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Abstract

In this report, the fuzzy logic controller (FLC) with product inference, centroid defuzzifi-
cation, and Gaussian membership function is proven to be capable of approximating any real
continuous function on a compact set to arbitrary accuracy. The Stone-Weierstrass Theorem is
used as a principal tool for the analysis. Design parameters of FLC are defined, and a parallel
implementation architecture for FLC is proposed. An optimal multi-input-single-output FLC
is designed which can match N given input-output data pairs to arbitrary accuracy using N
fuzzy rules. In order to overcome the high complexity weakpoint of the optimal FLC, a sub-
optimal design method is developed. Based on the parallel architecture of FLC, the sub-optimal
FLC is designed by using a new back-propagation training algorithm. This report shows that
the new back-propagation FLC (BP FLC) can utilize both numerical data and linguistic rules;
specifically, the BP FLC is first trained to match the given input-output data pairs using the
back-propagation algorithm, then linguistic rules from human experts are added to the trained
BP FLC to form the final FLC. A method of choosing the initial parameters of the BP FLC
is proposed which is based on the optimal FLC; this method is shown to be very effective and
makes the training for the BP FLC very fast. The BP FLC is finally applied to approximate
a controller for a non-linear system. By comparing the BP FLC with the back-propagation
feedforward neural network (BP FNN), this report shows that: (1) the BP FLC can be applied

to any problem which is suited for the BP FNN; (2) the BP FLC can utilize both numerical



and linguistic information, while the BP FNN can only utilize numerical information; and, (3)

the training for the BP FLC is much faster than that for the BP FNN.

1 INTRODUCTION

Following the pioneering research of Mamdani and his colleagues on fuzzy logic controller (FLC)
in the middle seventies [20-22], there have been many successful applications of FLC to a wide
variety of practical problems. Notable applications of FLC include the control of: warm water [11],
robot [2,8,33,37,42], heat exchange [28], traffic junction [29)], cement kiln [16,41], activated sludge
[9,38], automobile speed [23,24], automatic train operation systems [55-57], model-car parking
and turning [34-36], turning [32], aircraft [15], water purification [54], automatic container crane
operation systems [58,59], elevator [4], automobile transmission [10}, and power systems and nuclear
reactor [1,12]. Recent advances of fuzzy memory devices and fuzzy chips [39,40,50-53] make fuzzy
systems especially suitable for industrial applications.

A very fundamental theoretical question about FLC remains unanswered, namely: “Why does
a FLC have such excellent performance for such a wide variety of applications ?” Existing ex-
planations are qualitative, e.g., “FLC is model-free,” “FLC can utilize linguistic information from
human experts,” “FLC can simulate human thinking procedure,” “FLC captures the approximate
and inexact nature of the real world,” etc.. In this report, we try to answer this fundamental
question by proving that the FLC is capable of approximating any real continuous function on a
compact set to arbitrary accuracy. We use the famous Stone-Weierstrass Theorem [30] to prove
this fundamental result. This result can be viewed as an existence theorem of an optimal FLC for
a wide variety of problems.

How can this optimal FLC be achieved (designed) for a practical problem ? In this report, we

provide an optimal FLC design which is capable of approximating N given input-output data pairs



to arbitrary accuracy using N fuzzy rules. In order to overcome the high complexity weakpoint
of the optimal FLC, a sub-optimal FLC is designed by using a new back-propagation training
algorithm. A FLC (which is shown in this paper to have a natural parallel architecture), equipped
with this new back-propagation training algorithm, is named a “BP FLC.” The BP FLC can be
trained to match a set of given input-output data pairs using the back-propagation algorithm.
Since the trained BP FLC still has the basic structure of the FLC, it is quite easy to incorporate
linguistic IF-THEN rules from human experts into the trained FLC and form the final FLC, which
is therefore designed based on both numerical and linguistic information.

For many practical problems, the information concerning the system which is to be identified
or controlled is often represented in two forms: one is a set of input-output data pairs, obtained
by measuring the outputs of the system for some typical input signals; and, the other is a set of
linguistic descriptions about the system, often in the form of IF-THEN fuzzy rules, from human
experts who are very familiar with the behavior of the system. Traditional system identification
methods [5,19], even including the (model-free) neural network approaches [25,31], can only utilize
input-output data pairs. If the input signal is not sufficiently “rich”, then some modes of the
system are not excited; hence, it is impossible for these traditional methods to correctly identify
the system. If, somehow, rules from experts contain some linguistic descriptions for these unexcited
modes, then we can hope that a design method which utilizes both numerical input-output data
pairs and linguistic IF-THEN rules can correctly identify the system. The BP FLC approach of
this report is such a method.

In Section 2, we present a system description of the FLC, and define the design parameters of
the FLC. In Section 3, we prove that a subset of the FLC — the FLC’s with product inference,
centroid defuzzification, and Gaussian membership function — is capable of approximating any real

continuous function on a compact set to arbitrary accuracy; we also present a parallel architecture



to implement the FLC. In Section 4, we design an optimal FLC which can approximate N given
input-output data pairs to arbitrary accuracy. In Section 5, the BP FLC is designed and applied
to a simple example to show how the BP FLC can correctly approximate a system which cannot
be approximated using traditional identification methods (the test input signals for this example
are not sufficiently rich). In Section 6, the BP FLC is trained to approximate a controller for a

nonlinear ball and beam system [44]. Section 7 concludes the report.

2 SYSTEM DESCRIPTION OF FUZZY LOGIC CONTROLLER

We first define some terminology. A universe of discourse U is a collection of objects which can be
discrete or continuous. A fuzzy set F in a universe of discourse U is characterized by a membership
function pr : U — [0,1], and is labelled by a linguistic term, where @ linguistic term is a word
such as “small”, “medium”, “large”, “very large”, etc.. For example, let U be the values of speed
of a car. Then, we can define three fuzzy sets in U, namely, “slow”, “medium”, and “fast”, which
are characterized by the membership functions shown in Fig. 1. In this report, we use (F, ur) to
denote a fuzzy set, where F is the linguistic term labelling the fuzzy set, and up is its membership
function.

The basic configuration of a FLC is shown in Fig. 2. Note that there are four principal elements
in a FLC: fuzzification interface, fuzzy rule base, fuzzy inference machine, and defuzzification
interface. In this paper, we consider multi-input-single-output (MISO) FLC: U C R — R.

