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Abstract

The solution of symmetric positive definite Toeplitz systems Ax = b by
the preconditioned conjugate gradient (PCG) method was recently proposed by
Strang [21] and analyzed by Strang and R. Chan [7]. The convergence rate of the
PCG method heavily depends on the choice of preconditioners for given Toeplitz
matrices. In this paper, we present a general approach to the design of Toeplitz
preconditioners based on the idea to approximate a partially characterized linear
deconvolution with circular deconvolutions. All resulting preconditioners can
therefore be inverted via various fast transform algorithms with O(N log V)
operations. For a wide class of problems, the PCG method converges in a finite
number of iterations independent of N so that the computational complexity

for solving these Toeplitz systems is O(Nlog N).
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1 INTRODUCTION

The solution of an N x N symmetric positive definite (SPD) Toeplitz system Ax = b by
direct methods has been studied intensively in the past. Fast algorithms based on Levinson
recursion formula [11] [16] with O(N?) complexity are well known. Superfast algorithms
with O(Nlog?N) complexity have also been investigated by researchers [1], [2], [3], [15]).
More recently, Strang [21] proposed to use an iterative method, i.e. the preconditioned
conjugate gradient (PCG) method, to solve the SPD Toeplitz system. The PCG method
has a computational complexity proportional to O(N log N) for a large class of problems
[21] and is therefore competitive with any direct method. Another advantage with the PCG
method is that it is highly parallelizable whereas most direct methods cannot be parallelized
as easily.

An iterative method for solving the SPD system Ax = b can be derived by minimizing
the quadratic functional 1xTAx — bTx with the conjugate gradient (CG) method, and
the unique minimum gives the desired solution. The convergence rate of the CG method
depends on the spectrum of A. Generally speaking, the CG method converges faster if A has
a smaller condition number or clustered eigenvalues. In order to accelerate its convergence
rate, a preconditioning step is often introduced at each CG iteration. A good preconditioner
for A, is a matrix P that approximates A well (in the sense that the spectrum for the
preconditioned matrix P~! A is clustered around 1 or has a small condition number), and
for which the matrix-vector product P~!v can be computed efficiently for a given vector v.
With such a preconditioner, one then solves in principle the preconditioned system A% = b,

where A = P~1/24P-1/2 % = P1/2x and b = P~1/?b, by the CG method [14]. The idea of



preconditioning is a simple one but is now recognized as critical to the effectiveness of the
PCG method.

A Toeplitz preconditioner has been proposed by Strang [21] and analyzed by Strang
and R. Chan [5) [6] [7]). Strang’s preconditioner S is obtained by preserving the central half
diagonals of A and using them to form a circulant matrix. Since S is circulant, the matrix-
vector product $~1v can be conveniently computed via Fast Fourier Transform (FFT) with
O(Nlog N) operations. It has been shown [5] [6] [7] that for a large class of matrices (
called the Wiener class ), the spectrum S~1A is clustered around 1 except a finite number
of outsiders.

In constructing Strang’s preconditioner S, half the information of A is lost. In order
to use all information of A, T. Chan [8] proposed another Toeplitz preconditioner C. It is,
by definition, the circulant matrix which minimizes the Frobenius norm ||R — A||F over all
circulant matrices R. This turns out to be a simple optimization problem, for which a closed-
form solution exists. The elements of C' can be computed directly from the elements of A
by a simple formula. However, Chan’s preconditioner C does not necessarily improve the
convergence performance of the PCG method in comparison with Strang’s preconditioner
S.

This research was motivated by seeking another direction to generalize Strang’s precon-
ditioner so that all information of A can be effectively used. Our study leads to a general
approach for constructing Toeplitz preconditioners. Strang’s and Chan’s preconditioners
can be viewed as special cases under this framework. We also obtain new preconditioners

with better performance for Toeplitz matrices generated by rational functions. Our idea



can be simply stated as follows. We formulate the inverse Toeplitz matrix-vector product
as a partially characterized linear deconvolution problem, which can be approximated by a
certain circular deconvolution. The preconditioning step corresponds to the implementation
of the approximating circular deconvolution. Thus, all resulting preconditioners can be in-
verted with O(N log V) operations via various fast transform algorithms such as FFT, Fast
Cosine Transform (FCT), or Fast Sine Transform (FST'). One interesting consequence of our
approach is that it allows even noncirculant preconditioning matrix P, which is nevertheless
related to a circulant matrix of size 2N x 2N.

The outline of this paper is as follows. The PCG algorithm for solving a symmetric
positive definite system of equations is briefly reviewed in Section 2. Then, we propose
a general framework to construct Toeplitz preconditioners by exploiting the relationship
between linear and circular deconvolutions in Section 3. In particular, a class of new pre-
conditioners K;, ¢ = 1,2,3,4, which use all elements of A are described. In Section 4, we
show the relationship among K;’s and prove the positive-definite property of X;’s and the
clustering effect of the spectrum of K ' A. In Section 5, we give some numerical results and
compare the performance of different preconditioners. The efficiency of new preconditioners

K; are demonstrated.



2 THE PCG METHOD FOR TOEPLITZ SYSTEMS

With the initialization

arbitrary x9, ro=po=b-Axy, and f; =0,

the kth iteration (k = 1,2,--.) of the PCG algorithm consists of the following two steps:
Step 1: Preconditioning. Solve

Pzi—1 =T

for z;_1.

