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1. Introduction

Preconditioned conjugate gradient (PCG) methods have been a very popular and
successful class of methods for solving large systems of equations arising from discretiza-
tions of elliptic partial differential equations. With the advent of parallel computers in
recent years, there has been increased research into effectively implementing these
methods on various parallel architectures. In this paper, we present a class of precondi-
tioners for elliptic problems built on ideas from the digital filtering theory and imple-
mented on a multilevel grid structure. Our goal is to work towards preconditioners that

are both highly parallelizable and rapidly convergent.

The idea of preconditioning is a simple one but is now recognized as critical to the
effectiveness of PCG methods. Suppose we would like to solve the symmetric positive
definite linear system Az =b, where A arises from discretizing a second-order self-adjoint
elliptic partial differential operator. A good preconditioner for A is a matrix M that
approximates A well (in the sense of producing a spectrum for the preconditioned system
M™A clustering arbund 1 and having a small condition number) and for which the
matrix vector product M~!v for a given vector v can be computed efficiently. With such
a preconditioner, one then solves in principle the preconditioned system M lAz=M"b

by the conjugate gradient method.

Since an effective preconditioner plays a critical role in PCG methods, many classi-
cal preconditioners have been proposed and studied, especially for second order elliptic
problems. Among these are the Jacobi preconditioner (diagonal scaling), the SSOR
preconditioner [3], the incomplete factorization preconditioners (ILU [25] and MILU (15])
and polynomial preconditioners [2],[19]. These preconditioners have been very successful,

especially when implemented on sequential computers.

In the parallel implementation of PCG methods, the major bottleneck is often the



parallelization of the preconditioner, since the rest of the PCG methods can be parallel-
ized in a straightforward way. Unfortunately, previous works [12],[16] have shown that
for many of the classical preconditioners, there is a fundamental tradeoff in the ease of
parallelization and the rate of convergence. A principal obstacle to parallelization is the
sequential manner in which many preconditioners use in traversing the computational
grid --- the data dependence implicitly prescribed by the method fundamentally limits
the amount of parallelism available. Re-ordering the grid traversal (e.g. from natural to
red-black ordering) or inventing new methods (e.g. polynomial preconditioners) to
improve the parallelization alone invariably has an adverse effect on the rate of conver-

gence [12],[23].

The fundamental difficulty can be traced to the global dependence of elliptic prob-
lems. An effective preconditioner must account for the global coupling inherent in the ori-
ginal elliptic problem. Preconditioners that use purely local information (such as red-
black orderings and polynomial preconditioners) are fundamentally limited in their abil-
ity to improve the convergence rate. On the other hand, global coupling through a
natural ordering grid traversal is not highly parallelizable. The fundamental challenge is
therefore to construct effective global coupling that are highly parallelizable. Ideas along
this line have of course been explored in the development of multigrid methods as solu-
tion [10],[17] as well as preconditioning techniques [20],[21] and the more recently pro-

posed hierarchical basis preconditioner [8],(29].

We are thus led to the consideration of preconditioners which share global informa-
tion through a multilevel grid structure (ensuring a good convergence rate) but perform
only local operations on each grid level (and hence highly parallelizable.) Since we are
using the multilevel iteration within an outer conjugate gradient iteration, we have more
flexibility in terms of the choice of inter- and intra-grid level operators, such as interpola-

tion, projection and smoothing. One preconditioner of this type has been proposed
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recently by Bramble, Pasciak and Xu[.9] and Xu[28]. The methods that we propose in
this paper are quite similar to their preconditioner and our digital filtering framework
can be looked at as providing an alternative view of their method. It also allows the
flexibility in deriving several variants. A major difference in the approach taken by
Bramble, et al. and this paper from multigrid methods is that the smoothing operation in
multigrid methods is replaced by a simple scaling operation. Other types of multilevel
preconditioners have been studied by Vassilevski [27], Axelsson-Vassilevski [6],{7],
Kuznetsov [24] and Axelsson [4].

The outline of the paper is as follows. In Section 2, we describe our framework for
deriving multilevel filtering preconditioners for a model problem. The basic framework is
then extended to more general problems in Section 3. In Section 4, we briefly survey
several other preconditioners of the multilevel type. Numerical results for (model, vari-
able coefficient and discontinuous coefficient) problems in 2D and 3D are presented in
Section 5, comparing the performance of several multilevel preconditioners, including the
usual multigrid met.hoc.l as a preconditioner, the hierarchical basis preconditioner and the

method of Bramble-Pasciak-Xu. Some brief concluding remarks are given in Section 6.

We note that the main emphasis of the present paper is on the convergence
behavior of these multilevel preconditioners --- no attempt is made to assess their paral-

lel efficiency. That will be the subject of a forthcoming paper.



2. Multilevel filtering preconditioners: fundamentals
2.1 Motivation

Consider the one-dimensional discrete Poisson equation on [0,1] with zero boundary

conditions on a uniform grid 2,

(—é—E+l—%E'l)un=f,,, n=1 ---,N=-1, (2.1)
where N = h~! = 2% with integer L > 1 and E is the shift operator on ;. We denote
the above system by

Au=[,
where A, u and f correspond to the discrete Laplacian, solution and forcing functions
respectively. Clearly, A is a tridiagonal matrix with diagonal elements —%, 1 and —%.
It is well known that the matrix A can be diagonalized as

A=WwTA, w, (2.2)

where A4 is a diagonal matrix

diag( Xy, - , g, " JAN=1), A =1—cos(kmh),
and W is an (N—1)° square matrix whose kth row is
wl = (.?ﬁ)* (sin(kmh), - - ,sin(kwnk), --- ,sin(kmM(N=1)k)).  (2.3)
The diagonalization of the matrix A can be interpreted as the decomposition of the driv-

ing and solution functions into their Fourier components, i.e.