The fuzzification interface is a mapping from the observed input universe of discourse U C R"
to the fuzzy sets defined in U. Specifically, let (F;, sF;) be a fuzzy set defined in U, and let z € U
be an input to the fuzzification interface; then, the outputs of the fuzzification interface are ur(2;)
(i =1,2,...,n). For example, Fig. 1 defines a fuzzification interface which maps the speed of a car

into the membership values of the speed in the three fuzzy sets labelled as “slow”, “medium”, and



“fast”. If the speed is 45 mph, then the outputs of the fuzzification interface are p410,(45) = 0.5,
Bmedium (45) = 0.5, and p7,50(45) = 0. There are two factors which determine a fuzzification
interface: (1) the number of fuzzy sets defined in the input universe of discourse; and, (2) the
specific membership functions for these fuzzy sets. If these two factors are specified, we obtain a
fuzzification interface; hence, we can view these two factors as design parameters of a fuzzification
interface, where in this report design parameters represent the elements one must fix or choose
in order to design a FLC. Specifically, for a MISO FLC, the design parameters of a fuzzification
interface are: (1) m;,i = 1,2,...,n, the number of fuzzy sets defined in the i'th subspace of U,
where the i'th subspace of U is the projection of U into the i'th coordinate of R®, i.e., it is the
set [z; : 2z = (%1,%2,...,2q) € U] C R; and, (2) BFis i=1,2,...,n,j = 1,2,...,m;, the membership
function of the j'th fuzzy set defined in the i’th subspace of U.

The fuzzy rule base is a set of linguistic statements in the form of “IF a set of conditions are
satisfied, THEN a set of consequences are inferred”, where the conditions and the consequences
are associated with fuzzy concepts (i.e., linguistic terms). For example, in the case of an n-input-

single-output FLC, the fuzzy rule base may consist of the following rules:

R;:IF z, is A} and 2z, is Al and --- and z, is A, THEN 2z is B, (1)

where z; (i = 1,2,...,n) are the inputs to the FLC, z is the output of the FLC, A;f and BJ
( = 1,2,..., K) are linguistic terms, and K is the number of fuzzy rules in the fuzzy rule base.
These fuzzy IF-THEN rules provide a natural form in which humans represent their knowledge.
By relating each linguistic term in the fuzzy rules with 2 membership function (e.g., as in Fig. 1),
we specify the meaning of the fuzzy rules in a determined fuzzy sense. There are many different

kinds of fuzzy rules; see [17) for a complete discussion. In this paper, we consider only fuzzy rules



in the form of (1). The design parameters of a fuzzy rule base are: (1) K, the number of fuzzy
rules in the fuzzy rule base; and, (2) the specific statement of each fuzzy rule.

The fuzzy inference machine is decision making logic which employs fuzzy rules from the fuzzy
rule base to determine fuzzy outputs of a FLC corresponding to the fuzzified inputs to the FLC. It
is the fuzzy inference machine that simulates a human decision making procedure based on fuzzy
concepts and linguistic statements. There are many different kinds of fuzzy logic which may be
used in a fuzzy inference machine; see [18] for a comprehensive review. The design parameter of a
fuzzy inference machine is: which specific fuzzy logic is used.

The defuzzification interface defuzzifies the fuzzy output of a FLC to generate a nonfuzzy output
which is used as the actual control to the plant (see Fig. 2). There are three existing defuzzification
methods, namely: centroid (i.e, center of area), max-criterion, and mean of maximum (see [18] for
details). The design parameters of a defuzzification interface are: (1) number of fuzzy sets defined
in the output universe of discourse R; (2) specific membership functions of these fuzzy sets; and,
(3) which defuzzification method is used.

In summary, an FLC has the following design parameters:

(d.1) number of fuzzy sets defined in the input and output universes of discourse;

(d.2) membership functions of these fuzzy sets;

(d.3) number of fuzzy rules in the fuzzy rule base;

(d.4) linguistic statements of the fuzzy rules;

(d.5) decision making logic used in the fuzzy inference machine; and,

(d.6) defuzzification method.

We see that a MISO FLC is a complicated nonlinear system which maps a nonfuzzy U C R"
into the nonfuzzy R. There are a wide variety of FLC design parameters which give its design great

flexibility. Next we briefly discuss the roles of each design parameter.



The number of fuzzy sets defined in the input and output universes of discourse and the number
of fuzzy rules in the fuzzy rule base heavily influence the complexity of a FLC, where complexity
includes time complexity, i.e., the computational requirements of the FLC, and space complexity,
i.e., the storage requirements of the FLC. These parameters can be viewed as structure parameters
of a FLC. In general, the larger these parameters are, the more complex is the FLC, and the higher
is the expected performance of the FLC (see [43] for examples). Hence, there is always a trade-off
between complexity and accuracy in the choice of these parameters; and, their choice is usually
quite subjective.

The membership functions of the fuzzy sets heavily influence the “smoothness” of the input-
output surface determined by the FLC. In general, the “sharper” the membership functions are,
the less smooth is the input-output surface. The choice of membership functions is also quite
subjective.

The linguistic statements of the fuzzy rules are the heart of a FLC in the sense that it is these
linguistic statements that contain most of the information concerning the FLC design; all other
design parameters assist in the effective representation and use of the information. The fuzzy
rules usually come from two sources: human experts, and training data. A general method to
generate fuzzy rules from numerical data was proposed in [43], and was successfully applied in [44]
to temperature prediction, truck backer-upper control [27], and chaotic time-series prediction [14).
Another method was proposed in [13] to generate fuzzy rules from numerical data using vector
quantization. It seems that except for the work of [43,44] and [13], the derivation of fuzzy rules is
quite subjective.

The decision making logic used by the fuzzy inference machine is very important, and may be
the most flexible component in the FLC. If we compare a FLC with a human controller, then the

fuzzification interface corresponds to our sensory organs (e.g., eye, ear, etc.), the defuzzification



interface corresponds to our action organs (e.g., arms, feet, etc.), the fuzzy rule base corresponds to
our memory, and the fuzzy inference machine corresponds to our thought process. A sophisticated
FLC may need a sophisticated fuzzy inference machine.

