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Abstract

An array of biomagnetometers may be used to measure the spatio-temporal neuromagnetic field or magne-
toencephalogram (MEG) produced by neural activity in the brain. A popular model for the neural activity
produced in response to a given sensory stimulus is a set of current dipoles, where each dipole represents
the primary current associated with the combined activation of a large number of neurons located in a
small volume of the brain. An important problem in the interpretation of MEG data from evoked response
experiments is the localization of these neural current dipoles. We present here a linear algebraic framework
for three common spatio-temporal dipole models: i) unconstrained dipoles, ii) dipoles with a fixed location,
and iii) dipoles with a fixed orientation and location. In all cases, we assume that the location, orientation,
and magnitude of the dipoles are unknown. With a common model, we show how the parameter estimation
problem may be decomposed into the estimation of the time invariant parameters using nonlinear least-
squares minimization, followed by linear estimation of the associated time varying parameters. A subspace
formulation is presented and used to derive a suboptimal least-squares subspace scanning method. The
resulting algorithm is a special case of the well-known MUltiple SIgnal Classification (MUSIC) method, in
which the solution (multiple dipole locations) is found by scanning potential locations using a simple one
dipole model. Principal components analysis (PCA) dipole fitting has also been used to individually fit
single dipoles in a multiple dipole problem. Analysis is presented here to show why PCA dipole fitting will
fail in general, whereas the subspace method presented here will generally succeed. Numerically efficient
means of calculating the cost functions are presented, and problems of model order selection and missing
moments are discussed. Results from a simulation and a somatosensory experiment are presented.



1 Introduction

An array of Superconducting QUantum Interference Device (SQUID) biomagnetometers may be used to
measure the spatio-temporal magnetoencephalogram (MEG) produced by the brain. Given these external
magnetic field measurements, one would like to compute a “neuromagnetic image,” specifying the three-
dimensional current density that produced the magnetic field. Accomplishing this requires inversion of the
Biot-Savart law. Unfortunately, this general inverse problem is ill-posed because different neural current
distributions may produce the same external field measurements. As a result, physical models of the
underlying current distributions are employed (see [1] for an overview).

Of particular interest is the localization of the neural currents evoked in response to a given sensory
stimulus, such as auditory or visual. An external magnetic field may be produced by this primary neural
current, for which the simplest and most widely used composite model is the “dipole in a sphere.” Here, the
primary current is modeled as a current dipole or set of dipoles, and the head is modeled as a conductive
sphere. A current dipole can accurately model neural activity localized to one site, representing the
coherent activation of a large number of individual neurons [2]. The return or global volume currents are
distributed over the sphere of the head, and the external magnetic field generated by the volume currents
has no component normal to the head surface [3, 4, 5]. Thus, in this simple model, the component of the
magnetic field oriented radially from the head is produced by the primary dipole current alone.

Given a suitable source and head model, the inverse problem can be reduced to the nonlinear opti-
mization problem of computing the location and moment parameters of the set of dipoles whose field best
matches the MEG measurements in a least-squares sense. Singh et al. [6] discussed neuromagnetic imaging
(NMI), which extends the dipole model by assuming a large set of current dipoles, each with a fixed location
at the center of a voxel (volume element) of a three-dimensional volume within the brain. The MEG data
and image are linearly related; however, because of the large number of unknowns in the three-dimensional
image, there is generally not a unique solution. Ilmoniemi et al. [4] described the general forward problem
and presented minimum norm inverse solutions. Jeffs et al. [7] investigated several cost functions to select
an appropriate solution from the set of feasible solutions. Dallas [8] investigated the imaging problem using
a direct Fourier-based inversion approach, Alvarez [9] recently presented Fourier-based solutions for the
two-dimensional case, and Wikswo et al. [10] have had success in imaging two-dimensional objects with
their MicroSQUID apparatus. In this paper we present methods for solving for a small parsimonious set
of dipoles as a means of avoiding the ill-posedness associated with the full three-dimensional image model.

As in all modeling situations, a trade-off exists between model complexity and generality and the ability
to estimate reliably the model parameters from the given measurement data. Initial MEG dipole models
used single time “snapshots” of the measured spatial magnetic field, where a spatial dipole model was
fitted at an instance in time, usually at a local or global response peak. These MEG models are direct
counterparts of EEG dipole models, known as instantaneous state dipole models [11]. To increase the
complexity of the source models that can be effectively employed, researchers have begun to incorporate
temporal modeling assumptions. The addition of a temporal model increases the range of the measurements
that can be used in model fitting. A spatio-temporal dipole model and the necessary associated assumptions
are presented in detail in [2, 12).

The spatio-temporal models differ in the manner in which they describe the time dependence of the
data. Scherg and von Cramon [2, 13] use dipoles fixed in an unknown location and orientation, and therefore
the time dependence is represented by a scalar time series specifying the magnitude and polarity of the
current flow. Maier et al. [14] implicitly assume the same model, but use principal components analysis
(PCA) to derive the locations. Achim et al. [15) compare the instantaneous state dipole model with PCA
dipole fitting and spatio-temporal modeling; in their three-dipole fixed orientation spatio-temporal model,
they assume that two of the dipoles are known in orientation and location (information obtained from the
instantaneous state dipole model), and thus search for only one unknown dipole location and orientation.



In [16], Scherg and von Cramon have fixed location, but unconstrained orientation, and they introduce the
idea of dipole source potentials, or regional dipoles [12], where three elemental dipoles with orientations in
orthogonal directions may occupy the same physical location.

These differences in formulation can be grouped into three spatio-temporal dipole models: i) uncon-
strained (“moving and rotating”™) dipoles, ii) dipoles with a fixed location (“rotating” or “regional”), and
ili) dipoles with a fixed location and a fixed orientation (“fixed”). We assume that the parameters of
location, orientation, and magnitude are all unknown. Our intent here is not to argue the merits of one
model over another, but rather to show how each model may be solved efficiently within a common linear
algebraic framework. In each case, we show that the model can be mathematically reduced to the same
general expression, allowing the same approach to finding the inverse solution. This expression will unify
our approach to solving the inverse problem, no matter which model we choose. Preliminary versions of
this work appeared in [17, 18].

In Section 2, we present each of the three data models, and in Section 3, we discuss the calculation of
the error function in fitting these models to spatio-temporal data. In Section 3.3, we present a computer
simulation to illustrate the performance of these spatio-temporal modeling techniques. Section 4 presents a
new suboptimal but faster method of solving the least-squares problem using a subspace scanning approach.
In Section 5, we discuss how this subspace scanning is statistically equivalent to the MUltiple SIgnal
Classification method (MUSIC) [19). We also present analysis to show that although PCA dipole fitting
is similar to these subspace methods, PCA will generally fail in the multiple dipole case, whereas these
methods will generally succeed. We present a simulation of this scanning method, using the same example
data from Section 3.3. We then present results from an actual somatosensory experiment.

2 Forward Models

As discussed in the introduction, physical models are used to represent both the neural current sources and
the enclosing head shape and conductivity. Source models range from simple current dipoles to complex
current surfaces. Head shape and conductivity models range from spherically symmetric conductors to
finite element models based on individual anatomy. The combination of source and head model is known
as the forward model. Given any arbitrary static current distribution, the magnetic field can be obtained
from the Biot-Savart law. For source dipoles in a spherically symmetric conductor, lmoniemi et al. [4]
point out that the source model can be reduced to consideration of just the primary source elements,
regardless of the orientation of the sensors outside of the sphere. If the measurements are restricted to the
radial orientation, the model simplifies further [4, 5] .

