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PRECONDITIONED ITERATIVE METHODS FOR SOLVING
TOEPLITZ-PLUS-HANKEL SYSTEMS *

TA-KANG KU! AND C.-C. JAY KUO!

Abstract. The use of preconditioned iterative methods to solve a system of equations with a
Toeplitz-plus-Hankel coefficient matrix is studied. We propose a new preconditioner suitable for
Toeplitz-plus-Hankel matrices, and examine the spectral properties of preconditioned rational Toeplitz-
plus-Hankel matrices. We show that the eigenvalues of the preconditioned matrix are clustered around
unity except a finite number of outliers depending on the orders of the rational generating functions,
and the clustering radius is proportional to the magnitude of the last elements in Toeplitz and Hankel
matrices., With the spectral regularities, an N x N rational Toeplitz-plus-Hankel system can be solved
by preconditioned iterative methods with O(N log N) operations. Numerical experiments are given to
demonstrate the efficiency of the proposed preconditioner.

1. Introduction. The systems of linear equations with Toeplitz, Hankel and Toeplitz-plus-
Hankel coefficient matrix arise in many signal processing applications. For example, the inverse scat-
tering problem can be formulated as Toeplitz, Hankel and Toeplitz-plus-Hankel systems of equations,
which were done by Krein [22], Agranovich and Marchenko [1] and Gelfand and Levitan [16), respec-
tively. (For more recent work, we refer to [3], [4].) By exploiting the special structures of Toeplitz or
Hankel matrices, an N x N system of equations can be solved by fast direct methods based on the
Levinson or Schur algorithm with O(N?) operations [12], [13], [14], [23]. Direct algorithms for inverting
N x N Toeplitz-plus-Hankel matrices with O(N?) complexity have also been derived [18], [19], [30].
Although the computational complexity of these fast algorithms is lower than that of the Gaussian
elimination with pivoting, i.e. O(N3), their stability is not guaranteed when applied to indefinite or
nonsymmetric matrices [5], [11}. In this research, we propose to use preconditioned iterative meth-
ods to solve Toeplitz-plus-Hankel systems, which have a low computational complexity and a stable
convergence performance.

Toeplitz preconditioners in circulant or skew-circulant matrix form have been proposed and analyzed
by many researchers (8], [10], (21], [25], [33]. It was shown by Chan and Strang [9] that, for a large class
of Toeplitz matrices, the eigenvalues of preconditioned matrices are clustered around unity and the
preconditioned iterative method converges at a superlinear rate. For Toeplitz matrices generated by
rational functions, an even stronger convergence result was obtained by Trefethen [34] and the authors
[26], [28]. That is, the preconditioned iterative method converges in a finite number of iterations
independent of the problem size N. Consequently, a rational Toeplitz system can be solved with
O(N log N) operations. In addition to low computational complexity, preconditioned iterative methods
demonstrate a very stable convergence behavior [27]. Since a Hankel system can be transformed to a
Toeplitz system by reversing the order of the linear equations, the same results also hold for Hankel
systems.

The inverse scattering problem is often formulated as two waves propagating in the opposite di-
rections. The discrete version of the formulation can be naturally expressed as an N x N Toeplitz-
plus-Hankel system Ax = b, where A is the sum of a Toeplitz matrix T and a Hankel matrix H with
elements T;; = t;—j and H;; = hyqa—(iss) (2], [3), [4], [7), [29). The idea to construct a Toeplitz-
plus-Hankel preconditioner can be simply stated as follows. Let J be an N x N matrix which has
ones along the secondary diagonal and zeros elsewhere (ie. J;; = 1ifi+j=N+1and J;; =0
if {4+ j # N+ 1). One can easily verify that the product of J and H gives a Toeplitz matrix
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Ty = JH with elements [Ty]; ; = h;;, and that the Toeplitz-plus-Hankel matrix can be expressed as
A=T+ H =T+ JTy. Now, given preconditioners K7 and Ky for Toeplitz matrices T and Ty, we
propose to use P = Kr 4 JKy as a preconditioner for A.

To solve the Toeplitz-plus-Hankel system Ax = b with preconditioner P, two major computations
required at each iteration are the matrix-vector products Av and P~lv with an arbitrary vector v.
The operation Av can be performed effectively via fast Fourier transform (FFT) with O(Nlog N)
operations, since both T'v and Hv can be embedded in a 2N x 2N circulant matrix-vector product. To
implement the preconditioning step Pz = v, we relate it to an equivalent N x N circulant system which
can be inverted via FFT with O(N log N) operations. Consequently, the computational complexity for
each iteration is O(Nlog N).

In the context of inverse scattering, the generating sequences of Toeplitz and Hankel matrices can
be selected with great flexibility. Thus, we focus on the case that the sequences {t,} and {h,} are
generated, respectively, by rational functions of orders (ar, 8r,yr,8r) and (an, Bu,vu,6n), (see the
definition in §4) and study the spectral properties of preconditioned matrices. The eigenvalues of
P~1A can be classified into two classes, i.e. the outliers and the clustered eigenvalues, depending on
whether they converge to unity asymptotically. Then, the preconditioned matrix has the following
two spectral properties: (1) the number of outliers is bounded by a constant which depends on the
orders of the rational generating functions; and (2) the clustered eigenvalues are confined in a disk
centered at unity with radius ¢ proportional to O(|tn|+|t-~|+|hn|+|h-n]|). With the above spectral
properties, various preconditioned iterative methods, including CGN (the Conjugate Gradient iteration
applied to the Normal equations) [20], GMRES (the Generalized Minimal Residual) [31], and CGS (the
Conjugate Gradient Square) [32], can be effectively applied. It turns out that a rational Toeplitz-plus-
Hankel system can be solved in a finite number of iterations independent of the problem size N so
that the total operations required are O(N log N). Besides, the preconditioned iterative methods are
highly parallelizable due to the parallelism provided by FFT. The time complexity can be reduced to
O(log N) if O(N) processors are used.

This paper is organized as follows. We discuss the construction of a preconditioner for Toeplitz-plus-
Hankel matrices in §2. The computational complexity per iteration is discussed in §3. The spectral
properties of the preconditioner and the preconditioned rational matrix are examined in §4. Numerical
experiments are given in §5 to illustrate our theoretical study.

