USC-SIPI REPORT #169

Generating Fuzzy Rules from
Numerical Data, with Applications

by

Li-Xin Wang and Jerry M. Mendel

January 1991

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
3740 McClintock Avenue, Room 404
Los Angeles, CA 90089-2564 U.S.A.

GENERATING FUZZY RULES FROM
NUMERICAL DATA, WITH APPLICATIONS

Li-Xin Wang and Jerry M. Mendel

Abstract

In this report, a general method is developed to generate fuzzy rules from nu-
merical data. This new method consists of five steps: Step 1 divides the input
and output spaces of the given numerical data into fuzzy regions; Step 2 generates
fuzzy rules from the given data; Step 3 assigns a degree to each of the generated
rules for the purpose of resolving conflicts among the generated rules; Step 4 creates
a combined Fuzzy-Associative-Memory (FAM) Bank based on both the generated
rules and linguistic rules of human experts; and, Step 5 determines a mapping from
input space to output space based on the combined FAM Bank using a defuzzifying
procedure. The mapping is proved to be capable of approximating any non-linear
function on a compact set to arbitrary accuracy. Applications to truck backer-upper
control [1] and time series prediction (2] problems are presented. For the truck con-
trol problem, the performance of this new method is compared with a neural network
controller and a pure limited-rule fuzzy controller; the new method shows the best
performance. For the time series prediction problem, results are compared by using
the new method, a neural network predictor, and an AR model predictor for real
time series data and a chaotic time series.

1 INTRODUCTION

For most real-world control and signal processing problems, the information concerning
design, evaluation, realization, etc., can be classified into two kinds: numerical information
obtained from sensor measurements, and, linguistic information obtained from human
experts. Most current intelligent control and signal processing approaches are heuristic in
nature, i.e., they combine some standard control or signal processing methods with expert
systems in an ad hoc way for a specific problem; simulations are then performed to show
that the new approaches work well for the specific problem. This kind of approach has
two weakpoints: (1) it is quite problem dependent, i.e., a method may work well for one
problem but is not suited for another problem; and, (2) there is no common framework
for modeling and representing different aspects of control or signal processing strategies,
which makes theoretical analyses for these approaches very difficult. In this report, we

propose a general method for combining both numerical and linguistic information into a
common framework — a Fuzzy-Associative-Memory (FAM) Bank.

Suppose we have the following problem: there is a complex control system in which
a human controller is an essential part; the environment facing this human controller is
so complicated that no mathematical model exists for it, or, the mathematical model is
strongly non-linear so that a design method does not exist. The task here is to design a
control system to replace the human controller (Fig.1).

In order to design such a control system, we first need to see what information is
available. We assume that there is no mathematical model, i.e., we consider a model-free
design problem. Since there already is a human controller who is successfully controlling
the system, there are two kinds of information available to us: (1) the experience of the
human controller; and, (2) sampled input-output (state-control) pairs which are recorded
from successful control by the human controller. The experience of the human controller
is usually expressed as some linguistic “IF - THEN” rules which state in what situation(s)
which action(s) should be taken. The sampled input-output pairs are some numerical data
which give the specific values of the inputs and the corresponding successful outputs.

Each of the two kinds of information alone is usually incomplete. Although the system
is successfully controlled by a human controller, some information will be lost when the
human controller expresses his/her experience by linguistic rules. Consequently, linguistic
rules alone are usually not enough for designing a successful control system. On the other
hand, the information from sampled input-output data pairs is usually also not enough
for a successful design, because the past operations usually cannot cover all the situations
the control system will face. If expert linguistic rules and numerical data pairs are the
only information we can get for such a control system design, the most interesting case for
us is when the combination of these two kinds of information is sufficient for a successful
design.

Fuzzy control is an effective approach to utilizing linguistic rules [3,4], whereas neural
control is suited for using numerical data pairs (i.e., desired input-output pairs) [1,4).
Present fuzzy controllers only use linguistic rules, whereas present neural controllers only
use numerical data pairs (recently, Kosko [14] proposed a method of generating fuzzy rules
from numerical data using vector quantization). This leads to the following challenging
question: “Is it possible to develop a general approach which combines both kinds of
information into a common framework, and uses both information, simultaneously and
cooperatively, to solve the control design or similar problems ?” In this paper, we develop
such a general approach.

The key ideas of our new approach are to generate fuzzy rules from numerical data
pairs, collect these fuzzy rules and the linguistic fuzzy rules into a common Fuzzy-
Associative-Memory Bank (FAM Bank, [4]), and, finally, design a control or signal
processing system based on this combined FAM Bank using a defuzzifying method.

In Section 2, we propose a five step procedure for generating fuzzy rules from numerical
data pairs and show how to use these fuzzy rules to obtain a desired mapping. Step 1

2

divides the input and output spaces into fuzzy regions; Step 2 generates fuzzy rules from
given desired input-output data pairs; Step 3 assigns a degree to each generated rule; Step
4 forms the combined FAM Bank; and, Step 5 presents the detailed defuzzifying procedure
for obtaining a mapping based on the combined FAM Bank. In Section 3, we prove that
the resulting mapping is capable of approximating any non-linear function on a compact
set to arbitrary accuracy using the well-known Stone-Weierstrass Theorem in analysis [5].
In Section 4, we apply our new method to a truck backer-upper control problem [1,4].
We compare this new approach with pure neural and fuzzy approaches. The power of our
new approach becomes apparant when it is used in the case where neither linguistic fuzzy
rules nor input-output pairs are sufficient to successfully control the truck to a desired
position, but the combination of both is sufficient. In Section 5, we show that our new
method can be used for time-series prediction; and, a real time series (monthly mean
temperature of St. Louis, Missouri) is used to test our new method against a neural
network forecaster and an AR model forecaster. We also use our new method to predict
a chaotic time series, and compare the results with those obtained using a neural network
predictor. Conclusions and discussions are given in Section 6.

2 GENERATING FUZZY RULES FROM NUMER-
ICAL DATA

Suppose we are given a set of desired input-output data pairs:
(xgl)a xgl); y(l))1 (wsz)a 39); y(2)), tee (1)

where z, and z; are inputs, and y is the output. This simple two-input one-output case is
chosen in order to emphasize and to clarify the basic ideas of our new approach; extensions
to general multi-input multi-output cases are straightforward and will be discussed later in
this section. The task here is to generate a set of fuzzy rules from the desired input-output
pairs of (1), and use these fuzzy rules to determine a mapping f : (z1,z2) — y.

Our new approach consists of the following five steps:

" Step 1: Divide the Input and Qutput Spaces into Fuzzy Regions

Assume that the domain intervals of z;, =2 and y are [z7,27),[z7, 7] and [y—,y?],
respectively, where “domain interval” of a variable means that most probably this variable
will lie in this interval (the values of a variable are allowed to lie outside its domain
interval). Divide each domain interval into 2N + 1 regions (N can be different for
different variables, and the lengths of these regions can be equal or unequal), denoted by
SN (Small N), ..., S1 (Small 1), CE (Center), Bl (Big 1), ..., BN (Big N), and assign
each region a fuzzy membership function. Figure 2 shows an example where the domain
interval of z, is divided into five regions (N=2), the domain region of z, is divided into
seven regions (N=3), and the domain interval of y is divided into five regions (N=2).
The shape of each membership function is triangular; one vertex lies at the center of the
region and has membership value unity; the other two vertices lie at the centers of the

3

two neighbouring regions, respectively, and have membership values equal to zero. Of
course, other divisions of the domain regions and other shapes of membership functions
are possible.

Step 2: Generate Fuzzy Rules from Given Data Pairs

First, determine the degrees of given :z:g"), zgi) and y) in different regions. For example,
x&l) in Fig.2 has degree 0.8 in B1, degree 0.2 in B2, and zero degrees in all other regions.

Similarly, :cgz) in Fig.2 has degree 1 in CE, and zero degrees in all other regions.

. Second, assign a given :z:g"),zg) or y{) to the region with mazimum degree. For example,
mgl) in Fig.2 is considered to be B1, and x?) in Fig.1 is considered to be CE.

Finally, obtain one rule from one pair of desired input-output data, e.g.,

(=M, 2; y®) = [2{(0.8 in B1, max), z{"(0.7 in S1, max) ; y*)(0.9 in CE, max)] =
Rule 1: IF z, is Bl and z; is S1, THEN y is CE;

(:c?),zgz);y(z)) = [z?’(o.s in Bl, max), 2 (1 in CE, max) ; y®(0.7 in B1, max)] =
Rule 2: IF z; is Bl and z; is CE, THEN y is Bl.

The rules generated in this way are “and” rules, i.e., rules in which the conditions of
the IF part must be met simultaneously in order for the result of the THEN part to occur.

For the problems considered in this paper, i.e., generating fuzzy rules from numerical data,
only “and” rules are required.

Step 3: Assign a Degree to Each Rule

Since there are usually lots of data pairs, and each data pair generates one rule, it is
highly probable that there will be some conflicting rules, i.e., rules which have the same
IF part but a different THEN part. One way to resolve this conflict is to assign a degree
to each rule generated from data pairs, and accept only the rule from a conflict group
that has maximum degree. In this way not only is the conflict problem resolved, but also
the number of rules is greatly reduced.

We use the following product strategy to assign a degree to each rule: for the rule:
“IF z, is A and z, is B, THEN y is C”, the degree of this rule, denoted by D(Rule), is
defined as

D(Rule) = ma(z1)ms(z2)me(y). (2)
As examples, Rule 1 has degree
D(Rulel) = mpi(z1)ms1(z2)mee(y)
= 0.8 x0.7 x 0.9 = 0.504; 3)
and Rule 2 has degree
D(Rule2) = mpi(z1)mee(z2)mpi(y)
= 0.6 x1x0.7=0.42. (4)

In practice, we often have some a priori information about the data pairs. For example,
if we let an expert check given data pairs, the expert may suggest that some are very useful
and crucial, but others are very unlikely and may be caused just by measurement errors.
We can therefore assign a degree to each data pair which represents our belief of its
usefulness. In this sense, the data pairs constitute a fuzzy set, i.e., the fuzzy set is defined
as the useful measurements; a data pair belongs to this set to a degree assigned by a
human expert.

Suppose the data pair (a:gl), x%l); y()) has degree m{!), then we redefine the degree of
Rule 1 as
D(Rulel) = mm(xl)m31(:zg)mcp;(y)m(l), (5)

i.e., the degree of a rule is defined as the product of the degrees of its components and the
degree of the data pair which generates this rule. By using this strategy, we are now in a
totally fuzzy environment in that everything has a degree. This is important in practical
applications, because real numerical data have different reliabilities, e.g. some real data
can be very bad (“wild data”). For good data we assign higher degrees, and for bad
data we assign lower degrees. In this way, human experience about the data is used in
a common base as other information. If one emphasizes objectivity and does not want a
human to judge the numerical data, our strategy still works by setting all the degrees of
the data pairs equal to unity.

Step 4: Create a Combined FAM Bank

The form of the FAM Bank is shown in Fig.3. We fill the boxes of the bank with
fuzzy rules according to the following strategy: a combined FAM Bank is assigned rules
from either those generated from numerical data or linguistic rules (we assume that a
linguistic rule also has a degree which is assigned by the human ezpert and reflects the
expert’s belief of the importance of the rule); if there is more than one rule in one box
of the FAM Bank, use the rule that has mazimum degree. In this way, both numerical
and linguistic information are codified into a common framework — the combined FAM
Bank. If a linguistic rule is an “and” rule, it fills only one box of the FAM Bank; but, if a
linguistic rule is an “or” rule (i.e., a rule for which the THEN part follows if any condition
of the IF part is satisfied), it fills all the boxes in the rows or columns corresponding to
the regions of the IF part. For example, suppose we have the linguistic rule: “IF z; is
S1 or z, is CE, THEN y is B2” for the FAM Bank of Fig.3; then we fill the seven boxes
in the column of S1 and the five boxes in the row of CE with B2. The degrees of all the
B2’s in these boxes equal the degree of this “or” rule.