Step 2: CG iteration. Compute

Br = (zk-1,Tk-1)/(Zk-2,Tk-2),

Pk = Zk-1 + BkPk-1,

ak = (zk-1,T%-1)/(Pk, APk),

X = Xg—-1 + QkPky

Tk = Fk-1 — QxApi.
It is easy to see that each computational unit above (the scalar-vector and vector-vector
products and vector addition), except the Toeplitz matrix-vector product Apy and the
preconditioning P~1ry_;, requires O(N) operations. Since we can view Ap; as a circular
convolution between two extended periodic sequences, the Toepliz matrix-vector product
can be computed via FFT with O(N log N) operations. We will show that the precondi-
tioning P~'ri_; can also be achieved by various fast transform algorithms with O(N log N)
operations in Section 3. Consequently, each PCG iteration requires O(N log N ) operations.

Since fast transform algorithms are highly parallelizable, the above PCG method can be par-
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allelized in a straightforward way. The parallel time complexity can be reduced to O(log V)
when O(N) processors are used.

For the PCG method to be attractive, it must converge fast. The convergence rate of the
PCG method depends on the eigenvalue distribution of the preconditioned matrix P~1A.

Suppose that we measure the error x; — x*, where x* is the exact solution of Ax = b, with
R(xg) = (x = x*)T P71 A(x; - x*), (1)

which is the square of a matrix norm. It can be shown that the reduction of R(x) [17] by
the PCG method is

R(xk41) < minmax (1 + MGH(M)) R(xo), (2)

where the minimum is taken over any polynominal of degree k, and the maximum is taken
over all eigenvalue A; of P~14.

It is typical that the eigenvalues of the preconditioned Toeplitz matrices are clustered in
a small interval (1 — €,1 + €), where ¢ is called the clustering radius, except a outsiders A;,
A2, -+, Ay For such a case, we are able to characterize the convergence rate more precisely.

Let us choose Go4+(2) such that
A A A
14 AGarp(d) = (1 = APH(1 - =)(1- =)o+ (1= =) (3)
A Az Ao
The inequality (2) can be simplified to be
R(xx) < C¥=2) R(xo), for k> a, (4)

where

Cx(l- -,\1—1)2(1 - %2)2..-(1 - %)2. (5)
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In deriving (4), we assume that « outsiders are annihilated and the error reduction of R(x;)
simply depends on eigenvalues clustered around one. It implies that, when k > a, R(x;)
can be reduced at least by a factor €2 per iteration in average. Thus, the number of outsiders
a and the clustering radius ¢ provide some characterization for the convergence rate of the
PCG method. For rationally generated Toeplitz matrices, we find that there exist strong
regularities on the values of a and ¢ so that they can be predicted quite accurately. These

will be detailed in Section 5.



3 DESIGN OF TOEPLITZ PRECONDITIONERS

A good preconditioner P for an N X N symmetric Toeplitz matrix A should satisfy the
following two criteria: (i) P can be inverted effectively; and (ii) P approximates A well in the
sense that P~! A has a small condition number and that the spectrum of P~! A has a certain
clustering feature. In this section, we present a systematic approach to the design of a class
of preconditioners P, which can be inverted directly via various fast transform algorithms
with O(N log N) operations. The spectral property of P~1A will then be discussed in

Section 4.

3.1 Motivation: A Convolutional Interpretation

Let uy = (uo,ul,---,uN_l)T and vy = (vo,1,-+,vn-1)7 be arbitrary N-dimensional
vectors, and Ty and Ry be N x N Toeplitz and circulant matrices, respectively. By
definition, the i, j entry of Tiy is ¢;_; and the ¢, j entry of Ry is r;—;, where r, = 73 mod N.
We will interpret the matrix-vector products Tyuy, Ryuy, T]\',IVN and R;,lvN, from a
convolutional point of view, since our approach to the design of Toeplitz preconditioners
can be well motivated by this viewpoint.

First, consider vy = Tyuy. The element v;, 0 < i < N -~ 1, can be written as

N-1
v = Z ti.ju;. (6)
=0

More generally, equation (6) with any integers ¢ and j defines a linear convolution

v=t=*u, (7



where
t= "')07t-(N-l)""1t—19t0’t1""stN—lvo"" and u= <o, 0,u0, Uy, UN=1,0,° .

Note that v, t and u in (7) are infinite sequences of duration 3N — 2, 2N — 1 and N,
respectively. In linear system theory, u and v are usually known as the input and output,
and t the impulse response of the system [19]. Since the output v contains elements v; of
vy, Toeplitz matrix-vector product vy = Tyuy is embedded in the linear convolution (7).
For (7), we can define a linear deconvolution problem, namely, to determine the input u
from the output v and the impulse response t.

Next, consider vy = Ryun. The element v;, 0 < i < N — 1, can be written as

N-1
v; = Zr;_jUj, t=0,1,---,N - 1. (8)
Jj=0

Equation (8) with any integers i and j defines a circular convolution
v=rQ@iu, (9)

where the output v, input @ and impulse response ¥ are all N-periodic sequences with

periods
T _ T _ e d e
VN = (vOa Y 'vN-—l)7 Uy = (u07 ’ uN—l)’ an (TO, ’ TN—])'

Hence, we can embed the circulant matrix-vector product vy = Ryuy in the circular
convolution (9). The circular deconvolution problem is to determine the input u based on
the output v and the impulse response F.

The circular convolution and deconvolution can be performed effectively by using FFT.



That is, by applying the discrete Fourier transform, defined as

N-1 27kn
ﬁ'k = E une_ ! ?
n=0

to periodic sequences v, ¥ and i in (9), we obtain
O = fplty O G = Op [T (10)

in the transform domain. Thus, the circular convolution (deconvolution) or the embedded
vN = Ryuy (uy = Ry vy) can be obtained with O(N log N) operations.