2. Construction of the preconditioner. Consider the N x N Toeplitz-plus-Hankel system
(2.1) Ax =b, A=T+H,

where T and H are given Toeplitz and Hankel matrices with elements T;; = {;_; and H;; =
hyni1-(i+j). With the special structures of Toeplitz and Hankel matrices, a Hankel matrix H can
be transformed to a Toeplitz matrix by premultiplying (or postmultiplying) it with

00 - 01
0o - 010
010 -0
1 0 - 00

which is known as the time-reversal operator. It is clear that Ty = JH is a Toeplitz matrix with
elements [Tx}; ; = hi—j and that JTy = J2H = H. Thus, (2.1) can also be written as

(2.2) (T+JTy)x =b,

where T and Ty are N x N Toeplitz matrices generated by the sequences {t,} and {h,}, respectively.
The procedure to construct a circulant preconditioner for Toeplitz matrix

to t © tn-z) tov-y)
4 to to . t_(N-2)
T = . fl to .
in-2 . toy

in-1 tn-2 . t to
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is summarized as follows [25]. Motivated by the observation that we can solve the 2N x 2N circulant
system effectively,

@) m(X]=[v]  m=|& T

where AT is determined by the elements of T to make Ry circulant, i.e.,

0 tn-1 . 7] 15}
t_(N-1) 0 tN-1 : t2
AT = . to(n-1) 0 .
t.2 : . in-1
iy t_o . lo(n-1) 0
Since (2.3) is equivalent to
(2.4) Krx=b, Kp =T+ AT,

we choose the circulant matrix Kt as a preconditioner for 7. Similarly, we have the circulant pre-
conditioner Ky = Ty + ATy for Toeplitz matrix Ty. Then, with respect to (2.2), we propose to
use

(2.5) P=Kp+JKy,

as a preconditioner for the Toeplitz-plus-Hankel matrix A.

3. Computational complexity per iteration. To solve the Toeplitz-plus-Hankel system Ax =

b with preconditioner P, two major computations required at each iteration are the matrix-vector

products Av and P~!v with an arbitrary vector v. We show below that they both can be achieved with

O(N log N') operations. Since other operations involved are vector additions or inner products whose
complexity is proportional to O(N), the total computational complexity per iteration is O(N log N).

The N x N Toeplitz matrix-vector product T'v can be embedded in the 2N x 2N circulant matrix-

vector product
T AT v]i_| Tv
AT T 0| | ATV |

so that it can be effectively computed via FFT with O(N log N) operations. Premultiplying J to a
vector v corresponds to the reverse of the order of the elements in v. Thus, the Toeplitz-plus-Hankel
matrix-vector product

Av=Tv+JTyv

can also be achieved with O(N log N) operations.
With the equality J2 = I and (2.5), we have

(3.1) Pz = Kpz+ JKpylJJlz=v,
which is equivalent to
(3.2) JPz=JKrJJz+ Kpyz = Jv.

Since K7 and Ky are circulant, JK7J = K%, JKyJ = K} and K7 and Ky commute. By multiplying
(3.1) with K7 and (3.2) with K}, we can write the difference between the two resulting equations as

(3.3) (K Kp — KR Kp)z = Kiv — K3 Jv.

Thus, the solution of z = P~!v can also be determined from (3.3). It is easy to verify that K K —
K} Kpg is circulant and can be diagonalized with Fourier functions. Consequently, P=1v can be solved
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effectively via FFT with O(N log N) complexity. Note also that the Fourier coefficients ©; and w; of
the vectors v and w = Jv are related via

Wy =t-ktmed N, O0LSEkSN-1,

which means that only an FFT and an inverse FFT are needed in solving (3.3), given the eigenvalues
of KT and K H-

In conclusion, the total computational complexity inside each iteration of the preconditioned it-
erative methods is O(N log N) only. In addition to the low complexity, the preconditioned iterative
methods are highly parallelizable due to the parallelism provided by FFT, and the time complexity
can be reduced to O(log N) if O(N) processors are used.

4. Analysis of the preconditioner. We assume that Toeplitz matrix T and Hankel matrix H
are generated by real sequences {t,} and {h,} satisfying

o0 0

(4.1) > ltal < Br < oo, > lha| < By < co.

—00 )

The circulant matrices K7, KF, Ky and K} share the same Fourier functions as their eigenvectors
with eigenvalues

N-1 N-1
MED)=2KE) = Y tae ', N(Ka)= MK = Y ke iR
n==(N-1) n==(N-1)
where k= 0,1,..-, N — 1 and A} denotes the complex conjugate of Ax. We also assume that
(4.2) | IA(ET)P — Pe(Ku)? |2 6>0, 0<k<SN -1,

which implies the invertibility of KT Kr — K} Ky.
The generating functions of T and Ty are defined as

T(2) = Z 127", H(z)= Z hpz~".

We focus on the case
Ar(z7Y) | Cr(2) Ar(z~Y) | Cu(2)
4.3 T(z) = s H(z) = ,
“3) D=5 e 0= B Dad)
where T(2) is a rational function of order (ar, fr,vT,67), i-e.
(4.4) Ar(z~1) = TiZo oriz™, COr(z) = EiZocrs?'
' Br(z"') = LT brz, Dr(z) = LTy drid,

with a7,0787,87¢T 487,65 # 0, b1,0 = 1, d1 0 = 1, and polynomials Ap(z~!) and Br(z~?) (or Cr(z~1)
and Dr(271)) have no common factors. Similarly, H(z) is a rational function of order (ag, i, 7H, 61)-
For convenience, we let

(4.5) rr = max(ar, A7), st = max(yr, 1),
’ ry = max(ay, Bu), sy = max(vy,bn).

4.1. Invertibility of the preconditioner. With conditions (4.1) and (4.2), we prove that P~1
exists in the following theorem.
THEOREM 1. Let T and H be N x N Toeplitz and Hankel malrices satisfying (4.1) and (4.2).
Then, the precondilioning matriz P = Kr + JKy is inveriible.
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Proof. Recall that (3.1) is equivalent to
(4.6) (K¥Kr ~ K3 Kn)z = (KF — KR J)v.
With the definition of K7 in (2.4) and assumption (4.1), it is easy to see that

N-1

IKF|l = IKFllo €2 D |tal <2Br.
n==N-=1

As a consequence, we have
KFll2 < (IKFILIIKT |lw)/? < 2Br.

Similar results hold for K7 . Thus, the right-hand-side of (4.6) is bounded. With condition (4.2), the
magnitude of any eigenvalue of K% Kr — K} Ky is also bounded by

Pe(KFKr — KEKp)| = | De(Er)l2 = |M(Kr))? |2 6> 0.