Although the degree of complexity can vary greatly, in all cases the forward model specifies the complete
current distribution within the head via a set of source parameters (e.g., locations, magnitudes). In other
words the forward model provides a mapping from the source parameters to the resulting magnetic fields.
In general, we can partition the parameters of any forward model into linear and nonlinear parameters. In
this section, we show how this partition of spatio-temporal models provides a convenient algebraic form,
a form which highlights the difficult nonlinear parameters. Although our development utilizes a specific
forward model — current dipoles in a spherically symmetric conductor — the basic approach can be applied
to any forward model.

2.1 Biot-Savart Law

In this section, we present the Biot-Savart law in a convenient discrete matrix notation for discrete source
elements, which we then use to develop the spatio-temporal dipole models commonly used in MEG research.
The general model in every case requires determining the unknown set of parameters {L, M, S}. The linear
time varying parameters, S, can always be found using a direct pseudoinverse solution, but, in general, the



time invariant location parameters, L, must be found using an iterative nonlinear minimization algorithm.
The block diagonal matrix, M, depends on whether we use the rotating or fixed dipole model; in the
rotating model M is simply an identity matrix, and in the fixed model, M contains the unit orientation
parameters, M. The goal here is to show that each model can be expressed in a common framework and
solved in a similarly efficient manner.

We begin by examining the model for a single dipole, then expand this model to account for multiple
dipoles. Establishing an origin, denoting the dipole position as L, and observing the ith measurement at

sensor location R(i), we can write the Biot-Savart law for a current dipole as

5s QX(R(t) L)

B kb 1
where k = po / (47) is a constant, @ is the dipole moment, I is the dipole location, E(3) is the ith
measurement sensor location, and B(3) is the magnetic field at B(i). A SQUID biomagnetometer is used
to acquire the magnetic field at position £(i), but it measures only one component of the three-dimensional
field. Thus, only a scalar measurement is made:

B(i) = B(i) - §(i) , (2)

where 3(¢) denotes the unit orientation of the ith sensor. The operation “- ” denotes the dot product of
two vectors.
Combining equations (1) and (2) yields

(R@)-D)x3(0)-§ _ .
Bi) = ke X = 76) G (3)

The vector §(i) can be viewed as a gain vector, relating the moment intensity of the dipole to the mea-
surement at position R(z) If we let each gain vector be represented as a 1 x 3 row vector and the moment
as a 3 x 1 column vector, then we can arrange the measurements from m locations in a matrix form,

l -Z x 3(1 -
B(1) - |s §(1)

B=| Q=] : [[@=6(I)0Q (4)
m m —Z X 3(m alm
B(m) uﬁaﬁﬁu §(m)

The matrix G(I) can be considered to be the gain or relationship between a unit moment source
at I and the column vector of measurement locations {R(#)}. From this form we clearly see the linear
relationship between the moment ¢ and the measurements B. As we will show in Section 3, this form
also focuses our a.ttentxon on the more difficult nonlinear parameters in the matrix G (we usually drop the
dependence on I for notational simplicity).

Although derived for a single dipole, each column in G could also be viewed as the model for three
elemental dipoles or dipole source components, with all three sharing the same location, but in oblique
directions [16). _For simplicity, we will continue referring to these collocated elemental dipoles as one dipole,
with moment Q. This model easily extends to the multiple dipole (not collocated) case by superposition.
For p dipoles,

-
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or simply B = G(E)Z, where G(E) can be partitioned into the smaller matrices G,-(E;), as defined in
Equation (4). Similarly, T may be partitioned as the concatenation of the moment vectors for each of
the p dipoles. Notationally, we use over arrows, -, to indicate a row or column vector that is geometric in
three-dimensions, such as a location, ;. We use underlines and boldface to indicate more general column
vectors and matrices, which in turn may contain many such geometric vectors. For m sensors and p dipoles,
vector B is m x 1, matrix G is m x 3p, and vector I is 3p x 1.

2.2 Dipole in a Sphere

Our model in Equation (5) describes the external magnetic field as the sum of the individual fields from p
dipoles. For simplicity in deriving the model, the biomagnetometer is assumed to make a perfect point field
measurement. We also assume that this field is due to the local primary current only, as we are ignoring
the global volume or return currents. In more sophisticated head and source models, the return currents,
the finite coil area, and the gradiometer configuration of a practical SQUID biomagnetometer could also
be included, resulting in a very similar formulation to that presented here [4, 5, 7).

Many researchers have correctly noted that only the two tangential dipole moment components need
be computed for the “dipole in a sphere” model. A radially oriented dipole inside a spherically symmetric
conductor produces no external magnetic field, since the field from the surface return currents cancels
the field from the primary dipole current [3, 4, 5, 20, 21]. Additionally, the magnetic field normal to the
surface of the sphere (i.e., radial from the center of the sphere) is due solely to the primary tengential
dipole currents; volume or return currents in the surface of the sphere contribute nothing to the radial
magnetic field.

A common MEG geometry is therefore an array of sensors arranged radially about the surface of the
head, which is sensitive only to the tangentially oriented primary dipole currents. In this paper we will
therefore assume that the radial component is immeasurable and that only the two tangential components
are measurable. Thus each submatrix G; will be m x 2, corresponding to the gain in the two tangential
directions. We can refer to these two tangential components as ¢ and 9, e.g., G; = [G; G,]. We emphasize
that although we are using the dipole in a sphere model as an example, all results are sufficiently general
such that extensions to other models containing all three moment components are straightforward. Indeed,
the methods presented here can be applied to the EEG models as well, but we will restrict ourselves to
the MEG model for simplicity.

2.3 Unconstrained Location and Orientation

The instantaneous state dipole [11] is the simplest of the dipole models, for which we consider just a single
time slice of data, typically at the peak of the observed MEG response. The straightforward extension to
the full temporal information is simply to treat each time slice with a separate static model. At each time
slice, the locations and moments are calculated for each dipole, independently of all other time slices. Since
no constraints are placed on the parameters of the dipole, this model allows both moving and rotating
dipoles. The model is simply Equation (5) with a time parameter j inserted, B(j) = G(§)I(j), which we
would solve for each 7, 7 =1,...,n.

2.4 Fixed Location, Unconstrained Orientation

When the instantaneous dipole model is solved for several sequential time points, the location of the dipole
can appear to move as a function of time. Many researchers believe it is more realistic to assume that
different parts of the cortex with different cortical function are activated electrically when they perform
their specific tasks [22, 23]. The “movement” seen in the instantaneous state dipole would therefore be
more accurately modeled as two or more stationary dipoles which are activating electrically at different
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times. Rather than allowing the dipole locations to vary with time, as in the above model, this second
model restricts the location of the dipoles to be constant throughout the measurement interval, but allows
the moment intensities and orientations to vary. We begin with the previous model, fix the gain matrix to
be a constant with respect to time, and represent the model in a compact matrix form,

[B(1),- -+, B(n)] = G[I(1),"-,I(n)] (6)

or B = GT. Each column of the T matrix may be partitioned to represent the moments of p dipoles at
time j,

G1(7) My(5)$:1()
IG)= _5 =1 _ : (7)
Q»(7) My(5)Sp(7)

where each partition Q,( 7) can be represented by its unit moment orientation ]VI,(J) and intensity S;(j).
Hence, each row of T can represent the time series for one component of one tangential dipole [16).

