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Abstract

This paper discusses the design and application of estimation techniques to the problem of
obtaining the kinematics of a moving vehicle and the structure of the external environment,
based on a sequence of images taken by a camera attached rigidly to the vehicle. “Structure”
refers to the 3-D locations of selected points of interest (landmarks) in the environment,
expressed in an inertial, or “world” coordinate system. The (noisy) image plane trajectories
of these feature points are assumed to be available, and the 3-D positions of a small number
(typically 3 or 4) of them are assumed to be known. Using simple models for the motion of
the vehicle it is possible to utilize effectively the information contained in image sequences
of arbitrary length. Batch and recursive estimation techniques are developed to estimate
the motion and structure parameters. In the first step, the batch estimation method is
applied to obtain an initial estimate and its approximate error covariance, which is then
used in the second step to initialize the recursive filter for tracking the parameters of interest.
Experimental results on synthetic data and on one of the UMASS ALV image sequences are

given.

*Partially supported by the Office of Naval Research under the grant N00014-89-5-1598
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1 Introduction

Several new trends have emerged in the field of visual motion analysis in recent years, such as
the use of motion models [1, 2, 3], long sequences[2, 4, 5], and estimation theoretic methods
[6, 7, 8, 9, 10, 11]. The use of motion models simplifies motion analysis by reducing the
number of parameters to be estimated. Sensitivity to measurement noise and feature point
occlusions can be greatly reduced by incorporating the information contained in long image
sequences . Finally batch and recursive estimation techniques can be used together for real-
time motion analysis and tracking applications. These approaches may be combined to yield
a powerful paradigm for visual motion analysis, which is simple, robust, flexible and efficient.

In this paper, we develop this paradigm for the passive navigation problem, in which
the objective is to aid the visual navigation of a vehicle in an environment containing a
small number of landmarks, some known and some unknown. The vehicle is assumed to be
equipped with a camera which obtains images of the scene at regular intervals, generating
an image sequence. The various parameters of interest in the navigation of the vehicle are
to be estimated based on a set of feature points identified and matched over the image
sequence. The kinematic parameters of interest are the position of the camera!, its velocity,
and higher-order translational parameters; its attitude (i.e. orientation), angular velocity,
and higher-order rotational parameters. The structure parameters involved are the locations
of the unknown landmarks in the scene, represented as point features. In this work, all these
motion and structure parameters are represented in 3-D in an inertial “world” coordinate
system, which is external to the moving vehicle.

Our basic approach has been to develop models for the motion of the camera, the time-
evolution of this motion, and the observation of point features in the environment, and to
formulate the problem as one of parameter or state estimation. Based on N frames of data,
with noisy image coordinates of M features in each frame, we form estimates of the unknown
parameters in the assumed models. The estimation techniques which could be used are of
two basic types — batch and recursive [12, 13]. In a batch procedure [2], all the information
available about the motion of the feature points is used together in a single-stage estimation
of the parameters of interest. This approach is robust and simple, and reasonably fast if
the number of parameters is small, but suffers from the drawback that the estimates will
be available only at the end of the sequence, after measurements from all the images in the

sequence become available. Furthermore, it requires large amounts of memory to store these

1The camera is assumed to be rigidly fixed to the vehicle. Hence the words “camera” and “vehicle” are

used interchangeably in the rest of the paper.



measurements. The recursive approach [14] , on the other hand, is much faster, and requires
much less storage, since at any time instant only the current values of the estimates are stored.
However, the speed of convergence of the recursive approach depends on the accuracy of the
initial guess provided. A good compromise would be to use the batch approach over the first
few image frames, and use the resulting batch estimate to initialize the recursive estimator.
Then, for the remainder of the sequence, the recursive estimator can be used to “track” the
motion and structure parameters. '