It is also possible to compute the linear convolution (7) and the corresponding linear
deconvolution with FFT. For example, we may view v, t and u of (7) as if they were all
(3N — 2)-periodic sequences, and treat the linear convolution (deconvolution) problem as
a (3N — 2)-point circular convolution (deconvolution) problem. Since vy = Tyun can be
embedded in (7) and since we know all nontrivial 2V — 1 and N values of t and u, we can
compute v as well as v effectively. However, the computation of uy = T,T,lvN is not as
easy. Since only N values (i.e. vy) of the output v are given, we do not have sufficient
information to perform the linear deconvolution (but sufficient for solving the Toeplitz
system). Thus, the inverse Toeplitz matrix-vector product only partially characterizes a
linear deconvolution problem.

In order to exploit the low computational complexity provided by FFT, we seek some
circular deconvolution to approximate the partially characterized linear deconvolution prob-

lem. For example, we can cut the length of ¢,’s and use

(E-(N=-1)/2:* " *st-1st0s 15" s (N-1)72)  0dd N
N = , (11)

(t—N/Z""at—htO’tl""atN/2-l) even N
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to define a periodic sequence F of period N. Although the N-point circular deconvolution
of & and v does not embed the desired computation TﬁlvN, it can be viewed as its ap-
proximation and used in the preconditioning step of the PCG method. This was originally
suggested by Strang [21] and analyzed by Strang and R. Chan [5] [6] [7]. One shortcoming
of Strang’s idea is that half of the information contained in ¢,’s is lost. To preserve all
information of t,’s, we may choose to extend v periodically with vy as the basic unit,

which will be detailed below.

3.2 Construction of Toeplitz preconditioners

Let A be an N x N symmetric positive definite (SPD) Toeplitz matrix, and Ty, be an
N x N symmetric Toeplitz matrix approximating A. For example, we can choose Ty, = 4
or Tn,1 which minimizes the difference Ty,; — A with respect to a certain norm. We define

a 2N x 2N symmetric circulant matrix as

Tny Thp
Ron = , (12)
TNz Tna
where .
to 4 + IN-2 Ina
1 to 15} . iIn-2
Tva=| - 4 0 - - | (13)
IN—2 . . . N
IN-1 IN-2 13} to
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and where Ty 2 is determined by elements of Ty,

[ c IN-1 . t2 t -
in-1 c InN-1 ()
Tna= - N1 e . . , (14)
t2 IN-1
I 4 t2 in-1 ¢ ]

with a constant ¢. If the behavior of the sequence 2, is known, we choose ¢ to be ty.
Otherwise, any 0 < |¢| £ |ty—1] can be used.

Now, let us consider the following argumented system,

Tna Tne || x b
= : (15)

ITna Twg x b
From the discussion in Section 3.1, we know that (15) can be embedded by a circular

convolution between two 2N -periodic sequences, whose periods are

loy21, " tN=2,IN-1, G IN1, EN-2, ", Ty (16)

and

L1,22,° " TN-1, TN ZT1,T2,"* ", TN-1,IN- (17)

The output sequence is also 2N -periodic, whose period is

bhb%"'bN—laszblab%'"1bN—17bN- (18)

This is illustrated in Figure 1(a), where the case N = 3 is given. The solution of (15)

for x corresponds to a circular deconvolution problem and can be computed via FFT with
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O(N log N) operations. Since the system (15) is equivalent to
(Tna+ Tn2)x = Db,
we can compute (Tn,; + Tn2)"!b efficiently and use
Py =Tng+ TN, (19)

as a preconditioner for A.

Various preconditioners rcan be constructed in a similar way by assuming different pe-
riodicities for x and b. The negative periodicity, even periodicity, and odd periodicity.
are illustrated in Figures 1(b), 1(c) and 1(d), respectively. The corresponding argumented

systems and preconditioners can be written as follows:

Tng Thge x b
= and P, =Tn;1—Tng, (20)
ITnz Tnp =X -b
Iny Thg2 x b
= and P3=Tni+JTN2, (21)
Tna2 Twng Jx Jb
Tnyg Thg2 x ( b
= and P4 = TN,l - JTN,2) (22)
Tnz Twng -Jx -Jb

where J is the N X N symmetric elementary matrix [4] which has, by definition, ones along
the secondary diagonal and zeros elsewhere (equivalently, J;; = 1if i+ j = N 4+ 1 and
Jij=0ifi+j#N+1).

Since preconditioners P;, i = 1,2, 3,4 correspond to 2N-circulant systems, they can be

inverted via fast transform algorithms with O(N log N') operations. The implementation
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of P;’s will be detailed in Section 3.4. The subscript N of matrices is omitted hereinafter

whenever there is no confusion.

3.3 Examples of Toeplitz preconditioners

We describe various preconditioners for the Toeplitz matrix

32 16 8 4 2
16 32 16 8 4
A=| 8 16 32 16 8

4 8 16 32 16

2 4 8 16 32
to illustrate the construction procedure given in Section 3.2.

Example 1. (Strang’s preconditioner)

By choosing Tj to be the central half-band of A and ¢ = 0, we obtain

(22 16 8 0 0 [0 0 08 16]
16 32 16 8 0 00 00 8
Th=|8 16 32 16 8 |> =0 000 0
0 8 16 32 16 8 0 00 0
0 0 8 16 32 (16 8 0 0 0 |
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Strang’s preconditioner S is constructed by

S=T+T;=

which is a special case of P,.

Example 2. (Chan’s preconditioner)

32 16 8

16 32 16

8 16 32

8 8 16

16 8 8

8 16

8 8

16

32 16

16 32

Chan’s preconditioner C is the circulant matrix which minimizes the Frobenius norm of

A — R over all circulant matrices R. It turns out that the elements of C can be computed

as

1, .
¢ = N(z X (N -i) + (N - i) X a;),

By choosing

32 13.2 64

0 0

Ty =

13.2 32

13.2 64

0

64 13.2 32

13.2 64

0

6.4

0

13.2 32

13.2

64 132 32

15

i=0,1,2,---,N - 1.