N-t . N-t
i =(72V-)* S wein(knh), i =(%)* S fusinlkmnh), n=0,1,2 -, N.

One can easily verify that @; and f, are related via

AR, =f,, k=12 .,N=-1,

where

A(k) =X =1 —cos(kwh), (2.4)

is known as the spectrum of the discrete Laplacian.



In order to invert A, we can make use of (2.2) and obtain

ATl =wTAsw . (2.5)
The above procedure also serves as the general framework for fast Poisson solvers in
higher dimensional cases. However, fast Poisson solvers are not generally applicable for
nonseparable elliptic operators and irregular domains. Instead, we want to find good
approximations to this solution procedure which are extensible to more general problems
and then use them as preconditioners. The fundamental idea is to avoid the use of
FFT’s but instead use a sequence of filtering operations_ to approximately achieve the
desired spectral decomposition. This explains the motivation and the name of the mul-

tilevel filtering (MF) preconditicner proposed in this paper.
2.2 Piecewise constant approximation of the spectrurﬁ

Our main idea for deriving the MF preconditioner for A is to divide all admissible
wa.venumbers.into bands and to approximate the spectrum A (k) at each band with some
constant. To be more precise, consider the following piecewise constant function in the
wavenumber domain

P(k)=c,, keBls ]-SISL!

where

B={k:2"'<k<?2 and kel},
is the /th wavenumber band. Let Ap be the diagonal matrix with P(k) as the kth diag-

onal element, i.e.

AP=dia'g(P(1)rP(2)) ,P(N—l)), (26)
and P = WT Ap W. Then, the P-preconditioned Laplacian becomes

PlA=WTA,, W,
where

PR VIR ¥ Agi-1 Aty AN=1
A _ = (A -IA = dl _— —_ = ", - s T, —_— y T .
P-a ( P) A ag ( ¢y o ¢Co ¢ L cy )




The question is how to choose appropriate ¢;’s to reduce the condition number x(P~!4).
Suppose that we can find ¢;’s so that

o<t <o,, keR,1<ISL,
where C; and C, are positive constants independent of A. Then, P and A are spectrally
equivalent. There are many ways to achieve this goal. For example, we can choose any
eigenvalue A withix; band B; to be the constant ¢;. For the following discussion, let us
consider the choice,
¢ =470 (2.7)
The ratio of A (k) and P(k) is then bounded by

421 [1—cos(27L+ 1)) < PHK)A (k) < 45~ [1—cos(27LH )],
for k € B;. The largest and smallest values of P~}(k)A(k) for k € B are bounded

respectively

’

—14) — =11\ A Lt ~L+ ~
Amax(PTA) m?xP (k)A(k)<112lanL4 [1=cos(27“*'7)] < 3

and

(P14 = min P~YHEVA () > min 45! [1— ~LH-1 >
Anin(PTA) min P (k)A(k) 2 Zin, 47" [1—cos(2 7)) > 1
Note that the last inequalities in above equations hold independent of L, or equivalently,
the grid size A. Thus, the condition number & of the preconditioned operator P~!A is

bounded by a constant

(p-1 T
We plot the spectra A (k), P~Y(k) and P™'(k)A (k) in Figure 2.1 for N = h~! = 256 with

¢; defined in (2.7).
2.3 Decomposition and synthesis based on filtering

The preconditioning procedure



Plr = WTAR WY, (2.8)
consists of three building blocks: decomposition (W), scaling (A5' ) and synthesis (W7).
Let us rewrite (2.8) as

L1
P_lr =( E—MT‘VI ) r,
=1 €t

where W), 1 <1 <L, are (N—1)? square matrices which have the same 2! to 2/~1

rows as W and zero vectors for remaining rows. Consequently, we have

w,, kEB

WITWt W = {0 (2.9)

otherwise '
where w; is defined in (2.3). From (2.9), we see clearly that W; functions as an ideal
bandpass filter for band B;. Although it is possible to implement the ideal bandpass
characteristics (2.9) with FFT or bandpass filters of size O(/V), the corresponding imple-
mentation is either not easily generalizable or simply too expensive ( O(N?) complexity ).
Instead, we want to approximate the ideal bandpass filter W, with nonideal bandpass
filters F;

w , keB[

T
Fy F,w,,m{o' otherwise ’

in such a way that F; can be implemented cost-effectively for general problems. Note
that F, is in general a dense matrix of size (N—1)2. The resulting preconditioner is in
form

L
Ml = ZCLF,TF, )r . (2.10)
i=1 “l

Before the detailed discussion of implementing F;, 1<I<L, with digital filters, it is
worthwhile to summarize the similarities and differences between the fast Poisson solver
(2.5) and the MF preconditioning (2.10). They are both based on the spectral decomposi-
tion idea. The fast Poisson solver decomposes a function into its Fourier components

through FFT while the MF preconditioner decomposes it approximately into a certain



number of bands through filtering. The filtering operations, which correspond to local
averaging processes, can be easily adapted to irregular grids and domains and variable
coefficients. In contrast, FFT is primarily applicable to constant coefficient problems
with regular grids and domains. Besides, for the fast Poisson solver we usually require
the detailed knowledge of the spectrum. But for the MF preconditioner we only have to

estimate how the spectrum varies from one band to another.

