an equitemporal hyperplane should not be
projected to the same PE. The permissible hyperplane directions defined by the

first condition are the same as the notion of the time cone in [69,32].

5.2.3 Design Example: Matrix-Vector Multiplication

Let us consider the systolic array design for the matrix-vector multiplication

problem, i.e.,
c=Ab

The sequential FORTRAN code for this matrix-vector multiplication problem

can be written as

do 10 1=1.4
c(i)=10
do 10 j=1.4

e(i) = (i) + a(i, 7) * b(3)

10 continue

Note that in this program, ¢(7) is overwritten many times to save storage space,
thus the value of ¢(7) is assigned more than once. To transform the above program
to a single assignmenl code, where every variable is only assigned once during

the execution of the algorithm. the number of indices of the vector ¢ should be
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increased. The corresponding localized single assignment code, where the change

of indices is incremental. can be written by introducing the the intermediate

variables a(i,7), ¥'(i,5). and ¢(i.j):

do 10 1 =1,4
d(i, 1) =0.
do 10 j=1.4

Vii+1.5) = V(i j)
cli.j+1)=c(,4)+ali,j)*¥(i,j)

10 continue

where the initial values are {§'(1,7) = b(j)}. and the final results {c(?) = €'(7,5)}.
Note that each element of the matrix {c'(i.j)} is assigned once only.

By viewing each dependence relation as an arc between the corresponding
variables located in the index space, the DG shown in Figure 5.2(a) can be
obtained. In this DG, the operation at each node is specified in Figure 5.2(b).
If we select the projection vector to be d = [1 0] and the schedule vector to be
5= [11], we can get a lincar systolic array in which all the inputs {b;} originally
reside in each PE, and the outputs {¢;} are pipelined out one-by-one from the
boundary PEs (see Figure 5.2(c)). On the other hand, if we select the projection
vector to be d = [0 1] and the schedule vector to be § = [1 1], we can get
another linear systolic array with all the inputs {b;} pipelined one-by-one into

the array, and the outputs {¢;} remaining in each PE (see Figure 5.2(d)). It
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is also possible to project the DG in the diagonal direction, which can lead to
hardware saving when the A matrix is banded. Among these many alternatives,
optimization criteria with constraints can be imposed to choose the most suitable
systolic arrays for specific applications.

This mapping methodology has been adopted to derive systolic/wavefront ar-
ray architectures for various numerical, signal/image processing, and neural nets
algorithms [83). Successful design examples in numerical and signal /image appli-
cations include: transitive closure and the shortest path problems [85.87], Kalman
filtering for signal tracking [97.98.99.94]. multichannel least squares lattice filter
[106,105]. dynamic time warping for speech recognition [82], stochastic relaxation
for image restoration [82,100}, rank order filtering for image enhancement [100],
Hough transform for shape analysis [88], 2-D correlation for pattern matching

[100], and 2-D rank decomposition for mask processing [100].

5.3 Systolic Architectures for Artificial Neural

Nets

We shall demonstrate that a simple programmable architecture can be developed

to accommodate most of the neural processing algorithms.
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Figure 5.2: (a) Localized DG for matrix-vector multiplication. (b) The functional
operation at each node of the DG. (¢) A systolic array obtained by selecting
d=[10]and §=[1 1]. (d) A systolic array obtained by selecting d = [0 1] and

§= [1 1].
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5.3.1 Systolic Design for Single-Layer ANNs
Ring Systolic ANN For Retrieving Phase

The system dynamics of the retrieving phase of single laver feedback neural nets
(e.g., Hopfield neural nets, memory/learning modules, and Boltzmann machine)
can all be formulated as a unified consecutive matrix-vector multiplication prob-
lem interleaved with the nonlinear activation function shown below [99,95,96].
(Here, parallel updating of Hopfield neural nets and Boltzmann machines are

assumed.)

u(k+1) Wa(k) + 0

alk +1) = Flu(k+1).u(k).a(k)] (5.3)

where the F[x] operator performs the nonlinear activation function f. The vectors

and matrices used are:
u = [ug. up. ---, uy]?

a = [a. a. -, a,\']T

0 = [015 03y -+ 01\"]T

Wy W2 ¢ UNN
, Wz Wiz -+ W2N
W = (5.4)

wxy WN2 -0 WNN



DG Design for Consecutive Matrix Vector Multiplications The consec-
utive matrix-vector multiplication array architecture design can be derived from
a cascaded DG [81]. If the conventional DG design for matrix-vector multipli-
cation is used (see Figure 5.2). it will lead to a cascaded DG. Implementation
of this DG by a linear array requires nonlinear processor assignment as shown
in Figure 5.3(a) (with linear schedule along diagonal direction), the result is a
locally interconnected systolic array with bidirectional communication links (see
Figure 5.3(b)). This systolic architecture requires smart switches to change the
operations of each PE at different time slots. Moreover, some synaptic weights
{1;;} need to be simultaneously stored in several PEs. This makes the design for
adaptive modification of {w,} in the learning phase very difficult.

The problem can be overcome by a proper modification on the DG: The data
ordering of the {w;;} elements can be 1carranged so that the direction of the
inputs {a;(k)} in the DG becomes aligned with that of the outputs {a;(k + 1)}
[81], as depicted in Figure 5.4(a). In this DG. the i-th row of the W matrix is
placed on the i-th column of the {w;} data array in DG, andfori=1,2,..., N,
the i-th column of the {w;} data array is circularly-shifted-up by i —1 positions.
Since the input (from the top) and the output (at the bottom) are now aligned in
the same direction. then many copies of such DGs can be cascaded top-down, with
the input and output data perfectly interfaced. Based on this new cascaded DG,
the mapping from DG to systolic array is straightforward. The projection can
be taken along the vertical direction, i.e., d = [i, 7] = [0, 1], and the schedule

hyperplanes are chosen to be along the horizontal direction, i.e., & = [i, j] =
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[0. 1). This leads to a ring systolic architecture as shown in Figure 5.4(b). The
pipelining period of this design is 1, which implies 100% utilization efficiency [81].
A small disadvantage of the design is that the (global) spiral communication link

is required.

Operations in the Ring Systolic ANN In the retrieving phase, each PE (say
the j-th PE) can be treated as a neuron. and the corresponding synaptic weights
(wj;. wjo. ....w;x) are stored in the memory of the j-th PE in a circularly-
shift-up order. The operations at the (k 4 1)-th iteration can be described as

{ollows:

1. Each of the neuron activation outputs, a;(k), will move counter-clockwise

across the ring array and visit each of the other PEs once in N clock units.

"o

When a;(k) arrives at the i-th PE, it is multiplied with w;;, and the p. .duct
is added to the 0; to derive u;(k + 1) (see Eq. 1.1). After N clock units,
all the products are collected and the resulting u;(k + 1) is ready for the

nonlinear activation operation.

3. The newly activated neuron output a;(k + 1) is propagated to the left-side

neighbor PE.

The above procedure can be executed in a pipelined fashion for all j € [1,N] and
i € [1,N). Moreover, it can be recursively executed (with increased k) until the

system convergence is reached.
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Ring Systolic ANN for the Learning Phase

The systolic array design for the retrieving phase can be adapted to apply to
the learning phase [90,96]. Most learning rules for single layer feedback neural
nets. such as the Hebbian learning rule [47], delta learning rule [172], Boltzmann
learning rule [1]. and competitive learning rule [44]. can be implemented quite
efficiently on the ring systolic ANN. In the following. only the cases for delta
learning and Hebbian learning are discussed.’

Suppose that the system convergence is reached after K" iterations of retrieving
operations upon the presentation of the m-th training pattern, and the final
activation value produced at the i-th PE is «/*(K'). (For convenience, we shall
denote a* = a™(I').) Then the next iteration (N clocks) will be devoted to the

adjusting of the weights, the key task of the learning phase.