In the batch formulation, the parameters to be estimated are placed in a parameter vec-
tor. The batch estimate is obtained using the principle of nonlinear least-squares, minimizing
the discrepancy between the observed image point locations and the ones obtained using the
parameter vector and the models of motion and imaging. The batch estimate and its approx-
imate covariance computed using Cramér-Rao lower bounds (CRLBs) are used to initialize
the recursive estimator. In the recursive formulation, the parameters to be estimated are
treated as states, and a state-space representation is obtained. The plant equation is based
on the motion model, and indicates how the parameters to be estimated evolve in time. The
measurement equation is based on the central projection model of image formation. The
nonlinear nature of the measurement model precludes a simple Kalman filtering approach, -
and hence an approximate nonlinear filtering approach is used. An Extended Kalman Filter
(EKF) [15] is designed for the problem, and its performance on real and synthetic data is
studied.

The approach developed in this paper has several advantages. Both kinematic and struc-
ture parameters are estimated based entirely on the image sequence, without requiring ad-
ditional sensors such as those required in [11, 16, 17]. Furthermore, parameters such as the
(absolute) orientation and position of the camera in the WCS are estimated, unlike most
existing methods. Sensitivity to measurement noise is reduced by incorporating the infor-
mation contained in long image sequences. There is no restriction on the number of feature
points or on the number of image frames. Occlusion and disappearance of feature points
are handled easily by software, without the need for reprogramming. No initial guess of any
parameter is needed, although any prior information can be conveniently and effectively uti-
lized. The method has the ability to cope with fairly large modelling errors, and none of the
assumptions made in developing the approach (such as smoothness of motion) seems to be
critical to its success in a real application. The only major precondition is the requirement
of feature point correspondences. This issue can be addressed using methods such as those

presented in [16, 18, 19, 20], but it has not been implemented in our work so far.



2 Models

The fundamental model of this paper is that the motion of the camera during the observation
period is smooth enough so that it can be represented by a dynamic model of relatively low
dimensionality. The constraint imposed on the motion is that some finite time derivative (say,
the nt?) of the variation in each kinematic attribute be constant. That is, a constant first
derivative implies constant velocity, constant second derivative implies constant acceleration,
etc. Further, the model allows a different value of n for rotation and translation.

As mentioned earlier, all the parameters of interest, including the kinematics of the
camera and the structure of environmental landmarks, are represented in a world coordinate
system (WCS), the origin of which is not observed, in general. The WCS is a stationary
coordinate system external to the moving vehicle. A camera-centered coordinate system
(CCS) is also defined. The translational kinematics of the camera are defined to be the
position and motion of the origin of the CCS with respect to the WCS. Camera rotational
kinematics are defined to be the camera’s angular position and motion with respect to the
WGCS. The feature points in the scene are assumed to be constant in the WCS, i.e the scene
is rigid. The camera coordinates of a feature point can be found by applying a simple
transformation on its world coordinates. Using the central projection imaging model, the
image of each point is then simply the ratio of its x- and y-coordinates to its z-coordinate
(all in the CCS), multiplied by the appropriate focal lengths, and shifted by the coordinates

of the centre of the image. These concepts are made precise in this section.

2.1 Translational Motion Model

Since the spatial coordinates of the origin of the CCS pg(t) can be written in terms of an
arbitrary number of derivatives, a variety of modeling options are available. Assuming it can

be accurately modeled by a constant n'* derivative,

n  g(k) - k
palt) = palta) + 3 ora | 5 1

t=to

Thus, the translational motion during the observation period is modeled by a finite number

3n) of parameters, which are simply the nonzero derivatives at a single point in time.
p P 14