[ 0 0
0 0
0 0
64 0

i 13.2 64

(23)

0 64 13.2 .

0 0 64

0 0 0 )
0 0 0

0 0 0 |




where ¢ = 0, we find that preconditioner C is also a special case of Py, i.e.

32 132 64 6.4 13.2
132 32 132 64 64
C=T1+T>=| 64 132 32 132 64

64 64 132 32 13.2

I 132 64 6.4 132 32
Example 3. (Preconditioners K;)

We use equations (19)-(22) to construct preconditioners. Although there exist many
choices to select T for the design of preconditioners P;, the choice T} = A seems natural.
For this choice, all elements of A are used in a straightforward way, and we call the resulting

preconditioners K;. The corresponding T becomes

1 2 4 8 16

=14 2 1 2 4 |

where ¢ = 1. From (19)-(22), we have

‘33 18 12 12 18- 31 14 4 -4 —14-
18 33 18 12 12 14 31 14 4 -4
Ki=112 18 33 18 12|, HK2a=| 4 14 31 14 4 |[>
12 12 18 33 18 -4 4 14 31 14
|18 12 12 18 33 | -14 -4 4 14 31
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48 24 12 6 3 16 8 4 2 1
24 36 18 9 6 8 28 14 7 2
Kz3=|12 18 33 18 12 |» Ki=] 4 14 31 14 4

6 9 18 36 24 2 7 14 28 8

3 6 12 24 48 1 2 4 8 16

Note that preconditioners §, C and K, which are special cases of Pj, are all circulant.

If B is a symmetric Toeplitz matrix with the first row
(agy@1,-+-,ak, —ag,+-,—ay) forodd N and k= (N -1)/2,

or

(a0, a1, -,ak-1,0,—Gk_1,*--,—a;) for even N and k = N/2,

we say that B is skew-circulant [10]. It is clear that K is skew-circulant. In fact, one can
verify that the circulant and skew-circulant properties hold for general P; and P, given by
(19) and (20), respectively. However, new preconditioners K3 and J{4 are neither circulant

nor Toeplitz.

3.4 Comparison of Computational Cost

We compare the computational cost for the preconditioning step P~!r with different pre-
conditioners at each PCG iteration as follows. Preconditioners C, S and K; areall N X N
circulant matrices and the preconditioning can be done via N-point FFT with approxi-
mately N log N real multiplications and 3N log N real additions [20]. Preconditioner K is

skew-circulant and can be transformed into a circulant matrix through D K(3D, where D is

17



a diagonal matrix [10]. Consequently, the implementation of K !r is almost as easy as that
of K{'r. Although preconditioners K3 and K, are noncirculant, K3'r and K7'r can be
performed via N-point fast Cosine and Sine transforms, respectively. The operation counts
for N-point fast Cosine (or Sine) transform are approximately equal to that of N-point FFT
in both the order and proportional constants [18) [22]. Therefore, they are as competitive

as C, S,and K;,1=1,2.
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4 SPECTRAL PROPERTIES OF THE PRECONDITIONED TOEPLITZ

MATRIX

In this section, we consider the case T} = A. The corresponding 7> is denoted by AA.

Based on (19)-(22), four preconditioners can be derived, namely,

Ki=A+A0A, Ky=A-AA,
(24)
Ki=A+JAA, K4=A-JAA.
We will establish three main results for the spectra of K;1A. (1) There exists a simple
relationship between eigenvalues of K714, i = 1,2,3,4. (2) The eigenvalues are all real and
positive for sufficiently large N. (3) If A belongs to the Wiener class (3> |a;i| < o0) [7],
all eigenvalues of K[! A except a finite number are clustered around 1.
To relate the eigenvalues of k! A, we introduce some definitions and related concepts.
An N dimensional vector v is called symmetric if Jv = v or skew-symmetric if Jv = —v,

where J is the symmetric elementary matrix. An ¥ X N matrix A is called doubly symmetric

(or symmetric centrosymmetric ) if

A= AT, and (JA)T = (JA). (25)
Note that if A is doubly symmetric, matrices A and J commute.
Lemma 1 If T is a symmetric Toeplitz matriz, T and JT are doubly symmetric.

Proof. This can be verified directly with definitions. D
A consequence of this lemma is that A, AA, and JAA are all doubly symmetric. Since

any linear combination of doubly symmetric matrices results in a doubly symmetric matrix,
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preconditioners K; given by (25) are doubly symmetric. The eigenvectors of KA can be

characterized by the following lemma, which will be needed in proving Theorem 1.

Lemma 2 If matrices A and B are both doubly symmetric, there ezists a set of [N/2]

symmetric eigenvectors and | N/2] skew-symmetric eigenvectors for B~1 A.

Proof. See Appendix A. =]

Let us rewrite the spectra of ;"14,1<i<4,as
IMETIA)) = MA™Y A+ K; - A) = M + A7V (K — A)) = 1+ A(A™(K; — A)). (26)
The following theorem characterizes the relation between the eigenvalues of A~!(K; — A).
Theorem 1 Let Q; be the set of the absolute values of the eigenvalues of A=Y (K;— A), i.e.
Qi ={|Al: A7V — A)x = Ax}, i=1,2,3,4.
Then, @1 = Q2 = Q3 = Q4.

Proof. See Appendix B. m}

The above theorem can be stated alternatively as follows. For an arbitrary eigenvalue
A of A-}(K; — A), there exists an eigenvalue of A~1(K; — A), j # ¢, with magnitude |}|.
To illustrate this theorem, an example is given in Figure 2, where A is a 32 X 32 symmetric
Toeplitz matrix with a; = 1/(1 + i). Eigenvalues of A=!1(P — A) and P~'A are plotted for
preconditioners C, S, and K; in Figures 2(a) and 2(b), respectively. Note that the spectra
of A~1(I¢;— A) clustered around zero is equivalent to those of I;"! A clustered around unity.