2.5 Fixed Location and Orientation

Since no constraints are placed on the time series of the three components for each dipole, the orientation
of the dipole can vary or “rotate” over time. Some researchers [2, 13] argue that physiologically a dipole
orientation should not rotate, because the dipole model represents a fixed neuroanatomical structure. If
we fix the unit orientation of each moment to be the same for all time slices and allow only the magnitude
and polarity, S(j), of the moment to vary, then we can express the matrix T from above as

[ [#3] (51(1) -+ $a(m)]
T = : (8)
| [3,] 15,(1) -+ Sp(n)]
[ M, 0 S1(1) -+ Si(n)
= Do (9)
L o M, | LS,(1) - Sp(n)

= MS . (10)
Thus, our constrained model is now separated into three components,

B(1,1) ... B(1,n) M 0 S1(1) -+ Si(n)

ST =[Gy, ...y Gy : P (11)
B(m,1) ... B(m,n) 0 Efp Sp(1) -+ Sp(m)
or B = GMS. As before, G represents the m x p gain matrix between p unit dipoles and the array of m
sensors. The 2p x p block diagonal matrix M represents the fixed unit orientation moments. The moment
intensity matrix S is p x n.

Grouping as B = (GM)S = AS, we retain the same general separation into two matrices as for
the other models. The difference here is that we have both the time invariant location L and moment
orientation parameters M in the first matrix A, rather than just the location as before. Each column of
G represents the gain of one component of one dipole, but each column of A = [4,,...,4,] = GM now
represents one complete dipole.



2.6 General Model

The most general model contains both rotating and fixed dipoles. We might argue that two fixed dipoles
may be so closely located that they appear in our data as one rotating dipole. We may also have rotating
dipoles that rotate so little as to appear fixed in orientation. The general model accounts for both types
and will be useful in deriving further results in this paper.

We simply alter our definition of a rotating dipole to be one which must rotate, such that its two
component time series cannot be partitioned as a fixed moment orientation and a scalar time series (i.e.,
the time series are linearly independent). For p, rotating dipoles and p; fixed dipoles, we partition the pairs
of rows of T as the rank two submatrix T, = [Ty Ty] for rotating dipoles and the rank one submatrix

T, = [M ST) for fixed:

[Ty, To T (s T
: :[21.1r 0 :
T, To |7 Mg, 41 Typ To, |7
T = [M\[—‘ﬁpr Sag‘r] ] = (» ) . [—¢SP§' —0Pr] = MS (12)
(pr+1) 2(pe+1) * Z(pr+1)
: 0 M, :
v T
i M, ST) | S, |

where I, is a 2p, x 2p, identity matrix. We can now express our model as B = GT = G(MS) =
HS, where H = GM is our “hybrid” gain matrix, a combination of the previously defined G; and A;
submatrices,

GM=H=[Gy, ..., Gy, 4y, ..., 4;] (13)

The rank of this matrix H is r = 2p,+p;, which is effectively the number of dipole source components [16)
in our model. The matrix S is the corresponding time series for each dipole component; if two dipole
components are collocated, then by our definition they represent one rotating dipole.

The rotating and fixed models are just specializations of this model, and the instantaneous dipole model
is just this model for one time slice. For no fixed dipoles (p; = 0), M is simply a 2p, x 2p, identity matrix,
and we have the rotating dipole model of Equation (6), with 3p unknown location parameters in the gain
matrix H(L, M) = G(L). Similarly, for no rotating dipoles (p, = 0), we have the fixed dipole model of
Equation (11), with 4p unknown location and constrained unit moment parameters in the gain matrix
H(L,M) = A(L,M). As we will show in Section 5, successful localization requires that we determine the
rank r, i.e., the number of dipole components, but not necessarily the number of rotating and fixed dipoles.

3 The Least-Squares Solution

In this section, we show how a least squares error is generated by implicitly or explicitly projecting the mea-
surements onto the orthogonal complement of the subspace formed from the appropriate forward model.
We use the simple dipole in a sphere model as an illustration, where the nonlinear parameters are the
locations of the dipoles and possibly the fixed orientation. The cost function is shown to be a function of
these nonlinear parameters only, thus reducing the number of parameters to be searched. The nonlinear
parameters are iteratively adjusted to minimize this error through standard nonlinear minimization tech-
niques. The optimal nonlinear parameter set is then used to perform a linear least squares fit for the linear
parameters. We present approaches for efficiently calculating these cost functions, then conclude with a
three dipole simulation example.



3.1 Separation of Linear Parameters

Consider the general model of p, rotating dipoles and p; fixed dipoles for our data, B = H(L,M)S,
where H(L,M)is mxr, S is r x n, and r = 2p, + p;. H(L,M) has 3p unknown location parameters
and p; unknown constrained moment parameters. We collect n time samples from each of m SQUID
biomagnetometers and form a spatio-temporal matrix of data F = [F(1)---F(n)]. We model this data
as F — B = N, where N represents the error between the measurements and our model. We define our
measure of fit as the square of the Frobenius norm,

Jis = 323 UFGy3) - B, i)Y = IIF - BIf3 = [[F - H(Z, M)S|[3 . (14)

i=1 j=1

The goal is to find the set {L,M, S} that minimizes this error.

The simple approach is to use this cost function directly in an iterative minimization algorithm, which
would search for all 5 parameters for each one of p dipoles at each point of n time instances, for an overall
total of 5pn parameters [24]. Thus a three dipole model would require searching a fifteen parameter space
at every time instance. This same cost function, however, can be viewed as a projection minimization that
can greatly reduce the computational cost, yet incorporates the information of all the time slices.

Given L and M (hence, H), a solution for the matrix S that will minimize Ji g5 is

S =H'F , (15)

where H! is the well-known pseudoinverse solution (for full column rank H),
H' = (HTH)'HT (16)

or the more general Moore-Penrose pseudoinverse (minimum norm) solution,
H! = vZ+UuT | (17)

where H = UXV7 is a singular value decomposition (SVD) and Bt is the diagonal matrix ¥ with its
nonzero elements inverted [25]. This minimization for S will hold for all sets {L, M}, including the optimal
set {L, M}* that minimizes the cost function Jis.

We can replace S with this pseudoinverse solution before solving for {Z, M}. The cost function can be
equivalently expressed as

Js = |IF - HS||} = ||F - HH'F)|[} = (I - HEYF|IZ = (I~ Po)FIl} = IPEFIF . (18)

The matrices Py and P are projection matrices: Py projects data onto the column space of the matrix H,
and Pj is the orthogonal complement projection, that is, the projection of the data onto the left null space
of H. Thus, the squared error can be explicitly computed as the projection of the data matrix, F, onto
the left null space.

We have used the separation of the unknown parameters into linear and non-linear components and have
factored out the linear moments. While this method has often been used by other researchers [12, 14, 15, 23],
the mathematical details have not always been stated or explained explicitly; references [26, 27] give a
full mathematical justification for this approach. The benefit is that Jrg is now a function of only the
parameters in H. An iterative minimization routine need only explicitly consider this reduced subset of
parameters, which can considerably reduce the convergence time.

This cost function can be minimized directly by a non gradient-based method, such as the Nelder-Meade
simplex, used by many researchers because of its simplicity and apparent robustness to local minima [15].



Alternatively, gradient-based methods are typically faster, but require either analytical or numerical partial
derivatives of the projection matrix. Simple analytic expressions of the partials of the projection matrix are
derived in [26, 27], and these expressions, in turn, require only partials of the gain matrix H. In practice,
however, any slight change in the head or source model requires a recalculation of the partials, and the
simplex method or other non gradient methods are therefore usually preferred for their simplicity [14, 15).