The role of the defuzzification strategy in a FLC is somewhat unclear because there are only
three defuzzification methods available, among which the centroid method seems to provide the
best performance for most applications [18].

In this section, we only presented a very brief description of the FLC. Our purpose was to
highlight and specify its design parameters. For a comprehensive description and discussion of the

FLC, see [17,18].

3 ANALYSIS OF THE FUZZY LOGIC CONTROLLER AND

ITS PARALLEL IMPLEMENTATION

We have shown that MISO FLC’s can be viewed as mappings from a nonfuzzy universe of discourse
U C R" to R, and, these mappings are characterized by the six design parameters (d.1)-(d.6). All
these mappings consist of a function space X. Since there are great flexibilities in choosing the
design parameters, X is a very large space. In this section, we analyse the properties of a subset
of X which is determined by fixing some design parameters in the following way:

(a) fuzzy rules in the fuzzy rule base are all in the form of (1);

(b) all membership functions are of the following Gaussian form:

gm0 = alezpl- (B, @

where i = 0,1,2,..,n,j = 1,2,..., K (K is the number of fuzzy rules in the fuzzy rule base),

i = 0 represents the membership functions for the output space, and, ¢ = 1,2,...,n represent the



membership functions for the input space; A{ has the same meaning as in (1) (A(’, = B’);0 < a;f <1
:Ef is the point in the ¢th input subspace (for i = 1,2, ...,n) or the output space (for i = 0) at which
the fuzzy set ( A;" o A{) achieves its maximum membership value; and, o:’ € (0, 00) characterizes the
shape of the Gaussian membership function;

(c) product inference logic [16] (which is specified below) is used in the fuzzy inference machine;
and,

(d) centroid defuzzification method (which is also specified below) is used in the defuzzification
interface.

Definition 1: The set of FLC’s with product inference, centroid defuzzification, and Gaussian

membership functions, denoted by Y in the sequel, consists of all functions of the form

EK=1 (zjn?=1ﬂ,4§ (z:))
ZK=1(H?=1PA-: (=) ’

f(z)= (3)

where: f: U C R* — R, z = (%1,%2,...,Zn) € U, K is the number of fuzzy rules in the fuzzy rule
base, ) (z;) is the Gaussian membership function in (2), and 2’ is the point in the output space
R at which ppg; achieves its maximum value (in the notation of (2) we have 37 = 5;‘{;). We assume
K > 1, and that U is compact [26,30).

From (3), observe that if we view the fuzzy inference machine and defuzzification interface as an
integrated part, then product inference logic can be explained as that the “weight” of Rule j to the
contribution of determining the output of the FLC for input z equals IIZ_; u Al (z;). Additionally,
centroid defuzzification means that the nonfuzzy output of the FLC is a weighted sum of the K
points in R at which the membership functions characterizing the linguistic terms in the conclusion
parts of the K rules achieve their maximum values, where the “weights” are determined by the

product inference machine. We also see from (3) that the “shape” (characterized by the a{ and af )



of the membership functions defined in the output space has no influence on the set Y, because
only the “centers” z’ enter the right-hand side of (3).

The design parameters of the FLC in Y are:

(d.i) m;, ¢ = 1,2,...,n, the number of fuzzy sets defined in the i’th subspace of the input universe
of discourse U, and, mo, the number of fuzzy sets defined in the output space R;

(d.ii) f:;i, af, a{ and # (i = 1,2,...,n,j = 1,2, ..., ), the parameters of the Gaussian membership
functions of the fuzzy sets defined in the input and output spaces;

(d.iii) K, the number of fuzzy rules in the fuzzy rule base, with X > 1; and,

(d.iv) the specific statements of the fuzzy rules which are in the form of (1).

Let dso(f1, f2) be the sup-metric (26,30] defined by

doo(f1, f2) = supzeu(li(z) — f2(2)])s (4)

then (Y, do,) is a metric space. To analyse this metric space, one may first ask: “Is Y empty ?,”
and, “Is (Y,dy) well-defined 7" (i.e., for any z € U and any f € Y, does there exist z € R such
that f(z) =27)

LEMMA 1: Y is non-empty.

Proof: This is an obvious conclusion from the assumption K > 1. Q.E.D..

LEMMA 2: (Y, doo) is well-defined.

Proof: Since Y is non-empty, we only need to prove that the denominator of (3) is nonzero for

any z € U. Based on (2), the Gaussian membership functions are nonzero (we assumed 0 < af < 1);
hence, the denominator of (3) is nonzero. Q.E.D..
From the proof of Lemma 2 we see that if we change the membership functions into the triangular

form, e.g., the membership function for the “medium” speed in Fig. 1, then the resulting (Y, d.,)

10



may not be well-defined, because for an arbitrary f in such ¥ we cannot guarantee that the
denominator of f is nonzero for every z € U. We need other stronger conditions in order for such
Y to be well-defined; a set of such conditions was given in [43,44].

Next, we use the Stone-Weierstrass Theorem to prove that (Y, do,) is dense in (C[U], dw), where
C[U] is the set of all real continuous functions defined on the compact set U.

Stone-Weierstrass Theorem [30]: Let Z be a set of real continuous functions on a compact set
U. If:

1) Z is an algebra, i.e., the set Z is closed under addition, multiplication, and scalar multipli-
cation;

2) Z separates points on U, i.e., for every z,y € U,z # y, there exists f € Z such that
f(z) # f(y); and,

3) Z vanishes at no point of U, i.e., for each z € U there exists f € Z such that f(z) # 0;

then, the uniform closure of Z consists of all real continuous functions on U, i.e., (Z,dy) is
dense in (C[U),d).

In order to use the Stone-Weierstrass Theorem to prove that (Y, do) is dense in (C[U],d), we
need to show that Y is an algebra, Y separates points on U, and, Y vanishes at no point of U. The
following Lemmas 3-5 prove that Y has these properties.

LEMMA 3: (Y, do) is an algebra.