Step 5: Determine A Mapping Based on the FAM Bank

We use the following defuzzification strategy to determine the output control y for
given inputs (z,z3): first, we represent all the fuzzy rules in the FAM Bank by member-
ship function forms (Fig.4 shows an example for Rules 1 and 2); then, for given inputs
(z1,z2), we combine the antecedents of the i'th fuzzy rule using product operations to
determine'the degree, mi);, of the output control corresponding to (z1,72), i-e.,

mpi = myi(z1)myi(22), (6)

5

where O° denotes the output region of Rule i, and I} denotes the input region of Rule i
for the j** component, e.g., Rule 1 gives

mgg = mp1(z1)msi(z2); (7

finally, we use the following centroid defuzzification formula to determine the output

control

E:-—l mO' (8)
Et—-l mO‘

where §' denotes the center value of region O (the center of a fuzzy region is defined
as the point which has the smallest absolute value among all the points at which the
membership function for this region has membership value equal to one), and K is the
number of fuzzy rules in the combined FAM Bank. Figure 4 shows an example of the
procedure for Rules 1 and 2.

y=

From Steps 1 to 5 we see that our new method is simple and straightforward in
the sense that it is a one-pass build-up procedure that does not require time-consuming
training; hence, it has the same advantage that the fuzzy approach has over the neural
approach, as pointed out in [4], namely, it is simple and quick to construct.

This five step procedure can easily be extended to general multi-input multi-output
cases. Steps 1 to 4 are independent of how many inputs and how many outputs there
are. In Step 5, we only need to replace m},; in Eq.(6) with mb.-, where j denotes the 54

component of the output vector (O' is the region of Rule ¢ for the 7** output component;
mo. is the same for all j), and change Eq.(8) to

2:"‘1 mO' yJ

E.—l mol

y;j = (9)

where 37;'- denotes the center of region O:.

A problem with the above approach is that the memory for the FAM Bank grows as
more and more training data become available, i.e., the present approach only considers
how to generate rules, and, as a rule is generated it is stored in the FAM Bank forever
if no new rules with higher degree overlap it. This is a growing memory problem. One
way to overcome this problem is to truncate “old” rules, i.e., only store and use the rules
generated from a fixed number of the most recent data. This growing memory problem
remains a topic for further research.

If we view this five step procedure as a block, then the inputs to this block are “exam-
ples” (desired input-output data pairs) and expert rules (linguistic IF-THEN statements),
and the output is a mapping from input space to output space. For control problems,
the input space is the state of the plant to be controlled, and the output space is the
control applied to the plant. For time-series prediction problems, the input and output
spaces are subsequences of the time series such that the input subsequence precedes the

6

output subsequence (details are given in Section §). Our new method essentially “learns”
from the “examples” and expert rules to obtain a mapping which, hopefully, has the
“generalization” property that when new inputs are presented the mapping continues
to give desired or successful outputs. Hence, our new method can be viewed as a very
general Model-Free Trainable Fuzzy System for a wide range of control and signal pro-
cessing problems, where: “Model-Free” means no mathematical model is required for the
problem; “Trainable” means the system learns from “examples” and expert rules, and
can adaptively change the mapping when new “examples” and expert rules are available;
and, “Fuzzy” denotes the fuzziness introduced into the system by linguistic fuzzy rules,
fuzziness of data, etc..

8 FUZZY SYSTEM AS A UNIVERSAL APPROX-
IMATOR

Thie five step procedure of the last section generates a fuzzy system, i.e., a mapping from
input space to output space. Specifically, this mapping is represented by Eqs.(6) and (8)
for the two-input one-output case. Using snmpllﬁed notations, we rewrite Eqs.(6) and (8),
for the general n-input one-output case, as

m’ = hgjenlmi(z;)), (10)

t—l y m E{;l ginls.fsﬂ [m;(xj)] (11)
E,:x m Z.]i1 Hls.isn [m_',-(z,')] ’

where mf;- is the membership function of the #’th rule for the j’th component of the input
vector, and §* is the center value of the output region of the i’th rule. We will prove that
this generated fuzzy system, i.e., Eq.(11), is a universal approximator from a compact set
Q C R" to R, i.e., it can approximate any real continuous function defined on @ to any
accuracy, where the compact set @ is defined as

Q = [alvbll X [a2’ b2] Xoeee X [am bn] C R". (12)

For notational convenience, we represent Rule ¢ (¢ = 1,2,...,K) in the FAM Bank as:
“IF z, is RGY, =, is RGS, ... , @, is RG},, THEN y is RG§,” where RG: (j = 1,2,...,n)
denotes the region for the j’th input antecedent of Rule i (e.g., it can be 52, CE, Bl,
etc.), and RG} denotes the output region of Rule i.

Let F be the family of functions of the form of Eq.(11) on the compact set Q. There
are three factors which determine a member of F: (1) the definition of fuzzy regions,
i.e., how to define and divide the domain intervals; (2) the specific form of membership
functlons mi; and, (3) the specific statements of fuzzy rules in the FAM Bank. By fixing
fuzzy regions, membershlp functions, and fuzzy rules, we obtain an element of F. If f;
and f, are different elements of F, then at least one of the three factors for f; and f;
must be different. In order to analyse the family F', we make the following assumptions
for these three factors:

S.1: The fuzzy regions for the input and output spaces can be arbitrarily defined.

AS.2: The membership functions m} can be any continuous functions from [a;, ;] to
[0,1] for j = 1,2,...,n (i.e., for inputs) and from (—o0,00) to [0,1] for j = 0 (i.e., for
output y); however, m;'-(o:_,-) #0 for z; € RG%, i =1,2,...,K,j = 0,1,...,n, with 20 = y.
This constraint means that the membership value of an antecedent for a rule cannot equal
zero if the actual input value of this antecedent falls into the required region of the rule.

AS.3: Any rule can be assigned to any box of the FAM Bank.

These assumptions are always satisfied in practice. Specifically, we have total free-
dom in defining fuzzy regions; we can choose any membership functions subject to the
constraint of AS.2; and, we can assign any rule to any box of the FAM Bank.

To analyse the properties of the function family F', we must first establish that the
mapping defined by Eq.(11) is well-defined, i.e., that for any input z € @, Eq.(11) will
generate an output f(z) € R. The following two lemmas give sufficient conditions for
Eq.(11) to be well-defined.

LEMMA 1: If all the membership functions m} are non-zero, and there is at least one
rule in the FAM Bank, then the mapping defined by Eq.(11) from @ to R is well-defined.

Proofs of lemmas and theorems are given in Appendix A.

LEMMA 2: If every box in the FAM Bank has a rule associated with it, i.e., there are
no empty boxes in the FAM Bank, then the mapping defined by Eq.(11) from @ to R is
well-defined under AS.2.

In practice, the input space is usually high dimensional, whereas the given successful
data pairs and expert rules are often quite limited; as a result, many boxes of the FAM
Bank may be empty . However, it is possible to fill up these empty boxes, based on the
given limited rules, using the method of Section 2. Specifically, Steps 1-4 are first used
to generate a FAM Bank based on the limited data pairs and linguistic rules; then, the
output for some typical input for which the box in the FAM Bank is empty is determined
based on the limited FAM Bank ; finally, the range in which the output has the maximum
degree is assigned to the empty box as a new rule. This can be an iterative procedure,
i.e., when a new rule is generated, it and the existing rules are combined into the FAM
Bank, which is then used to generate the next new rule. This procedure can be started
from the empty boxes which are the nearest neighbors to the full boxes; in this way, the
FAM Bank expands from existing rules until all the boxes are filled up. This procedure
always works if we choose the non-zero regions of the membership functions to be large
enough such that the values of the membership functions will not be zero for some points
of their nearest neighbors. We will not study this procedure in detail in this report; we
give the basic ideas of the procedure in order to show that the conditions of Lemma 2 can
be satisfied.

Now we state the main result of this section.

THEOREM 1: If the mapping defined by Eq.(11) is well-defined, and if AS.1, AS.2,

8

and AS.3 are true, then the mapping defined by Eq.(11) is capable of approximating any
real continuous function over the compact set Q of Eq.(12) to arbitrary accuracy..

(The proof of Theorem 1 uses AS.4 and the definition of “active” rule which will be
given later in this section; hence, we suggest the reader read the rest of this section before
going to the proof. The rest of this section does not use the result of Theorem 1.)

Theorem 1 is an existence theorem showing that there exists a way of defining fuzzy
regions, a way of choosing membership functions, and a way of assigning fuzzy rules to
the boxes of the FAM Bank, such that the resulting mapping, Eq.(11), approximates an
arbitrary nonlinear continuous mapping from @ to R to any accuracy. This Theorem is
similar to the results of [6] and (7] which showed that a three-layer feedforward neural
network is a universal approximator provided that there are sufficiently large numbers of
hidden-layer neurons. Theorem 1 provides the theoretical basis for successful applications
of our new method to many different practical problems.

In many applications of fuzzy systems (e.g., [3,4]), the membership functions are tri-
angular. We now study some properties of the fuzzy systems which use the specific form
of membership functions which are defined as:

AS.4: The membership function for any intermediate fuzzy region (i.e., not the small-
est or the largest region) is a triangle whose vertices are at (z,m) = (z_1,0), (2o, 1), and
(z1,0), where the z-axis denotes a coordinate of the input or output space, the m-axis
denotes the corresponding membership value, 2o denotes the center of the region, and z_,
(1) denotes the center of the left (right) region. See Fig.17 for an example. The mem-
bership functions for the smallest and largest regions are determined by the way shown
in Fig.17.

If every box of the FAM Bank has a rule and [a;, b;] is divided into r; fuzzy regions
(7 =1,2,...,n), then there are N =r; x rp X -+« X ry rules in the FAM Bank. N can be
a huge number if the r’s and n are large; however, under AS.4 there will only be a small
fraction of these rules which are actually activated for use in Eq.(11) for any given z € Q.
This represents the power of triangular membership functions.

Definition: The #’th fuzzy rule in the FAM Bank is active for z € Q if mj(z;) # 0 for
all j = 1,2,...,n. Refering to Eq.(11), we see that only if a rule is active will it be used
in Eq.(11).

LEMMA 3: Under AS.4, the following is true:

(1) There are at most 2" active rules for any z € Q.

(2) If r components of z € Q are at the centers of some fuzzy regions (r = 0,1, 2, ...,n),
there are at most 2"~" active rules at the z (recall that the center of a fuzzy region is
defined as the point which has the smallest absolute value among all the points at which
the membership function for this region has membership value equal to unity).

(3) If r components of z € @ are at the centers of some fuzzy regions, and if ¢
components of the z are smaller (greater) than the center values of the smallest (largest)
regions of the corresponding components, then there are at most 2"~"=? active rules at

the z.

Lemma 5 is useful in practice. Although we may need a huge memory to store the
FAM Bank, when we use the FAM Bank for a given input z € @, only a relatively small
number of rules are used. In practice, we may store the FAM Bank in a cheap external
memory; when we have an input, we only take the active rules from the FAM Bank into
the host computer.