The computational complexity of the least-squares estimation problem is highly dependent on the
number of nonlinear parameters that must be estimated. In the instantaneous state dipole model, the
location of each dipole must be computed independently for each time slice i. In comparison, the number
of nonlinear parameters in the rotating dipole model drops dramatically. For p dipoles and n time slices,
in both cases we have 2pn linear parameters, but the gain matrix G is a function of only 3p location
parameters for the rotating dipole model, rather than 3pn for the instantaneous dipole model. Thus the
rotating dipole model requires an iterative search of only the 3p non-linear location parameters, followed
by a simple 2pn linear fit for the moment parameters. For the fixed dipole model, the dimensionality of
the the search space in the iterative minimization algorithm is increased relative to the rotating dipole
model from 3p parameters (locations only) to 4p parameters (locations and constrained unit orientations).
Only the pn parameters of the time-series magnitude and polarity of the moments in the matrix S can be
calculated using a simple linear fit.

An approximate approach to the fixed dipole model is to group the model as B = G(MS), which is
effectively identical to the rotating dipole model B = GT. Once T is found, we form a second equation,
MS = T, from Equation (10), and solve for M and S. The advantage of this approach is that MS = T
can be solved efficiently using the SVD. Each set of two rows of T represents the time series for the two
tangential components of one dipole. If the dipole is truly fixed in orientation, then this 2 x n matrix
partition is of rank one. An SVD of this partition of the matrix will give the best rank one fit, and a
simple analysis of the singular values will confirm the quality of this fit. If the rank one fit from the SVD
is perfect, then the solution is optimal; however, in general this approximate approach is not guaranteed
to give the same result as that which would be obtained by solving B = AS. The appeal lies in keeping
only 3p unconstrained parameters instead of 4p constrained parameters in the iterative search space. An
example of this method is shown in Section 3.3. One possible extension of this approach may be to embed
this two-step process into each iterative error calculation, rather than solving MS = T only once at the
end of the iterations.

3.2 Error Function Computation

The greatest computational burden in fitting the multiple dipole model occurs in the iterative nonlinear
minimization routine, which must repeatedly form the nonlinear gain matrix H, then solve the inverse
matrix problem for cost function J;g for different sets of parameters. By using the SVD and the QR
decomposition [25], we can significantly reduce the number of multiplications required. This analysis also
leads naturally into Section 4, where we present an alternative method of solving the least-squares problem
using these same decompositions.

If the number of time samples, n, is greater than the number of sensors, m, then the use of an SVD
of F gives an efficient form for calculating the above error function. Decomposing as F = UZV7, the
least-squares cost function can be rewritten as

Jis = ||PEF|E = IPEUSVT|I} = IPLUS|I} = IPEWIE (19)

where we are able to drop the term V7 because orthogonal matrices preserve the F-norm. Since F is
m X n, then the diagonal matrix X of singular values has at most m nonzero terms. Therefore W = UZ
is only m x m, as opposed to the larger m x n data matrix F.
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Greater savings occur if the number of non-zero singular terms, r, is less than m, i.e., F is not of
full row rank, because then W would have correspondingly fewer columns, r. With noise considerations,
the singular values are almost always strictly greater than zero, so we can amend r to be the number of
singular terms “significantly” greater than zero. The corresponding 7 components in the decomposition
are the principal components that “adequately” describe the data, where the user must decide what is
adequate and what is significant. Using these significant components reduces the computational cost but
results in a suboptimal least-squares solution. Section 4 more fully exploits this possible decomposition.
A two-stage approach would be to use this reduced r set for the coarse fit, then return to the full m set of
components for the complete fit.

If an SVD is used to calculate the pseudoinverse of H, then a further reduction in the number of
multiplications can occur. Denoting the decomposition as H = [U,U,,_,]EV7, where H is m x r, then
let U, contain the columns corresponding to the r non-zero singular values, and let U,,_, correspond to
the m — r zero singular values, where r is the rank of H. Then P§; = U,,,_,UZ__ and the cost function
can be calculated as

Jis = |IPEWIE =UL_ W} (20)
= W% - [PaWI} = Wi - |UTW|} , (21)

where the second form follows from the well-known equality ||W||% = ||[PeW||% + ||[PFW||%.

The selection between the two forms depends on the rank r and the decomposition method used, since
either projection matrix may also be efficiently computed by using the QR decomposition of the gain
matrix H. The choice of SVD or QR decomposition is application dependent. In general, the calculation
of an SVD is more expensive, because it calculates the two eigenvector spaces U and V by iteratively
converging to a solution. However, “economy” SVD versions [28, 29) can be run in which only the principal
component eigenvectors are calculated, i.e., U, above, resulting in considerable savings if the rank r of H
is small relative to m. By comparison, QR decomposition is noniterative, and it outperforms a full SVD
calculation. If the rank of H is large, then QR decomposition generally outperforms even the economy
SVD. Either method of decomposing H will outperform the undecomposed projection matrix, Py = HH!.
These decomposition approaches also have better numerical properties than inverting HTH or solving via
Gaaussian elimination [25). We will use these decompositions as a basis for forming a subspace scanning
method in Section 4.

3.3 Simulation

We conclude this section by presenting the results of simulations in which the spatio-temporal models
described are applied to a set of simulated MEG data. Data were simulated for the case of three dipoles,
all three with fixed locations, two with fixed moment orientations and the third with a rotating orientation.
The data were computed for an array of 37 closely spaced sensors radially oriented and positioned on the
surface of an imaginary sphere of radius 12cm.

Because the head model was assumed to be a spherically symmetric conductor and the sensors were
arranged radially outside of the sphere, then only the fields due to the primary tangential dipole currents
were computed, as discussed in Section 2. However, rather than compute the parameters in a spherical or
rotated coordinate system, we employ a cartesian coordinate system and solve for the three constrained
moment parameters per dipole, using the pseudoinverse form of Equation (17). A total of 100 time samples
were generated and corrupted by additive white Gaussian noise with an SNR of 10dB. SNR is computed
as the ratio of the average magnetic field measurement power to the variance of the noise. The resulting
simulated MEG data are shown in Figure 1.

The parameters for this data were estimated using two of the models discussed: a) fixed location but
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unconstrained orientation; and b) fixed location and orientation. For the “rotating” model, the locations
of the three dipoles were estimated using a Nelder-Meade simplex search to minimize Jzg in Equation (18)
over the dipole location parameters; Equation (15) was then used to find the moment time series. The true
and estimated locations are listed in Table 1 and the estimated time series are shown in Figure 2 overlayed
with the original simulated time series.

[ Dipole 1 Dipole 2 Dipole 3
True and Estimated Location (cm)
L, L, L, L, L, L, L, L, L,
True | 2.800 -1.700 8.300 | -2.900 -1.600 8.300 | 0.000 3.300 8.400
Est. | 2.817 -1.691 8.335| -2.910 -1.594 8.225]| -0.056 3.320 8.358
True and Estimated Moments (from SVD)
M, M, M, M, M, M, M, M, M,
True (N/A,rotating) 0.770 0.525 0.369 | 0.516 -0.797 0.313
Est. 0.770 0.518 0.373 | 0.507 -0.800 0.320

Table 1: Estimated Locations and Moments. The locations were found using a Nelder-Meade simplex
algorithm for the rotating dipole model. The number of dipoles, 3, was assumed known, and the simplex
algorithm searched for the best 9 location parameters that fit the data in a least-squares sense. Once the
locations were optimized, the time series were found via a simple linear least-squares fit. The time series
for the second and third dipoles were decomposed into a rank 1 model, from which the fixed moment
orientations were found.