2.2 Rotational Motion Model

Quaternions, described for example in [21], can be used to propagate the transformation

matrix R(t) in time, with the rotation of the CCS represented by the camera’s rotation rates
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about its (z,y, z) axes, w¢ = (wz,wy,w; ). With this approach, the rotation matrix R(t) can
be written in terms of the unit quaternion q(t) = (qi(2), ¢2(2), ga(t), ga(¢))?. Suppressing

the time dependency,

G-G-a+a 20— e 2(q19s + 9204)
R=| 2Aqe+¢pu) -64+6-6+9 2020 — 0w) (2)
2193 —029)  Awptan) -G-G+aE+4
or, more briefly,
R(t) = R[q(t)]. 3)
The unit quaternion q = (g1, 92,93, ¢4)” is related to “standard” expressions of the angular

relation between coordinate systems by the relation
(91,92, 93, 94)7 = (n15in /2, nysin /2, nysind/2, cos 0/2)T (4)

where (n;, ns, n3) is the axis of rotation, and 8 is the angle about the axis that aligns the
coordinate axes of the rotating coordinate system with those of the reference system (in
the least angle sense). It is termed a unit quaternion because |q| = 1. The quaternion q

propagates in time according to the differential equation [22, 21]

q(t) = Qwe) q(t), 4qlte) = qo (5)
where
0 wz —wy w:
1| —w, 0 wy W
Qwe) = 5 ’ (6)
wy -w 0 w

The reason for resorting to quaternions is that the differential equation of (5) describing
their time-propagation is much simpler than the analogous system for propagating Euler
angles, even when higher derivatives are involved. In addition, the body rates w are more
meaningful, intuitively, than are the Euler rates, since the latter are defined about non-
orthogonal axes. In order to represent higher order rotational derivatives, w can be expanded
in Taylor series as in (1), and the differential equation of (5) can be integrated numerically,

with time-varying w.

2.3 Imaging Model

A central projection imaging model is assumed, defined by

h:P—1I (7)



where
p=(z,5,2)7 € P={(z,9,2)" € B’} (8)

is a spatial point location and
p=(X,Y)Tellc R (9)

is an image plane point position (all expressed in the CCS). The space II is nominally a finite

rectangle, corresponding to the image plane of a camera. Then,
X=foZ4Xotnx, Y=f7+Yotny (10)

map spatial coordinates to noisy image coordinates, where f; and f, are the focal lengths
of the camera in the vertical and horizontal directions, and (Xo, Yp) are the coordinates of
the centre of the image, expressed in the CCS. The terms nx and ny are the image plane
noise components, assumed to be zero mean, independent and identically distributed (i.i.d).

Thus, the measurement model for a single point p = (z,y, z)T is

X f:r:‘£+X0 nx
= = 2 =h .
o= (3)-(5n) s () mwmen
2.4 Observation Model

Combining the above results, we obtain the following model expressing the relationship
between the parameters to be estimated and the observed image locations of the feature
points. Let p; = (z:, ¥, z)T be the world coordinates of match point i. Let pr(t) =
(zr(t), yr(t), zr(t))T be the world coordinates of the origin of the moving camera-centred
reference frame (not observed directly). Let R(t) be the 3 x 3 coordinate transformation
matrix that aligns the world coordinate axes with the camera coordinate axes, changing with
time as the camera rotates. Let p,o(2) be the spatial, camera-centered coordinates of match
point z at time £.

The complete observation model is then given by the following equations.

Pic(t) = R(t) (p: — Pr(t)) (12)
At time t; the image plane measurements of the match points are, from (11),
piltx) = hpic(te)] + n(ts), (13)
which can be written as
pite) = (Xi, Yo)i = h[R'(t) (p: — pa(t))] + n(ts), (14)
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where i = 1,2,...,M and k = 1,2,...,N for M match points and N image frames in the

sequence.

3 Batch Formulation

The general point feature based motion analysis problem, in the context of passive navigation,
may be stated as follows : Given M image point correspondences over N image frames,
determine the parameters related to the motion of the camera and the structure of the

feature points. There are two different approaches to this problem :

1. All motion and structure parameters are represented in the coordinate system of the
camera. The objective is to estimate the camera’s position and orientation, and the
structure of the scene, relative to the camera’s initial position, as well as the velocities
and higher order kinematics of the camera in the CCS. For this a,pproé.ch it is not

necessary, in general, to assume any knowledge about the structure of the environment.

