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SPECTRAL PROPERTIES OF PRECONDITIONED RATIONAL
TOEPLITZ MATRICES : THE NONSYMMETRIC CASE -

TA-KANG KU! AND C.-C. JAY KUO!

Abstract. Various preconditioners for symmetric positive-definite (SPD) Toeplitz matrices in
circulant matrix form have recently been proposed. The spectral properties of the preconditioned SPD
Toeplitz matrices have also been studied. In this research, we apply Strang’s preconditioner Sy and
our preconditioner Ky to an N x N nonsymmetric (or nonhermitian) Toeplitz system Twx = b. For a
large class of Toeplitz matrices, we prove that the singular values of Sy'Tn and K5!Ty are clustered
around unity except a fixed number independent of N. If T is additionally generated by a rational
function, we are able to characterize the eigenvalues of Sy'Tw and K ,T,ITN directly. Let the eigenvalues
of S§'Tn and K ,',',ITN be classified into the outliers and the clustered eigenvalues depending on whether
they converge to 1 asymptotically. Then, the number of outliers depends on the order of the rational
generating function, and the clustering radius is proportional to the magnitude of the last elements in
the generating sequence used to construct the preconditioner. Numerical experiments are provided to
illustrate our theoretical study.

Key words. Toeplitz, circulant, nonsymmetric, preconditioners, preconditioned iterative method,
CGN, CGS, GMRES.
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1. Introduction. Research on preconditioning symmetric positive-definite (SPD) Toeplitz ma-
trices with circulant matrices has been active recently (1], [3], [5]), (6], [13]. In this research, we general-
ize Strang’s preconditioner Sy [13) and our preconditioner Ky [6] to nonsymmetric (or nonhermitian)
Toeplitz matrices. Let Ty be an N x N nonsymmetric Toeplitz matrix with elements ¢; ; = t;-j. The
generalized Strang’s preconditioner Sy is obtained by preserving N consecutive diagonals in Ty, i.e.
diagonals with elements ¢,,1— M < n < N — M, and using them to form a circulant matrix. One
simple rule to determine M is to choose its value such that [ty-m| = |t1- um|. Note that half of the
elements in T are not used in constructing Sy. The generalized preconditioner Ky is obtained from
a 2N x 2N circulant matrix in such a way that all elements in Ty are used, and is a circulant matrix
itself (See §2). Since Sy and Ky are circulant, the matrix-vector products S;,lv and K;,lv can be
conveniently computed via Fast Fourier Transform (FFT) with O(N log N) operations. The system
of equations associated with the preconditioned Toeplitz matrix is then solved by iterative methods
such as CGN (the Conjugate Gradient iteration applied to the Normal equations) [4), GMRES (the
Generalized Minimal Residual) [11], and CGS (the Conjugate Gradient Squared) [12].

The convergence rate of preconditioned iterative methods depends on the singular value or eigen-
value distribution of the preconditioned matrices [10]. The spectral properties of preconditioned SPD
Toeplitz matrices have been widely studied. Chan and Strang [1] [2] proved that, for a symmetric
Toeplitz with a positive generating function in the Wiener class, the preconditioned matrix has eigen-
values clustered around unity except a fixed number independent of N. If the Toeplitz is additionally
generated by a rational function, even stronger results were proved by Trefethen [15] and the authors
[8]. In contrast, relatively few results for preconditioned nonsymmetric Toeplitz have been obtained so
far (9], [17).

In this research, we examine the spectral properties of Sy'Tw and K5'Tn for nonsymmetric Ty
in general, and nonsymmetric rational Ty in particular. The main results of our study are stated as
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follolws. For a large class of general Toeplitz matrices, we prove that the singular values of Sy' T and
K" Tn, or equivalently, the eigenvalues of (SR Tn)H (SN'Tn) and (KR Tw)H (K5 ' Tn), are clustered
around unity except a fixed number independent of N. If Ty is additionally generated by a rational
function of order (a, 8,7, ), we are able to characterize the eigenvalues of S,T,‘TN and K,T,lTN directly.
We classify the eigenvalues of S;,’TN and K;lTN into two classes, i.e. the outliers and the clustered
eigenvalues, depending on whether they converge to 1 asymptotically. Then, (1) the number of outliers
is at most 7 = 2min(r, s) where r = max(a, §) and s = max(v,6); and (2) the clustered eigenvalues
are confined in a disk centered at 1 with radius ¢, where the clustering radius ¢ is proportional to the
magnitude of the last elements in the generating sequence used to construct the preconditioner.

With these spectral regularities, we can find appropriate preconditioned iterative methods to solve
a nonsymmetric Toeplitz system efficiently. In particular, an N x N rational Toeplitz system Tyx = b
can be solved with O(N log N) operations since the number of iterations required for convergence
is independent of the problem size N. To compare the performance of Sy and Ky, the Su'Tw
and K5'Twy have the same number of outliers so that they converge in the same number of iterations
asymptotically. However, the performances of Sy and K for finite N are determined by the clustering
radii of the clustered eigenvalues as well. The magnitudes of the last elements used to construct
Sy and Ky are O(|ty-ar] + |ti-ar]) and O(ltn| + |t—n1), respectively. Since O(|tn| + |t-n]) <
O(Jtn-ar| + |t1-arl) for large N, iterative methods with preconditioner Kn converges faster than with
preconditioner Sy for solving rational Toeplitz systems. This is confirmed by numerical experiments.
By the parallelism provided by FFT, the iterative methods with preconditioners in circulant matrix
form is highly parallelizable, and the time complexity of the method can be reduced to O(log N) if
O(N) processors are used.

When Ty is a symmetric rational Toeplitz, we have r = sand iy = t_~. Consequently, the number
of outliers of Kx'Tn is n = 2r = 2max(e, §) and the clustering radius is O(|tnl).- They reduce to
the case given in [8]. Although the results derived in this paper can be viewed as a generalization of
the results in [8], we want to point out that the approach adopted in this research is very different
from that in [8] and the proof techniques are much more involved. For example, in characterizing the
clustering radius of clustered eigenvalues of K N Tn (or Sy'Tw) for symmetric T, the intertwinning
theorem of eigenvalues was exploited in [8]. However, such a theorem does not exist for nonsymmetric
matrices so that we use perturbation theory for eigenvalues instead.

It is worthwhile to mention that there exists a preconditioner based on the minimum-phase LU
factorization (MPLU) technique [9] which has a faster or comparable convergence rate than precondi-
tioners Sy and K. However, Toeplitz preconditioners in circulant matrix form have two advantages
over the MPLU preconditioner. First, the circulant preconditioning technique can be easily generalized
to multidimensional Toeplitz systems. See [7] for the two-dimensional case (block Toeplitz matrices).
Second, the resulting preconditioned iterative method with preconditioners in circulant form is highly
parallelizable while the MPLU preconditioner has to be implemented sequentially.

This paper is organized as follows. The construction of preconditioners Sy and K for nonsym-
metric Toeplitz Ty is discussed in §2. We describe the singular value distribution of K;,lTN and
S,‘GITN for general Toeplitz in §3, and characterize the eigenvalue distribution of K ,'{,ITN and Sp'Tn
for rational Toeplitz in §4 and §5, respectively. Numerical experiments are given in §6 to illustrate the
theoretical study.

2. Constructions of Toeplitz preconditioners. Let T, be a sequence of mxm nonsymmetric
Toeplitz matrices with generating sequence t,. Then,

o o © lN-) t-(v-y)
t ot : t_(N-2)
Tn = . 4 to . .
IN-2 . t

in-1 In-2 . 4 to
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Following the idea proposed by Strang [13], we construct the preconditioner Sy by preserving N
consecutive diagonals in Ty and bringing them around to form a circulant matrix,

to to « e tiem IN-M . ty ]
4 to o . ta_ar Li-pm IN-Nf . 12
4 to o . taoym Li-pm IN-M
SN=| tnenr . R 71 to S . la_ar hesm
b-ym tN-M . . 191 12) o) . lapm
l.o h-m tNn-M . . 4t o )
[ -1 too . ti-ar IN-M : . 131 to

A simple rule of thumb to decide the value of M is to require |tny_pr] = |t1-m|-.
Generalizing the idea in [6], the preconditioner Ky is constructed based on a 2N x 2N circulant
matrix Rayn,

_ Tn ATN
Roy = [ ATy Ty ] !

where ATy is determined by the elements of Ty to make Ry circulant, i.e.,

0 tn-1 . 7] 19

t(N-1) 0 tn-1 : t2

ATy = . tn-1) O .
t_a . . . tN_1

toy to2 . Io(N-1) 0

This construction is motivated by the observation that the augmented circulant system,
T™n ATw x|_|b
ATy Tn x| b’
is equivalent to (T + ATn)x = b so that (Tx + ATyn)~'b can be computed efficiently via FFT and

(2.1) Kn =Tn + ATN

can be used as a preconditioner for Tyy. Note, however, that Ky itself is also circulant and can be
inverted directly via N-point FFT rather than 2N-point FFT.

3. Spectral properties of preconditioned Toeplitz. We assume that the generating sequence
t,, satisfies the following two conditions:

[ ]
(3.1) Y ltal < Br < 0,

-00

0
Z t"e—ina

- 00

(3.2) IT(%)] = >ur>0, V.

Since T'(e'®) describes the asymptotic eigenvalue distribution of T, the above conditions imply that
[ITw|| and ||T%!|| are bounded for large N and, consequently, Ty is well conditioned.

With the above conditions, the preconditioners Kn and Sy are also well conditioned for sufficiently
large N due to the following theorem.

THEOREM 1. Let Ty be an N x N Toeplitz matriz with the corresponding generaling sequence
satisfying (3.1) and (3.2). The |(KnKf{)™*||2 and [1(SnSE)~2||2 are bounded for sufficiently large N.
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Proof. Since Ky is circulant, we have
Ky =F3DyFy and KH = FEDH Fy,

where Fy is the N x N unitary Fourier matrix with N=1/2¢=i25(m=1)(n=1)/N a5 the (m, n) element
and Dy a diagonal matrix formed by the eigenvalues of K. Thus, Ky, K ,{,’ and K NK,{,‘ share the
same eigenvectors, and the eigenvalues of Ky K are

MENKH) = MEN)A (KN) = |MEN)
Any eigenvalue of K belongs to the set of eigenvalues of Raxn, which are

N=-1
pn=Aa(Ron) = ) tee?tn2N, 1<n<2N.
k=-(N~-1)

It is clear that p, is a partial sum of the infinite series P tre~ %% with § = —nx/N. With (3.2),
|pn] > pT — 4, where u can be made arbitrarily small by choosing sufficiently large N so that

WENEE) 2 < o0.

1
—e
(sr — n)?

Similar arguments can be used to prove the boundness of [|(SxS#)~"|l2, and the proof is completed.
(@]

The next theorem describes the clustering property of the singular values of Ky'Tw and S5'Tw.