For the fixed orientation and location model, rather than iteratively search for dipole locations and
orientations, we used the two-step approximate method discussed in Section 3.1. In this method, we use
the results of the rotating model above, which searched the nine parameter location space only. The
identified time series were then fit to a rank one model (per dipole) via an SVD, resulting in the time series
displayed in Figure 2. The true and identified moments for the two fixed dipoles are displayed in Table 1.
Because the third dipole actually had a rotating moment, then the SVD of its time series properly revealed
a poor rank one fit.

4 A New Approach to Source Localization

In this section we introduce a new MEG inverse algorithm. Although it is generally suboptimal in a least-
squares sense, this algorithm has the strong advantage of “scanning” quickly with a one dipole search,
rather than the p-dipole search necessary in a complete fit. In Section 5.1, we discuss how this algorithm
is analogous to the statistically derived MUSIC direction-finding algorithm for polarized sources [19].
Section 5.3 examines the related method of PCA dipole fitting, but shows where this method differs and
why it generally fails. We first develop the algorithm for the rotating dipole, then extend it to include the
fixed dipole model. We then consider the general hybrid case of both fixed and rotating dipoles.

4.1 Order Selection

Perhaps one of the greatest problems in MEG analysis is determining the number of dipoles: if too few
are selected for any of the models, then the calculated dipoles are biased by the missing dipoles; if too
many dipoles are specified, then spurious dipoles are introduced, which may be indiscernible from the true
dipoles. Since the computational cost and numerical sensitivity of most iterative minimizations increases
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(c) Dipole 3, Fixed Moment (d) Dipoles 2 and 3, Moment Scalar Time Series

Figure 2: Estimated moment time series for three dipoles. Three dipoles of tangential orientation (no radial
component) were given overlapping time series and projected into cartesian coordinates, one time series
per coordinate per dipole. The dipole model for the unconstrained moment orientation was then used in
a simplex algorithm to find the locations. The nine time series were found with a simple least-squares fit
and plotted for each of the three components of the three dipoles in figures (a) to (c). An SVD was then
performed on the second and third dipole time series ((b) and (c)) to approximate the dipole model for
constrained orientations, and the resulting dipole moment magnitude and polarity is plotted in (d).
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dramatically with the number of parameters, then too many dipoles also adds needless computational
burden.

Other authors have shown that examination of the spatial surface topography can be misleading if time
series are overlapping and/or dipoles are placed such that one maximum potential cancels another [15, 20].
As an alternative, analysis of the dimensionality or rank of the data matrix F is often made in an attempt
to determine the true number of dipoles. In general, for p dipoles, the rank of the model data matrix B
will be limited by

Rank(B) = min(Rank(H), Rank(S)) < 2p . (22)

The upper limit comes from either H or S, since each dipole moment component in S has a corresponding
column in H, with at most two moment components per dipole. For the lower limit, the problems usually
arise in S, where the matrix is of full row rank only if all time series are linearly independent. If all dipoles
are rotating, then S is at most rank 2p; however, if all dipoles are fixed in orientation, then S is at most
rank p. If any combination of the spatially distinct dipoles have linearly dependent time series (perfectly
correlated), then the rank of S drops accordingly.

For the general model with p, rotating and p; fixed dipoles, the rank of H is r = 2p, 4 ps. As we will
show, we do not explicitly need to know p, and py, if the time series are sufficiently independent and the
SNR sufficiently large.

4.2 Rotating Dipole Model

We consider first the case where all dipoles rotate, that is H(L,M) = G(L)M = G(L). From Equa-
tion (18), we express the least-squares cost function as

Jus = |IF - GT[} = ||PgF|I%, (23)

where G is m x 2p, T is 2p x n, and M is the identity matrix, since all dipoles are assumed rotating. We
can interpret the least-squares problem as trying to find the gain matrix G whose orthogonal subspace
projector P§ minimizes Js. Since G is of rank 2p, then the orthogonal complement projector P is of
rank m — 2p.

In the method developed here, we first find the best orthogonal projector PL, regardless of the gain
matrix, and then find the gain matrix G that best fits this projector. The first step in this method is to
minimize over all possible orthogonal projectors of rank m — 2p, for which we form the first cost function,

Ji = |[PAFIE (24)

Minimizing J; over all PL is equivalent to finding the best rank 2p projections of F. From [30, Corollary
2.3, the best rank 2p approximation of F is formed from the first 2p components of the SVD. Hence,
we decompose F as F = UXVT = (U2, Um_gp]EVT, where Uy, contains the 2p left singular vectors
associated with the 2p largest singular values, and U,,_s, contains the remaining m — 2p left singular
vectors. The best rank 2p approximation of F is given then by Fj, = (U Ug;,)F. The best orthogonal

projector is therefore
U IIT
P-L = m_zp m_zp . (25)

Once we have formed this best orthogonal projector P+, then the second step is to find the gain
matrix G most orthogonal to this projector. Orthogonality between P+ and G = [G; - - - G,] implies P+
is orthogonal to each G;, where G; is the m x 2 gain matrix for a single dipole. Since the ith term depends
only on the location of the ith dipole, our scanning function for rotating dipoles, J.(1), is derived from this
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orthogonality,
L PG
() = Sle oz, G (26)

where G; = G; / ||Gi||r is the normalized gain matrix. Normalization is necessary so that a small value
for J.(¢) is an indication of closeness to orthogonality and is not simply due to a relatively small gain.

If PL is a reasonable approximation to the optimal P}, and a G exists such that ||[PLG||% = 0,
then each of the G; submatrices will be orthogonal to P+, and J,(i) ~ 0 when evaluated for each correct
location (the conditions under which these approximations hold true will be discussed in Section 5). Our
scanning method therefore is to search over all possible one-dipole locations and at each location evaluate
J¢(1), looking for minima. The explicit steps will be presented in Section 5. The general approach is to
evaluate J,(¢) over a fine three-dimensional grid, plot its inverse, and look for p sharp “spikes”.

Provided the gain matrices are linearly independent over the scanning space, the scanning function will
not display more than p spikes, since the existence of more, for instance p + 1 spikes, would suggest there
are m + 2 orthogonal column vectors in an m-dimensional space, which is not possible. We may however
find fewer than p spikes. Each evaluation of J,.(i) actually represents the projection of the column vectors
for two tangential components in G;. If the dipole is fized in orientation, then only a linear combination
of the two vectors may be orthogonal, and J,.(7) would not be a minimum at the dipole location. The next
subsection extends this scanning method to accommodate these fixed orientation dipoles.

4.3 Fixed Orientation Dipoles

We now assume all dipoles are fixed, such that our model for the fixed orientation dipole, as shown in
Equation (11), is B = [G(L)M]S = A(L,M)S, where S is the scalar time series and M is the matrix of
fixed unit orientation moments. The gain matrix G is still m x 2p, but M is 2p x p and S is p x n, where
p is the number of dipoles. Thus, A(L,M) is an m x p matrix and the full least-squares cost function is
Jis = miny ||P AF” %, where Py is an orthogonal projector onto an m — p subspace, rather than an m—2p
subspace as for P§. We otherwise proceed identically as above, arriving at an analogous cost function for

fixed dipole, r
. _ |[UR_p4ill3
Jp(i) = p_zz 2 “Um—p—:”2 ’ (27)
14113

where 4; = A; / ||4;l2 is the normalized gain matrix for fixed dipoles, U,n—p now contains the m — p left
singular vectors associated with the m — p smallest singular values, and we note that for vectors the L,
norm is equivalent to the Froebinius norm.