Therefore, (4.6) is nonsingular and the preconditioner P is invertible. o

4.2. The number of outliers of P~'A. Given rational generating functions as specified by
(4.3), the eigenvalue of P~1A4 is called an outlier if it does not converge to one for asymptotically large
N. According to the definitions of Kp and Ky, the difference matrix AA = P — A can be written as

4.7 AA = AT+ JATy.
Since
MP~14)=1-A(P1AA),

the eigenvalues of P~14 clustered around 1 correspond to those of P~!AA clustered around 0, and
the number of outliers equals the number of the asymptotic nonzero eigenvalues of P~1AA.
Our analysis for the number of outliers proceeds as follows.
Step 1: Construct a low rank matrix AF based on the recursion in ¢,, and A,, described in Lemma 1.
Step 2: Show that AF is asymptotically equivalent to AA (Lemma 2).
Step 3: Establish an upper bound for the rank of AF, which is equal to the number of outliers of
P-1A (Theorem 2).
LEMMA 1. The sequences t, and h, generated by (4.3) follow the recursions,

thyr = —(bratn + b7 2tao1 + -+ brprtn_pria), n2rr,
(4.8) tho1 = —(dr1tn +dratngr + -+ + AT sptnpir-1), n £ —sr,

hpyr = —=(ba1ha + bu2hn_1 4+ -+ b shn—pyi1), n2ry,

hacyr = —(dr1hn + da2hngr + -+ -+ dHshnys-1), n < -8y,

where br; dr i, by and dy; are given in (§.4) and r7, 87, rg and sy are defined in (4.5).
Proof. Similar to the proof of Lemma 1 in [26]. m]
Based on the recursion (4.8), we construct two low rank Toeplitz matrices AFr and AHr as

(4.9) AFp =Fry+ Frs, and AFy = Fg)+ Fyp,
where
iN tn-1 . t2 t
SR 7 VR 7 . ta
FT,l = . tN+1 in : - )
tan—2 . . tN-1

tan-1 tan-2 A 7 TSR I
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v  t_(v41) . t_(an-2) l-(2N-1)
vy =N Io(N41) : t_(an-2)
FT,2 = - t—(N—l) i_N . . ,
1_9 . . . t_(N41)
t-y t.2 . t_(N-1) t_n

and Fg,; and Fy  are similarly constructed by changing elements of Fry and Fr 3 from ¢, to h,,. The
AFp and AFy are asymptotically equivalent to AT and ATy, respectively, and we have the following
lemma.

LEMMA 2. Let T and H be N x N Toeplitz and Hankel matrices generated by T(z) and H(z) in
(4.3) with the corresponding generating sequences satisfying (4.1) and (4.2). Then,

IAA—- AF||2 < O(ltn| + It-n| + |an] + [h-n1),
where AA is defined in (4.7) and
AF = AFr + JAFy

with AFr and AFy given by (4.9). Consequently, AA is asymplotically equivalent to AF.
Proof. The difference between AFp and AT is

Inti_n  to(N41) ' t_(2nv-2) l-(aN-1)
INf2 INti-N o (N41) . t_(2n-2)
AFpr - AT = . tINg1 IN+i-n . . )
tan-2 . : to(N+1)
tan—1 tan_3 . ing1r INtton

whose I;- and l;-norms are bounded by

2N-1 -(2N-1)
=3 tal+ Y ltal=O(ltn] + lt-nl).
n=N n=-N

The last equality is based on the fact that ¢,, n > 0 or n < 0, can be decomposed into exponentially
decaying sequences. With the property ||Bjlz < (|| Bll1]1B|loo)!/? for arbitrary matrix B, we know that
the l3-norm of AFy — ATy is also bounded by 7r. Similarly, the I;-, I2- and loo-norms of ATy — AFy
are all bounded by

™ = O(lhn| + [h-n1).
Consequently, we have, for p = 1,2, 00,
lAA = AFll < [|AT = AFrllp + |/l ATe — AFully < 7r + 7.

With condition (4.1), »p + 7y converges to zero as N goes to infinity so that A4 and AF are asymp-
totically equivalent. o
With recursion (4.8), one can easily determine upper bounds for the ranks of AFy and AFy, i.e.

rank(APr) <rr+sp and rank(AFy)<ry+sy.

Since both J and P are full rank matrices, the rank of P~ AF (or equivalently the number of outliers
of P~14) is bounded above by

(4.10) f=rp+8r+ry+sy.

However, the bound 7} is not tight. A tighter bound is available according to the following theorem.

THEOREM 2. Let T and H be N x N Toeplitz and Hankel matrices generated by T(z) and H(z) in
(4.3) with the corresponding generating sequences salisfying (4.1) and (4.2). The number of outliers
of P~ A is bounded by

(4.11) n=Br + By + 67 + by + max(ar — Br, oy — By,0) + max(yr — ér, y# — 61,0) — 7,
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where 1. is the number of the common roots in Br(z)Dr(z) and By(z)Dy(2).

Proof. We first focus on the case that all roots of Br(z), Dr(z), Bu(z) and Dy (z) are simple. By
applying the partial fractional expansion to A7(271)/Br(z!) and Cy(z)/Dr(z) and determining the
corresponding Toeplitz matrix for each term, we obtain a decomposition for T, i.e.

Br ér
T=To+ ZTl,i +Ta0+ ZTz,i-

i=1 i=1

In the above expression, T} ; and T3 ; are, respectively, lower and upper triangular Toeplitz matrices.
If ar — Br 2 0, T1,0 has a finite lower bandwidth az — Br. Otherwise, it is equal to zero. The T,
i # 0, corresponds to the Toeplitz matrix generated by a root of Br(z~!). The T»;, 0 < i < 6r can
be similarly defined.

We construct Fr; and Fr; for T} ; and Tz ; based on (4.9). Since the construction is linear, we
have

Sr Sr
AFr = Fr o+ E Fryi+ Froo+ Z Fra.

i=1 i=1

It is easy to verify that the elements of Fir ;0 and Fr 2o are zeros except the northeast max(ar —r,0)
and the southwest max(yr — ér,0) diagonals, respectively. All remaining terms in AFr are rank one
matrices. The AFy can be similarly decomposed as

Bu [Ji4
AFg=Furo+ ) Fupi+Fuzo+ Y Fuog,

i=1 i=l1

where the elements of Fp 1,0 and Fy 20 are zeros except the northeast max(ay — fu,0) and the
southwest max(yy — &y, 0) diagonals, respectively, and all other terms are rank one matrices.

Let us examine the rank of AF = AFr+JAFgy. The ranks of Fr 1 0+JFp,1,0 and Frao+JFy 2.0
are clearly bounded by max(ar — Br,ay — 8y,0) and max(yr — ér,v# — 6u,0), respectively. Since
all other terms in AFy and AFy are rank one matrices, the rank of AF is bounded above by

(4.12) Br + Bu + b7 + b5 + max(ar — Br,an — Pu,0) + max(yr — b7,y — 6x,0)

which is the same as 5 given in (4.11) with 5. = 0.