4 APPLICATION TO TRUCK BACKER-UPPER
CONTROL

Backing a truck to a loading dock is a difficult exercise for all but the most skilled truck
drivers. It is a severely non-linear control problem for which no traditional control system
design methods exist. In [1], Nguyen and Widrow develop a neural network controller
for the truck backer-upper problem; and, in [4], Kong and Kosko propose a fuzzy control
strategy for the same problem. The neural network controller of [1] only uses numerical
data, and cannot utilize linguistic rules determined from expert drivers; on the other
hand, the fuzzy controller of [4] only uses linguistic rules, and cannot utilize sampled
data. Since the truck backer-upper control problem is a good example of the control
system design problem discussed in the Introduction of this paper (i.e., replace a human
controller by a machine), it is interesting to apply the approach developed in Section 2
to this problem. In order to distinguish these methods, we call the method of [4] the
“fuzzy approach”, the method of [1] the “neural approach”, and our new method the
“numerical-fuzzy approach”(see Fig.5).

The results of [4] demonstrated superior performance of the fuzzy controller over the
neural controller; however, from Fig.5 we see that the fuzzy and neural controllers use
different information to construct the control strategies. It is possible that the fuzzy rules
used in [4] to construct the controller are more complete and contain more information
than the numerical data used to construct the neural controller; hence, the comparison
between the fuzzy and neural controllers, from a final control performance point of view,
is somewhat unfair. If the linguistic fuzzy rules were incomplete, whereas the numerical
information contained lots of very good data pairs, it is highly possible that the neural
controller would outperform the fuzzy controller.

Our new numerical-fuzzy approach provides a fair basis for comparing fuzzy and neural
controllers (the numerical-fuzzy approach can be viewed as a fuzzy approach in the sense
that it differs from the pure fuzzy approach only in the way it obtains fuzzy rules) .
From Fig.5 we see that we can provide the same desired input-output pairs to both the
neural and numerical-fuzzy approaches; consequently, we can compare the final control
performances of both controllers fairly since they both use the same information.

Example 1: In this example, we use the same set of desired input-output pairs to simu-
late neural and numerical-fuzzy controllers, and compare their final control performances.

10

Problem Statement of the Truck Backer-Upper Control

The simulated truck and loading zone are shown in Fig.6 [1,4]. The truck corresponds
to the cab part of the neural truck in the Nguyen-Widrow [1] neural truck backer-upper
system. The truck position is exactly determined by the three state variables ¢, z, and
y, where ¢ is the angle of the truck with the horizontal as shown in Fig.6. Control to
the truck is the angle . Only backing up is considered. The truck moves backward by a
fixed unit distance every stage. For simplicity, we assume enough clearance between the
truck and the loading dock such that y does not have to be considered as an input (see [4]
for discussions on this assumption). The task here is to design a control system, whose
inputs are ¢ € [—90°,270°] and z € [0,20], and whose output is 8 € [—40°,40°], such that
the final states will be (z;, ¢;) = (10,90°).

Generating Desired Input-Output Pairs (z, $; 0)

We do this by trial and error: at every stage (given ¢ and z) starting from an initial
state, we determined a control § based on common sense (i.e., our own experience of
how to control the steering angle in the situation); after some trials, we chose the desired
input-output pairs corresponding to the smoothest successful trajectory.

The following 14 initial states were used to generate desired input-output pairs: (o, ¢3)
= (1,0), (1,90), (1,270); (7,0), (7,90), (7,180), (7,270); (13,0), (13,90), (13,180), (13,270);
(19,90), (19,180), (19,270). Since we performed simulations, we needed to know the
dynamics of the truck backer-upper procedure. We used the following approximate kine-
matics (see Appendix B) :

2t +1) = 2(t) + cos{g(t) + 0()] + sinld(D)]sin{4(2)] (13)
(L+1) = y(2) + sinfg(t) + 02)] — sinld(@)]cosl (1) (14)
He+1) = 4(0) - sin~ 20 (15)

where b is the length of the truck. We assumed b = 4 in the simulations of this paper.
Equations (13) to (15) were used to obtain the next state when the present state and
control are given. Since y is not considered a state, only Eqs.(13) and (15) were used in
the simulations. We wrote Eq.(14) here for the purpose of showing the complete dynamics
of the truck. Observe, from Eqs.(13)-(15), that even this simplified dynamic model of the
truck is severely non-linear. The 14 sequences of desired (z, ¢; §) pairs are given in Tables
1-14.

Neural Control and Simulation Results
~ We used a two-input single-output three-layer back-propagation neural network for
our control task, as shown in Fig.7; 20 hidden neurons were used, and a sigmoid non-
linear function was used for each neuron. The output of the third-layer neuron represents
the steering angle 8 according to a uniform mapping from [0,1] to [~40°,40°), i.e., if the
neuron output is g(t), the corresponding output 8(t) is

8(t) = 80g(t) — 40. (16)

11

In real simulations, we normalized [—40°,40°] into [—1,1]. Similarly, the inputs to the
neurons were also normalized into [—1,1].

Our neural network controller is different from the Nguyen-Widrow neural controller
[1). First, we have only one neural network which does the same work as the Truck
Controller of the Nguyen-Widrow network; the Truck Emulator of the Nguyen-Widrow
network is not needed in our task. Second, and more fundamentally, we trained our neural
network using desired input-output (state-control) pairs, which were obtained from the
past successful control history of the truck, whereas Nguyen and Widrow [1] connected
their neural network stage by stage and trained these concatenated neural networks by
back-propagating the error at the truck’s final state through this long network chain (
their detailed algorithm is different from the standard error back-propagation algorithm
in order to meet the constraint that the neural networks at each stage perform the same
transformation; for details see {1]). Hence, the training of our neural network is simpler
than that of the Nguyen-Widrow network. Of course, we need to know some successful
control trajectories (state-control pairs) starting from some typical initial states; this is
not required in the Nguyen-Widrow neural network controller.

We trained the neural network of Fig.7 using the standard error back-propagation
algorithm [9] for the 14 sequences of desired (z,¢;8) pairs of Tables 1-14 . We used
the converged network to control the truck whose dynamics are approximately given by
Eqs.(13)-(15). Three arbitrarily chosen initial states, (o, #3) = (3,-30), (10,220), and
(13,30), were used to test the neural controller. The truck trajectories from the three
initial states are shown in Fig.8. We see that the neural controller successfully controls
the truck to the desired position starting from all three initial states.

Numerical-Fuzzy Control and Simulation Results

We used the five-step procedure of Section 2 to determine the control law f : (z,¢4) —
8, based on the 14 sequences of successful (z, ¢; 8) pairs of Tables 1-14. For this specific
problem, we used membership functions shown in Fig.9, which are similar to those used
in [4] for fuzzy control of the problem based only on linguistic rules. The fuzzy rules
generated from the desired input-output pairs of Tables 1-14 and their corresponding
degrees are shown in Tables 15-28, where Table 14-+i shows the rules generated from the
data in Table i (i=1,2, ..., 14). These tables (Tables 15-28) show the results of Steps 1-3
of our method developed in Section 2. The final FAM Bank generated from the rules in
Tables 15-28 is shown in Fig.10 (this is the result of Step 4 of our method in Section 2;
here we assume that no linguistic rules are available). We see from Fig.10 that there are
no generated rules for some ranges of z and ¢. This shows that the desired trajectories
of Tables 1-14 do not cover all the possible cases; however, we will see that the rules in
Fig.10 are sufficient for controlling the truck to the desired state starting from some given
initial states.

Finally, Step 5 of our numerical-fuzzy method was used to control the truck from the
three initial states, (o, ¢3) = (3,-30), (10,220), and (13,30), which are the same states
used in the simulations of the neural controller. The final trajectories of the truck are
shown in Fig.11.

12

Discussion

Comparing Figs.8 and 11 we see that they are almost exactly the same; hence, we
conclude that the neural and numerical-fuzzy controllers have the same control perfor-
mance for these cases. We simulated the neural and numerical-fuzzy controllers for other
initial truck positions, and observed that the truck trajectories using these two controllers
were also almost the same. This is not surprising because both controllers used the same
information (i.e., the desired trajectories of Tables 1-14) to construct their control laws.

Neural and numerical-fuzzy controls can be viewed as two different ways to perform
“generalization” on the given data, where “generalization” means that when a controller,
which has already been “trained” to match some desired patterns, is given a new input
pattern, it still gives correct output patterns. From our simulation results we see that
the “generalization™ ability of these two approaches is the same for this truck backer-
upper control problem. Because neural network approaches need time-consuming iterative
training, whereas the numerical-fuzzy approach is just a one-pass construction procedure,
the numerical-fuzzy approach appears to be superior to the neural network approach.

Example 2: In this example we consider the situation where neither linguistic fuzzy
rules alone nor desired input-output pairs alone are sufficient to successfully control the
truck to the desired position, i.e., neither the usual fuzzy controller with limited fuzzy
rules nor the usual neural controller can control the truck to the desired position, but a
combination of linguistic fuzzy rules and fuzzy rules generated from the desired input-
output data pairs is sufficient to successfully control the truck to the desired position.

We consider the case where the beginning part of the information comes from desired
input-output pairs whereas the ending part of the information comes from linguistic rules
(see Fig.12). To do this we used only the first three pairs of each of the 14 desired
sequences in Tables 1-14, and generated fuzzy rules based only on these truncated pairs.
The FAM Bank generated from these truncated data pairs is shown in Fig.13 which is
the same as Fig.10 except for the three center boxes. The FAM Bank of linguistic rules
for the ending part was chosen as in Fig.14 which is the same as the three center rules of
Fig.10.

We simulated the following three cases in which we used the: (1) FAM Bank generated
from only the truncated data pairs (i.e., Fig.13); (2) FAM Bank of selected linguistic
rules (i.e., Fig.14); and, (3) FAM Bank which combined the FAM Banks of (1) and (2)
(i.e., Figs.13 and 14). We see that for Case 3 the FAM Bank is the same as in Fig.10;
hence, the truck trajectories for this case must be the same as those using the FAM Bank
of Fig.10. For each of the cases, we simulated the system starting from the following three
initial states: (zo, #9) = (3,-30), (10,220), and (13,30). The resulting trajectories for cases
(1), (2), and (3) for the three initial states are shown in Figs.15, 16 and 11, respectively.

We see very clearly from these figures that, for cases (1) and (2) the truck cannot be
controlled to the desired position, whereas for case (3) we successfully controlled the truck

to the desired position.

13

5 APPLICATION TO TIME-SERIES PREDICTION

Time-series prediction is a very important practical problem [2]. Applications of time-
series prediction can be found in the areas of economic and business planning, inventory
and production control, weather forecasting, signal processing, control, and lots of other
fields. Let z(k) (k = 1,2,3,...) be a time series. The problem of time-series prediction can
be formulated as: given z(k —m + 1), z2(k — m +2), ..., z(k), determine z(k + [), where m
and ! are fixed positive integers; i.e., determine a mapping from [z2(k—m +1),2(k—m +
2), ..., 2(k)] € R™ to [2(k +1)] € R. In practice, past samples of z(k) are usually available
which are used to determine and test the mapping.

