USC-SIPI REPORT #189

Automated Synthesis of Analog
MOS VLSI Circuit Modules

by
David Jan-Chia Chen

December 1991

Signal and Image Processing Institute
UNIVERSITY OF SOUTHERN CALIFORNIA
Department of Electrical Engineering-Systems
Electrical Engineering Building

University Park/MC-2564
Los Angeles, CA 90089 U.S.A.

Acknowledgements

I would like to express my deepest thanks to my research advisor Professor
Bing Sheu for his guidance and support throughout the course of my Ph.D.
research work. I wish to extend my sincere appreciation to Professor Clarence
Crowell and Professor Dominic Cheung for serving on my dissertation commit-
tee. I would also like to thank them along with Professors Melvin Breuer and
Alan McCurdy for serving on my qualifying examination committee. Professor

Dominic Cheung is with the Department of Comparative Literature.

I am very grateful to Professor Hans Kuehl, Chairman of EE-Electrophysics
Department; Professor Melvin Breuer, Chairman of EE-Systems Department; Pro-
fessor Leonard Silverman, Dean of Engineering School; and Ms. Ramona Gor-
don, Senior Administrative Assistant, for providing me the opportunity to pursue
my Ph.D. studies under such a great research environment at USC. Encourage-
ment from Dr. George Lewicki, the former Director of the MOSIS Service, Dr.
Cesar Pina, the present Director of the MOSIS Service, and other members of
the USC/Information Sciences Institute at Marina del Rey, CA is also highly

appreciated.

The help and friendship of many fellow graduate students in the VLSI Sig-
nal Processing Laboratory have contributed to this work. I thank Antony Fung
for his contribution to the early development of the prototype Op-Amp design
expert system. Antony Fung moved on to pursue his medical degree at U. C.
Davis. I also thank Dr. Ji-Chien Lee for his assistance in writing some software
modules for the primitive cell generators. Discussions on artificial neural net-
work design with Dr. Bang Lee were very useful. Many thanks are due to Dr.-
Wen-Jay Hsu and Sudhir Gowda for tutoring me on the public-domain
electronic-CAD tools. I am also thankful to Ming Hsu and Je-Hurn Shieh for
teaching me how to use TROFF and other desktop publishing tools. I appreciate

Oscal T.-C. Chen, Chia-Fen Chang, Joongho Choi, Han Yang, Wai-Chi Fang,
and Dr. Chung-Ping Wan for their various discussions and assistance.

Contemporary work of fellow researchers from both industy and academia
have greatly stimulated my research interests in analog IC design automation. In
particular, the active contributions to this field from researchers at Cameige-
Mellon University, University of Califomia, Berkeley, and the Cenwe Suisse
d’Electronique et de Microtechnique S.A. (CSEM), Switzerland are greatly ack-

nowledged.

I also wish to thank many people in Sharp Digital Information Products,
Inc. in Irvine, CA; especially Mr. T. Kojima, Vice President, and Mr. Gus
Kinoshita, Director of Communications Engineering, for their encouragement and
support. Finally, I would like to thank my wife, Ming, our children, Tony and
Tiffany, and our parents for their understanding as well as the sacrifice put up
by them through all these years.

Partial results of this research was presented at IEEE Workshop on Analog
Circuit Engineering at Princeton, NJ in April 1989; at IEEE International Confer-
ence on Computer Design at Cambridge, MA in October 1988, 1989, 1990; and
at [EEE Custom Integrated Circuit Conference at San Diego, CA in May 1991.

This research has been studied since Fall 1986 while I keep a full-time
position at Sharp Digital Information Products, Inc. The Interactive Television
Program at the School of Engineering has been extremely valuable for most of
my course work. The research was partially supported by DARPA under Con-
tract No. MDA972-90-C-0037 and by Faculty Research and Innovation Fund No.
22-1502-9759 to Professor Bing Sheu from University of Southern California and .
Contributions from TRW, Inc. and NKK Corp.

iii

Table of Contents

INErOAUCELIQI *+s+esssessrrsssessasssransnnmrssnsstessenssssancsssssssssarsssssnssassasasnansrsasansnaassrnse 1
1.1 Symbols and NOMENCIAMULE w-rseeeesssssisusssssssssssssscssmnerssencessssesescessassess 1
1.2 MOUVALOMN «ceoeeeeesrneansnmnencesncreenecistacsssnessssaesssnsssessnnesnsssseasesssnsesesssnsssnssras 1
1.3 Analog IC Design AUIOMALON. wwiuescessssscsssssecssssssaessssmasessessssessesssasres 2
1.3.1 Design SYNhesis - -sssssssscssserssssssssssessessssesssssssssssasmssasssssssssasass 3
13.2 AUtomAtic 1aYOUE ZEMETALON s rrrwrrerrrersssssssssrmesssssssssssssssssssens 3
1.4 Scope and Organization Of the Thesis :---sescescrsererrersrnreceasearenseareacasnancn. 4
Knowledge-Based Analog IC Design Synthesis -+ -ssessssssseeseessssssssenes 10
2.1 Analog vs. Digital IC DeSign PrOCESSES «ssssescisssrssssccssssremssseerascsersenecs i1
2.2 TIteratve Analog IC Design Using EXpert Systems. .cosesecesessesesesesucsens 15
2.3 Flexible Architecture Design by Self-Configuration - .-.eceesesssesasccnens 20
2.4 An Expert System for CMOS Op-Amp Design «csceeseesesecsssnsensescrarans 29
2.5 EXperimental RESUILS-esersscsscserssssmrmssersassassesssssassessesssssiossssssssassssessssnsens 37
Constraint-Based Analog IC Layout Generation «::s--=+stsssssssesorsasrcace 43
3.1 Analog Layout CONSIAETAtONS - e ersseessrsssssussscussscsesnssssrnssseseasessssessasss 43
3.2 Review of Automatic Analog Layout Generators «-..soeeeemsecsunscsasancs 45
3.3 The Constraint-Based APProach . -iccsusesssssssssssssessosssssessssssssssssenseccs 47

iv

IV.

VI

Circuit Recognition and Layout Constraint Analysis - -s-ssseessecesse 52
4.1 Analog Circuit RECOZNIHON s1vsessesrerncssrsersseerssnaessesessuensansnssessssnrsessses 52
4.1.1 Critical analog Circuit nodes s+seesssscscsssrsrsmmreraenesssnsesesssases 53
4.1.2 Analog circuit primitives and recognition rules «-eessssesseesees 57
4.1.3 EXQMples:esecserrenerssestsnariierisisiiisissecsseesnesssneseresessesssassssssesesisens 64
4.2 Critical Net Analysis:.cseeersssmvormrimsesessesiesesessescsssssesssarsnssesasssensersens 85
42.1 Net sensitivity ClassifiCation «s«-swssseersersesesssssesssscscascnsesssasees 92
422 Net CONSITANE ANALYSIS++++esersressrsssnrersersessesssesscssecsecnensesscssossansas 92
Constraint-Driven Floorplanning and Routing: - wesssersescrssscensanns 96
5.1 Sensitivity-Based FIOOIPIANMiNg - seersereesscrsersecsecseesevmsesrassessessssassesnsanes 98
5.2 Physical Shape Optimization .« . sseeserscrscescssensasessesssaserssessesessssenes 102
5.3 Primitive Cell Generation. s seesesesssersessersssssssesesessessasososssomsennesssssesense 106
5.4 ROULNG:ctsssssesersuseessenssererssssosasesesesisssssssssenssssssansssnsnsnsesssssesessessassessnsesssass 110
5.5 EXPErimental RESUILS «oeeeereseesrsesereriunsssscsssnsessassessassasesesssesesssssssssensasenes 111
Layout Synthesis Strategies for Analog VLSI Subsystems -+ 127
6.1 Layout Synthesis of Conventional Analog MOS Subsystems.--.---.... 129
6.1.1 Hierarchical flOOIPIANMING - wssserserssesssarmssssssssssssessssrsssmssssass 129
6.1.2 Constraint-driven analog IC module generation:-s-sssssesseseese 132
6.1.3 BIOCK TOUHNE -seevsseesssossssnssscnsossssransasssrssssssnsssensinsssssssasssssassses 132
6.2 Layout Synthesis of Analog VLSI Neural Networks «-.-eseseeescscserens 133 »
6.2.1 Special layout CONSIAErations -+ s-+-sssersesssssssssersmsusasssnenerensrasasans 134
6.2.2 Neuron and synapse matrix layout techniques «s--sesesesessresss 135

6.2.3 Network floorplanning and routing ----s-esssesescsesscssssisasarcnnes 137

6.2.4 Experimental results:---sescesscscesssenisseisetssnnnrsnnneciscnnieceseisinies 148
VIL. Conclusions and Future Directions - 151
Appendjxes ... 154

A. A Mixed Analog-Digital Signal Processing VLSI for
TelECOMUTIUNICALIONS +++erserereresrrsrsssserissecesrsresmorsresassseessssassessassssasasesansrsnes 154
B. Basic Concepts in Analog VLSI Implementation of
Artificial Neural NeTWOIrKS: . ooscsssseressessosvrssssenessasessissacssasassasesassessssnarenes 166
C. Prototype Program for Analog MOS Circuit Module

Layout Generation - eeeseesessersssssssesansunsicnsnaetsacisessssessnsssissessasssnsssessssiossns 174

37 11120 L T T PP 233

Glossary iemetseeestaentantitsanatsstestsarsnsinerstonsatserenasessrsersrnsasres 238

F. Publicatdons:---- ceencersarerersassetessastrttsettssrteestiostssttosatsevataatessratssnennsres 251
References ----- eeeeeesatasesentetetittetitstenaatarattssesnsiestoteteststrsnsitsesrsetennirsertrorsntrarse 2582

vi

List of Tables

Table 2.1 Op-Amp specification and achieved performance......cseeeeersrssesorcnsssnes 38
Table 2.2 Drawn deviCe SIZES «eeeesrrerrescssssssseressensssrorsrosssassssssssessasesasssassassssaressonsas 42
Table 4.1 Circuit nodes for analog MOS primitive recognition....cceeseeseeseescrseaes 54
Table 4.2 Sensitivity classification for analog Circuit nets-.-.ecsseererearisscsecsvnnens 93
Table 4.3 Prnority assignment for analog circuit net distance constraints 94
Table 4.4 Priority assignment for analog circuit net spacing constraints--........ 94
Table 5.1 Performance summary of the two-stage CMOS Op-Amp--eseresseceasees 126
Table A.1 Summary of the mixed-signal chip characteristics....-s.eseesceessesensunes 164

vii

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

. 1.2

.21

2.2

2.3

24

2.5

2.6

2.7

2.8

29

List of Figures

An analog IC synthesis system composed of a knowledge-based

design synthesis tool and a constraint-based layout generator-..--... 6
A hierarchical view of mixed-signal VLSI circuit configuration....-.- 7
Generic analog integrated-circuit design process- -« e:-scesessessessssersensans 13

(a) Strong interaction exists between topology refinement
and transistor sizing on each design plane.

(b) Comparison of relative design efforts for digital and
analog IC designs.

Schematic illustration of a converging iterative design
process using an expert system as an analog circuit design
assistant and a CIrCUIt SIMUIATOL cceetttsecrcestrrsreerensaceenseescsssessrssssorossessees 18

Iterative analog IC design process model «eeceseeeesscrecsicsennssecsesesrasnnan 19

Design flow of the flexible architecture approach for
operational amp]iﬁer syn[hesis .. 23

Simplified schematic diagram of a basic two-stage CMOS

operational amplifier- eeecsesessnniisisisiisintnisnictsensatsssssscsssssssensnasanes 25
(a) with simple input stage.

(b) with fully cascode input stage.

Circuit primitive replacement and equation substitution

for self-conﬁgm—adon .. 27
Interrelationship among performance objectives of an

operaﬁona] amp]jﬁer ... 30 .
The four-step design process of the CAMP expert System..c..cseseseees 36
Schematic diagram of a two-stage operational amplifier. eseesvesssesseses 39

viii

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

3.1

4.1
4.2

4.3

44

4.5

4.6

4.7

(a) with simple biasing current source.
(b) with cascode biasing current source for common-mode
rejection improvement.

Analog circuit layout design flow - a human expert model ----eveee-- 48

An automatic custom layout synthesis methodology for

EXIT1 (0730 (LT —— retsestesestbea st b s sesssrssnnnassnaneeesseneasenns 50
Four critical analog MOS Circuit nodes - --cc-sssseesesasssianeernaransersenseranene 55
A set of recognizable analog MOS circuit primitives --e-eeseeeereseecseees 58
Circuit recognition of a two-stage CMOS Op-Amp «ecevereeveincnnnincannes 65

(a) Schematic of recognized circuit.
(b) SPICE input file.
(c) Recognition output file.

Circuit recognition of a single-stage folded cascode Op-Amp-----s- 69
(a) Schematic of recognized circuit.

(b) SPICE input file.

(c) Recognition output file.

Circuit recognition of a vOltage COMPATator - cseeseessessrsessscsisnssnsassasisnes 72
(a) Schematic of recognized circuit.

(b) SPICE input file.

(c) Recognidon output file.

Circuit recognition of an analog multiplier-....seeeseeesisesccnicinnnsinnnias 75
(a) Schematic of recognized circuit.

(b) SPICE input file.

(c) Recognition output file.

Circuit recognition of a voltage-controlled oscillator....seeeeeeveeenecee 79
(a) Schematic of recognized circuit. '
(b) SPICE input file.

(c) Recognition output file.

& ix

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

4.8

4.9

3.1

5.3
54

55

5.6
5.7

5.8

5.9

Circuit recognition of a sense amplifier..esseseeeccemsneccncnnnescisnceniincinnens
(a) Schematc of recognized circuit.

(b) SPICE input file.

(c) Recognidon output file.

Circuit recognition of a fully-differential CMOS Op-Amp «eecrereeerees
(a) Schematic of recognized circuit.

(b) SPICE input file.

(c) Recognition output file.

A constraint-driven floorplanning and optimization procedure
for analog CITCUILS weeeereersrersnsosreenenntniiiiitiiceseressetetanssuesasssnsssesaanssensee

Four possible vertical slicing topology arrangements «...seeseessssnesees
A sensitivity-based horizontal slicing floorplan.....ceecsiescsissusuresnnnnee
The shape constraint relation for primitive Cell Ce-rreceeeusususnsnsianaee.

Summing the shape constraint relations for a horizontal
ASSEIMDbIY evernessasoccsceenrnscrnsnstnmiiaisitisinsisniassenissnisssiesiinsanisnisanesesnans

Dlustration of bottom-up module shape constraint estimation ...
Ilustration of top-down optimal primitive shape selection ----«ce-ce..

Generated layout examples of primitive cells with

Variable SHAPES weeeecerersssrsrrscsnessncsrsnerentstiaetiseressenstsensieaiesns e sttnsesions
(a) Source-coupled pair with aspect ratio of 0.75.

(b) Source-coupled pair with aspect ratio of 0.3.

(c) Current mirror primitive with aspect ratio of 2.5.

(d) Current mirror primitive with aspect ratio of 1.

Experimental results of a two-stage CMOS Op-Amp wecosseeerseanasernees
(a) Schematic of recognized circuit.

(b) Generated slicing floorplan.

(c) Generated layout.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

5.10

5.11

5.12

5.13
6.1

6.2

6.3

6.4

6.5

Experimental results of a single-stage folded cascode Op-Amp ... 115
(a) Schematic of recognized circuit.

(b) Generated slicing floorplan.

(c) Generated layout.

Experimental results of a voltage comparator . -..ccceeeeseeeeereeniesesennnes 118
(a) Schematic of recognized circuit.

(b) Generated slicing floorplan.

(c) Generated layout with input aspect rado of 1.

(d) Generated layout with input aspect rato of 1.5.

Experimental results of a fully-differendal CMOS Op-Amp ---eeeeeeee 122
(a) Schematic of recognized circuit.
(b) Generated layout.

Microphotograph of the two-stage CMOS Op-Amp:ccoreeeresseseasenncas 125
A mixed analog-digital VLSI layout System -«.-eccesseesserueresiiunesearenens 128

Layout floorplans for traditional analog MOS subsystems --.--cseeeesee- 130
(a) A fixed floorplan for switched-capacitor filters based

on the standard cell approach.
(b) A hierarchical floorplan using the sensitivity-based

module generation approach.

Parameterized neuron module I/O configurations-«.-sessseeeeresacecraesaeanes 136
(a) Input neuron only.

(b) Output neuron only.

(c) Input and output neuron.

Parameterized synapse matrix routing coOnfigurations «-«-:-ssssssesesseseens 138
(a) V-input & V-output.

(b) V-input & H-output.

(c) H-input & H-output.

(d) H-input & V-output.

(e) H/V-inputs & H/V-outputs.

Circuit schematics of neuron and synapse modules - 139

xi

ig. 6.6 A general layout floorplan for single-layer neural networks

using parameterizable neuron and synapse modules..coeesiresininniiians 140

ig. 6.7 A parameterized floorplan for a Hopfield neural network -«--:-eseseecee. 141

. 6.8 Schematic diagram of a multiple-neuron Hopfield neural
NCLWOTK ceeeorerertuerciteinnrecrecseesnsecaesscsrosserssssrossessesessasssssnnncsnascssassasnssssssans 142

ig. 6.9 A slicing tree representation for the 8-neuron Hopfield network

using the neuron and synapse modules of Fig. 6.5 ccovvcieeminiincnnas 144

ig. 6.10 Parameterizable floorplans for two- or three-layer neural

NCLWOTKS ceeereeteertarmecrmmnuiieniseenseneteesieiresmesersssssssressassssssennssasssasssnsessosssasssns 146
(a) Vertical style.
(b) Horizontal style.

ig. 6.11 Parameterizable floorplans for four-layer neural networks . ..o-csseeeeue 147

(a) Floorplan A.
(b) Floorplan B.

ig. 6.12 Generated layout of the neuron and synapse modules

of Fig. 6.5 seessesseanessanesassassansssentassatesstesaresrusereeenasnrenars 149

. 6.13 Generated layout of a 16-neuron Hopfield neural network..-......coee. 150

. A.1 A mixed analog-digital signal processing system for
1C]CCOMMUMICALIONS +rerrervrrmnrereressssroneeraseraceesesesseeacsnsessnssonssssssnesssssssssons 155
(a) A multi-chip configuration.

(b) A single-chip solution.

ig. A.2 Block diagram of a mixed analog-digital MOS VLSI for

voiceband teleCOMMUNICALIONS «+sssesresarssasssessrssasessassssarsssessanssresnssnssnass 157
(a) Analog front-end section.
(b) Digital signal processor section.

ig. A.3 Schematic of the high-speed fully-differential Op-Amp:eeeseeessvesesenee 159

ig. A.4 Microphotograph and floorplan of the mixed-signal chip «---eeseveereees 162

xii

Fig. A5

Fig. A.6

Fig. B.1

Fig. B.2

Fig. B3

(a) Die photo.
(b) Chip floorplan.

Measured frequency response of analog output channel.....ceeseeeneee 163
(a) The full-channel lowpass filter response.

(b) The lower split-channel lowpass filter response.

(c) The upper split-channel bandpass filter response.

Measured signal-to-noise rato of analog input channel.....-cceoeeeenee 164

Neuron model-cceeecesvececsrescascrcsssassrcecssssenansse eeetsunsesssssasesrssensesssnssnes 168
(a) Biological neuron model.
(b) Artdficial neuron model. (The V; are the neuron

input voltages, T; are the synapse weights, and 0

is a constant threshold value.)

Basic neural network arChiteCtUIes --ceseesseesansassececssserrrscreacscsssossonsasassane 170
(a) Single-layer feedforward network.

(b) Single-layer network with feedback -- Hopfield neural network.

(c) Multi-layer feedforward network.

A VLSI neuron with direct resistor implementation «..seecseeeeeresussenes 172

xiii

Abstract

Recent advances in VLSI technologies have allowed the integration of infor-
mation processing subsystems on one chip, including both analog and digital
parts. In addidon to the conventional telecommunications and computer net-
working applicatons, new applications of mixed analog-digital VLSI are being
unveiled in the fields of image processing and neural-based flexible information
processing. The need for computer-aided design tools to reduce the dominant
analog circuit design time and cost for such processor chips has become
imminent. This thesis presents advanced methods for automatic synthesis of ana-
log MOS VLSI circuit modules. A design system that consists of a knowledge-
based synthesis tool and a constraint-based layout generator has been developed
to automate the design of key analog MOS circuit modules. An expert system
has been developed to assist in an iterative analog design process. This
integrated-circuit design expert system, which interfaces with a circuit simulator,
is capable of optimizing circuit topologies as well as circuit element geometries
to better satisfy a given set of performance specifications. The constraint-based
layout generator uses analog circuit recognition and critical-net analysis tech-
niques to identify crucial portions of an analog circuit and systematically derive
proper layout constraints for analog circuit performance optimization.
Constraint-driven floorplanning and routing techniques are developed to generate
high-quality full-custom analog circuit layouts which incorporate the layout con-
straints. This layout tool is capable of quickly generating a correct and high-
performance custom layout with a selectable aspect ratio for a wide variety of
analog circuit modules. Extensions to higher-level subsystem layout synthesis
using hierarchical floorplanning and module generation techniques are also'
described. Automatic layout generation techniques for single- and multi-layer
neural networks have been developed. Experimental results on several CMOS
Op-Amps, a voltage comparator, and a 16-neuron Hopfield neural network are

xiv

described. These results indicate that this new analog circuit synthesis approach
provides two advantages: it is quite general and yet effective, and can be used

by system designers who are inexperienced in analog circuit design.