Now, suppose that By(z)Dr(z) and By (z)Dn(z) have n. common roots. This implies four combi-
nations. That is, Br(z) and By(z), Br(z) and Dy (z), Dr(z) and By(z), or Dp(z) and Dy(z) have
common roots. Without loss of generality, we assume that Br(z) and By(z) have a common root g
and that Toeplitz matrices 7}, and JH),; are generated by this root. By postmultiply Fr 1k, Fr1,k,
Frx+ JFy 1 with the lower triangular Toeplitz matrix L, which has

[1,"‘#, 07' * ')O]T

as the first column, the resulting matrices have only one nonzero column. Thus, the rank of AF =
AFr + JAFy is lower than (4.12) by one due to the root u shared by Br(z) and Bg(z2).

As to the other three combinations, similar arguments hold with the following modifications. When
Dr(z) and Dy(z) have common roots, we postmultiply Fr 2 + JFg2: by the corresponding upper
triangular banded Toeplitz matrix constructed with respect to the common root. When Br(z) and
Dy(z) (or By(2) and Dr(z)) have common roots, we examine the rank of

APrax+ JAFy24J] = OFrax+ OFf, T

by premultiplying an appropriate lower (or upper) triangular Toeplitz banded matrix.
Let us now focus on the case that Bp(z), Dr(z), Bu(z) or Dy(z) has repeated roots which are
common for both Br(2)Dr(z) and By(z)Dy(z). Without loss of generality, we assume that Bp(z)
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has kr roots at u and that By(z) has ky roots at u. Let Fry;, 1<i< kr,and Fy,,1<j<kn,
be constructed with respect to the repeated roots u. It can be shown that

kr ky
Q- Pras+ Fua )L, k = max(kr, kn),

=1 j=1

has at most k nonzero columns. Therefore, the rank of AF = AFr 4+ JAFy is lower than (4.12) by
min(k7,kp) due to the repeated roots shared by Br(z) and By(z). 0

4.3. The clustering radius of P~1A. The following analysis is performed under the assump-
tions that T is symmetric, and that H is symmetric with respect to the secondary diagonal. In other
words, both T and H are symmetric centrosymmetric matrices, i.e. T = T7 and JT = (JT)T [6].
Besides, we assume that Br(z)Dr(z) and By(2)Dy(2) have no common roots (5. = 0). Since

(4.13) MPTIA) T = AMATH A+ AA) =1+ MAT1AA),

the eigenvalues of P~'A clustered around unity is equivalent to the eigenvalues of A" AA clustered
around zero. To study the clustering radius of the eigenvalues of A~1AA, we divide the discussion
into four steps.

Step 1: Relate the generalized eigenvalue problem of A~!A A to another generalized eigenvalue prob-
lem B;IABA where B4 and AB,4 are 2N x 2N block Toeplitz matrices (Lemma 3), and
show that AB, is asymptotically equivalent to a low rank matrix ABp.

Step 2: Transform B4 and ABp into matrices Q4 and AQFr whose eigenstructures are easier to
understand (Lemma 4).

Step 3: Extract the invariant part AQp from AQp such that AQ is asymptotically equivalent to
AQr and that the nonzero elements of AQp do not change with N (Lemma 5).

Step 4: Use the perturbation theory of eigenvalues to determine the spectral clustering radius of
A~1AA or P~!'A (Lemmas 6 and 7, Theorem 3).

The system (2.1) can be augmented into

T TH x| b

Ty T Jx | T [ Jb |’
where the property JW = WJ for any symmetric Toeplitz W and the symmetric assumptions for T’
and Ty are used. Let us define

[T Tx _[AaT ATy
» m=[T ], em=[4T 4T

Since T, Ty, AT and ATy are symmetric centrosymmetric matrices, B4, AB, are also symmetric
centrosymmetric. It is straightforward to verify that B;!AB4 has the symmetric and skew-symmetric
vectors

(4.15) Y+ = [ J:: ] y-= [ ey ] ’

as its eigenvectors, where their associated eigenvalues Ay and A_ and the vectors x; and x_ can be
determined by considering two decoupled subproblems [25], i.e.

(4.16) (AT + JAT)xy: = Ap(T+ ITH)x4,
) (AT - JATy)x- = A (T-JTw)x-.
The first equation of (4.16) turns out to be the same as the original generalized eigenvalue problem
A~1AA. Hence, we obtain the following lemma.
LEMMA 3. LeiT and H be N x N symmetric cenlrosymmetric Toeplilz and Hankel mairices gener-
ated by T(z) and H(z) in ({.3) with the corresponding generating sequences satisfying (4.1) and (4.2).
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The eigenvalues of A=1AA are those of B;‘ABA, defined in (4.14), associated with the symmetric
eigenveclors y4 given in (4.15).

It is worthwhile to point out that the reason to examine the eigenvalues of By AB,, rather than
those of A=A A directly, is that the difficulty caused by the time-reversal operator J can be avoided.
As given in the proof of Lemma 2, AT and ATy are asymptotically equivalent to AFy and AFy,
respectively. Therefore, AB,4 is asymptotically equivalent to
AFr AFy ]

ABr=| AFy AFy

Consider the transformation for B4 and ABp by premultiplying B By, and postmultiplying B By,

where

By = Lprlpn 0
L= 0 LerLlpu |’

and where Lp 7 and Lp g are N x N lower triangular Toeplitz matrices with the first N coefficients
in Br(z~!) and By(z~1) as the first columns, respectively. Note that ||Bg ||y, p = 1,2, 00, is bounded
by a constant independent of N due to condition (4.1). Thus, the generalized eigenvalue problem

ABry = ABay

is transformed to another generalized eigenvalue problem

(4.17) AQF¥ = AQ.aY, y = B] BLy,
where
AT AH
(4.18) AQr = BYBLABFrBYIBL = [ AH AT |
T H
(4.19) Qa=BlBLBAsBfBL = [ H T
and where
AT = (LprLliplerlpu)APr (LyrLh plexlsn),
AX = (LprlpplerLleu) AFy (LprLhylerlsn)
T = (Lprlhulerlen)T (LrLE yLlarlen),
H = (LprLlhulsrlen)Tu (LyrLp glerLle.n).

The motivation for the transformation (4.17) is that AQr and Q4 have some special structures so
that the eigenstructure of @;'AQFr can be understood more easily. The special structures of AQr
are described in Lemma 4.