Traditional approaches to this problem use parametric models to represent the time
series z(k) [2]. For example, the following autoregressive (AR) model may be used:

Ak +1) = az(k — i + 1) + v(k), (17)

i=1

where v(k) is a white noise sequnece. The parameters a; (i = 1,2,...,m) are estimated
using the known values of z(k) (substitute the known z(k)’s into Eq.(17) and ignore the
white noise v(k) to form a set of linear equations, and then solve these equations for a;
using least-squares; the solutions are the prediction-error estimates of @;), then ignoring
the white noise v(k) and substituting the estimated a; into Eq.(17), we obtain a forecasting
model for z(k). The main disadvantage of traditional methods is that a parametric model
must be assumed at the very beginning; thus, if the model is not suited for the time series,
the predictions will have large errors.

A feedforward neural network can also be used for this problem[10,11]. For example,
we can use a three-layer feedforward neural network, which has m input neurons and one
output neuron, to represent the mapping from [z(k — m + 1), z(k — m + 2),...,2(¥)] to
[2(k + 1)]. The network is trained for the known 2z(k)’s, and then the converged network
is used for the prediction. Specifically, assume that 2(1), z(2), ..., z(M) are given; then we
form M — m desired input-output pairs:

[Z(M - m)v") z(M- l); Z(M)]
[2(M —m = 1),...,2(M — 2); 2(M — 1)]

(2(1), o 2(m)s 2(m + 1)) (18)

We train the neural network' to match these M — m pattern pairs using the error back-
propagation algorithm [9].

Our numerical-fuzzy method in Section 2 can also be used for this time series prediction
problem. Similar to the neural network approach, we assume that 2(1),2(2), ..., 2(M) are
given, and we form the M — m desired input-output pattern pairs in (18). Steps 1-4 of
our numerical-fuzzy approach are used to generate a FAM Bank based on the pattern
pairs (18); then this FAM Bank is used to forecast z(M + 1) for | = 1,2,... using the

14

defuzzifying procedure of Step 5 of our numerical-fuzzy method, where the inputs to the
network are z(M + 1 —m),z(M +l—m +1),...,2(M +1-1).

Example 3: Now we use these three methods (numerical-fuzzy, neural network, and
AR model) for a real time series, namely, the monthly mean temperature of St. Louis,
Missouri, from Jan. 1945 to Dec. 1974 (taken from Appendix III of [12]), as shown in
Table 29. We simulated the following four cases: (1) two-year data from Jan. 1968 to
Dec. 1969 was used to construct the systems (i.e., the FAM Bank, neural network, and
AR model), and the resulting systems were used to predict the five-year temperatures
from Jan. 1970 to Dec. 1974; (2) five-year data from Jan. 1965 to Dec. 1969 was used to
construct the systems, and the resulting systems were used to predict the temperatures
from Jan. 1970 to Dec. 1974; (3) thirteen-year data from Jan. 1957 to Dec. 1969
was used to construct the systems, and the resulting systems were used to predict the
temperatures from Jan. 1970 to Dec. 1974; and, (4) twenty-five-year data from Jan. 1945
to Dec.1969 was used to construct the systems, and the resulting systems were used to
predict the temperatures from Jan. 1970 to Dec. 1974. We chose m = 9 and { =1 for all
the simulations, i.e., the prediction systems have 9-inputs and one-output. They predict
the temperature of a month based on the temperatures of the previous nine months. 40
hidden-layer neurons were used for the neural network predictor. For the numerical-fuzzy
predictor, the membership function for any temperature is shown in Fig.17.

Predicted temperatures using the numerical-fuzzy, neural network, and AR model
approaches are shown in: Figs.18-20 for case (1), Figs.21-23 for case (2), Figs.24-26 for
case (3), and Figs.27-29 for case (4), respectively. In all simulations, the inputs to the
resulting systems were the true temperatures when we predicted the temperatures from
Jan.1970 to Dec. 1974, so that the error for a temperature estimate did not propagate to
later estimates.

From the above simulation results we observe that: (1) when very few data were
used to construct the systems (i.e., case (1)), our new numerical-fuzzy approach showed
similar performance as the AR(9) model method, and higher performance than the neural
network approach; and, (2) when more data were used to construct the systems (i.e., cases
(2)-(4)), the three methods showed similar performances. Better performance using the
numerical-fuzzy approach can be obtained by altering Fig.17 to include more categories;
this kind of simulation will be performed in Example 4.

Example 4: Next we apply our numerical-fuzzy approach to chaotic time-series pre-
diction [10,13]. Chaotic time series are generated from deterministic nonlinear systems
and are sufficiently complicated that they appear to be “random” time series; however,
because there are underlying deterministic maps that generate the series, chaotic time
series are not random time series. In [10], feedforward neural networks were used for
chaotic time-series prediction, and were compared with conventional approaches, like Lin-
ear Predictive Method, Gabor Polynomial Method, etc.. The results showed that the
neural network approach gave the best prediction, and the accuracy obtained using the
neural network approach was orders of magnitude higher than that obtained using the
conventional approaches. Here we use our numerical-fuzzy approach applied to the same

15

chaotic time series in [10], and compare the results obtained with those obtained using
the neural network approach.

The chaotic time series is generated from the following delay differential equation:

dz(t) _ 0.2z(t —17)
d ~ 1+z2%(t—1)

—0.1z(2). (19)

When 7 > 17, Eq.(19) shows chaotic behavior. Higher values of 7 yield higher dimensional
chaos. In our simulation, we chose the series with 7 = 30. Figure 30 shows 1000 points of
this chaotic series which we used to test both the numerical-fuzzy and neural approaches.

As in Example 3, we chose m = 9 and ! = 1, i.e., nine point values in the series were
used to predict the value of the next time point. The membership function for any point
is shown in Fig.31 for the numerical-fuzzy predictor. 40 hidden-layer neurons were used
for the neural network predictor. The first 700 points of the series were used as training
data, and the final 300 points were used as test data. We simulated three cases: (1) 100
training data (from 601 to 700) were used to construct the FAM Bank and to train the
neural network; (2) 200 training data (from 501 to 700) were used; and, (3) 700 training
data (from 1 to 700) were used. Figures 32 and 33 show the results of the numerical-fuzzy
and neural predictors respectively for case (1); Figs.34 and 35 show similar results for case
(2); and, Figs. 36 and 37 show similar results for case (3). As in [10], the “past” data
needed to perform prediction is obtained from observing the actual time series; thus, one
makes a prediction and uses the actual values to make the next prediction. We see from
Figs.32 to 37 that our new numerical-fuzzy predictor gave slightly better results than the
neural network predictor.

One advantage of the numerical-fuzzy approach is that it is very easy to modify the
FAM Bank as new data become available. Specifically, when a new data pair becomes
available, we create a rule for this data pair and add the new rule to the FAM Bank;
then, the updated (i.e., adapted) FAM Bank is used to predict the future values. By
using this “adaptive” procedure we use all the available information to predict the next
value of the series. We simulated this adaptive procedure for the chaotic series of Fig.30:
we started with the FAM Bank generated by the data z(1) to z(700), made a prediction
of z(701), then used the true value of z(701) to update the FAM Bank, and this updated
FAM Bank was then used to predict x(702). This adaptive procedure continued until
z(1000).Its results are shown in Fig.38. Comparing Figs.38 and 36 we see that we obtain
only a slightly improved prediction.

Finally, we show that prediction can be greatly improved by dividing the “domain
interval” into finer regions. We performed two simulations: one with the membership
function shown in Fig.39, and the other with the membership function shown in Fig.40.
We used the adaptive-FAM-Bank procedure for both simulations. The results are shown
in Figs.41 and 42, where Fig.41 (42) shows the result corresponding to the membership
function of Fig.39 (40). Comparing Figs.38, 41 and 42 we see very clearly that we obtain
better and better results as the “domain interval” is divided finer and finer. Figure
42 shows that we obtained an almost perfect prediction when we divided the “domain

16

interval” into 29 regions. Of course, the price paid for doing this is that we use a larger
FAM Bank.

6 CONCLUSIONS AND DISCUSSIONS

In this report, we developed a general method to generate fuzzy rules from numerical
data. This method can be used as a general way to combine both numerical and linguistic
information into a common framework — a Fuzzy-Associative-Memory (FAM) Bank. This
FAM Bank consists of two kinds of fuzzy rules: some obtained from experts, and others
generated from measured numerical data using the method of this report. We proved
that the generated fuzzy system is capable of approximating any non-linear function on a
compact set to arbitrary accuracy. We applied our new method to a truck backer-upper
control problem [1,4], and observed that: (1) for the same training set (i.e., the same given
input-output pairs), the final control performance of our new method is almost the same
as that of the pure neural network controller; and, (2) in the case where neither numerical
data nor linguistic rules contain enough information, both the pure neural and pure fuzzy
methods failed to control the truck to the desired position, but our new method succeeded.
We also applied our new method to real and chaotic time-series prediction problems, and
the results showed that our new method had the best performance compared to an AR
model predictor and a neural network predictor.

The main features and advantages of the new method developed in this paper are:
(1) it provides us with a general method to combine measured numerical information and
human lingustic information into a common framework — a combined FAM Bank; this
could be viewed as a first step to develop some theoretically enalyzable control algorithms
which use both numerical and linguistic information; (2) it is a simple and straightforward
one-pass build-up procedure; hence, no time-consuming iterative training is required, so
that it requires much less construction time than a comparable neural network; (3) there
is lots of freedom in choosing the membership functions; this provides us with lots of
flexibilities to design systems according to different requirements (this advantage was not
utilized in this report, but will be fully explored in subsequent publications); and, (4) it
can perform successful control for some cases where neither a pure neural network control
nor a pure fuzzy control can.

It is interesting to compare our numerical-fuzzy approach with feedforward neural
networks when no linguistic information is available. They are similar in that they are
given the same information and asked to do the same task. All the information they
are given is contained in some “examples” from which they are required to “learn” so as
to give successful or correct outputs when new inputs are presented. Additionally, both
approaches are model-free.

Our numerical-fuzzy approach has the following important advantages over feedfor-
ward neural networks: (1) the construction of a numerical-fuzzy controller is just a one-
pass build-up procedure, whereas the construction of a feedforward neural network con-
troller needs time-consuming iterative training; (2) the choice of the number of hidden-

17

layer neurons of a feedforward neural network is very difficult and quite problem depen-
dent; an inaccurate choice of the number of hidden-layer neurons may cause either too
large a network or a network which cannot match all the desired patterns; our numerical-
fuzzy approach has no such problem; (3) it is more general than feedforward neural
networks, i.e., our numerical-fuzzy approach can use not only the desired input-output
patterns (i.e., “examples”) but also linguistic rules from human experts, whereas the
feedforward neural networks can only utilize “examples”; (4) it is more flexible than feed-
forward neural networks, i.e., we can choose the membership functions in a wide variety
of forms and divide the “domain interval” into different regions; and, (5) it is very easy to
update the FAM Bank, hence it lends itself to adaptive control or time-series prediction
procedures.

In summary, the numerical-fuzzy approach developed in this report can be applied to
all problems which are suitable for feedforward neural networks. If the performance of the
numerical-fuzzy approach is similar to that of a feedforward neural network approach, as
for the truck backer-upper control problem, then the numerical-fuzzy approach is strongly
recommended because of the above advantages.

7 REFERENCES

[1] D.Nguyen and B.Widrow, “The Truck Backer-Upper: An Example of Self-Learning
in Neural Network,” IEEE Control Systems Magazine, Vol.10, No.3, pp.18-23, 1990.

[2] G.E.P.Box and G.M.Jenkins, “Time Series Analysis: Forecasting and Control,”
Holden-Day Inc., 1976.

(3] Y.F.Li and C.C.Lan, “Development of Fuzzy Algorithms for Servo Systems,” IEEE
Control Systems Magazine, Vol.9, No.3, pp.65-72, 1989.