THEOREM 2. Let Ty be an N x N Toeplitz matriz with the generating sequence satisfying (3.1) and
(3.2). For sufficiently large N, the singular values of the preconditioned matrices K,’VITN and SplTN
are clustered around unity except a fized number independent of N

Proof. Note that the singular value of I\,’VITN is equal to the square root of the corresponding
eigenvalue of (K5'Tw)? (K5'Tn). Since (KN'Tn)#(K5'Tn) and (KnKH)~-YTnTH) are similar,
the eigenvalues of (Kn KH)~Y(TnT}) are examined to understand the singular values of K5'Tw.
With the relation Ky = T + ATy, we have

AM(KN KIS (TNTH)) = 1 = M(ENKR) ' (BEn AT + ATV KY - ATNATY)).
Let us define
Wy = KnATH + ATNKS - ATNATY,

and denote the corresponding (N — 2¢) x (N — 2q) central diagonal block of (Kn K H)~! and W by

IC;,‘_zq and Wy _2,, respectively. By the separation theorem (or intertwining theorem) of eigenvalues

(14], (16], there are at least N — 4q eigenvalues of (KnKH)~'Wy bounded by the minimum and the
maximum eigenvalues of IC;,‘_,,WN-Z,.
Since IC;,‘_zq is a submatrix of the symmetric circulant matrix (Ky Kff)™!,

KR M2 < WENKR) 2.
According to the definition of Wy_2q,
Wi-2y = KATH + ATKH - ATATH,

where X and AT are (N — 2¢) x N matrices formed by the central (N — 2q) rows of Ky and ATy,
respectively. It is easy to verify that, for p =1, o0,

N-1 ©0
NKllb<s2 S Ial€2 ) italS2Br <oo,

n=-(N-1) ns==00
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and

N-1 oo
NAT|lp, < S (ltal +1t-al) £ Y (tal + [t-al) = o(g)-

n=g+1 n=q+1

Since ||All2 < (JIAll1)}Alloo)*/? for an arbitrary matrix A, the above bounds also hold for p = 2.

Similarly, we can argue that ||[K¥||; < 2Br < o0 and ||AT#¥||2 < o(g). Thus,
Wr-zllz < NIKILNATH |12 + NATIAICH 2 + AT AT |2

< 4Bro(q) +0%(9)-

By using Theorem 1 and the fact that o(g) is smaller as ¢ becomes larger due to (3.1), we conclude
that for given ¢ there exist ¢ and N such that forall N > N,

KR 2o ll2lIWh -24ll2 < KN KR) ™ |2l War-2gll2 < €.

Hence, the eigenvalues of (Ky K5 )~'(TnTf) are confined in the interval (1 —¢, 1+ ¢€) except at most
4q outlying eigenvalues. Similar arguments can be used to prove the spectral clustering property of
the singular values of S;,lTN. o

With the above spectral clustering property, a Toeplitz system Tvx = b can be solved effectively by
applying the CGN method to the preconditioned system K N TInx=K ,};lb or Sy Tyx = Sy'b. When
the generating function is additionally rational, we characterize the eigenvalues of the preconditioned
matrices K;,lTN and S;,‘TN directly. It will be detailed in the following sections.

4. Spectral properties of preconditioned rational Toeplitz K,’,}‘TN. The generating func-
tion of a sequence of Toeplitz matrices Tr, is defined as

T(z) = i th2™".

n=—o0

Let the generating function of T be of the form

_ A | C2)
(4.1) T(2) = 56Ty ¥ DG)’
where
A(z™') _agt+ayz7l 4+ 40277 C(z) _cotecrz+---+¢y27
B(z"1) T l4bz i+ by ' D(z) T l4diz4e+ds2b

Note that aabscyds # 0 and polynomials A(z™") and B(z™!) (or C(z) and D(z)) have no common
factor. We call T(z) a rational function of order (c,8,7,6) and Ty a rational Toeplitz matrix. To
simplify the notation, we define r = max(a, 8) and s = max(y, §).

The spectral properties of K;‘TN can be determined from that of T;‘ATN via

(4.2) MK TN = MTR' (Tn + ATw)) = 1+ MT5' ATw).

The eigenvalues of Ky'Tw clustered around 1 correspond to those of T;,"ATN clustered around 0. We
summarize the procedures in examing the spectral properties of TEIATN as follows:
Step 1: Show that the ATy is asymptotically equivalent to a low rank Toeplitz matrix AFy (Lemma
2).
Step 2: Study the rank of AFy by transforming it to a matrix Qp which has at most d = r + s
) nonzero columns (Lemma 3).
Step 3: Show that the Qr is asymptotically equivalent to a matrix Qp which has at most 2 min(r, s)
nonzero eigenvalues (Lemma 4).
Step 4: Use perturbation theory to determine the radius of the clustered eigenvalues of T,;lATN and
Kx'Tn (Lemmas 5,6 and Theorem 3).
The number of outliers of Ky'Tw, i.e. 2min(r,s), is determined from Steps 1-3, and the clustering
radius is determined from Step 4.
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4.1. The number of outliers of I(;lTN. Note that the sequence ¢, can be recursively calcu-
lated for large |n|. This is stated as follows.
LEMMA 1. The sequence t, generated by (4.1) follows the recursions,

(4.3) tht1 = —=(bitn + batny + -+ + bptn-ps1), n > r = max(a, 3),
the) = —(dltn -+ dgtn.H + -4 d&tn+6_1), n—s=-— max(-y,&).
Proof. Similar to the proof of Lemma 1 in [8]. o

Since elements ¢, satisfy the recursion given in Lemma 1, we construct a low rank Toeplitz matrices
AFy as

(4.4) OAFN = PN+ PN,
where
7Y In-1 . ta (3]
tnyr  IN INr - ta
Fin= . tny1 N . . )
ton—2 : In_y
lan—1 tan-2 - Ing1 N
and
t_N L (N+1) . t_(an-2) t-(2N-1)
tov-1)  t-N  t-(N41) : t_(2N-2)
Fy= . t—(N-l) t_N . . ,
to2 : : t-(v+1)
taa to2 . tL(N-1) i_n

and where t,,n > r or n < —s, are recursively defined by (4.3). Due to the recursion given by (4.3),

the ranks of Fy,n and F2 v are bounded by r and s, respectively. Thus, the rank of AF is bounded

by d = r + 5. The following lemma shows that ATy and AFy are in fact asymptotically equivalent.
LEMMA 2. Lei Ty be an N x N Toeplitz matriz generated by T(z) in (4.1) with the corresponding

generaling sequence satisfying (3.1) and (3.2). The ATN and AFy are asymplotically equivalent.
Proof. Let us denote the difference between AFy and ATy by

In+i-n  lo(v41) : t_(2N-2) t-(2N-1)
tngl NN to(vay) ‘ t_(an-2)
(4.5) AEN = AFN - ATN = . tN+1 tN + t_N .
tan—_2 . . to(veD)
tan-1 lan-2 . tvy1 INHE-N

It can be easily verified that the I, and I norms of AEy are both bounded by

2N-1 -(2N-1)
(4.6) TE = Z ftnl + Z [tnl.
n=N n=-N

Consequently, we have
NAEN: < (IAENILIIAENle) < TE.

Since 7 goes to zero as N goes to infinity due to (3.1), the proof is completed. u}

Since ATy is asymptotically equivalent to AFy and the rank of AFy is bounded by d, the number
of outliers of TE‘ATN (or K,T,ITN) is bounded by d, which is however not tight. We are able to
determine a tighter bound by introducing another asymptotically equivalent matrix of ATy (or AFN),
which has only 2 min(r, s) nonzero eigenvalues in the following. This turns out to be the exact number
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of outliers actually observed in all our numerical experiments. To exploit the low rank structure of
AFy, we transform AFy to

(4.7) Qr = AFNUpLp,

where Up is an N x N upper triangular Toeplitz matrix with the first N coefficients in D(z) as the
first row, and Lp is an N x N lower triangular Toeplitz matrix with the first N coefficients in B(z~!)
as the first column. Note that since Up and Lg are full rank matrices, the Qp and AFy have the
same rank. The structure of QF is described in the following lemma.

LEMMA 3. Let Ty be an N x N Toeplitz matriz generated by T(z) in (4.1) with the corresponding
generating sequence satisfying (3.1) and (3.2). The elements of QF are zeros ezcept the first s and the
last r columns.

Proof. Note that Fy x and Fy v are Toeplitz matrices with elements

(Fin)ij=tnyi-j and  (FaN)ij =t-N4izj-

The (i, ) elements of F} NUpLp and Fa xUpLp are

N N N N
Z Z tN+|'-mdn-mbn-j and Z Z t—N+i-mdn—mbn-j:

n=1m=1 n=1m=1

where by = 1 (dp = 1) and b; = 0 (d; = 0) if the subscript i is not in the range 0 < i < 8 (0<i<é).
If s < j < N —r, we can simplify the above summations as

[ [ [ é
E (Z INyitmi—nt=j bn‘) dm =0 and Z (2 t-N+i+m'-n'-jdm') ba =0,

m!=0 \n'=0 n'=0 \m’=0
where m’ = n —m, n’ = n — j, and the equalities are due to the recursion defined in (4.3). Thus, the
elements of
Qr = AFNUpLg = (Fin + F2.n)UpLp

are zeros except the first s and the last » columns. ()
Consequently, we decompose the complex N-tuple space C N into two orthogonal complement sub-
spaces,

9 vian

{vecV|vi=0,s<i<N-r},
{veC¥|v;=0,1<i<s or N-r<i<N},

with dimensions
dimR(Qr)=d and dimN(Qr)=N-d.

The subspace N(QF) is contained in the null space of Qr. Let Qnw denote the northwest s x s block
in Qr, and QnE, Qsw and Qsg the corresponding corner blocks in QF with sizes sxr,rxsandrxr,
respectively. By using the subspace decomposition (4.8), it is easy to see that the nonzero eigenvalues
of Qr only depend on the corresponding four corner blocks of Qr, and are also the eigenvalues of the
d x d matrix,

_ | Qww QNE]
F=1 @sw Qse |-

In other words, the rank of Qf is the same as that of Pp.
The bounds for the elements of Qnw, @nE, Qsw and Qsg are summarized as follows:

[(@nw )i il < Tew, rvw = O(Jtn] + lt-~1),
(4.9) (QskE)i.jl £ 7se, rse = O(ltn] + [t-wl),
] QnE)ij| < (FLNUDLB)iN-rsj + TNE,  TNE = O(lt-2n]),

[(Qsw)ijl < (F2aNUDLB)N-s4ij +Tsw, Tsw = Olt2n])-
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To derive (4.9), recall that the (i, j) element of QF is

N N N N
Z Z tN+i—mdn—-mbn—j + Z: z t-N+i-mdn—mbn—j7

n=1m=l1 n=lm=l
which is bounded by
§ g . L] B
Z E ItN+i+m'—n'-j“dm'“bn’| + Z Z lt-N+i+m‘-n‘—i"dm'”bn‘l-
m'=0n'=0 m'=0n’‘=0

Since the elements of Qnw are the same as those of Qr with subscript (i, j), i,j < s, they are bounded
by

8 5
T, = b; d; ¢ ) .
NW ;l .ljz=:o| J|(_('+g)‘<a-,’f<’+6| N4nl|+ -(.+f3‘)‘2’,’f<,+6 lt—Nnl)
To determine the bound for E?ﬂ b;], we factorize B(z~') as

B(z"Y) = (1-mz )1 =r2z™h) (1= rpz).

A direct consequence of (3.1) is that all poles of A(z1)/B(z™!) should lie inside the unit circle, i.e.
Iril < 1,1 < i < B, so that

pi< (8 ) maxtrir< (§ ). where (] )= 5 Zmm

Therefore, we obtain

Similarly, ELO |de| < 2° and thus, the elements of Qvw are bounded by
vw = 209 (ltnsop] + It-Nasasl) = O(ltn] + [t-D),

where the last equality is due to the fact that, for large n, t, can be approximated by

(4.10) ta mer?, where |rj|= max Iril,

and where ¢ is a constant. Similarly, we can prove that the elements of Qsg are bounded by
rsg = 204 (ltn-r-p| + lt-n4r4sl) = O(tn] + |t-n])-

The (i,§), 1 < i < 8,1 < j <, element of Qn is the sum of the (i, N — r + j) elements of Fy NUpLp
and o, NUpLp. It is straightforward to verify that the (i, N — r + j) element of Fy NUpLp remains
unchanged while that of F3 xUp Lp is bounded by 7vg = 204+9) |t _onya4s| = O(|t-an]|) for sufficiently
large N. Similarly, we can derive the bound for the elements in Qsw as given by (4.9).