Proof: Let fy, f2 € Y, so that we can write them as

S (P M 15 (2:)

fl (3’.) = g;ll(n?:l”lu{ (3;’)) ) (5)
)= I (2 Mg g4 (20)) ©

5{-_-21(11:‘;1#42{ (=) ,

11



hence,
E:l_l 12—1(3111 + 2212)(11:-1/‘4111 (mt)ﬂAzﬂ(zt))

h(z)+ foz) = EJI-I Jz—l(nl—lﬂAlJl (:t.)l.lAy2(-‘L':))

()

Since p 4,51 and p 4,52 are Gaussian in form , their product p A1t 4002 18 also Gaussian in form
(this can be verified by straightforward algebraic operations); hence, (7) is the same form as (3),

so that fi + f2 € Y. Similarly,

E i=1 ,72—1 (zl"lz212)(]:['_lp‘41_!1 (m,')qugz (.‘B,))
2,1—1 j2=1 (Hi=1l‘ Al{l (3-')»“ A28? (“-'i))

fi(@) falz) = ’ (8)

which is also in the same form of (3); hence, f f2 € Y. Finally, for arbitrary ¢ € R,

J-I(CZ]’J)(Ht—lI"’Alf(zi))
cf1(£) J—I(H'-l”“u{(zi)) ’ (9)

which is again in the form of (3); hence, c¢f; €Y. Q.E.D..

LEMMA 4: (Y, d.,) separates points on U.

Proof: We prove this by constructing a required f, i.e, we specify the number of fuzzy sets
defined in U and R, the parameters of the Gaussian membership functions, the number of fuzzy
rules, and the statements of fuzzy rules, such that the resulting f (in the form of (3)) has the
property that f(z®) # f(y°) for arbitrarily given z°,3° € U with z0 # 3°. Let 2° = (29,29, ...,29)
and $° = (39,93, ...,93). I 20 # y?, we define two fuzzy sets, (A} »H41) and (A?,[AA?), in the i'th

subspace of U, with

ap(e) = expl-ZiS 2, (10)
z: — y9)2
pa(ei) = eapl-ZS ) (1)

If 20 = y?, then A} = A? and py1 = py2, i.e., only one fuzzy set is defined in the i"th subspace of

12



U. We define two fuzzy sets, (B!, up1) and (B2, ug3), in the output universe of discourse R, with
z~ )2
#pi(2) = ezp[——( 5 ) ], (12)

where j = 1,2, and ' will be specified later. We choose two fuzzy rules in the form of (1) for the
fuzzy rule base (i.e., K=2). Now we have specified all the design parameters except ¥ (j = 1,2),
i.e., we have already obtained a function f which is in the form of (3) with K = 2 and u ,; given

by (10) and (11). With this f, we have

2+ 2L, exp[— (22 — 3f)?/2)

&) = T T eapl-GI -y~ °F (=% 3)
52 4 F1[n —(29 — 492
16 = = 11211:"1:';1::[{[(5 - y?y)‘z)/z/f] = +(1-a)2, (14)
where
! 1 (15)

" T+ eap[—(af - 99)7/2]°
Since z° # y°, there must be some i such that z? # y?; hence, we have II%; ezp[—(2? — $2)?/2] # 1,
or, @ # 1 - a. If we choose 2! =0 and 22 = 1, then f(z°) =1-a # a = f(3°). Q.E.D..

LEMMA 5: (Y, d) vanishes at no point of U.

Proof: By observing (3) and (2), we simply choose all 2/ > 0 (j = 1,2,...,K),i.e,,any f€Y
with 27 > 0 serves as the required f. Q.E.D..

Now we state the main result of this section.

THEOREM 1: For any given real continuous function g on the compact set U C R" and

arbitrary € > 0, there exists f € Y (Y is defined in Definition 1) such that

l9(2) — f(2)l < € (16)

13



forallz e U.

Proof: From (3) and (2), it is obvious that Y is a set of real continuous functions on U.
Theorem 1 is therefore a direct consequence of the Stone-Weierstrass Theorem and Lemmas 3-5.
Q.E.D..

Theorem 1 is an existence theorem. It shows that for any control problem, if an optimal
controller (in whatever sense) performs a real continuous mapping from a compact set U C R"
into R, then it is possible to design a FLC, in fact a very special FLC — the FLC in Y (Definition
1), such that the FLC approximates the optimal controller arbitrarily well. Theorem 1 gives a
theoretical explanation for some of the successes of FLC in practical applications.

Some comments are now in order:

1) From the proof of Lemma 3 we see that, in order for (Y, d,,) to be an algebra, it is essential
that the product of two membership functions preserves the functional form of each individual
membership function. The triangular type of membership functions (e.g., Fig. 1), which are most
commonly used in the FLC literature, do not have this reproducing property.

2) From the proof of Lemma 3 we see that if f; and f; are constructed using K1 and K2 fuzzy
rules, respectively, then we need K1 x K2 fuzzy rules to construct f; + f; or f f. Consequently,
if the number of fuziy rules is bounded, then the resulting Y will not be an algebra. To permit an
unbounded number of fuzzy rules is a strong requirement which, as we will see next, forces us to
permit the number of fuzzy sets defined in the input universe of discourse to also be unbounded.

3) If only nonconflicting fuzzy rules, i.e., fuzzy rules which must have the same THEN parts
if the IF parts are the same, are allowed in the fuzzy rule base, then the number of fuzzy rules is
bounded from above by mym; - - -m,, i.e., K < mym3 - --m,, where m; is the number of fuzzy sets
defined in the ¢th input subspace. This result is due to the facts that the maximum number of

combinations of the fuzzy sets defined in the input universe of discourse is mymg - - -m,, and only

14



nonconflicting fuzzy rules are allowed. Since X must be unbounded in order for the FLC set to
be an algebra (which is an essential requirement in order to obtain our main result in Theorem 1),
it seems difficult to use the Stone-Weierstrass Theorem to analyse the FLC with fixed number of
fuzzy sets defined in the input universe of discourse.

Theorem 1 shows that the FLC in Y can approximate continuous functions. The following
corollary generalizes the result of Theorem 1 to discrete functions.

COROLLARY 1: For any g € Ly(U) and arbitrary e > 0, there exists f € Y such that

(1@ - s@Pde)? < o (17)

where U C R™ is compact, Ly(U) = [g: U — R| [y |g(2)|?dz < o], and the integrals are in the
Lebesgue sense.

Proof: Since U is compact, f;dz = V < o0. Since continuous functions on U form a dense
subset of La(U) [30)], for any g € Lo(U) there exists a continuous function § on U such that
(Ju l9(z) — 3(z)|*dz)*/? < €/2. By Theorem 1, there exists f € Y such that sup,cv|f(z) — §(z)| <

¢/(2V/?); hence, we have

(f @ -s@P < ([ /@ -3@P" + ([ lo(e) - s(e)de)?