[4] S.G.Kong and B.Kosko, “Comparison of Fuzzy and Neural Truck Backer-Upper
Control Systems,” Proc. IJCNN-90, Vol.3, pp.349-358, June, 1990.

[5] W.Rudin, Principles of Mathematical Analysis, New York: McGraw-Hill, 1964.

[6] K.Hornik, M.Stinchcombe and H.White, “Multilayer Feedforward Networks are
Universal Approximators,” Neural Networks, Vol.2, pp.359-366, 1989.

[7) G.Cybenko, “Approximations by Superpositions of a Sigmoidal Function,” Mathe-
matics of Control, Singals, and Systems, 1989.

[8] F.V.D.Rhee, H.R.Lemke and J.G.Dijkman, “Knowledge Based Fuzzy Control of
Systems,” IEEE Trans. on Automatic Contr., Vol-35, No.2, pp.148-155, 1990.

[9] R.P.Lippman, “An Introduction to Computing with Neural Nets,” IEEE ASSP
Magazine, pp.4-22, April, 1987.

[10) A.Lapedes and R.Farber, “Nonlinear Signal Processing Using Neural Networks:
Prediction and System Modeling,” LA-UR-87-2662, 19817.

18

[11] A.Khotanzad and J.H.Lu, “Non-parametric Prediction of AR Processes Using
Neural Networks,” Proc. 1990 ICASSP, pp.2551-2554, Albuquerque, April, 1990.

[12) S.L.Marple Jr., “Digital Spectral Analysis with Applications,” Prentice-Hall, Inc.,
1987.

[13] J.D.Scargle, “Modeling Chaotic and Random Processes,” submitted to Astrophys-
ical Journal, 1989.
[14]) B.Kosko, Neural Networks and Fuzzy Systems, Prentice-Hall, 1991.

A APPENDIX A

Proof of Lemma 1: Under the condition of this lemma, there exists at least one ¢ such
that ITycjcn[mi(z;)] # 0 for any z € @, hence Eq.(11) is well-defined. Q.E.D..

Proof of Lemma 2: Since 0 < m* (:z:,) < 1, it is sufficient to prove that for any z € @
there exist some ¢ such that H,<,<,,[m,(a:,)] # 0. Since every box in the FAM Bank has a
rule, for any z € Q there must be a rule, say Rule ¢, such that z; € RG‘ for j =1,2,.

By AS.2, mi(z;) # 0 for all j =1,2,...,,n, hence H1<,<n[m (z;)] # 0. Q.E.D..

In order to prove Theorem 1 we need some definitions. A family F of real functions
defined on a set E is an algebra if F is closed under addition, multiplication, and scalar
multiplication. The family F separates points on E if for every z,y € E, x # y, there
exists a function f € F such that f(z) # f(y). The family F vanishes at no point of E if
for each z € E there exists f € F such that f(z) # 0. Our proof of Theorem 1 is based
on the Stone-Weierstrass Theorem [5] which we state here for convenience of the reader.

Stone-Weierstrass Theorem: Let F be an algebra of real continuous functions on a
compact set K. If F separates points on K and if F' vanishes at no point on K, then the
uniform closure B of F consists of all real continuous functions on K.

The uniform closure B of F is the union of F and its limit points; hence, if B consists of
all real continuous functions on K, then F' is capable of approximating any real continuous
function on K to arbitrary accuracy.

Proof of Theorem 1: Let F be the family of well-defined functions of the form of
Eq.(11) on the compact set @ under AS.1, AS.2, and AS.3. If we prove that F is an
algebra of real continuous functions, F' separates points on @, and F vanishes at no point
of @, then the Stone-Weierstrass Theorem guarantees the conclusion of Theorem 1.

By AS.2, the m}(z;)'s are assumed to be real continuous functions; hence, F is a
family of real continuous functions. Let fi, fo € F, so that we can write them as

Z.-l Z‘lliH1<J<n [ml‘(x,)]
) = SR s enlmti(z)] (A
K2 iz
falz) = E‘—l .'l2 H1<J<n[m2 (J)] (A2)

2._1 Hl<J<n[m2 (2;)]

19

Now,

filz) + fz (2)
gil 32—1 y1‘1H1<J<ﬂ[ml Hz;)m2'2(a:,)] + E i1=1 232-1 y2i2H1555,,[m1§'(a:,-)m2§2(a:5)]
2.1—1 ity Migjgn[ml; l(x,)m2;2(3:,-)]
The Th4 (yl'l + §2°)hgjcalm1 (2;)m2(z;)]
-’?:1 a1 H1<,<,,[m1 l(’”:)mza(%)]

(A.3)

Deﬁne ml“(x,)m2’2(m,) as a new membership function of x;, say m'l (x;), and define

yl + 32 as the output center of a new rule, say 7*1#%; then, Eq.(A. 3) is of the form of
Eq.(11); hence, f, + f; € F. Similarly, fi(z)f2(z) can be written as

:l—l 2 i2=1 yl' y2'2II1<_,<,. [m1 l(xa)mz‘z(%)]

z)fa(z) = ’ A4
hi@)lz) = 2.1 =1 E:2~1 HISan[mljl(xJ)m2;2(xJ)] (A4)
which is of the form of Eq.(11); hence, fif; € F. Finally, for any c € R,
K1 eyl T cjcn[mll
cfil(z) = o 1031 15ign[m1; (-"3:)]. (A5)

&4 Thgica[m1i(z;)]

Define cyl® as new centers of output fuzzy regions, so that Eq.(A.5) is of the form of
Eq.(11); hence, cfi(z) € F. In summary, F is an algebra of real continuous functions.

Next, we prove that F separates points on Q. Let z,2 € @ and z # z. We now
construct f € F with f(z) # f(z). First, we define the fuzzy regions of the input space @
such that each element of z and z is at the center of a fuzzy region (recall that the center
of a fuzzy region is defined as the point which has the smallest absolute value among all
the points at which the membership function for this region has membership value equal
to one; see Section 2 Step 5). Then, we choose the membership functions for the input
space Q to be of the specific triangular form defined by AS.4 of Section 3. By such a
choice of fuzzy regions and membership functions, we have mi(z;) = m}(z;) = 1 for each
active Rule ¢ at z, and each active Rule [at 2, and all j = 1,2,...,n (the definition of
active rule is given in Section 3); additionally, there is one and only one active rule for £
and one and only one active rule for z, because Eq.(11) is well-defined (which guarantees
that there is at least one active rule for z and at least one active rule for z), and because
only the membership functions for the regions with centers at the components of z or z
are nonzero at z or z, whereas all other membership functions are zero at z and z (which
guarantees that there is at most one active rule for z and at most one active rule for z).
Since z # z, there must be at least one j such that z; # z;, hence the only active rule for
z and the only active rule for z are at two different boxes of the FAM Bank. Since we are
free to assign any rules to the boxes of the FAM Bank (AS.3), we just assign two different
rules to these two boxes, and obtain the required f € F with f(@) =F # 7 = f(2) (see
Eq.(11)), where §* (§') is the center of the output region of the active rule for z (z).

20

Finally, we prove that F vanishes at no point of . By AS.1 and AS.2, we can
make all the §* > 0. Since Eq.(11) is well-defined, there exists at least one ¢ such that
Migj<a[mi(2;)] # 0 for any z € Q. Since Eq.(11) is a weighted sum of positive §’s with
some nonzero weights, the result is also positive, i.e., we obtain f € F such that f(z) # 0
(in fact, f(z) > 0) for any z € Q. Q.E.D..

Proof of Lemma 3: For arbitrary £ € Q and fixed j, there are at most two m'’s which
are nonzero at z; under AS.4. Since a rule, say Rule i, is active only when m}(z;) # 0
for all j = 1,2,...,n, there are at most 2" active rules for any z € Q; this proves (1). If
r components of z € @ are at the centers of some fuzzy regions, there is only one mj-
which is nonzero at each of these r components (in fact, these m}’s are equal to unity at
these r components), and for each of the other n — r components there are at most two
nonzero m}’s, hence the total number of active rules is at most 2"~"; this proves (2). If r
components of z € @ are at the centers of some fuzzy regions and ¢ components of the
z are smaller (or greater) than the center values of the corresponding smallest (or the
corresponding largest) fuzzy regions, then there is only one nonzero m} for each of these
r + ¢ components, the other n — r — ¢ components have two nonzero m}’s associated with
each of them, hence the total number of active rules is at most 2"~"~?; this proves (3).

Q.E.D..

B APPENDIX B

Since we are only interested in the movement of the central rear point of the truck and the
angle of the truck to horizontal, we can simplify the truck to a bar with length equal to b.
We obtain the kinematic equations of the bar according to the following basic principle of
object kinematics: the movement of a point on an object equals the sum of the movement
of the mass center of the object and the movement of the point around the mass center.
The details are shown in Fig.B1l. From the figure we have

z™(t) = z(t) + recos[é(t) + 0(2)] (B.1)
J™(2) = y(t) + roinlg(t) + 0] (B2)
¢™(t) = ¢(2) (B.3)

where (z™(t),y™(t), #™(t)) denote the states of the bar after the movement of the mass
center by a distance r. The final state (z(t + 1),y(¢t + 1), ¢(¢ + 1)) after the rotation of
the mass-center-moved bar is

z(t +1) = z™(t) + [rsin(0(2))]sin(4(2)) (B.4)
y(t +1) = y™(2) — [rsin(6(2))lcos(4(t)) (B-5)
$(t+1)=¢™(t) — sin“l[%)—)- . (B.6)

Substituting Egs.(B.1)-(B.3) into Eqs.(B.4)-(B.6) and setting r = 1, we obtain Eqgs.(13)-
(15). There are some approximations in obtaining Eqgs.(B.4)-(B.6), as shown in Fig.B1.

21

Environment

(so complicated that no mathematical model exists
or, the mathematical model is severely non-linear)

states control
|———2| Human Controller
(inputs) (outputs)

Task : Design a control system to replace the human controller.

Figure 1: A practical problem: design a control system to replace the human controller.

22

S2 S1 CE B1 B2
1.0 —
0.0 — > X
Xi x@ xQ x3 ‘
m(x,)
S3 S2 St CE B1 B2 B3
1.0 — —
0.0 — X
- 2
I
m(y)
S2 St CE B1 B2
1.0 E—
0.0 >y

y- yo yo oy

Figure 2: Divisions of the input and output spaces into fuzzy zegions and the corresponding membership
functions.

23

83

B2

B1

CE

St

S2

S3

S§2 St CE B1 B2

Figure 3: The form of a FAM Bank.

24

(x1) ‘n(w) (y)

Rule 1:If x; isBland ! | S C
Xo is S1, then y is CE.| ™ x; ™ 7 Xg y
[P L\

3!
(x e "
Rule2: Ifx; isBland Bl m? E !
Xq is CE, then y is B1,| ™ X1 X y
> — =
X1 X2 Y2
_ _ 1 mllmlz
__mee'y o mp ¥ CE =
= 1 2
mcg” 4+ Mg
m312 = m?! m22

Figure 4 Determine control strategy from FAM Bank using product fuzzy inference with
centroid defuzzification.

25

@ Fuzzy Approach

Linguistic Fuzzy Rules | — | Control Surface

® Neural Approach

Desired Input- Train the Network fo Converged Network

Output Pairs Match the desired Data Used for Contro!