LEMMA 4. Let T and H be N x N symmelric centrosymmeliric Toeplilz and Hankel matrices
generated by T(z) and H(z) in (4.3) with the corresponding generating sequences satisfying (4.1} and
(4-2). The elements of AT are zeros except the four (rr + By) x (rr + Bu) corner blocks, and the
elements of AM are zeros ezcept the four (rg + Br) X (ru + Br) corner blocks.

Proof. Recall from (4.9) that AFp = Fr, + Fr2 and

(Fr1)ij =tNsi-j (Fr2)ij =t-N4i-j,
The (3, j) element of Fr,\L] r LY, yLerLp .1 is

N N N N

(4.20) Z E Z Z iN.}.g’_kbT,l-ka,m—IbT,m—an,n—jv

k=11l=1 m=1n=1
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where bp; =0ifi > Br and by; = 0if i > By. If j < N - (rr + Bu), the above summation can be
simplified as

fr Bu Bu (ﬁr

(4.21) Z Z Z E tN+i+k'+l'—m'-n'-ij,m') brabg by g =0,

E=0l'=0n'=0 \m/'=0
where ¥ =1—k,I' =m -1, m' =m—n, n’ = n— j, and the equality is due to (4.8). Similarly, the
i,7) element of FroLT »LT . LgrLp u can be simplified as

2Lprlp LB, )

B PBr Pu (ﬂr

Z 2 Z Z t-N+i+k’+l'-m’-n'-ij,k‘) b by, mban =0,

'=0m’=0n’'=0 \k/=0

for j > st + By. Thus, the elements of AFTLg'TLg, yLlB1LB H are zeros except the first and
last »r + By columns since T is symmetric (s = rr). We can argue in a similar fashion that
Lg'TLg'HLg,TLB,HAFT are zeros except the first and last r7 4+ By rows. Since all the nonzero
elements of AT are in the intersections of the above nonzero columns and rows, the elements of AT
are zeros except the four (rr + 8y ) x (rr + Bu) corner blocks. The structure of A can be proved by
the same approach. (]

In order to apply the perturbation theory, we have to search an asymptotically equivalent matrix
of AT with invariant nonzero elements. Let us examine the elements in the four corner blocks of
AFTL;TL};’ gL rLp H, or equivalently, those of

Frolbrliplerlen and  FralfpLE yLlprLlsn.

According to (4.20) and (4.21), the magnitude of the (i, j) element of Fr,LL +LE yLp1Lp,H is
bounded by

fr Bn Br Bn

33 Y Y ltwsiskearamo-nimil brel bmpl 1b7,m] |baml

k=0 '=0m’'=0n'=0

Br BH Br Bu
< bT.kl b 1 br,m’ bH, ' max tnasi_ianl.
2 ozl 3 bl 32 lorimt] 3 oot P SN i

k'=0 '=0 m'=0 n'=0
To determine an upper bound for 47 [b7x| (or E?__{{, [bx,1]), we factorize Br(z~!) as
Br(z7Y) = (1 =rz")(1 = raz™Y) (1 = rpp270).

A direct consequence of (4.1) is that |r;] < 1,1 < i < fr, so that

pral < (5 ) omaxtn)t < (57 ), where (%)= 2

Therefore, we obtain

Br Br Br

Zle.L"SZ( k )=2B’~

k=0 k=0
Similarly, 0% by} < 26¥. Thus, the magnitude of the (i, j) element of FroL} oL} yLerlp.y is
bounded by

APr+Pn max INvicitnl-
—(ﬂr+ﬁn)$n5(ﬂr+ﬂn)' +imjn|

It is straightforward to show that the (i, j) element of

Ti=(LErLE uLlerLlen) Fryo (LprL% yLlerlen),
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is bounded by

(4.22) 16P7+Pn EN+izj+n]l = O(ltN4i-jinl)-

max
=2(fr+Bn)En<Br+PH)

We can see from (4.22) that the nonzero elements in the northeast, northwest, southeast and southwest
(rr + Bu) x (rr + Br) blocks of 7; are bounded by O(Jto|), O(ltn]), O(Jtn]) and O(|t2n]), respectively.
In addition, one can verify that the elements in the northeast (rr + fu) x (rr + Bg) block of 7} are
fixed for sufficiently large N, which is due to the banded structures of LE'TLg,HLB.TLB,H (15], [26]).

Since T is symmetric, Frz = F,I.: , and

To=(LhrlE ylexrlen) Fro(LhrLlh glerlen)="T".

To conclude, the matrix A7 asymptotically converges to

0 0 AQr
AT=| 0 o0 o
AT 0 0

where AQr is an (rr + By ) x (rr + ) block whose elements do not change with N. Clearly, similar
arguments apply to AH. The above discussion is summarized in the following lemma.

LEMMA 5. Lei T and H be N x N symmelric cenirosymmeiric Toeplitz and Hankel matrices
generated by T(z) and H(z) in (4.3) with the corresponding generaling sequences satisfying (4.1) end
(4.2). We can split AQF into two paris

AQr = AQF +(AQF — AQF)

such that the 2N x 2N matriz AQp can be ezpressed in block matriz form as

0 0 AQr : 0 0 AQy
0 o0 o : 0 o o
B ADF 0 0 1 AQF 0 0
(4.23) AQp = ,
0 0 AQy : 0 o0 ADr
0 0 0 : 0 0 0
| A9, 0 o0 i ABr o0 o0 |

where AQr is the the northeast (rr + fu) X (rr + Br) block of

T = (LhrlbulerLlen) Fra (Ly s L ulerlsn),
and AQy is the the northeast (ryr + Br) x (rgg + Br) block of

My = (LhrLEnlsrlen) Fuy (LhrLhulsrle.n).

The nonzero elements of AQr and AQy do not change with the problem size N. The matriz AQp —
AQr asymptotically converges to the zero malriz at a rate bounded by

(4.24) IAQF — AQF|l2 < O(ltw| + [hw).

Note that AQf has at most

4max(rr + Bu,tH + Br)
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nonzero columns (or rows), which is also equal to 25 for symmetric centrosymmetric T and H with
7. = 0. The rank 0, of AQp is therefore bounded by

(4.25) 7, < 2n < 24,

where i} and 7 are defined in (4.10) and (4.11). Combining Lemmas 3, 4 and 5, we obtain another
proof for the number of outliers as stated in Theorem 2 with symmetric centrosymmetric T and H.
However, our focus here is the perturbation effect on the other 2(N — 5) eigenvalues repeated exactly
at zero. For the case that Br(z)Dr(z) and By (z)Dy(2) share common roots, i.e. 7. > 0, we can
modify the premultiplying and the postmultiplying matrices as discussed in the proof of Theorem 2,
namely, to delete one of the two repeated triangular banded Toeplitz matrices corresponding to the
common roots in Lpr and Lg g for transformation (4.17).
Similar to (4.18) and (4.19), we transform AB,4 defined in (4.14) to

AQa = BYBLAB4BT B,
and view AQ4 as the sum of AQp and a perturbation matrix
(4.26) AQE = AQa - AQF = (AQ4 ~ AQF) +(AQF — AQF).