< (f (oupeevlf(@) - (@) de)? + ¢/2
€2

(22—VV)1/2 +¢/2=c (18)

<

Q.E.D..
Finally, by analysing the computations involved in the FLC in Y, i.e., by analysing (3) and (2),
we observe a very important fact: most of these computations can be performed in parallel. For

given z € U, the computations involved in the FLC in Y consist of two steps: first, compute the

15



K X n membership values, u A3 (i), i=1,2,...,n,j=1,2,..., K, according to (2); then, substitute
these X x n values into (3) to obtain the output f(z). We see from (2) that the computations
ofthe K xn " (2;) are independent, i.e., all these computations can be performed in parallel.
Consequently, we have a parallel implementation scheme for the FLC in Y, shown in Fig. 3. From
Fig. 3 we see that the FLC can be viewed as a three-layer feedforward network (it may also be
viewed as a structured network [45-49]). In Section 5, we will develop a new back-propagation

algorithm to train this network.

4 DESIGN OF AN OPTIMAL FUZZY LOGIC CONTROLLER

Consider the following design problem: Given N input-output pairs (27, 2z7), where j = 1,2, ..., N,
27 e UCR" 27 € R,and 27 # z! for j # I, design an FLC f: U — R with product inference,

centroid defuzzification, and Gaussian membership function (Definition 1), such that

N
J =Y lf(&) - 2 (19)

i=1

is minimized.
We propose the following design procedure:

Step 1: Define N fuzzy sets, (A;i,pAg), j=1,2,...,,N,in the ith subspace of U, with

by (0 = empl- 2By, (20)

wherei =1,2,...,n, a:;f is the i’th component of the given 2/, and ¢ > 0 is a free design parameter,
e.g., we can choose o such that (22) is satisfied;

Step 2: Define N fuzzy sets, (B, up;), j = 1,2,..., N, in the output universe of discourse R,

16



with
: .

2
—)’l (21)

ppi(2) = eapl—5(

where 27 are the outputs in the given input-output pairs, and ¢ is the same free design parameter
as in (20); and,

Step 3: Use N fuzzy rules in the form of (1) (X = N) in the fuzzy rule base.

These steps specify a FLC in Y. This FLC is optimal in the sense that by properly choosing
the free design parameter o, we can make the objective function J arbitrarily small.

THEQREM 2: For arbitrary ¢ > 0, there exists * > 0 such that the FLC f*: U — R, obtained
from the preceding three-step design procedure and with the free design parameter o*, has the
following property:

= ) - P < (22)

i=1

Proof: From the design procedure and (3), we have

TIL ) (I ezpl=(af — 2¥)2/20°2))
TN (T2, exp[—(z] — 2F)2/20*7])

4 5oy 2 (Wiyeapl=(a] - /20
14+ T ct (Mg ezpl-(a] — )?/20°7)

r1&@)

(23)

where j = 1,2,..., N. Because we assume z’ # z* for j # k, there exist some i such that :cf: # zf for
all j,k=1,2,...,N with j # k. Hence, for arbitrary ¢; > 0 and any j,k=1,2,...,N, j # k, we can
make I, ezp[—(z! — z¥)2/20*2] < € by properly choosing o*, because exp{—(z! - 2¥)?/20*% — 0
as o* — 0 if a:;i # zf. From this result and (23) we conclude that there exists 0* > 0 such that

|f*(z) — 27| < (¢/N)M/?; hence, we have J* = LIV, [f*(z/) - P < e. Q.E.D..
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5 DESIGN OF A SUB-OPTIMAL FUZZY LOGIC CONTROLLER

THROUGH BACK-PROPAGATION TRAINING

The optimal FLC designed in the last section has N fuzzy rules. If N is very large, which is
often the case in practice, then the optimal FLC has a huge fuzzy rule base which makes the
implementation of the optimal FLC difficult even when parallel hardware is available. In this
section, we will design a FLC for which the number of fuzzy rules is fixed. Specifically, we first
fix the number of fuzzy rules X = Ko, and then choose other design parameters (which will
be defined next) such that the resulting FLC best matches the given N input-output pairs. In
general, we choose Ko << N. The membership functions are of the form of (2) with a{ = 1
we choose a.f: = 1 because for practical problems it is reasonable to assume that every fuzzy
membership function achieves unity membership value at some point. The design parameters for
the FLC of this section are: (1) #,j = 1,2,..., Ko; (2) if',i =1,2,..,n,5 = 1,2,...,Ko; and, (3)
a{ yi=1,2,..,n,7=1,2,.., Ko. We will develop a new error back-propagation training algorithm
to determine these design parameters.

For a given input-output pair (z?, f*) (p = 1,2, ..., N), we define an error:
1 ”
e(z) = 5(f(&") - f* )%. (24)

The purpose of the error back-propagation training algorithm is to determine the design parameters
such that e(zP) is minimized. We will use e, f and f to denote e(z?), f(zP) and f7, respectively.
To train 37, we use

. . de
#(k+1)=2(k)- O‘ﬁlz&zi(k), (25)

where j = 1,2, ..., Ko, and k£ = 0,1,2, ... . From Fig. 3 we see that f (and hence e) depends on b2}
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only through a, where f = a/b,

Ko . -
a=Y (), (26)
Jj=1
Ko
b=>_v, (27)
—~
and
¥ =My (), (28)
hence, using the chain rule, we have
Be _ o n0fda_ o a1
oz == Dezar = U - Dy (29)

Substituting (29) into (25), we obtain the training algorithm for 2:

F(k+1)= Zj(k)—af;fyi, (30)

where j = 1,2,...,Kg,and £ =0,1,2,....
To train :T:f , We use

> i Oe
zZi(k+1) = zi(k) - aaT_{bg:e{(k), (31)

where i = 1,2,..,n,5 = 1,2,...,Kp, and k = 0,1,2,.... We see from Fig. 3 that f (and hence e)

depends on i:f only through y’; hence, using the chain rule, we have

0
=(r-Ny5 Zyj. (32)
Now
af Lo slyl - f
By 6y.1[ z‘:xlo I=—3 (33)

19



and (using the Gaussian form of the membership functions)

pP_ =J
8y’ T — F;

- 34

Substituting (32)-(34) into (31), we obtain the training algorithm for :Ef :

=3 (1 — =i — f_j—j J : z.’(k)

where:i=1,2,..,n,5=1,2,...,K9,and £ =0,1,2,...
Using the same method as above, we obtain the following training algorithm for a,iz:
. 2 de
ol’(k+1) = ol*(k)- ) Iw’—a”(k)
2 j(2f — zi(K))?

al*(k) - o1 (ZJ Ny i (36)

2ol (k)2

wherei=1,2,..,n,7=1,2,...,K¢,and £ =0,1,2,...