Thus, when N becomes asymptotically large, the P converges to

¥ 0 @ne ]
Pr=| = )
F [ Qsw 0
where @y is the converged northeast s x r block in Fy NnUpLs and Qg is the converged southwest

r x s block in F2nUpLp. Since the ranks of @yg and Qgy are both bounded by min(r, s), the rank
of Pr is bounded by n = 2min(r, s).
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_Let us define a matrix QF by replacing the four corner blocks in QF with the corresponding blocks
in Pp. Then, we have

1QF — Qrllp = IIPF — Prll,
stvw + rrse + max(r, s)(tve + Tsw)
O(ltw| + ft-n1),

for p = 1 and co. The above bounds also hold for p = 2 because ||A[|2 < (||All1]|Alle)/? for an
arbitrary matrix A. Since 7g goes to zero as N goes to infinity due to (3.1), the asymptotic equivalence
between Qr and Qp is established. This result is summarized in the following lemma.

LEMMA 4. Let Ty be an N x N Toeplitz malriz generated by T(z) in (4.1) with the corresponding
generating sequence satisfying (3.1) and (3.2). The Qr and Qp are asymplotically equivalent.
Based on Lemmas 2-4, (4.2) and (4.7), Ty AT is asymptotically equivalent to Ty '@rL5'Up" whose
rank is bounded by n = 2min(r, s) and K,T,ITN has at most 7 asymptotic eigenvalues not converging
to one (outliers).

Q

WA

4.2. The clustering radius of K ;;ITN. We use perturbation theory to estimate the clustering
radius of the N — 5 clustered eigenvalues. Instead of examining the eigenvalues of T,}‘ATN directly,
we study those of the similar matrix

Gn = L3'Up'Ty'ATnUpLs = L3'Up' Tx'Qr,
where Qr = ATnUpLp. Let us define .
Hy = L3'Up'TR'Qp.
It is clear that Hy has only d nonzero columns as Qr (or Qr). The Gy can be viewed as a matrix
obtained from Hy by adding the perturbation matrix
(4.11) AGN =Gy — Hy = L3'Up' TR (Qr — QF).

A bound of ||AGy||2 is given below so that we can estimate the clustering radius of the clustered
eigenvalues by using perturbation theory for eigenvalues.

LEMMA 5. Let Ty be an N x N Toeplitz matriz generated by T(z) in (4.1) with the corresponding
generating sequence satisfying (3.1) and (3.2). Then, for sufficiently large N, the ||AGnNl||2 is bounded
by € = O(|tw| + [t-nl)- _

Proof. We first study the 2-norm of @7 — @, which is bounded by

1Qr - Qrllz < 1QT — QFllz + 11QF — QFll2-

As shown in the proof of Lemma 4, the second term ||QF — @QF|l2 is bounded by rq = O(ltn]+ |t-~])
while the first term ||@1 — QF||2 is bounded by

lQr = Qrllz £ IATN — AFN|[2lIUpllalILall2 = [|AEN|L1IUplll L all2-

Recall from (4.6) that ||AEN]|2 < E:Z,'vl(lt,.l + |[t-n|). By using (4.10), we have

2N=-1 00 ltNl 1
E | < E o =_—=MB tnl, where MB=_—-
"=N|n|_n=N|qj _1| l-lrjl | l l_lrjl

. - . §
Similarly, Y2V 2! (t_a] € Mp|t_n|. Besides, ||Lsllz € T0o 1bx| < 27 and ||Upll2 £ Tico ldel < 28,
Thus, we obtain a bound for the first term, i.e.

lIQr - Qrll2 < 2P+)(Mpltn| + Mplt-~]) = O(ltn| + lt-n1),
and conclude that

liQr = Qrllz < O(ltn] + |t-n)-



PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 10

With (4.11), we have

NAGKII2 € LB 121U 20T R 1(QT = Q)2

Due to (3.2), ||ITx"|l2 is bounded by a constant cr independent of N. To show that IIL5" ]2 and
[IU" |l2 are also bounded, we factorize B(z~!) as

B(z") =(1- rz" Y1 =rz7 ) (1 = rgz7h),

where we assume that all roots r; are distinct for simplicity. By applying the isomorphism between
the ring of the power series and the ring of semi-infinite lower (or upper) triangular Toeplitz matrices,
the Lp and LE‘ can be decomposed into the products,

Lo =LrLey--Lepn  Lp'=Lg) - LMLTE,

where L,,,1 < i < Bis an N x N lower triangular Toeplitz matrix with [1,-ri,0,--+,0]7 as the first
column. It can be easily verified that L} is a lower triangular Toeplitz matrix with (1,7, 73, rfv -4r
as the first column. Therefore,

N-1 (-]
- 1
”Lr.lllps Z IrIkISZIrxkl=—v P=l,2,00,
k=0 k=0 L= Iril

and

g s
- - 1
125" < TLNE b < TT gy = 5
i=1 s

i=1
Similar arguments can be used to prove that ||{Up 1|2 € cp. Finally, we have
(4.12) |1AGK]lz € € = caeperil(Qr — @p)llz = O(ltn| + [t~ 1)-

The proof is completed. o _

Let us denote the rank of Hy = LE‘U BlTﬁlQF by 7. Clearly, i} < n = 2 min(r, s). We arrange the
eigenvalues of Hy in a descending order so that |An| 2 |An41| (An =0forfj<n < N), and denote the
corresponding normalized right-hand and left-hand eigenvectors by x1,X32,-*+, X~ and ¥1,¥2," ", YN,
respectively. Besides, vectors x, with j <n £ N are chosen to be othorgonal. The complex N-tuple
space is decomposed into the row and the null spaces of Hy,

Row(Hy) = span{xn,n < 7}, Null(Hy) = span{xn, 7 < n < N}.

Since Gy = Hy + AGy and ||AGN||2 £ ¢, the eigenvalues and the right-hand eigenvectors of Gn
are denoted by A,(€) and xn(¢), respectively. By using results from perturbation theory for repeated
eigenvalues [18), the eigenvectors xp(¢€) with fj < 7 < N must take the form

F ] N
Emn 2
(4.13) Xn(€) = Y A———Xm + Y gmnXm + O(€?),
" ot n— f\"‘)s"' m=ij+1

where €mn = YAAGNXn, An =0, 8m = ¥Hx, and gan = 1. Due to the construction, we know that
(4.14) 1xa(€)llz 2 lixnllz = 1.
The factor [€mn| is bounded by

lémnl = lYEAGN%a| < llymll2]lAGN2]Ixnll2 < €.

The |s;!],1 < m < 7, is also bounded as given in the following lemma.
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LEMMA 6. Let Ty be an N x N Toeplitz matric generated by T(2) in (4.1) with the corresponding
generating sequence salisfying (3.1) and (3.2). Then, the |s;}|,1 < m < #, of Hy is bounded by a
constant independent of N.

Proof. The eigenvalues A and the right-hand eigenvectors x of Hy satisfy

Lgapx = ALgTnyUpLpx.

Since the elements of 6,.- are zeros except the first s and the last r columns, so are the elements of L 8QF.
Thus, the nonzero eigenvalues of Hx only depend on the northwest s x s, northeast s x r, southwest
r x s and southeast r x r blocks of LpQp and LgTnUpLg. The boundness of szl <m <, is
guaranteed if the elements of the four corner blocks of LpQp and LgTnUpLp remain unchanged for
sufficiently large N.

By using the band structure of Lp and the special structure of Qp, it is straightforward to verify that
the four blocks of LpQp remain unchanged for large N. Next, we examine the matrix LgTnUpLp. By
using (4.1) and the isomorphism between the ring of the power series and the ring of the semi-infinite
lower (or upper) triangular Toeplitz matrices, we can express Ty as

Ty = LALEI + UcUBl,

where L, is an N x N lower triangular Toeplitz matrix with the first N coefficients in A(z~!) as the
first column, and Ug is an N x N upper triangular Toeplitz matrix with the first N coefficients in
C(z) as the first row. Then, we have

LgTwUpLg = LoUpLp + LgUcLp,

whose four corner blocks remain unchanged for large N. Thus, A, and s, = yHixm with1 < m <7,
do not change with N, when N becomes sufficiently large. (]
Let va(€) be the normalized vector of xa(¢€),

v _ Xn(€)
()= ea(llz”

which can be decomposed as
va(€) = vn(e) + vr(e),
where vn(e) € Null(Hy) and vr(e) € Row(Hn). The magnitude of An(€), 7 < n < N, of Gy is
approximated by
()] = IGNVa()ll2 = [IHNvR(€) + AGNVa(€)ll2-
By using (4.12)-(4.14), we obtain that

Sax, Pa(g)] < max, IHxvr(e)ll2 + max, HAGNVA(E)l2

L]
“EmnHNxm”z
< + |AG
$ 2 PrscTitom T 1acHl

ms=1

#
[3
< —_—t =€
Py
= O(|in}+t-n1),

for sufficiently large N. The above analysis is concluded in the following theorem.

THEOREM 3. Let Ty be an N x N Toeplitz matriz generated by T(z) in (4.1) with the corresponding
generaling sequence salisfying (3.1) and (3.2). For sufficiently large N, the preconditioned Toeplitz
malriz K;,'-ITN has the following two properties:

P1: The number of outliers is at most n = 2min(r, s).
P2: There are at least N — 1 eigenvalues confined in the disk centered at 1 with radius cx, where

ex = O(ltn] + [t-n1).
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5. Spectral properties of preconditioned rational Toeplitz S,‘(,‘TN. The preconditioned
Toeplitz matrix Sy’ Tiv has similar spectral properties as K5'Tn. The number of outliers of S5' T can
be obtained by proving that ASy = Sy — Ty and AFy given by (4.4) are asymptotically equivalent.

LEMMA 7. Let Tn be an N x N Toeplitz matriz generated by T(z) in ({.1) with the corresponding
generaling sequence satisfying (3.1) and (3.2). Sy'Tn has asymptotically at most n = 2min(r, s)
eigenvalues not converging to 1.

Proof. Let us define ASy = Sy — Ty, and express the difference between AFy in (4.4) and ASy
as

AFy — ASy = E\\ N + Ea N,

where Ey v and E2 v are N x N Toeplitz matrices with elements

[ thsicyy (M -1)<i-j<N-1,
(EI,N)'J_{ tl'—j) —(N—I)Si—js_M,
and
f N-(M-1)<i=j<N-1,
(E2.N)ij = { timj—N, ~(N-1)<i-jE<N-M,

respectively. By using similar arguments in deriving Lemma 2, we can prove that ASy and AFy
are asymptotically equivalent. Since AFy is asymptotically equivalent to the matrix QrLz'Up" with
rank 77 < 7 = 2min(r, 5) as described in Lemma 4, the proof is completed. (n]

Similar arguments used in §4.2 can be applied to derive the following theorem.

THEOREM 4. Let Ty be an N x N Toeplitz matriz generated by T(z) in (4.1) with the corresponding
generating sequence satisfying (3.1) and (3.2). For sufficiently large N, the preconditioned Toeplitz
matriz Sy Ty has the following two properties:

P1: The number of outliers is af most n = 2min(r, s).
P2: There are at least N — n eigenvalues confined in the disk centered at 1 with radius €5, where

es = O(ltn-m + [t1-n)-

6. Numerical results. Four test problems, including both rational and nonrational Ty, are
used to illustrate the above analysis. For the nonsymmetric Toeplitz system Tnx = b to be solved,
we choose b = (1, -+, 1) and zero initial guess in all experiments. Without further specification, M
is chosen such that |tx—ar| = |ti-as] to construct preconditioner Sy. We use the first test problem,
which is generated by a nonrational function, to examine the clustering effect of singular values. Test
problems 2-4 are generated by rational functions so that the number of outliers and the clustering
radius can be observed, which confirm the theoretical results developed in §4 and §5.