Xv

Chapter 1

Introduction

1.1 Symbols and Nomenclature

Fueled by the continued evolution of the computer-aided design (CAD)
tools, the field of integrated circuit (IC) design has been growing rapidly in
recent years. Unfortunately, as with any high-technology field, a large amount
of technical jargon has evolved, which must be mastered by anyone wishing to
be conversant with those working in the area. For this reason, the current termi-
nology used in the IC field has been adopted in this thesis. Because of the con-
nection with artificial intelligence, a number of words are used that tend to per-
sonify software tools and properties. However, for readers who are not familiar
with the subject, a glossary of the key technical terms is also provided in
Appendix E. A list of the symbols is included in Appendix D.

1.2 Motivation

Recently, very large scale integration (VLSI) technologies have advanced
rapidly with the continual shrinking of the minimum geometrical feature size
towards the deep submicron level. Meanwhile, analog MOS circuit techniques
[1-9] have also dramatically improved over the past decade to a state making
possible realization of high-performance analog designs using standard 5V
CMOS technologies. As a consequence, an electronic system containing com-

plex analog and mixed analog-digital circuit functions can now be integrated on

a single VLSI chip [10-16] to achieve the full economic gain of microelectronic
technologies. Typical examples are found on today’s advanced signal processing
systems for telecommunications [10-12], hard-disks [13], video and image pro-
cessing [14-16], robotics, automative electronics, and intelligent sensors, among
others. In addition, exciting new applications of analog VLSI are being unveiled
in the field of neural computing [17-19], which has been recognized as a major

enabling technology for future information processing.

While the digital parts of such VLSI chips can nowadays be rapidly syn-
thesized in semicustom styles such as the standard-cell approach, most analog
subsystems still need to be handcrafted by analog circuit specialists due to the
lack of effective CAD tools for analog ICs [20]. As a result, the design time
and cost involved for the analog circuitry portion often constitutes a bottleneck
to the overall design of the microelectronic chip. This holds true even when the
analog circuitry comprises only a small fraction of the total chip area. There-
fore, to support the growing analog IC design wends in today’s system-on-a-chip
environment, the development of effective analog electronic-CAD tools, espe-
cially the automatic design synthesis and layout generaton tools, is of vital

importance.

1.3 Analog IC Design Automation

Work in analog IC design automation has only recently received increased
attention from the research community [21-45]. Although these initial research
efforts have shown some encouraging results, they are just a beginning. More

systematic, flexible, and effective techniques are yet to be explored.

1.3.1 Design synthesis

Analog integrated-circuit design is commonly perceived as one of the most
knowledge-intensive design tasks. In order to deal with the complexity arising
out of different voltage levels in analog circuit designs, CAD tools are needed
that are "smarter" than currently available tools used for digital circuit designs.
With an increasing interest in its applications, artificial intelligence (AI) has
shown significant impact in fields such as medicine and science. Complex
engineering design tasks such as analog IC designs that require large amounts of
expert knowledge can also adopt the AI approach by using expert systems to
assist in a design. In recent years, several studies have been reported on the
expert system-based approach to analog IC designs, especially on design syn-
thesis of operatonal amplifiers (Op-Amps) [21-28]. Although implemented
differently, most knowledge-based analog IC design programs have taken the
multiple-fixed-architecture approach. In this approach, design decisions are made
with a limited number of fixed circuit choices in the database. Since the opera-
tion range over which analog circuits are designed is wide and indefinite, fixed
design choices impose considerable limits upon the flexibility and thus the appli-
cability of existing analog circuit design tools.

1.3.2 Automatic layout generation

The layout automation for analog ICs is much more difficult to deal with
than their digital counterparts. To effectively address the diversity of analog cir-'
cuit designs, a technology-independent customn layout style based on flexible
module generation techniques is necessary. Special care needs to be taken to

minimize electrical performance degradation due to device mismatching,

3

parasitics, and noise coupling in the analog circuit layout. The physical layout
also needs to accommodate large variations in device sizes while maintaining a
compact area. Furthermore, it is desirable that the layout can be quickly
adjusted for different physical aspect ratios. Finally, the layout tool must be
user-friendly for system designers who typically have limited analog circuit

knowledge.

Research in analog layout automation is also receiving increased attention
from the IC community [32-45]. Most earlier attempts typically relied on a
semicustom style and resulted in very limited success [32-34]. The new custom
layout synthesis approaches [35-41], however, use one of two methods. One
uses a fixed floorplan based on predefined slicing trees. This provides rather
limited flexibility. The other method relies on a general simulated annealing
program adapted from the digital design world. This often results in inadequate
analog performance. Most layout tools are designed to handle Op-Amps only.
Many of the above analog-specific performance considerations have not been
addressed systematically. Moreover, some tools require analog circuit layout
constraints to be manually specified by the users as part of the input and thus

are not sufficiently automated to perform a satisfactory netlist-to-layout synthesis.

1.4 Scope and Organization of the Thesis
This thesis describes new automatic analog module synthesis and layout'
generation techniques for analog and mixed analog-digital VLSI design. A sys-
tem that automates the design of common analog MOS integrated circuit

modules has been developed. The system consists of two parts: a knowledge-

4

based design synthesizer [29-31], which transforms module specifications into
sized schematics, and a constraint-based layout generator [42-45] which

wransforms sized schematics into mask geometry, as illustrated in Fig. 1.1.

Figure 1.2 depicts a hierarchical view of typical mixed-signal VLSI circuit
configuration. Two classes of mixed-signal VLSI circuits are defined: one is for
implementing the conventional signal processing systems; the other is for realiz-
ing neural networks, a growing field. The analog section in the conventional
signal processing VLSI is typically composed of several common analog subsys-
tems including A/D converters, D/A converters, switched-capacitor filters (SCFs),
continuous-time filters (CTFs), and other nonfilter subsystems such as phase-lock
loops (PLLs), automatic gain controllers (AGCs), waveform generators, etc. On
the other hand, the analog circuit structure of a neural VLSI is less complex
which normally contains neuron blocks and synapse matrices. Note that at the
module level, all the circuit modules can be shared by both classes of VLSI sub-
systems. These circuit modules include Op-Amps, comparators, voltage-
controlled oscillators (VCOs), multipliers, and other active and passive circuit
modules. These modules are considered as the most important building blocks
for analog subsystems and their circuit performance are the most critical to the
system performance. The modules can be further decomposed into simpler prim-

itive cells and then down to the individual device level.

The scope of this thesis is mainly to explore automatic design synthesis and
layout generation techniques for analog IC modules. Special emphasis has been

placed on the physical design aspect of analog circuit module generation. In

Knowledge-
Based
Design
Synthesis

Constraint-
Based
Layout
Generation

Circuit
Specitications

4

Circuit Architecture

Selection

Circuit Element

Design

|

Technology
Information

Schematic

Y Y

Circuit Recognition
& Layout
Constraint Analysis

Constraint-Driven
Floorplanning

& Routing

Y

Physical
Layout

Netlist

Fig. 1.1 An analog IC synthesis system composed of a knowledge-based
design synthesis tool and a constraint-based layout generator.

Sysiem

Mixed-Signal VLSI

for Signal Processing

Mixed-Signal VLSI

for Neural Systems

Sub-
sysiem
Other ;
; ‘ Digital Synapse Necuron
ADC DAC SCF CTP gtln'l?;;glcms Subsystems Malrgt Block
Module
Other RC -
vCo Analog . N Digital
Opamps | Comparatory | o¢citiators Multipliers ﬁ'l(:)l:l‘:ﬁcs }v:‘:fl‘:l(::s Modules
Primitive/ Other
Cell Transistors | | Resistors | | Capacitors | | Primitive
Cells

Fig. 1.2 A hierarchical view of mixed-signal VLSI circuit configuration.

addition, some of the subsystem layout issues and strategies for the mixed-signal

VLSI circuits are addressed.

In Chapter 2, a self-configuration technique for expert system-based analog
IC design [29-31] is presented. A rule-based expert system has been developed
for assisting in a CMOS operadonal amplifier design. The implementation of

the expert system is described and experimental results are presented.

In Chapter 3, the analog circuit layout consideratons are examined and
automatic analog IC layout systems are reviewed. An overview of the
constraint-based method to systematically address the challenges for analog IC
layout automation [42-45] is presented. Given a SPICE-like netlist of an analog
circuit module, this method is capable of quickly generating a high performance

and reasonably compact custom circuit layout to desired aspect ratios.

Chapter 4 describes automatic analog circuit recognition and critical net
analysis techniques used for the layout constraint analysis. The rule-based ana-
log circuit recognition technique is used to recognize all the critically matched
device pairs from the input netlist and identify critical analog circuit nodes that
have key significance for analog circuit layout concerns. Several recognition
examples of common analog MOS circuit modules are given. The critical net
analysis technique is described which takes the recognized circuit information
and internally generates proper layout constraints for a given analog circuit
module. ‘

In Chapter 5, the constraint-driven analog circuit floorplanning and routing

techniques are described. An efficient floorplanning technique based on a zone-

sensitivity partitioning algorithm and slicing structures has been developed which
can derive a slicing wee and determine the optimal component shape for the
module to satisfy both the electrical and physical aspect ratio constraints. Gen-

erated layout results of several circuit modules are presented.

In Chapter 6, layout synthesis strategies for analog VLSI subsystems are
discussed. A general layout methodology for conventional analog MOS signal
processing subsystems using hierarchical floorplanning and module generation
techniques 1is described. Special layout considerations and strategies for
automatic layout of analog artficial neural networks are also discussed. Efficient
layout generation techniques for single- and multi-layer neural networks are
developed. The generated layout results of an experimental neural network is

presented.

Chapter 7 presents concluding remarks and suggests future extensions of
this research. In Appendix A, a real-world example of mixed analog-digital
VLSI implementation for telecommunication applications [12] is presented. For
readers who are not familiar with the neural circuits, Appendix B covers some
basic concepts in VLSI implementation of artificial neural networks. Finally, a
pardal listing of the prototype program for custom analog MOS circuit module

generation is included in Appendix C.

Chapter 2
Knowledge-Based Analog IC Design Synthesis

One major reason that CAD tools available for analog IC designs are yet to
reach the level of performance of those for digital designs is that analog designs,
unlike digital designs, which only need to deal with two discrete logic levels (0
and 1), have to deal with a continuous spectrum of voltage levels. This added
complexity due to continuously varying voltages requires CAD tools for analog
circuit designs to be more "knowledgeable” about a design task than those used

for digital circuit designs.

Knowledge-based approaches to analog IC designs have attracted much
attention in recent years [21-31]. Since fast progress is currently being made in
analog IC design techniques, a heuristic approach seems more useful than ever.
In this chapter, an expert system assisted analog design methodology is
presented. With the expert system acting as a design assistant, designs are car-
ried out iteratively. The iterative design concept is used to contrast the analog
and digital design processes from the coventional design automation point of
view. A prototype expert system has been developed to serve as the analog
design assistant. It adopts the flexible architecture approach and is thus capable
of self-modifying the circuit topology. The implementation of an expert system

for CMOS operational amplifier design is described.

10

2.1 Analog vs. Digital IC Design Processes

The design process of an analog or a digital IC can be paritioned into
three phases: architecture selection, circuit topology refinement and tansistor
geomerry scaling. Although each part of the design process can be considered
"distinct’, they are by no means isolated design steps. As a matter of fact, there
are strong interactions among them. Decisions made at one design phase may
affect decisions made at other design phases. For example, a circuit topology
that looked promising during the topology refinement phase of the design may
have to be changed due to unsatisfactory performance after the transistors are
sized. Similarly, a circuit architecture may need to be replaced if desired perfor-
mance cannot be achieved by altering detailed circuit topology and sizing transis-

tor geometries.

In a digital IC design process, the major design task is to search for a cir-
cuit architecture that will satisfy the functional requirements. Detailed circuit
topology refinements are carried out for speed, power and area improvements.
Transistor size plays a relatively minor role in a digital design process when
pre-designed circuit cells are used as building blocks for the final circuit. For a
digital VLSI design, the performance of the circuit depends mainly on the inter-
coupling between the architecture selection and topology refinement. Circuit per-
formance is improved by fine-tuning the circuit topology within a pre-determined
architectural frame as well as changing the architecture based on topology'
refinement feedback. Since the specification of a digital design is usually func-

tional and the number of performance variables is limited, a final design solution

11

can often be achieved without careful sizing of transistor geometries or complex

trade-off evaluations.

The design process of an analog circuit follows the similar design phases
for a digital circuit. A circuit architecture is first determined based on the
evaluaton of the overall design specifications. Detailed circuit topology
refinement and transistor sizing are then performed to attain the desired circuit
performance. The interaction between topology refinement and transistor
geometry sizing plays a crucial role in the analog design process. Unlike digital
designs where cells of discrete transistor sizes are often used as building blocks,
analog designs deal with a continuous spectrum of transistor sizes. Variations in
individual transistor size may result in significant changes in circuit performance.
Based on the information from transistor sizing, the circuit topology sometimes
requires modifications to improve the circuit performance. In such cases, the
transistors in the modified circuits need to be sized again. Evidently, the strong
coupling between the two design phases is essential to a successful analog
design process. Design modifications can be made not only within a fixed archi-
tectural frame but also across various architectural design planes. Figure 2.1(a)
illustrates the concept of a generic analog design process. The analog design
space can be simplified into design planes. Different design planes represent
different circuit architectures within which circuit topology refinement and
transistor sizing can be carried out. While the design planes are weakly cou-
pled, strong interaction exists between topology refinement and transistor sizing
on each design plane. With the discrete topology refinement choices, the circuit

topology cannot be altered arbitrarily. Only identifiable circuit primitives such as

12

Architecture /
Selection >
(Discrete)

/N / Design Plane 4
/ 7
& =
7
7 /
i >
= >
Topology Weak
Refinement Interaction
(Discrete)
>3
7
Design Plane /
/
=
P
Strong /
Interaction /
N/ X
i 7~
Transistor
Sizing
(Continuous)

Fig. 2.1 Generic analog integrated-circuit design process.
(a) Strong interaction exists between topology refinement
and transistor sizing on each design plane.

13

- > = T D - =
- o wp EB an @b aw vo

o LA
’

“
7,

Architecture
Selection

Topology
Refinement

Transistor
Sizing

Design

Effort
Architecture Frmrmias
Selection E=% :

% '—{
Topology /
Refinement /
Transistor %
Sizing

Digital IC

Design
Fig. 2.1 (continued)

Analog IC
Design

(b) Comparison of relative design efforts for digital and

analog IC designs.

14

a current source and an active load can be replaced as a complete unit within a
circuit module. However, transistor geometries do not have to take on discrete
values. They can be sized with any value in the continuum of size-range lim-
ited only by the resolution of the layout generation facility and by the physical
size specificaton of the circuit module. Figure 2.1(b) constrasts the relative
design efforts needed for analog and digital IC design processes. For digital IC
designs, most design efforts are spent on architecture selection and topology
refinement. For analog IC designs, transistor sizing takes up the major portion
of the design efforts. The exact weighting of each design phase is design

dependent.

2.2 Iterative Analog IC Design Using Expert Systems

Due to the nonlinear nature of analog design processes, iterations are often
required to fine-tune the transistor geometries and thus to converge on a design
that achieves the desired performance. A design process usually starts with
approximated analyses using simplified analytical design equations. An initial
design solution is generated based on the result of such an analysis. As com-
plex as analog circuit operations are, approximated analyses cannot accurately
predict the actual performance of a circuit. Detailed simulations using a simula-
tor with accurate component models are thus necessary to verify a design. The
circuit simulator is able to provide complete analyses of circuit operations as
well as good predictions of the actual circuit behavior. Without a circuit simula-

tor, analog circuits cannot be designed with good accuracy.

15

Incorporation of a reliable circuit simulator in the analog design process is
essential not only in actual design practice, but also in developing a computer-
aided analog design environment. Since its introduction in 1975, the SPICE cir-
cuit simulator [46-48] has been widely accepted as a circuit simulator for analog
circuit designs. Given appropriate model parameters, it has been proven to be a
reliable tool in simulating actual circuit behaviors. Today, even the most experi-
enced analog IC designers still find it necessary to confirm their designs with the
SPICE simulator due to the simplified design equations used in the manual
design process. As powerful as the SPICE simulator is, it is, nevertheless, a
"passive” CAD tool. For analog circuit designs, it analyzes the circuit operations
and evaluates the circuit performance only when it is presented with a complete
circuit. It does not automatically compare the achieved results with the perfor-
mance specifications. It does not suggest possible ways of improving the circuit.
Put this another way, SPICE does not "actively” involve in the decision steps of
the circuit design process. The designers always need to "interpret” the SPICE
results before making improvements to the design. To an inexperienced analog
IC designer, this can be a difficult and time consuming task. As more and more
system-level designers are required to cover the circuit-level design tasks, analog
CAD needs not only a circuit simulator like SPICE, but also a tool that contri-
butes "actively” to the circuit design process. However, what analog CAD lacks
is a tool to act as human experts in decision making, not a tool to eliminate the -
service of the reliable and proven SPICE. Thus, in a computer-aided analog

design environment, tools that are used to assist in decision making

16

during the design process must frequently communicate and consult with SPICE

for accurate analyses and for achieving desired designs.

To facilitate the analog IC designs, we have developed a new design
methodology that utilizes expert systems to assist in the design process. Figure
2.2 shows the behavioral description of this new methodology. Its converging
nature resembles the Newton-Raphson’s algorithm [49] for solving nonlinear
equations. According to the Newton-Raphson’s algorithm, a solution for a non-
linear equation is quadratically reached through tangential extrapolations of inter-
mediate results. In the expert system assisted design process, the system first
provides a reasonable initial design guess. Recommendations from the expert
system then “extrapolate” along the tangent of the projected point on the perfor-
mance curve to its intersection with the design axis. The intersection point
becomes the next design input to the circuit simulator. Results from the circuit
simulator project the intersection point on the design axis back onto a point
which is closer to the design goal on the performance curve than the previous
point. The expert system, upon receiving the simulated results from the circuit
simulator, then acts again to provide design recommendations for the next itera-
tve cycle. With an intelligently generated initial solution, a design that satisfies
all performance requirements ought to emerge in an efficient manner. Notice
that such a design is not always achievable. Physical limitations that exist in a
given fabrication technology could prohibit a design ever meeting all the’
specifications. In that case, either the fabrication technology or circuit
specification has to be adjusted to produce a feasible design. Alternatively, a

binary-tree search algorithm can be used for extrapolations in which a solution is

17

Performance - Specification Performance

Curve
A

SPICE 4
Simulation

——>
Design Initial Design
- G?Jilg e — Guess Axis

lterative Resuits
of Expert System
Recommendation

Fig. 2.2 Schematic illustration of a converging iterative design
process using an expert system as an analog circuit design
assistant and a circuit simulator.

@eciﬁcations

Initial
Solution
Generation
Intermediate Design
Ev.:jlagﬁr;n Modifications
No improvement
S:::s? Solution
Search
Yes

C Solution)

Fig. 2.3 Iterative analog IC design process model.

reached through successive approximations of intermediate results [88]. This

method generally assures the convergence of a final solution.

Figure 2.3 shows the iterative analog design process model. Every design
starts with a set of performance specifications. An inital design is generated
based on these specifications. The achieved performance is compared with the
specifications after the design goes through evaluations. If all specifications are
met, the design is accepted as a solution. However, if not all specifications are
satisfied, ways to improve the performance have to be identified and the design
has to be modified. The modified design has to be evaluated and the circuit
performance needs to be checked again. This kind of evaluation and
modification cycle, shown in the figure by the feedback loop, continues untl a
desired solution is reached. In the case of very tight specifications, the design
loop is halted and a warning is issued as the knowledge of possible improve-
- ments is exhausted.

The iterative design process can be realized through the integration of
SPICE and a design expert system. While SPICE is used as an evaluation and
verification tool for intermediate design solutons, the expert system acts as a
design assistant providing design improvement recommendations. Unlike the
one-shot approach in which SPICE is used only at the end of a design process,
the iterative design approach utilizes simulation results at final as well as inter-
mediate design steps. Consequently, high performance designs can be attained

reliably.

20

2.3 Flexible Architecture Design by Self-Configuration

Previous approaches taken to synthesize analog circuits can be categorized
into two groups: the multiple-fixed-architecture approach [24,25] and the subcir-
cuit assembly approach [23,26]. For the multiple-fixed-architecture approach, a
number of fixed circuits are stored in the design knowledge base. Based on the
specifications for a new design, one of the circuits is selected at the beginning
of the design process. Transistor geometries are then optimized to achieve
required circuit performance. During the design process, the chosen circuit
configuration cannot be changed in any way. Transistor geometries are the only
design variables once a circuit is selected. As one can see, the achievable cir-
cuit performance range is limited by the number of fixed circuits stored in the
design database. In order to achieve high performance designs for various ana-
log circuit applications, a large number of circuits may be required in the data-
base. Even then, the design process is static and the design flexibility is

extremely limited.

The subcircuit assembly approach hierarchically partitions a circuit design
task into several subcircuit design tasks. Subcircuit units are assembled to form
the complete circuit. The aim of the assembly approach is to optimize the
trade-offs among performance specifications at an early stage of a design.
Although the approach is more flexible than the multiple-fixed-architecture
approach due to the added design freedom at the topology level, transistor
geometries are still the only design variables once a circuit topology is deter-
mined. No modification can be made to the circuit topology at a later stage of

the design even if the earlier analyses gave a suboptimal circuit configuration.

21

For both approaches, the design process is carried out entirely by the expert
system using approximate analytic equations. Circuit simulators are not used for
evaluations at any intermediate stage of the design. Although the final design is
verified through a circuit simulator, the achievable accuracy is limited by the
equations implemented in the expert system. Since analog circuits are usually
required to satisfy complicated design specifications, approximate analytic models
and fixed circuit topology impose considerable constraints on the flexibility and

thus the applicability of the analog tools adopting these approaches.

We have developed a flexible architecture approach to knowldege-based
analog IC design synthesis [29-31). This approach mimics real design practice
in the sense that a chosen circuit topology can be altered while tansistor
geometries are sized. The expert system is capable of making choices among
fixed circuit topologies as well as replacing portions of the circuit during a
design process for performance improvements. Figure 2.4 shows the design flow
of the approach. Unlike the other two approaches mentioned earlier, the flexible
architecture approach optimizes circuit topology at the same time as transistor
geometries. Circuit topology modification are based on SPICE simulation results.
They are considered only when the desired performance cannot be achieved by

sizing the transistors of the selected circuit topology.