Systolic ANN for Delta Learning The delta learning rule is typically ap-
plied to a set of pairs of patterns. each pair consisting of an input pattern and
a target output pattern. The goal is that when an input pattern is presented,
the corresponding output pattern will be retrieved. This learning rule uses the

following formulation:

A u‘g") =g (tI™ - ™) ag-"') (5.5)

where Aw,(;") x —-8¢m /Ow,(;-"), and the error measurement function (™ is de-

fined as

1The Boltzmann learning rule is basically a two steps Hebbian rule, so the implementation
follows that of the Hebbian rule.
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¢ = 3™ = " (R))?

i=]

The operations of the delta learning rule can be written as an outer product

formulation:

WwWim+) — Wim) 4 ,’(((m) alm’”

The DG for outer product operations shown in Figure 5.5 has the same con-

figuration as that of matrix-vector multiplication (see Figure 5.2). so it can be

directly modified into a spiral DG structure, and the ring systolic array can thus

be adapted for this lcarning rule. The operations can be briefly described as

follows:

1.

o

The value of 5 (#{") — !™) is stored in the i-th PE. The activation value

agm) produced at the j-th PE will be cyclically propagated to all other PEs

in the ring systolic ANN during the N clocks.
When agm) arrives at the i-th PE, it is multiplied with the stored value
p (4™ — a!™) to vield Awf;") . which will then be used to produce the new

{m+1)

wiy " based on Eq. 1.4. Note that the data {wg")} are retrieved in a

circularly-shift-up sequence, just like that used in the retrieving phase.

After N clocks. all the N x N new weights {w,(-;"ﬂ)} are generated. The

ring systolic ANN is now ready for the learning phase for the next training

pattern.
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Figure 5.5: The DG for outer product operations in the delta learning rule
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Systolic ANN for Hebbian Learning The Hopficld neural nets used a sim-
plified Hebbian learning rule for weight determination. where a synaptic weight

{(m
1

w!™ will be strengthened if the activation values of both the 7-th and the j-th
neurons are high [140]. This form of the Hebbian learning rule follows the simple
formulation (sece [140j):

A u'g") =na™ ag«"‘) (5.6)

It can be easily shown that the systolic implementation of this Hebbian learning
rule can be done in almost the same manner as the delta learning, except that
the weight update in Eq. 5.6 (instead of Eq. 5.5) should be used for the Hebbian

lcarning.

5.3.. Cascaded Systolic ANN for Multilayer Perceptron

Retrieving Phase

As we discussed in Section 2.4. the mathematical formulation for the multilayer
Perceptron basically follows the single layer feedback case, except that the itera-
tion time is now replaced by the layer number. To maximize the parallelism of
the operations, we can assign onc ring systolic array (derived in Section 5.3.1) to
each of the lavers. For the convenience of architectural design, it is assumed that

all the layers in the multilayer Perceptron have a uniform size of neural units.?

20ne simple technique to force equal number of hidden units per layer is to artificially create
a certain number of “no-op” neural units (i.e., the weights connected to the units are set to be
zero) to balance any inequality between two layers.
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With this assumption. all the L ring arrays can now be perfectly cascaded to

form a mesh array as shown in Figure 5.6(a) [90,96}.

Learning Phase

The learning phase of a multilayer Perceptron adopts the back propagation learn-
ing rule, which involves two steps: the forward step and the backward step (see
Section 2.4). The systolic design for the forward step is the same as that in the
retrieving phase. but for the backward step it is somewhat more complicated(see
Eq. 2.19 and Eq. 2.20). The implementation of Eq. 2.19 for the L-th stage of the
cascaded systolic ANN is almost the same as that of the delta learning discussed
in Section 5.3.1, except for the additional multiplication of the derivative term
f'. The cascaded systolic design of Eq. 2.20 is briefly described as follows: Since
Eq. 2.20 is basically a vector-matrix multiplication operation of 6§-m)(1 +1) and
{wﬁ-?)(l +1)}, the cascaded ring systolic array can naturally be applied to these

operations. Assume that the error signal {6;m)(1+ 1)} and the weight wg:")(l+ 1)

are now available at j-th PE of the (I 4 1)-th layer:

1. The weight value uvx")(l + 1) is used for the synaptic updating of Eq.2.18

to obtain {u'('~"+1)(1+ 1)} at (I +1)-th layer.

i

2. Simultaneously, the calculations of {6!™")()} can be started. The value
w_(i:")(l + 1) is also used to multiply the residing error signal 6}"')(1 + 1)
(see Figure 5.6(b)). The product is added to the newly arrived parameter
acc™(l). (The parameter acc™) (1) is initiated at the i-th PE with zero
initial value and circularly shifted leftward across the ring array.)
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3. Repeal the same operation in Step 2 for different 7, (where: = j, j+1, ...,
N, 1, ..., j =1). After N such operations, the parameter accgm)(l) will
return to i-th PE after accumulating all the products §;(1) = ¥; 6_5'")(1 +
1) w};")(l + 1) shown in Eq. 2.20 (see Figure 5.6(b)). This value is imme-
diately back-propagated to the i-th PE at the I-th layer, where it will be
multiplied with f'(x™(1)) to yield the new error signal §™(1). (The value
f'(u!m)(l)) has been previously calculated and stored in the i-th PE of the

[-th layer.)

4. The error signal &™) (1) can now be used for the weight updating of {w}}")(l),
j=1,i+1,.... N, 1. .... i—1}, and also for the calculations of {65"‘)(1—

1)} at the I-th layer.

Repeat Steps 1 - 4 for the I-th layer.

Systolic Design for Multilayers with Different Sizes

The cascaded systolic design proposed above is suitable when the sizes of the
different lavers are approximately equal. If the hidden unit layer has a much
larger size than the 1/O lavers, then the design is no longer suitable and a new
design may be considered: Let us use an example of a two layer neural net with
configuration (3-9-4). The mappings of the operations for the retrieving/learning
in the output and hidden layers are shown in Figure 5.7(a) and (b) respectively.
In each mapping, there is a DG for the retrieving phase and a DG for the learning
phase. For an efficient utilization of hardware, the projection direction is chosen
so that the minimum number of PEs will be needed. As shown in Figure 5.7(a),
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a vertical projection direction is used; on the other hand, a horizontal direction is
used in Figure 5.7(b). Note that in Figure 5.7(b), the DG plane for the learning
phase should be stacked on top of the DG plane for the retrieving phase before
the projection takes place. This will again lead to a ring systolic design as shown

in Figure 5.7(c).

Design Consideration for the Retrieving Phase Asshownin Figure 5.7(c),
the retrieving phase of this system starts by loading the inputs {a;(0), j = 1, 3}
so that they reside in the corresponding PEs in the first layer. The external
input values {6;(1), i = 1.9} are pipelined one-by-one into the array from the
leftmost PE. Now Eq. 2.16 can be performed by creating a token at this PE
with initial value 6;(1) and propagating it along the array to accumulate all the
products w;;(1)a;(0) at the j-th PE, j = 1,....3. The resulting net innut u;(1)
will appear at the rightmost PE and the activation function can be performed to
derive a new activation output {¢;(1). i = 1....,9} of the hidden layer. (Note
that the derivatives {f'(u;(1))} can be computed now, they will be useful for the
learning phase.)

The data {a;(1)} are sequentially pumped into the PEs of the output layer
from the right-hand-side. When a;(1) arrives at the k-th PE, it is multiplied
with w(2), and the product is added to the residing 8,(2) at the k-th PE. After
all nine data {a;(1)} pass the k-th PE, ux(2) is produced. Again it is ready

for the activation operation and ax(2) will be output from the k-th PE. Like

the cascaded ring systolic ANN, such a design can also deliver fully pipelined

104



8y 05 0, 0,8,
t ¢4 ece §
04 02 O"’ Retrieving 423,10
vy L] Phaso o000 le—a , (9
— 3, (1} Le— a5 10)
[, (1}
Retrieving le— o501 55 8y & 5
KEan 7 i,
Phase : : 5 ‘ ¢ oo :
o ¢ Lesrning i1, 8,0
0000 je—asiv Phaso see et 2,00
le—13 2500
8§, 6y6,8,
tie¥
I a, (1) .
i Yl ! , (b) DG Folding
Learning agm
fe—a, (1)
Phase ° °
(] [
oo I ¥ (M EIMEER'
agtt) W oe .W:,W"
Projoction || Retrieving & Learning
w 'R W,z
aets 9? 22 e Phesos
(a) Projection
Woz 0 e Wy Wi
CI'ZI—D-D-DQ
Wy Wi W2 Wir iy 8 0 8 a1 3 oup
121 8312 8, (2) 5,12
Wey Wap Waz Wiz 8¢ 203 Z L2 ) Layer
[} ] ° ° ¢ 12) L ay12)| - 2121 g1 12|
[ [] L] L 59.“’ B a,i1
[ [ a,r1)
Wy, Wi Wap Wig ’. ( T 1, o e @, ) :
817 >, i) 2,00, *a, 0 oyl °
0t)e o 00,116 1) Hidden
s : Layer
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capability (i.e., 100% utilization efficiency) in the retrieving phase. Although the
control is admittedly more complicated in this version of the systolic design, the
overall hardware saving is worthwhile when the number of units at each layer are

considerably different.