In the context of multirate signal processing[13], the separation of a function into
several components each of which is confined in a narrow wavenumber band is known as
the filter bank analyzer and the reverse process is the filter bank synthesizer. Although
there exist many ways to implement the filter bank analyzer (F;, 1<I<L) and syn-
thesizer (FT, 1<I<L), a simple design illustrated by the block diagram of Figure 2.2 will
be sufficient for our purpose. This design is based on the cascade of a sequence of ele-
mentary filters H;, H,_,, * ' -, H,, where the function of H; is to preserve Fourier com-
ponents contained in bands B;, -, Bj_; and to eliminate Fourier components con-

tained in band B;. From Figure 2.2, we see that F; are related to elementary filters H,

via
F,=1I-H,, (2.11a)
F,=(I—H,)[P_fI+IHP], 2<I<L-1, (2.11b)
F,= pli[z H, . (2.11¢)

It is not hard to check that we can obtain components in bands B; and B, from the
outputs of F; and F,. The product of a sequence of elementary filters appearing in
(2.11b) leads to the band B,U - - - UB;, from which the band B; can be separated by
using the filter I — H;. Thus, the problem of designing the filter bank F}, 1<I<LL, is

transformed into an equivalent one of designing elementary filters H;, 1<I<L.



2.4 Design of elementary filters

Consider the design of the elementary filter H; appearing at the first stage. It is
desired that the filter H, = WTA #, W has the following ideal lowpass characteristic,
1, 0<Lk<olt

HL(,‘)={O, 2L—ISk S2L ’
where A (k) is the kth element of the diagonal matrix Ay, so that we are able to

separate the function r into two bands: the high wavenumber band (/—H.)r and the

low wavenumber band Hy r.

We will approximate the above ideal filter with a nonideal lowpass filter of size

(2J+1),

J . .
HL.J = a9 + 2 aJ- (EJ +E_J ) . (212)
J=1

where the coefficients @ and a;’s are to be determined. In order to define the operation

J
Hy v, =ag+ 3 a5 (Vg4 + Vaej)
Jm=l

for any vector v, appropriately, the odd-periodic extension of v, is assumed,

V_p =—1v, and Up4on =v, , forintegerp .
Consequently, the filter Hy ; corresponds to a circulant matrix. The above odd-periodic
assumption is only used for analyzing and designing filters. ‘The actual implementation

of the MGMF algorithm (see Section 3.5) does not rely on this assumption.

There are numerous ways to determine the coefficients ag and ¢;’s depending what
approximation criteria to be used. The operator H; ; has the eigenfunction sin(kwnh)
with the eigenvalue

. J
Hy ;(k) =aq+2 3 a; cos(kmjh) .

j=1
Here we consider a class of lowpass filters based on the following two criteria:



-10-

(1) By (4D =5 and Ay (k) = 3= = [ Hi s(N-k) - ]

(2) A ;(0) =1 and the first jth derivatives (1 < j < J) of Hy, ;(0) are all zero.
The first criterion implies that the function FIL, (k) — % is odd symmetric with respect

tok = ]—2V- A direct consequence of this criterion is that

1
2
The second criterion, called the mazimally flat criterion[18], requires the approximation at

ag = and a; =0, j positive even .

the origin to be as accurate as possible. It is used to determine a; with odd j. In Table
2.1, we list coefficients a; for J =1, 3, 5 obtained according to criteria (1) and (2) and
plot their spectra in Figure 2.3 with N = 2% = 256. The larger J becomes, the better the

approximation is.

J ag ay as as
1 1

1 — —_ 0 0
2 4
1 9 —1

3 i~ —_— 0
2 32 32

5 1l 150 =25 3
2 512 512 512

Table 2.1: Coeflicients of a class of nonideal lowpass filters

As illustrated in Figure 2.2, the low wavenumber band of the function r is used as
the input to the filter Hy_; at the next stage. The filter H;_, can be constructed with
the same set of coefficients used by H;, i.e.

J
Hy_y;=ao+ g}l a; (E% +E™%). (2.13)
Comparing (2.12) and (2.13), we see tha; the only difference between H; ; and H;_, ; is

the position of grid points used for averaging. For the first-stage filter H ;, local
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averaging is used. For the second-stage filter Hy_, ;, we consider averaging between
points separated by 2h. This design is due to the following reason. From (2.13), we see
that the filter H;_, ; has the spectrum

J
HL_“(k) =ag+2 '21 a; cos(kmy2h) ,
J-

and that Ay _, ;(k) is related to A ;(k) via

Hy_y 5(k) = Ay 4(2F) .
Consequently, for functions consisting only of components in low wavenumber region
1<k <2-~!, A, _, behaves like a lowpass filter which preserves components in the region
1<k <242 and filters out components in the region oL-2< <21 However, note that

H;, I <L is not a lowpass filter with respect to the entire wavenumber band.