The flexible architecture approach features the self-configuration technique
which uses circuit primitives such as current sources and active load as "replace-
ment parts” in a design. If the inital circuit configuration selected among the
fixed circuits cannot satisfy the performance requirements, the solution space is

searched and another solution is identified for trial toward the desired improve-

22

Specifications

]
]
]
]
]
[
]
]
]
]
]
]
]
Decision Selector l"‘_' Knowledge
]
]

2-stage 1-stage
y) Y
Decision
fo e e mcm—————e 1,
e — o] Geometrical Ratio
Design .
a — Equation
_"::: w _IE: w Substitutions
L L
User r— n P
Self-
Reconfiguration
-
‘”::®—u§

SPICE

Simulation

Final Design

Fig. 2.4 Design flow of the flexible architecture approach for
operational amplifier synthesis.

23

ments. If the solution requires circuit topology meodification, appropriate circuit
primitives are used for replacements. For example, since the gain of an opera-
tional amplifier (Op-Amp) is directly proportional to the output resistance of the
input stage, one solution to increase the gain of an Op-Amp is to cascode the
input stage [50]. Thus, if a circuit with a non-cascode input stage is unable to
satisfy the gain requirement, cascode input pair as well as cascode active load
can be used to replace the original input stage for higher voltage gain. The
cascode input stage replacement solution is part of the design knowledge for
amplifier gain improvement. Once the circuit is modified, subsequent analyses
of the circuit would be carried out with the cascode input stage in place of the
original input stage. Here, instead of requiring a full circuit topology with
cascode input stage to be stored in the design database, the chosen circuit
configuration is modified to yield the desired improvement. A two stage Op-
Amp with simple input stage and one with a cascode input stage are shown in
Figs. 2.5(a) and (b) respectively. The circuit primitive replacement scheme may
be used for any functional block that can be identified in the chosen circuit.
The expert system possesses the knowledge to perform replacement only if it

would contribute to the circuit performance improvements desired.

The self-configuration technique is realized through equation substitutions in
the design knowledge base. The equations corresponding to the replaced portion
of the circuit in a design are substituted by the equations of the replacing subcir-
cuits for subsequent design analyses. Figure 2.6 illustrates the circuit primitive

replacement and equation substitution procedure of the self-configuration tech-

24

— | Mg
| bias
® S
—WN—t=
1 Vout

o— [mf M2 ;]]—-oin-

MS

|

ms _]

Fig. 2.5 Simplified schematic diagram of a basic two-stage CMOS
operational amplifier.

(a) with simple input stage.

25

M3) F—— [me i Cwe

. o——l E M9
bias
®
—\\N Im
Ce
Vbias M1A
L I
e
V. V: . [)
o] [M1 M2] o
. 4
P me—
M5
M]} Ho { [™7
* -
Vss

Fig. 2.5 (continued)
(b) with fully cascode input stage.

——— 5 Avl = 8m1 o1
I |-|-| M4
} !E A2 = Im2 702
| Avo = Avl Av2
: r) — M2, J— —
0=
: | 9on * 9op
: i B0p =904 - |
OBon =9 |
| l on 02 '<| |
| | ™ 11
| ! ° ||
) | 'Y 1
I | 11
{ L i1
|
: M2A [
I 9on =8o2-24 —— !
|
: — M2 J— I
! !
' |
' |
! [
i MaA !
L_ 9op = 904—A -
M4

Fig. 2.6

Circuit primitive replacement and equation substitution

for self-configuration.

27

que. When a fixed Op-Amp circuit is chosen at the beginning of a design, its
corresponding design equations are used to generate the initial design solution.
If the circuit was modified during the design process, i.e. when a portion of the
circuit is replaced, relevant equations are updated to reflect the change. Further

analyses would then be carried out with the new set of design equations.

The use of equaton substitution can be explained by the following example.
For the two-stage CMOS Op-Amp shown in Fig. 2.5(a), the voltage gain of the

first stage can be expressed as
Ayl = 8m1 " o1 2.1)

where g, is the transconductance of the transistor M1 and r,; is the total out-

put resistance of the input stage and can be approximated as

rogm—2 2.2)

ol = .
804 + 802

Here, g,4 and g,, are the output conductances of the transistors M4 and M2
respectively. In order to get more gain out of the amplifier, the basic input
stage can be replaced by cascode devices. Figure 2.5(b) shows the schematic
diagram of an Op-Amp with a cascode input pair. In this case, the voltage gain

becomes

&m
Ay = ‘ 2.3)

804 + 802

8maa ° TodA 8m24 " To24

where g,,04 and r,,, are the transconductance and output resistance of the

transistor M2A, g,,44 and r,44 are the transconductance and output resistance of

28

the wansistor M4A. It is evident from Eqgs. (2.2) and (2.3) that the self-

modifying replacement of the basic input pair by cascode devices merely require

o 8 804
the substitutions of ———=2>— for 802 and ————— for 8o4-
8m24 " To2a 8mda " Toaa

2.4 An Expert System for CMOS Op-Amp Design

As one of the most important building blocks in analog IC design, the
operational amplifier has found its way into various analog circuit applications.
Many analog IC design issues can be addressed through the design of an opera-

tional amplifier.

A typical set of performance specifications of an Op-Amp design includes
open-loop voltage gain (4,,), power dissipaton (P,), input range (Vip), output
swing (V,,), offset voltage (V,,), common mode rejection ratio (Cppg), power
supply rejection ratio (Pgpp), unity-gain bandwidth (f,), phase margin (),
input-referred noise (V,,.) , settling time (f,,) and slew rate (S,). The fact
that many of these specifications are highly interrelated makes the operational
amplifier design ever so challenging. Figure 2.7 shows the interrelationship
among some crucial performance objectives. It is evident that improvement
made on one of the performance specifications may very well result in deteriora-
tion of the other specifications during a design.

Let’s use the CMOS operational amplifier example shown in Fig. 2.5(a).'
The open-loop voltage gain of such a basic two stage Op-Amp can be expressed

as

29

Fig. 2.7

Interrelationship among performance objectives of an
operational amplifier.

30

Avo = Gm lRo IGMZROZ (2-4)

where G,,, and R,; are the transconductance and output resistance of the first
stage, G,,, and R, are the transconductance and output resistance of the second
stage. Since the G,,’s are directly proportional to the square roots of the bias-
ing currents and the R,’s are inversely proportional to the biasing currents, the
voltage gain (A,,), as a result, is inversely proportional to the square roots of
the biasing currents. Thus, a decrease in the current level would yield a higher

voltage gain. However, both the slew rate (S,) which can be expressed as

I
S = s 2.
r= T 2.5)
and the unity-gain bandwidth (f,) which can be expressed as
Gy
fo= — (2.6)
o Cc

would suffer because of this current level reduction. Here, I, is the bias
current through transistor M5 and C, is the compensation capacitor. Apparently,
rade-off stands as one of the major design considerations. The design of an
operational amplifier, therefore, requires not only fundamental understanding of
circuit operadons, but also expert knowledge of optimizing performance

tradeoffs.

An expert system for Circuit-level AMPlifier design (CAMP) has been-
developed to assist the design of operational amplifiers. It consists of a
knowledge base which contains domain knowledge that is necessary for solving

problems associated with a given design task and an inference engine that knows

31

how to manipulate the knowledge to reach a design solution. Design knowledge
is represented in CAMP as facts and rules. Facts are fixed data in the
knowledge base and rules use those available facts for making decisions, deriv-
ing other facts and drawing conclusions. It is not enough for an expert system
to have all the required domain knowledge but not knowing when or how to
effectively apply the knowledge. The inference engine carries the responsibility
of making effective use of the knowledge. It decides on how and in what order
the rules are to be used to infer new knowledge. With sufficient knowledge in
the knowledge base, the inference engine is able to reason its way to a design

solution that parallels a human expert solution.

Implemented in Turbo Prolog [51,52], the design knowledge of CAMP is
represented by logic-based method where analyses are carried out through the
use of predicate logic. Constants and equations are stored as rules and predi-
cates. Rules are written in the IF-THEN format. The expression

IF A and B THEN C

shows that the goal C is proven true if both subgoals A and B were proven
true. Rules can be used to express relationships among facts as well as relation-
ships among rules. The CAMP program contains approximately 95 rules in
1700 lines of code. Predicates are used to express fixed relationship between
objects. For example, the fact that object X increases object Y can be expressed

through the predicate "increases” as

increasesX , Y).

32

In the CAMP program, knowledge stored as facts include performance
specifications and constant parameters. The specification for the open-loop vol-

tage gain of an Op-Amp (4,,) is stored in the knowledge base as
spec(avo , 5500).

The predicate "spec” is defined to relate the specification value for the open-loop
voltage gain, in this case 5500, to the symbol avo. Similar predicates are
defined for other specification values. A set of default values are coded in the
expert system. However, the user can change any of them at the beginning of
each design session. Constant parameters are defined in a similar way. Users

are to provide the values from a set of SPICE model parameters.

Equations are used in rules for inferring conclusion or new knowledge. A
rule is activated if the conditional body of the rule were satisfied. A design is
carried out through inference chaining of related rules. Each design decision is
based on previous decisions and available facts. For example, to establish the

relationship between the unity-gain frequency (f,) and the width-to-length ratio

(%-) of transistor M1 in Fig. 2.5(a), the following two relationships are used for

inference chaining:
8m1 =2 nfo Cc 2.7)

and

w 8&m l2

(=)

= — (2.8)
Ly 2k, I

where g, is the transconductance of M1, C, is the compensation capacitance,

33

k

,” is the transconductance coefficient and [, is the biasing current through MS.

In other words, the determination of (%)l to achieve the specified unity-gain

frequency requires the knowledge of bias currents and transconductance which in
turn requires the compensation capacitance value. Because many factors contri-
bute to a design decision, inferences not only ease the implementation of the
decision making process but also provide a more dynamic solution to incorporate
gradually-formed knowledge for complex design decisions.

Various improvement solutions are implemented for each performance
objective. Improvement solution space is searched whenever an initial design
cannot satisfy certain performance requirements. For example, the common-
mode-rejection-ratio (CMRR) of the two-stage Op-Amp shown in Fig. 2.5(a) can
be expressed as

CMRR =2 M’ﬂ. 29

805 ° 801

where g,; and g, are the transconductances of M1 and M3 and g,5 and g,
are the output conductances of M5 and M1 respectively. To increase the CMRR
of the circuit, g, and g,3 can be increased or g,5 and g,; can be decreased.
Thus, possible improvement solutions include increase of MS5 length which
decreases g,s, increase of input pair length which decreases g,; and cascode
current source which effectively dccrez;ses 8,5. The final decision depends on.
how much the achieved performance deviates from the desired value. Deviation

of each performance objective is assigned a percentage error factor,

34

- Achv X - X

Er X
7= X

(2.10)

where "Achv" stands for "achieved". A correction factor is then defined for

each percentage error factor Er X as

1

F = ———.
¢ 1+Er X

(2.11)

The correction factor of each performance objective is used to determine an
improvement soluton as well as the exact adjustment that needs to be made.
Solutions that do not alter the current circuit topology are given higher priorities.
Circuit topology modification is performed only when there exists no good
improvement alternative in transistor sizing and when the estimated performance
after the modification meets the specification. Thus, in the case of the unsatis-
factory CMRR, the device lengths of the current source and/or the input pair are

increased before the option of cascoding the current source is considered.

Figure 2.8 shows the four-step design process of CAMP. Step-I of the
design is a quick evaluation of the feasibility of given performance specification
values. The evaluation is conducted by a set of approximate equations. If the
specifications do not seem achievable, CAMP comments on the limitations. If
they were feasible, CAMP enters step-Il of the design. Note that device param-
eters extracted from fabrication process information must be provided for proper
evaluations.

The step-II of the design addresses the issue of the dc characteristics of the
circuit. In this phase, CAMP attempts to provide proper dc biasing currents and

voltages for the circuit. The circuit simulator SPICE is used to evaluate and

35

,'

Input -
Specifications

|

!

|

!

No i

Feasible? Step—|

I

Yes 1

|

Expert System I
Initial Solution

- SPICE | |
dc Simulation

i

@
-—_m__
'?

No
Acceptable? Expert System
Modify Solution
d’i?.ul\ ac Simulation l
c Blas .,
Yes -Changed? Ste;;:—m
ac
Expert System Acceptable |
Modity Solution l
Yes |
Fine Tune? Expert System I
Provide Sugg.
Step-IV

Final Resuilt

Fig. 28 The four-step design process of the CAMP expert system.

36

confirm the design generated by CAMP. The SPICE result is fed back to

CAMP for necessary iterations.

Once the circuit is biased properly, step-Ill of the design process addresses
the issue of the ac characteristics of the circuit. Here, SPICE is used to evalu-
ate the small signal performances of the CAMP generated design. Similar to the
situadon in step-II, several iterations are necessary to achieve desired perfor-
mances. Note that if the dc biasing currents are changed significantly during the
step-IIl design process, then the dc characteristics of the modified circuit needs
to be re-checked in each iteration. This can be done by adding a feedback path
(shown in a dashed line in Fig. 2.8) from step-III to step-II of the design pro-
cess [88].

The step-IV is a very important step in the Op-Amp design process.
CAMP assists the circuit designer in fine-tuning the circuit performance. At this
step of the design, the designer has the option to select any of the specifications
for further improvement. CAMP would provide information for possible design

modifications and trade-offs in related performance objectives.

2.5 Experimental Results

As an intelligent assistant to Op-Amp design, CAMP shows satisfactory per-
formance. Table 2.1 shows the specifications and the achieved performance of
an experimental Op-Amp design. The last column of the table shows the circuit-
performance after the self-configuration to improve the common-mode-rejection-

ratio. The input stage current source of the circuit was modified to a cascode

37

Table 2.1 Op-Amp specification and achieved performance.

Achieved Achieved
)) Performance Pertormance
Performance Specification (simple input (cascode input
Parameters Values stage stage
current source) | | current sourcse)
Open loop
voltage gain €0 74.3 75
(dB)
Unity-gain
bandwidth 1.0 1.6 1.6
(MHz)
Phase margin 45 50 50
(Deg))
Power
dissipation 2.0 0.98 0.94
(mW)
Common-mode : o .
rejection ratio 80 74 92
(dB) '
Slew rate 20 3.1 rising 2.9 rising
(V / us) (3 Vstep) 3.8 faliing 2.8 falling
Common-mode | , +4.1 +4.1
input range
(V) - 4.0 -4.3 -43
f;::éof‘”f;z 26@1Hz || 43@1H2
PSRR + (dB) 40 @ DC 42,5 @ 5 KHz 43 @ 5 KHz
Z:;;;“fa"nz WO@5KHz | 426@1Hz || 43@1Hz
42. 43 KHz
PSRR - (dB) 2.6 @ 5 KHz @5

38

M11

M12 M3]

Vine

M1

e

M2 l_o

M1aE|}

&

M5 i—Mi6
= qlfl M10

Vout

o—ﬂ: M7

Vss

Fig. 2.9 Schematic diagram of a two-stage operadonal amplifier.
(a) with simple biasing current source.

39

Fig. 2.9

M11

M12 M3

E M15
Ms _I l’"'

(continued)

Cascode Current Source

(b) with cascode biasing current source for common-mode
rejection improvement.

40

current source in this case. Figure 2.9(a) and (b) show the schematics of the
starting circuit and modified circuit respectively. For this particular design, 3
iterations were required before the self-modification and 2 more iterations were
needed to finalize the design. SPICE is used for intermediate design evaluations
during the design process as well as for final performance evaluation. Iterations
between SPICE and CAMP contribute to the fast emergence of the final design.
Without the swong interactions with SPICE, an accurate and reliable design
would not be achieved efficiently. Table 2.2 lists the transistor sizes for the

final circuit.

41

Table 2.2 Drawn device sizes.

Device | W (um) L (um) | |Device| W (um) L(um)
M1 146 16 M9 3 54
M2 146 16 M10 25 3
M3 23 16 M11 3 3
M4 23 16 M12 3 123
M5 30 3 M13 11 3

MSA 30 3 M13A 11 3
M6 4 3 M14 3 3
M7 15 3 M15 3 3
M8 4 3 M16 22 3
Cec S pF

42

Chapter 3

Constraint-Based Analog IC Layout Synthesis

3.1 Analog Layout Considerations

The field of layout automation for analog ICs has progressed at a much
slower rate than has been the case for digital circuits. The main difficulty lies
in the fact that the layout requirements for analog circuits are generally more
intricate and difficult to deal with. This can be attributed to the diverse, sensi-
tive, and complicated nature of analog circuits. The analog circuits are generally
quite diverse in a wide variety of circuit functions and topologies with a wide
performance range. Take the operational amplifier module for example: there
exists dozens of circuit architectures [S50] based on various design choices, such
as one-stage or two-stage, class-A or class-AB, cascode or without cascode,
static- or dynamic-biasing, with or without low-impedance output stage, single-
ended or fully-differential output. Unlike the digital domain where the usage of
a fixed standard cell library laid out in semicustom styles is generally sufficient,
in the analog domain it is not only difficult, but also impractical to store a rich
enough set of analog circuit library cells to cover the wide spectrum of possible
applications. Furthermore, such cell libraries tend to become obsolete as soon as
the process technology or design rules change. As a consequence, parameterized -
generators that are technology independent and can operate at the device,

module, and up to the subsystem levels are more flexible and thus are more suit-

43

able for analog IC applications. Therefore, the development of such generators

is a key step toward automatic layout of analog VLSI circuits.

Performance issue is the major concern for analog IC layout automation.
Unlike digital circuits, the performance of the analog circuits is heavily depen-
dent on fine details of physical layout and device behavior. The key considera-
tons are the effects of device mismatching, parasitics, and noise coupling on
analog circuit layout. These undesirable effects can lead to various kinds of per-
formance degradations for analog circuits. For instance, the poor matching of
critical analog devices [53,54] in the layout will induce large offset and poor
accuracy performance at the circuit and subsystem levels. Excessive interconnect
parasitics on a critical node will also deteriorate the transient and frequency
responses of an amplifier. Furthermore, any noise coupled into the sensitive ana-
log circuit layout area will significantly reduce the achievable circuit dynamic
range. These performance constraints can be very stringent especially for some

high performance system applications.

The area efficiency of the produced layout is also a concern. One of the
main difficultes in analog IC layout is the fact that device sizes in the same cir-
cuit can vary over a wide range. In fact, as large as two orders of magnitude
variations in device sizes is not uncommon. These large devices usually have to
be laid out in variable shapes to result in a more compact analog circuit layout.
Another important consideration is in the user interface. One particular concern
here is the fact that VLSI system designers typically do not have extensive ana-
log IC knowledge. Therefore, the layout tool itself must possess ample expert

knowledge to generate circuit layout without requiring special help from the

users. Finally, to match the quick tumaround requirement in the VLSI design
environment, the computation efficiency of the layout tool must also be optim-

ized.

3.2 Review of Automatic Analog Layout Generators

Recently, analog circuit layout synthesis has received increased artention
from the research community [32-45]. Most earlier attempts typically relied on
a semicustom style using analog standard cell libraries [32-34). However, as
explained before, this method had achieved very limited success. More recently,
recognizing the limitations of the standard cell approach, several custom analog
layout methodologies based on the module generation concept:have emerged
[35-41). These approaches either use simple fixed-topology floorplans [35,41],
dedicated slicing trees [37-39], or rely on a bottom-up general simulated anneal-
ing program [36,40]. Prototype analog IC layout tools such as Berkeley’s
OPASYN [39], CMU’s ANAGRAM [40], and CSEM’s ILAC [38] are
developed.

OPASYN uses a top-down fixed-floorplan approach based on predefined
slicing trees for placement [55] and a net-by-net switchbox routing procedure.
While this approach is workable and can produce a good result, the main draw-
back is that a specific slicing tree must be manually designed by human expert
designers for each of the generic circuit topologies and pre-stored in the database

for placement. It can handle only certain topologies of Op-Amp building blocks.

45

As a result, this tool is considered only semi-automated and provides very lim-
ited flexibility.

ILAC also adopts the slicing structures, but relies on a simulated annealing
technique for placement optimizadon [56] and a scanline-based incremental chan-
nel router. Comparing to OPASYN, this approach shows a higher degree of
flexibility. However, the tool is not fully automated, either. To obtain a satis-
factory performance, it stll requires an analog IC expert to manually specify
analog circuit layout constraints such as matching device pairs for each circuit as
part of the inputs. Moreover, since this floorplan optimization technique is
adopted from the digital design world [56] where the area and wire length are
the only concerns, most of the analog-specific performance requirements cannot
be effectively addressed. Consequently, the achievable performance with this

approach can be limited.

ANAGRAM uses a general simulated annealing method based on arbitrary (
i.e. non-slicing) structures for placement and a line expansion algorithm for rout-
ing. Comparing to OPASYN and ILAC, this approach gives the highest degree
of flexibility, but often at the expense of performance. One major limitation is
that allowing the arbitrary layout structures, in addition to the versatile analog
circuit layout constraints resulting from variable shapes of the cells, different ter-
minal locations, geometrical matching, parasitics, noise coupling, etc., has created
too many degrees of freedom for the conventional simulated annealing a.lgon'thms‘
to handle efficiently. In ANAGRAM, the annealing cost function includes terms
to minimize total area and wire length, but incorporates only very little analog

circuit layout constraints. As a consequence, the performance of the resulting

46

layout is often not well optimized. Their generated layout results are usually
less predictable and look quite different from those handcrafted by expert

designers.

Some disadvantages common in all three systems are as follows. First, per-
formance considerations are not addressed adquately and systematcally in these
systems which often lead to much less optimized layout results. Second, they
do not have enough expert analog layout knowledge built into the system and
thus are not really tailored to be used by system designers on a standalone basis.
And finally, more work is yet to be done to extend the analog circuit layout

generator from the module level into the higher analog subsystem level.