The training algorithm of (30), (35) and (36) is an error back-propagation procedure: to train
77, the “normalized” error (f — f )/b is back-propagated to the layer of 27, then 2/ is updated using
(30) in which g7 is the input to 37 (see Fig. 3); to train :T:f and 0{2, the “normalized” error (f — f)/b
times (27 — f) and ¥’ is back-propagated to the processing unit of Layer 1 whose output is §’; then,
:Ef and a{ 2 are updated using (35) and (36) respectively in which the remaining variables Ef ,zf and
a{2 (i.e., the variables on the right-hand sides of (35) and (36), except the back-propagated error
LI-Z(EJ' — f)¥’) can be obtained locally.

The training procedure for the FLC of Fig. 3 is a two-pass procedure: first, for a given input z?,
compute forward along the network (i.e., the FLC) to obtain 3’ (j = 1,2,..., Ko), a,b and f; then,

train the network parameters 25,:?{ and 0{2 (i=1,2,..,n,j = 1,2,..., Ko) backward using (30),
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(35) and (36), respectively. The purpose of training is for the FLC to match the given input-output
pairs (z?, f”) for p = 1,2,...,N. The back-propagation training algorithm of (30), (35) and (36)
can only train the FLC for one input-output pair at a time; hence, we need to train the FLC in
turn for all the NV pairs. We call the FLC of Fig. 3, equipped with the error back-propagation
training algorithm (30), (35) and (36), a “Back-Propagation Fuzzy Logic Control”, or “BP FLC”.

The error back-propagation training algorithm is a steepest descent algorithm; hence, a good
choice of initial parameters 7/(0), Z/(0) and a;i %(0) is essential to its performance (i.e., convergence,
rate of convergence, etc.). Now we propose a method of choosing the initial parameters. Let the
given input-output pairs be (g”,f”), p=12,..,N, and suppose that N = m X Ky, where Kj is
the number of rules in the FLC and m is an integer. First, rearrange the pairs such that f‘ < f““,

i=1,2,..,N — 1, for the sequence of pairs [(z!, f), (22, f2), ..., (2N, fM)]. Then, choose

m
#H(0)= 3 frHti-om, (37)
k=1
and,
- 1 O~ kt(i=1)m
5:':(0) = Z z; g » (38)
k=1

where j = 1,2,...,Ko, and i = 1,2,...,n. Finally, let Zimar = maz(z},2?,...,2Y) and Zimin =

min(z},z?,...,2N), i = 1,2,...,n, and choose

i Zimar — Timi
0’;’2(0) = ( - I(O S )23 (39)

where j = 1,2,...,Kgand i = 1,2,...,n.
Since the output of the FLC is a weighted sum of 37, it is reasonable to think that a good

choice of initial 25(0) is to make Ej(O) (7 = 1,2,...,Ko) uniformly cover the range of Pp=
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1,2,..,N). (37) and (38) are just such a choice. The purpose of choosing 0{2(0) from (39) is
to make the initial Gaussian membership functions neither too flat nor too sharp. The resulting
initial FLC can be viewed as an optimal FLC for matching the Ko pairs of data: (29, f7), where
fr=1lyp, fretle-tm g9 - L a:f"'(""l)m, and ¢ =1,2,..., Ko

It is interesting to compare the BP FLC with the popular back-propagation feedforward neural
network (BP FNN) [31]. They are similar in the following aspects:

1) It was proven in [3,7] that the BP FNN can approximate any real continuous function on a
compact set to arbitrary accuracy, provided that there are sufficient hidden-layer neurons; similarly,
we proved in Section 3 that the BP FLC can also approximate any real continuous function on a
compact set to arbitrary accuracy, provided that there are sufficient fuzzy rules. Therefore, from
the system capability point of view, BP FLC and BP FNN are isomorphic.

2) Both BP FLC and BP FNN are multi-layer parallel networks, and, their operations are quite
similar. They first compute forward along the network; then the network parameters are trained
backward. This cycle continues until the given input-output pairs are matched to a certain degree.
After training is completed, both the BP FLC and BP FNN are used as nonlinear approximators.
Consequently, from system architecture and operation points of view, BP FLC and BP FNN are
isomorphic.

There is a fundamental advantage of the BP FLC over the BP FNN, namely: the BP FLC can
use both numerical information (in the form of input-output pairs) and human linguistic information
(in the form of fuzzy IF-THEN rules), whereas the BP FNN can only use numerical information.
A way of incorporating human linguistic information into the trained BP FLC is given next.

Suppose we want to use a BP FLC to approximate a nonlinear (static) system. We have
two kinds of information about the system: one is some input-output pairs of the system which

are obtained by measuring the outputs of the system for some typical input signals; the other
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is some linguistic rules (in the form of (1)) collected from human experts who are familiar with
the behavior of the system. We build a BP FLC to approximate the system, using both kinds of
information. First, we choose an appropriate Ko (the number of fuzzy rules in the BP FLC) by
compromising between accuracy and complexity (the larger the Ky is, the more accurate is the
approximation, and the more complex is the BP FLC). Then, we train the BP FLC to match
the input-output pairs using the error back-propagation algorithm developed in this section, with
the initial parameters given by (37)-(39). The parameters of the trained BP FLC give us the
specific forms of the membership functions defined for each coordinate of the input space and the
centers of the membership functions defined for the output space. (From (3) we see that only
the center values of the output membership functions enter the computation; hence, the shape of
the output membership functions has no influence on the BP FLC, i.e., we only need to consider
the center values of the output membership functions.) Now we ask the human experts who
provide the linguistic rules to view these input membership functions and center values of the
output membership functions, and to determine which input membership function corresponds to
their linguistic term A{ (see (1)) and which output center corresponds to their linguistic term BY.
If the experts can find appropriate input membership functions and center values of the output
membership functions for all their linguistic terms A{ and B’ in their fuzzy rules, then we just add
these linguistic rules to the trained BP FLC to form the final FLC which has (at most) Ko + Lo
rules, where Lg is the number of expert linguistic rules (since some linguistic rules may agree with
the rules in the trained BP FLC, the final FLC has at most Ko + Lo rules). If the experts cannot
find the appropriate membership functions for some linguistic terms in their rules, then we add new
membership functions for these linguistic terms, and combine the linguistic rules into the trained
BP FLC to form the final FLC.