Design Considerations for the Learning Phase Recall that, in the back-
propagation learning. the forward step should be executed before the actual
weight updating in the backward step. The operations in the forward step follow
exactly that of the retrieving phase. Whenever the activation value a,(2) at the
k-th PE is created in the forward step. the backward step can be started. The
difference between the activation value and the target value {; is multiplied by
f' to derive the error signal 6;(2) at the k-th PE.

To compute the error signal of the hidden layer (i.e., 6i(1)) according to
Eq. 2.20, a token is created at the rightmost PE (with zero initial value) and
propagated along the upper array to accumulate all the products &(2)wyi(2)
at k-th PE, k¥ = 1,4 in a pipelined fashion. The final results {6:(1)} will be
available at the leftmost PE of the upper array. They will be sent sequentially
to the leftmost PE at the lower array (for the hidden layer), where they will be
multiplied by the derivatives {f (ui(1))} to yield the new error signal {&(1)}- (
The data {f'(u;(1))}. previously computed in forward step, may be recycled for
the current usage by a wrap-around link (with FIFO buffering).)

The weight updating of the output layer can be performed at the same time

when the error signals are being processed. The weight value wy;(2), residing
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in the k-th PE. can be updated based on Eq. 2.18. Note that the updating
again makes use of the data {a;(1)} previously used for computing {ux(2)} in the
forward step. Therefore, a wrap-around link (with a FIFO for buffering) is again
useful for the recvcling of these data.

Now the weight updating for the hidden laver, based on Eq. 2.18, can be
performed in a similar fashion. Upon the derivation of the first 6,(1), and the
weight updating of wy;(1). the system is ready for the learning phase of the next

pair of training patterns.

5.4 Implementation Considerations for Systolic

ANNs

5.4.1 PE Designs for Retrieving and Learning Phases

The schematic diagrams for the logical level design of a PE of the systolic ANN is
shown in Figure 5.8. The syvnaptic weights (w1, wiz. ..., wix) in the i-th PE are
stored in RAM with simple circular-shift-up addressing. In the operations of the
retrieving phase (see Eq. 1.3), the activation value a;(k) is produced at j-th PE,
circularly propagated leftward in the ring systolic ANN, and multiplied by wi;
when it arrives at i-th PE. The product is then added into the accumulator Acc;
to form the net input u;(k + 1). For the learning phase (see Eq. 1.5), almost the
same hardware is adopted, but with somewhat different control sequences. Figure

5.8(b) shows the operations for a delta learning rule, where wy; is retrieved from
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the RAM, modified by Auw;; as computed, and then stored back to the RAM. All

these operations are performed in one system clock.

5.4.2 Using INMOS T800 Transputer as a Building Block

There are two approaches to the design of a special purpose computing system.
One is to design a programmable system. the other is a dedicated hard-wired
svstem. The former one can be easily implemented by using commercial available
VLSI processors chips.

The INMOS T800 Transputer is an Occam-based RISC architecture which
provides 64-bit floating point arithmetic capability operating at 1 million mul-
tiply/add operations per second. The Transputer also has 4 Kbyte of on-chip
RAM and can address up to 32 Gbytes of external memory [111,147]. In addition,
the T800 Transputer provides four high-speed byte-serial hardwired bidirectional
links operating at a 20 Mbit/s rate. Another reason for choosing a Transputer
as the processing element is the Occam language. The Transputer is optimized
to run Occam efficiently. Occam provides an easy way to translate our design
into a Transputer program. The Transputer also efliciently supports other lan-
guages. such as C. Pascal. and Fortran. These features make the T800 a potential
candidate for the building blocks of for our systolic ANNs.

For a more dedicated design using VLSI technology, there are two design
alternatives that can be considered. In the following, we will only consider the

fixed point operation option which is still the main focus of VLSI technology.

108



a (k) .
or 7 Switch :' a (k)
a, (k+1) WILCIN (+>4 @1 !
y
6
wl 1
L (a)
[ J
[ ]
ij-1
vy v Ul(k-r’) if
f® u, (k) .
[ ]
a;(k+1) W, n
a;(K)
<
a;(K)
6;
Wit
N
°
° (b)
-1
. ij
.
°
®
WinN

Figure 5.8: Schematic diagrams for the logical level PE designs in a systolic
ANN. (a) Logical PE design for the retrieving phase. (b) Logical PE design for

the learning phase.

109



5.4.3 Neural Processing Units Based on a Parallel Array

Multiplier

Most of the computations involved in the neural processing units are multiply-
and-accumulation (MAC) operations, so for a computationly efficient dedicated
design, a parallel array multiplier should be used, e.g., Baugh-Wooley multiplier
[2,16].

There are various forms of the nonlinear activation function adopted in neural
nets, e.g., step function, squashing function, or sigmoid function. A simple com-
parator can be used to implement the step function and the array multiplier can
be easily used to implement the squashing function. For digital implementation
of the sigmoid function, fast table-look-up techniques should be adopted. In fact,
a large portion of the sigmoid function is in linear range, so the look-up table is

only used in the two extreme ranges of the sigmoid function.

5.4.4 Neural Processing Units Based on the CORDIC
Processors

One disadvantage of using parallel array multipliers for neural processing units
is that the area consumption might be significant. It has been found that for
manipulating the same number of bits, a CORDIC (coordinate rotation digital
computer) requires only about one-third of the silicon area of an array multiplier.
A CORDIC provides almost the same execution speed as an array multiplier

in performing vector-rotation operations, but much reduced execution speed in
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performing multiplication [2]. So for a area efficient dedicated design, a CORDIC
processor might be more suitable. If the speed is more important than the area,
bit-level pipelined CORDIC designs can also be considered [45,164).

A CORDIC scheme. as shown in Figure 5.9, is an iterative method based on
bit-level shift-and-add operations. It is especially suitable for computing a specific
set of functions including rotations of two dimensional vectors, trigonometric
functions, logarithins, multiplications and divisions [166,33.2,81]. For example a
2-dimensional vector v = [r.y] can be rotated by an angle a by using a rotation

operator Rj,. i.e.,
vi= Rv

m

where

cosy/nmia  —./m siny/ma

ﬁsin ma cosyv/ma

m

1 —/m tany/ma
J=tany/ma 1

K

and the scaling constant A = cosy/ma. The parameter m characterizes three
possible arithmetic operations, namely the circular (m = 1), the linear (m = 0)
and the hyperbolic (m = —1) operations [166,33,2,81).

In the linear coordinate system (m = 0), the CORDIC can be used for MAC

operations (see Figures 5.10(a)), i.e., the rotation operator can be simplified as
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RS = (5.7)

Given z, y. and a. we can get the CORDIC output y + za, which is very useful
for propagation rule operations in the neural processing units.
In the hyperbolic coordinate system (m = —1), the rotation operator can be
simplified to (see Figures 5.10(b)):
1 tanha

R, =K (5.8)

tanha 1

Note that the nonlinear sigmoid activation function bears the form:

1
14 ¢

flu) = = (1/2)(1 + tanh(u/2)) (5.9)

where u is the net input of the neuron. By comparing Eq. 5.8 and Eq. 5.9, it is
easily seen that the sigmoid activation function can be implemented by setting
m = —1. v = [1,1] and a = u/2. (The scaling operation K" is not necessary

here.)
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Figure 5.9: The arithmetic unit of a CORDIC processor.