Test Problem 1. Nonrational Tiy.
Let Ty be a Toeplitz matrix with generating sequence

{ 1/log(2 - n), n<-1,
tha=¢ 1/log(2—n)+1/(1+n), n=0,
1/(1+n), n>1l

The singular values of S;,ITN and K;}‘TN are plotted in Fig. 1(a) for N = 32, 64 and 128. Both
Sy'Tn and K'Tn have clustered singular values. The eigenvalues of K5!T with N = 32 are plotted
in Fig. 1(b). It is clear that the eigenvalues possess a certain clustering property. We apply both the
CGN and CGS methods to solve the preconditioned Toeplitz system Py'Twx = Pﬁ 1b. The numbers
of iterations required for the CGN and CGS methods to achieve ||b-Tnx]|z < 107 2 are summarized
in Tables 1 and 2, respectively. The case without preconditioning is also included for comparison.
The use of preconditioners does accelerate the convergence rate of iterative methods. The numbers of
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[N [[Zv | Sv [ Kn
32 |24 [ 12 9
84 || 33 | 15 | 11
128 [ 49 | 17 | 13

TABLE 1
The numbers of tlerations required for the CGN method.

N || Tn | Sv | Kn |
RJ15| 7 9
64 || 21 | 8 10
128 4] 26 | 9 10

TABLE 2
The numbers of iterations required for the CGS method.

iterations required for Sy and Ky increase slightly as N becomes large. The Ky performs better than
Sn in the CGN method. However, their performances are comparable for the CGS method. Since the
CGN method in general requires more iterations than the CGS method and the convergence rate of
the CGS method is related to the eigenvalue distribution of the iteration matrix, we will only present
the results of the CGS method for the remaining three test problems.

Test Problem 2. Rational Ty with (r,s) = (1,1).
The generating function of Ty is chosen to be

140.7z"! 1-0.82

T() = 09Tt 17077

To show that the simple rule for choosing M, i.e. |ty_a| = [ti-m]|, does provide a better spectral
clustering property and a better convergence rate for S,',','TN, two preconditioners Sy and Sy are
constructed. The Sy is constructed with M such that [ty_ar| = [t1-m| while the Sy is constructed
with M = [N/2]. The eigenvalues of T, S3'Tw, Sy'Tn and Ky'Tn with N = 32 are plotted
in Figs. 2(a)-(d). All preconditioned Toeplitz matrices have eigenvalues clustered around 1 except
2 = 2min(r, s) outliers. The K;,'TN has the best clustering effect, and the eigenvalues of S;,'TN
are more closely clustered than those of §;,‘TN. The sums of magnitudes of the last elements in
constructing Sy and Ky and the corresponding clustering radii are listed in Table 3. They are
approximately of the same order, as stated in Theorems 3 and 4.

The convergence history of the CGS method with various preconditioners is plotted in Fig. 3 with
N = 32. The convergence rate of the CGS method without preconditioning (the curve denoted by Ti)
is very slow. This phenomenon is not surprising by examining the eigenvalue distribution given in Fig.
2(a). Preconditioning improves the convergence behavior dramatically. It is clear that K performs
the best while Sy performs better than Sy.

Test Problem 3. Rational Ty with (r, s) = (3,1).
The generating function of T is chosen to be

(1+05:-1)(1+0.7z7Y) L1408
(1—0.42-1)(1 - 0.62-1)(1 — 0.82-1) ~ 140.9z°

T(z)=

The eigenvalues of T, Sy'Tn and K;,‘TN with N = 64 are plotted in Figs. 4(a)-(c). It is clear
that K5'Tn has 2 = 2min(r, s) outliers. The outliers of Sy'Tw are not easy to identify for this case.
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{ Nl €5 [ len—arl+[t1-ar] | €K [ ltw—a]+1ti-n] ]
32 [[8.2x10-2 2.8x 10°T 3.5 x 10-2 6.8x 10-2
64 || 4.6 x 10~ 2.1x 107 1.2 x 10-3 2.3x 10-3
128 [ 3.3 x10°° 1.1x 104 1.4 x10°° 2.7x 10-%
TABLE 3

The clustering radii ¢ of preconditioners Sy and Ky for Test Problem 2.

14

LN T s [itwvm+itiomd ]| ex [Mnal+]t-nl]
32 [[ 1.7 x 10-T 1.4 x 10°T 8.1x10-°| 2.8x10°°7
64 [| 2.7 x 10~* 1.3x 10°°¢ 5.1x 10~ 1.6 x 10~4
128 || 1.7 x 1077 1.6 x 1071 5.8x 10~ 1.7x 10=°
TABLE 4

The clustering radii € of preconditioners Sy and Ky for Test Problem 3.

However, two outliers can be observed more easily for larger N. Besides, the eigenvalues of K;,lTN
are more closely clustered than those of S;,’TN. We list in Table 4 the sums of magnitudes of the
last elements in constructing Sy and Ky and the corresponding clustering radii. The convergence
history of the CGS method with N = 64 is plotted in Fig. 5. We observe that the CGS method
without preconditioning does not converge and that the CGS method with preconditioners Ky and
S converges in 4 and 6 iterations, respectively. This seems to suggest that the use of preconditioners
does not only accelerate the convergence rate by providing better spectral properties but also improves
the convergence of nonsymmetric iterative algorithms by making the preconditioned matrix more close
to normal.

Test Problem 4. Rational triangular T with (r,s) = (1,0).
The generating function of Ty is chosen to be

1-0.7z"}
T(2) = 3051

Since there are only N nonzero elements in Ty, we can make Sy the same as K. The eigenvalues
of K;,lTN with N = 32 are plotted in Fig. 6(a). We see that all eigenvalues are clustered around 1
with radius ex = O(|ty]) = 10-°. This is consistent with Theorem 3, which predicts that K;lTN has
0 = 2min(r, s) outliers. The convergence history of the CGS method with N = 32 is plotted in Fig.
6(b). The CGS method with preconditioner Kn converges in two iterations while the CGS method
without preconditioning does not converge.

7. Conclusion. In this paper, we generalized the circulant preconditioning technique from sym-
metric to nonsymmetric Toeplitz matrices. The resulting preconditioned Toeplitz systems are then
solved by various iterative methods such as CGN and CGS. For a large class of Toeplitz matrices, we
proved that the singular values of .S',:.1 Ty and K K,ITN are clustered around unity except a fixed number
independent of N. When the generating function is rational, the eigenvalues of KF,ITN and SK,ITN
are classified into clustered eigenvalues and outliers. The number of outliers depends on the order of
the rational generating function. The clustered eigenvalues are confined in the disk centered at 1 with
the radii ex = O(ltw| + |t-n|) and es = O(ltn-m| + [t1-pm]) for Kx'Tw and Sy'Tw, respectively.
Since the eigenvalues of K;lTN are more closely clustered than those of S;,‘TN, preconditioner Ky
performs better than Sy for solving rational Toeplitz systems.



PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 15

REFERENCES

(1] R. H. CHAN, Circulant preconditioners for Hermitian Toeplitz system, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 542-550.
[2] R. H. CHAN AND G. STRANG, Toeplit: equations by conjugate gradients with circulant precondi-
tioner, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 104-119.
[3] T. F. CHAN, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Stat. Com-
put., 9 (1988), pp. 766-771.
[4] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J.
Res. Nat. Bur. Stand., 49 (1952), pp. 409-436.
[5] T. HUCKLE, Circulant and skew-circulant matrices for solving Toeplitz matrices problems, in
Cooper Mountain Conference on Iterative Methods, Cooper Mountain, Colorado, 1990.
[6] T. K. Ku anp C. J. Kuo, Design and analysis of Toeplitz preconditioners, Tech. Rep. 155,
USC, Signal and Image Processing Institute, May 1990. To appear in IEEE Trans. on Signal
Processing, Jan. 1992,
, On the spectrum of a family of preconditioned block Toeplitz matrices, Tech. Rep. 164, USC,
Signal and Image Processing Institute, Nov. 1990.
(8] , Spectral properties of preconditioned rational Toeplitz matrices, Tech. Rep. 163, USC, Signal
and Image Processing Institute, Sept. 1990. to appear in SIAM J. Matrix Anal. Appl.
[9] , A minimum-phase LU factorization preconditioner for Toeplitz matrices, Tech. Rep. 171,

USC, Signal and Image Processing Institute, Feb. 1991.

[10] N. M. NacuTIGAL, S. C. REDDY, aND L. N. TREFETHEN, How fast are nonsymmetric matriz
iterations, in Cooper Mountain Conference on Iterative Methods, Cooper Mountain, Colorado,
1990.

[11] Y. Saap anDp M. H. ScuuLTz, GMRES: A generalized minimum residual algorithm for solving
nonsymmeltric linear systems, SIAM 1. Sci. Stat. Comput., 7 (1986), pp- 856-869.

[12] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmelric linear systems, SIAM J. Sci.
Stat. Comput., 10 (1989), pp. 36-52.

[13] G. STRANG, A proposal for Toeplitz matriz calculations, Stud. Appl. Math., 74 (1986), pp. 171-
176.

[14] ——, Linear Algebra and Its Applications, Harcourt Brace Jonanovich, Inc., Orlando, Florida,
third ed., 1988.

[15] L. N. TREFETHEN, Approzimantion theory and numerical linear algebra, in Algorithms for Ap-
proximation II, M. Cox and J. C. Mason, eds., 1988.

(16] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, 1965.

[17] A. YAMASAKI, New preconditioners based on low-rank elimination, Tech. Rep. Numerical Analysis
89-10, MIT, Dept. of Math., Dec. 1989.

(7




Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 16

Figure Captions

(a) The singular value distribution of Sy' T and K5'T, and (b) the eigenvalue
distribution of K5'Ty for Test Problem 1.

The eigenvalue distribution of (a) Tn, (b) S3'Tw, (c) S§'Tn and (d) K§'Tw
for Test Problem 2.

The convergence history of the CGS method for Test Problem 2.

The eigenvalue distribution of (a) Tw, (b) S§'Tw and (c) Ky'Twy for Test
Problem 3.

The convergence history of the CGS method for Test Problem 3.

(a) The eigenvalue distribution of K5'Tn, and (b) the convergence history of
the CGS method for Test Problem 4.



PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 17

i N=32
O'(SR(ITN) - o ¥.=.6.4. - . i
i N=128
i N=32
- N=
U(I{NITN) - . o eme o . "
| N=128
0 1 2 3 4 5 6 7
(a)
0.4 ¥ L] ¥+ L] ¥ L] 1]
03} . g
0.2 o [ -
g 01} ]
= 01} : -
0.2} . -
03} . J
04 1 1 L L 4 . s
0.7 0.8 0.9 1 1.1 12 13 14 15
real part
(b)

FiG. 1. (a) The singular value distribution of S Tn and K5'Tn, and (b) the eigenvalue distri-
bution of K3'Tn for Test Problem 1.



imaginary part

imaginary part

PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ

0.6

04+t

0.2

0.2

04

.
N LA

T

1.1 12

—

0.6 0:7 08 0.9
real part

()

18



0.6

PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ

04

o
[d
T

imaginary pan
(=

&
N

04}

AL ]

L)

€2

-0.%5

0.6

0.6

0.7 0.8 09
real part

()

1.1

04r

imaginary part
(=4

02

04}

%8s

0.6

0.7 0.8 0.9
real part

(d)

1.1

19

FiG. 2. The eigenvalue distribution of (a) Tn, (b) S3'Tn, (c) Sy'Tn and (d) K3'Tn for Test

Problem 2.
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FIG. 4. The eigenvalue distribution of (a) Tn, (b) Sy'Tn and (c) K§'Tn for Test Problem 3.
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SPECTRAL PROPERTIES OF PRECONDITIONED RATIONAL
TOEPLITZ MATRICES : THE NONSYMMETRIC CASE *

TA-KANG KU! AND C.-C. JAY KUO!