Now we illustrate the above procedure of combining both numerical and linguistic information
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through a very simple example. Suppose that we want to build a FLC to approximate the system

f:[0,3] = R, where

1, 0<z<1
flz) = 0, 1<z<2 (40)
1, 2<2z2<3

which is shown in Fig. 4. We have two sets of information: one is a set of 10 input-output pairs:
[(0.1,1),(0.3,1),(0.5,1),(0.7,1),(0.9,1), (1.1,0),(1.3,0),(1.5,0),(1.7,0),(1.9,0)}; and, the other is
a set of two linguistic rules: (Rule 1: IF z is medium, THEN f(z) is small), (Rule 2: IF z is
large, THEN f(z) is large), where by “z is medium” and “z is large” the experts mean that z is
somewhere around 1.5 and 2.5, respectively, and, by “f(z) is small” and “f(z) is large” the experts
mean that f(z) is somewhere around 0 and 1, respectively. We see that the 10 input-output pairs
only cover the responses of the system for inputs in the interval [0, 2]; hence, we may expect that
the pure BP FLC (without the linguistic rules) will have large approximation error for inputs in the
interval [2,3]. On the other hand, the linguistic rules only describe the behavior of the system for
inputs somewhere around 1.5 and 2.5; hence, it will have large approximation error for small input
(somewhere around 0.5) if we just use the linguistic rules to build the FLC. Since Rule 2 describes
the response of the system for input in the interval [2,3], we may expect that the final FLC which
combines the trained BP FLC and the linguistic rules will more correctly approximate the system.

Let Ko = 5. Define a sweep of training as one forward computation along the BP FLC plus
one backward training for one input-output pair, and define a cycle of training as the training
for all the given input-output pairs in turn with each pair trained for one sweep. We trained

the BP FLC for two cycles for the 10 input-output pairs (longer training gave no improvement
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for the approximation accuracy; this showed that the training for BP FLC was very fast), with
the initial parameters determined from (37)-(39). We chose a = 0.02 for the training. The final
membership functions for the input space are shown in Fig. 5 as S2, S1, CE, B1 and B2, where
the centers of S2, S1, CE, Bl and B2 are at 0.1986, 0.6005, 1.0024, 1.4045 and 1.8070, respectively,
and , the “standard deviations o’ of §2, S1, CE, B1 and B2 are 0.3590, 0.3606, 0.3541, 0.3369 and
0.3001, respectively. The centers 2/ (j = 1,2, ..., 5, for the five rules) of the final output membership
functions are at 1.0025,1.0040, 0.4993, -0.0049 and -0.0027, respectively. The input-output response
of the trained BP FLC is shown in Fig. 6 which shows that the approximation for the inputs in
the interval [0,2] is acceptable (considering that we only have five rules), but the approximation for
the inputs in the interval [2,3] is totally wrong.

Next we see how to combine the two linguistic rules into the trained BP FLC. By observing the
input membership functions S2, S1 CE, B1 and B2, the experts (in this case, the present authors)
felt that they could accept Bl as their “medium”, but that there is no acceptable membership
function among S2, S1, CE, Bl and B2 that corresponds to their “large”; hence, they added a
new input membership function, shown in Fig. 5 as B3, that corresponds to their “large”. For
the output membership functions, the experts agreed that the membership functions with centers
at 1.0040 and -0.0049 correspond to their “large” and “small”, respectively. If we use B2, B1,
CE, S1 and S2 to denote the output membership functions with centers at 1.0025, 1.0040, 0.4993,
-0.0049 and -0.0027, respectively, then Rule 1 becomes: “IF z is B1, THEN f(z) is S1”, and Rule
2 becomes: “IF z is B3, THEN f(z) is B1”. We see that Rule 1 already exists in the trained BP
FLC; hence, we only added Rule 2 to the trained BP FLC to form the final FLC which now has
six rules. The input-output response of this final FLC is shown in Fig. 7. Comparing Figs. 6 and
7 we see that great improvement was obtained by adding this new rule. To obtain more accurate

approximations we need more data and rules; [44] shows some related examples. We also trained
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BP FNN'’s for these 10 input-output pairs, and the input-output response of the best trained BP
FNN was, as expected, about the same as Fig. 6.

In addition to the fundamental advantage of BP FLC over BP FNN (i.e., BP FLC can use both
numerical and linguistic information), BP FLC has two other advantages over BP FNN, namely:
(1) there is now a very good strategy for choosing the initial parameters for BP FLC, whereas the
initial parameters for the BP FNN are usually chosen randomly; due to this advantage, we may
expect that the training for BP FLC is much faster than that for BP FNN; our limited simulation
experiences (for the examples in this and the next section) support this conjecture; and, (2) the
parameters of the trained BP FLC have a very clear physical meaning, i.e., they are the centers and
“standard deviations” of the membership functions, while the parameters (weights) of the trained
BP FNN have no physical meaning; we may use the parameters of the trained BP FLC to analyse
the training data, e.g., the centers and “standard deviations” of the membership functions may
give us a sense of how the training data are distributed, etc..