113



x —» —» X
Yy —® m=0 —P Y+ X O

o —» —» o

(a)

—p X+y tanh (O)

—» y+x tanh( o)

X —P
y —® m=-1
o0 —P

(v,

Figure 5.10: (a) The linear coordinate (m = 0) system of the CORDIC processing.
(b) The hyperbolic coordinate (m = —1) system of the CORDIC processing.
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Chapter 6

From Multilayer Perceptrons to

Hidden Markov Models

This chapter extends the discussion of algorithmic and architectural studies of
multilayer Perceptrons to hidden Markov models (HMMs). Our discussion starts
with a unifying viewpoint of the retrieving (scoring) and learning phases of mul-
tilayer Perceptrons and HMMs. A ring systolic architecture is then proposed for

implementing both the scoring and learning phases of HMMs.

6.1 A Unifying Viewpoint for the Multilayer

Perceptrons and HMMs

From a retrieving phase point of view, hidden Markov models described by a trel-
lis structure can be regarded as a special configurations of multilayer Perceptrons
with a squashing type of nonlinear activation function. From a learning phase
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point of view, iterative gradient-descent-like approaches. which were used to de-
rive BP learning in the multilayer Perceptrons, can successfully be applied to the

trellis structure to derive the Baum-Welch reestimation formulation in HMMs.

6.1.1 A Special Configuration of Multilayer Perceptrons
Retrieving Phase

The system dynamics in the retrieving phase of a T-layer Perceptron with an
equal number of neuron units (.V') at each laver can be described by the following

equations (see Figure 6.1):

N+1

u(t+1) = Zu.11+1 () +6:(t+1) = Zw.,t+1)a,(t) (6.1)
=

ai(t+1) = f(u,-(f+1)) 1<i<N, 0<t<T-1 (6.2)

Again for simplicity. the external input 8;(1 4+ 1) is trcated as a synaptic weight

w;i n41(1 + 1), which has a clamped input ax4i(t) = 1.

Learning Phase

The learning phase of this 7-layer Perceptron adopts the back propagation learn-
ing rule. The synaptic weights between the (1-th and (¢ — 1)-th) layers can be

updated recursively (in the order of ¢ = T.T-1,...,1):

w() = wP() + 7 6M) a™(t-1) (63)
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where the error signals 6,('")(1) are recursively computed as follows (in the order

oft=T.T~1.....1)

=T, 6Ty = W™ ™ = d"™(Ty) (6.4)
N
< T, &™) = ™) Y &M+ ufE+1)  (65)

1

6.1.2 The Hidden Markov Model

A hidden Markov model (HMM]) is a doubly stochastic process with an underlying
stochastic process that is not observable (i.e., hidden), but can only be observed
through another set of stochastic processes that produce the sequence of observed
symbols [134]. HMMI techniques have been successfully applied to speech recog-
nition tasks [13,67,62,134]. The technique is also similar to the dynamic time
warping approaches of speech recognition, which uses temporal alignment tech-
niques and addresses the nonlinearity in the speech signals [67]. There are other
potential applications of HM\Ms. e.g.. for English spelling checking [55], and for
hierarchical character recognition [165]. The basic components of an HMM can

be briefly described as follows:

1. There are N possible states {¢;, i =1, 2, ..., N} in an HMM. The new
state is entered at time { based upon a stafe transition probability a;;, which

depends on the previous state at time 1 — 1 (the Markovian property), i.e.,

a;; = Pr( g att]g;att—1)
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Figure 6.1: A three-layer Perceptron consists of the two hidden layers and the

output layer. Each layer has 4 neuron units.
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2. The state transition probability at time ¢ = 0 is termed initial state proba-

bility =;. 1.e..

3. Given the state transition probabilities, there are Af possible symbols {v;, ¢ =
1. 2. .... M} that can be observed. and a symbol occurrence probability
is determined according to a probability distribution which depends on the
current state. Each symbol, say k-th symbol, at state ¢ has its symbol

occurrence probability b,(k):
b,(k) = Pr( v, att I q; at t)

4. Given an HMMIL, where {a;;}. {bi(k)} and {=;} are specified, A = (4, B, ),

an observation sequence O with length T+1 is generated, O = (00, 01, - .. OT).

Scoring and Learning Phases of an HMM

The algorithms involved in an HMM can be divided into two phases: scoring and
learning [58,59). Given an observation sequence O = (0, 01, -.. OT), and a pre-
specified HMM X = (A, B, 7), the most important computation involved in the
scoring phase of an HMM is to compute the scoring probability Pr(0O|}), which
allows us to choose one among several models that best matches the observations.
The computation involved in the learning phase of an HMM is to adjust the
model parameters (A, B, 7), so that we can maximize Pr(O|)) given the training
sequence O. The learning phase allows us to optimally adapt model parameters

to the observed training data. i.e., to create the best model for real phenomena.
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The Forward Evaluation Procedure In order to calculate the scoring prob-
ability Pr(O|)) of the observation sequence O, given the model A, a very efficient
procedure called the forward evaluation procedure has been widely used [134].
Let us define the forward likelihood a,(i) to be the probability of the partial

observation sequence (until time {) and state ¢; at time ¢, given the model A, i.e.,

Ot(i) = P7‘(00. 01, ...0¢ 1 =Gi | A)

where a,(i) can be calculated inductively [134]:

00“) = b,(ou). 1 S ! S N (66)
N ]
O¢+1(i) = a;; Ot(j} J b,’(ol.‘.]), 0 St S T - 1, 1 S ) S N (6.7)
=1
N
Pr(O]\) = Y ar(i) (6.8)

=1

The Backward Evaluation Procedure In a similar manner, the backward
likelihood B,(i), which is useful in the computations of the learning phase, is
defined as the probability of the partial observation sequence from ¢ 4+ 1 to the

end, given state g, at time ¢ and the model A, i.e.,

Bu(i) = Pr(ow1. 042, ---01 | it = qiy A)

again B(i) can be calculated inductively:
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30(i) = 1. 1<i<N (6.9)

N
Bi) = 3 Br(i) bilowr) @i, T—-12120, 1<i<N (6.10)
J=1

Trellis Structure for the Evaluation Procedures The forward-backward
evaluation technique takes advantage of a trellis structure to reduce the compu-
tational burden. The computational complexity of the evaluation of the scoring

probability Pr(O|A) can be illustrated by a tree structure as shown in Figure

6.2(a), which shows the exponential growth of complexity in T. This tree struc-
ture treats distinctive paths differently, as if at instance ¢, the number of available
state indices were N. as denoted by the parenthesized index in Figure 6.2(a). In-
stead of traversin_ .l the nodes in the tree structure, which requires O(2T - NT)
calculations to obtain the scoring probability Pr(O|)). the forward-backward
evaluation procedures transform the tree structure in Figure 6.2(a) into a trellis
structure shown in Figure 6.2(b), by recognizing the fact that at any instance 1
and any state g; there are always only N possible next states regardless of the past
transition history. The branches in the tree structure merge into N nodes (states)
at every instance [66], and the computation is reduced to O(N?T) calculations

[134).

Viterbi Algorithm in the Scoring Phase By transforming the tree struc-

ture into the trellis structure, dynamic programming techniques, e.g., the Viterbi
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Figure 6.2: (a) Tree structure for evaluation of the scoring probability Pr(O|).
(b) Trellis structure for evaluating the scoring probability in an HMM.
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algorithm, can now be efficiently employed to find the best state sequence I* =
(75 %3, ... i7) such that:
Pr(0, I'{}) = max Pr(0, I|})
all 7

The formal steps in the Viterbi algorithm for finding the single best state

sequence can be described below [134]:

1. Initialization:

bo(?) = =i bi(oo)

do(i) = 0 (6.11)
2. Recursion:
for 0<t<T—1, 1<j<N
b (7) = 2N [ai564(7))bi(0141)
P () = arg max [a;8(7)] (6.12)
3. Termination:
po= Jmax [6r()]
ip = arg max [é(2)] (6.13)

123



4. Path Backtracking:

fort = T-1.T-=-2..... 0

o= Yualing) (6.14)

Note that the Viterbi algorithm is similar (without the path backtracking
steps) in implementation to the forward evaluation procedure. However, a max-
imization over previous states is used in place of the summing operation used in
the evaluation procedure. Again the trellis structure can be used to efficiently

implement the computation {134].