Recognition of the shortcomings of the above approaches has led to a new
approach to the automatic custom layout generation for analog ICs [42-45] which

is described next.

3.3 The Constraint-Based Approach

Our approach is quite distinguished from existing methods. It is based on
automatic circuit recognition and layout constraint analysis techniques by sys-
tematically capturing the analog IC layout expertise of human engineers. Instead
of relying on a general optimization approach commonly used to solve the digi-
tal IC layout problems, we believe that the most effective solution for automatic
analog circuit layout is to directly mimic the actual layout design practice used.
by human analog IC experts. The typical analog circuit layout design flow used
by human experts is illustrated in Fig. 3.1. The layout generation starts with a

sized schematic of an analog circuit module. The designer first reduces the

47

Sized Technology
Schematic Information

r
Matching Schematic

Considerations Decomposition
/ Connectivity & Initial
Terminal Considerations Placement

|
Parasitics & Modified
Noise-Coupling Routing Placement
Considerations

3

y

Parasitics

Extraction &
Simulation

Geometries

Fig. 3.1 Analog circuit layout design flow - a human expert model.

48

complexity of the problem by identifying matched device pairs in the circuit and
decomposing the schematic into a set of smaller cells based on these matched
devices. Considering layout design rules, connectivity, terminal Idchtiohs. parasi-
tics, noise coupling, and so forth, the expert designer then works o'ui a sound
topological arrangement for all the cells in the circuit and sketches a rough
placement of these cells. After the initial placement of the cells, the designer
routes the nets and at the same time compacts the resulting layout. When the
layout is done, parasitic elements such as parasitic capacitances and resistances
from wirings are extracted from the mask geometries. These parasitic elements
are then added to the input circuit schematic and the resulting circuit is simu-
lated for verification. If all the performance and area specifications are met, the
layout design is completed. Otherwise, the current layout must be medified to
reduce the excessive parasitic elements to improve performance or to obtain

better area utilization if necessary.

The basic strategies used in our approach to achieve high performance are
first to incorporate the major component matching requirements within the circuit
primitives, then to internally generate layout constraints to minimize the intercon-
nect parasitics and noise couplings. Figure 3.2 shows the flowchart of the
automatic analog circuit layout synthesis method. It consists of five major pro-
cessing steps: circuit primitive recognition, critical net analysis, floorplanning,
primitive cell generation, and routing. The system performs a complete netlist-
to-layout synthesis task. It starts with an analysis of the circuit before actual
layout generation. Given the schematic netlist of an analog circuit module

(which can be simply extracted from the SPICE input deck of the module), the

49

Layout Size Schematic| [~ Technology
Specifications Netlist Information

[|

s B
T T
Primitive Recognition :rimiliv?‘Cell
Rules ecognition
'
Critical Net
Analysis

Primitive Cell

Floorplanning Generation

Y

Routing

=&
Yes

Physical
Layout

Fig. 3.2 An automatic custom layout synthesis methodology for
analog ICs.

system first identifies critical analog circuit nodes and then recognizes matched
device pairs in the circuit. The recognizable analog circuit primitives can range
from a single transistor to a cascode current mirror. Based on the recognized
circuit information, the system then carries out a critical net analysis for the cir-
cuit and internally generates proper layout constraints. The weighted constraints
are then fed into the constraint-driven analog floorplanning and routing pro-
cedures and incorporated in the final layout. The next two chapters describe

each processing step in detail.

51

Chapter 4

Circuit Recognition and Layout Constraint Analysis

4.1 Analog Circuit Recognition

Circuit recognition is an important step to design automation. A digital cir-
cuit recognition technique was proposed for symbolic circuit verifications [57] in
which the functionality of logic components in a static CMOS circuit can be
easily recognized using a small set of Boolean or logic circuit expressions. This
is possible because a digital circuit schematic is normally composed of few logic
primitives such as NOT, NAND, and NOR. Such a recognition technique, how-
ever, would not work directly on analog circuits. This is mainly because that
analog designs, unlike digital designs which only need to deal with two discrete
logic levels (0 and 1), have to deal with a continuous spectrum of voltage levels.
Consequently, an analog circuit can be designed in an almost infinite number of

variations, which in turn makes the analog circuit recognition rather difficult.

Analog circuit recognition [29] is a crucial step toward automatic synthesis
of high-quality custom analog IC layout. If crucial portions of an analog circuit
can be recognized and given special layout processing, then component
mismatching, parasitics, and noise coupling that would result in degraded analog
circuit performance can be minimized. To serve this purpose, we have
developed a unique rule-based analog circuit recognition technique [42] from a
layout synthesis perspective. This technique is designed to recognize matched

device pairs in an analog circuit (such as differential pairs and current mirrors)

52

so that they can be treated as special units in the layout to achieve excellent
matching, while decomposing the circuit schematic into a small set of predefined
circuit primitives. In addition, it can identify critical circuit nodes in the
schematic that are specially sensitive to interconnect parasitics and noise coupling

in the layout.

The analog circuit recognition is realized through the application of recogni-
ton rules. Rules are defined for critical circuit nodes and circuit primitives.
The input to the recognition program is a SPICE-like netlist extracted from the
circuit schematic and the output is a set of recognized circuit nodes and circuit
primitives. The recognition process consists of three steps. First, the critical
circuit nodes are identified. Second, the applicable recognition rules are applied
to recognize analog circuit primitives. Third, the circuit primitive information is
then assembled for primitive cell generation.

4.1.1 Critical analog circuit nodes

An analog circuit schematic can be described in terms of a number of
nedes, circuit primitives, and their interconnection patterns. Table 4.1 lists a set
of circuit nodes used for analog MOS circuit recognition. The first part contains
basic circuit nodes extracted from the input nedist. They consist of power (P),
input (I), output (O), and bias (B) pins as well as internal component nodes such
as transistor gate (G), drain (D), source (S), and substate (U) terminals, capaci-
tor plate (C), and resistor terminal (R). A node that connects two or more.
transistor terminals is defined as a junction node. For analog MOS circuits, four
critical junction nodes can be identified [42): diode-connected node, high-

impedance node, source-coupled node, and current-mirroring node. Figure 4.1

53

Table 4.1 Circuit nodes for analog MOS primitive recognition.

Basic Circuit Nodes Symbols

Power Source Node P

Input Node

Output Node

Bias Node

Transistor Gate Terminal

Transistor Drain Terminal

Transistor Source Terminal

Transistor Substrate Terminal

Capacitor Plate

PlOo|lClw]jO]|Q|wm|{O|—

Resistor Terminal

Diode-Connected Node DC

Source-Coupled Node SC

Current-Mirroring Node CM

___l DC
]ﬂ

-~

High-lmpedance

_.I
__l

Diode-Connected

A O T
— 1

g

il

Source-Coupled Current-Mirroring

Fig. 4.1 Four critical analog MOS circuit nodes.

55

shows example schematics of these critical circuit nodes which usually require
special layout care.

A diode-connected (DC) node is defined as a junction node that connects
the gate terminal of a transistor to its drain terminal (which is equivalent to a

diode connection), i.e.,
DC =GWMy) - DM,). 4.1)

where M; denotes a transistor, G(M;) is the gate terminal and D(M;) is the drain
terminal of the transistor. Since a DC node is normally used to bias an analog
circuit, it requires special layout care in device matching and parasitics.

A high-impedance (HI) node is identified as a junction node that connects

drain terminals of multiple transistors, i.e.,
H =DM, -DMy - -+ DWM,). 4.2)

If an HI node merges with a DC node which has a lower impedance, then the
result is a DC node. An HI node normally represents a dominant pole of an
amplifier circuit and thus the associated parasitics and noise coupling should be
minimized.

A source-coupled (SC) node is defined as a junction node that connects

source terminals of multiple transistors, i.e.,
SC=SM,) - -SMy) -+ SM,). (4.3)

If an SC node merges with a power source node, then the result is simply a
power source node. An SC node is nommally located in the center of a

differential amplifier circuit where the input signal is very sensitive to crosstalk

56

noise. In addition, component matching of the differential pair is very critical.

A current-mirroring (CM) node is actually an extension of a common-gate
(CG) node which is identfied as a junction node that connects gate terminals of

multiple transistors, i.e.,
CC =GCGM,)-GMy -+ GM,). (4.4)

A CM node is a CG node with the source terminals of the associated transistors
tied to a same power source node. The CM node is typically used to link a
current mirror circuit, while the CG node usually inserts a cascode stage for an

amplifier circuit. Both require good device matching.

As will be evidenced later, the use of these circuit nodes can significantly
simplify the rules required for recognizing the analog circuit primitives.
4.1.2 Analog circuit primitives and recognition rules

The recognition technique uses a special set of analog circuit primitives
ranging from a single transistor to a cascode current mirror to achieve high per-
formance and flexibility. Figure 4.2 shows schematics of seven generic circuit
primitives which are parameterizable and recognizable by the prototype system.
Note that all the typical matched device pairs in analog MOS circuits such as
the input differential pair, current mirror, and ratioed current source are included
in these circuit primitive structures to ensure good matching performance. Each
circuit primitive can be parameterized in different transistor types and physical
sizes. The number of devices in the multple-transistor circuit primitives is also
programmable. In addition, each primitive can be constrained by a group match-

ing parameter to allow a balanced match between selected circuit primitives.

57

T n

(SC) Source-Coupled Pair (CM) Simple Current Mirror (CG) Common-Gate Devices

W
sSw1 . Cpa
M, My
S ¢
sw2 Pt
{CCM) Cascode Current Mirror (T) Single Transistor
(TG) Transmission Gate (C) Single Capacitor

Fig. 42 A set of recognizable analog MOS circuit primitives.

58

To recognize these circuit primitives for various analog CMOS circuits, the
following seven basic rules are used. In addition, extended rules can be applied

to impose the extra layout care required for certain special circuit primitives.

R1: <source-coupled device primidve (SC)>

SC{MI, Mz, veey Mn}:

[S(Ml) =SMy)= -+ =S(M,) = sc] A
[:(M,) =tMy) = - =z(M,,)], n22. (4.5)

Here M; denotes a transistor and ¢(M;) represents the transistor type, either p or
n. This rule states that if the source terminals of transistors M -M,, which have
the same transistor type, are connected to form an SC node, then these transis-
tors are recognized as a source-coupled device primitive. An important exten-
sion of this primitive would be an input differential pair primitive typically
found in an Op-Amp. In this case, the added condition is that the gate termi-

nals of the mansistor pair must be connected to the circuit input nodes, ie.,

R1.1: <input differential pair primitive (SC-IN)>

SC"IIV{M[, Mz}:

[R 1(n=2)] A [G M) = I] A [G(M,) = I]. 4.6)

Almost any analog circuit needs a current mirror primitive. The key circuit

node to look for in this primitive is the CM node, i.e.,

59

R2: <simple current mirror primitdve (CM)>

CM{MI, M, ..., M,,}:

[G(M,) =GMp)= -+ =GM,) = CM] A
[:(Ml) =tMy)= --- = t(M,,)], n>2, @.7)

Similarly, this basic rule can be extended to further identify an input-stage load
primitive typically found in a two-stage Op-Amp. The extended rule requires
that the drain terminal of one transistor be a DC node, while the drain terminal
of the other transistor must be an HI node which is not tied to an output node,
ie.,

R2.1: <Op-Amp input-stage load primitive (CM-OPIL)>

cM -OPIL{MI, Mz}:

[R z(n=2)] A [D M) = DC] A
[D M) = HI] A [D M) = o]. (4.8)

Common-gate device primitive is another widely used primitive, especially
in cascode amplifier circuits. In most cases, the primitive forms the cascode

device itself. The recognition rule is similar to R2:

R3 : <common-gate devices primitive (CG)>

ca{Ml, My, .. M,,}:

60

[G(Ml) =GMp)= -+ =GWM,) = CG] A
[t(Ml) =tMy)= --- = :(M,,)], n22. (4.9)

By stacking the simple current mirror and the common-gate device primitive

together, a cascode current mirror primitive can be formed, i.c.,

R4: <cascode current mirror primitive (CCM)>

CCM{MI, Mz, eny Mn}:
"
CM{M,, M . M}] A [co{M,.ﬂ, Mo .. M}] A

[. ;
D(Mj) = S(Mj+l)’ J = 1, 2, . l] A

I(Ml) = t(Mz) = .- = t‘(Mn)], n=2i>4. (4.10)
In this way, the parasitics associated with the cascode node, which typically

represents a non-dominant pole of a cascode amplifier [50], can be minimized.

A CMOS wansmission gate, which is composed of a PMOS transistor and
an NMOS transistor, is typically used as a switch in the switched-éapacitor ana-

log circuits. The recognition rule for that is quite simple:

R5: <CMOS transmission gate (TG)>

TG{MI, Mz}:

[pwy =) A sy = s A

61

[:(M‘) * :(Mz)]. (4.11)

After applying the above recognition rules to an analog circuit, most of the
devices that require special matching arrangement should have been recognized.
Thus, the rest of transistor elements in the circuit can be treated as single
wansistor primitives. These primitives can be identified from the wmansistor ele-
ments that are not part of the already-recognized multiple-transistor primitives

after applicaton of rules R1-R3, i.e.,

R6: <single transistor primitve (T)>
T{M 1} =M; M; & {sc, CM, CG, CCM, TG}. 4.12)

For some important single-transistor primitives, such as the output driver transis-
tor for a two-stage Op-AMP, other special layout attention is also required.
Since in that case the transistor is typically connected between the two high-
impedance nodes of the Op-Amp, this recognition rule can be extended as fol-

lows:

R6.1: <Op-Amp output driver primitive (T-OPOD)>

T—OPOD{M 1}:

[R6] A [D(Ml) =HI] A [D(Ml) = 0] A

[G My = HI]. (4.13)

62

A capacitor primitive is indispensable for switched-capacitor circuits. The

corresponding rule is:

R7: <single capacitor primitive (C)>
C: [Cpl = C] A [sz = C] (4.14)

Note that these rules can handle frequently-used analog CMOS circuit
modules. As can be seen, both the recognition rules and circuit primitives are
designed to be flexible such that they can be easily extended to handle new
types of analog circuits. For example, a resistor primitive and some bipolar
transistor primitives can easily be added to handle the BICMOS analog designs

as well.

To handle fully differentdal circuits or some circuits where good thermal
matching is required, additional recognition steps are used to identify the sym-
metrical matching constraints needed to impose between certain circuit primitives
[45]. For fully differential circuits, the recognized differential primitive pairs are
further partiioned into two symmetrical primitive groups to optimize the
differential circuit performance. For circuits where good thermal matching is
required, proper constraints on balanced match between the sensitive circuit
primitives and the recognized high-current circuit primitives, which are typically
located in the output driver stage of an analog circuit module, can also be gen-

erated.

4.1.3 Examples

63

To illustrate the effectiveness of the recognition technique for analog circuit
layout considerations, let's consider the following examples of commonly-used
analog IC modules including a two-stage CMOS Op-Amp, a single-stage folded
cascode Op-Amp, a voltage comparator, an analog multiplier, a voltage-controlled

oscillator, a sense amplifier, and a fully-differential CMOS Op-Amp.
Example 1 -- Two-stage CMOS Op-Amp

Figure 4.3(a) shows the schematic of a popular two-stage CMOS Op-Amp
[58]. Transistors M,-M, form the two-stage core amplifier with Mg-M,, and
capacitor C; providing a tracking RC compensation. By applying seven recogni-
ton rules to this circuit, the Op-Amp schematic can be decomposed into seven
recognized circuit primitives including critically matched device pairs as shown
in the schematc. For example, transistors M, and M, are recognized through
rule R1.1 as an input differential pair primitive and are to be closely matched.
The four n-channel transistors at the bottom (Ms/M4/M¢/M ;) are recognized
through rule R2 as a current mirror primitive and thus all four transistors are to
be matched to maintain proper biasing. Finally, transistor M4 is recognized
through rule R6.1 as an output transistor primitive whose gate and drain termi-
nals are both connected to high impedance nodes and thus the associated parasi-
tics and noise coupling are to be minimized. Figure 4.3(b) shows the SPICE
input file of the Op-Amp used as an input to the circuit recognition program.
The generated output file showing the recognized circuit primitives as well as the

critical circuit nodes is listed in Fig. 4.3(c).

64

7
H

;v 7
: 0 | omoen | O ; T-0POD
M3 [V M6
BIAS @ ()
@ @ c |
E‘ SC-IN M87 |Cc | % vour
My 2Ny () et A
ey At &
©) 1»11,6_’%—i c
—a
oM
1 D Ms M9 I
Vss ©)
Fig. 43 Circuit recognition of a two-stage CMOS Op-Amp.

(a) Schematic of recognized circuit.

65

*** Example 1 - Basic Two-Stage CMOS Opamp **»

* Input Stage

-

Ml 411 3 3 NW=60U L=2U
M2 512 3 3 NW=60U L=2U
M3 4 4 1 1 PW=60U L=3U
M4 54 1 1 PW=60U L=3U
M5 3 7 2 2 NW=40U L=4U

E

* Output Stage

*®

M6 10 5 | 1 P W=600U L=3U
M7 10 7 2 2 N W=200U L=4U

*

* Frequency Compensation

*

M8 6 9 5 1 PW=108U L=3U
M9 9 7 2 2 NW=25U L=4U
MI0O 9 9 8 1 P W=I2U L=3U
MIl 8 8 1 1 P W=75U L=3U
=

CC 6 10 5P

*

* Bias

M2 7 7 2 2 N W=20U L=4U
IBIAS 1 7 10U

.

VDD 1 0 +5V

VSSs 20 0v

VIN- 11 0

VIN+ 12 0

*

CL 10 0 20P

*

Fig. 4.3 (continued)
(b) SPICE input file.

*** Example 1 - Basic Two-Stage CMOS Opamp *+*

** Basic Circuit Nodes **

P :(12)
I :{11,12)
0 : (10}
B : {7}

C : {6.10)

** Critical Junction Nodes **
DC: {4,789}

HI : (5.10)
SC: (3)
CM : {4.7)

** Recognized Primitive Cells **
SC-IN(n) : {M1,M2}

CM(n) : (M5.M7,MIMI2)
CM-OPIL(p) : (M3,M4)
CG(p) : {M8,M10}

T() : (M11}

T-OPOD(p) : (M6}

C: (CC)

Fig. 4.3

/* diode-connccted node */
/* high-impedance node */
/* source-coupled node */

/* current-mirroring neode */

/* input differential pair */
/* current mirror */
/* Op-Amp input-stage load */
/* common-gate devices ¥/
/* single transistor */
/* Op-Amp output driver */

/* single capacitor */

(continued)
(c) Recognition output file.

67

Example 2 -- Single-Stage Folded Cascode Op-Amp

Figure 4.4(a) shows the schematic of a single-stage folded cascode Op-Amp
[2) commonly used for high-speed switched-capacitor circuit applications. This
Op-Amp features a cascode gain stage, M 1-M 1o, with a high-swing cascode bias-
ing circuit, M;-M 9. Transistors My0-M 24 perform the differential-to-single-
ended conversion for the output while providing an offset compensation. By
applying four recogniton rules to this circuit, a total of nine primitive cells
including all the matched current mirrors and cascode devices are recognized as
shown in the schematic. Figure 4.4(b) shows the SPICE input netlist of the
Op-Amp. The recognition output file is listed in Fig. 4.4(c).
Example 3 -- Voltage Comparator

Figure 4.5(a) shows the schematc of a common voltage comparator with
hysteresis [6]. Transistors M;-M form the differental input stage of the com-
parator with M;-M, supplying the tail current. The output stage is composed
of M3-M ;. All the five matched device pairs in the circuit can be identified
using two recognition rules. The SPICE input nedist of the comparator is shown

in Fig. 4.5(b) and the recognition result is listed in Fig. 4.5(c).
Example 4 -- Analog Muitiplier

Fighre 4.6(a) shows the schematic of a Gilbert multiplier [59]), which is an
important building block for conventional analog signal processing subsystems as.
well as neural networks. The core of the four-quadrant multiplier, including
transistors M -M |5, consists of three differential pairs with four voltage inputs,

Vivi-Vivge. Transistors M3-M ¢ form the output stage of the multiplier. By

68

Voo

)

r'-, £ r—’ms

J‘JMZI

&

y - TY :
C | o e o g
@ A
Mle}_‘ M8 'ﬁ_JM?CG E_—ktzz —5_7!;
CcG £O
== @ ® @
CG | I
) @7&7,5“—”"”,15 | ot D Vour
'BIAS le le M 5
ce ,_JC_G -
MI3 14 1'L. _{Lags _L
@ @
_
Ml ® Mi2 cy eMS li-'ﬁlo
Vss (@
Fig. 44 Circuir recognition of a single-stage folded cascode

Op-Amp.

(@) Schematic of recognized circuit.

69

=== Examplc 2 - Singlc-Stage Folded Cascode Op-Amp ***

-
* Gain Stuge
»
Ml 12 5
M2 13 3
M3 16 7
M4 17 7
M5 14 10
M6 1510
M7 16111
M8 17111
M9 12 6
6

P W=1200U
P W=1200U
14 P W=1200U
15 P W=1200U
2 N wW=1350U
2 N W=1350U

N W=600U
N wW=600U
N wW=75U

N W=600U
P W=1200U
MI61110 1 1 P W=1200U
M17 9 910 10 P W=225U

Mi18 8 91111 P W=1200U
M19 410 1 1 P W=2400U

»

PR, NI
- NN

* Offset Compensation

*

M20 2 01919 P W=600U
M211810 1 1 P W=1200U

4 P W=600U L=3U
4 P W=600U L=3U
2 N W=600U L=4U
2 N W=600U L=4U
1
1

L=3U
L=3U
L=3U
L=3U
L=4U
L=4U

L=4U
L=4U
L=4U
L=3U
L=3U
L=3U
L=3U
L=3U

L=3U
L=3U

M22 19 11 18 18 P W=1200U L=3U

M23 12 16 19 19 P W=600U
M24 13 16 19 19 P W=600U
IBIAS 9 2 100U

CL 1702P

*

VDD 1 0 +2.5V

VSS 2 0 -2.5V

VIN+ 500

VIN-300AC 1

L=3U
L=3U

Fig. 4.4

(continued)
(b) SPICE input file.