A (possible) disadvantage of the BP FLC is that for some very complicated problems the
mapping determined by (3) may not be robust, in the sense that for some input z the weights,
M, u 4 (z;), of all the rules may be very small. In this case we may face near 0/0 operations in a
computer program that implements the BP FLC, i.e., underflow may occur in the implementation
of BP FLC due to limited word length in computers. In principle, this is not a serious problem
because it is always possible to increase the “standard deviations a;’ ” of the membership functions
such that some weights II%, » A{(m.-) will not be too small. However, in order to achieve higher
resolution, we often require smaller a{ ( [44) shows some related examples); hence, there seems to
be an “uncertainty principle”: the larger the af ’s, the more robust the BP FLC, but the poorer the
performance of the BP FLC; on the other hand, the smaller the a;' ’s, the better the performance

of the BP FLC, but the less robust the BP FLC.
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6 APPLICATION OF THE BP FLC TO NONLINEAR SYS-

TEM CONTROL

In this section, we apply the BP FLC developed in the last section to approximate a controller
for the nonlinear ball and beam system in [6]. Our purpose is to use the BP FLC to control the
system to track a desired trajectory for a certain range of initial conditions. We use the input-
output linearization algorithm developed in [6] to generate state-control pairs for a few typical
initial conditions in the initial condition range, and then train the BP FLC to match these state-
control pairs. The trained BP FLC is then used as a controller for the ball and beam system for
arbitrary initial conditions in the initial condition range.

The ball and beam system is shown in Fig. 8. The beam is made to rotate in a vertical plane by
applying a torque at the center of rotation and the ball is free to roll along the beam. We require
that the ball remain in contact with the beam. Our goal is to track a trajectory.

Let z = (r,#,0, é)T be the state of the system, and y = r be the output of the system. Then,

from (6], the system can be represented by the state-space model

.’f:l T2 0

&2 B(z,22 — Gsinz3) 0
= 4 + u (41)

:i:3 x4 0

&4 0 1
y=2, (42)

where the control » and parameters B and G are defined in [6]. The purpose of control is to
determine u(z) such that the system output y will track a desired trajectory y.

The input-output linearization algorithm of [6] determines the control law u(z) as follows: for
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state z, compute v(z) = g + aa (s} - ¢a(2)) + @2(iis - b3(2)) +ar(da — $2(2)) + eo(va — d1(2)),
where ¢1(z) = 21, ¢2(z) = 22, ¢a(z) = —BGsinzs, ¢4(z) = —BGz c0sz3, and the a; are chosen
so that s + a3s® + a2s? +a13 + ap is a Hurwitz polynomial; compute a(z) = —BGcoszsz and
b(z) = BGx3sinzs; then, u(z) = (v(z) - b(z))/a(z).

In our simulations, we chose the desired trajectory to be yg = cos(nt/5) (which is the same as in
[6]). We considered the system with initial conditions: zJ = (1,0, 6, 0), where € [0.0872, 0.2617)(=~~
[5°,15°)), i.e., the ball was initially fixed (which means that 7 = 0,8 = 0) at r = 1, with the an-
gle 6 in the range [0.0872,0.2617). We generated the desired state-control pairs by applying the
above control law to three typical initial conditions: 2§ = (1,0,0.0872,0),(1,0,0.1744,0), and
(1,0,0.2617,0). We discretized the system with sample interval T = 0.01 sec. and ran the closed-
loop system with each initial condition for 25 sec.; hence, we had 3 x 25/0.01 = 7500 state-control
pairs. The errors e = y4 — y using the above control law for the three initial conditions are shown in
Fig. 9, where the error curves from smaller error to larger error correspond to the initial conditions
(1,0,0.0872,0), (1,0,0.1744,0), and (1,0,0.2617,0), respectively. We simulated three BP FLC’s
with Ko = 500,250, and 100, respectively. We trained the three BP FLC’s for three cycles over
the 7500 pairs using the BP training algorithm and the initial parameter choosing method of the
last section (more training gave no improvement for the performance of the trained BP FLC used
as a controller). We chose a = 0.01 for all the training. We used the trained BP FLC to control
the system with initial conditions (1,0,0.1221,0) and (1,0, 0.2268,0), which were arbitrarily chosen
from the initial condition range. The error curves using the trained BP FLC with Ky = 500, 250
and 100 are shown in Figs. 10, 11 and 12, respectively, where the smaller error curves correspond
to the initial condition (1,0,0.1221,0). From Figs. 10-12 we see that: (1) the BP FLC with
Ko = 500 showed very good performance (when we used the control law of [6] for these two initial

conditions, the error curves were almost the same as Fig. 10); (2) the BP FLC with K¢ = 250
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showed poorer performance initially, but finally the system tracked the desired trajectory quite
well; and, (3) the BP FLC with Ko = 100 could control the system to track the desired trajectory
for the initial contition (1,0,0.1221,0), but the control system was unstable for the initial condition

(1,0,0.2268,0).

7 CONCLUSIONS

In this report, we: (1) proved that the set of FLC’s with product inference, centroid defuzzification,
and Gaussian membership function is dense in C(U) for the sup-norm (Theorem 1) and dense in
Lo(U) for the La-norm (Corollary 1) for compact U C R"; (2) proposed an optimal FLC design
which can match N given input-output pairs to arbitrary accuracy; (3) developed a new error back-
propagation training algoritm for the FLC; (4) proposed a method of combining both numerical
and linguistic information into the BP FLC design; and, (5) applied the BP FLC to a nonlinear
control problem.

By comparing the BP FLC with the back-propagation feedforward neural network (BP FNN),
we showed that: (1) a BP FLC can be used for problems which are suited for a BP FNN; (2) a BP
FLC can use both numerical and linguistic information in a very efficient way, whereas a BP FNN
can only use numerical information; and, (3) even if only numerical information is available, the BP
FLC may be preferred over the BP FNN because the training for a BP FLC may be much faster
than that for a BP FNN. Of course, to achieve the same approximation accuracy, the complexities
of the BP FLC and BP FNN are problem-dependent; but, if linguistic information is available and

essential, then the BP FLC is always preferred.
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Figure 1: Membership functions of three fuzzy sets, namely, “slow”, “medium”, and “fast”, defined
for the speed of a car.
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f(x)

1.0 ——— ———

Figure 4: A nonlinear system.

1.2

u(x)

x

Figure 5: The input membership functions of the trained BP FLC for approximating the function
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Figure 6: The input-output response of the trained BP FLC (for approximating the function of
Fig. 4) using only numerical pairs.
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Figure 7: The input-output response of the trained BP FLC (for approximating the function of
Fig. 4) using both numerical pairs and linguistic rules.
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Figure 9: Error curves using the control law of [6].
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Figure 11: Error curves using the trained PB FLC with Ko = 250.
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