To set up the framework for the perturbation analysis for eigenvalues, two more lemmas (Lemmas 6
and 7) are needed.

According to Lemma 2, the boundness of ||BL||2 and the symmetric properties of {t,} and {h,},
we have

1AQa = AQF|l2 < O(ltn] + [An]).
The above equation, (4.24) and (4.26) give a bound on AQE, i.e.

1AQEllz < O(ltw| + Jhnl).

In addition, we know from (4.19) that

0@z Nz < (BT Br) l2llB3 I211(BE BL) ™2

In above, ||(BY BL)"!||2 is bounded by a constant independent of N, since both (BT +Br,7)~ "2
and ||(B}:,"BL,H)"1||3 are bounded by a constant independent of N due to (4.1). The matrix B, is
asymptotically equivalent to the block circulant matrix

By = Kr Ky ]
K=| ke Kr |
Since ||Bg!||2 is bounded due to (4.2), ||B;'||2 is also bounded by a constant independent of N.
Therefore, |[Q3']l2 = O(1) and we obtain the following lemma.

LEMMA 6. Lel T and H be N x N symmelric cenlrosymmelric Toeplitz and Hankel mairices
generated by T(z) end H(z) in (4.3} with the corresponding generaling sequences salisfying (4.1} and
(4.2). Then,

1R:'AQEllz < € = O(ltn| + |hnI),

for sufficiently large N.

We arrange the eigenvalues of @' AQF in a descending order, i.e. [An| > |An41]. and denote the
corresponding normalized right-hand and left-hand eigenvectors by x;1,x2,- -+, X2y and y1,¥2,- - -, ¥2n,
respectively. Since the rank of AQp is 9., An = 0 for 0, < n < 2N. We choose vectors X, = y, with
nr < n < 2N to be othorgonal for different values of n. We also define

(4.27) sn =yHix,, 1<n<2N.
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The reciprocal of s, is usually known as the condition of the eigenvalue of A, [17], which is bounded
uniformly by a constant independent of N as stated in Lemma 7.

LEMMA 7. Let T and H be N x N symmelric cenirosymmetric Toeplilz and Hankel matrices
generaled by T'(z) and H(z) in (4.3) with the corresponding generaling sequences satisfying (4.1) and
(4-2). Then, the |s;},1 < m < 7y, of Q3 AQF is bounded by a constant independent of N.

Proof. According to (4.23), it is clear that the rank space of Q3'AQp is contained in

R={veR¥N |v,=0,n0<n<N-=npor N+ng<n<2N —ng},

where ng = max(rr + fy,ry + Br). All nonzero eigenvalues of Q;lA—QF can be determined by
considering the generalized eigenvalue problem in the subspace R. Since all the nonzero elements of
AQg in (4.23) do not change with N, the boundness of |s;!|, 1 < m < n, is guaranteed if the four
ng X ng corner blocks of 7 and A do not change with N. By applying the isomorphism between the
ring of the power series and the ring of semi-infinite lower (or upper) triangular Toeplitz matrices with
respect to T'(z) and H(z) given in (4.3), we have

T=Larlpr+(LarLlpy)', T = LanLply +(Lanulsly)”,

where Ly and L g ate N x N lower triangular Toeplitz matrices with the first N coefficients in
Ap(z~') (An(z~1)) as the first columns, respectively. By using the commutative property of the
matrix product among lower (or upper) triangular Toeplitz matrices, 7 and H defined in (4.19) are
products of lower and upper triangular banded Toeplitz matrices. It is then straightforward to show
that elements in the corresponding four corner blocks of 7 (and ) do not change with N, and the
proof is completed. (]

The eigenvalues of

Q:'AQ4 = Q3'A0F + Q7' AQE

can be estimated from those of Q;lAﬁp through perturbation theory. Since the norm of the per-
turbation matrix is equal to ¢ as given in Lemma 6, we denote the eigenvalues and the right-hand
eigenvectors of the perturbed matrix Q;‘AQ 4 by An(€) and x,(€), respectively. According to pertur-
bation theory for repeated eigenvalues [35), the eigenvectors x,(¢) with n. < n < 2N must take the
form

Nr E N
Xa(6) = ) " —Xm+ Y. gmaXm +O(e?),

m=] (A" - Am)sm m=n,+1

where & = y,’"’Q;lAQEx,,, An =0, gnn = 1 and s, defined in (4.27). Due to the construction, we
know that

lixa(@llz 2 llxallz = 1.
The factor [{mn] is bounded by
[emnl = Y1 @7' AQE%n| < |Iyml|211Q3 ' AQs [2lIxall2 < -

The |s;;)|, 1 < m < n, is also bounded due to Lemma 7. The magnitude of A,(€), 7y < n < 2N, of
Q;IAQA (or BZIABA) is approximated by
Pee)l = 11Q2(AQF + AQE)Xa(e)l2

”fan;lAanmlb -1
< +Q:'a
S sl Ixa@l 194 4Qsll2
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Since 7. < 27 as given by (4.25), we conclude that Q;IAQA has at least 2(N —n) eigenvalues confined
in the interval (—eq, +¢g) with

€ = O(tn| + |An()

for sufficiently large N. Finally, the eigenvalues of A=1AA are eigenvalues of By'AB, (or Q3'AQ4)
with symmetric eigenvectors (Lemma 3) so that A=A A has at least N —n eigenvalues confined in the
interval (—eq, +¢g). With (4.13), the above results are summarized in the following theorem.

THEOREM 3. Let T and H be N x N symmetric cenirosymmetric Toeplitz and Hankel matrices
generated by T(z) and H(z) in (4.3) with the corresponding generating sequences satisfying (4.1) and
(4.2). For sufficiently large N, there are at least N — n eigenvalues of P~'A confined in the interval
(1 - €,14 ¢) where

€= O(ltn| + [hn]).

It is possible to obtain an estimate for the spectral clustering radius for nonsymmetric T and H.
That is,

(4.28) €= O(|tn| + lt-~| + |An| + |h-nN]).

However, the proof is much more involved. We refer to [24] for details, and use numerical results to
demonstrate the estimate (4.28) in this paper.

5. Numerical experiments. We use four test problems, including symmetric and nonsymmet-
ric T and Ty, to illustrate the analysis in §4. For all Toeplitz-plus-Hankel systems Ax = b to be solved
in the experiments, we choose b = (1,--+,1)T and the zero initial guess.