Abstract. Various preconditioners for symmetric positive-definite (SPD) Toeplitz matrices in
circulant matrix form have recently been proposed. The spectral properties of the preconditioned SPD
Toeplitz matrices have also been studied. In this research, we apply Strang’s preconditioner Sy and
our preconditioner K to an N x N nonsymmetric (or nonhermitian) Toeplitz system Tnx = b. For a
large class of Toeplitz matrices, we prove that the singular values of Sy’ T and K5!T are clustered
around unity except a fixed number independent of N. If Ty is additionally generated by a rational
function, we are able to characterize the eigenvalues of SK,’ Tn and K;lTN directly. Let the eigenvalues
of S;,lTN and K;,lTN be classified into the outliers and the clustered eigenvalues depending on whether
they converge to 1 asymptotically. Then, the number of outliers depends on the order of the rational
generating function, and the clustering radius is proportional to the magnitude of the last elements in
the generating sequence used to construct the preconditioner. Numerical experiments are provided to
illustrate our theoretical study.

Key words. Toeplitz, circulant, nonsymmetric, preconditioners, preconditioned iterative method,
CGN, CGS, GMRES.

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. Research on preconditioning symmetric positive-definite (SPD) Toeplitz ma-
trices with circulant matrices has been active recently [1), [3], [5], [6], [13]. In this research, we general-
ize Strang’s preconditioner Sy [13] and our preconditioner Kn (6] to nonsymmetric (or nonhermitian)
Toeplitz matrices. Let Ty be an N x N nonsymmetric Toeplitz matrix with elements ¢;,; = ¢;—;. The
generalized Strang’s preconditioner Sy is obtained by preserving N consecutive diagonals in T, i.e.
diagonals with elements t,,1 — M < n < N — M, and using them to form a circulant matrix. One
simple rule to determine M is to choose its value such that |ty x| = lti—a]- Note that half of the
elements in Ty are not used in constructing Sy. The generalized preconditioner Ky is obtained from
a 2N x 2N circulant matrix in such a way that all elements in Ty are used, and is a circulant matrix
itself (See §2). Since Sy and Kn are circulant, the matrix-vector products S,'qlv and K;,’v can be
conveniently computed via Fast Fourier Transform (FFT) with O(N log N) operations. The system
of equations associated with the preconditioned Toeplitz matrix is then solved by iterative methods
such as CGN (the Conjugate Gradient iteration applied to the Normal equations) [4], GMRES (the
Generalized Minimal Residual) [11], and CGS (the Conjugate Gradient Squared) [12].

The convergence rate of preconditioned iterative methods depends on the singular value or eigen-
value distribution of the preconditioned matrices [10]. The spectral properties of preconditioned SPD
Toeplitz matrices have been widely studied. Chan and Strang [1] [2] proved that, for a symmetric
Toeplitz with a positive generating function in the Wiener class, the preconditioned matrix has eigen-
values clustered around unity except a fixed number independent of N. If the Toeplitz is additionally
generated by a rational function, even stronger results were proved by Trefethen [15] and the authors
[8]. In contrast, relatively few results for preconditioned nonsymmetric Toeplitz have been obtained so
far [9), [17).

In this research, we examine the spectral properties of S;,lTN and KR,ITN for nonsymmetric Ty
in general, and nonsymmetric rational Ty in particular. The main results of our study are stated as

* This version is dated April 12, 1991. This work was supported by the USC Faculty Research and
Innovation Fund and by a National Science Foundation Research Initiation Award.

t Signal and Image Processing Institute and Department of Electrical Engineering-Systems, Uni-
versity of Southern California, Los Angeles, California 90089-0272. E-mail:tkku@sipi.usc.edu and cck-
uo@sipi.usc.edu
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follows. For a large class of general Toeplitz matrices, we prove that the singular values of Sy' T and
Kx'Tn, or equivalently, the eigenvalues of (Sy'Tw)¥ (Sy'Tw) and (K5 Tw)# (K5 T), are clustered
around unity except a fixed number independent of N. If Ty is additionally generated by a rational
function of order (a, 8,7, §), we are able to characterize the eigenvalues of S,',}'TN and K;,‘TN directly.
We classify the eigenvalues of S,T,ITN and K;,lTN into two classes, i.e. the outliers and the clustered
eigenvalues, depending on whether they converge to 1 asymptotically. Then, (1) the number of outliers
is at most » = 2min(r, s) where r = max(a, f) and s = max(7, §); and (2) the clustered eigenvalues
are confined in a disk centered at 1 with radius ¢, where the clustering radius ¢ is proportional to the
magnitude of the last elements in the generating sequence used to construct the preconditioner.

With these spectral regularities, we can find appropriate preconditioned iterative methods to solve
a nonsymmetric Toeplitz system efficiently. In particular, an N x N rational Toeplitz system Tnx =b
can be solved with O(N log N) operations since the number of iterations required for convergence
is independent of the problem size N. To compare the performance of Sy and Ky, the S}}’TN
and K;,lTN have the same number of outliers so that they converge in the same number of iterations
asymptotically. However, the performances of Sy and K for finite N are determined by the clustering
radii of the clustered eigenvalues as well. The magnitudes of the last elements used to construct
Sy and Ky are O(|tn-p| + |t1-m]) and O(ltn| + |t—n]), respectively. Since O(ltn| + [t-n]) <
O(|tn -]+ |t1-p]) for large N, iterative methods with preconditioner Ky converges faster than with
preconditioner Sy for solving rational Toeplitz systems. This is confirmed by numerical experiments.
By the parallelism provided by FFT, the iterative methods with preconditioners in circulant matrix
form is highly parallelizable, and the time complexity of the method can be reduced to O(log N) if
O(N) processors are used.

When Ty is a symmetric rational Toeplitz, we have r = s and {y = {_n. Consequently, the number
of outliers of Ky'Tw is n = 2r = 2max(a, §) and the clustering radius is O(|¢tn]). They reduce to
the case given in [8]. Although the results derived in this paper can be viewed as a generalization of
the results in [8], we want to point out that the approach adopted in this research is very different
from that in [8] and the proof techniques are much more involved. For example, in characterizing the
clustering radius of clustered eigenvalues of KF,ITN (or S,T,‘TN) for symmetric Ty, the intertwinning
theorem of eigenvalues was exploited in [8]. However, such a theorem does not exist for nonsymmetric
matrices so that we use perturbation theory for eigenvalues instead.

It is worthwhile to mention that there exists a preconditioner based on the minimum-phase LU
factorization (MPLU) technique [9] which has a faster or comparable convergence rate than precondi-
tioners Sy and Kn. However, Toeplitz preconditioners in circulant matrix form have two advantages
over the MPLU preconditioner. First, the circulant preconditioning technique can be easily generalized
to multidimensional Toeplitz systems. See [7] for the two-dimensional case (block Toeplitz matrices).
Second, the resulting preconditioned iterative method with preconditioners in circulant form is highly
parallelizable while the MPLU preconditioner has to be implemented sequentially.

This paper is organized as follows. The construction of preconditioners Sy and Kn for nonsym-
metric Toeplitz Ty is discussed in §2. We describe the singular value distribution of K§5'Twn and
Sy'Tw for general Toeplitz in §3, and characterize the eigenvalue distribution of KTy and S' T
for rational Toeplitz in §4 and §5, respectively. Numerical experiments are given in §6 to illustrate the
theoretical study.

2. Constructions of Toeplitz preconditioners. Let T}, be a sequence of m x m nonsymmetric
Toeplitz matrices with generating sequence t,. Then,

to iy - lo(N-2) t-(N-1)
13} to ta . lo(N-2)
Ty = . t to .
tn-2 . | 2

tn-1 tn-2 - 31 to
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Following; the idea proposed by Strang [13], we construct the preconditioner Sy by preserving N
consecutive diagonals in Ty and bringing them around to form a circulant matrix,

o o oo ti-m IN-M t2 t)

t to ity lo-pr oM IN-M i3
(3} to 281 to-m ti-m InN-mM
SN IN-M 4 lo o taepm hi-mM
b-M IN-M h to i, ta-M

o2 ti-m iIN-M t) ip t-1

iy t.a h-m IN-M 4y to

A simple rule of thumb to decide the value of M is to require |[tn—as| = |t1-ar]-
Generalizing the idea in [6], the preconditioner K is constructed based on a 2N x 2N circulant
matrix Ran,

Rz | Tv ATy
W=l aw I |

where ATy is determined by the elements of Ty to make Rpn circulant, i.e.,

0 tN-1 . i t

o(N-1) 0 in-1 . 123

ATy = lo(v-1) 0 .
t_2 . . In-1

i t_a to(N-1) 0

This construction is motivated by the observation that the augmented circulant system,
T AOTn x|_|b
ATy Tn x| | b}’
is equivalent to (T + ATn)x = b so that (T + ATx)~'b can be computed efficiently via FFT and

(2.1)

can be used as a preconditioner for Tiy. Note, however, that Ky itself is also circulant and can be
inverted directly via N-point FFT rather than 2N-point FFT.

Kn =Tn+ATN

3. Spectral properties of preconditioned Toeplitz. We assume that the generating sequence
i, satisfies the following two conditions:

0
thnl < Br < oo,

(3.1)
-0
3 m .
(3.2) IT() = | tae™™*| > pr >0, ve.
-00

Since T(e*) describes the asymptotic eigenvalue distribution of Ty, the above conditions imply that
[ITw | and |[TR"]] are bounded for large N and, consequently, T is well conditioned.

With the above conditions, the preconditioners Ky and Sy are also well conditioned for sufficiently
large N due to the following theorem.

THEOREM 1. Let Ty be an N x N Toeplitz mairiz with the corresponding generating sequence
satisfying (3.1) and (3.2). The |[(KnK¥)~"|l2 and ||(SnSF )" ||z are bounded for sufficiently large N .
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Proof. Since Ky is circulant, we have
Ky =Ff{DyFy and K = FEDEFy,

where Fy is the N x N unitary Fourier matrix with N—1/2¢=i27(m-1)(n=1)/N 35 the (m,n) element
and Dy a diagonal matrix formed by the eigenvalues of K. Thus, Ky, K¥ and KnKf! share the
same eigenvectors, and the eigenvalues of Ky K}/ are

MENKH) = MKN)A (KN) = [MKn)2
Any eigenvalue of Ky belongs to the set of eigenvalues of Ran, which are

N-1
pn=In(Ran)= D eV, 1<n<2N.
k=-(N-1)

It is clear that p, is a partial sum of the infinite series 3> txe~"*¢ with 8 = —nx/N. With (3.2),
|on] 2 ur — p, where p can be made arbitrarily small by choosing sufficiently large N so that

1
KnKE) Y, < ———— < o0.
I(KnKN) ”"(m»—p)ﬁ

Similar arguments can be used to prove the boundness of |[(Sn S )~!||2, and the proof is completed.
o

The next theorem describes the clustering property of the singular values of K;}‘TN and .S';,‘TN.