*** Example 2 - Single-Stage Folded Cascode Op-Amp ***

*» Basic Circuit Nodes **

P : {12}
I :(3.5)
0 : {17}
B : {9)
C:{)

** Critical Junction Nodes **
DC : {6,8,9,10}

HI : (16,17}
SC : (4,19)
CM : (6,10}

** Recognized Primitive Cells **
SC-IN(p) : {M1M2}

CM(n) : (M9M10,M11M12)
CM(p) : (M5M6M15M16M19,M21)

CG(n) : {M3 M4}
CG(n) : {M13,M14)
CG(p) : {M7,M8M22}
CG(p) : (M17,M18)
CG(p) : (M23,M24]

T(p) : {M20}

/* diode-connccted node */
/* high-impedance node */
/* source-coupled node */

/* current-mirroring node */

/* input differential pair */

/* current mirror */

/* common-gate devices */

/* single transistor */

Fig. 44 (continued)
(c) Recognition output file.

71

lgias

g 3 —[mn e
2 ” e
s ®u Vss
Fig. 45 Circuit recognition of a voltage comparator.

(a) Schematic of recognized circuit.

Vour

72

=»» Example 3 - Voltage Comparator ***

*

-

Mi
M2
M3
M4
MS
M6
M7
M8 10
M9 9
M10 10
M1t 3
MI12 6

*

O 0~ N300

IBIAS 1 6 20U

*

o ~ 0 ~1 & W o

O O ©

DN O R I L I P

vDD 1 0 5V

VS§§ 20 0V
VIN- 4 0

VIN+ 50

*

VOUT 10 0

*

B 0N e e = NN

N wW=30U
N W=30U
P wW=20U
P W=20U
P W=30U
P W=30U
P W=60U
P W=60U
N W=60U
N W=60U
N wW=40U
N w=20U

Fig.

L=2U
L=2U
L=4U

L=4U
L=4U
L=4U
L=4U
L=4U
L=4U
=4U
L=4U

4.5

(continued)
(b) SPICE input file.

73

*=» Examplc 3 - Voltage Comparator ***

** Basic Circuit Nodes **

P : {12}
I : (4.5)
o : (10}
B : (6)
C:(

** Critical Junction Nodcs **
DC : {6,7.8.9)

HI : {10)
SC: (3)

CM : {6,7.8,9}

** Recognized Primitive Cells **

SC-IN(n) : (M1,M2)

CM(n) : {MIM10)
CM(n) : (M11,M12)
CM(p) : (M3M5M7}
CM(p) : {M4,M6,M8)

/* diode-connected node */
/* high-impedance node */
/™ source-coupled node */

/* curreol-misroring nude */

/* input differential pair */

/* current mirror */

Fig. 45 (continued)
(c) Recognition output file.

cM :
Voo ®
MBF— M3 [_'_w%s Md] Mo | [
e | cn | @) o |
‘ Ving
@pl\'ﬁ © Mgg { }E‘l_;%_‘
L L Vour
Ving SC-IN SC-IN G
&I ©,
Ving—{[M1 M2fl— Vinz
B
cM @ cu
! Vss I o
-

Fig. 4.6 Circuit recognition of an analog multiplier.
(a) Schematic of recognized circuit.

75

*»» Examplc 4 - Analog Multiplicr ***

* Input/Gain Stage

E

Ml 6 4 32N
M2 75§53 2N
M3 661 1P
M4 77 1 1P
MS 1061 1P
M6 11 71 1P
M7 12 910 1 P
M8 13 911 1 P
M9 13 810 1 P
MI012 811 1 P
MI11212 2 2 N
MI21313 2 2 N

*

* Output Stage

MI3 1412 2 2
MI41513 2 2
MiS51414 1 1
MI61514 1 1

*

VBIAS 16 0
VDD 1 0 +5V
¥S§S 200V

»

VINI 40
VIN2 50
VIN3 80
VING 90

*

VOUT 15 0

=

v Z Z

Fig. 4.6 (continued)
(b) SPICE input file.

*»+ Examplec 4 - Analog Multiplicr ***

** Basic Circuit Nodes **

P (12

1 : {4,589}

0 :(15)

B :(16)

C:{Q

*= Critical Junction Nodes **

DC : (6,7,12,13,14} /* diode-connccted node */
HI : (15} /* high-impedance node */
SC: {3,10,11} f* source-coupled node */
CM : {6,7,12,13,14) /* current-mirroring node */

** Recognized Primitive Cells =~

SC-IN(n) : {M1,M2) /* input differcntial pair */
SC-IN(p) : (M7,M9)

SC-IN(p) : {M8,M10)

CM(n) : (MI11,M13} /* current mirror */
CM(n) : {M10M12M14)

CM(p) : {M3MS)

CM(p) : {M4,M6}

CM(p) : {MI15M16]}

T(n) : {M17)} f* single transistor */

Fig. 4.6 (continued)
(c) Recognition output file.

77

applying the appropriate recognition rules, a total of nine primitive cells includ-
ing all the maiched differental pairs and current mirrors are recognized from the
input netlist, as shown in Figs. 4.6(b) and (c).

Example 5 -- Voltage-Controlled Oscillator (VCO)

Figure 4.7(a) shows the schematic of a CMOS VCO [6], which is a key
circuit module for analog phase-locked loop subsystems. The oscillator function
is implemented by transistors M ;3-M ¢ and capacitor C,,.. A comparator with
hysteresis, which consists of transistors M -M,, is used to assist the voltage
control. The frequency of the oscillator is actually controlled by the input vol-
tage, V;,. Given the input netlist (Fig. 4.7(b)) of the VCO, a total of ten primi-
tive cells can be identified along with the critical circuit node information as
given in Fig. 4.7(c).

Example 6 -- Sense Amplifier

Figure 4.8(a) shows the schematic of a high-speed sense amplifier [60]
based on a half-Vpp bit-line sensing scheme [61], which is commonly used in
modern CMOS DRAM designs. The sense amplifier consists of an NMOS
cross-coupled latch (M, and M,) and a PMOS cross-coupled pair (M3 and M)
with a pair of switch transistors inserted in between. By using the analog circuit
recognition rules described, the latch can be recognized as a source-coupled pair
primitive and the switch-transistor pair can be recognized as a common-gate dev-
ice primitive (Fig. 4.8(b) and (c)). Note that by identifying these devices as
matched pairs, the mismatch between two halves of the sense amplifier can be

minimized in the layout and thus can achieve better sensitivity performance.

78

6L

Ipias

™ " | @

Lﬂ—@'—l M16 L JTSJ—«»—{ A3 M4 J——ae—{ M6
M7
rl

Izt
L
o

T [

k-

|
{1

QUT

® + I
c
ol € @ SC-IN V
- M1 M2
- o o 7 o
T | A =
M vt cM

®m3 cM jl@ i !

=}E {714 M| :[‘.‘—’"'
V. »
iN ’I VSS CcM @

Fig. 4.7 Circuit recognition of a voltage-controlled oscillator.
(a) Schematic of recognized circuit.

*»> Examplc 5 - Voliage-Controlled Oscillator ***

* Comparator
M1
M2
M3
M4
MS
M6
M7
M8 10
M9 9
MI10 10
Mll 3
MI2 6

%

LCo R - IR N RS I Y - |

OANON O YV o NN b
DR O N = o e e e WDW

* Oscillator

-

Mi3 1211 2
MIl4 14 11 2
M151212 1
MiI61312 1
M17 51013
M18 510 14

*

COsC 52

IBIAS 1 6 20U

%

vDD 1 0 5V
VS 200V

RO RN — == - N

[I BT o I
Z YUz Z

VGND 4 0 2.5V

*

VIN 11 0

L

VOUT 10 0

*

N w=30U
N wW=30U
P W=20U
P wW=20U
P wW=30U
P w=30U
P wW=60U
P W=60U
N W=60U
N W=60U
N W=40U
N W=20U

L=2U
L=2U
L=4U
L=4U
L=4U
L=4U
L=4U
L=4U
L=4U
L=4U
L=4U
L=4U

Fig. 4.7

(continued)
(b) SPICE input file.

80

=== Example 5 - Voluge-Controlled Oscillator ***

== Basic Circuit Nodcs **

P :{12]

I :(11)

O : (10}

B : (4.6}

C : (5}

** Critical Junction Nodes **

DC : {6.7.8.9.12} /* diode-connected node */
HI : (10} /* high-impedance node */
SC: {3} /* source-coupled node */
CM : {6,7,89,11,12) /* current-mirroring node */

** Recognized Primitive Cells **
SC-IN(n) : {M1,M2} /* input differential pair */

CM(n) : (MIMI10} /* current mirror */
CM(n) : {M11,M12)

CM(n) : {(M13,M14)

CM(p) : (M3 M5M7)

CM(p) : {M4.M6,M8)

CM(p) : {M15M16)

T(n) : {M18] /* single transistor */
T(p) : {M17}
C : {COSC) /* single capacitor */

Fig. 4.7 (continued)
(c) Recognition output file.

81

DO SN cG SAP
| M7, | i [M3 _BL
o | L4 QL ®
')
cG “’E] M3
o i+ @ e
f@' Yl ©) % | BT
o, sc
DO CSL CST =
Fig. 4.8 Circuit recognition of a sense amplifier.

(a) Schematic of recognized circuit.

82

*»» Examplc 6 - Sense Amplificr ***
-

*

M1
M2
M3
M4
M5
M6 9
M7 1110
M8 1210
VDD 1 0 +5V
VS§S 2 0 OV

»

VBL 50
VBLB 6 0
VSANB 3 0
VSAP 40
VCSL 10 0
VPHIT 7 0
vDQ 110
VDQB 12 0

™

O\ O
~N b Oy 00O
O s®x OV b WL Ww
O o I 1D = e B
22 ZZ9VZZ

Fig. 4.8

(continued)
(b) SPICE input file.

83

8

*a1y ndino uoniuSooay (2)
(psnunuod)

/e S°21ASP 9IES-uOWWOD ./

[« Jred renUAIOND ./

/« 9pou Suuouiw-uaimd ,f
/« opou pa[dnod-0omos ./
/+ opou 9duepadutt-ysiy ./

/x OPOU PAIUUCI-OPOIP of

8y 814

(8L} : (VDD
(OW'SW} : (WO

(P'EN) : (DDS
{TW') : (WDSs
wx S[[2D SADNWLY PIZIUSOIDY wu

{} : WD
{+'¢} : 08
{}:H

{):2a
«x SOPON UOIDUNS [RINID) un

{}:2
(}: g
{(}: 0
{y:1
(1) : d
we SOPON 1N IISTY .

ass JYNdWY OSUS - § OJAWEXT wuw

Example 7 -- Fully-Differential CMOS Op-Amp

Figure 4.9(a) shows the schematic of a fully-differentiat CMOS Op-Amp
(62] feawring a single-stage, class-AB amplifier with chopper-stabilized
differental inputs/outputs and a dynamic common-mode feedback (CMFB) cir-
cuit. This complicated Op-Amp is a useful building block for low-power and
high-performance analog CMOS circuit applications. The circuit soructure of the
Op-Amp can be partitioned into the input stage (M-M), output branch (M ;-
M,p), dynamic bias (M,-M,g), dynamic CMFB (My9-M4; and C-Cy), input
choppers (M 43-M), and output choppers (M43-Ms4). Note that this fully
differential circuit is symmetric with respect to the center line of the schematic.
After recognizing all the primitives in the circuit as in the single-ended cases,
the recognizer searches for the identical primitive pairs in the recognized list and
further partitions the differendal primitve pairs into two symmetrical primitive
groups. Given the input netlist shown in Fig. 4.9(b) and with additional rules
and primitives required, all the primitives in this circuit example can be recog-
nized as shown in Fig. 4.9(c). The recognized differential circuit primitive pairs
are to be placed symmetrically during the physical layout generation to preserve

the matched circuit performance.

4.2 Critical Net Analysis

The accuracy requirements of analog placement and routing are generally'
more extensive than those for digital design [42). One main challenge for ana-
log circuits is net parasitics on critical circuit nodes which could directly affect

the small-signal and transient characteristics of the circuit performance. The

85

1INOA0 paziudooal Jo onuewdyos (v)
‘duy-d0 SOWD [enudsagjip-Ajng v jo uonwgoods mon) ¢y "9y

........ _u.I.lu.-...l....-.---u.l-u-tu!.i..-.n.!!.d.:.-o.!..n.--un--....lu!.n!. 3 “ A A
i bl |
)| L ol oo
vn]ocm LN PR J M) lin D | SLERRIY] wnln -l
4 J.l._n m u_ﬂu T . - r . [i (O N s _“ il
IS 4 o e oo g O o f |
SO N S o IM BRSO IS i s S . I .
' 1 on (T2, I St I it i n’n JC t
vl i %.uo m uTJ __ ﬁ e n«:ul .ulJ.l J _ .wum dS
T m T m m nﬂ]\ !]\. ' a\-l)\ N o “ 'Al 1 < —"
| Sufatubeieie Col'...-c,llflnnloilllv ulll!l!l'l'lm) “llll!lllillll.liil lilt.—lnﬂo -4
1 ' '
1 . ' b]stm
g : " e scnT
[, L. s e aatt B bt —4-3
T vm.twnl_ T p # L ‘~ —I&“nn-ﬂl T
R rl.m.mla it er__ In .l_._w ! R
' ™ o Ea— - : “j ——t D E— Y - °A
H vm '
]
)
$
)
NPT RN PR TR SO S
: "
GG | by <"
A b precclecscnconna
_ oI Tﬂ.ﬁ.“ . : J—
m S M (S v g
cevhcompancl-cmoec]unde cfcersmanccomen 4
|ﬂv_ o “«:: —- 2 4o “M.—..H_..MHJ ey
1] .]
[]
- llllllll lececssaanocroscsronsncssacencsaonsaamasacsal hessrcccancstocstostmmreanansssasne s -

86

*»» Examplc 7 - Fully Differental CMOS Opamp ***

* Chopper-stabilized, single-stage, dynamically-biascd

* cascode, class AB tully differenual opunp

* with dynamic CMFB

* Input Stage

Ml 51 6 6 NW=s20U L=2U

M2 25212626
M3 4 32640
M4 2423 640
M5 40 1 2 2
M6 40 21 22 22
M7 3 3 240
M8 23 23 22 40
M9 5 54040
M10 25 25 40 40
M1l 4 4 50 50
M12 24 24 50 50

*

* Qutput Branch
*

M13 8 54040
M14 28 25 40 40
M15 7 4 50 50
M16 27 24 50 50
M17 10 9 840
M18 30 29 28 40
MI91011 7 7
M20 30 31 27 27

*

* Dynamic Bias
-

M21 11 25 40 40
M22 31 54040
M23 9 24 50 50
M24 29 4 50 50
M25 9 94040
M26 29 29 40 40
M27 11 11 50 SO

N W=20U L=2U
P W=20U L=2U
P W=20U L=2U
N W=20U L=2U
N W=20U L=2U
P w=20U L=2U

P W=20U L=2U
P W=8U L=2U

P W=8U L=2U
N W=4U L=2U
N w=4U L=2U

P W=10U L=2U
P W=10U L=2U
N W=5U L=2U
N W=5U L=2U
P W=10U L=2U
P W=10U L=2U
N W=4U L=2U
N W=4U L=2U

P W=10U L=2U
P W=10U L=2U
N W=4U L=2U
N W=4U L=2U
P W=4U L=4U
P W=4U L=4U
N W=4U L=10U

Fig. 4.9

(continued)
(b) SPICE input file.

87

M28 31 31 50 50 N w=4U L=10U

-

* Dynamic CMFB

M29 8 61 40 40 P W=12U L=2U

M30 28 61 40 40 P W=12U L=2U

M31 763 5050 N W=4U L=2U

M32 27 63 50 50 N W=4U L=2U

M33 15 56 16 S0 N W=4U L=2U
M34 36 56 35 50 N W=4U L=2U
M35 15 57 16 40 P W=4U L=20U
M36 36 57 3540 P W=4U L=2U
M37 63 56 64 50 N wW=4U L=2U
M38 64 56 63 50 N W=4U L=2U
M39 16 553 45 50 N wW=dU L=2U
M40 45 55 36 50 N W=4U L=2U
M4l 64 55 62 50 N W=4U L=2U
M42 62 55 64 50 N W=4U L=2U
Cl 1563 1P

C23563 1P

C3 16 64 0.5P

C4 36 64 0.5P

*

* Input Choppers

-

M43 1521440 P W=4U L=2U
M44 34 52 21 40 P W=4U L=2U
M45 21 51 14 40 P W=4U L=2U
M46 34 51 140 P W=4U L=2U

*

* Qutput Choppers

*

M47 10 54 15 50 N W=4U L=2U
M48 35 54 30 50 N W=4U L=2U
M49 10 52 1540 P W=4U L=2U
M5S0 35 52 30 40 P W=4U L=2U
M51 3053 15 50 N wW=4U L=2U
M52 35 53 10 50 N W=4U L=2U
M53 30 51 1540 P W=4U L=2U
M54 35 51 1040 P W=4U L=2U

*

Fig. 4.9

(continued)
(b) SPICE input file (continued).

88

* Input Stage Bias

M55 3415050 N W=4U L=2U
MS6 23 41 50 50 N W=4U L=2U
VBDF 41 45

]

* CMFB Bias
»

VBCM+ 61 45
VBCM- 62 45

»

* Powcr Supplics
»

VDD 40 0 +2.5V
VSS 50 0 -2.5V
VBAG 45 0 0V

»*

* Clock Signals
VKP1 §5 0
VKP2 56 0
VKP2B 57 0
VKPA 51 0
VKPAB 53 0
VKPB 52 0
VKPBB 54 0

»

* Input Signals
-

VIN+ 14 45
VIN- 34 45

»

* Qutput Load
»

CL1 15 45 2P
CL2 35452P

L]

(continued)
(b) SPICE input file (continued).

89

*=» Examplc 7 - Fully Ditlereatial CMOS Opamp ***

**= Basic Circuit Nodes **
P : {40,50)

[: (14,34}

IS : (1,21}

O : (15,35)

0OS : (10.16,30,36}

B : (41,45,61,62)

K : {51,52,53,54,55,56,57)
C : (15,16,35,36,63.64)

** Critical Junction Nodes **
DC : {3.4.5.9.11,23,24 25 29,31}

HI : {10,30}

SC : {40,50)

CM : {4,5,24,25,61,63)

** Recognized Primitive Cells (before differential partition) **
P2-3n: * CM-DC(n) */
P2-3p:

P2-4n :
P2-4p :
: (M31,M32)
P3-In:

P2-5n

P3-1p:

P3-2n

P3-2p :

P5

P5-2

{M11,M15M24),
(M12M16,M23}
{M9M13.M22},
{(M10,M14,M21}
{MS55,M56)
(M29,M30)

(M1,M5),
{M2M6}
(M3.M7),
{M4, M8}

: (M19,M27},

{M20,M28)
{M17,M25},
{M18.M26)

: {M33,M35},

(M34,M36)

: {M47,M49), (MS1M53},

(M48,M50}, {M52,M54)

Fig. 4.9

/* diode-connected node */
/* high-impedance ncde */
/* source-coupled node */

/* current-mirroring node */

/* CM-DC(p} */

/* CM-B(n) */
/* CM-B(p) */
/* CM-SC(n) */

/* CG-IN(n) */

/* CG-IN(p) */

* CG-DC(n) */
/* CG-DC(p) */
/TG */

r* TG-OUT */

(continued)
(c) Recognition output file.