By applying the same procedure recursively, we can define the general elementary

filter H; on a uniform infinite grid as

al-l

J -l -
Hy=a+Y o (E¥ 7 +E27), 2g1<L, (2.14)
j=1
where the coefficients a;’s are listed in Table 2.1. The spectrum of H ;i

Hy s(k) = ao + é a; cos(kmj2t~'h), 2<I<L . (2.15)
It is clear from (2.14) that the elementary filter H ; is symmetric. So is the bandpass
filter F;. The construction of the bandpass filter F; with elementary filters H is illus-
trated in Figure 2.4, where /=L —1 and J=1 are chosen as example. We know from
(2.11) that Fy_, =(1 - H,_, ) H.
The above discussion is based on the odd-periodic property of the sequence v,.
However, this may not be easily implementable for general multidimensional problems.
The difficulty arises when the size of Hj , is so large that it operates on points outside

the domain. There are two possibie solutions. It may be preferable to construct filters of

larger size by the repeated application of filters of smaller size. For example, we can



apply the filter Hy ; (2.12) with J=1 twice. This is equivalent to a filter of size 5,

HL,_(—E“1+ + E)2 11'3'2+ lpg-143 4 1p g

2 6 8 4 16
Another possibility is to apply smaller filters at points close to boundaries and larger

filters at points far away from boundaries.

Note also that, for fixed J, the size of the elementary filter H; ; increases as !
decreases. However, this problem can be resolved by incorporating the multigrid discreti-

zation structure into the above multilevel filtering framework as described in Section 3.1.
2.5 Fourier Analysis and higher dimensional cases

Since the preconditioner M™! = Ec, 177F, and the Laplacian A share the same

eigenvectors, i.e. Fourier sine functions, the spectrum and condition number of the MF-
preconditioned Laplacian can be analyzed conveniently by Fourier analysis. From (2.11),

we know the following spectral relationship

Fpg(ky=1~—H (k) ,

ry Py L '
Fu (k) =(1 - H (k) )[ l+1 polk) ], 21 <01, (2.16)

PR = TL B, (),
where A, ;(k), 1<I<L, are given by (2.15). Using (2.4), (2.7) and (2.16), we can deter-
mine the spectrum of M~14,
MMTIA) = MY (k)A (k) = E‘l—‘Fu( )iy (k) A(k) .

The spectrum MM ™'A) is plotted as function of ¥ with / =1, 83,5 and A~' =256 in
Figure 2.5. We should compare these spectra with that in Figure 2.1 based on the ideal
filtering assumption. All of them have one common feature. That is, eigenvalues are
redistributed in such a way that there exist many local maxima and minima. The condi-
tion numbers for J =1,3,5 are 2.50, 1.88 and 1.93 respectively. Note that these

numbers are in fact smaller than the condition number 4.93 obtained with ideal filtering.
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The generalization of the MF preconditioner to two- or three-dimensional problems
on square or cube domains can be done straightforwardly. For example, we may con-
struct the two-dimensional elementary filter by the tensor product of one-dimensional
elementary filters along the z- and y-directions,

J oL ¢ —ob—ls I oL-is —=9L-t g
Hy=[a+ Y o; (ES'+E )| X[ag+ ¥ o (ES '+E )],
j=m1 j=l

which can further be simplified by using operator algebra[l4]. For example, the
coefficients for Hy ; can be written in stencil form as

12

1
H,: — |24

1
» 16 2 M (2.17)

121
Similarly, the three-dimensional elementary filter can be obtained by the tensor product

of three one-dimensional filters along the z-, y- and z-directions.

The condition numbers of one-, two- and three-dimensional MF-preconditioned
Laplacians with two types of nonideal filters (J =1 and J = 3) are computed and plot-
ted as function of the grid size A in Figures 2.6 (a) and (b). These figures show that M

and A are spectrally equivalent.
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3. Multilevel filtering preconditioners: generalizations

In Section 2, we discuss the construction of the MF preconditioner for the model
Poisson problem based on a single discretization grid. This section will discuss the gen-
eralization of this preconditioning technique so that it can be implemented more

efficiently and applied to more general self-adjoint elliptic PDE problems.
3.1 Multigrid multilevel filtering (MGMF)

The filtering operation described above is performed at every grid points at all lev-

els 2<I<L. Since there are O(logN) levels and O(JN) operations per level, where N

and J denote the order of unknowns and the filter size respectively, the total number of

operations required is proportional to O(JNlogiN). However, since waveforms consisting

_only of low wavenumber components can be well represented on coarser grids, we can use
the multigrid philosophy[10],[17] and incorporate the multigrid discretization structure

into the filtering framework described in Section 2. That is, we construct a sequence of

grids € of sizes =0(27'), 1<ILL, to represent the decomposed components. Then,

the total number of unknowns is O(N ) and consequently the total number of operations

per MF preconditioning step is O(JN). Note that J is a constant independent of N.

The corresponding block diagram is depicted in Figure 3.1. The preconditioners
illustrated in Figures 2.2 and 3.1 are called the SGMF and MGMF preconditioners
respectively. Note that the MGMF preconditioner is obtained by inserting down-
sampling (/™) and up-sampling (I/_, ) operators into the SGMF preconditioner. With
the notation commonly used in the multigrid literatures, the down-sampling and up-

sampling operators for grids € (h=24""h) and Q_; (h=24""*1) can be defined as

{ =1 !