Note that J¢(3) is now a function of four parameters. If J;(¢) were evaluated in the same manner as
the rotating dipole scanning function, then not only would we need to scan over all possible locations L,
but at each location we would also have to scan over all possible constrained unit orientations M, thus
extending our scan from three dimensions to four dimensions. However, we now show that we can instead
continue to search over only the three-dimensional locations I and at each location implicitly select the
best orientation M which minimizes our cost function. We achieve this by using the separability of 4;
as A; = G;M; and applying the constraint M M; = 1, since M; is, by our definition, a unit moment
orientation vector.

For a given three-dimensional location I, G.-(f) is completely specified, so we seek to minimize the
cost function J;(3) with respect to M;,

. U —pAill3
Jf(z) = T,I—zz (28)
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(29)
|G:M; |13
- ﬁerT Pl G;M; (30)

MIGTG;M;

subject to W M; =1.
From Equation (30) we recognize that minimizing this problem is equivalent to finding the minimum
generalized eigenvalue (e.g.,[31, Page 277],[30, Page 470]) of the expression

GTPLG;M; = \GTG; M; . (31)

If we denote the SVD of G; as G; = Ug; ZG,.VE.., where Ug; contains only the principal eigenvectors
associated with the non-zero singular values, then the generalized eigenvalue problem can be expressed as

[V6:Z6,UL] PL (UG, B6,VEIM: = MV, 26, UL, [Us,Z6, VEIM; , (32)
ULPUG,[Be,VEM) = AZ6,VEM], (33)

such that we can now solve the equivalent simpler minimum eigenvalue problem,
J1()) = Mmin{UE,P+Ug,} , (34)

where Apin{-} denotes the minimum eigenvalue of the bracketed term.

Thus we need not explicitly scan for or calculate the best moment orientation that minimizes J¢(%), but
rather calculate just the eigenvalue associated with this moment. Consequently, the fixed dipole scanning
procedure is the same as for the rotating model, except that at each location in our 3-D scanning grid we
calculate the smallest eigenvalue of the bracketed term. For the fixed p-dipole model we expect to find
p locations where Jy(i) ~ 0. The optimal moment orientation at each minimum of Jy(7) is found as the
eigenvector associated with A iy.

Note that calculating this cost function requires finding the smallest eigenvalue of only a 2 x 2 matrix.
Also note that depending on the dimension p of the orthogonal projector, this small 2 x 2 matrix may be
more efficiently formed as UZ (I - U,UT)Ug, = I - (UTUg,)T(UTUg,), where U, again represents the
p left singular vectors associated with the p largest singular values of F'. Thus, this cost function may be
calculated with relatively little computational burden.

4.4 Fixed and Rotating Dipoles

In the mixed case, we have p, rotating dipoles and p; fixed dipoles for a total of p = p, + p;s dipoles. Our
general model is therefore

[ [Zatl LI]T 1

Ty Lo T
B=HS= [[QM Qm]s [—-¢pr —Bpr]vAl’ ;] [-—¢Pr.5——¥:apr] (35)

T
I .S.p, |

We have two related scanning functions for rotating and fixed dipoles, J,(¢) and J;(¢). Examining

17



Jr (), we see that

. ~ PLUG,3g,|I2
O (36)

83 + 83

where s; and s, are the two non-zero singular values associated with G;. The vectors ¢; = [1, 0T
and e; = [0, 1]T form an orthogonal unit moment orientation pair that spans the row space of G;. By
comparison, J¢(#) can be viewed as

Ji()) = Amin{UL,PUG,) (38)
= ||P+Ug; M;|)3 (39)

where 117,1' is the optimal M; that minimizes J 7(?) over all unit moment orientations at that location.
Comparing 117,5“ with e, and e, above, we can describe the rotating dipole scanning function as a weighted
average measure of how all dimensions of G; project onto the noise subspace, while the fixed dipole function
is a measure of how one optimal dimension of G; projects. Thus when J.(i) = 0, then Jy(i) = 0.

The rank of H is r = 2p, + p; and is the crucial piece of information for this model. We otherwise
proceed as for the the fized dipole model. At each location, we calculate the hybrid scanning function
In(8) = Amin{U%, Um-, UL _,Ug,}, where Uy,_, now contains the m — r left singular vectors associated
with the m—r smallest singular values, as compared to m—2p and m—p vectors for the two previous models.
If at a location ¢ we have a fized dipole, then G;M; represents a linear combination of the vectors in G; that
is orthogonal to the noise subspace projector (Um-,UL _,), and we obtain J4(¢) ~ 0. Correspondingly, if
at a location ¢ we have a rotating dipole, then G; is already orthogonal to the noise subspace projector,
regardless of the fixed orientation M; we attempt to assign, and we still obtain Ju(?) = 0. Thus we can use
the fized dipole scanning method for both rotating and fized dipoles. We summarize the complete steps in
the following section, where we show that this same algorithm can be derived under the proper statistical
conditions.

5 MUSIC
5.1 Signal and Noise Subspaces

In the previous section we examined the rotating, fixed, and hybrid models separately. In this section we
proceed directly to the general hybrid model B = H(L, M)S and assume that the hybrid gain matrix may
represent any mix of fixed or rotating dipoles. We state the assumptions necessary for proving some of the
MUSIC assertions.

AH (Gain Matrix Assumption) The m x r hybrid gain matrix H, m > r, is of full column rank r for p
dipoles. In other words, the gain columns of the dipole components cannot be combined to simulate
the gain columns of a third dipole component. For p, rotating and py fixed, p = p, + py and
r = 2p, + py.

AS (Asynchronous Assumption) The moment time series for different dipole components are asyn-
chronous or linearly independent, i.e., the time series of one component is not simply a scalar multiple
of the time series from another component, nor can any combination of time series form another time
series. Thus the time series matrix S is also of full rank r.
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AW (Noise Whiteness) The additive noise is considered temporally and spatially zero-mean white noise
with variance o2, such that the expectation of the outer product of the m x n noise matrix is
£ {N(i)N(i)T} = 021, where n is the number of time slices. This requirement may be eased by
prewhitening of the data, if the noise statistics are known.

The key assumption is that spatially distinct dipoles have linearly independent time series over the
measured time segment; however, no constraint is imposed on whether or not the dipole moment is rotating,
i.e., the method will work for either fixed or rotating dipoles.

Our model for noiseless data with m sensors, n time slices, and r elemental dipole components is B =
HS, where His mxr, m > r, and Sis r x n, r < n. Consider the model for the noisy data under the
assumption AW of zero mean white noise, F = HS + N. The spatial autocorrelation of the data is then

Rr = £ {F()F(i)"} = £ {[HS(i) + N(i)) [HS(i) + N(:)]" } = HRsH” + 0’1, (40)

where € {-} is the expectation operator, and Rg = € {S(i)S(z’)T}; by assumption AS, this correlation ma-
trix Rg is of full rank. The square symmetric matrix RF may be written in terms of its eigendecomposition
as

Rr = ®A37T = [3, &,) [ A, A ] [®, ®,]7 (41)

where we define A, as the diagonal matrix containing the r largest eigenvalues and ¥, as the matrix
containing the corresponding eigenvectors. By our assumptions, it is well known that the eigenvalue equal
to the variance of the noise, A = g2, repeats with multiplicity m — r [19]. Accordingly, A, = 021, and &,
is the matrix containing the corresponding m — r eigenvectors.

Comparing Equations (40) and (41) and using assumptions AH and AS, it is straightforward to show
that the space spanned by &, is identical to that spanned by HRsHT; therefore, ®, is said to span the
signal subspace. The space spanned by @, is the orthogonal complement of the signal subspace and is
referred to as the noise subspace. Based on these observations, it can be shown that the quantity

Amin{UZ, 8,87Ug,}, (42)

is zero for any matrix G; = UG,.EG'.VE.. corresponding to a true dipole location [19]. Thus we can
determine the dipole locations exactly using Equation (42) provided Rr, and hence ®y, is known exactly.