@ Numerical - Fuzzy Approach

Desired Input-Output Pairs| F(légzrr&"bﬁ:ggs — [Control Sudacel
and Linguistic Fuzzy Rules FAM-Rule Bank! '

Figure 5: Key steps of fuzzy, neural, and numerical-fuszy approaches to the truck back-upper control
problem.

26

loading dock x=10 ¢ =90

1
t

rear

0o 2\

&) N~

X= X=20

Figure 6: Diagram of simulated truck and loading zone.

. i)

i -
: "’ 0l / ;

x{K) .\ e Syocl on et fcion
=L

Tiengtx)

v

Figure 7: Neural controller for the truck backer-upper control problem.

27

: i :
s 10 15

Figure 8: Truck trajectories using the neural controller.

28

m(¢) a_ b

S35 18
2 S1G S2{ 45 4
SIl 15 9%
CH s 100
Bll 90 16
B2 135 225

9 45 0 45 90 135 180 235 70 B3l 195 295

m(x)

S2 S§{ CE B B2

.

0 15 4 7 91011 13 16 185 0

40 -3 2 -8 74047 W OW 33 4

Figure 9: Fuzsy membership functions for the truck backer-upper control problem.

29

s2 S1 CE B1 B2

S3| S2 | S3

S2| S2 | S3 | S3 | S3

s1/B1 | S1 | 82 | 83 | 82

¢ ce|B2|B2|CE| s2]| s2

Bi| B2 | B3 B2 B1 S1

B2 B3 | B3 | B3 | B2

B3 B3 | B2

Figure 10: The final FAM Bank generated from the numerical data in Tables 1-14.

30

Figure 11: Truck trajectories using the numerical-fuzzy controller for Example 1. Also the truck trajec-
tories using the combined FAM Banks for Example 2.

31

This part of information

is given by numerical —<

data (desired input-
out pairs).

This part of information
is given by linguistic

fuzzy rules .

Figure 12: An example of truck back-upper control problem where the beginning part of information is
given by desired input-output pairs while the ending part of information is given by linguistic rules.

32

s2 S1 CE B1 B2

sS3| S2 | S3

S2|s2 | s3 | S3 | S3

s1| B1 | s1 S3 | s2
¢ cel|B2 | B2 s2 | s2

B1| B2 | B3 B1 | St

B2 B3 | B3 | B3 | B2

B3 B3 | B2

Figure 13: The FAM Bank generated from the truncated numerical data which consist of only the first
three pairs of each of the sequences in Tables 1-14.

33

S2 S1 CE B1 B2
S3
S2
S1 S2
¢ cE CE
B1 B2
B2
B3

Figure 14: The FAM Bank of linguistic rules.

34

(13,30)

Figure 15: Truck trajectories using the FAM Bank generated from the truncated data pairs only.

35

(30 '3°°) o
(13,30)

Figure 16: Truck trajectories using the FAM Bank of selected linguistic rules only.

36

m(x)

S1 Bl B2 B3

200 10 20 30 x(lemperature)

Figure 17: Membership function for the temperature prediction problem.

37

numeorical-fuzzy approach

. . catitnato e true temperature

tempenture

o 10 20 30 40 F-14 60
month from Jan. 1970 (1) 1o Dec. 1974 (60)

Figure 18: Temperature estimates of 1970-1974 using the numerical-fuzsy approach based on the data of
1968-1969.

noural approach

.o = cotimate truo P

tecpenture

o 16 26 30 a0 30 50
month from Jan. 1970 (1) to Dec. 1974 (60)

Figure 19: Temperature estimates of 1970-1974 using the neural approach based on the data of 1968-1969.

o 10 20 30 40 30 60
month from Jan. 1970 (1) to Decc. 1974 (60)

Figure 20: Temperature estimates of 1970-1974 using the AR model approach based on the data of
1968-1969.

38

3as v

et *, aatimate -+ truc Lot

o 10 26 30 FT 50 7
month from Jan. 1970 (1) to Deco. 1974 (60)

Figure 21: Temperature estimates of 1970-1974 using the numerical-fuzzy approach based on the data of
1965-1969.

ncural approach

~®.®.%. cstimato truo P

5o 10 20 30 40 50 60
month from Jan. 1970 (1) to Dec. 1974 (60)

Figure 22: Temperature estimates of 1970-1974 using the neural approach based on the data of 1965-1969.

month fram Jan. 1970 (1) to Dec. 1974 (60)

Figure 23: Temperature estimates of 1970-1974 using the AR model approach based on the data of
1965-1969.)

39

numerical-fuxzy approach

av.w *_ catimate avee--- Lrue temperoturo

temperaare

(] 10 20 30 4‘0 s0 60
month from Jan. 1970 (1) to Dec. 1974 (60)

Figure 24: Temperature estimates of 1970-1974 using the numerical-fuzzy approach based on the data of
1957-1969.

neural approach

3s ~
aw.e. e estimatec esv e tHUC tOmMpPCTature

month from Jan. 1970 (1) to Dec. 1974 (60)

Figure 25: Temperature estimates of 1970-1974 using the neural approach based on the data of 1957-1969.

301 -1

month from Jan. 1970 (1) to Dcc. 1974 (60)

Figure 26: Temperature estimates of 1970-1974 using the AR model approach based on the data of
1957-1969.

40

numecrical-fuzzy approach

e e cetimato cor—te= LTUG tEmMperature

month from Jan. 1970 (1) to Dec. 1974 (60)

Figure 27: Temperature estimates of 1970-1974 using the numerical-fuzzy approach based on the data of
1945-1969.

-®.% . cstimate ~t—4—-- tnue temperature

month from Jan. 1970 (1) to Dec. 1974 (60)

Figure 28: Temperature estimates of 1970-1974 using the neural approach based on the data of 1945-1969.

month from Yan. 1970 (1) to Dec. 1974 (60)

Figure 29: Temperature estimates of 1970-1974 using the AR model approach based on the data of
1945-1969.

41

200 300 400 300 660 700 800 960 1000

Figure 30: A chaotic time series.

$3 S S8 CE Bl B2 B3

> X(0)

03 05 07 09 LI 13 135

Figure 31: Membership function for the simulations of Figs.32 to 37.

42

) 30 100 150 200 250 300

Figure 32: Prediction of the chaotic series from x(701) to x(1000) using the numerical-fuzzy predictor
when 100 training data (from x(601) to x(700)) are used.

1.6
oo, cstimate —t—t—t-= truc valuc

(9 50 100 150 200 250 300

Figure 33: Prediction of the chaotic series from x(701) to x(1000) using the neural network predictor
when 100 training data (from x(601) to x(700)) are used.

43

w_w_w_ ostimate - —tete true value

% 30 160 150 200 250 300

Figure 34: Prediction of the chaotic series from x(701) to x(1000) using the numerical-fuzzy predictor
when 200 training data (from x(501) to x(700)) are used.

1.6
e e e, catimato ateact-oime trize valuc

) 50 100 150 200 250 300

Figure 35: Prediction of the chaotic series from x(701) to x(1000) using the neural network predictor
when 200 training data (from x(501) to x(700)) are used.

-_e e, agtimate " cdesbontee true valuo

% s6 100 150 200 250 300

Figure 36: Prediction of the chaotic series from x(701) to x(1000) using the numerical-fuzzy predictor
when 700 training data (from x(1) to x(700)) are used.

44

1.6

~w.*.*_ gcstimate —tebete true value

o 50 100 130 200 250 300

Figure 37: Prediction of the chaotic series from x(701) to x(1000) using the neural network predictor
when 700 training data (from x(1) to x(700)) are used.

1.6

. =.%. cotimatc —t-—e—it-= TUC value

% 50 100 150 200 250 300

Figure 38: Prediction of the chaotic series from x(701) to x(1000) using the updating-FAM-Bank proce-
dure.

m(x)

S7 S6 S5 S4 83 S2 SI CE Bl B2 B3 B4 B5 B6 BT

> X(t
02 04 06 08 10 12 14 16 0
Figure 39: Membership function for the simulation of Fig.41.
m(x)
A
S14 S13 S12 S11 810 89 oo B9 B10 Bil B12 B13 Bl4
02 03 04 o 7 14 1 0

Figure 40: Membership function for the simulation of Fig.42.

46

1.6

.o e astimato at-etred-= true value

°0 5‘0 1 60 150 200 250 300

Figure 41: Prediction of the chaotic series from x(701) to x(1000) using the updating-FAM-Bank proce-
dure with the membership function of Fig.38.

1.6

..o, gatimata ——p—i true value

% S0 160 150 200 256 300

Figure 42: Prediction of the chaotic series from x(701) to x(1000) using the updating-FAM-Bank proce-
dure with the membership function of Fig.39.

47

(),)
X (1), (1)

\

o)

(approximate)

Figure B1. Approximate kinematics of the truck: (a) move the mass center by a distance r; and, (b)
rotate the bar by an angle 6(t).

48

Table 1

Desired trajectory stariing
&Oﬂl (x00 ¢o)=(1 '00)

t| x| ¢} €
01100 | 000 ||-1900
1 | 195 | 937 }|-19s
2 | 288 | 1823)]-1690
3|31 | 2659]| -1585
4 | a6s | 3444 || -1480
5| 545 | 4138 || -13.75
6 | 618 | 4860]}-1270
7 | 748 | 549 |]-1165
8 |79 | eom||-1060
0 |sm | 6599 || 955
10| 901 | 7075 || €50
11§ 928 | 7498 || -745
12| 946 | 870 || 640
13| 959 | 810 || -5.34
14 9m2 | 8457 || 430
15| 981 | 8672 || -325
16| 988 | 8834 |] 220
17| 991 | 8944 || 000
18

19 e

20|]

49

Table 2

Desired trajectory starting
from (xg, ¢0) = (1.90°)

t| x ¢°l] ©°
01 100 { 9000 || 1800
1 ¢ 115 | siu || 1600
2| 143 | 1329 || 1400
3] 183 | 6624 || 1200
41 231 | 6027 || 1000
5| 288 | 5529 || 800
6 3s0 | 5130 || 600
71| 416 | 4831 || 400
8| 436 | 631 || 200
9 | ss6 | 4531 || o000
10| 626 | 4531 || 200
11| 695 | 4631 || <400
12| 261 | 4831 || 600
13| 823 | s130 || 00
14] 879 | 5529 || -1000
15| 928 | 6027 ||-12.00
161 967 | 6624 ||-14.00
17| 995 | 1319 || 1600
18 | 1009 | 8111 || -18.00
19| 100 | 9000 {| 000
200 __+—

Table 3

Desired trajectory starting

from (o, §o) = (1,270°)

Table 4

Desired trajectory starting
from (xq, $4)=(7,0%)

t] x ¢ || 6°
01{ 700 | 000 |[-e00
1] 776 | 1835 || -385
2 | 851 | 3688 |{-370
3 { 915 | s440 ||-355
4| 962 | 7128 ||-340
5| o8 | e151|] 30
6] 99 | 8990 || o0
7

8 /
9 /
10 /
11 [

12

[y
(%]
\Q\

[
H

[y
(¥]
I~

e
(=)
-~
o~

fa—y
2
[~

oo
=t

o
™~

t| x ¢ || @
0] 100 |-9000 || -300
1) 122 |7552 || 200
2 | 164 |-5149 || -280
3| 224 | 4792 || -270
4 | 298 |-3480 || -260
5] 382 {2213 ||-250
6| am | 993 ||-240
7 | s6s | 180 ||-230
8 | 654 | 1306 || -220
9 | 739 | 36 ||-210
10| 817 | 3418 || 200
11| 885 | 4404 || -190
12] 9.42 | s340 || -180
13| 966 | 6220 || -170
14| 982 | 7069 || -160
15| 1008 | 1862 || -150
16 | 10.11 | ss0s || -140
17| 1013 | 9002 {| o0