000 000
I lo1o| , I : 1010
000 00 0i-

It is easy to verify that a lowpass filter followed by a down-sampling operator is the

same as the restriction operator in MG methods while a upsampling operator followed by
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a lowpass filter is equivalent to the interpolation operator [22].
3.2 Lowpass versus bandpass filtering

To save computational work, we can further simplify the MGMF preconditioner in
Figure 3.1 by deleting the paths and the associated work corresponding to I — H;. As
given in Figure 3.2, we have the modified MGMF preconditioner

T =( Z GITGI )r, (3-1)

j=1d
where

GL=I7

L
G=1II I;’IHP, for2<I<L-1,
p=i+l

G, =H, pll_'lla Py, .
Note that the bandpass filters F; in the MF preconditioner M have been replaced by the
lowpass filters G; in the MF preconditioner @. By choosing d;’s appropriately, we can
make @ behaves very similarly to M as described below. With the MF preconditioner
implemented by (3.1), Fourier components of band B, exist in the first L —/+1 levels and
these components are multiplied by d;™!, - - -, d;”! respectively. Therefore, the scaling

constants d;’s are implicitly defined via

L
1 1
—_— 3.2
g s (3.2)
Solving (3.2) for d; gives:
d, =c¢, and d,=—__l——- l=L-1, ---,1. (3.3)
¢ —Cm

However, we find from numerical experiments that the parameter sets {c;} and {d;} used
in Figure 3.2 give about the same convergence rate. This can be explained by the obser-

vation that, for small {, d; & ¢; since ¢,~! >> ¢5].
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The preconditioning Q~!r can be viewed as a degenerate multigrid method, for
which we have a sequence of restriction and interpolation operations but where the error

smoothing at each grid level is replaced by an appropriate scaling.
3.3 Discretization with nonuniform grids

The above observation leads us to generalize the MF preconditioner to the case of
nonuniform grids commonly obtained from the finite-element di;cretiza.tion. That is, one
can view projection as &ecomposition and interpolation as synthesis and any multigrid
method can be used as an MGMF preconditioner if we replace the potentially more
expensive error smoothing by a simple scaling. It is well known that the eigenvalue A, in
band B; (see Section 2.2) behaves like O(h;~2), where A; describes approximately the grid
spacing for level ! [9]. Therefore, a general rule for selecting the scaling constant ¢; at
grid level { is

¢ = Ok
This generalized version is closely related to the preconditioner by Bramble, Pasciak and
Xu [9]. They derived their preconditioner in the finite-element context discretized with
the nested triangular elements. From our filtering framework, the corresponding elemen-

tary filter H; takes the form

L 0 1
Hy ppx : ry 121y, (3.4)
1 0

D e D -

which is different from Hj ; given by (2.17). We can derive other filters from (3.4) by

applying it more than once. For example, by applying it twice, we get

00121

102 6 2
HL.TBPX: -l? 161061 (35)

266 20

12100
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In order to eliminate the directional preference, we can apply (3.4) in alternating direc-

tions which gives a symmetric filter:

01210

1 14641
HL.ADBPX: IB— 2686 2]. (36)

14641

01210

3.4 Diagonal scaling

The MF preconditioner is designed to capture the spectral property (or h-
dependency) of a discretized elliptic operator but not the variation of its coefficients.
This is also true for the hierarchical basis and BPX preconditioners. In order to take
badly scaled variable coefficients into account, we use the MF preconditioner in associa-
tion with diagonal scaling in our experiments(16]. The diagonal scaling is often used for
cases where the diagonal elements of the coeflicient matrix A vary for a wide range.
Suppose that the coefficient matrix can be writ.ten as

A =D*AD%,
where we choose D to be a diagonal matrix with positive elements in such a way that
the diagonal elements of A are of the same order, say, O(1). Then, in order to solve
A u=/f, we can solve an equivalent problem A @ =/f, where # =D%u« and
f =D7%f, with the MF preconditioner. There exist other ways to incorporate the
coefficient information into preconditioners of the multilevel type, say, to use the Gauss-
Seidel smoothing suggested by Bank et al.[8].

3.5 Summary of practical MGMF algorithm

Given a sequence of grids €, 1<I<L, down-sampling (I/,,) and up-sampling I+
+

operators between grids € and (,,, and appropriate elementary filters H; defined on
Q;, the algorithm corresponding to the block diagram given by Figure 3.2 can be sum-

marized as follows,



Decomposition:
v, =71,
forl=L'_1’ vee 9
vy = Il v,
vy = H2v21
Scaling:
fort=L, - - ,1
wy = ydy!
Synthesis:
8g (= Wo + szl’
for! =2, ---,L
s = w + Hlj_184

Q7lr =g

Table 3.1 Computation of Q@ r

This is the MGMF algorithm implemented in Section 5.
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4. Brief survey of multilevel precondit:ioners

In this section, we very briefly survey other multilevel preconditioners that have

been proposed in the literature and their relationships to one another.
4.1 Multigrid preconditioner (MG)