Since the spectra of A~1(K; — A) are clustered in a very similar pattern, so are those of

20



KT 1A. This theorem implies that the PCG method with preconditioners K;, ¢ = 1,2,3,4,
should converge in a similar rate.

If preconditioners I; are positive definite, the preconditioned matrices K Y 2AI(,-" 172
are symmetric positive definite and the CG method can be conveniently applied. To show
the positive definiteness of K;, we consider a sequence of n X n symmetric Toeplitz matrices
{An}32, and study the asymptotical behavior. The first row of Ay are elements from the
infinite sequence {a,}32, up to element ay_1, where {a,}32, is known as the generating

sequence of A,,. We assume that the sequence @, satisfy the following two conditions:

(>
Y ane ™ >6>0, Vo, (27)
-00
o0
Y lan] < 0. (28)
-0
Since f(f) = %, ane~™® describes the asymptotic eigenvalue distribution of A,, the

above conditions assume that eigenvalues of A,, are bounded and uniformly positive definite

asymptotically.

Theorem 2 Preconditioners K;, ¢t = 1,2,3,4, for symmetric positive definite Toeplitz ma-
trices with the generating sequence satisfying (28) and (29) are uniformly positive definite

and bounded for sufficiently large N .

Proof. See Appendix C. (u]
In the next theorem, we describe the clustering feature of the spectra of A=1(J(; — A)

and, hence, that of X' A. The proof is similar to that given by R. Chan in [5).

Theorem 3 Let A be the N X N leading matriz of a sequence symmetric positive definite

Toeplitz matrices A, with the generating sequence satisfying (28) and (29). The spectrum of
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the matriz A~1(K; — A) are clustered between (—¢,+¢) except a finite number of outsiders

Jor sufficiently large N(e).

Proof. See Appendix D. ()
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5 NUMERICAL RESULTS

We compare Strang’s preconditioner S, Chan'’s preconditioner C, and our preconditioners K;
for different numerical test problems in this section. We will show the clustering properties
of the spectra of P~1A, with P=C, S, K;, i = 1,2,3,4 as well as the convergence history
of the PCG method.

For a sequence of Toeplitz matrices A, generated by sequence a,, we can define their

generating function as the Z-transform of a,,
o0
A(z)= ) anz™™
n=-—-00

If A is symmetric, A(z) can be decomposed into
A(z) = A4(2) + A4 (271),

where

ap s
A+(Z) = '2— + E anz_n’

n=1

is the Z-transform of a causal sequence. Thus, A(z) is completely characterized by A.(z).

If

4 -n

n=0 (%4

q —?
ano d"z n

we call A;(z) a rational function of order (p,q). In the digital signal processing context,

Ap(2) =

Toeplitz matrices with rational generating functions are particularly of interest, since the
covariance matrices of stationary AR (Auto-Regressive), MA (Moving Average), and ARMA
random processes can be expressed in this form.

We choose A.(z) to be rational for Problems 1-5 and nonrational for Problems 6-8.

All numerical experiments are performed with respect to 32 x 32 Toeplitz matrices A with
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right-hand-side b = (1,---,1)7 and initial condition xo = 0. We can roughly classify the
eigenvalues of P~! A into two categories: the outsiders and the clustered eigenvalues between
(1 —¢€,1+¢) for general A(z). However, a more precise distinction can be made for rational
A(z). That is, the clustered eigenvalues are those contained in the interval (1 —¢,1 + ¢),
where the clustering radius € converges to zero when N goes to infinity, and the outsiders
are the eigenvalues not converging to one.

Problem 1: a, = 0.5" for n < 3 and a,, = 0 for n > 3 (banded Toeplitz matrix with p = 3,
g =0);

For a banded Toeplitz matrix with bandwidth p < |N/2|, K, and S are the same.
Since K;’s and A have N — 2p identical rows, K !(K;~ A) = I — K7 A has a null space of
dimension N —2p. This implies that J[! A has the eigenvalue one with multiplicity N — 2p,
which correspond to the clustered eigenvalues defined above. The other 2p eigenvalues are
outsiders. The spectra of P~! A are plotted in Figure 3(a). For K 14,i=1,2,3,4, there
are 6 (p = 3) outsiders and N — 6 eigenvalues repeated at one. For K ' A, i = 3,4, each
pair of outsiders are closely located so that only three distinct dots appear in the figure.
The eigenvalues of C~! A are not clustered as well for this problem.

According to the discussion in Section 2, the PCG method with K; should converge in
at most 2p + 1 iterations with exact arithmetic since X' A has 2p+ 1 distinct eigenvalues.
However, it is worthwhile to point out that (4) only provides an upper-bound estimate of
the convergence rate. From our experience, this estimate seems pessimistic. We observe
that the PCG method with K; converges in p + 1 iterations for banded Toeplitz matrices

with different values of p. In Figure 3(b), we plot the 2-norm of the residual b — Ax as a
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function of the number of PCG iterations. It is clear from the figure that the PCG method
converges in 4 (= p+ 1) iterations for all K;’s. The PCG method with C converges slowlier.
Problem 2: a, = t", (¢ = 1, a single pole at t);

For this generating sequence, it has been observed by Strang that the spectrum of
$~1A has two outsiders at (1 + ¢)~! and (1 — t)~!, two eigenvalues repeated at 1, and
other eigenvalues at (1 + t¥/2)~1 and (1 — t¥/2)~1 with multiplicity (N — 4)/2 when N is
even. Nevertheless, the same regularity does not hold for odd N. For the same generating

sequence, the spectra of K; 14, i = 1,2,3,4, have only three distinct eigenvalues for both
even and odd N. We summarize these values in Table 1 and plot the spectra of P~1 A with
t = 0.9 in Figure 4(a). For preconditioners X, the two outsiders are located at (1+t)~?! or
(1 — )~ and other N — 2 clustered eigenvalues are repeated at (1 —tV)~? or (1 + V).