90

‘(panunuod) s[y ndino uoniuSoos9y (9)

(penunuod) 6 “Si4

16
/« (QATO &/ {zo) 1 T1-ld
le @O »f {+2) : T
I« @DSI-L o {opIA) “(+vI)} © Tdp-od
fv QWMS-1 & {zv) “(ovIA) “{8EW} @ zug-9d
/s« QLNO-OL o {SW'ZSIN) ‘{OSI'SP) @ TT-Sd
1« (DOL o {9EIN'PEN]) - (4
1o @)OA-00 « (9T'SIN) @ Tdz-¢ed
f« (TUDA-DD & (sz'OTI) © Tuz-¢ed
/x @DNI-0D o« (8t} = zdi-ed
I« TUNI-DD «/ (oW'Tw) © Tul-ed
e (TUOS-INOYUT o {TEW) © Tevs-ud
fe TDI-WIUT &/ {ogn) : Z/zdv-zd
I+ @E-WOUT « {9S) : Tzur-Td
/» (TA)OA-ND «/ (TTN'PIN'OIIN) = Tdg-2d
/v (TUDA-ND « {STW'OTIN'TINY © TuE-Zd

« ¢ dnoip aaniwug o

l« (DATD &/ (12} = 11-ud

I« (1)D o/ (€2} : 1

/v (QDSI-L o/ (sPIN) ‘{ep) © 1dp-9d

/s (TVMS-L o (1t} ‘(6EN) “{LEW) = Tug-9d
/x (DLNO-OL «/ {SS'ISIN) “{6PWN'LPN) ¢ 12°6d
1« (DOL o/ {SEIN'EEN] * 15d

l« 19)Da-00 « (STW'LIW) © 1dZ-¢d
1« (1W)DQ-00 « (LTA'6IN) @ 1uz-¢d
/x QIONI-DD «/ (LW'ew) © 1di-¢d
/+ QUNI-DD / {(SWIN) ¢ Tul-gd
fo (TWOS-WOTUT {1eW) : ¢ivs-ud
1+ QDG-WOUT o {6z) : ZNdy-2d
/s (TOG-WOUT &/ {SSW) : T1vr-d
/o (19)DQ-ND &/ (CTW'CIN'6W) ¢ 1dg-Td
/e« (TV)DA-WD «/ (VTN'STW'TIW) & Tug-Zd

« 1 dnosp oamwug .
ee (UONTUTA [EAUDIONIP JNT) SIOD DANIWUY PIZIUFONY we

l« Q1D o/ (2o} {12} + 1-Ld
/oD of (2} {ed} ¢ L4
(9t} “(+vIN)
fs (SI-L o/ ‘(sy) ‘(epN) : di-9d
{zoW]) “(opIN]) ‘(8EW)
Jo (WMS-1 o ‘{1t ‘(6EW) ‘{LEW] : ug-0d

other challenge is the undesirable signal crosstalk between a sensitive analog cir-
cuit net and a noisy net which could cause a degradation to the circuit dynamic
range performance. To address these two layout issues, a critical net analysis
technique has been developed. It first conducts a sensitivity analysis for all the
nets in the circuit and then performs a net constraint analysis to generate

appropriate layout constraints.
4.2.1 Net sensitivity classification

According to the sensitivity to layout constraints, all the recognized circuit
nodes can be classified into seven categories: power (P), bias (B), sensitive (S),
less-sensitive (LS), insensitive (IS), neutral (N), and noisy (NY) nets, as listed in
Table 4.2. The most sensitive nets in an analog circuit are the ones associated
with the input nodes which tend to carry small signals. The intermal high-
impedance nodes and cascode nodes form the less-sensitive nets. The large
voltage-swing nodes such as output nodes are classified as insensitive, while
digital clock nodes can be quite noisy. The analog ground and other inactive

nodes are classified as neutral nets.
4.2.2 Net constraint analysis

Based on the net sensitivity information, the analyzer then assigns net prior-
ities and generates proper layout constraints. A net distance constraint is
assigned for each circuit net with different priorities as listed in Table 4.3. The
highest priority is denoted by HH and the lowest priority is denoted by LL.‘
The circuit node with the highest-priority distance constraint requires a very

short wire connection to result in minimum parasitics. Although the detailed

92

Table 4.2 Sensitivity classificadon for analog circuit nets.

Sensitivity classes

Typical examples

Power (P)

analog VDD and VSS

Bias (B)

dc biasing nodes

Sensitive (S)

signal input nodes

Less-Sensitive (LS)

internal high-impedance and
cascode nodes

analog ground and

Neutral (N) other inactive nodes
Insensitive (IS) large signal output nodes
Noisy (NY) digital clock and control signals

93

Table 4.3 Priority assignment for analog circuit net distance constraints.

Net

S

LS

1S

NY

Priority

HH

H

M

LL

Table 4.4 Priority assignment for analog circuit net spacing constraints.

Net2
Netd S LS | IS N | NY
S LL | M H L | HH
LS M LL | M L H
IS H M | LL L M
N L L L | LL L
NY HH| H | M L LL

94

priority assignments may depend on the recognized circuit type and topology, the
high-impedance sensitive nodes are normally assigned with the highest priority,
while the inactive nodes or the noisy nodes are assigned the lowest.

Next, a prioridzed net spacing constaint for each pair of circuit nodes is
also generated according to Table 4.4. The spacing constraint between the sensi-
tive and noisy nodes is assigned to a high priority. Therefore, large spacing is
reserved for those nodes to minimize the undesirable wire crossover or adjacent
wire crosstalk.

The weighted layout constraints are then fed into the constraint-driven floor-
planning and routing procedures to generate a high-performance and design-rule-

correct analog circuit layout.

95

Chapter 5
Constraint-Driven Floorplanning and Routing

The physical layout process starts with the floorplanning. Because there
exist various physical constraints due to variable shapes and pin locations as well
as electrical constraints due to device matching, parasitic, and noise coupling in
analog circuit layout, most well-known algorithms developed for digital circuits
such as min-cut [63] and simulated annealing [64] are considered rather incon-

venient or inefficient for analog circuit floorplanning.

To address the special analog circuit layout requirements, an efficient and
constraint-driven analog floorplanning technique based on slicing structures and a
macro-cell style has been developed. The macro-cell layout style is used to
accommodate the various shape requirements for analog circuit modules. The
slicing structure is used to optimize the component shape and to make the rout-
ing easier. Based on a zone-sensitivity partitioning algorithm ([44], this floor-
planner can take the layout constraints from the previous circuit recognition and
analysis steps and automatically derive a high-performance slicing tree for the
circuit module. In addition, by incorporating Stockmeyer’s algorithm [65], this
floorplanner can determine the optimal component shape for the circuit module
to satisfy the user-specified physical layout size constraints and to achieve high
area efficiency. The complete floorplanning and optimization process, as illus-
trated in Fig. 5.1, can be divided into five steps: 1) top-down slicing tree genera-
tion, 2) bottom-up shape constraint estimation, 3) iterative topology refinement,

4) top-down optimal shape selection, and 5) bottom-up primitive cell generation

96

Top-Down
Slicing Tree |«
Generation

) 4
Bottom-Up
Shape Constraint
Estimation

Meet Slicing
Aspect Ratio Topology >
Spec? No Refinement

Yes

Top-Down
Optimal Shape
Selection

) 4

Bottom-Up

Cell Generation
& Placement

Fig. 5.1 A constraint-driven floorplanning and optimization procedure
for analog circuits.

and placement.

5.1 Sensitivity-Based Floorplanning

Given the user-specified circuit module aspect ratio and the circuit
schematic netlist, the first step of the floorplanning process is to derive the slic-
ing tree, i.e. to determine relative positions of all the slicing structures in the
module in a top-down fashion. Unlike other layout tools where a fixed slicing
floorplan is prearranged for each restricted analog circuit topology, this floor-
planner is capable of generating high-quality floorplans for a wide variety of
analog circuit modules.

The floorplanning starts by selecting an initial vertical slicing topology
based on the recognized circuit information obtained from the previous analysis
steps. All of the transistor elements in the circuit can be partitioned into
*source’ and ’dangling’ components. The source components are defined as the
transistor elements whose source terminals are directly tied to a power bus,
while the dangling elements are the ones that have no direct power connections.
The power busses are arranged to run horizontally across the top and bottom of
the module. Depending on the circuit complexity level of the module, the initial
floorplan is divided into one to four vertical slices shown in Fig. 5.2. In gen-
eral, one- and two-slice topologies are suitable for simple analog circuit modules
without cascode or dangling devices. Analog circuit modules with single'
cascode are assigned with a three-slice topology, while the circuit with multiple
cascodes is started with a four-slice floorplan. Floorplans with five or more

vertical slices are seldom used and thus are not incorporated. Based on these

98

ALL

Source(p) /Dangle(p)/-/Passive

\/

Source(p)

/\

Source(n) Dangle(n)/-/Passive

Dangle(p)/-/Passive

\/

Source(p) /-/Passive

!

/\

Dangle(n)/-/Passive

\

Dangle(n)/Dangle(p)/Passive

AN

Source(n)

N\

Source(n) /./Passive

Fig. 52 Four possible vertical slicing topology arrangements.

99

source and dangling propertes of the components, all primitive cells in the
module are assigned to each vertical slice to satisfy the vertical connectivity con-
straints. After the initial vertical slicing floorplan is completed, the dangling ele-
ments are then allowed to switch between slices (possible moves are indicated

by arrows shown in Fig. 5.2) to improve the overall area usage of the floorplan.

In a subsequent slicing step, each vertical slice is further partitioned into
horizontal slices. The relative positions between the primitives are mainly deter-
mined by the constraints on the net sensitivity and the given terminal positions.
As shown in Fig. 5.3, each verdcal slice is partitioned into multiple layout zones
in accordance with the sensitivity levels of circuit primitives. Unless otherwise
constrained by the user-specified terminal locations, the most sensitive zones are
assigned to the far left (or right) position, while the most noisy zones are to the
opposite side, and with the neutral zones located in the middle. The sensitivity
level of each primitive can be calculated as a mean value of all the net sensitivi-
ties linked to the primitive. By comparing the sensitivity levels for all the cir-
cuit primitives allocated in each vertical slice, the relative positions between the
primitives can be determined. The same exact procedure is used to position the
devices within the multiple-transistor primitives. After all the positioning move-
ments have been settled down, the resulting layout topology can be assembled
into a slicing tree representation. Note that as a result of this zone-sensitivity
partitioning, in the final slicing topology the circuit primitives with close sensi-
tivity levels will tend to cluster together, while the components with significantly
different sensitivities will be driven away from each other. For instance, the cir-

cuit primitives in the input stage of an amplifier will tend to be trapped together

100

LS

Incr

pasing Sen

IS

Fig. 5.3

A sensitivity-based horizontal slicing floorplan.

NY

101

on one side of the floorplan, while the output stage is pulled away to the oppo-
site side. Thus by using this sensitivity-based floorplanning scheme, which has
essentially been used by human experts in the analog IC layout practice for
years, high-quality analog circuit floorplans can be automatically generated for a
wide variety of analog circuit modules.

Additional floorplanning steps are taken to incorporate the symmetrical
matching constraints between circuit primitives [45]. For fully differential cir-
cuits, the recognized balanced circuit primitives on each half circuit are placed
symmetrically with respect to each other. Similarly, for thermal matching con-
siderations, the symmetrical placement of the sensitive circuit primitives can be

arranged with respect to the high-current circuit primitives.

5.2 Physical Shape Optimization

After the slicing tree is generated, the problem to be solved is to determine
the optimal shape and orientation of the individual circuit primitives based on
the user-specified module aspect ratio or size constraints. An elegant algorithm

due to Stockmeyer [65] can be used to solve this problem in a polynomial time.

First, a shape constraint relation needs to be defined. Given a rectangular
cell with a width equal to X and a height equal to Y, the shape constraint rela-

tion R of the cell is given [55] by

R ={(x,y) | y2h, x2w} 5.1)

as illustrated in Fig. 5.4. The shaded area in the figure represents the set of all

102

N W
()

s

Fig. 5.4

[B T S T N
LR I S S S

123456 X

Fig. 5.5

Y 4
1 .
2t
1+
—t >
123 X

R
Yi 2 y
31 :’>3-
2T 2
l--
te—
1234567%

The shape constraint relation for primitive cell C.

)

s

) I N
LI S

assembly.

[-] i I
LA L)

123456789 x

Summing the shape constraint reladons for a horizontal

103

pairs satusfying Equation 5.1. Given the shape constraint relations of two rectan-
gles, R, and R,, a combined shape relation R;, can also be obtained for the
enclosing rectangle. If the two rectangles are placed side by side, then R, can

be expressed as

Ry, ={(x,y) | x) E Ry, (x2y)E Ry - -+,

(x,,,y)ER,,,x =xyp+xpg+ - +Xn} (5.2)

as illustrated in Fig. 5.5. The height of the enclosing rectangle is constrained to
inherit the maximum of the heights of the two rectangles, while the width is
given by the sum of the widths of the two rectangles. Similarly, a dual process

can be applied to position two rectangles on top of each other.

In the shape constraint estimation step, a list of the possible shapes of each
primitive is first estimated by calling the corresponding primitive generator with
devize size information. Based on this information, each primitive cell can be
given a shape constraint relation. Then by using Stockmeyer’s algorithm, the
shape constraint relations of the primitive cells can be composed bottom-up until
the shape constraint of the entire module is obtained at the top of the slicing
tree as illustrated in Fig. 5.6. During the bottom-up traversal, the routing area
assigned with each cut line is also estimated based on the total number of nets
acrossing through and is included as an offset during the composition of the

shape constraint relations.

104

O
w

NN

1x3 1x2 4x2
[2x2 3x3

T~

y

[8]

ILw T TN
T

2%2 /
3x1

Fig. 5.6 Ilustration of bottom-up module shape constraint estimation.

105

Then in a subsequent, top down module shape selection step, the user-
specified aspect ratio or size constraints are converted into actual X- and Y-
dimensions of the entire floor. This constraint is then propagated to its descen-
dant nodes undl the X- and Y-dimensions of all the primitives are determined as
shown in Fig. 5.7. If the composed aspect ratio is not satisfied, an iterative
refinement step is also permitied to go back to slightly modify the slicing tree
topology for further improvement. The basic idea is that if the composed aspect
ratio is turned out too small, then the system will decrease the number of verti-
cal slices in the module. On the other hand, if the composed aspect ratio is too
large, then the system will increment the number of vertical slices. Therefore,
the optimization process for the aspect ratio and the slicing tree becomes a
closed loop, and hence the overall opimal layout can be ensured. Once the
final module aspect ratio is determined, this information is passed top-down to
each sub-tree and eventually, to each primitive to determine its optimal X and Y
dimensions. Finally, the actual layout of the primitives are generated and placed
in a bottom-up fashion according to the optimal shape and the final slicing

topology obtained.

5.3 Primitive Cell Generation

The primitive cell generators operate in two different modes. First, during
the module shape estimation process, they quickly estimate and report to the
floorplanner all the possible shapes of the primitive based on the given device
size information. Then, after the final floorplan is determined, these cell genera-

tors are called again to produce the actual cell layout based on the particular

106

12

Fig. 5.7 Dlustration of top-down optimal primitive shape selection.

107

shape functon assigned.

The detailed layout of the primitive cells is generated in a procedural
manner by a set of leaf cell generators. Each generic primitive cell (as shown
in Fig. 4.2 for analog MOS circuits) has its own leaf cell generator. All the
leaf cell layout generators are parameterizable in transistor type, size, shape,
orientaton, and number of devices. Thus, given the sized schematic netlist and
the recognized primitive cell information, each circuit primitive can be custom-
generated based on the individual shape function assigned during floorplanning.
Figure 5.8 shows the generated layout examples of source-coupled pair and
current mirror primitives with variable shapes. Note that the matched devices in
the primitive cells are laid out with the same structure, same shape, same orien-
taton, and minimum distance to achieve the optimum matching. The variable
shapes of the primitives are realized with split-geometry comb-like layout struc-
tures. This ability to vary the shapes of the cells helps the floorplanner to
optimize the area usage and meet the user-specified module shape constraints.
Furthermore, each primitive can be constrained by a group matching parameter
to allow a balanced thermal or differential matching between selected circuit
primitives. All the cell generators are programmed using generic mask layers
and design rules which can be driven by any specific technology file supplied
externally. Therefore, it permits the layout generator to quickly produce correct

mask layout independent on the process technology used.

5.4 Routing

108

ST I TTT 1
:. ™ nl/‘n “*-’mt ?\3
N 4 [_! =
. P2 od i p '4;
' .| =2 x o
Fﬁ:: : !l i
S Py L 4
- '
;&3 } |I . "r'
ta P
Fomart 1 Al l1A)
o e -
L o e E [

(a) (b)
77777777777 2 B
G"’J ! € Sision f:'t : 3 % .
"‘U %ln,g m&’?& ’E g i ¢
.f;l ,L“"ﬁ -4._,1'11c -""?’:.S:q !QJ‘: r E‘i; E?:\: & T " ‘
i, 1"/‘1"1111’11 ST AR sEetmRd :
ﬂm>ﬂm e L
W/Iﬂh £ T
© (d)

Fig. 5.8 Generated layout examples of primitive cells with
variable shapes.
(a) Source-coupled pair with aspect ratio of 0.75.
(b) Source-coupled pair with aspect ratio of 0.3.
(¢) Current mirror primitive with aspect ratio of 2.5.

(d) Current mirror primitive with aspect ratio of 1. 109

The concerns of analog circuit routing are generally more extensive than
those of digital circuit routing. One of the main concerns for analog circuits is
routing parasitics on some critcal circuit nodes which will affect the ac and
transient characteristics of the circuit performance. Another concern is the
undesirable signal crosstalk between a sensitive net and a noisy net such as a
large-swing output signal or a digital clock signal which can cause a degradation
to the circuit dynamic range performance. Fortunately, as discussed during floor-
planning, one half of these layout constraints have already taken care by the
floorplanner which makes the routing easier. In addition, the use of slicing
structures also helps to simplify the routing requirements. As a result, a robust
switch-box router such as Mighty [66], which can handle obstacles, allow sensi-
tive nets to be routed before other nets, and maximize the use of meral layers,

can be used.

A constraint-driven analog circuit routing strategy [42] based on Mighty
router is developed. The routing process is implemented in multdple steps. The
routing order of the nets in each circuit is driven by the priorities of the net sen-
sitivity constraints generated in the previous analysis step. The sensitive nets
such as input signals are usually assigned with the highest priority and get
routed first, while the noisy nets such as the large-swing output signals or digital
clock signals are the lowest priority and get routed last. The main advantage of
this priority-based multiple-step routing method is that the pre-routed nets in the’
high-priority classes can automatically become the fixed obstacles for the nets in
the lower-priority classes, and thus can prevent any undesired signal coupling

during the routing process.

110

5.5 Experimental Results

Based on the described layout synthesis method, a prototype analog circuit
module layout generator has been implemented in C. The system runs under
UNIX on a Sun 4/60C workstation. The generated layout can be viewed in the

Magic environment [67].

A wide variety of analog IC building blocks have been used to demonstrate
the layout methodology. The recognition program has been successfully applied
to recognize many popular analog CMOS circuit modules including operational
amplifiers, comparators, voltage multipliers, voltage-controlled oscillators, and
artificial neural networks. For operational amplifiers, the program has been
tested for various architectures and circuit topologies including single-stage tran-
sconductance amplifier, folded-cascode amplifier, two-stage amplifier, and fully
differential amplifiers. Recognition results on a two-stage CMOS Op-Amp, a
folded-cascode CMOS Op-Amp, and a voltage comparator are shown in Figs.
5.9(a), 5.10(a), and 5.11(a), respectively, with their corresponding generated slic-
ing floorplans shown in Figs. 5.9(b), 5.10(b), and S5.11(b). The generated layout
results of the two Op-Amps are shown in Figs. 5.9(c) and 5.10(c), while the
generated comparator layouts with the input aspect ratos of 1 and 1.5 are illus-
trated in Figs. 5.11(c) and 5.11(d), respectively. In addition, experimental results
of a fully-differendal CMOS Op-Amp are shown in Fig. 5.12. Note that in
these layouts, different slicing topologies and various component shapes are util-
ized to satisfy the layout conswmaints. All the matched devices in the circuits are
laid out as primidve cells to achieve optimal matching. Moreover, the wire

lengths of critical nets such as the input and cascode nets are kept short to

111

T-OPQD

—s

. Vour

(a) Schematic of recognized circuit.

BIAS
L e d
£G
3 M3 Ce
g sem || R et
VIN le
Ml‘ﬂ c
L ”
L]
= M9
MI2 E “_] Iy
v ss)\
Fig. 5.9 Experimental results of a two-stage CMOS Op-Amp.

IBIAS vl;l vl; VOUT
M
CM-OPIL(p) T(p) T-OPOD(p)
M3 - M4 Mil Mé
SC-IN(n) CG(p) C
Ml -M2 M10- M8 Ce
CM(n
M12 - M5 - M9 - M7
Vss
Fig. 5.9 (continued)

(b) Generated slicing floorplan.

113

-
3
7

i

== (AN IRNERRNRRNRIRNNNER ks

M

Voo

N UNS ALY

-

Fig. 59 (continued)
(c) Generated layout.

114

. Voo . _
- "JM“S "J M r—[s J‘-JMZI
m;, — M9 = {%is
M?P it fMT_fe M {ts
cG €6
cc I
v
(1SC-IN M2 —_ # 4 MWM?_T] out
'auACs:D vt jvm " : -
e c =
= __ b '
MiZ-le R —ge]
X IY“T_ N = =
Ml YY) PR =~ lLﬁ"’
Vss

Fig. 5.10 Experimental results of a single-stage folded cascode

Op-Amp.
(a) Schematic of recognized circuit.

115

Vin Vin Vour
Voo
CM(p)
MI5 - MI16 - M19 - M2t - MS - M6
CG(p) SC-IN(p) CG(p)
M17 - M18 M1 - M2 M22 - M7 - M8
lgIAS |
CG(n) T(o) CG(p) CG(n)
MI13-Ml4 M20 M24 - M23 M3 -M4
CM(n)
Ml - M12-M9 - MI10
Vss

Fig. 5.10 (contnued)
(b) Generated slicing floorplan.

116

IJW.Q |

J:' d !L'!-t&“m

Fig. 5.10 (continued)
(c) Generated layout.

117

’ - ~——
oD
e Jﬂ———-{ M3 Me—e—bs EM
leias § M} |
@
=
- SC-IN +
YE{E“ M2]|—V1"
a&k . | CATR-
3
M3} [Mic
[o v
sS

Fig. 5.11 Experimental results of a voltage comparator.
(a) Schematic of recognized circuit.

Vour

118

Voo
EM(p) CM(p)
MS - M3 - M7 M6 - M4 - M8
SC-IN(n) CM(n) CM(n)
Ml - M2 MIl - M12 M9 - M10
' — Vss
Vin Vg leias Vour

Fig. 5.11 (continued)
(b) Generated slicing floorplan.

119

Vbp
2 2 7 7 /7

7

L L Y 7

L X a7

A=A

__DO>

L L 7K

o 2l 7 77 7 777

.07

A l

=
SN
0
TR
Noie S
AXRN

27T Z

Z

7 i
272777 Z

vss

Vi WAV AT AV A A AV A4

_svig,

Z

.

Nij

1

V,

V.
+

NI

N7

(continued)

Fig. 5.11

(c) Generated layout with input aspect ratio of 1.

120

U/fr//////f/////fa//////r///1/,(;///////////!