THEOREM 2. Let Ty be an N x N Toeplilz malriz with the generaling sequence salisfying (3.1) and
(3.2). For sufficiently large N, the singular values of the preconditioned matrices KK,ITN and S;,’TN
are clustered around unity except o fized number independent of N

Proof. Note that the singular value of K,T,lTN is equal to the square root of the corresponding
eigenvalue of (Ky'Tw)¥ (K5'Tw). Since (K5'Tn)¥(K5'Tn) and (KnKff)~ (TNTf{) are similar,
the eigenvalues of (KnKH)~'(TnT§) are examined to understand the singular values of Ky'Tn.
With the relation Ky = Ty + ATy, we have

AMENKE) W INTI]) = 1 - M(KnKE) (KN ATH + ATV KN - ATNATY)].
Let us define
Wy = KnATH + ATvKE — ATNATE,

and denote the corresponding (N — 2¢) x (N — 2¢) central diagonal block of (Knx K )1 and Wy by
| v 2o and Wy _2zq, respectively. By the separation theorem (or intertwining theorem) of eigenvalues

[14), [16], there are at least N — 4q eigenvalues of (Kx Kf{)~'Wy bounded by the minimum and the
maximum eigenvalues of IC;,{,,QWN_zq.
Since IC;,}_zq is a submatrix of the symmetric circulant matrix (Ky K§)~?,

NERLagllz < WENEF) ™ l2-
According to the definition of Wy _24,
Wiz = KATH + ATKH - ATATH,
where K and AT are (N — 2¢) x N matrices formed by the central (N — 2¢) rows of Kx and ATy,
respectively. It is easy to verify that, for p = 1, 00,

N-=1 )
IKlb<2 3. Mal<2 Y |tal S 2Br < oo,

n==(N-1) n=-0a
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and
N-1 )
AT < Y (tal + [t-al) € D (tal + [t-al) = o(q).
n=g+1 n=g+1

Since [|A]l2 € (llAll1]lAljoo)"/? for an arbitrary matrix A, the above bounds also hold for p = 2.

Similarly, we can argue that ||X#|]; < 2Br < o0 and [|ATH||; < o(g). Thus,

Wr-agllz < IIKIRNATH |2 + IATIAICH |2 + (1AT||2)ATH |}
< 4Bro(q) +%(q).

By using Theorem 1 and the fact that o(g) is smaller as ¢ becomes larger due to (3.1), we conclude
that for given € there exist g and N such that foral N > N,

R 22NV 2012 < KN KF) " |2)WN-24ll2 < €

Hence, the eigenvalues of (KK )~!(TwT§) are confined in the interval (1 —¢,1+ ¢€) except at most
4q outlying eigenvalues. Similar arguments can be used to prove the spectral clustering property of
the singular values of SK,‘TN. (u}

With the above spectral clustering property, a Toeplitz system Tyx = b can be solved effectively by
applying the CGN method to the preconditioned system K,T,ITNx = K;,‘b or S;,l Tnyx = Sy'b. When
the generating function is additionally rational, we characterize the eigenvalues of the preconditioned
matrices K;,’TN and S,'C,ITN directly. It will be detailed in the following sections.

4. Spectral properties of preconditioned rational Toeplitz K,T,ITN. The generating func-
tion of a sequence of Toeplitz matrices T, is defined as

T(z)= Y, taz™.

n=-00

Let the generating function of Ty be of the form

_ AT | C)
oD T() = By * Dy
where
ATY) _ ao+a1z”l 4+ +agz"® C(z) _coterz4---+cy27
B(z71) ~ 14bz 14 +bgz?’ D(z) ~ 1+4diz+---+ds2*’

Note that aabge,ds # 0 and polynomials A(z~!) and B(z~') (or C(z) and D(z)) have no common
factor. We call T(z) a rational function of order (a,8,7,6) and Tn a rational Toeplitz matrix. To
simplify the notation, we define r = max(a, ) and s = max(v, §).

The spectral properties of K,’\',ITN can be determined from that of Ty ATy via

(4.2) KR TN = MR (Tn + OTw)) = 1+ MTR ATN).

The eigenvalues of K,‘(,‘TN clustered around 1 correspond to those of Tﬁ’ATN clustered around 0. We
summarize the procedures in examing the spectral properties of TEIATN as follows:
Step 1: Show that the AT is asymptotically equivalent to a low rank Toeplitz matrix AFy (Lemma
2).
Step 2: Study the rank of AFy by transforming it to a matrix @p which has at most d=r+s
nonzero columns (Lemma 3).
Step 3: Show that the Qp is asymptotically equivalent to a matrix Q@ which has at most 2 min(r, s)
nonzero eigenvalues (Lemma 4).
Step 4: Use perturbation theory to determine the radius of the clustered eigenvalues of TA',IATN and
Kx'Tn (Lemmas 5,6 and Theorem 3).
The number of outliers of K5'Tw, i.e. 2min(r,s), is determined from Steps 1-3, and the clustering
radius is determined from Step 4.
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4.1. The number of outliers of K;,lTN. Note that the sequence t,, can be recursively calcu-
lated for large |n|. This is stated as follows.
LEMMA 1. The sequence t, generated by (4.1) follows the recursions,

(43) thyr = -(bltﬂ +botnoy -+ bﬂt"-ﬁ'ﬂ)l n2r= max(a, ﬂ),
taor = —(ditn + datnyr + -+ dstnys-1), n < —s = —max(y, §).
Proof. Similar to the proof of Lemma 1 in [8]. 0

Since elements t,, satisfy the recursion given in Lemma 1, we construct a low rank Toeplitz matrices
AFy as

(4.4) OFy = F\N+ PN,
where
In  tNna . 123 4
ingt  IN INa 2}
Fn= . ingr N : . ,
taN-2 . iN-1
tan—y tan-2 - INgy IN
and
tey toven) . t_an-2) t-(an-1)
tov-1) -~  lo(N31) . t_(2N-2)
FZ,N = . t—(N—l) i_N . . ,
iy . : : L (N+1)
ity iz . t_(N-1) N

and where t,,n > r or n < —s, are recursively defined by (4.3). Due to the recursion given by (4.3),

the ranks of Fy v and F n are bounded by r and s, respectively. Thus, the rank of AF is bounded

by d = r + s. The following lemma shows that ATy and AFy are in fact asymptotically equivalent.
LEMMA 2. Let Ty be an N x N Toeplitz matriz generated by T'(z) in (4.1) with the corresponding

generaling sequence satisfying (3.1) and (3.2). The ATy and AFy are asymplotically equivalent.
Proof. Let us denote the difference between AFy and ATy by

iv+i-n  lo(ve1) : t_(an-2) t-(2N-1)
tngr INFEoN (N4 . t_(an-2)
(4.5) AEN=AFN-ATN = . tn+1 In+i_-n .
tan-2 : : to(N+1)
tan-1 lan-2 : Ing1t IntiowN

It can be easily verified that the {; and lo, norms of AEy are both bounded by

2N-1 ~(2N-1)
(4.6) =, tal+ Y |l
n=N n=-N

Consequently, we have
lAENl2 < (IAENIWIAENlo)? < 75

Since 7¢ goes to zero as N goes to infinity due to (3.1), the proof is completed. u

Since AT is asymptotically equivalent to AFy and the rank of AFy is bounded by d, the number
of outliers of TEIATN (or K;,‘TN) is bounded by d, which is however not tight. We are able to
determine a tighter bound by introducing another asymptotically equivalent matrix of ATy (or AFp),
which has only 2min(r, s) nonzero eigenvalues in the following. This turns out to be the exact number
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of outliers actually observed in all our numerical experiments. To exploit the low rank structure of
AFy, we transform AFy to

(4.7) Qr = AFNUplLsp,

where Up is an N x N upper triangular Toeplitz matrix with the first N coefficients in D(z) as the
first row, and Lp is an N x N lower triangular Toeplitz matrix with the first N coefficients in B(2~1)
as the first column. Note that since Up and Lg are full rank matrices, the @Qr and AFy have the
same rank. The structure of Qp is described in the following lemma.

LEMMA 3. Let Ty be an N x N Toeplitz malriz generated by T(z) in (4.1) with the corresponding
generaling sequence satisfying (3.1) and (3.2). The elements of QF are zeros except the first s and the
last r columns.

Proof. Note that Fy x and Fy x are Toeplitz matrices with elements

(Fin)ij=tNti-j and  (F2,N)ij =t-N4iej-

The (i, j) elements of Fy NUpLp and Fa nUpLp are

N N N N
Z Z: tN-i-i-mdn—mbn-j and E Z t—N+i-mdn—mbn-j:
n=1m=1 n=1m=l
where bg = 1 (dp = 1) and b; = 0 (d; = 0) if the subscript i is not in the range 0 < i < f(0 < i < 96).
If s < j < N —r, we can simplify the above summations as

§ -4 B 6
z (Z tN+i+m’-—n‘-jbn') dn' =0 and E ( z t-N+i+m‘—n'—jdm') bn: =0,

mi=0 \n’=0 n'=0 \m'=0

where m' = n —m, n’ = n — j, and the equalities are due to the recursion defined in (4.3). Thus, the
elements of

QrF = AFNUpLp =(Fin+ Fon)UpLp

are zeros except the first s and the last r columns. a
Consequently, we decompose the complex N-tuple space C¥ into two orthogonal complement sub-
spaces,

(4.8) RQr) = {veC¥|vi=0,s<i<N-r}
) N@QF) = {veCV|vi=0,1<i<s or N-r<i< N}

with dimensions
dim R(Qr)=d and dimN(Qr)=N —d.

The subspace N(QF) is contained in the null space of Qr. Let Qnw denote the northwest s x s block
in Qr, and QnE, Qsw and Qs the corresponding corner blocks in @ with sizes sxr, rxsand rxr,
respectively. By using the subspace decomposition (4.8), it is easy to see that the nonzero eigenvalues
of Qp only depend on the corresponding four corner blocks of QF, and are also the eigenvalues of the
d x d matrix,

Po = Qnw QNE]
F=1 Q@sw Qse |’

In other words, the rank of QF is the same as that of Pp.
The bounds for the elements of Qnw, @ne, Qsw and Qsg are summarized as follows:

[(@nw)i il £ TNw, nw = O([tn] + - n 1),
[(@sE)ijl < sk, 7se = O([tn] + [t-~]),
[(QnE)ijl < (FiLNUDLB)iN-r+j + TNE,  TNE = O(|t-2n]),
[(Q@sw)ijl < (FanUpLB)N-o4ij +Tsw,  Tsw = O(|tan]).

(4.9)



PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 8

To derive (4.9), recall that the (i, j) element of QF is

N N N N
Z tN-H’-mdn—mbn—j + E Z t—N+i—mdn—mbn—j,
1

n=lm= n=1m=1

which is bounded by
§ [} [ B
3 S Itwtismemninilidmellbard + D0 D MoNaigme—nr; e lbae)-
m'=0n'=0 m’'=0n’=0

Since the elements of Qnw are the same as those of Q@ with subscript (3, ), ¢, < s, they are bounded
by

8 ]
= b d " ) '
TNW §| :Ijz=(:)| JI(_(’_'_E;%(’.I_&I Ninl+ -(a+;%12§<,+5 )
To determine the bound for E?:o [b;, we factorize B(z~!) as

B(Z'l) = (1 - le'l)(l _ rgz”) . _(1 _ rpz'l),

A direct consequence of (3.1) is that all poles of A(z~1)/B(z"!) should lie inside the unit circle, i.e.
Irs] < 1,1< i< B, s0 that

puls (4 ) maxkt< (§), where (§) = lmm

Therefore, we obtain

s 8 3
Sinisy(§) <2
k=0 k=0

Similarly, T2 _, |di| < 2° and thus, the elements of Qnw are bounded by

nw = 285 |ty s gl + [t-nssts) = O(tn] + It-n1),
where the last equality is due to the fact that, for large n, ¢, can be approximated by

(4.10) th xcr}, where |rj|= m?,xlr.-l,

and where ¢ is a constant. Similarly, we can prove that the elements of Qsg are bounded by
7sg = 284 (lty_s_p| + |t-n4rss]) = O(ltw] + [t-n1)-

The (i,7), 1 << s,1 < j <r, element of Qg is the sum of the (i, N —r + j) elements of FinUplLp
and Fo yUpLp. 1t is straightforward to verify that the (i, N — r + j) element of F; yNUpLp remains
unchanged while that of Fo yUp Lp is bounded by 7ng = 20049t _an yass] = O(Jt-2n]) for sufficiently
large N. Similarly, we can derive the bound for the elements in Qsw as given by (4.9).