2. All parameters of interest are represented in an external, stationary world coordinate
system. The objective here is to estimate the absolute values of these parameters, i.e.
their values in the WCS. In particular, the absolute position and orientation of the
camera need to be determined. For this purpose it is necessary to have constraints
relating the CCS to the WCS. One reasonable approach is to assume that some of the
feature points in the images correspond to navigational landmarks whose 3-D locations

in the WCS are known. This provides a means of relating the two coordinate systems.

In this paper, the second approach is followed. It is assumed that there are a total of M
feature points in the environment, Mj, of which are known, and the remaining M, = M — M,
unknown. A simple model for the camera’s motion, with constant camera orientation and
constant translational velocity, is assumed. This does not mean that the resulting techniques
are inapplicable to more general situations; on the contrary the methods give excellent

results even in the presence of significant model deviations, as the experimental results later



illustrate. The following d —dimensional vector of parameters is then selected:

( pa(0) )
v

a
0=| p, (15)
P2

\ Pm. /

The orientation of the camera is represented by the 3-component vector a in the above ex-
pression, instead of the 4-component unit quaternion q. This is done to avoid the constraint
which would be needed on the estimation process if the unit quaternion were estimated

directly. The relationship between a and q is given by (4) and the following equation :

n 0
a=| ny 0 (16)

n39

The data on which the estimation is based are the the image point measurements of M

points in N frames, denoted by
pi(k) = hi(0,k) + mi(k) ; i=1,... .M ; k=1,...,N, (17)

where k;(0, k) is defined to be the location of of the ith feature point in the kth image in
the sequence, computed using the motion and structure parameters in the vector 8, and the
model in (14). The noise terms in n;(k) are assumed to be zero mean, independent, and
identically distributed (i.i.d.), for all points over the sequence.

The batch estimation problem may now be stated as follows : find the best estimate of 8
given the measurements p;(k) and the observation model (14). For our particular problem,
wherein no prior information is assumed about 8, and with minimal assumptions about the
measurement noise, the “best” estimate may be considered to be the one which minimizes
the squared discrepancy between the measurements and the corresponding values predicted

by the model, i.e.
. k=1 M-1

6 =argminy 3 llei(k) — ki@, k)| (18)

1=0 i=0
This least-squares minimization can be done using a standard optimization program, such
as the ones used in [2, 23]. Any knowledge about the ranges or values of the parameters can

be used to reduce the search space for a solution.
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3.1 Computing the approximate covariance of the batch esti-

mate

For most applications, it is useful, if not essential, to have some idea of the “correctness” of
the estimated parameter set. An elegant estimation-theoretic method exists for the computa-
tion of the lower bounds of the error in estimating a set of parameters, given the conditional
statistics of the observed data on which the estimates are based. Using this technique, the
so-called Cramér-Rao lower bounds (CRLBs), on the covariance of the estimation error can
be computed, and used as an approximation to the true error covariance?. Similar methods
are used in [24, 25)].

Forr the purpose of deriving the CRLBs, we represent the conditional p.d.f. of the

measurements as multivariate Gaussian 2 , of the form:

N-1M-1 np-(a)-h;(a.k)ll’
(z /6) = H H 21r02 * (19)
k=0 i=0

where z is a vector containing all the measurements, and o2 is the variance of the measure-
ment noise in each coordinate, to be obtained during calibration.

Let the estimation error covariance be
A -~ -~
Co £ €{(6-0)6-0)}

Define the d X 1 column vector
42 dn p(z /8)
86

and the d x d matrix
J&£{dd" Je}
(The matrix J is called the Fisher information matrix.) Then the basic theorem used to

compute CRLBs can be stated as :
Co>J! (20)
Using the expression in (19) for the conditional p.d.f. of the data,

N-1M-

In p(z /8) =K - — Z Z llpi(k) — ki(6, B)|I*

k—O =0

2Strictly speaking, only the approximate CRLBs will be determined by the method discussed in this
section. This is because we need to know the bias on the estimation error to compute the exact CRLBs.
Since it is usually not possible to obtain this information, the derivation assumes unbiased estimates.