AR o WA 7 7
| ——— l L —_I
[=] | P ol = =N
L e . . NN — M MSS
NI N 7 o 1IN \. N ¥\ YN QIVRMS M
X]b N IR R L\X] R LE; R R AR ARARIAR
SENTE SRR Skest ke mibasaig
LTZ AT 7T T T T T AV 77T N7 777 .
| ’
l . /
2 7 77777777 77
7
ANAN SN /FL;: g %
PSS P j * -
VEXENN e
Y[VAV AT S e -
H [NINEY! ; é TRT=R \\‘ w h& N N 1 S LY l\\\l\ R
: : fetid :
e ;RS TN NN INORR
. NS qu * R §‘, N 1:‘ 3 YN "\' N WY YN \\ N
ry o) — I e T~
1= =l
(AL/AV /A //////////’//////f//////////////,

Fig. 5.11 (continued)
(d) Generated layout with input aspect ratio of 1.5.

121

qecoce

estesesssoveocvsasce

evonsnence

vesrweguevwoncw

_‘. |"1 m o -
.
“ : . .
“.._ i g | = . :
e 1§ T
D]] o .
.. .c‘ -'lll‘llll‘- l*n\“.- 1
th —1t [
>3 I HER YN o S
. : v o g\ H
posencana 4 W .
' I I S |
4 or - :
v 3 - I 3 '
1 s, TS i
' 1 ¥ .
“ ._. R ;
A H _ [) 2o '
: T '
£ " 1uJF. .. u
K1 t
~)
m 2, L n :
1 . !
L
- ucnacoo..L. ' : '
rl_. _|._ A '
PN yu ¥ —IJ["_ “ “k m
- o 7 B '
He 3 gl “
- vl 11 d) r—~_ !
' 2 AN
ik . S L S S)
. Al I 4
-"ll -" ' - :
i X \H- i 2 “- t - '
"E - 3 "
11 ~ n “.u.—ll ey ’
' "] H
2 3 x| J X 1 ~{ H
' J N 13 < .
: 4 m" 4 e | h m '
: "“l codecmc et ..“.. clll_ ' "
H " ! ' : '
H M H H ' '
] [] ’ ! '
] ') . - ! !
oy . - ' ’
ol ye ' 2 . 3 1 M
T 3! 0 . ¢
r.xg.: _ i JH,_.,\ 1 "
—llll20.]] N
T AT ¢ L X '
H . (] ~ 0 ?
" ' : X H
=l { I =4]
AR) ") S: 171 2 !
i ! ' Ii|) 3 :
' 4 . H leofececccasene }
'] P R | = s
- : m ! 1 3 1
- ! :
S W il 1T i .
¢ 1]

com= >, < —J. ! m, "
srT——— - [
" — ‘u._ " L a u

[-~ 1'
u 3 N . ¢ S

bt h - 7) §

>

Experimental results of a fully-differential CMOS Op-Amp.

(a) Schematic of recognized circuit.

Fig. 5.12

q1

N X
U

Wb g { & oo veuhy g § Cnd 2 . v . . =<

Nl g

T
=i
=
;gqgn
X
|
21
=

Lo &

>

=

~

DOOONNNANANNN
{

[NNRANANANENAEREERNERNEENI

=

et

o e e o it s o s o4

3 < M S P vy
=HQ. U]
i eatiinee | el A
il e s =W
’ —N i X te _j mm 1 ﬁ
- Hi S n_\ SIS MBS,
| e .
\ el el 4 f= u‘h;.._...
. .ll l\
- =g | =55 I
1 S N ¢ I . Y) — - — v — f\ < | |
4‘ <= ———g—{} 1
rrrrrrrrrr _
. 7
by o a— |
" ‘
s - g =
= FWJNW"WJEHI/HMPHHUW/ J :
il

—

Fig. 5.12 (continued)

(b) Generated layout.

123

minimize associated parasitics. The sensitive input stage is properly isolated
from the large-swing output stage to minimize noise coupling.

The generated layout of a two-stage CMOS Op-Amp was submitted to
MOSIS fabrication using a 2-um double-polysilicon CMOS process (68). Figure
5.13 shows the microphotograph of the fabricated Op-Amp. Table 5.1 summar-
izes the measured Op-Amp circuit performance. Comparing the SPICE simula-
tion results without including parasitic capacitances of interconnects indicates that
the automatically generated layout using this approach can indeed achieve a very
satisfactory performance with only very small layout-intreduced device mismatch

and parasitic effects.

124

Fig. 5.13 Microphotograph of the two-stage CMOS Op-Amp.

125

Table 5.1 Performance summary of the two-stage CMOS Op-Amp.

Parameters Units | SPICE Results | Chip Results
DC Open-Loop
Gain dB 72 69
Unity-Gain
Frequency MHz 44 4.2
Phase Margin Deg 64 S8
Slew Rate V/uS 4.0 3.7
Input Offset mV 0.2 2.3
Output Voltage
Swing \' 4.5 43
PowerSupply | 5 0.16 0.16
Current

126

Chapter 6
Layout Synthesis Strategies for Analog VLSI Subsystems

To make analog circuit layout tools more useful to mixed-signal system
designers, it is desirable to extend the capabilitdes of the iools from the module
level into the analog subsystem level. Thus the system designers can directly
deal with large macromodules such as switched-capacitor filters and A/D convert-

ers to further reduce the chip design cycle time.

With a simple extension of the hierarchy, the constraint-based layout metho-
dology described can also be applied to perform subsystem-level layout synthesis
using the generated circuit modules as the primitive cells (see Fig. 3.2). Due to
the use of slicing structures, the floorplanning can be done in a hierarchical
manner to allow a global optimization of the area usage by representing the
entire subsystem floorplan as a slicing tree, while decomposing the problem solv-
ing into each module level of the hierarchy. This hierarchical layout methodol-
ogy is suitable for the conventional analog MOS subsystems as well as the

newly emerging analog VLSI neural networks.

The physical assembly process for analog VLSI subsystems can be parti-
tioned into three major processing steps: hierarchical floorplanning and place-
ment, module generation, and block routing as shown in Fig. 6.1. In the follow-
ing the layout synthesis strategies for both the conventional analog MOS subsys-
tems and the analog VLSI neural networks will be addressed. For readers who
are interested in real-world implementadon of the mixed analog-digital signal

processing VLSI, a telecommunication IC example is provided in Appendix A.

127

Layout
Design Rules

Circuit
Schematic
Description

Analog
Module
Generators

Chip
Aspect Ratio
Specification

!

Hierarchical
Floorplanning

Fig. 6.1

and
Placement

Digital

Module
Generators

Block
Routing

Physical
Layout

A mixed analog-digital VLSI layout system.

128

For readers who are not familiar with the VLSI neural circuit implementadon, a

brief introduction to the subject is also included in Appendix B.

6.1 Layout Synthesis of Conventional Analog MOS Subsystems
6.1.1 Hierarchical floorplanning

Figure 6.2 shows two layout fioorplans for traditional analog MOS subsys-
tems such as switched-capacitor filters and data converters. The fixed floorplan
shown in Fig. 6.2(a) was recently proposed by H. Yaguthiel et al. of Berkeley
[69] for automatic layout of switched-capacitor filters using the standard cell
approach. And the floorplan shown in Fig. 6.2(b) is an extended hierarchical
version based on our new constraint-based module generation method [44]. The
new floorplan is divided into four vertical slices of circuit modules and three
routing channels using zone-sensitivity partitioning. Based on the circuit struc-
ture and sensitivity levels to overall performance, four types of circuit modules
are defined: active, passive, switch, and control modules. The active modules,
such as Op-Amps and comparators, are considered as the most sensitive area in
the subsystem floorplan. The passive modules, such as capacitors and resistors,
are considered the next most sensitive. The less-sensitive analog circuit switches
are included in the switch modules. The conwol modules, which contain digital
control logic and clock generators, are the most noisy sources. By using the
sensitivity-based floorplanning algorithm, the relative positions of the modules
can be determined (as illustrated in Fig. 6.2(b)) to minimize the layout-
introduced parasitics and noise coupling in the subsystem level. The construc-

tion of the slicing subtrees at the module level is then performed by calling the

129

Clock-Lines

Switches

Top Routing Channel

Capacitors

Bottom Routing Channel

Op-Amps

Fig. 6.2 Layout floorplans for traditional analog MOS subsystems.

(a) A fixed floorplan for switched-capacitor filters based
on the standard cell approach.

130

Control Modules

(Clock, Control Logic)

Digital Routing Channel

Switch Modules
(Analog Switches)

Analog Routing Channel

Passive Modules

Y
(Capacitors, Resistors)
Increasing

Sensitivity Analog Routing Channel

Active Moduies
(Op-Amps, Comparators, etc.)

Fig. 6.2 (continued)
(b) A hierarchical floorplan using the sensitivity-based
module generation approach.

131

module generator. Note that this floorplan fits very well into the overall layout
methodology based on slicing swuctures. The key advantage of this approach is
that one layout generator can operate from the device, primitive cell, module,
and all the way up to the subsystem level within the same hierarchy and there-
fore can make the overall layout optimization for the subsystem very efficiently.
Compared to the previous standard cell-based methods [69-71], this hierarchical

layout generation approach can provide a better flexibility and performance.
6.1.2 Constraint-Driven Analog IC Module Generation

The layout generation of analog circuit modules plays a crucial role in
determining the overall chip layout quality of the mixed-signal systems, either in
terms of performance or area utilization. To satisfy the various layout con-
straints imposed at the circuit module level, a highly flexible analog IC module
layout generator, such as the one described in Chapter 5, is required. Thus as
demonstrated before, given the schematic netlist and constraints on the module
shapes and pin locations derived from the subsystem-level floorplanning, the
constraint-driven module generator can then be called upon to produce the high-
quality analog circuit module layout.

6.1.3 Block Routing

To handle the irregular routing regions as well as the mixed-signal routing
requirements encountered on the subsystem level, a two-dimensional switch-box
router such as Mighty [66] is necessary. The constraint-driven routing strategy

based on prioritized net sensitivities can be applied to handle the block routing

between modules to minimize the undesired parasitics and noise coupling in the

132

subsystem layout. The block routing process is implemented in multiple steps.
First, all the nets connected between blocks are classified into three categories:
sensitive, insensitive, and noisy nets. Sensitive nets include the pure analog sig-
nal nets that connect between the active and passive analog modules. The nets
that connect between the passive analog and switch modules are classified as an
insensitive class, while the nets associated with the conwol modules are con-
sidered as a noisy class. Each class of nets is routed separately in order of
assigned priority. The sensitive nets are assigned with the highest priority and
get routed first, while the noisy nets are assigned with the lowest priority and
get routed last. Therefore, the undesired parasitics associated with the sensitive
analog circuit nets and noise crosstalk between mixed signals can be minimized

in the layout to achieve high subsystem performance.

6.2 Layout Synthesis of Analog VLSI Neural Networks

For the new class of analog VLSI neural networks (see Appendix B for
some introductory material on the subject), extended layout synthesis strategies
should be taken. In contrast with the traditional analog circuit architectures, an
analog VLSI neural system typically comprises a massively interconnected net-
work of simple analog signal processors. Hence, the size of each analog module
and the routing efficiency between modules have a great impact on the total sub-
system area. Moreover, due to the matrix configuration of artificial neural net-
works, additional constraints on the matching of X and Y dimensions around the

matrix also need to be taken into considerations.

133

This section describes automatic layout generation techniques for analog
VLSI neural networks based on the hierarchical, constraint-based layout metho-
dology [43]). Special layout requirements for the neural network implementation
are addressed. This method is flexible enough to allow a rapid generation of a
compact and high performance neural network layout to desired aspect ratios.
Experimental layout results on a 16-neuron fully-connected neural network [72)

is also presented.
6.2.1 Special layout considerations

There are two major concems to be considered when dealing with the
automatic layout of analog VLSI neural systems. The first concern is due to
performance considerations. As mentioned before, because of the sensitive
nature of analog integrated circuits, the dependence of circuit performance on
layout is in general much more critical for analog circuits than that for digital
circuits. The key considerations are the effects of device mismatching, parasi-
tics, and noise coupling on analog circuit layout which can lead to various kinds
of performance degradations for traditional analog circuits if proper cares were
not taken. Fortunately, some of these constraints can be greatly relaxed in
neural networks. This is mainly because the self-learning capability of the

neural system makes the computation precision of individual neurons less critical.

The other major concern is due to the area efficiency of the physical layout.
In fact, this issue becomes more important for analog VLSI neural systems than
that for the conventional analog circuits. The following are the primary physical

layout constraints for neural system implementation [43]:

134

1) Module size. Because of fine-grained parallelism of neural networks, the
compactness of each analog module layout has a great impact on the total
chip size.

2) Routing area. Because of massive interconnections of neural networks,

maximization of the routing efficiency is very important.

3) Variable shapes. Because of widely varying device sizes in analog cir-
cuits, variable component shapes need to be accommodated while maintain-

ing the compact module size.

4) Mamix layout. Because of matrix configuration of neural networks,
many additonal constraints on the matching of X and Y dimensions around
the matrix, vertical and horizontal signal feedthrough, and input/output ter-

minal locatons need to be taken into considerations.
6.2.2 Neuron and synapse matrix layout techniques

Efficient layout generation techniques for various neural networks have been
developed based on the constraint-based, hierarchical layout methodology. Both
neuron and synapse modules are designed to be parameterizable. Figure 6.3
shows a neuron module which can be parameterized either as an input neuron
only, an output neuron only, or an input/output neuron, depending on the given
neural network topology. There are three signal pins assigned for each I/O func-
tion. Two pins are assigned for internal matrix routing: one is for neuron-to-
synapse connection and the other for neuron-to-neuron interconnect. The latter
can be used as an internal feedback channel for Hopfield-type neural networks.

Another neuron I/O pin is made available to outside interface which can be used

135

Neuron Input ———»{ Neuron
Neuron
Module "‘_anut
Neuron-to-
Syrlllnpse Output (Input Only)
(@
napse-to-
l‘zzurgn Input > Neuron
Neuron
Module Output
Neuron Output<——— (Output Only)
®)
Neuron Input ——— N Neuron
Neuron-to- euron
Synapse Output™— Input
Module
Synapse-to-
euron Input = (Input & Output) Neuron
Neuron Output-e—— Output
(©)
Fig. 6.3 Parameterized neuron module I/O configurations.

(a) Input neuron only.
(b) Output neuron only.
(¢) Input and output neuron.

136

either for feedforward connections between the multi-layer networks or for exter-

nal feedback connections in Hopfield networks.

The /O pin configurations of the synapse module is also made parameteriz-
able to improve the routing efficiency of the marix layout for various neural
networks. As illuswrated in Fig. 6.4, the matrix routing channels of each synapse
module can be parameterized into five different I/O configurations to obtain high

area efficiency for any given network topology.

Figure 6.5 shows one of the typical neuron and synapse circuit modules
[73]). Given the schematic netlist and constraints imposed on the pin locations
and module shapes, the described general-purpose analog module generator can
be called upon to automatically produce the geometrical layout that meets the
constraints. Because of the great deal of flexibility provided by the module gen-
eration and I/O parameterization for the basic neuron and synapse building
blocks, various neural networks ranging from application-specific [74,76] to
general-purpose [75,77] networks can be automatically generated with high

efficiency.
6.2.3 Network floorplanning and routing

Due to its memory-like circuit structure, the physical layout of analog
artificial neural networks is most efficiently realized in a matrix style. Figure
6.6 shows a general layout floorplan for single-layer neural networks using
parameterizable neuron and synapse modules. A parameterized Hopfield neural
network [43] is shown in Fig. 6.7, where the input neurons are configured at the

bottom and the output neurons are placed on the right. Figure 6.8 shows the

137

g ————— -
P i i = H-Input I
(2 { Symapse Bl 45
i 4 : o
S| Core : S : greseees | S
Ssesesnaeseened i Synapse Z
: i Core S
J , >
()
Y
d
'5 ' Synapse |
S o |
3 ore |
- ' $on
H-Output
3]
o) H in%ut
= 3
H-Input D Synapse > =
> 3 Core Q
\ >
Synapse - ‘
Core H-Output ;
O]
Y
-t >
H-Output

(©)

Fig. 6.4 Parameterized synapse matrix routing configurations.
(a) V-input & V-output.
(b) V-input & H-output.
(c) H-input & H-output.
(d) H-input & V-output. 138
(e) H/V-inputs & H/V-outputs.

6¢1

Column
Decoder

Programmable Synapse (T;

.....

‘ Programmable Synapse (Ti.f.l.i..).. /

..

Programmable Synapse ('l‘ij)

0 Row
Decoder

O prg

Vbp
Mnl;“_—'lt My,
My]
= M, 3l
Mg o Mys
Output © Cc I 16
Vz
" -
Mig M,
My M
B L E}} 0 Bias
Vss
The i-th
Output Neuron
Fig. 6.5 Circuit schematics of neuron

and synapse modules.