A natural choice for a multilevel preconditioner is to use a fix number of cycles of a
conventional multigrid method. This approach has been explored early on in the
development of multigrid methods [20],[21]. The basic operations on each grid are inter-
polation, projection and smoothing operations, each of which can be easily designed to be
highly parallelizable. For example, in the V-cycle strategy, each grid is visited exactly
twice in each preconditioning step, once going from fine to coarse grids and once coming
back from coarse to fine. However, for highly irregular problems, such as singularities in
the solutions due to re-entrant corners and highly discontinous co;:fficients, it is not clear

how to choose the smoothing operations and the performance can deteriorate.
4.2 Hierarchical basis preconditioner (HB)

Another preconditioning technique of multilevel type is the hierarchical basis
method[8],[29]. The name refers to the space of hierarchical basis functions defined on
the grid hierarchy. The usual nodal basis functions are used except that those defined at
grid points on a given level which also belong to coarser levels are omitted. Let the
hierarchical basis functions be denoted by 1,11}, where ! denotes the grid level and j the
index of the basis function on that level. Then the action of the inverse of the hierarchi-

cal basis preconditioner M on a vector v can be written as:

My = S5(v,¥))¥) = SSTv,
)
and can be computed by a V-cycle with the matrix S T corresponds to a fine to coarse
zrid traversal and § a coarse to fine traversal. On each level, only local operations are

performed. In 2D, the condition number of the preconditioned system can be showned 1o
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grow like O(log?h™Y), which is a very slow growth. Unfortunately, this nice property is
lost in 3D where the growth can be proved to be O(h~!)[26],[29]. However, these
theoretical results are proven under much weaker regularity assumptions than for the
multigrid methods and the computational work per step is O(h™1) even for highly
nonuniform and refined meshes. For numerical experiments on parallel computers, see
[1],[186].

4.3 Method by Bramble-Pasciak-Xu (BPX)

Very recently, Bramble-Pasciak-Xu[9],[28] proposed the following preconditioner for

second-order elliptic problems in R¢:

Mo = ShEI0.8)6]
j
where ¢,4 are the nodal basis functions and k; is measure of the mesh size of grid level /.
Since the form of their preconditioner is very similar to that for the hierarchical basis
method, the computations can be arranged in a similar way via a V-cycle. They proved
that the condition number of the preconditioned system can be bounded by O(logh™)
for problems with smooth solutions, by O(logzh") for problems with crack type singu-
larities and by O(log®s™") for problems with discontinous coefficients. In 3D, this is a

significant improvement over the hierarchical basis method.
4.4 Algebraic multilevel preconditioners (AMP)

Vassilevski[27] proposed a different approach to derive multilevel preconditioners.
He used the standard nodal basis functions and a multilevel ordering of the nodes of the
discretization, in which nodes at a given level belonging to a coarser grid are ordered
after the other nodes. He then considered an approximate block factorization of the
stiffness matrix in this ordering, in which the successive Schur complements at a given
grid level are approximated by iteration with the preconditioner of the stiffness matrix

recursively defined at the current level. He showed that, with one iteration at each level,
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the condition; number of the preconditioned system can be bounded by O(logh™!). A
similar method has also been proposed by Kuznetsov [24]. Later, Axelsson-Vassilevski
6],(7] improved this bound to O(1) but carrying out recursively more (Chebychev) itera-
tions with the preconditioner at each level. Axelsson [4] also showed that the same tech-
nique can be applied when hierarchical basis functions are used instead of the nodal
basis. Note that when the number of iterations at each level exceeds 1, the grid traversal
differs from all the previously mentioned V-cycle based methods. At this time, we have
not included non-V-cycle type preconditioners in our numerical comparisons but plan to

do so in the future.
4.5 Relationship among multilevel preconditioners

As can be seen from the presentation above, various multilevel preconditioners share
some similarities. Most of the multilevel preconditioners are in the form of a multigrid
V-cycle (MG, HB, BPX and MF) except AMG methods. The MF preconditioner is very
similar to the BPX method. The MF method allows some flexibility in the choice of
filters (basically any multigrid residual averaging operators can be used) and does not
depend on the use of a finite element discretization with nested nodal basis functions. It
also allows a single grid (i.e. non-multigrid) version which may better suit massively
parallel architecture computers. On the other hand, the finite element framework allows
an elegant proof of the asymptotic convergence behavior for rather general problems as is
done in [9],[28] whereas the filtering framework is rigorously provable for constant
coefficient model problems only (although much more detailed information can be

obtained for them.)

Finally, it is interesting to compare these preconditioners with the conventional
multigrid method as an iterative method (instead of as a preconditioner). Several of the
preconditioners have the form of a conventional multigrid cycle, except that the smooth-

ing operations are omitted. For less regular problems where a good smoothing operator



is hard to derive and could be quite expensive, one step of these preconditioners can be
substantially less expensive that a corresponding step of the multigrid iteration. In a
sense, one can view these preconditioners as efficiently capturing mesh size dependent
part of the ill-conditioning of the elliptic operator and leaves the other sources of ill-
conditioning (e.g. discontinuous coefficients) to the conjugate gradient iteration. The
combination of multigrid and conjugate gradient holds the promise of being both robust
and efficient. However, it seems that to get a spectrally equivalent preconditioner, one
has to go beyond the V-cycle and perform more iterations on each grid as in the AMP

methods. .
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5. Numerical experiments

In this section, we present numerical results for two- and three-dimensional test

problems to compare the convergence behavior and the amount of work needed for vari-

ous preconditioners discussed previously. The preconditioners implemented are:

HB:

MG(i,i):

BPX1:

BPX2:

BPX3:

MGMF'1:
MGMF2:

MGMF3:

RIC:

hierarchical basis preconditioner using linear elements for 2D and trilinear ele-
ments for 3D problems, '

multigrid preconditioner with one V-cycle, where i is the number of pre- and
post-smoothings,

the BPX preconditioner for 2D problems (H}, given by (3.4)),

a modified version of BPX preconditioner by filtering twice for 2D problems
(Hy given by (3.5)),

another modified version of BPX preconditioner by filtering twice but using
linear elements of different orientations for 2D problems (H, given by (3.6)),

the MGMF preconditioner with the 9-point (2.15) or 27-point filter for 2D
and 3D problems respectively,

a modified version of MGMF preconditioner in which the 9-point (or 27-point)
filter is applied twice,

another modified version of MGMF preconditioner in which the 9-point (or
27-point) filter is applied once at the finest grid level (to have a smaller
amount of work compared to MGMF2) and twice at other grid levels (to
achieve a faster convergence rate compared to MGMF1),

the relaxed incomplete Cholesky preconditioner (5] is included for compa.riso’r:
T

9
from“ {11). The number of iterations required for RIC can be bounded by
o(n?®).

purpose. For the relaxation factor, we use the optimal value w=1 — 8sin®

The operation counts per iteration (just for preconditioning) for each methed for 2D

and 3D problems are given in Tables 5.1 and 5.2 respectively. The operation counts

include addition, multiplication and division (each is counted as one operation) and does

not include other overhead operations such as condition checking or data copying. The

operations required in each CG step for 2D and 3D problems are 21N and 25N
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respectively.

Preconditioner | Operation_count per iteration

RIC 9N

HB N
MG(1,1) 38 N
BPX1 8 N
BPX2 26 N
BPX3 26 N
MGMF'1 9N
MGMF'2 21T N
MGMF3 15 N

Table 5.1: Work per iteration for preconditioners (2D)

Preconditioner Operation count per iteration
RIC 13N
HB 8 N
MGMF'1 (BPX1) 9N
MGMF?2 (BPX2) 32N
MGMF'3 12 N

Table 5.2: Work per iteration for preconditioners (3D)

From Table 5.1, we observe that the operation counts per iteration for BPX1 and
MGMF1 are much less than that of the MG(1,1) preconditioners because the former
preconditioners do not need smoothing which is expensive. In general, for 2D problems,
MG(i,i) preconditioner takes (38 + 32X(i—1)) N operations. For example, MG(3,3)
preconditioning requires 102/N operations. Also, note that the application of filtering
twice requires about three times the work of filtering once. This is because by filtering
twice the filter stencil is extended from 9-point to 25-point (about three times as many
points).

For 3D problems, the BPX1 (BPX2) preconditioning using trilinear elements is same
as the MGMF1 (MGMF?2) preconditioning as shown in Table 5.2. The MG precondi-

tioner has not yet been implemented for 3D problems.

For all test problems, we use the standard 3- (or 7-) point stencil on a square (or



cubic) uniform mesh with A =2~! and N =(n—1)? (or N =(n—1)®), zero boundary
conditions and zero initial guesses. Experimental results are given for different values of
h and the stopping criterion is chosen to be | |+ || / | [r°| ] <1078 Diagonal scaling

is always used except for RIC. The six test problems are:

(1) the 2D model problem with solution v = z(z—1)y(y—1) e,

Au=f, 0=(0,1)%, (5.1)

(2) a 2D variable coefficient problem with solution u = ze¥sinwzsinmy,

9 |- Bu | 8 |, Ou =
8$ € ax]+ ay [ ] f! Q (0 1) ! (5'2)

(3) a 2D problem with discontinuous coefficients with f = 2z(1—z)+2y(1—y),

2 [p(z,y) -f,j,--]+—a‘?$7 o(z,9) 3—:]=f. Q=(01), (5.3)

where

10t z>05y<05
plz,y) =110 z<05 y > 0.5,
1 elsewhere

(4) the 3D model problem with solution v = z(1—z)y(1—y)z(1—z)e™*,

Au=f, Q=(017, (5.4)

(5) a 3D variable coeflicient problem with solution u = e**sinmzsinmwysin~wz,

_2_ -1yz du _3_ 1Yz _3_11_ -zyz Ou = 3
3 |° 3x]+ 37 [e ] [ ] [, Q=(01), (5.5)

(6) a 3D problem with discontinuous coeflicients with f = 2z(1—z)+2y(l1—y)+22(1-2),

a du a du a du 3
— — e —— — L) — | = = ,6
az [p(z’ylz) 8z ]+ 3y [p(x’y’z) ay]+ az p(z!y! ) az ] f’ Q (011) ] (5 )
where
107 z > 05 with y <05,z <050ry > 05,z >05

p(z,y,z) = 110! r <05 with y > 05,2 <050ry <05, z > 05.
1 elsewhere



The number of iterations and operation counts per grid point are plotted in Figures 5.1-

5.6 (a) and (b) respectively. We can make the following observations from these Figures.

1.

The BPX and MGMF preconditioners have better convergence behavior compared
to the HB preconditioner, especially for 3D problems. The HB method is competi-
tive with the other multilevel methods only for the discontinuous coefficient prob-

lem in 2D.