The outsiders of K7 A, i = 3,4 are repeated with multiplicity 2.

Table 1. Eigenvalues of I;'A

|| KA K;'A K;7'A KA
Ml @+ | A+ | 497 | 1=
A fl =7t [ (1=-0)F | (M) (1 4+2N)T
As [ (L=tN)"1 | QA +N) [ (1=2M)7 | (1-eN)?

The convergence history of the PCG method with ¢t = 0.9 is given in Figure 4(b).
Since XK' A has 3 distinct eigenvalues, the PCG method converges in at most 3 iterations
independent of N. From this figure, we see that the PCG method converges with 2 (or 3)
iterations with preconditioners K; (or S).

Problem 3: a, = (n + 1)(t*), (¢ = 2, a double pole at ¢);
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We plot the eigenvalues of P~ A with ¢t = 0.4 in Figures 5(a). The spectra of P14
consists of 4 outsiders and N — 4 clustered eigenvalues between (1 — ¢,1 + €). Similar to
Problem 1, each pair of outsiders of K 1A, i = 3,4, are closely located so that only two
distinct dots appear. The corresponding convergence history are plotted in Figure 5(b).
We see that preconditioners K; converge faster in comparison with S and C. It takes
approximately 5 (or 7) iterations for preconditioners K; (or S) to converge. Note that K3
and K4 behave better than K; and K, when the number of iteration becomes large.

When A4 (2) is a rational function of order (p, q), we observe two important regularities

for the spectra of X! A and $-1A:
R1: The number a of outsiders is equal to 2 x max(p, q).
R2: The order of ¢ is proportional to of 2 (or '%3) for K;’s (or S).

The values of a, max(p, q), €(S~1A), a—a'!oﬁ, e(X;7'A) and 2 for Problems 1 and 2 are

listed in Table 2. We can clearly see that they are consistent with the above two rules.

Table 2.
|| a |max(pq) || «(5774) |BL| e(K7'4) [
Problem 1 6 3 0 0 0 0

Problem 2 || 2 1 tNIZ L oMY | tN2 || tN 4+ O(2N) | N

For Problem 3, @ = 4 and max(p, ¢) = ¢ = 2 and Rule R holds. We list ¢(S~14), fa,

e(K;'A) and %2 for t = 0.3, 0.4, 0.5 in Table 3 to verify Rule R2.
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Table 3.

«(S~14) us

a0

e(K1A) a2

a0

t

03] 2.0x10-7|7.3x10°8 ":6 x 10~15 | 6.1 x 10716

04 1.3%x1074|73x10°%{ 1.2x10°1° | 6.1 x 10~12

05 46x1072|26x107* || 44x 1077 | 7.7x 107°

We still do not understand Rules Rf and R2 theoretically. Rule R2 nevertheless explains
why our preconditioners K; behave better than Strang’s preconditioner S. From R2, we

have

(K A) _ 00N
C(S-IA) - GN,2 )

Recall that S uses only half information of A (up to the element ayy;) whereas K;’s use
all information of A (up to the element ay). Thus, to use more information of A by our
approach does improve the clustering radius € by a factor of O(ﬁf/’; .

Based on Rule R2, the clustering radius € converges to 0 as N goes to infinity for rational
generating sequence a, in the Wiener class. There are at most a + 1 distinct eigenvalues
asymptotically. Therefore, the PCG method converges in a finite number of iterations for
large N, and the total computational complexity is O(N log N).

Problem 4: a, = (n + 1)(#3) + {7, (¢ = 3, a double pole at ty and a single pole at t,);

The spectra of P~'A with to = 0.3 and ¢; = 0.8 are plotted in Figure 6(a). There are
6 (max(p,q) = 3) outsiders for K7'A and S~'A. The outsiders of K14, i = 3,4, are

clustered into three distinct dots. The clustering radii ¢, %lf- and %;101 with different ¢{o and

t; are given in Table 4 to verify Rule R2.
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Table 4.

to [ 1 || €S7'A) fag (K71 A) ax

a0

0.3 7.7%x 1076 [[ 1.5 x 10~1°

0.5] 0.3 1.3x10~4 || 5.8% 102 | 3.8 % 10~?

0308 1.1x10°2[1.4x10"2| 5.2x10~* | 4.0 x 10~4

The convergence history of the PCG method with o = 0.3 and ¢; = 0.8 is given in
Figure 6(b). Preconditioners K; behave better than C and S. It takes approximately 7 (or
10) iterations for K; (or S) to converge.

Problem 5: a, =" + )" forn <3 and a, =" forn >3 (p=4,qg=1).

In this example, the rational function A4(z) has the order (4,1). The spectra of P~1A
with tp = 0.8 and ¢; = 0.6 are plotted in Figure 7(a). There are 8 (max(p, g) = 4) outsiders
for K; and S. The outsiders of K 14, i = 3,4 are clustered into 4 distinguishable pairs.
Rule R2 also holds for this problem. To avoid unnecessary repetition, we do not give a table
to illustrate it.

The convergence history of the PCG method with ¢, = 0.8 and t; = 0.6 is plotted in
Figure 7(b). It takes approximately 8 (or 11) iterations for K; (or §) to converge.