Reestimation Algorithm in the Learning Phase

The operations involved in the learning phase of an HMM adj: * the model
parameters (4, B. 7) to maximize the scoring probability of the observation
sequence given the model. A widely used iterative procedure is the Baum- Welch
reestimation algorithm [20.19]. In using this reestimation algorithm, two proba-

bility working variables needed to be introduced:

(i) = Pr(ii=4q.0

A)
= a(i) Bi(7) (6.15)
&(i,7) = Pr(ii=gi.i-1 = q;,0|})

= a; a;-1(j) bi(or) Be(7) (6-16)
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where 4(7) is the probability of being in state ¢; and in presence of the training
sequence O at time 1, given the model A. £(¢, 7) is the probability of a path being
in state g, also in presence of the training sequence O at time { — 1 and making
a transition to state g; at time {. given the model A. The reestimation formula

for A, B and = can thus be formulated:

T . .
a; = M (617)

T aly)

ZIT=0. or=k ﬁt(i)
i e(1)

(6.18)

7 o= ) (6.19)

If we define the initial model as A = (A, B, ), and the reestimated model
as A = (A, B, 7). then it can be proven that from each parameter reestimation,
we have found a new model X from which the training sequence is more likely to

be produced [134]. i.e..
Pr(O}A) > Pr(O|A).

The reestimation algorithm can then be applied to the given training sequence
iteratively so that we can successively acquire new {1}, which improves the scor-

ing probability of O being observed from the model until some convergent point

is reached.
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6.1.3 Relationship Between a Multilayer Perceptron and

an HMM

HMNMIs, which use the Baum-Welch reestimation learning algorithm (a maximum
likelihood estimator [66]). have been widely used in speech recognition tasks.
One of the main advantages of using HMMIs for speech recognition lies in the
possibility to take account of the time sequential order of speech signals and to
include the time warping process. However, the a priori choice of the model
topology (e.g.. number of states. allowable transitions, probability distribution
and transition rules) limits the flexibility of the models and make it difficult to
include non-explicit knowledge of speech production and recognition processes
[23].

On the other hand. the back-propagation learning algorithm used in the mul-
tilayer Perceptrons performs an iterative gradient descent search based on min-
imizing the least squares error function in the synaptic weight space. When
compared with the HMMs. the main distinction of this algorithm is its ability
to memorize and generalize high-order constraints (implicit knowledge) between
data while stressing the discrimination power between the different classes [23].
For example, BP learning compares favorably with Baum-Welch reestimation
learning at the task of distinguishing the word “bee.” “dee,” “ee,” and “vee”
spoken by many different male speakers in a noisy environment [168}.

In the following, the T layer Perceptron specified by Eq. 6.1 and Eq. 6.2 is
used for demonstrating the equivalence of Perceptrons and HMMs. The compar-

ison will be made for both the retrieving (scoring) and learning phases of the two
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models [57].

Relationship in the Scoring (Retrieving) Phase

The most important algorithm in the scoring phase of an HMAI is the forward
evaluation computation. see Section 6.1.2. Note that the Viterbi algorithm has
almost the same computational structure as the forward evaluation procedure,
so the following discussion will be mainly focused on the forward evaluation al-
gorithm. In the following. we will show that by equating some variables, and
defining a special nonlinear activation function. the forward computation in the
retrieving phase of a multilayer Perceptron is indeed executing the forward eval-

uation (or the Viterbi algorithm) of an HMM.

Retrieving Phase of a Multilayer Perceptron The system dynamics in

the retrieving phase of the above multilayer Perceptron can be rewritten in an

iterative formulation,

N

w(t+1) = Z wis(t +1) () +6:(t +1)
1

.

N+l

-~
+

I
™)

wi{t +1) a;(1)

=1

ai(t +1) = flu(t+1)) t=0,1, -, T-1 (6.20)

of

~

where the external input 6;(1 + 1) can be thought to control the operating point

of the nonlinear activation function.



Scoring Phase of an HMNM  As discussed in Section 6.1.2. the forward evalu-

ation computation in an HMM! can also be expressed in an iterative formulation,

N
ul+l(i) = Z“«J Ql(j)
=1

Of..;.](?.) = Il(+|(i) b,’(03+1) t=0. 1, ey T-l (6.21)

where the inputs are ao(z) = 7; bi(0). and the nonlinear operation (discrete or
continuous) is performed by the () mapping function giving the external inputs
(observation symbols) {0,41}. Also. it is worthy of mention that the same set of
transition probabilities {a,;} is used for all of the layers.

Based on Eq. 6.20 and Eq. 6.21. it can be easily seen that the forward
evaluation in the scoring phase of an HMM can be regarded as a special case
of the retrievi. , phase of a multilayer Perceptron with a new definition of a

squashing-like nonlinear activation function.

Relationship in the Learning Phase

There are very high correlations that can be detected between the mathematical
formulations of BP learning for multilayer Perceptrons and Baum-Welch reesti-
mation for HMMs [22]. In the following, we will show that by proper variable
equating, the iterative gradient-descent-like approach can be used to derive the
mathematical formulation of the Baum-Welch reestimation algorithm, which was

originally derived from statistical estimation techniques [20,19,108,66].
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Derivations of BP Learning The mathematical derivations of BP learning al-

gorithm for a T-layer Perceptron basically follows an iterative gradient descent ap-

proach. Given the m-th pair of training patterns, {at™(0),t™,m=1,2,---
}. our goal is to iteratively choose a set of {wi;(t).t =1,2,..

so that the cost (error) function ¢ can be minimized. More specifically,

W) = wiP+ Aw ()
(m) ,
= w0 -1 =
’ 8w5,- (1)
where
1 8 & m o™ (T2
(=3 Z (] a;"(T))
~ m=1 i1=1
By using the chain rule,
IS S i )
duly (1) oul™ (1) Bu(m)(t)

= &™) ™ (t-1)

where the back-propagated error signal 6}""(1) is defined as

&™) =

, M

., T} for all layers

(6.22)

(6.23)

(6.24)
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aC ™t +1)
ad™M(t+1)  aal™(t)

i rd™)

—IZ
= [z 8™ +1) wi (£ + 1)) (™ (@) (6.25)

Note that the error signal on the top layver 5,('")(7’) can be computed directly

without recursive formulation.

ac¢
Bu(m’(])
¢ 9d™(T)
" 9a"™(T) au{™(T)
= (™ - d™(T) f(™(T)) (6.26)

&mN(T) =

Based on Eq. 6.23, Eq. 6.26. Eq. 6.24. and Eq. 6.25, we can get the updating

formulation for the svnaptic weights (also exter...l inputs):

w(T) = wPUT) 40 ST () = a"U(T)) o - 1)

N
W) = w40 SE) (D &+ D) e+ )] g7 - 1)

i=1

Derivation of Baum-Welch Reestimation Learning In the following, we
will show that the iterative gradient descent approach used to derive the formula-
tion of BP learning in a multilayer Perceptron can also be adapted to derive the
Baum-Welch reestimation learning used in an HMM [57]. Given the observation
sequence O, our goal is to iteratively choose a set of {ag")} so that the likelihood

¢ can be maximized. Due to the probabilistic nature of an HMM, the incremental
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additive updating of the synaptic weights in the BP learning is replaced by the

incremental multiplicative updating of the transition probability:

agn-i—l) — af;n) . Aagn)
_ o m 9
= 7 a,-j aa(m)

1

where
~ A‘
(=Prio) =Y o)
J=1

Again by using the chain rule.

a ET: a¢  aa!™(i)
ad™ & 9a™) adl}”
my, o, D™
= Y‘31( )(7) 3 (m))
aj;

aa{™ (i) o™ (1)
du{™(t)  dal}”

Am(i)

I
(g

..‘
1
-

Bm(i) 6™ (o)) oM ()

i
Mﬂ

...
"
Ll

By combining Eq. 6.27 and 6.27. the iterative updating formulation for a( ™ ¢

be obtained,

8‘;
(m+1) ; (m) 6
a;; = ai; 7 (m)
Y 7 g aaL)
L m) glm)psy (mdg oy o(m) s
= 7' Y a; B() 6 (o) aiZi(d)
t=1

I
N‘
R
E)
+
-
=
L)
S—
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where §( i) = Pr(i; = ¢qi.11-1 = ¢, 0|)). Note that since only one set of
weights used for all the T lavers of trellis structure, so average of the intermediate
weights gmt g, i,j) over all the layers is taken place. The backward likelihood
signal ﬂ,‘m)(i ). which is similar to the back propagated error signal in BP learning,

is also introduced.