In practice, MUSIC approximates Rr by Rp = -};FFT. Estimates of the signal and noise subspaces, ®,
and &, are formed using an eigendecomposition of Rr. Using this approximation for ®,, Equation (42)
is now equivalent to Equation (34), which was derived using a deterministic suboptimal least-squares
approach. Thus the scanning method presented in Section 4 is also equivalent to the MUSIC algorithm for

“polarized sources”, as defined in [19], when the assumptions presented here hold true.

5.2 Summary of the MUSIC Algorithm
Summarizing the MUSIC algorithm,

1. Given the m x n data matrix F for m sensors and n time samples, perform the eigendecomposition
of the estimate Rp = %FFT = ®A®T. Order the eigenvalues, such that A; > Az > ... > Ap.
Equivalently, perform the SVD of F, where the eigenvalues are the square of the singular values.

2. Select the separation point 1 < r < m between the signal and noise subspace eigenvalues. By
assumptions AH and AS, r = 2p, + py, where p, is the number of rotating dipoles and py is the
number of fixed dipoles; therefore, r is the number of elemental dipoles. While theoretically Amin = 02
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repeats with multiplicity (m — r), in practice there is some spread among the smaller eigenvalues,
depending on the number of time slices n used to estimate Rp. If the signals are of sufficient
strength and sufficiently uncorrelated during the time interval, then a distinct drop in the magnitude
of eigenvalues will occur between A, and A,41. (A more detailed treatment of the order determination
problem is given recently by Chen et al. [32).) Form the estimated matrices &, and @,, from the
corresponding signal and noise eigenvectors.

3. Over a fine grid of three-dimensional locations {(z,y,2);}, calculate the corresponding m x 2 gain
matrix G; for each location, obtain the principal left elgenvectors Ug; of G;, using an SVD such that
G; = Ug, B, VE,, and evaluate Ju(i) = Amin{UF, $,8TUg,}, i.e., the minimum eigenvalue of the
bracketed expression. Form two-dimensional slices through the three-dnmensnonal space, e.g., (z,¥)
planes for constant z, and plot the function Z{(z,y,2);} = 1/Jx(i) as contours, images, or oblique
mesh plots.

4. At each sharp “spike” (minimum of J;), check to see if the entire subspace of G; is orthogonal to the
noise subspace (both eigenvalues of {UT $,8TUg,) are approximately zero), indicating that the
dipole is rotating. Alternatively, if memory storage is not an issue, then at each point when evaluating
Jx(i) we can also calculate the rotating cost function J,(i) = ||8TUg,Bg,||% / ||Bq,]|%. Locations
where J,.(i) & J;(#) =~ 0 indicate rotating dipoles. If the dipole is indeed fixed (only Jx(¢) = 0), we
estimate its orientation by calculating the eigenvector associated with A,,;,. We repeat this analysis
until we find p, rotating dipoles and py fixed dipoles such that r = 2p, + py. We can refine the
estimate of the locations by either using a finer grid in these areas, or by using these estimates as
the initialization point for a p-dipole least-squares search.

5. Form the hybrid gain matrix H(L, M) and solve for the time series, S = HF.

Note that we do not explicitly need to know the number of rotating versus fixed dipoles, p, versus py;
instead, we need only r = 2p, 4 py. The values of p, and py are then found by the MUSIC algorithm. We
also note that Step 4 indicates the possibility of detecting rotating dipoles by examining not only J.(%),
but by also examining the other eigenvalues of {Ug,&,8TUg,} found in the calculation of J4(i); however,
we have not studied differences in bias and variance among these various measures of fit.

5.3 Comparison to Other Dipole Fitting Methods

5.3.1 Least Squares Scanning

It should be emphasized that the MUSIC scanning procedure is quite different from fitting the full data
with a single dipole. The appeal of the one-dipole model is the relative simplicity with which we can form
G;. An alternative to the MUSIC approach would be to simply fit a one-dipole model at each point in a
scanning grid, i.e., compute the function

Juss(i) = |[PEFIIE - (43)

“Least-squares scanning” is then the evaluation of this function as the single dipole is scanned through the
head region. The dipoles are assumed to lie at the locations corresponding to the local minima of Jss.
Since we are fitting a one-dipole model, this method will naturally work when there is a single source.
However this method generally fails, for example when there are multiple sources that are closely spaced
or that generate fields of greatly differing intensities.

Least-squares scanning is equivalent to the beamsteering approach of conventional direction-finding
and suffers from the same problems of poor resolution and inter-source interference. The MUSIC approach
itself was first proposed in the direction-finding arena to overcome these problems [19)].
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5.3.2 PCA Dipole Fitting

The MUSIC algorithm fits a one dipole model to a subspace derived from the data. PCA dipole fitting is a
related method often examined in MEG analysis, usually with poor results [14, 15, 33, 34]. Although PCA
dipole fitting also scans a one dipole space derived from a similar decomposition, the subspace framework
presented here allows us to examine this method and show where it fails.

PCA dipole fitting begins with the identical step of decomposing the data matrix F into its orthogonal
components, F = USVT, then selecting the signal subspace. As described by Maier et al. [14] and analyzed
by Achim et al. [15], the columns of U are the spatial distribution of the principal components, and the
columns of V are the corresponding time functions. The matrix W = UX' describes the “factor loadings”,
where X’ contains only the r principal singular terms; this definition of W is consistent with our definition
in Section 3.

The PCA method fits a series of r single dipole models to the principal components as follows. The ith
dipole location and moment are chosen as a least squares fit to a linear combination of the factor loadings,

min ||Gi(L:)@: - WCilI3, (44)

where G;(L;) is the gain matrix for a dipole at location L; and §; is the dipole moment. In [15], Achim
et al. chose the individual terms of C; to be C;; = 1 and C;; = 0 for ¢ # j. In this case a single dipole is
fit to each of the columns of W. Alternative choices of the rotation factors {C;;}, such as Varimax, are
discussed and analyzed in [33, 34] and elsewhere.

The error in Equation (44) can be written as

Jrca(i) = [IWC; - GiQIl} = [IWC; - Gi(GIWC))II} = IIPEWC , (45)

where Pé‘. represents the orthogonal projection for a single dipole. The limitations of PCA dipole fitting
are now apparent. PCA dipole fitting will succeed only if the coefficients in C; are correctly selected, such
that WC, lies in the two-dimensional subspace spanned by G;. However, this requires that we know the
dipole location before we begin. As an example of the inaccuracy of PCA, Achim et al. [15] show a case in
which PCA severely mislocates one of three dipoles in a noiseless simulation.

5.4 Simulation and Example

In this section, we present results using the MUSIC algorithm for both simulated data and experimental
somatosensory data. We begin by using the same simulation model and data as in Section 3.3, where
at each of 37 sensor locations we simulate 100 time samples. Since by design we have two fixed dipoles
and one rotating, then our data model has a rank of four for three dipoles. We perform an SVD of the
simulated noisy data matrix F and plot the singular values, of which the first ten are shown in Figure 3.

The abrupt drop between values 4 and 5 give a clear indication in this simulation that the number
of elemental dipoles is 4. We form the noise subspace estimate &, from the eigenvectors associated with
singular values 5 to 37. We form the gain matrix at each voxel in the region 2 = -5to5cm,y = -5 to5cm,
and z = 6 to 9.5 cm, at 0.5 cm intervals. The minimum eigenvalue at each position using Equation (34) is
found, then the inverses of these values are formed into two-dimensional images for fixed z.