Thus, when N becomes asymptotically large, the Pr converges to

B 0 Qne ]
Prp=| = )
F [ Qsw 0
where Qg is the converged northeast s x r block in Fj xUp Lp and Qsw is the converged southwest

r x s block in Fo xUpLp. Since the ranks of @y g and Qg are both bounded by min(r, s), the rank
of P is bounded by 7 = 2min(r, s).
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_Let us define a matrix Qr by replacing the four corner blocks in QF with the corresponding blocks
in Pp. Then, we have

1QF = Qrllp = |IPr — Prll,
stTNw + r7sg + max(r, s)(rNE + Tsw)
O(ltn] + t-nl),

for p = 1 and co. The above bounds also hold for p = 2 because ||A||z £ (JJAll1l|Alloo)!/? for an
arbitrary matrix A. Since 7q goes to zero as N goes to infinity due to (3.1), the asymptotic equivalence
between Qp and Qp is established. This result is summarized in the following lemma.

LEMMA 4. Lel Ty be an N x N Toeplitz matriz generated by T(z) in (4.1) with the corresponding
generating sequence salisfying (9.1) and (3.2). The Qr and Qp are asymplotically equivalent.
Based on Lemmas 2-4, (4.2) and (4.7), T ' ATy is asymptotically equivalent to Ty 1QrLp'Up! whose
rank is bounded by n = 2 min(r, s) and K,T,ITN has at most n asymptotic eigenvalues not converging
to one (outliers).

Q

nin

4.2. The clustering radius of X ‘ErlTNo We use perturbation theory to estimate the clustering
radius of the N — n clustered eigenvalues. Instead of examining the eigenvalues of T,;lATN directly,
we study those of the similar matrix

Gy = L3'Up'TR'ATnUpLp = L' U ' TR 'Qr,
where Qr = ATnUpLpg. Let us define ‘
Hy = L3'Up'TR'Qp.

It is clear that Hy has only d nonzero columns as Q@ (or @r). The Gy can be viewed as a matrix
obtained from Hy by adding the perturbation matrix

(4.11) AGy = Gy - Hy = L3'Up'TRY(Qr — QF).

A bound of |JAGx||2 is given below so that we can estimate the clustering radius of the clustered
eigenvalues by using perturbation theory for eigenvalues.

LEMMA 5. Let Ty be an N x N Toeplitz matriz generated by T(z) in (4.1) with the corresponding
generating sequence salisfying (3.1) and (3.2). Then, for sufficiently large N, the [|AGnN||2 is bounded
by € = O(ltw| + It-n1). ~

Proof. We first study the 2-norm of Qr — Qp, which is bounded by

1@ - Qrll2 £ 1@ - QFll2 + 11QF — QFll2-

As shown in the proof of Lemma 4, the second term {|Qr — Q|2 is bounded by 7@ = O(ltn| + |t-~])
while the first term ||Q7 — QF||2 is bounded by

1QT - QFllz < [|ATN — AFN2IUpll2lILBl|2 = IIAEN|21|1Upll2]| L8] l2-

Recall from (4.6) that [|AEN]||2 < Zi’:;}l(ltnl + |t—nl). By using (4.10), we have

< jewl 1
E Ital < Z l‘Ij";‘l = = Mp|tn|, where Mp= ——.

1- |l‘,'| 1- ]rj|
n=N n=N

Similarly, Y 2¥7! [t_n] < Mplt-n|. Besides, ||Lpll2 < T5o0 bel < 2% and [[Unllz < Thooldil < 2°.
Thus, we obtain a bound for the first term, i.e.

QT — QFll2 < 2P+ (Mpltn| + Mplt-n|) = O(ltn| + t-n1),
and conclude that

lQT — Qrll2 < O(ltw| + [t-N1).
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With (4.11), we have

AGNII2 < L5 NUB IITR 2@ = @)l

Due to (3.2), ||T5"|l2 is bounded by a constant cy independent of N. To show that ||L'||2 and
U2 are also bounded, we factorize B(z~!) as

B(:™") = (1 - mz™")(1 = raz™Y) - (1= rpz™Y),

where we assume that all roots r; are distinct for simplicity. By applying the isomorphism between
the ring of the power series and the ring of semi-infinite lower (or upper) triangular Toeplitz matrices,
the Lp and L;l can be decomposed into the products,

Lp=LeLe,Ley, Lg'=L7}---L7ML7Y,

where L,;,1 <i < Bisan N x N lower triangular Toeplitz matrix with [1,—7;,0,---,0]7 as the first
column. It can be easily verified that L,T..l is a lower triangular Toeplitz matrix with (1, r;,72,-- -, N 'I]T
as the first column. Therefore,

N-1 oo 1

I < oIS Il = P=L2oo,

k=0 k=0 :

and

i s
p - 1
L5l < H”L"-'l“'-’ < H i ¢B.
i=1 s

i=1
Similar arguments can be used to prove that ||[U5'||2 < cp. Finally, we have
(4.12) IAGK|I2 < € = epeper|l(Qr — @F)llz = O(ltw| + [t-n1)-

The proof is completed. o

Let us denote the rank of Hy = L,',IU o' Tn 1@r by ij. Clearly, i < n = 2min(r, s). We arrange the
eigenvalues of Hy in a descending order so that |An| > |An41| (An = 0 for 7j < » < N), and denote the
corresponding normalized right-hand and left-hand eigenvectors by x1,x3,---, x5 and y1,¥2, -, ¥N,
respectively. Besides, vectors x, with 7 < n < N are chosen to be othorgonal. The complex N-tuple
space is decomposed into the row and the null spaces of Hy,

Row(Hy) = span{xn,n < ij}, Null(Hy) = span{x,,ij<n < N}.

Since Gy = Hy + AGy and ||AGy||2 £ ¢, the eigenvalues and the right-hand eigenvectors of Gy
are denoted by A, (€) and x,(¢), respectively. By using results from perturbation theory for repeated
eigenvalues [16], the eigenvectors x,(¢) with 7 < n < N must take the form

7 N
Emn 2
(4.13) Xn(€) = E —_——Xm + E ImaXm + O(€%),
" m=1 (A = Am)sm m=ij+1

where £y = yﬁAGNx,., =0, 5, = y,’,{xm and gnn = 1. Due to the construction, we know that
(4.14) [lxa(E)llz 2 lIxnll2 = 1.
The factor [mn] is bounded by

émn] = lymAGNxXa| < [Iymll2lIAGK |l2lixa]l2 < €.

The |s;}|,1 < m < 7, is also bounded as given in the following lemma.
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LEMMA 6. Let Ty be an N x N Toeplitz matriz generated by T(z) in (4.1) with the corresponding
generaling sequence salisfying (3.1) and (3.2). Then, the |s;}|,1 < m < 7}, of Hy is bounded by a
conslani independent of N.

Proof. The eigenvalues X and the right-hand eigenvectors x of Hy satisfy

LpQpx = ALgTnUpLpx.

Since the elements of @ are zeros except the first s and the last r columns, so are the elements of Lg @ p-.
Thus, the nonzero eigenvalues of Hy only depend on the northwest s x s, northeast s x r, southwest
r x s and southeast r x r blocks of LgQp and LgTyUpLp. The boundness of [s;![,1 £ m < 7, is
guaranteed if the elements of the four corner blocks of LB-Q-F and LgTnUp Lp remain unchanged for
sufficiently large N.

By using the band structure of Lp and the special structure of @p, it is straightforward to verify that
the four blocks of Lp @ p remain unchanged for large N. Next, we examine the matrix LgTnyUp Lp. By
using (4.1) and the isomorphism between the ring of the power series and the ring of the semi-infinite
lower (or upper) triangular Toeplitz matrices, we can express Ty as

Ty = Lalg' + UcUp?,

where L4 is an N x N lower triangular Toeplitz matrix with the first N coefficients in A(z~!) as the
first column, and Uc is an N x N upper triangular Toeplitz matrix with the first NV coefficients in
C(z) as the first row. Then, we have

LgTnUpLpg = LaUpLp + LgUcls,

whose four corner blocks remain unchanged for large N. Thus, A, and s, = yZx,, with 1 <m < 7,
do not change with N, when N becomes sufficiently large. D
Let v,(¢) be the normalized vector of x,(€),

_ xal9)
()= Ok

which can be decomposed as
va(€) = vn(e) + vr(e),

where vy(e) € Null(Hy) and vg(e) € Row(Hy). The magnitude of As(¢), 7 < n < N, of Gy is
approximated by

IAa(€)l = IGNV()ll2 = [IHNVR() + AGNVa(e)l2-
By using (4.12)-(4.14), we obtain that

< Hyvr(e max |[|AGnva(e
'_,g;'anle\n(c)l < ’_,gg,astll NVR( )II2+.7<n5NI| NVa(O)l2

i
”fmnHNXm”z
< AG
S L el (s *14GHIE

m=1

€
< —_—t =€
< 2P

= O(jtn] + lt-nl),

for sufficiently large N. The above analysis is concluded in the following theorem.

THEOREM 3. Let Ty be an N x N Toeplitz matriz generated by T'(2) in (4.1) with the corresponding
generaling sequence salisfying (3.1) and (3.2). For sufficiently large N, the preconditioned Toeplit:
matriz K5 Ty has the following two properties:

P1: The number of outliers is at most n = 2min(r, s).
P2: There are at least N — n eigenvalues confined in the disk centered at 1 with radius ¢y, where

ex = O(|tn] + [t-n1)-
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5. Spectral properties of preconditioned rational Toeplitz S,T,ITN. The preconditioned
Toeplitz matrix S,'v‘ T~ has similar spectral properties as K,T,ITN. The number of outliers of S,T,ITN can
be obtained by proving that ASy = Sy — Tn and AFy given by (4.4) are asymptotically equivalent.

LEMMA 7. Let Ty be an N x N Toeplitz matriz generaled by T(2) in (4.1) with the corresponding
generaling sequence salisfying (3.1) and (3.2). Sy'Tn has esymptotically at most n = 2min(r,s)
eigenvalues not converging to 1.

Proof. Let us define ASy = Sy — Ty, and express the diflerence between AFy in (4.4) and ASy
as

AFy - ASy = Ey N + Ea N,

where Ey y and E, n are N x N Toeplitz matrices with elements

o _ | tNsiej -(M-1)<i-j<N-1,
(BEvn)ij = { tios, ~(N-1)<i-j<-M,
and
o ti—j’ N—(M_l)si-.jSN_l)
(EZ:N)‘J - { ti—j—Ni —(N-l) S i_j S N_M)

respectively. By using similar arguments in deriving Lemma 2, we can prove that ASy and AFy
are asymptotically equivalent. Since AFy is asymptotically equivalent to the matrix 6FL;,‘U 5! with
rank 7j < 7 = 2min(r, s) as described in Lemma 4, the proof is completed. o

Similar arguments used in §4.2 can be applied to derive the following theorem.

THEOREM 4. Let Ty be an N x N Toeplitz matriz generated by T(2) in (4.1) with the corresponding
generating sequence salisfying (3.1) and (3.2). For sufficiently large N, the preconditioned Toeplitz
matriz Sy T has the following two properties:

P1: The number of outliers is al most n = 2min(r, 5).
P2: There are af least N — 0 eigenvalues confined in the disk cenlered at 1 with radius cs, where

s = O(ltN-Ml + Itl-MI)'

6. Numerical results. Four test problems, including both rational and nonrational Tw, are
used to illustrate the above analysis. For the nonsymmetric Toeplitz system Tyx = b to be solved,
we choose b = (1,---,1)7 and zero initial guess in all experiments. Without further specification, M
is chosen such that |ty—ar] = |t1-m]| to construct preconditioner Sy. We use the first test problem,
which is generated by a nonrational function, to examine the clustering effect of singular values. Test
problems 2-4 are generated by rational functions so that the number of outliers and the clustering
radius can be observed, which confirm the theoretical results developed in §4 and §5.