3The Gaussian assumption is not required for obtaining the batch estimate.



T 2oit) . 1)"

=230

(pi(K) — hi(80,F))
k—O =0

Using the assumption that the measurement errors are independent, the Fisher information

matrix can be obtained in the following form.

1 N-1M-1

T=— X 3 di(k)Tdi(k)

k=0 i=0
where each of the d;(k) terms is of dimension 2 x d, given by

di(k) & w

o0
The term on the right-hand side of the above expression can be simplified further, using the
basic model equations. The derivation is similar to that for the H; terms in the next section,
so it will not be repeated here. The computation of the J matrix requires the true values
of the parameters, which obviously will not be known in a real problem. Hence the batch
estimate 0 is used as an approximation to the true parameter vector @ in the derivation of

CRLB:s.

4 Recursive Formulation

The general problem can be posed for solution by a recursive algorithm, by separating the
statement of the problem into a plant model (continuous time) and a measurement model

(discrete time). The problem statement for a recursive solution is then given by [15, 26]
8§ = f(s;) + Gth (21)

as the plant model, and
z(tx) = h[s(t)] + v(t) (22)

as the measurement model. The continuous time state vector is s;, of dimension d x 1; w;
is a vector, r X 1, of temporally white Gaussian random processes, w; ~ N (0,Q;). G, is a
deterministic d X r matrix mapping the process noise into state space. The measurement
z(1;) is a vector of dimension m, consisting of the nonlinear mapping h[-] from d—dimensional
state space to m—dimensional observation space, corrupted by additive, zero-mean, Gaussian

noise, temporally white, v(¢;) ~ N(0, Ry).



The following set of states is chosen for the recursive formulation. Let s(t) consist of the

scalar elements
( pa(t) \
v
q(t)
s()=| m (23)
P2 '

\ Pu. /
The time derivative of s(t) is

s =1 . (24)

0
Using (23) and (24) the discrete version of the plant equation can be written as follows :
s(k +1) = F s(k) + Gyw; (25)

where F is the d x d state transition matrix,given by
I3 Is 0 0 --- O
o 500 ..-0

F= (26)

0 000 --- 13
and Giwy is a discretized plant noise term which is treated as a set of “tuning parameters”,
to be manipulated to account for errors in modelling and to keep the filter gains high enough

to track the camera motion.
Using (11), the vector-valued measurement function (2M x 1) of (22) is

p1(k) hi(k) ni(k)

ate)=| ° ’fk) h’fk) + "’fk) = h[s(k)] + n« (27)

pu(k) hm(k) nu (k)
The covariance R; of the measurement noise n; can be assumed to be o? times the identity
matrix, where o? is the variance of the measurement noise in each coordinate. This formu-
lation is appropriate for solution using a recursive filter such as an EKF, and in the rest of

this section we design an EKF for the problem under consideration.
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Following [15], the estimate 8(k|k— 1) denotes the predicted (extrapolated) estimate, just
after a time update, while the estimate 8(k|k) denotes the smoothed (filtered) estimate, just
after a measurement update. The corresponding error covariances are denoted by P(k/k—1)

and P(k/k), respectively. The iteration is initialized with
5(010) = E{s(0)} = ps0 = 8(0). (28)
and
P(0]0) = Py = E{(s(0) — #:0)(s(0) — p10)"} (29)
The initial values of the state vector and its covariance can be obtained as described in the

previous section.

The time update equation is simply
8(kfk—1)=Fs(k-1/k-1) (30)

The measurement update equation is

8(k[k) = 8(klk — 1) + K (k) [2(k) — h[s(klk — 1)]], (31)
where the Kalman gain sequence K (k) is obtained as follows:
K(K) = P(klk — 1)H(k) [H(E)P(kIk - 1) H(k)T + Ri] . (32)
and H(k) is the 2M x d linearized measurement function, given by
H(k) = Shls] : | (33)
Os |5 =35(k|k - 1)