_%K

da™(i)

5 ooty
Au41(7) 30 (2)

— Z\: a¢ 30:-“:) (m)

J‘-l 305?1) (7) 3“5;"1)

= Z 5:(;"1) b(m)(0t+) (m) (6.27)

3y =

J)

Note that the backward likelihood signal on the top layer ,3§~m)(i) can be computed

directly without recursive formulation, i.e., By =1

Unlike the BP learning where no specific rule can be followed to select the
learning rate, the updating step 7’ in the Baum-Welch reestimation algorithm 1is

constrained by the standard Markovian property,

N
Ya™ = 1. j=1,2 - N

i=1
N
= z 17'

=1

N
=7

=11

6™, 5)

M=

1

a(m D ﬂt(m)(l) b(m)(o ) at 1(.7)

M‘ﬂ

]
-
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= 7 Z[Za"" =D () KM (0,)] oI

= 7 za‘""o)o‘"" )

= 1 Z*‘"‘)(J)

= ;Ov,""(j) (6.28)
where 1™ (j) = Pr(i; = ¢,,O|}), and

1

[
7] = ——__ o -
ST AMmG)

6.2 Systolic Architectures for HMMs

6.2.1 Array Design for the Scoring Phase of an HMM

Similar to the ring svstolic design for ANNs, the recursive forward evaluation
procedure for the scoring phase of an HMM as given in Eq. 6.21 can also be

rewritten as a generalized consecutive matrix-vector multiplication [93,95]:
d; = 7O b(o) (6.29)

C—i.H,.] = [Aat] © b(03+1) (6.30)

where the ® operator performs corresponding element multiplication between

two vectors, i.e.,

[:C], T2y +evy xN]T@[yls Y2, <+ yN]T = [—’513/1, TaY2y -« -y xNyN]T
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The forward likelihood vector a;, initial state vector %, symbol occurrence vector
b(o,), and the state transition matrix A, which are used in Eqs. 6.29 and 6.30,

are given by

a; = [Ot(l)e a(2), ..., Q’x(N)]T

7?t = [7.‘1, T2y vvn F‘\-]T
blo) = [bi(0). ba(ar). ..., bx(or))”
ayy dyz o )N
;. Q2 - doN
A =
| ¢x1 Axg -t ANN

Similar to the DG design for the systolic ANN, the cascaded DG for HMM
is depicted in Figure 6.3(a). This again leads to a ring systolic architecture a.
shown in Figure 6.3(b). The pipelining period of this HMM systolic array is
1, which implies 100% utilization efficiency during the iteration process of the

forward evaluation procedure [81.99].

Forward Evaluation Procedure on the HMM Systolic Array

In the implementations of the forward evaluation procedure using the HMM
systolic array, each PL, say the i-th PE, can be treated as a state, and the corre-
sponding state transition probability (a;1. @i, ...,ain) are stored in the memory
with a circular-shift-up ordering as shown in Figure 6.4. The symbol occurrence

probabilities {b;(k)} are also stored in i-th PE. A table-look-up mechanism is
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Figure 6.3: (a) Cascaded DG for the forward evaluation procedure in an HMM.
(b) Ring systolic array for an HMM.
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provided for fast associative retrieval of the symbol occurrence probability 4;(o;)

when symbol o, is observed at time instant {. The operations required of each

PE in order to perform the forward evaluation procedure are described as follows

(see Egs. 6.6, 6.7. 6.8).

1.

o

Initialization: Each PE. say the i-th PE, receives #; and o, from
its corresponding input channel to compute its initial forward likelihood
ao(i) = =, bi(0o) in one clock unit. This initial value ao(7) is then multi-
plied with a;; to form the product which is assigned to the accumulating
variable y;. This initiates the iteration cycle at time ¢ = 1. The initial value

ao(7) is then pipelined leftward to be cycled in the HMM systolic array.

Recursion: Each PE. say the i-th PE. upon receiving o;(j) at each clock
of the t-th cvcle will also fetch the corresponding transition probability a;;
from the cyclic-shift memory in synchrony. and will form the product to be
combined with the p; stored in the i-th PE. After N clock units, the net

input u,,4(7) is completely formed.

AT
ueay (1) = p; after N clocks = Za,'jot(j)
i=1

The observation symbol 0,4, is then read in from the input port, after the
complete accumulation of u.44(Z), to find the symbol observation probabil-
ity b;(0.+1). This probability is immediately multiplied by u;4.1() to yield
the next forward likelihood ay41(2). This new forward likelihood is again

multiplied by a;; to yield a new uj, starting the next (¢ + 1)-th cycle.
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Figure 6.4: The execution of the forward evaluation procedure on the HMM
systolic array.

3. Termination: After T cycles have passed, each ar(i), created at the i-th
PE, is pipelined leftward for one more cycles to generate the desired scoring

probability Pr(O|A) at all the PEs, i.e.,
N

Pr(O[A) =3 ar(i).

=1

Backward Evaluation Procedure on the HMM Systolic Array

The same systolic array for the HMM forward evaluation procedure can be eas-
ily adapted to implement the backward evaluation procedure. The operations

required of each PE in order to perform the backward evaluation procedure are

described as follows (see Figure 6.5).
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1. Initialization: Each PE, say the i-th PE, receives or from its corre-
sponding input channel to compute the its initial probability b;(or) in one
clock unit. This initial value b;(o7) is multiplied by a;; to form the product
which is assigned to the accumulating variable p;. This initiates the itera-
tion cycle at time T — 1 and p; is then pipelined leftward to be cycled in

the HMMI systolic array.

o

Recursion: Each PE, say the j-th PE, upon acquiring the newly gener-
ated Bi41(j) and receiving o.4; from the input channel, will multiply 841 ()
by b;(0,41) and assign the product to a temporal variable w;. Whenever an
accumulator p; (sent from i-th PE) arrives. the variable w; is multiplied by

a;j; and the product is added into p,.

pi = pi +wj aji

After N clock units. the accumulator p; will return to the i-th PE with the

required partial summation. and will be assigned to By(z),

N N
Bi(i) = pi at i-th PE =Y wja; = D _[Be(§)bi0n41)]asi

i=1 j=1

which will start another new cycle.

Viterbi Algorithm on the HMM Systolic Array

As discussed in Section 6.1.2, the Viterbi algorithm can be efficiently employed

to find the particular state sequence I" = (ig, ], ... 77) such that
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Figure 6.5: The execution of the backward evaluation procedure on the HMM
systolic array.

Pr(0, I'|A) = max Pr(0O, I|))
all 7

Because of the intimate similarity between the Viterbi algorithm (without
backtracking steps) and the forward evaluation procedure, the HMM systolic

array can again be easily adapted to the Viterbi algorithm.

1. Initialization: Each PE, say the i-th PE, receives «; and op from its
corresponding input channel and computes its initial forward likelihood
60(1) = 7 bi(0o) in one clock unit. An initial state variable (i) is arbi-
trarily assigned zero value. The initial probability 8o(7) is then multiplied
by a;; to form the product which is assigned to the comparator variable ;.

This initiates the iteration cycle at time ¢ = 1 and 8o(2) is then pipelined
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leftward to be cycled through the HMM systolic array.

2. Recursion: Each PE, say the i-th PE, upon receiving é,(j) at each clock
of the t-th cycle, will fetch the corresponding transition probability a;; from
the cvclic-shift memory and form the product a;;6,(j). For each cycle, the
two variables 7, and vy41(¢) are arbitrarily assigned a zero initial value. The
product a;;6,(j) is then compared with 7; (stored in the i-th PE) at each

PE as follows

i —
if 9; > a;;6,(j) then {
L"z+1(7.) — '¢’t+l(i)

\

o — asdl)
if ;< a;jé(j) then < a

{ Pral(t) — Jj

After N clock units. «l the comparisons have been made, and the com-
parator variable 5; is multiplied by b;(0;4;) and the product is assigned to

6¢41(7). Hence.

b (1) = 7ibi(0141)

max. [aié(i)lbilon)

vea(i) = arg max [aié(j)]
The newly generated §,41(7) is again multiplied by a;; to form the new 7,
and start a new recursion cycle. The variable 5; is then pipelined leftward

through the HMM systolic array.
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3. Termination: After T cycles have passed, each 67(¢) is created at the i-th
PE. One more cycle is required to find the maximum value of {67(7)} among

all the N PEs. This final cycle also starts the backtracking operations.

po= lrgné)‘\\ [5T(i)]
it = arg max [67(7)]

Because of the sequential nature of the backtracking processes, we would
like to perform the backtracking operations by using an appended PE con-
nected to the leftmost PE of the HMM systolic array as shown in Figure
6.6, so that the pipelinability of the whole system won’t be influenced. By
using this appended PE. all the original PEs can still be used to perform
the Viterbi algorithm on the next observation sequence at the same time
that all the {v'7(7)} being compared at the appended PE. Because of the
existence of the appended PL. we need to send all the {¢,(¢)} values cre-
ated in the i-th PL at the t-th cycle to the appended PE via pipelining at

(t + 1)-th cycle.