Test Probleml. Symmetric T and Ty with (a7, Br,7r,67) = (1,1,1,1) and (ag,Bu,1H,6H) =
(1,2,1,2).
The generating functions of T and Ty are chosen to be

() = 0.5+0.7z"!  0540.7z H(z) = 0.5—0.4z7! + 0.5— 0.4z
T 1407270 T 1407z T (1-0.7:"1)(1-0.92-1) T (1-0.72)(1-0.92)

The eigenvalues of A=A A, except those with magnitude less than 10~¢, are plotted in Fig. 1. Although
it is difficult to distinguish the outliers from the clustered eigenvalues for N < 64, we can see 6 outliers
more easily for the case N = 128. The number of outliers is consistent with (4.11), where the last
three terms are all equal to zero. The clustering radii ¢, |tx]| and |hy| for different N are listed in
Table 1. The values of ¢ decrease at a rate of O(Jtn| + |hn|). The convergence history of the CG and
PCG methods are plotted in Fig. 2. The upper four curves are those of the CG method whereas the
lower four curves correspond to those of the PCG method. The preconditioning does accelerate the
convergence rate of the CG method significantly. The convergence rate of the CG method becomes
slower for larger N. In contrast, the PCG method converges faster as N becomes larger. It in fact
converges in four (= n/2+ 1) iterations asymptotically. The reason that it takes only 7/2+ 1 iterations
for PCG method to converge can be explained by that the outliers are related in pairs such that
only /2 iterations are needed to eliminate the effects of all outliers. A similar phenomenon has been
reported in [25] for solving symmetric positive-definite Toeplitz systems with the PCG method.

Test Problem 2. Symmetric T with (ar,87r,77,67) = (1,1,1,1) and nonsymmetric Ty with

(an,Bu,vu,8u) = (0,0,1,3).
The generating functions of T and Ty are chosen to be

0.5+4+0.3z"! 05+0.3z 0.5 —0.4z
(=) = 17081 T 1408z ° H(z)= (1-0.52)(1+0.82)%°
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TABLE 1
The clustering radius € of P~1A for Test Problem 1.

(N [iwl=lt-nl | Thnl=]a-nl] |
16 | 1.6x10~° | 4.7x10~2 | 1.5x 10-!
32 || 55x10-° | 86x10~3 |88x10-2
64 || 6.1x10°1" | 29x10"% [1.3x102
128 || 7.0x 107" | 3.5x 107" | 1.4x 10=°

‘TABLE 2
The clustering radius ¢ of P~1A for Test Problem 2.
[N [kwl=k-~l | Ih-nl ] e ]

16 || 3.5x10°° | 2.9x 10" | 8.9x 10~
32 || 99x10° | 1.6x 102 | 4.1x 10~
64 || 7.8x10"% | 2.5x10"° | 3.1x10~*
128 [49x10-17 [3.1x10-1 |82x10-1

Note that By(z=1) = 1+ 0.82~! and Br(z)Dr(z) = (14 0.82)2. Since Br(z)Dr(z) and Dg(z) have
two common roots (n. = 2), we know that there are at most 3 outliers according to (4.11), which
is confirmed numerically. The other eigenvalues of P~ A are confined in the disk centered at unity
with radius e. Since |hi_n| >> [tn] = |t-n]|, € = O(Jh-n]). The clustering radii ¢, Jtx| and |h_n|
are listed in Table 2. We apply the CGS method to solve the Toeplitz-plus-Hankel system and plot
the convergence history in Fig. 3. The lower and upper four curves are those of the CGS method
with and without preconditioning, respectively. The preconditioned CGS method converges faster as
N becomes larger, and converges in 4 iterations asymptotically. In contrast, the CGS method without
preconditioning does not converge at all.

Test Problem 3. Nonsymmetric T with (a7, 87,77, 67) = (1,2,0,0) and nonsymmetric Ty with
(alhﬂliﬂﬂ, 6”) = (l) 1)010)'
The generating functions of T' and T are chosen to be
1-0.9z"! _ 1405271
(1+05z-1)(1 +0.8z-1)’

T(z) =

The theory predicts 3 outliers, which is confirmed by the experiment for large N. All other eigenvalues
of P~!A are confined in the disk centered at unity with radius e. The values of ¢, |tx| and |h_ x| are
listed in Table 3. Since |tn| >> |hn|, € decreases at a rate of O(Jin]). The convergence history of the
CGS method with and without preconditioner is plotted in Fig. 4. They correspond to the lower and
upper four curves, respectively. Again, we observe that the CGS method converges in 4 iterations for
large N whereas the CGS method without preconditioning does not converge at all.

Test Problem 4. Symmetric nonrational T' and Tyy.
The preconditioner P is applied to nonrational Toeplitz-plus-Hankel matrices, where T and Ty are
symmetric Toeplitz matrices with generating sequences

1 1
S P s (Y R

respectively. The eigenvalues of A and P~!4 are plotted in Fig. 5. Although the spectral properties
of P=!'4 are beyond our analysis in §3 and §4, the preconditioner P still provides a good spectral
clustering property. We apply the CGN method to solve the preconditioned syetem P~!Ax = P-1b,
and plot the convergence history of this method with and without preconditioning in Fig. 6, where
they correspond to the lower and upper three curves, respectively. It is clear that the CGN method
with preconditioner K converges faster than that without preconditioning.
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TABLE 3
The clustering radius ¢ of P~ A for Test Problem 3.

LN w1 Jhwl ] € |

(16 || 16x10° T | 5.7x103 | 1.5x 10-T
32 || 45%x10° | 1.9x10°° | 1.0x 10~%
64 [| 36x10-° |2.1x10-10 71 8.1x 10-%
128 | 22x 1072 | 26 x10-20 | 1.1 x 10~ 17

6. Conclusion. We generalized the circulant preconditioning technique from Toeplitz to Toeplitz-
plus-Hankel matrices in this research. When the Toeplitz and Hankel matrices are both generated by
rational functions, we proved that the eigenvalues of the preconditioned matrix are clustered around
1 except a finite number of outliers depending on the order of the generating functions, and that the
clustering radius is proportional to the magnitudes of the last elements in Toeplitz and Hankel matri-
ces. With the spectral properties, an N x N rational Toeplitz-plus-Hankel systems can be solved by
preconditioned iterative methods with O(N log N) operations. Although our discussion has focused on
real Toeplitz-plus-Hankel systems, the generalization to complex Toeplitz-plus-Hankel systems can be
done in a straightforward way.