In our case, with the state vector s as in (23), h(s] as in (27) we obtain
;N
H,

]{(S) = .}]M

“

Hpo1

k Hy )
Each 2 x d submatrix H; (corresponding to the ith image point p;) is defined as follows:

o = (H 0 H, 00 - 0 H, 0O - 0) ifi<M,
‘ (HP' 0 H, 0 --- 0) otherwise
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where H,,, H, and H,, are the partial derivatives of p; with respect to pp, q and p; respec-
tively, and O denotes a 2 x 3 zero matrix. The location of H, corresponds to the location of
the ith feature point in the state vector, if i < M,. In order to obtain expressions for these
terms, let us define a new notation for the rotation matrix R and the 3-D location of the
feature point in the CCS. Let

R=(FR, R F)

be the rotation matrix (as defined in Section 2.2), written in terms of the rows of its transpose,

and
( QG 92 %}
A —q2 @1 —Yq4
R, = %%z = 2
—Qq3 4G4 )1
\ 91 g3 —(Iz)
( 92 —qQ1 44\
A 3R Q1 92 93
R, = 'a_qz = 2 —q -
4 3 q2
\ -6 @ @ )
(43 —q4 -41\
A q4 G —q
R, 2 §& =2
Q1 q2 q3
\ @2 -1 ¢ )
Let
P = P; — Pr(?)
and

FaN A A
z=R,p; y=Rp; 2=R.p

g ne+&)
' fy ' ¥ + Yo
The derivative terms may now be obtained directly as:
1 { flzR. - zR,
H, = > ( ‘ ] ) (34)
2 fylyR: — 2R,

_1_ felzRzq — zRy)
22 SylzRyg — yRy,)

Using the above notation,

H, = —H,
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In our implementation, we deviate slightly from the traditional EKF by including a
quaternion normalization step immediately after the measurement update. This is done to
keep the norm of the quaternion vector equal to unity. An analysis of the effects of such a
step on the performance of a similar recursive estimator is done in [27) , wherein the authors
conclude that “the estimation errors are not affected by the normalization operation”.

The error covariance matrix of the predicted state estimates P(k|k — 1) is computed as
P(klk —1) = F P(k — 1]k — 1) FT + G:Q:GY . (35)
The smoothed covariance matrix is

P(k|k) = [I - K(k)H(K)| P(k|k - 1). (36)

5 Experimental Results

The estimation algorithms developed in the earlier sections were tested on both synthetic as
well as real data. Two examples of experimental results with synthetic data, and one real
image example are presented in this section. The real image sequence used is the UMASS
“rocket” ALV sequence (Figure 1). The environment for this sequence contains 14 feature
points?, 13 of which are shown in Figure 2, along with the different positions of the camera
during its motion. The same environment is assumed for the experiments with synthetic
data, but different kinematic parameters are used in simulating the camera motion. In all-
the experiments, the structure of four of the 14 points is assumed to be known beforehand,
and that of the remaining 10 points is estimated, along with the kinematic parameters of
the camera. The batch algorithm is run on the first few frames in the sequence (7 for
synthetic data and 13 for real data) and the batch estimate, together with the CRLBs as its
approximate error covariance, are used to initialize the IEKF for recursive estimation.

Two minor modifications to the algorithms developed earlier are made. The first takes
into account the fact that as the camera moves, some of the points in the scene disappear
from the image. This information is stored in a binary array L(i,k). A 1(0) in the (¢, k)th
position of this array indicates the presence(absence) of the ith feature point in the kth image
frame in the sequence. The information in L is used in both the batch and the recursive
algorithms. Another small modification to the batch method is found to be useful : instead
of using all the 10 unknown points at once, only 3 are used initially. This results in a smaller

parameter vector, and hence quicker and more reliable estimates of the camera position and

4The original sequence contains 18 features, out of which 14 were selected.
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motion and the structure of the 3 unknown points selected. The structure of the remaining
7 points is obtained by a simple batch procedure which treats the previously estimated

kinematic parameters as fixed. Details of these modifications are omitted for brevity.