4. Backtracking: Once the 5 is produced at the appended PE during the
extra time cycle. and all the {¢(7)} have been sent to and stored in the ap-
pended PE, the backtracking for the optimal state sequence can be started

in a straightforward sequential way.

i = Yeq1(tigr)
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Figure 6.6: The execution of the Viterbi algorithm on the HMM systolic array

to find the most probable state sequence.

6.2.2 Array Design for the Learning Phase of an HMM

The HMM systolic array can also be used to implement the Baum-Welch reesti-

mation algorithm in a fully pipelined fashion. Similar to the systolic implemen-

tation of the BP learning algorithm. we can schedule the overall operations in

the learning phase as follows.

1. Given the training sequence O, perform the forward evaluation procedure

(like the forward step in BP learning) on the HMM systolic array as dis-

cussed in Section 6.2.1 (sec Egs. 6.6, 6.7, 6.8).

2. After the scoring probability Pr(O|}) is calculated, the backward evalua-

tion procedure is started as discussed in Section 6.2.1 (see Eqs. 6.9, 6.10).
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3. Along with the recursion of the backward evaluation procedure, the working
variables {v,(?)}. {&:(¢,7)} are computed cycle-by-cycle (see Egs. 6.15,

6.16).

4. At the end of the backward evaluation procedure, the model parameters

(A, B, =) are updated (see Eqgs. 6.17, 6.18. 6.19).

Repeat 1 to 4 until convergence.

Now let us assume the forward evaluation procedure is completed and all the
forward likelihoods {a((¢). { = 0. 1. .... T} are all computed and stored in
sequence at the i-th PE. Three extra working variables at :-th PE need to be

defined. {bb;(k), k = 1. 2..... M}, {aa;;, 1 = 1. 2...., N}, and bt;. These

three extra working variables and the two previously defined working variables
({7:(1)}, {&(i.7)}) will perform the following operations at the same time that
the backward evaluation procedure is performing its {-th cycle operations (see

Figure 6.7).

1. Whenever a new 3(i) is created at the i-th PE (note that a,(7) is assumed

to be stored in the i-th PE).

(1) = (i) Bi(i)
2. Again the fast associative retrieval mechanism is used to increment one of
the working variables {bb;(k)},

bbi(k) + 7.(5) if o = k
bbi(k) —
bb, (k) if o # k
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Figure 6.7: The execution of the learning phase on the HMM systolic array,
which combines both the operations of the backward evaluation procedure and
reestimation algorithm at the same time.

3. The normalization variable bt; needs to be incremented also,
bl; = bl; + 7e(2)

4. While calculating 5,(7). we pre-compute the product Bi41(2)bi(0:41)ai; at
the i-th PE (which is to be added to the cycling accumulator p;). This

product is now multiplied by a,(j) and the product assigned to the modified

working variable §(z, 7).

&(i,7) = aima(g) hi(or) Bi(2) a;;
Along with the cycling of p;, the forward likelihood a;(j) needs to be cycled
in the HMM systolic array to ensure the multiplication can be carried out
in the i-th PE at the right time.
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3. After £(i,7) is computed. the working variable aa;; in the i-th PE can thus

be incremented.

aa;; «—— aa;; + {g(?_])

After the recursions of the backward evaluation procedure are completed, the

three extra working variables are all assigned their proper values.

T
o, = > ()
t=0
T
(k) = D wl)
t=0, o=k

T
aa;; = ; (7. 7)

At the end, an additional cyvcle is required to perform the parameter updatings

based on Egs. 6.17, 6.18. 6.19,

a; = aa;/(bt; —7(j)) (6.31)
bi(k) = bbj(k)/bL; (6.32)
5. = =1(i)/Pr(O|A). (6.33)

6.2.3 Systolic Array for Left-to-Right HMMSs

In the above discussions. we are only concerned about the general HMM, which is
assumed to have a full state transition matrix, i.e., all the {a;;} in the state tran-

sition matrix A are nonzero entries (see Figure 6.8(a)). For some applications,
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we arc interested in models where constraints are imposed on the HMM. One
popular model is the lefi-to-right HNMM as shown in Figure 6.8(b). A left-to-right
HMNDM has a upper triangular state transition matrix. For a six state (N = 6)

and bandwidth (B = 2) HMM, A can be expressed as:

an 0 0 0 0 0
2y d22 0 0 0 0
0 a3y d33 0 0 0

A = (6.34)
0 0 Az Q44 0 0

0 0 0 asy dass 0

0 0 0 0 ags Qge

The left-to-right Hl\-l;\l.-\\'hich is widely used in isolated word recognition
tasks, inherently imposes a temporal ordering since the lower numbered states
account for observations occurring prior to those of higher numbered states [134].
In isolated word recognition. a word utterance has an unambiguous progression
through the state sequence, and the number of states needed for each word model

is usually manageable.

Mapping Left-to-Right HMMSs to a Bidirectional Systolic Array

The previously proposed HMM systolic array can be effectively adapted (by
adding a few semi-global links) to exploit the banded (or circularly banded)
structure of the state transition matrix [99]. The modified cascaded DG for the
ergodic HMM (B = 2) defined in Eq. 6.34 is shown in Figure 6.9(a). The same

projection and scheduling vectors will lead us to the bidirectional HMM systolic
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Figure 6.8: (a) A general (ergodic) HMM, in which each state in this model is
possible to reach any states (including itself). (b} A left-to-right HMM, in which
the lower numbered state always precedes a higher numbered state.
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array with global interconnection links (of length B—1) as shown in Figure 6.9(b).
Note that the newly generated forward likelihoods {a()} are circularly shifted
rightward by (B —1) positions via semi-global wires. The bidirectional HMM sys-
tolic array can be used to process the left-to-right HMMI. with a factor of N/B
savings in processing time. This savings is very significant for most applications.
Basically. the semi-global interconnection links are only used to reposition the
propagating data. The implementation of the backward evaluation procedure
and the reestimation algorithm of the learning phase of the left-to-right HMM on
the bidirectional HMMI systolic array is straightforward. Basically, an analysis
similar to that of the general HMM can be carried through for the left-to-right
HMM. Only small modifications to the semi-global links for the repositioning of

the propagating values are required.

6.2.4 Incorporating the Scaling Scheme

It is observed that both a,(7) and 3,(7) tend to zero with geometric speed due to
the consecutive multiplications of probability values which are less than 1.0. In
order to avoid the mathematical underflow problem frequently encountered in the
learning phase, a scaling scheme using a normalization technique has been pro-
posed [104,67]. Although this scheme can successfully overcome the mathematical
underflow problems. the parallel implementation of this scheme is hindered by its
sequential nature.

A slightly modified version of the original scaling scheme (see [104,67]) is pro-

posed, which can successfully overcome the problems of mathematical underflow,
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Figure 6.9: (a) The DG for the left-to-right HMM with N = 6 and B = 2. (b)
The bidirectional HMM systolic array with global interconnection links (of length

B -1).
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yet be implemented on the HMM systolic array without degrading the pipelining

rate.