The O(log*n) convergence rate for all the multilevel methods is evident, except for
the 3D HB method. The 3D HB method behaves like O(h~%%) and O(h~%"°) for
problems (5.4) andr(5.5) which are close to the predicted theoretical result O(h~%9).
However, for the discontinuous coefficient problem (5.6), it converges more slowly
like O(h~1%),

In general, the MGMF methods perform slightly better than the corresponding BPX
methods. Recall that the only difference between the two methods is the choice of
the elementary filters.

Filtering twice (BPX2, BPX3, and MGMF2) does help to improve the convergence
rates for the model Poisson problem in both 2D and 3D (the MGMF2 and BPX3
preconditioners appear to be spectrally equivalent.) However, for variable and
discontinuous coefficient problems, filtering twice does not seem to improve the con-

vergence rates enough to compensate for the extra work involved.

The MGMF3 method is designed to incorporate the desired features of MGMF1 and

- MGMF?2, i.e. the good convergence property due to filtering twice and the smaller

amount of work due to filtering once at the finest grid level. It turns out that it
works very well. MGMF3 behaves better than MGMF1 but worse than MGMF2 in
number of iterations required. However, in terms of amount of work, MGMF3 is

better than MGMF1 and MGMF2.



For small n ( approximately < 100 ), the RIC method is actually quite competitive
with all the multilevel methods. In fact, for the discontinuous coefficient problems,
none of the multilevel preconditioners gives better convergence rate than the RIC
preconditioner. It appears that the RIC preconditioner captures the variation of the
coefficients especially well. Its performance deteriorates as n gets large, as predicted

by its inferior asymptotic convergence rate.

The MG preconditioner is among the most efficient methods for problems with
smooth coefficients. However, it has some difficulties with problems with discon-
tinuous coefficients. In fact, for Problem (5.3), MG(l;l) requires too many iterations
to fit on the plot. Instead we show the results for the MG(3,3) method, which con-
verges in a reasonable number of iterations but still requires the most work of all
the methods. We have noticed that the performance of the multigrid methods are
somewhat sensitive to the initial guess. In experiments with random initial guesses,
we have observed that the performance of the multigrid methods are significantly
improved. This may be due to the extra smoothing operations in the multigrid
methods which are more adapt at annihilating the high frequency errors inherent in

the random initial guess.



8. Conclusions

The experimental results show that the class of multilevel filtering preconditioners
compares favorably with the hierarchical basis and the RIC preconditioners, at least for
problems with smooth coefficients and quasi-uniform grids such as used in our experi-
ments. For these types of problems, the multilevel filtering and the BPX methods
behave quite similarly to the multigrid preconditioner. What these new methods offer is
the saving of smoothing operations which are difficult to make effective for irregular
problems, while preserving the nice asymptotic convergence rates of multigrid precondi-
tioners. The relative performance of the hierarchical basis method should improve for
irregular problems on highly non-uniform and refined meshes. Even though the RIC
preconditioner shows better convergence rate for strongly discontinuous coefficient prob-
lems, it has a low degree of parallelism. The multilevel ﬁlt;ering preconditioners are very
similar to the BPX method. What the filtering framework provides is the flexibility of

filter design which can lead to more efficient methods.
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Figure Captions

Figure 2.1: Spectra of A, P~ and P7A.

Figure 2.2: Blockdiagram of the MF preconditioner with a single discretization
grid (SGMF).

Figure 2.3: Spectra of maximally flat lowpass filters H; ; with J =1, 3, 5.

Figure 2.4: Spectra of H;, I-H;_, and Fy_,.

Figure 2.5: Eigenvalues of M~!4 with J =1, 3, 5.

Figure 2.6: Condition numbers of the MF-preconditioned Laplacian with (a) J=1
and (b) J=3.

Figure 3.1: Blockdiagram of the MGMF preconditioner.

Figure 3.2: Blockdiagram of the modified MGMF preconditioner.

Figure 5.1: (a) Iteration and (b) operation counts for Test Problem 1.

Figure 5.2: (a) Iteration and (b) operation counts for Test Problem 2.
Figure 5.3: (a) Iteration and (b) operation counts for Test Problem 3.

(
(
Figure 5.4: (a) Iteration and (b) operation counts for Test Problem 4.
Figure 5.5: (2) Iteration and (b) operation counts for Test Problem 5.
(

Figure 5.6: (2) Iteration and (b) operation counts for Test Problem 6.
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Figure 2.3: Spectra of maximally flat lowpass filters H;, ; with J =1, 3, 5.
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g Figure 2.6(a): condition numbers for J=1 filters
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Figure 3.1: Blockdiagram of the MGMF' preconditioner.
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-41-
Figure 5.2(a): iteration counts for Test Problem 2
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aumber of jierations

.opcralion counts per point

- 42 -

Figure 5.3(a): iteration counts for Test Problem 3
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% Figure 5.4(a): iteration counts for Test Problem 4
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Figure 5.4: (a) Iteration and (b) operation counts for Test Problem 4.
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Figure 5.5: (a) Iteration and (b) operation counts for Test Problem 5.
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Figure 5.6(a): iteration counts for Test Problem 6
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Figure 5.6: (a) Iteration and (b) operation counts for Test Problem 6.