As discussed in Problem 1, the PCG method converges in at most 2p + 1 iterations
(or p + 1 empirically) for p-banded Toeplitz matrices with O(pN log N) operations. It
is worthwhile to point out that there exists direct methods which solve the system with
O(pN) operations [12]. Additionally, if A4(2) is of order (p,q), ¢ > 0, Dickinson proposed

a method to transform Ax = b into an equivalent symmetric banded system Ax = b
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with upper bandwidth max(p, ¢), whose solution can be obtained with max(p, q) x O(N)
operations [13]. However, this transformation requires the knowledge of the exact form
of A(z) and takes O(N log N) operations. Thus, the total computational complexity is
O(N log N), which is the same as that of the PCG method.

The PCG method has three advantages in comparison with Dickinson’s method. First,
to implement the PCG algorithm, we only need a finite segment of the generating sequence
@n,n=0,1,---, N — 1, rather than the precise formula of A(z). Second, the PCG method
can be easily parallelized due to the parallelism provided by FFT, and it is possible to
reduce the time complexity to O(log N). In contrast, Dickinson’s method is a sequential
algorithm, and the time complexity can only be reduced to O(N). Third, the PCG method
is more widely applicable. For example, it can also be applied to Toeplitz matrices with
nonrational generating functions.

Numerical results for Toeplitz matrices with nonrational generating functions are pre-
sented below. We consider 3 test problems, i.e.

Problem 6: a, = (n+1)~%;

Problem 7: a, = cos(n7)/(n + 1);

Problem 8: a, = (log(n + 2))~!.

Note that |a,| in Problems 6-8 decay slowlier than |a,| in Problems 1-5 asymptotically. The
numbers of iterations required to achieve ||b — Ax||; < 10~!% are summarized in Table 5
for Problems 6-8. Since all K;’s give the same performance, they are not distinguished. It

turns out that all preconditioners have similar performances.
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Table 5.

a; ,I c s K;
(n+1)"2 8 B 7 6
cos (nm)/(n + 1) 8 9 8
(log(n + 2))~! 8 10 9

In order to understand the asymptotical behavior, we consider a typical case P = K
and perform experiments for problems with sizes 32, 64, and 128. We plot the spectra of
K7'A and the corresponding convegence history for Problems 6-8 in Figures 8(a) and 8(b).
As seen in the figures, the change of the spectra and the convergence rates is not sensitive
to the size of the problem. We conclude that the PCG method converges in a finite number
of iterations independent of N for Problems 6-8 and the total computational complexity is

O(Nlog N). This is lower than that of fast or superfast direct methods.
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6 CONCLUSIONS AND EXTENSIONS

In this paper, we have presented a systematic approach to the design of Toeplitz precondi-
tioners by approximating a partially characterized linear deconvolution problem (the inverse
Toeplitz-vector product) with some circular deconvolution problems. In particular, we show
the design of four new preconditioners K;, ¢ = 1,2, 3,4, and analyze their spectral proper-
ties. This new class of preconditioners are very attractive for Toeplitz matrices with rational
generating functions.

The convolutional viewpoint not only provides ways to use all information given by
Toeplitz matrices so that preconditioned matrices may have better spectral properties. It
also suggests naturally how to generalize the preconditioning technique to block Toeplitz
matrices. This is under our current investigation. We also found from numerical experi-
ments that, for Toeplitz matrices A with rational generating functions, there exist strong
regularities in the number « of outsiders and the clustering radius ¢ for the spectra of P~14,
where P is either Strang’s preconditioner S or our preconditioners X;. How to explain these

regularities analytically is still open.
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APPENDICES
Appendix A: Proof of Lemma 2.

For an N X N doubly symmetric matrix B, we can express it in form [4]

B, JByJ
B= R for even N,
B, JB,J
or ) i
B, b JByJ
B=|bpT ¢ bTJ | for odd N,
B, Jb JByJ

where By, B; and J are |N/2] x | N/2| matrices with B = By and B] = JB,J,bisa

column vector of length | N/2], and ¢; is a constant. By defining the orthonormal matrix

1
Q=— ) for even N,
V2 -J J
or i )
I o0 I
1
Q= 7 0 V2 o0, for odd N,

~-J 0 J

we can decouple the eigenproblem of B into two separated subproblems, i.e.

B, -JB; 0
Q'BQ=QTBQ = , for even N,
0 By + JB,
or _ -
By - JB, 0 0
Q'BQ=Q"BQ = 0 o vabT |, for odd N.

0 \/ib Bl-l-JBz

.
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For the generalized eigenvalue problem
Ax = ABx

with doubly symmetric A and B, we can transform it to another generalized eigenvalue
problem,

Ay = ABy,
where A = Q-14Q, B = Q-'BQ and x = Qy.

Now, A and B are block diagonal matrices and the eigenvectors of B~1 A can be written

% - -
Y1 0
or for even N,
0 Y2
and L L
"1 0
0 or a for odd N,
0 | ¥3 |

where y1, y2, (a,yT)7T are eigenvectors of the following generalized eigenvalue problems:
(A1 = JA2)y1 = M(B1 = I By,

(Ar + JA2)y2 = Aa(By + J Ba)ya2,

and
ca  V2aT a c Vv2bT a

V2a Ay + JA, ¥a v2b B, +JB; ¥3
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Through the transformation x = Qy, the eigenvector of B~14 can be written as

1 Y1 1 Y2 f N
75 or 7 or even N,

-Jy1 Jy2

and i i i

Y1 Y3
—l— or -1—- for odd N
\/5 0 \/5 \/ioz ’

| ~=Iy1 | | Jya ]

which are skew-symmetric and symmetric respectively. It is clear that there are [N/2]
symmetric and |N/2] skew-symmetric eigenvectors for B~! A. o
Appendix B: Proof of Theorem 1.

If A is an eigenvalue of A~}(I{; — A), it satisfies
AAx = AAx. (29)

Now, since

(K3 — A)x = —AAx = —AAX, (30)

we conclude that —) is an eigenvalue of A™1(K7 — A) and @, = Q2. Similarly, we can
show that if ) is an eigenvalue of A~1(K3 — A), —) is an eigenvalue of A~1(K; — A) and,
therefore, Q3 = Q4.