Scaling in Forward Evaluation The modified forward likelihood {a}(3)} (see

Eq. 6.7), which can prevent underflow. are defined as [67]

"

N
o)) = [gl%‘ a;(7)] bi(os1) (6.35)

" (-)
S Gl
a(i) = T
” .
_ ay41(7)
‘\r 4 g
Zi:lot(z)
01+1(i)

Z?:] aq(2)

= 3:'”_(')_ (6.36)
=1 QOr

where

N
6 = Z 0;(5)
i=1

Zf\.:l a,(7)

SNV (6.37)

Note that ¢ = 1, and

T N

I1 @ =>_ ar(i) = Pr(0O]}) (6.38)

7= =]

The HMM systolic array can be easily adapted to recursively calculate the

modified forward likelihood {aq,,(¢)} in a fully pipelined fashion. As discussed in
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Section 6.2.1, at the -th cycle, the HMM systolic array requires N clock units to
calculate a:'_l_l(i) at each PE, i.e., the i-th PE, (see Eq. 6.33). At the same time,
when a;(i) is cycling in the ring array to accumulate the required components to
form a;,, (i) at the i-th PE. the computations of ¢, shown in Eq. 6.36 take place.
When a)(7) comes back to the i-th PE after N clock units, the accumulations of
o, are completed. and we are ready to compute a;,,_,(j) (see Eq. 6.36). Note that
{6,} will all be stored at each PE (instead of storing {a,,(i)} only) for use in

the learning phasc.

Scaling in the Backward Evaluation and Reestimation In a similar man-
ner, the modified backward likelihood {3;(i)} (see Eq. 6.10) can also be defined

as [67):

N
3(i) = 2 Bu(d) bjloen) aji (6.39)
Bz(’) = o0
B(1)
- 6.40
T (6.40)

Since all the {¢,} are stored at each PE. the calculations of {ﬂ;(z)} nearly follow
the presentation in Section 6.2.1.The only additional computation is the division
operation of ¢,.

It can be easily shown that two modified working variables, v,(¢) and £,(4,7)

can be derived from {a}(j)} and {B,(j)} as follows.
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"

Pr(i, = |0, ))
Pr(iy = ;. O|))
Pr(O|X)
Pr(0O|X)
= a,(1)3(i) (6.42)

74(7)

f;(f-j) = Pr(i;=qi.i21 = ¢;|0,])
Pr(i; = gi,t11 = Qjeol)‘)
Pr(0O|))
ay, a;-1(7) bi(o) Bi(1)
Pr(O|X)
ai; ay_4(7) bi(or) Bi(7)

= ot (6.43)

These variables can be computed in the same manner as 4;(7) and £(¢, ) discussed
in Section 6.2.2. ( Note that the scaling constant ¢,_, is available at all tL.. PEs
at the moment of computing & (i, 7))

By using the modified forward/backward variables in the computations of the
learning phase, all the procedures discussed in Section 6.2.2 are still valid, except

that the normalization operations in Eq. 6.33 can be avoided.



Chapter 7

Future Research

The research of ANNs involves a very broad spectrum of disciplines, including
algorithm analyses. application understanding. parallelism extractions, array ar-
chitectures, programming techniques. functional primitives, structural primitives,
and the numerical performance of algorithms. It is also important to compare the
neural nets approach with the other conventional methods [109], e.g. simulated
annealing [72]. hidden Markov model [134,165), pattern recognition [123,128], and
nonlinear programming [28].

Although the applicational and architectural studies will play a very impor-
tant role in ANN research. from our point of view. algorithmic studies are the
most important phase in an integrated ANN research effort. At this stage of
neural nets research. a lot of results are simply verified by simulations without
theoretical or mathematical basis. There are various mathematical aspects in the
algorithmic studies of ANNs worthy of our immediate pursuits, e.g., expressibil-

ity and discrimination capabilities, generalization capabilities, convergence in the
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retrieving and learning plases. and the merging of HMMs and ANNs.

7.1 Expressibility and Discrimination of ANNs

It is suggested in [103] that the ability of Perceptron-like multilayer nets to infer
the inherent rule is a kind of real-valued function interpolation. The neural net
approximates an arbitrary function by using weighted sum of various sigmoid
functions, i.e.. weighted sum of some basis functions “bumps,” which is analo-
gous to the method of splines for approximating arbitrary functions [15]. Just like
splines, the tanh functions are constructed in such a way to maximize smooth-
ness. Approximating a function with sums of sigmoids is also similar to a mode
decomposition of the function in terms of a certain orthogonal function basis set,
e.g., Fourier functional, principal component, or eigenvalue-eigenvector analysis.
Let us consider a two layer net with Ay input units and N; hidden units. The

activation value afm of the i-th neuron at the output layver can be expressed as

.\.j :\’0
ai(2) = {3 wa(2)f[Y wij(1)a;(0) + 0x(1)]) + 6:(2))
k=1 =1

where f [Zﬁ;"l w;(1)a;(0) + 0,(1)] can be regarded as one type of basis function
and w;z(2) determines the weights. Using the terminology of Fourier analysis in
electromagnetic theory, the neural network can adjust the proper wavenumbers
of the basis functions by changing {w}. The basis functions and weights exhibit
a similar relationship corresponding to that of eigenvectors and eigenvalues in a
principal component analysis.

Given a fixed activation function (e.g., sigmoid), a multilayer Perceptron has
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an inherent limitation on how accurately it may express the desired function. In
other words. there exists an inevitable gap between the target model and the

closest model representable by the ANNs.

7.2 Generalization Capability of ANNs

The most prominent weakness of neural architecture is its poor generalization [34].
The problem of generalizing the classification on a set of training patterns to the
classification of a new test pattern unobserved before is the most important goal of
today’s ANN research. In fact. given a finite sets of training I/O pairs, it would be
impossible for any learning algorithm to yield the exact generalization. Obviously,
the sample set of learning situations will affect the resulting characteristics of the
trained neural system. However, a good trainer should be able to guarantee that
the generalization will asymptotically converge to give the most representable
output (of this learning algorithm) given long enough training data.

The generalization capability of layered linear threshold network has been
studied based on the dichofomy analysis [30,123,17]. In these methods, the gen-
eralization capability is analyzed based on the probability that a new test pattern
can be categorized into the originally separated regions without introducing am-
biguity. There is still a big gap between these learning-rule independent theoretic
results and the specific neural models.

Also studied in [148] is the generalization capability of multilayer Perceptron.

A special example of on the so-called 3-in-8 problem is used, in which the net
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responds a “1” if there are at least 3 adjacent active bits in an 8 bits input
sequence are detected; otherwise the net responds a “0.” It is reported that
the back-propagation indeed realizes an order 3 AND-OR predicate of the 3-in-8
problem. For small size of training patterns, the network learns the discrimination
by rote and takes no advantage of the regularity of the task. When the size of the
training patterns reach some ratio of that of the overall allowed training patterns,
the net seems to switch from rote learning to more “intelligent” behavior. At this
time, some regularity is established in the internal representation of the hidden

units and there is no use to increase the number of hidden units.

7.3 Convergence Issues in the Retrieving and

Learning Phases

Two main difficulties exist in using current ANNs for searching for a valid solution
in an optimization problem: one is the potential trap at local minimum; the other
is that a direct minimizing solution may not satisfy the given constraints. This
leads us to the research in the convergence of the retrieving phase. Possible
techniques have been proposed to incorporate into the mechanisms of ANNs,
e.g., simulated annealing approaches [153], or Lagrange multiplier techniques
[129]. Other issues are the convergence in the presence of the discretization and
the parallel updating of the system dynamics in the single layer feedback system.
These issues are of importance in the digital parallel implementation. Another

important concern is the convergence properties due to the initial state of a neural
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net.

The convergence issues in the learning phase play an important role in the
performance of the specific learning algorithm. For example, as we discussed
in Chapter 3, by optimal selection of hidden unit size and learning rate, the
convergence can be speedup significantly. There are some other methods that
might be useful. For example, the variable step size algorithm [46], or the block

nonlinear projection methods [136,137].

7.4 The Merging of Multilayer Perceptrons and

HMMs

In Chapter 6. we have presented a unifying viewpoint between a multilayer Per-
ceptron and a hidden Markov model. 1. is observed that the hidden Markov
models can be regarded as a special configuration of the multilayer Perceptron
with a squashing type of nonlinear activation function. It is also shown that,
through proper redefinition. the iterative gradient descent approach, which was
used to derive the back-propagation learning in the multilayer Perceptron, can
be successfully used to derive the Baum-Welch reestimation formulation in the
hidden Markov models. Hopefully. through better understanding of the close in-
teraction between these two models, deep insights toward the better usage and

modification of these two algorithms can be discovered.
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