18

19 e

20 /

8

Table 5
Desired trajectory starting
from (x), ¢,) =(7,90°)

t|{ x ¢l e°
0] 7200 | 9000 || 1200
1] 210 | 8403 || 1006
2| 72 | w02 || 812
3| 155 | 7497 || 6as
41 186 | 89 || 424
5| 821 | 6977 || 230
6| 857 | 6862 || 034
7 | 884 | 6844 || -158
8§ { 919 | 923 || 352
9 | 942 | 7099 || -s.46
10] 959 | B2 || 790
11] 981 | 7745 || -034
12| 1005 | 8316 || -n128
13| 1015 | 8967 || 000
14 /|
15 /
16 f

17 /

18 /

9|l /

20

51

Table 6

Desired trajectory starting
from (x4, 9o) = (7, 180°)

t| x ¢ (| 6
0] 700 | 18000]| 4000
1| 623 |16125]] 3650
2 | 548 |14382]] 3360
3| as0 | 12296 || 3040
4 | 427 | n3a0|| 2220
5| 393 | 9989 || 24.00
6 | 37 | 8816 || 2080
7 | 380 | 1793 || 1700
8| 400 | 6923 || 1440
9| 435 | o209 || 1120
10] 481 | 5652 || 800
11| 535 | 5253 || a0
12| 596 |s0a2 || 160
13| 660 | 4932 || 2160
14| 725 | 5043 || <480
15| 789 | s253 || -n20
16| 849 | 5652 ||-1440
171 904 | 6200 |]-1760
18| 952 | 6923 || 2080
19| 1002 | 7842 |] 24000
20| 1005 | 8915 || o000

Table 7

Desired trajectory starting
from (xg, 4) =(7, 270°)

t| x || o°
0| 200 |-9000 || <00
1| 725 |-nas || -0
2| 213 |-5201 || -380
3 | 838 |-3498 || -370
4| 915 |-1747 || -360
S| 997| 038]|| 350
6| 1077 1629 || -340
7 | 1148] 3253 || -330
8 | 1204 | 4833 || 220
9| 1242 | 6370 || -310
10] 1259 | 71862 || -300
11} 1254} 9310 || 200
12| 1228 | 0712 || 280
13| 137 [2030 || 00
14| 1128 | 12070 || 150
15| 1090 | 11327 || 130
16| 1062 | 10681 || 110
17] 1032|1133 || 90
18] 1020 | 9684 || 70
19| 1014 | 9335 || 5o
20| 1009 | 9035 |} 00

52

Table 8

Desired trajeciory starting
from (xq, ¢o) = (13,0°)

t] x ¢° 0°
0 | 1300 | 000 || 000
1 | 1377 | 1835 {|-330
2 | 1452 | 3618 ||-3360
3 | 1520 | s22¢4 |]-30.00
4 | 1523 | 6690 ||-2220
S | 1608 | 8041 ||-26.00
6 | 1623 | 9184 |]-2080
7 | 1620 | 10207 || -17.60
8 | 1600 | no7 || -1400
9 | 1566 | 11791 || -11.20
10| 1520 | 12348 || -800
11| 1466 {12247 || 480
12 | 1405 | 12987 || -1.60
13| 1341 | 13067 || 160
14| 1276 | 12987 || 480
15| 1212 {12147 || 800
16 | 1152 |123.48 || n2o
17 | 1098 | 11791 || 1440
18 | 1053 | 1077 || 1760
19| 1009 {10107 || 2080
20| 999 | 9084 || 000

Table 9

Desired trajectory starting
from (x ., §,) =(13, 90°)

t| x $°l| ©°
0 | 1300 | 9000 {|-12.00
1 | 1290 | 9597 || -1005
2 | 1211 | 10097 || 810
3 | 1245 | 10501 || 615
4 | 1215 | 10808 || <20
5 | nso | uoas || -225
6 | nas | 131 || 030
7 | 108 | 11146 || 165
8 | 10712 [nos3 || 360
9 | 1040 | 10883 || 555
10| 1013 | 10606 || 750
111 998 | 10231 (| 945
12| 989 | 9750 || 1140
13} 981 | 9094 || 000
14 /
15 /
16 /

17 /

18 /

9| /

20

53

Table 10

Desired trajectory starting

from (x . ¢5) = (13, 180°)

t| x $°l| O°
0 | 1300 | 180,00 || 4000
1 | 1223 | 16125 || 3805
2 | n4e {1430 || 3700
3 | 1085 | 12560 || 3550
4 | 1038 |108.72 |{ 34.00
5 |1 | 9249 || 550
6 | 1008 | 8980 || 000
7

8 /
9 /
10 /
11

12 /L
13 /

14 /

15 /

6] f

17{ /

18] /

19|/

8

Table 11

Desired trajeclory starting
from (x, 9o) =(13,270°)

t| x| ¢ 6°
0 | 1300 | 27000 || 40.00
1] 1275 | 25126 || 39.00
2 | 1228 | 23291 || 3800
3 | 1162 | 21409 {| 3200
4 | 1085 | 19747 || 3600
5 | 1003 | 18038 || 3500
6 | 923 |163m || 3400
7 | 853 | 14748 || 3300
8 | 796 | 13167 || 3200
9 | 758 | 11631]| 3100
10| 741 | 10138 || 3000
11| 21 | 8691 || 29.00
12| 322 | 7288 || 2800
13| 871 | 5929 || 000
14| 909 | 5929 || -1500
15| 937 | 6634 || -13.00
16| 958 | ;a9 || -1000
17| om | ®is || 800
18] 981 | 8192 || 550
19] 992 | 8550 || -350
20| 997 | 8923 || o000

54

Table 12

Desired trajectory starting
from (xq, $0) = (19, 90°)

t] x| ¢ €°
0 | 1900 | 9000 |{-18.00
1 | 1885 | 9888 ||-16.00
2 | 1857 | 10681 ||-14.00
3] 1818 | 11336 ||-12.00
4 | ne |n9n ||-100
51 13 |an || 800
6 | 1651 | 12870 || 600
7| 1584 | 13160 |] 400
8 | 15.16 | 13369 || 200
9 | 1445 {13469 || 0.00
10| 1375 | 13469 || 200
11] 1306 | 13369 || 400
12| 1240 | 13189 || 600
13| 1.8 | 12870 || 800
14| 12 | 1247 || 1000
15| 1074 {11912 || 1200
16 | 1035 | 11336 || 14,00
17 | 1007 | 10681 || 1600
18| 993 [9839 || 1800
19| 959 [9000 || 000
200 __f—

Table 13 Table 14

Desired trajectory starting Desired trajectory starting
from (x 5, §,) = (19, 180°) from (x, ¢) = (19, 270°)
t| x ¢ 6° ti x ¢ e°
0 | 1900 | 18000 || 19.00 0 | 1900 |27000 || 300
1 | 1805 | 17063 || 17.95 1 11878 25553 || 200
2 | 112 | 177 || 169 2 | 1836 |24150 || 280
3 | 1621 | 15341 |] 155 3 | 1796 | 2192 || 270
4 | 1535 | 14556 || 14.80 4 | 1703 |21480 {| 260
5| 1ass | 13822 || 1375 5 11619 |20214 || 250
6 | 1383 | 3140 || 1270 6 | 1529 | 18994 || 240
7 | 1318 | 12509 || 1165 7 | 1437 {11821 || 230
8 | 1262 | 11929 || 1060 8 | 1345 | 16694 || 20
9 | 1214 | 11401 || 955 9 | 1261 | 1564 || 210
10| 1174 | 10926 || 850 10| 1183 |14s582 || 200
11} 142 | 10501 || 745 11] 115 13597 || 190
12} 1116 | 10130 || 640 12 | 1058 | 12661 || 180
13} 1096 | 9s.10|| 545 13| 1043 (11722 || 170
14| 1073 | 9543 || 450 14| 999 |10931 || 162
15 1053 | 9328 || 355 15| 9ot | 10139 || 154
16| 1037 | 9166 || 250 16| 985 | 9395 {| 16
171 1011 | 9056 || 0.00 17| 980 | 9106 || 138
18 18

19] 19 1

20] 7 20|~

95

Table 15 Table 16

Fuzzy rules generated from the desired Fuzzy rules generated from the desired

input-output pairs of Table 1, and the input-output pairs of Table 2, and the

degrees of these rules. degrees of these rules.

Fuzzy IF THEN Fuzzy IF THEN

:g:‘;i xis |[6is [| Ois Degree ;::e:; xis |¢is || 0is Degree
o | S2 | S2 || sz (|100 o |82 |cCE || B2 || 001
1 s2 | s2 S2 0.92 1 §2 | CE B2 0.72
2 S2 52 82 0.35 2 S2 S1 B2 0.31
3 S2 52 82 0.12 3 S2 S B2 0.24
4 §2 82 S§2 0.07 4 8s2 S1 B1 0.21
5 S1 | 82 S1 0.08 5 82 | st B1 0.28
6 S1 S1 S1 0.18 6 §2 S1 B1 0.44
7 | st | 81 || st [jos2 7 | 82 [81 B1 || 031
8 [s1 | st |[st |]ose6 8 | 81 | st CE || o.28
9 S1 | 81 S1 0.60 9 81 | 82 CE 0.35
10 | CE | S1 S1 0.35 1o | St | 82 CE 0.28
1 | ce | s1 [{ s1 || o2 1 | 81 [st || 81| 054
12 | CE | St CE || 0.16 12 | 8t | St S1 0.72
13 | CE | CE || CE 0.32 13 | 81 | St S1 0.48
14 | CE| CE || CE || 045 4 | 81 | St St || 0.35
15 | CE | CE || CE 0.54 15 | CE | St S1 0.18
16 | CE | CE || CE || 0.88 16 | CE [S1 s2 || 0.18
17 CE CE CE 0.92 17 CE St S2 027
18 | 18 | CE | CE S2 || 048
19 P 19 [cE | ce || cE || 097
20 | 1 » | | 4+

56

Table 17 Table 18

Fuzzy rules generated from the desired Fuzzy rules generated from the desired
input-output pairs of Table 3, and the input-output pairs of Table 4, and the
degrees of these rules. degrees of these rules.
Fuzzy IF THEN ;l Fuzzy IF THEN w‘
rules - - —] Degre rules - - —11 Degr
fort=| Xts [¢is [[Bis fort= | X185 | ¢ s 8 is
o | S2 | S8 [S2 || o025 o | st |s2 || s3 || 100
1 S2 S3 S2 0.40 1 S1 82 S3 0.65
2 S2 S3 S2 0.31 2 S1 S1 S3 0.39
3 s2 | s3 S2 0.28 3 CE | s1 S3 0.44
4 82 S2 S§2 0.23 4 CE 81 S3 0.38
5 82 82 S2 0.26 5 CE CE CE 0.84
6 82 S2 S2 0.28 6 CE CE CE 0.97
7 | s1 | s2 ||s2 || oa 7 /
8 |s1 | s2|[s2 || os0 8 /
9 | st |s2 | s2 || ods 9 /
0 | s1 | s2 || s2 |oss 10 /
un | s1 | st |'s2 || os I /
12 | ce | st |[s2 || os1 12 /
13 | cE [s1 |s2 || 038 13 /
14 | CE | 81 [{s2 || o021 14 "t
1s | cE | ce || s1 || 0.30 15 f
16 | ce | ce || s1 || 060 16 /
17 | ce | ce |[ce || 0o 1 /
18 J 18
19 /‘/ 19 / }
20 | ~ 20

57

Table 19

Fuzzy rules generated from the desired

input-output pairs of Table 5, and the

degrees of these rules.