Since A, AA and JAA are all doubly symmetric by Lemma 1 and A is positive definite,
we can find a set of eigenvectors of A"!AA and A"'JAA which are either symmetric or
skew-symmetric by Lemma 2. Let z be a symmetric eigenvector of A™1(K; — A) with

eigenvalue A. By substituting x = Jx into the L.H.S. of (30), we obtain

AAJx = MAx. (31)
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In addition, we have

(K3 — A)x = JAAx = AAJTx (32)

where the last equality is due to the commutability of J and AA. From (32) and (33), we
know that the eigenvalue A of A~1(K; — A) associated with a symmetric eigenvector is also
an eigenvalue of A~1(K3 — A). On the other hand, if z is a skew-symmetric eigenvector of
A71(K,— A) with eigenvalue A, we can similarly show that ) is an eigenvalue of A~ (K —A).
This implies that @, C Q3(= Q3 U Q4). With the same arguments, we can also derive
Q3 C @1(= @,V Q.). Hence, @; = Q3 and the proof is completed. a]

Appendix C: Proof of Theorem 2.

Let Ron be the 2N x 2N circulant matrix

A AA

AA A

whose first row is specified by (ag, a1, -,an-1,8N,8N-1, -+, @1). It is clear that

A DA x X
=A < (A+ DA = Ax.
AA A x X

Therefore, if A is an eigenvalue of KX; with eigenvector x, A is also an eigenvalue of Ryn with

eigenvector (xT,x7)T. Since Ryy is symmetric circulant, the eigenvalue A can be written

as
N . N-1
A= Z ane‘_N"_'zhk" =ag+ Z a2 cos( 27rkn) + (-1)*ap, (33)
n=-(N-1) n=1 2N

which is real and equal to a partial sum of the infinite series 3%, a,e™* fromn=1- N

to N. With conditions (28) and (29), we conclude that eigenvalues of K, are uniformly
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positive and bounded for large N. Similarly, we can show that eigenvalues of K;, i = 2,3,4,
are uniformly positive and bounded for large N. u}
Appendix D: Proof of Theorem 3.

Let AA, be the leading ¢ X g submatrix of AA.

9 N
A4l = max Y [(AAg)igl € Y. lanl <. (34)
7 =1 n=N+1-¢

Since AA, is symmetric, we have ||AA4,|[., = |AA|l, [14]. Thus
a4gll, < (A4l 184l )2 < 7. (35)

Hence, the spectrum of A4, clustered between (—v , ), and there are at most 2(V - ¢q)
eigenvalues of K; — A outside the range ( —7 , 7 ) by the interlacing theorem [9]. With the
assumption that A is uniformly positive definite, A~! is bounded by a constant ¢. Thus,

for given €, we can choose sufficiently large N such that
A7 (I — Allz < [|AT7[I2]1KL — All; S ey = e

The same arguments can also be applied to preconditioners K3, K3 and K4. This completes

the proof. (m]
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Figure Captions

Figure 1: Circular convolutions for preconditioners Kj.

Figure 2: Eigenvalue distribution of (a) A~!(P — A) and (b) P~'A for different precondi-
tioners with a, = (n + 1)~1.

Figure 3: (a) Eigenvalue distribution of P~! A and (b) convergence history for Problem 1.
Figure 4: (a) Eigenvalue distribution of P! A and (b) convergence history for Problem 2.
Figure 5: (a) Eigenvalue distribution of P~1A and (b) convergence history for Problem 3.
Figure 6: (a) Eigenvalue distribution of P~1A and (b) convergence history for Problem 4.
Figure 5: (a) Eigenvalue distribution of P! A and (b) convergence history for Problem 5.

Figure 8: (a) Eigenvalue distribution of K714 with N = 32, 64 and 128, and (b) their
corresponding convergence history for Problems 6-8.
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Figure 1(a): K, (Periodic extension).
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Figure 1(b): K, (Negative periodic extension).
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Figure 1(c): K3 (Even periodic extension).
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Figure 1(d): K4 (Odd periodic extension).
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Figure 1: Circular convolutions for preconditioners X;.
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Figure 2(a): Eigenvalue distribution of A~!(P — A).
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Figure 2(b): Eigenvalue distribution of P~! A.
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Figure 2: Eigenvalue distribution of (a) A~1(P — A) and (b) P! A for different precondi-

tioners with a, = (n 4+ 1)~1.
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Figure 3(a): Eigenvalue distribution of P~1A.
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Figure 3(b): Convergence history of the PCG method.
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Figure 3: (a) Eigenvalue distribution of P~'A and (b) convergence history for Problem 1.
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Figure 4(a): Eigenvalue distribution of P~!A.
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Figure 4(b): Convergence history of the PCG method.
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Figure 4: (a) Eigenvalue distribution of P~'A and (b) convergence history for Problem 2.
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Figure 5(a): Eigenvalue distribution of P~14.
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Figure 5(b): Convergence history of the PCG method.
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Figure 5: (a) Eigenvalue distribution of P~'A and (b) convergence history for Problem 3.
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Figure 6(a): Eigenvalue distribution of P~1A4.

7 L] v * v L
C

6 i -t e . -
S

5 i cane L
K4

4 e . o
K3

k1 X .s o
K2

2 . sme . -
K1

1F « co « o

0 L A L 1 1

0.5 1 1.5 2 25 3 35

Eigeavalue distribution
Figure 6(b): Convergence history of the PCG method.
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Figure 7(a): Eigenvalue distribution of P~1A.
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Figure 7(b): Convergence history of the PCG method.
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Figure 7: (a) Eigenvalue distribution of P~!A and (b) convergence history for Problem 5.
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