The results are shown in Figure 4. The cost function shows three distinct peaks in Figure 4a between
z =8 and z = 9 cm. The true locations, given in Table 1, are just below the plane z = 8.5 cm and agree
well with the positions shown in the figure. Figure 4b shows the inverse of the second eigenvalue found
in the evaluation of Equation (34). The figure shows a distinct peak for the single rotating dipole in this
simulation. We could refine our estimates by either scanning more finely around the z = 8.5 plane or by
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Figure 3: Singular values for simulated noisy data matrix F. For clarity, only the first 10 of 37 singular
values are plotted. The abrupt drop between singular values 4 and 5 gives a clear indication in this
simulation that the number of elemental dipoles is 4. The noise singular values corresponding to indices 5
and upward are seen to be approximately equal.
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using these scanning estimates as an initialization point for a full three-dipole least-squares fit.

For the somatosensory experiment, the data were generated by vibrotactile stimulation (using a piezo-
electric speaker element) of the right thumb, the right ring finger, and then both digits simultaneously. The
intent was that the evoked field pattern for “both digits” might reflect a summation of the fields evoked
by the stimulation of thumb and ring finger alone. The data were collected during eleven placements
of a seven-sensor, 2nd-order gradiometer system, at each placement averaging 300 trials. The data were
digitized for 300 milliseconds (100 pre-stimulus and 200 post-stimulus) at 1 kHz and were filtered on line
between 1 Hz to 100 Hz. Figure 5 displays the average absolute time response across all sensors for the
three experiments, “ring”, “thumb”, and “both”. Since piezoelectric stimulation creates a large stimulus
artifact, the data were partitioned into a prestimulus interval up to 0 msec and a poststimulus interval
after 24 msec.

Figure 6 plots the first ten singular values from the decomposition of the spatio-temporal data matrices.
The upper three curves are from the SVD of the poststimulus data matrices, and the lower three correspond
to the prestimulus. The shape of the poststimulus curves and the merging of the prestimulus curves leads
us to select the first six eigenvectors as our signal subspace. (For subspace orders five and four, we also
obtained results similar to those presented below.) Figure 7 displays the results of a five millimeter grid
MUSIC scan for the “both digits” stimulation, using the first six principal components of the poststimulus
interval. Each subimage represents an axial slice of the head in five millimeter increments along the z-axis,
with the left ear at the top of the image and the nose at the right. The head coordinate system used was
the x-axis through the nose, the y-axis through the left ear, and the z-axis up through the top of the head.

One millimeter scans were then centered on the observed peaks seen in the five millimeter scans.
Figures 8, 9, and 10 display axial scans in one millimeter increments, from z = -2 to 2 em, y = 3 to 7 cm,
and z = 6.1 to 8 cm. We see a clear shift in the response among the three data sets in both the y and 2
coordinates. Figure 11 summarizes the results from the z = 7.3 centimeter slice, where we have overlayed
contour plots with full gray scale images. Here we clearly see the distinct separation between the peaks
for the thumb and the ring finger stimulation. The response due to the “both digits” stimulation actually
peaks in the z = 6.9 cm plane, but we see in this z = 7.3 cm plane the indications of a possible summation
of the response from the two somatosensory centers. A more thorough analysis would include discussions
of noise correlation, order selection, and physiological interpretation, but we defer such analysis, since the
emphasis here is simply to illustrate the utility of MUSIC analysis with real data.

6 Conclusions

We have presented general descriptive models for spatio-temporal MEG data and have shown the separa-
bility of the linear moment parameters and nonlinear location parameters in the MEG problem. A forward
model with current dipoles in a spherically symmetric conductor was used as an example; however, other
more advanced MEG models, as well as many EEG models, can also be formulated in a similar linear
algebra framework. A subspace methodology and computational approach to solving the conventional
least-squares problem was then presented.

A new scanning approach, equivalent to the statistica] MUSIC method, was then developed. This
subspace method scans three-dimensional space with a one dipole model, making it computationally feasible
to scan the complete head volume. Although PCA dipole fitting is related to this subspace method, we
show how PCA dipole fitting fails, while the new scanning method generally succeeds. Least-squares and
MUSIC demonstrations were presented using simulated noisy data and actual somatosensory MEG data.
The MUSIC scanning method may also prove useful in constrained problems, such as scanning of the
cortical regions of the brain using locations obtained from an MRI scan. In a constrained optimization
over a very irregular reconstruction region, local minima abound, and conventional error function searches
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Figure 4: Simulation Results. Each subimage is a two-dimensional slice in the (z,y) plane for 2 = 6 cm to
9.5 cm. Each (z,y) slice was formed at 0.5 cm intervals, from -5 to 5 cm in both the z and y directions.
The simulation data are identical to the least-squares example, where the SNR is approximately 10 dB.
The top set of images (a) is from the fixed dipole function, J¢(i), Equation (34). Here we have encoded
the image as white to represent the minima in the cost function. The lower set of images (b), also from
the fixed dipole model, shows the second (non-minimum) eigenvalue; a minimum in the second eigenvalue
indicates the presence of a rotating dipole, as discussed in the text. The single minimum here correctly
identifies the one rotating dipole. The true locations, given in Table 1, are approximately in the z = 8.3 cm
plane, with good agreement in the positions indicated here.
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Figure 5: Average Absolute Evoked Field. The data were rectified across all sensor locations and averaged
to give an indication of the temporal activity.
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Figure 6: Singular Values of Somatosensory Data Matrices. The top set of curves correspond to the three
sets of poststimulus data (data after 24 msec), and the bottom set corresponds to the prestimulus data.
We selected order six as our signal subspace; similar results were obtained for orders five and four.

26



10cm  Z=4.0cm 4 5cm 5.0cm 5.5¢m 6.0cm

X

7.0cm 7.5¢m

Figure 7: Axial scans of the “both digits” stimulation case. Each subimage is a two-dimensional slice in the
(z,y) plane for ¢ = —10 to 10 cm, y = —10 to 10 cm, and 2 = 4 to 8.5 cm. The scanning grid increment
is 0.5 cm in all directions. The head schematic gives the orientation of the axial slices. Based on these
results, a 1 mm scanning grid was then formed around the indicated minima.
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Figure 8: One millimeter axial scans of Ring Data. Each subimage is a two-dimensional slice in the (z,y)
plane forz = =2 to 2 cm, y = 3 to 7 cm, and z = 6.1 to 8 cm. The scanning increment is 0.1 ¢m in all
directions. The head schematic gives the orientation of the axial slices, and the box indicates the region

scanned.
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Figure 9: One millimeter axial scans of Thumb Data.
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Figure 10: One millimeter axial scans of Both Digits Data.
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Figure 11: Comparisons of the one millimeter scans at z = 7.3 cm. The (&, y) dimensions remain z = —2
to 2 cm and y = 3 to 7 cm. Contour plots of the axial slices are overlayed with a gray scale image of the
data. On the left is the “ring” data, in the middle is the “thumb” data, and on the right is the “both
digits” data.

may be unable to locate the global minimum.

In general, MUSIC may fail when the noise is of sufficient strength to corrupt the estimates of the noise
subspace, when the time series in S are strongly correlated, or when the sources are closely spaced. Many
other authors have analyzed the performance of MUSIC, particularly the sensitivity of the results to errors
in estimation of the noise subspace, and have also suggested many modifications of the algorithm [35]-[38].
These results may prove useful in improving the subspace scanning method described here. The challenge
lies in advancing these methods for actual data where the noise statistics are unknown. The appeal lies in
the relative simplicity in which the data are processed and the entire head region scanned.
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