Test Problem 1. Nonrational Ty.
Let T be a Toeplitz matrix with generating sequence

{ 1/log(2 — n), n<-1,
ta =4 1/log(2—n)+1/(1+n), n=0,
1/(1 4+ n), n>1

The singular values of Sy'Tn and K,'(,‘TN are plotted in Fig. 1(a) for N = 32, 64 and 128. Both
Sy'Tn and K5'Tw have clustered singular values. The eigenvalues of K ~ T with N = 32 are plotted
in Fig. 1(b). It is clear that the eigenvalues possess a certain clustering property. We apply both the
CGN and CGS methods to solve the preconditioned Toeplitz system P,‘;‘TNx = P,’,,'lb. The numbers
of iterations required for the CGN and CGS methods to achieve ||b— Tix||2 < 10~!? are summarized
in Tables 1 and 2, respectively. The case without preconditioning is also included for comparison.
The use of preconditioners does accelerate the convergence rate of iterative methods. The numbers of
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(¥ [ Zw [Sn [ K]
32 2412 9
64 || 33 | 15 | 11
128 |[ 49 | 17 | 13

TABLE 1
The numbers of iterations required for the CGN method.

|N|TnlSN|KN|
215 | 7 9
64 || 21 ] 8 10
128 || 26 | 9 10

TABLE 2
The numbers of ilerations required for the CGS method.

iterations required for Sy and K increase slightly as N becomes large. The Ky performs better than
Sx in the CGN method. However, their performances are comparable for the CGS method. Since the
CGN method in general requires more iterations than the CGS method and the convergence rate of
the CGS method is related to the eigenvalue distribution of the iteration matrix, we will only present
the results of the CGS method for the remaining three test problems.

Test Problem 2. Rational Ty with (r,s) = (1,1).
The generating function of T is chosen to be

140727 1-0.82

()= 15,1t 1w 07z

To show that the simple rule for choosing M, i.e. |[txy_a| & |t1-ar], does provide a better spectral
clustering property and a better convergence rate for Sy T, two preconditioners Sy and Sy are
constructed. The Sy is constructed with M such that |tn-ar] = [t1-a] while the Sy is constructed
with M = [N/2]. The eigenvalues of Tv, Sy'Tn, S§'Tv and Ki'Tn with N = 32 are plotted
in Figs. 2(a)-(d). All preconditioned Toeplitz matrices have eigenvalues clustered around 1 except
2 = 2min(r, s) outliers. The KK,ITN has the best clustering effect, and the eigenvalues of S;,lTN
are more closely clustered than those of S'EITN. The sums of magnitudes of the last elements in
constructing Sy and Ky and the corresponding clustering radii are listed in Table 3. They are
approximately of the same order, as stated in Theorems 3 and 4.

The convergence history of the CGS method with various preconditioners is plotted in Fig. 3 with
N = 32. The convergence rate of the CGS method without preconditioning (the curve denoted by Tn)
is very slow. This phenomenon is not surprising by examining the eigenvalue distribution given in Fig.
2(a). Preconditioning improves the convergence behavior dramatically. It is clear that Kn performs
the best while Sy performs better than Sy.

Test Problem 3. Rational Ty with (r,s) = (3,1).
The generating function of Tx is chosen to be

(14052711 +0.7:71) 1+0.82
(1-04z-1)(1-0.62-1)(1—0.82"1) * 1409z

T(z) =

The eigenvalues of T, Sy'Tn and Kx'Tn with N = 64 are plotted in Figs. 4(a)-(c). It is clear
that K,};’TN has 2 = 2 min(r, s) outliers. The outliers of S;,lTN are not easy to identify for this case.
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[N es  Thn-ml+aml[  ex  [Rnal+[ti-nl]
32 [82x10"7 [ 28x10°T [35x102] 6.8x10~2
64 |[46x10"2 | 21x10°2 | 1.2x103| 23x10-9
128 [ 3.3 x 105 1.1x10"7 [[14x10-° | 2.7x10-°

TABLE 3
The clustering radii ¢ of preconditioners Sy and Ky for Test Problem 2.

[N es  Jlv-mltlta-ml ||  ex [ Itv-al+]t1-nl]
32 [[1.7x10°T 14x10°7 [[61x102] 2.8x10~°
64 [[2.7x 10" 1.3x1077 [[501x10°% [ 1.6x 1077
128 [ 1.7x 1073 16x10~* |[[58x10-7 | 1.7x1077

TABLE 4
The clustering radii € of preconditioners Sy and Ky for Test Problem 3.

However, two outliers can be observed more easily for larger N. Besides, the eigenvalues of K'Tn
are more closely clustered than those of S;,lTN. We list in Table 4 the sums of magnitudes of the
last elements in constructing Sy and Ky and the corresponding clustering radii. The convergence
history of the CGS method with N = 64 is plotted in Fig. 5. We observe that the CGS method
without preconditioning does not converge and that the CGS method with preconditioners Ky and
Sy converges in 4 and 6 iterations, respectively. This seems to suggest that the use of preconditioners
does not only accelerate the convergence rate by providing better spectral properties but also improves
the convergence of nonsymmetric iterative algorithms by making the preconditioned matrix more close
to normal.

Test Problem 4. Rational triangular Ty with (r,s) = (1,0).
The generating function of T is chosen to be

1-0.7z"}
T(2) = Tros1

Since there are only N nonzero elements in Ty, we can make Sy the same as Ky. The eigenvalues
of K,'\',ITN with N = 32 are plotted in Fig. 6(a). We see that all eigenvalues are clustered around 1
with radius ex = O([tn|) = 10~?. This is consistent with Theorem 3, which predicts that Kj'Tw has
0 = 2min(r, s) outliers. The convergence history of the CGS method with N = 32 is plotted in Fig.
6(b). The CGS method with preconditioner Kn converges in two iterations while the CGS method
without preconditioning does not converge.

7. Conclusion. In this paper, we generalized the circulant preconditioning technique from sym-
metric to nonsymmetric Toeplitz matrices. The resulting preconditioned Toeplitz systems are then
solved by various iterative methods such as CGN and CGS. For a large class of Toeplitz matrices, we
proved that the singular values of S;,l Tn and K EITN are clustered around unity except a fixed number
independent of N. When the generating function is rational, the eigenvalues of K;,lTN and S;,‘TN
are classified into clustered eigenvalues and outliers. The number of outliers depends on the order of
the rational generating function. The clustered eigenvalues are confined in the disk centered at 1 with
the radii ex = O(|tw| + |t-n|) and s = O(ltn-m| + |t1-m]) for K5'Tn and Sy'Tw, respectively.
Since the eigenvalues of K,'vlTN are more closely clustered than those of S;,lTN, preconditioner Ky
performs better than Sy for solving rational Toeplitz systems.



PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 15

REFERENCES

[1] R. H. CHaAN, Circulant preconditioners for Hermitian Toeplitz system, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 542-550.
[2] R. H. CHAN AND G. STRANG, Toeplilz equations by conjugate gradients with circulant precondi-
tioner, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 104-119.
[3] T. F. CHAN, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Stat. Com-
put., 9 (1988), pp. 766-771.
[4] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J.
Res. Nat. Bur. Stand., 49 (1952), pp. 409-436.
[5] T. HucKLE, Circulant and skew-circulant matrices for solving Toeplitz matrices problems, in
Cooper Mountain Conference on Iterative Methods, Cooper Mountain, Colorado, 1990.
[6) T. K. Ku anp C. J. Kvo, Design and analysis of Toeplitz preconditioners, Tech. Rep. 155,
USC, Signal and Image Processing Institute, May 1990. To appear in IEEE Trans. on Signal
Processing, Jan. 1992.
, On the spectrum of a family of preconditioned block Toeplitz mairices, Tech. Rep. 164, USC,
Signal and Image Processing Institute, Nov. 1990.
(8] , Spectral properties of preconditioned rational Toeplitz matrices, Tech. Rep. 163, USC, Signal
and Image Processing Institute, Sept. 1990. to appear in SIAM J. Matrix Anal. Appl.
[9] , A minimum-phase LU factorization preconditioner for Toeplitz matrices, Tech. Rep. 171,

USC, Signal and Image Processing Institute, Feb. 1991.

[10] N. M. NACHTIGAL, S. C. REDDY, AND L. N. TREFETHEN, How fast are nonsymmetric mairiz
iterations, in Cooper Mountain Conference on Iterative Methods, Cooper Mountain, Colorado,
1990.

[11] Y. SaaD aND M. H. ScHULTZ, GMRES: A generalized minimum residual algorithm for solving
nonsymmelric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.

[12] P. SONNEVELD, CGS, a fasi Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci.
Stat. Comput., 10 (1989), pp. 36-52.

[13] G. STRANG, A proposal for Toeplitz matriz calculations, Stud. Appl. Math., 74 (1986), pp. 171-
176.

(14 ——, Linear Algebra and Its Applications, Harcourt Brace Jonanovich, Inc., Orlando, Florida,
third ed., 1988.

[15]) L. N. TREFETHEN, Approzimantion theory and numerical linear algebra, in Algorithms for Ap-
proximation II, M. Cox and J. C. Mason, eds., 1988.

(16] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, 1965.

[17] A. YAMASAKI, New preconditioners based on low-rank elimination, Tech. Rep. Numerical Analysis
89-10, MIT, Dept. of Math., Dec. 1989.

[7]




Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ 16

Figure Captions

(a) The singular value distribution of S§' T and K5' T, and (b) the eigenvalue
distribution of K5'Ty for Test Problem 1.

The eigenvalue distribution of (a) T, (b) S5'Tw, (c) Sy'Tn and (d) K5'Tw
for Test Problem 2.

The convergence history of the CGS method for Test Problem 2.

The eigenvalue distribution of (a) T, (b) Sx'Tn and (c) K§y'Tn for Test
Problem 3.

The convergence history of the CGS method for Test Problem 3.

(a) The eigenvalue distribution of K5'T, and (b) the convergence history of
the CGS method for Test Problem 4.
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F1G. 1. (a) The singular value disiribution ofS;'lTN and KF,ITN, and (b) the eigenvalue distri-
bution of KK,‘TN for Test Problem 1.



PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ

()

4 T T T T T
3l . J
2 .
1F J
B
(=9
o _
‘sh
og -l . -
2F N, _
3 .. 4
'40 i i 3 4 5 6 7
real part
(a)
0.6 L] L) ¥ L L) L] L]
04} -
0.2} g
§- et ' . 0 . ¢ ¢ ¢ .
g o SR -
& S e s e % . . :
E <.
02} -
04} -
4)'%.5 o.? 0:7 ots 09 1 1.1 1.2 13
real part

18



0.6

PRECONDITIONERS FOR NONSYMMETRIC TOEPLITZ

04

0.2

imaginary part
[=]

0.2

04

e

L)

€2

0.6

0.7

0.8 09
real part

(e)

1.1

0.6

04

0.2

imaginary part
(=}

02f

04

L

0.6

0.7

0.8 09
real pan

(d)

1.1

19

FIG. 2. The eigenvalue distribution of (a) Tn, (5) Sy'Tn, (c) Sy'Tn and (d) Kx'Tn for Test

Problem 2.
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F1G. 8. (a) The eigenvalue distribution of K;’TN, and (b) the convergence history of the CGS
method for Test Problem 4.