Table 20

Fuzzy rules generated from the desired
input-output pairs of Table 6, and the

degrees of these rules.

Fuzzy IF THEN Fuzzy IF THEN

mes I Tois o || o] | [o [om | o
o | St | CE || B2 || 050 o | st |82 ||B3 [[100
1 S1 CE B2 0.42 1 S1 B2 B3 0.66
2 [st | ce |l B1 || 038 2 | st | B1 || B3 ||o030
3 | st | st ||B1 |]|os4 3 | s2 [B1 |83 |{o1s
4 St S1 B1 0.28 4 S2 B1 B2 0.27
5 | s1 | s1|lce || ost s | s2 |81 || B2 [|o2
6 | s1 | st ||ceE || 021 6 | s2 | ce || B2 || os3
7 | st | st || ce]| o1e 7 | s2 | st ||B2 || o021
8 | ce | s1 || ce || 027 8 |s2 {st | B2 ||lois
9 [ce | st || s1 || 025 9 | s2 | st ||B2 || 014
10 | cE | s1 || st || 031 10 | s2 | s1 || BY 0.18
11 | ce | s1 || st || oss 1 | st | st || Bt 0.32
12 | ce | cE || st || 0.32 12 | st | st || ce || 041
13 | ce | ce || cE || 0gs 13 | st | st ||ce || os4
14 14 St St St 0.42
15 / 5 | st | st |[st |[oz
16 16 St S$1 s2 0.20
17 ,/ 17 | st | s1 || s2 ||ote
18 / 8 | cE | s1 || s2 || os0
wi| A 19 | CE | cE || s2 [[031"
20 20 CE CE CE 0.97

58

Table 21

Fuzzy rules generated from the desired
input-output pairs of Table 7, and the
degrees of these rules.

Table 22

Fuzzy rules generated from the desired
input-cutput pairs of Table 8, and the

degrees of these rules.

Fuzzy IF THEN Fuzzy IF THEN —x
rules - - - Degree rules Degree
fort= | X8 | ¢ is 0is fort= | X8 [¢ is 8is
o | St [83 |]S3 [fo50 o |B1 [s2 | s3 [f100
1 | 81 | s3 || s3 || o6t 1 [Bt [s2 |[s3 {[or
2 | st | s3|lss |lo4o 2 [Bt | s1||s3]|ois
3 | 81 |s2 | s3 |]|o2z 3 | B2 | st ||s3 ||ozs
4 | ce | s2 || s3 || o058 4 | B2 | 81 |]s2 |03t
5 | CE| s2 || s3 [|oso0 s | B2 | CE || s2 || .30
6 | cE | s2 || s3 || o064 6 [B2 | CE || s2 || 054
7 | B1 | s2| s3 || o018 72 |82 | Bt || s2 || 030
8 | Bt S1 |{ S8 || 0.27 8 | B2 | B S1 0.15
9 | B1 | s1]| s3 ||oe2s 9 | B2 | Bt || St 0.28
10 | Bt | 81| s2 {|o17 10 | B2 | Bl || st 0.41
1 | 81 | ce|ls2 ||oer 1 | 82 | Bt || st ||oass
12 | Bt [B1 || s2 || 0.20 12 | B1 | B1 [| CE || 045
13 | Bt | B1 || CE || 0.32 13 |81 | Bt |[|CE {| 063
14 | 81 | B1 || B2 || 0.21 14 | B1 | B1 || BY 0.55
15 | CE | B1 || B2 ||020 15 | 81 | B1 {[B |lo072
16 | CE | Bt B2 |l o022 16 | B1 | Bt B1 0.33
17 | CE | B1 |{B1 [|o0.32 17 | CE | B1 |[[B2 || 021
18 | CE | B B1 0.51 18 | CE | B1 || B2 0.32
19 | CE |cE || cE [050 19 | CE | B1 || B2 [| 051
20 | CE |CE || CE || 0.90 20 | CE | CE || CE || 099

59

Table 23 Table 24

Fuzzy rules generated from the desired Fuzzy rules generated from the desired
input-output pairs of Table 9, and the input-output pairs of Table 10, and the
degrees of these rules. degrees of these rules,
Fuzzy IF THEN Fuzzy IF THEN
rules - . - Degree rules - - - Degree
fort= | X 18 | ¢ is 0is fort= | X8 [¢ s 0is
o |81 | CE || S2 (| 050 o | B1 | B2 |[B3 || 100

B1 B2 B3 0.75

-

1 B1 CE S1 0.31

2 B1 B1 S1 0.41 2 B1 B1 B3 0.19

3 B1 B1 S1 0.32 3 CE 81 83 0.26

4 B1 B1 S1 0.18 4 CE B1 B3 0.41

5 B1 B81 CE 0.22 5 CE | CE || B1 0.48
6 B1 B1 CE 0.35 6 CE CE CE 0.96

7 | B1 | B1 || CE ||028 7 /
8 {ce| i |[&1 [loss 8 /
9 | ce | Bt || B1 [|o2 9 /

10 | CE | B1 B1 0.36 10 /

11 | ce | B1 || Bt 0.28
12 | ce | B1 [} B2 []|o0.18
13 | ce | ce [[cE || 0.92

.

X
™~

™~

14 14 //
15 / 15 /
16 16 /

17 // 17 /

18 / 18

19 // 19 /

20 20

60

Table 25 Table 26

Fuzzy rules generated from the desired Fuzzy rules generated from the desired

input-output pairs of Table 11, and the input-output pairs of Table 12, and the

degrees of these rules. degrees of these rules.

Fuzzy IF THEN Fuzzy iIF THEN

rles [xis [ois || 008 Deges mles s o s || 068 Degree
0 B1 83 83 0.50 0 B2 CE S2 0.81
1 |81 |83 [[B3 [| o7 1 | B2 | cE ||s2 |]oa42
2 | Bi B3 B3 0.59 2 B2 | Bt S2 0.25
3 B1 B3 B3 0.41 3 B2 | B1 S2 0.17
4 | CE | B2 B3 0.28 4 B2 | B1 S1 0.47
5 | CE | B2 B3 0.72 5 B2 | B 81 0.63
6 | CE | B2 83 0.26 6 B2 | Bt 81 0.43
7 S1. | Bt B3 0.23 7 B2 | B1 S1 0.36
8 S1 B1 B3 0.35 8 B2 | Bt CE 0.25
9 S1 | Bt B3 0.27 9 B1 | Bt CE 0.49
10 | St |B1 ||{B3 ({022 10 | Bt | Bt |[CE || 035
1n | St | CE || B2 0.49 11 | Bt | B 81 0.41
12 | 81 | st B2 0.39 12 | B1 | Bt B1 0.49
13 | 81 | St CE 0.61 13 | Bt | B1 B1 0.28
14 CE St S2 0.24 14 B1 B1 B1 0.16
1s | CE | St §2 0.28 15 | CE | Bt B2 0.18
16 | CE | S1 St 0.33 16 | CE | B1 82 0.27
17 | CE | S1 S1 0.33 17 | CE | B1 82 0.39
18 | CE | CE |[] B1 0.28 18 | CE | CE B2 0.41
19 | CE | cE || cE || 056 19 | cE [cE || cE || 004
20 |CE | cE || cE || 098 o | | 1

61

Table 27 Table 28

Fuzzy rules generated from the desired Fuzzy rules generated from the desired

input-output pairs of Table 13, and the input-output pairs of Table 14, and the

degrees of these rules. degrees of these rules.

Fuzzy IF THEN Fuzzy IF THEN

mles Ixis |ois ||ois Degres s Ixis [ois || o Degreq
0 B2 | B2 B2 0.91 0 B2 B3 B3 0.50
1 B2 | B2 B2 0.72 1 B2 83 B2 0.35
2 B2 | B2 B2 0.51 2 B2 B3 B2 0.48
3 B2 | B2 B2 0.26 3 B2 B3 B2 0.57
4 B2 | Bt B2 0.16 4 82 B3 B2 0.44
5 B1 | B1 B2 0.23 5 B2 B2 B2 0.18
6 B1 | B1 B2 0.256 6 B2 B2 B2 0.22
7 B1 | Bt B2 0.21 7 B1 | B2 B2 0.41
8 Bt | B1 B2 0.18 8 B1 B2 B2 0.42
9 Bl | Bi B1 0.20 9 B1 B2 B2 0.40
10 B1 | 81 B1 0.21 10 B1 B 82 0.48
11 B1 | Bt B1 0.22 1 | Bt | Bt B2 0.64
12 B1 | B1 B1 0.23 12 { CE | B B2 0.51
13 Bt | CE || B1 0.25 13 | CE | B1 B2 0.48
14 CE| CE || Bt 0.16 14 | CE | Bt B2 0.40
15 CE| CE || BT 0.32 1s | CE | B1 B2 0.21
16 CE'| CE || CE 0.48 16 | CE | CE || B2 0.41
17 CE | CE |{CE 0.97 17 | CE | CE |} CE 0.91
18 | 18 |]
19 P 19 i
20 | ~ 20 //

62

Table 29: Monthly mean temperature of St. Louis, Missouri, from Jan. 1945 to Dec. 1974
(taken from Appendix III of [12]).

MONTHLY MEAN TEMPERATURE

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
1945 19 22 122 137 164 213 252 254 209 144 717 20
1946 20 21 27 131 177 228 249 297 222 193 52 37
1947 13 46 138 160 169 245 269 230 209 171 93 49
1948 31 14 66 154 184 241 261 260 224 138 89 37
1949 06 27 67 123 206 253 2710 255 184 159 94 49
1950 34 28 50 106 201 236 246 227 197 183 39 -14
1951 .03 19 45 112 197 223 257 248 191 1514 38 09
1952 22 43 58 127 188 284 214 248 211 121 78 28
1953 18 44 82 112 196 215 214 257 224 167 87 32
1954 04 66 56 167 164 263 294 267 237 149 17 26
1955 06 22 72 172 202 219 286 268 231 146 54 06
1956 46 27 13 119 199 246 254 263 26 181 72 36
1957 28 47 63 136 190 242 267 23 202 127 64 49
1958 04 37 33 132 189 219 247 253 206 151 94 -09
1959 32 21 16 138 209 247 256 271 218 139 39 A1
1960 08 07 -09 149 171 233 246 22 234 150 81 -06
1961 24 22 15 100 146 212 245 241 207 151 67 00
1962 41 26 42 118 222 233 243 242 191 161 72 -04
1963 59 19 93 146 177 241 252 238 203 194 76 -S54
1964 15 13 57 148 209 238 258 247 207 122 85 01
1965 01 10 14 147 214 239 249 243 206 136 92 54
1966 39 01 82 109 165 232 283 234 187 123 84 16
1967 15 04 01 147 160 233 238 224 192 141 56 16
1968 01 16 78 131 166 250 253 251 193 139 64 02
1969 46 18 32 138 187 225 269 250 207 134 63 01
1970 40 0S5 47 144 207 224 255 246 221 134 64 28
1971 26 11 54 133 168 261 241 243 225 176 78 48
1972 12 13 72 134 191 230 253 246 217 127 43 -09
1973 03 14 105 121 165 237 259 249 211 159 83 i1
1974 12 23 89 142 183 208 266 236 168 143 67 11

63