5.1 Experiments with Synthetic Data
The simulated measurements are generated by the following steps :

1. The 3-D coordinates of the feature points in the CCS are computed for the desired
number of frames using the motion model and pre-determined values of the motion and

structure parameters, assuming a suitable initial starting point for the moving camera.
2. The image locations of the feature points are computed using the imaging model.

3. The image coordinates of the feature points are quantized to the desired resolution. In

the experiments reported here, an image size of 512 x 512 pixels was assumed.

The results of the simulations are shown in Figures (3) to (6). In the first example,
the model assumptions of constant orientation and velocity were followed exactly. The
image plane trajectories of the feature points are straight lines (except for the errors due
to spatial quantization), shown in Figure 3(a). The structure estimates obtained from the
batch algorithm are shown in Figure 3(b). The results of the EKF are shown in Figure 4.
In the second example, the camera was permitted to rotate with a small, linearly increasing
angular velocity, violating the constant orientation assumption. Nonetheless, the results of

the estimation algorithms are still satisfactory, as illustrated by Figures (5) and (6).

5.2 Experiments with Real Data

The first and last images of the real image sequence (consisting of 30 images) are shown in
Figure 1. Details of the experimental set-up used to generate this sequence can be found in
[28]. Complete ground-truth information about the motion of the camera and the structure
of the selected scene landmarks is available, as well as calibration parameters of the camera.
The motion of the vehicle is approximately along a straight line, and its orientation is
approximately constant. However, as indicated by the image plane trajectories of feature
points illustrated in Figure 7(a), a fair amount of apparently random variation is present in
the camera’s orientation. The challenge here is to track these variations, while preserving the
simplicity of the models developed earlier. There is also some discrepancy (of upto 8 pixels)

between the actual image locations of feature points, and their locations predicted by the
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camera calibration and the ground truth. This has to be treated as additional measurement
noise. The structure estimates obtained by the batch procedure are shown in Figure 7(b)
and the results of the EKF in Figure 8.

It is apparent that the motion of the camera does not obey the model developed in
Section 2, since neither its translational velocity nor its attitude is constant. However, the
EKF seems to be capable of handling these model deviations, as the state estimates indicate.
This is essentially due to the ability of the EKF to “forget” the past, and respond to the
present; an ability which can be controlled by varying the assumed plant noise covariance.
Thus the EKF can be “tuned” to specific applications, depending on the extent of the model

deviations expected.

6 Conclusions

Feature-based motion analysis holds promise for such applications as passive navigation
and obstacle avoidance. The need for simplicity and robustness suggests a model-based,
estimation-theoretic approach. This paper dealt with the development of such an approach
for the passive navigation problem, using simple motion models in conjunction with batch
and recursive estimation techniques. The results indicate that the methods developed here
have the necessary robustness and flexibility to perform satisfactorily in a real application,
wherein considerable model deviations and measurement noise can be expected. Similar
methods have been applied successfully to the dual problem of estimating the kinematics

and structure of a moving object observed by a stationary camera (3, 14].
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Figure 1:

First and last frames of the real image sequence.
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Figure 2: Aerial view of the environment showing 13 feature points, indicated by “*’, and the positions of the camera,
indicated by “’. The azes are scaled in metres.
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Figure 3: Synthetic data, example 1. (a) Image plane trajectories of feature points oblained by simulation. The azes
scales are in pizels. (b) View from above of the structure estimates obtained by the baich procedure, indicated by °x”
and their true values, indicated by “o”.
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Figure 4: Actual and EKF-estimated values of some paramelers (for synthetic data, ezample 1). They are shown by
solid and dashed lines, respectively. The scales for (a) and (d) are melres, and for (c) metres/frame. The labels on

the graphs indicate the corresponding components.
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Figure 5: Trajectories and batch structure estimates (synthetic data, example 2).
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Figure 6: Actual and estimated values of parameters (synthetic data, ezample 2).
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Figure 7: Trajeclories and batch structure estimates, real data.
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Figure 8: Actual and estimated values of parameters, real data.