REFERENCES

[1] Z. S. AGRANOVICH AND V. A. MARCHENKO, The inverse problem of scatlering theory, Gordon
and Breach, New York, 1963.
[2] J. G. BERRYMAN AND R. R. GREENE, Discrete inverse methods for elastic waves in layered
media, Geophysics, 45 (1980), pp. 213-233.
[3] A. M. BRUCKSTEIN AND T. KAILATH, Inverse scatlering for discrete transmission-line models,
SIAM Review, 29 (1987), pp. 359-389.
[4] A. M. BRUCKSTEIN, T. KAILATH, 1. KOLTRACHT, AND P. LANCASTER, On the reconstruction
of layered media from reflection data, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 24—40.
[5] J. R. BUNCH, Stabilily of methods for solving Toeplitz systems of equations, SIAM J. Sci. Stat.
Comput., 6 (1985), pp. 349-364.
[6] A. CANTONI AND P. BUTLER, Eigenvalues and eigenvectors of symmetric cenirosymmelric ma-
trices, Lin. Algeb. Appl., 13 (1976), pp. 275-288.
[7] K. CHADAN AND P. C. SABATIER, Inverse problems in quantum scatlering theory, Springer-
Verlag, New York, 1977.
[8] R. H. CHAN, Circulant preconditioners for Hermitian Toeplilz system, SIAM J. Matrix Anal.
Appl., 10 (1989), pp. 542-550.
[9] R. H. CHAN AND G. STRANG, Toeplilz equations by conjugate gradienis with circulant precondi-
tioner, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 104-119.
[10) T. F. CHAN, An optimal circulant preconditioner for Toepliiz sysiems, SIAM J. Sci. Stat. Com-
put., 9 (1988), pp. 766-771.
[11] G. CYBENKO, The numerical stability of the Levinson-Durbin algorithm for Toeplilz sysiems of
equations, SIAM J. Sci. Stat. Comput., 1 (1980), pp. 303-319.
[12] P. DELSARTE AND Y. V. GENIN, The split Levinson algorithm, IEEE Trans. Acoust., Speech,
Signal Processing, ASSP-34 (1986), pp. 470-478.
{13]) P. DEWILDE AND H. DYM, Schur recursions, error formulas and convergence of rational estima-
tors for stationary stochastic processes, IEEE Trans. Inform Theory, IT-27 (1981), pp. 446—461.
(14] P. DEwWILDE, A. C. VIEIRA, AND T. KAILATH, On @ generalized Szego-Levinson realization
algorithm for oplimal linear predictors based on a network synthesis approack, IEEE Trans.
Circuits and Systems, CAS-25 (1978), pp. 663-675.
[15] B. W. DICKINSON, Solution of linear equations with rational Toeplilz matrices, Math. Comp., 34
(1980), pp. 227-233.



TOEPLITZ-PLUS-HANKEL PRECONDITIONER 17

[16] I. M. GELFAND AND B. M. LEVITAN, On the determination of a differential equation from its
spectral function, Amer. Math. Soc. Transl., 1 (1955), pp. 253-304.

[17] G. H. GoLuB aND C. F. VAN LoAN, Matriz Computations, The John Hopkins University Press,
Baltimore, Maryland, 1983.

(18] G. HEINIG AND K. ROST, On the inverse of Toeplitz-plus-Hankel matrices, Lin. Algeb. Appl.,
106 (1988), pp. 39-52.

(19] ——, Matriz representation of Toeplitz-plus-Hankel matriz tnverses, Lin. Algeb. Appl., 113
(1989), pp. 65-78.

[20] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J.
Res. Nat. Bur. Stand., 49 (1952), pp. 409-436.

(21] T. HuckLE, Circulant and skew-circulant matrices for solving Toeplitz matrices problems, in
Cooper Mountain Conference on Iterative Methods, Cooper Mountain, Colorado, 1990.

[22] M. G. KREIN, On a method for the effective solution of the inverse boundary value problem, Dokl
Akad. Nauk. SSSR, 94 (1954), pp. 987-990. in Russian.

(23] H. KRISHNA AND S. MORGERA, The Levinson recurrence and fast algorithm for solving Toeplitz
system of linear equations, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-35 (1987),
pp. 839-848.

[24] T. K. Ku, Preconditioned iterative methods for solving Toeplitz sysiems, PhD thesis, USC, August
1991.

[25] T. K. Ku anp C. J. Kvo, Design and analysis of Toeplitz preconditioners, Tech. Rep. 155,
USC, Signal and Image Processing Institute, May 1990. To appear in IEEE Trans. Signal
Processing, Jan., 1992.

» Spectral properties of preconditioned rational Toeplitz mairices, Tech. Rep. 163, USC, Signal
and Image Processing Institute, Sep. 1990. To appear in SIAM J. Matrix Anal. Appl. July,
1992,

[27] ——, A minimum-phase LU factorization preconditioner Jor Toeplitz matrices, Tech. Rep. 171,
USC, Signal and Image Processing Institute, Feb. 1991.

» Spectral properties of preconditioned rational Toeplitz matrices : the nonsymmelric case,
Tech. Rep. 175, USC, Signal and Image Processing Institute, Apr. 1991.

[29) J. M. MENDEL AND F. HABIBI-ASHRAFI, A survey of approaches 1o solving inverse problems for
lossless layered media systems, IEEE Trans. Geosci. Remote Sensing, GE-18 (1980), pp. 320~
330.

[30] G. A. MERCHANT AND T. W. Parks, Efficient solution of a Toeplitz-plus-Hankel coefficient
malriz system of equations, IEEE Trans. Acoust., Speech, Signal Processing, ASSP-30 (1982),
pp. 4044,

[31] Y. SaAD aND M. H. ScHuLTZ, GMRES: A generalized minimum residual algorithm for solving
nonsymmelric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.

[32] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci.
Stat. Comput., 10 (1989), pp. 36-52.

[33] G. STRANG, A proposal for Toeplitz matriz calculations, Stud. Appl. Math., 74 (1986), pp. 171-
1786.

[34] L. N. TREFETHEN, Approzimation theory and numerical linear algebra, in Algorithms for Ap-
proximation II, M. Cox and J. C. Mason, eds., 1988.

[35) J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, 1965.

[26]

(28]




2-norm of residual

104

102

108

10-14

1020

10-26

102

1038
0

TOEPLITZ-PLUS-HANKEL PRECONDITIONER

FIG. 1. The eigenvalue distribution of A=*AA for Test Problem 1.
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FiG. 2. The convergence history of the PCG method for Test Problem 1.
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FIG. 4. The convergence history of the CGS method for Test Problem 8.
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