[Vop
M]_I M4 {AF
s s
L M, M vl'_'_r]i']]
! M, M
6
Icp—_]__- ?
“: Mg

........

~~~~~~~~~~~~~~~~~~~~~~~

oooooooo

The j-th Input Neuron

< Vop
C




Parameterizable
Neurons

Parameterizable
Synapse

Matrix

(PSM)

| 7 Np
Parameterizable
Neurons

Fig. 6.6 A general layout floorplan for single-layer neural networks
using parameterizable neuron and synapse modules.

140



routing

Digital Blocks channel

Output

Yy T RE D “

i I A Neurons

ST PO JONS TPV VSN (VN DO A ........ poredrnnionnfeiidien RN = R V'
................ ; T SO, JUOS: AN W SN I | - "z
............................. cAUNN I SO B . va

ceeddbeos M .s?naps;es ................. - - V4
........................ : preefrasiionsdnidn fd - vs
............... - — p—e- vs
................ | | - V7
........ ; - . va

L1 1 T T 1 [ T 7

routing 78 feedthrough
channel Input Neurons channels

Fig. 67 A parameterized floorplan for a Hopfield neural network.

141



:I4 —4 11 —To'sﬂ’)VR (Ref.)
S 1 1
* OVS (Analog In)

Fig. 6.8 Schematic diagram of a multiple-neuron Hopfield neural
network.

142



top-level schematic diagram of the Hopfield network. As shown in Fig. 6.7, the
top-level floorplan is first partitioned by two cut lines into three blocks: synapse,
neuron input, and neuron output blocks. The two cut lines not only determine
the relative positions of the blocks, but also define the routing channels 1o be
used for signal connections between blocks. Next, each block is divided into a
number of identical modules. Note that the interconnecton of these identical
neuron or synapse modules is done by abutment to minimize the massive con-
nectivity problem. In addition, the module size matching constraint that the one
dimension of the central synapse module needs to equal that of the neuron input
module, while the other dimension needs to equal that of the neuron output
module, is specially imposed during the physical shape optimization process.
Figure 6.9 shows the entire slicing tree representation for an 8-neuron Hopfield

network using the neuron and synapse modules of Fig. 6.5 [73].

As discussed before, the performance constraints of individual neurons can
usually be greatly relaxed in neural networks due to the self-learning capability
of the system. To take this advantage, different routing strategies are used to
improve the module area efficiency. At the module level, a simple channel
router is used to achieve a compact area realization, while a switch-box router is
used for block routing on the system level to attain more flexibility and control.
This is accomplished by simply changing the net routing order. By ordering the
net routing in accordance with the bottom-up traversal of the slicing tree, a
switch-box router [66] can be effectively used as a channel router to improve the
routing efficiency in the module. Consequently, a more compact module layout

can be achieved.

143



8-neuron
neural network

1
y/
/] 10H
8V & 8V
10H

synapse output neuron input neuron
module module module
v v H
SC M

/\/\A /l\/\l\

3 MM, Mg CS CG CMMj M, C, SCCM C,
M, Mg M16M15 12M11 Mz MigMig Mg My,

Fig. 6.9 A slicing tree representation for the 8-neuron Hopfield network
using the neuron and synapse modules of Fig. 6.5.

144



To handle the irregular routing regions as well as the mixed-signal routing
requirements encountered on the neural subsystem level, a priority-based
mutiple-step routing method based on Mighty switch-box router [66] is
employed. First, all the nets connected between blocks are classified into three
categories: sensitive, insensitive, and noisy nets. Sensitive nets typically include
the pure analog signal nets that connect internally between the synapse block and
neuron blocks. The nets that carry the large voltage-swing or converted digital
signals such as the nets connected externally to the neuron output and input
blocks are defined as an insensitive class, while the nets associated with the digi-
tal blocks are considered as a noisy class. Each class of nets is routed
separately in order of assigned priority to prevent any undesired signal coupling

during the mixed-signal routing process.

Both the chip floorplanning and block routing problems become more
difficult when dealing with muld-layer neural networks. With two- or three-layer
networks, the floorplan can be parameterized in either the single-row or single-
column format as shown in Fig. 6.10. The hidden-neuron layer usually needs to
be placed in the middle section, while the input and output neurons can have
more flexibility. Figure 6.11 shows two possible floorplans for a four-layer feed-
forward neural system. For the illustration purpose, the input neurons and output
neurons of the hidden layers are separated. In the flocorplan shown in Fig.
6.11(a), each layer of the networks is placed with the same orientation to
preserve a regular signal flow pattern. However, due to the long feedforward
connection paths required between layers, the routing area is not effecientdy udl-

ized. In addition, because the analog and digital blocks are mixed up together,

145



*91L1s [uiuozuog] (q)
1M1 [RotoA (v)
*SHI0MIU
jeanau safej-aa1t) 10 -om) Joj suejdiooy oquzuAIWIL] Q1’9 ‘Til

(@

NSd NSd WSd

)

WSd

WSd

WSd

146



OO

N

‘syqomiau punou 1k

000,

19heq

19he}

%20|q jeybip

§
|

-100§

)

1ake

DN

!

|l

13ke

t

§

MM

"g uvydiool} (q)
"V uejdioopy] (v)
Joj suvidioop 9jqezua)awLIR]

119 814

J0de

(¥)

o

Jahe

Vs

ELOOMMIMII

%

147

LM



the routing problem would become more difficult. With a simple change in the
orientation of the three layers of networks, an altenative floorplan can be
obtained as shown in Fig. 6.11(b). Note that in this floorplan, the analog and
digital blocks and their associated routing areas are adquately separated. As a

result, a minimal routng area can be obtained.
6.2.4 Experimental results

Based on the described layout methodology, several neural circuits have
been experimentally processed by the prototype layout generator. Figure 6.12
shows the generated layout of the neuron and synapse modules of Fig. 6.5. The
complete layout result of a 16-neuron fully-connected Hopfield network is shown
in Fig. 6.13. Note that in the module layout, all the matched devices are laid
out as primitive cells to achieve optimal matching. In addition, different slicing
topologies and different component shapes are utilized to satisfy the individual
module layout constraints, while the cross matrix constraints between modules
are satisfied. The layout-inu'oduced parasitic capacitances and resistances can
then be extracted and simulated with the input circuit schematics using SPICE

for performance verification.

148



‘69 314 Jo

sanpows 9sdeuds puv uoinau 3y Jo moke| paIoudn  z1'9 "9l

uoipau indul

1
]
VAV AV AVEwAY4 “H |
l"'l'l"'ll'-lllll'll-'ll'lllllll' -
V7777777 _, “
: i
1 ol
1 3
' M
3 A3 333 A A AT AN 4P K
! 1
i Jedl
4 B s "

T ) i i e e i m
-I_W\\\\\\\ \\\\\\\\\(\\\\\\\\\\ ya) rnn

uoansu jndino

asdeuAs

+ 1~ .

149



- :-;;_-_-r:-‘:;'?.";ﬂ 41
:f.'...a!_ur.'fu?.'.uf..af'a

SLilege "
"u."' "-‘""ﬂ'\.“ a"\.:.‘”\.‘""».i."';‘.‘f"hn'\-ﬂ'u;“
..rn,z -‘f.uf!‘:%.' r'-v»-r""r-v .r-n_.r-r..rd".'r* fv .r

[f;é;mh'u "'
LR ‘“.’.,.::i;‘:..,_-; R

.E:.Tr‘-k'.‘,"';’.‘h-:f'*}: T
R S e R ETH TR ".f‘j B

e e e t‘.

. ﬁ"J.-n_-a"—-.A.l. B3 “‘L” R i 1"'Jld-..l

T M T P T TN imyy 'L“ oM

mf‘*mf _u"‘u.- QmP"m"m Pm?*u

.-—":.mif:ﬂ*"-" f"‘ iEN I"” o r';}‘r‘r’u" L {£
T AT S L T *«L-‘&}-A%\& ;...

oL }-.‘.:.u}hb;.n--al o Td..;-"-t-'!.m [
mh’..g‘... p(',!'p_n.‘.aﬂﬂ‘-.'fﬂ

[L-4331 [51s q_p_ tnlhrtnabared 'g !1 f
-q}_ i8I -.--.-d—m £ x €
,"ﬁ&*“e"w l;.. C ' ,“,. ,_ ‘. ;
2 redi3) i"‘f«lﬁéfx"ﬁ LRI BlaanG
- 1._9 - -

‘. e
: Mﬂhﬂ?—‘%‘“% %W
it !

\-b.'g iR ﬁqhg*ud; 15#1 %rﬁ:ﬁ&&’ st

w
S e fﬁ”" E‘.‘k-" 1-'5-

fﬁﬂ&."-‘miﬁaw

'u""-'b[‘r:, ,.qplr;:‘::'q"\.

'ﬁ.—-’l—-—l

Fig. 6.13 Generated layout of a 16-neuron Hopfield neural network.

150



Chapter 7

Conclusions and Future Directions

Efficient methods for automatic design synthesis and layout generaton of
analog integrated circuit modules have been presented. A system that consists of
a knowledge-based top-down design tool and a constraint-based bottom-up layout
generator has been developed to automate the design of common analog MOS
VLSI circuit modules. Extensions to higher-level subsystem layout synthesis
using hierarchical floorplanning and module generation techniques have also been
described for two different classes of mixed-signal VLSI applications. One is
for conventional signal processing systems and the other is for newly emerging

neural networks.

A new expert system assisted analog IC design methodology is introduced.
Through iterations between a circuit simulator and an expert system, the metho-
dology offers a reliable means of achieving high performance analog circuit
designs. The self-reconstructing technique for the flexible architecture approach
has been described. It is realized through equation substitutions during a design
process. A prototype analog circuit design synthesis tool for CMOS Op-Amps
has been developed. The organization and implementation of the tool are
described in detail. The experimental results show that the design system, by.
adopting the iterative design methodology and the flexible architecture approach,
is powerful and efficient in camrying out analog circuit design tasks. The capa-

bility of the design synthesis system can be extended to analog signal processing

151



modules other than operational amplifiers.

A custom layout synthesis method for analog IC modules using automatic
circuit recognition and layout constraint analysis techniques is described. Special
analog IC layout requirements are analyzed and effective solutions are discussed.
Through the use of an analog circuit recognition technique, circuit primitives and
critical analog circuit nets are systematically processed before layout generation.
Weighted analog circuit layout constraints are internally generated and incor-
porated in the final layout to minimize undesired parasitic effects. An effective
analog circuit floorplanning technique based on a zone-sensitivity partitioning
algorithm is developed to derive a slicing fioorplan incorporating the electrical as
well as the physical constraints. Subsystem-level layout synthesis strategies for
conventional analog signal processing systems are discussed. Efficient layout
generation techniques for analog VLSI neural networks have been developed. A
prototype layout generator has been implemented based on the described analog
IC layout methodology. Generated layout results of several common analog
CMOS circuit modules as well as analog neural networks have been demon-
strated. Measurement results from test circuits have shown that the automatically
generated analog circuit layout based on this methodology can indeed produce a
satisfactory circuit performance with negligible degradation due to the layout-
introduced parasitic effects. This layout synthesis approach is quite general and
can be applied to handle a wide variety of analog circuit modules as well as-
analog VLSI subsystems owing to its self analysis capablitity for high-quality

analog circuit layout.

152



More effort is required to extend this work from applications to IC modules
to more complex analog and mixed-signal VLSI systems. Some of the analog
subsystem layout issues have already been addressed in this dissertation. By
using the sensitivity-based hierarchical slicing floorplanning and the constraint-
based module generation techniques described in Chapter 6, a powerful analog
subsystem layout framework can be quickly established. In this framework, the
layout generator can operate from the subsystem, module, primidve cell, and all
the way down to the device level of the hierarchy and thus can produce better

layout results with a great deal of flexibility.

More challenging problems still remain in the design synthesis area for ana-
log IC subsystems. Unlike the layout synthesis where a general tool can be
applied to virtually all the analog circuits using the bottom-up approaches, the
design synthesis of analog IC modules and subsystems can only be implemented
from the top down and thus requires one specific design tool for each analog
circuit function as well as for each circuit topology. For example, a design syn-
thesis tool for A/D converters cannot be used to design SC filters. Even for the
same A/D circuit function, a sigma-delta A/D synthesizer cannot be used to
design a charge-redistribution type of A/D converter, and vice versa. Therefore,
multiple design synthesis tools will be required for analog and mixed-signal IC
design. To restrict the problem to a more manageable size, the research efforts
could concentrate on the common and frequently used analog circuit subsystems.’
In addition, use of fuzzy logic reasoning for analog VLSI design synthesis needs
to be explored to reduce the number of design rules in the expert system pro-

gram.

153



Appendix A

A Mixed Analog-Digital Signal Processing VLSI

for Telecommunications**

I. Introduction

The use of mixed analog and digital signal processing techniques has made
it easier to realize high-speed voiceband telecommunications system applications
(such as data and facsimile modems) which can support multiple standards [78-
82]. With advanced CMOS VLSI technologies, such voiceband systems can
now be highly integrated in a multi-chip set composed of a digital signal proces-
sor (DSP), an analog front-end (AFE), and a microcontroller with additional
memories as shown in Fig. A.l(a). While the demands for lower-cost and
smaller-size systems are continuously pushing for higher levels of integration,
until now, the highest integraton reported for high-speed voiceband systems is
still limited to a two-chip set containing a single-chip DSP and a single-chip
AFE. The main barriers to achieving the ultimate single-chip solution can be
attributed to the difficulties in designing the analog circuits to operate with a sin-
gle 5V supply (instead of the conventional 10V supply) and integrating it with
the DSP on a single VLSI chip, while still maintaining the adequate system per-

formance and a reasonable die area.

** The work presented in this appendix was accomplished by David J. Chen and other
members in the Communication VLSI Design Group in Sharp Digital Information Products,
Inc., Irvine, CA. Partial results of this work was presented at [EEE Custom Integrated Circuits
Conference at San Diego, CA in May 1991.

154



analog o
i icro- digital
e T AR T osp =— cr:t:::ller< " o
output interface
]
Y Y
ROM RAM
(a)
DSP
analog ]
input/ «—»  AFE digital
output interface
ROM RAM
(b)
Fig. A.1 A mixed analog-digital signal processing system for

telecommunications.
(a) A muld-chip configuration.
(b) A single-chip solution.

155



In this appendix, a single-chip solution which has successfully integrated all
the necessary AFE, DSP, and microconwoller functions on a 81 mm?2 chip for
implementing high-speed, multi-standard voiceband systems [12] is presented.
The chip is fabricated in 1.0-um CMOS technology and consumes 375 mW from
a single 5V supply. A well-balanced combination of analog and digital signal

processing techniques is used to achieve the design objectves.

II. Circuit Description

The chip is divided into two sections: DSP and AFE, as illustrated in Fig.
A.1(b). The DSP section contains a DSP and on-chip memories. The DSP is
designed with a custom architecture and an instruction set tailored for voiceband
applications to allow a great deal of flexibility for accommodating multiple stan-
dards. In addition to handle the major signal processing tasks, it can also per-
form microcontroller functions. The analog section provides all the necessary
analog front-end interface and signal conditioning for the DSP. In additon, it
implements some selected signal processing functions to reduce substantially the
computational requirements of the DSP and to achieve a more efficient utiliza-

tion of the silicon area.
(A) Analog Front-End Section

The block diagram of the AFE section is shown in Fig. A.2(a). The circuit
can be further divided into analog input and output channel blocks. Since the
performance requirements of the input channel is generally more stringent than

those of the output channel for telecommunication applications, different design

156



Quiput Lo :
Analog Smouthing " wpas Sample 10-Bn From
¢ p Levet Channel and
Juiput Filer - nse
Altenuatse Filter Hold DAC 1Hock
b { Higlpass
Channel
Filler
Sigina ADC igi
- e Digital To
(a) alog Delta Decimation »| Channel nse
Input Modulator Filter Filter Block
GENERAL EXTERNAL
PURPOSE MEMORY
VO PORT gus
RAM RAM DROM DELAY t L
256x16| | 2s6x16] |204axté REGISTER
er
t ‘ PROGRAMMABLE PARALLEL VO
vo

= l l I
[x 1 [ v ]| [ mx__]| |veessuer| |countens| | 2550 SERAL
— L
MULTIFUER l | |
16X16->32 —— MICROPROCESSOR  SERIAL

ALU 6/16->16 INTERFACE INTERFACE
38 8ITS ‘
! PROGRAM ROM
o e sequencer | | REO°0
Ha(38) | Hae)

INSTR. REGISTER

Fig. A.2 Block diagram of a mixed analog-digital MOS VLSI for
voiceband telecommunications.
(a) Analog front-end section.
(b) Digital signal processor section.
157



strategies were taken. In the input channel, a 16-bit oversampling A/D converter
is designed with all-digital channel filtering to provide the large dynamic range
performance and flexibility required for processing various input signal condi-
tons. In the output channel, a 10-bit D/A converter is provided with mosuy-
analog filtering to minimize the chip area. To allow a single-chip integration
with the DSP circuits, the analog circuits are designed to operate with a single
5V power supply. A fully differental architecture is used in all the internal
analog circuits to help increase the dynamic range and improve the power supply

rejection,

In the input channel, the 16-bit oversampling A/D converter is implemented
using a second-order sigma-delta modulation principle [83]. The analog modula-
tor is designed with switched-capacitor integrators using an oversampling clock
rate of 5.184MHz to ensure a sufficient signal-to-noise ratio performance margin
for various voiceband applications. To meet the high-speed requirements, the
operational amplifiers are designed with a folded-cascode amplifier topology [SO]
with dynamic common-mode feedback, as shown in Fig. A.3. The 1-bit output
stream of the modulator is then decimated and filiered by the two-stage digital
decimation filter. The first-stage filter, which is realized with a 3rd-order comb
filter, removes the high-frequency noise and decimates the signal down to four
times of the Nyquist sampling rate. The second digital filter, which is a FIR
filter, performs the input channel filtering, while downsampling the signal further
to the Nyquist rate. Both the decimation rato and channel frequency response

can be programmed by DSP to handle different voiceband operations.

158



Voo

MIIS"'.L i m"_me —-ﬂ'_JMS —{s
M17 g M18 ﬂw M8
CMFB
_.“I/[l M2 | | L 4§
Igia Vi Vin ) Vour+
MI3}—e—[Ni14 ’i'l:ims 'lL-I—%’14

Mflﬂ hlen lleM9

Fig. A3 Schematic of the high-speed fully-differential Op-Amp.

159



Instead of using a sigma-delta approach, the D/A converter in the output
channel is designed with a fully-differendal charge-redistribution [84] technique
using switched capacitors to obtwain a better area efficiency. The converted ana-
log signal then goes through a sinx/x-compensated sample-and-hold circuit, a
programmable switched-capacitor channel filter, a 4-bit prograrﬁmable output
level attenuator, and a 2nd-order continuous-time output smoothing filter. The
programmable switched-capacitor filter, which consists of a 6th-order elliptic
lowpass filter and a Sth-order elliptic highpass filter, can be configured to pro-
duce a number of channel filter characteristics required for various voiceband

operations.
(B) Digital Signal Processor Section

Figure A.2(b) shows the block diagram of the DSP section. The DSP is
operated with an instruction cycle of 96.5 ns to provide an adequate processing
speed for handling high-speed and mult-standard voiceband operations. It
includes a 16x16 hardware multiplier which is designed to perform a multiply in
one machine cycle. The ALU performs 35-bit fixed-point arithmatic operations.
The on-chip memories include 8192 x 32 bits of instruction ROM, 2048 x 16
bits of data ROM, and two banks of 256 x 16 bits data RAM. It also allows
the access of up to 64k bits of external RAM and supports external DSP in a
multi-chip configuration. A serial I/O block is included to generate all the input.

and output channel clocks using seperate digital phase-locked loops.

160



II1. Implementation and Performance Results

This mixed-signal device has been fabricated in an 1.0um double-metal
CMOS process. The chip size with an 8K instruction ROM is about 81 mm?2.
Figure A.4 shows microphotograph and floorplan of the chip. The pure analog
circuit secton of the chip is laid out manually in full custom style, while the
layout of digital filters and the majority of the DSP secton is done by an
automatic CAD tool using standard cells. Note that in the floorplan, the quite
analog circuit section is arranged in the top left corner of the chip to obtain a
good separation from the noisy DSP section. Moreover, the low-frequency ana-
log output channel block (shown at the bottom of the analog section) is properly
isolated from the high-frequency analog input channel. In addition, many sub-
strate shieldings and guard rings are used around the analog circuit layout area

to further reduce any noise coupling from the digital circuits.

The measured frequency response of the analog output channel is illustrated
in Fig. A.5. Three examples of the possible channel filter operations are shown.
The 1st photo shows a full-channel lowpass filter response for half-duplex data
transfer operations. The 2nd photo displays a half-channel lowpass filter
response. This filter function is required in transferring data in the lower split-
channel for a full-duplex operation on a 3KHz channel bandwidth. The 3rd
photo shows a bandpass filter response of the output channel. This allows the
data transfer in the upper split-channel during the full-duplex operation. The'
measured signal-to-noise ratio of the analog input channel is shown in Fig. A.6.
More than 80dB dynamic range is obtained. Table A.l summarizes the chip

characteristics.

161



(a)

(b)

Fig. A4

I Rene

) m’ {44}

e RN

——

ddiliiei

T -

T L

RIS - ==

Wit

[

[

[ TTUTCTERRRR RS

)

AR Er A AR AT AN AR AR
1y
2

e EP PR EECREEEFER LIRS

AkLLA

—r v

Microphotograph and floorplan of the mixed-signal chip.

Analog Input

| Channet.

Analog Digital Filters
Output
Channel
DSP
Section

(a) Die photo.
(b) Chip floorplan.

—
! PO ROLMOE FUFT Y | o ey
——

162



(a)

(b)

©)

Fig. A.5 Measured frequency response of analog output channel.
(a) The full-channel lowpass filter response.
(b) The lower split-channel lowpass filter response.

(c) The upper split-channel bandpass filter response.
163



Table A.1 Summary of the mixed-signal chip characteristics.

Power Supply 5.0V
Power Consumption 375 mW

Chip Size (with 8K IROM) 81 mm?

Transistor Count 500,000
Process 1.0pum Double Metal CMOS
Instruction Cycle 96.5 nS
Dynamic Range 88 dB
90—

SNR (dB)

|
I 1 i 1
70 60 50 -40 -30 20 .10 0

Input Level (dB)

: 164
Fig. A6 Measured signal-to-noise ratio of analog input channel.



IV. Conclusions

A single-chip solution for implementing high-speed voiceband telecommuni-
cadon systems using mixed analog-digital signal processing techniques has been
presented. The chip contains a 96.5nS DSP, a high performance AFE, and an
8K instruction ROM in 81 mm? using 1.0-um CMOS technology. It requires
only a single 5V supply and dissipates 375 mW. With sufficient on-chip
memories, this device is capable of implementing most of the voiceband system
applications in a single-chip solution. And with more processing speed obtain-
able from the continuously scaled CMOS VLSI technology in the near future,
this mixed-sighal processor is very promising in realizing audio system applica-

tions in a single chip as well.

165



Appendix B

Basic Concepts in Analog VLSI Implementation of
Artificial Neural Networks

The implementation of arificial neural networks using VLSI technologies
has recently received much attention (17-19]. In particular, the analog VLSI
approach is extremely atractive for implementing neural network algorithms in
terms of hardware size, power, and speed [85]. Several analog CMOS neural
network realizations have been reported [74-77] that contain up to several hun-

dreds of neurons and thousands of synapses on a single chip.

The secret of immense computational power in the neural networks is
revealed as the parallel processing done by neurons and synapses. While each
neuron performs simple analog processing at a low speed, the rich connectivity
among neurons through synapses provides powerful computational capabilities for
the large quantity of data. The data are processed asynchronously in the con-
tinuous time domain and spread globally into all network elements. In addition
to the parallel processing nature, the neural network has self-learning capability
which is done by changing the weights of synapses between neurons. The self-
learning capability makes neural networks useful at the situation that training
data are insufficient and the fault tolerance of a system is necessary. Moreover,
the relatively imprecise network elements can be compensated with the self-
learning scheme. As a result, the immense computational power and self-
learning capability give neural networks excellent prospects for solving complex

problems in image processing, pattern recognitions, fuzzy logic, machine vision,

166



Inexact reasoning, and adaptive control. The following covers some basic con-

cepts in implementing VLSI artificial neuron models.

(A) Basic Neuron Models

A biological neuron basically consists of a cell body, dendrites, and axons
as shown in Fig. B.1(a). The cell body, which is called soma, performs compli-
cated chemical processes, such as summation and firing with respect to a thres-
hold level. The input signals for a cell body are transmitted through the den-
drite, while the output signals are carried to other cells through axons. The
electrical signal of an axon connects to a dendrite through a specialized contact,
which is called synapse. In general, the neuron performs a simple threshold
function. When the potential inside the cell body is larger than the threshold
value, the neuron fires. Here, the normal firing rate is quite low which typically
requires a few milli-seconds. It is known that the human brain has approxi-
mately 10" neurons and 10% synapses.

In the artificial neural network, the neuron and synapse are configured as

processing element and connection strength, respectively. Figure B.1(b) shows a

simplified artificial neuron model. The basic computation of the artificial model
involves a weighted sum over the entire set of neuron inputs. The result of the
weighted sum minus a threshold value is amplified to produce the new neuron
output. Mathematically, this can be described as

v, = f[f;r,-v‘- - e]- (B.1)

i=]

where the V; are the neuron input voltages, T; are the synapse connection

167



Dendrite Soma
Axon

| Summer - Threshold ——A

\

Synapse

(a)

Fig. B.1 Neuron model.
(a) Biological neuron model.
() Arificial neuron model. (The V; are the neuron
input voltages, T; are the synapse weights, and 6
is a constant threshold value.)

168



weights, and 0 is a contant threshold term. The f () is a nonlinear function,

which can be thought of as an amplifier.
(B) Basic Neural Architectures

The various feawres of the artficial neural network are determined by the
function of neuron and the interconnection patterns. The grouped neurons which
are arranged into a disjointed structure is called a layer. Figure B.2 shows
several basic neural architectures which include single-layer/multi-layer and feed-
forward/feedback networks. A single-layer network typically consists of a neu-
ron input stage, a synapse connection matrix, and a neuron output stage. With a
feedback path added to the single-layer network, the resulting recursive network
becomes the well-known Hopfield neural network [72]. The condition for the
synapse weight in the Hopfield network is very restrict (being symmetric and no
self-feedback terms), while that for the neuron transfer function is very relaxed
(only monotonically increasing). Due to the simple architecture and clearly
proved dynamics of the Hopfield network, many hardware implementations have
been widely used in real-world applications such as associative memory and the
solution of certain engineering optimization problems. Finally, the muld-layer
neural network, which is typically vitalized by a back-propagation leaming rule,

is a feed-forward network with hidden layers located in the middle stages.
(C) VLSI Neuron Implementation

The neural network algorithms for the software computation cannot be
directly used to realize VLSI neural networks. Basic elements of the VLSI

artificial neural networks consist of amplifiers as neurons and resistors as

169



Input Output
ncurons  ncurons Input Qutput
ncurons neurons

(@) _ (b)

First Second

necurons ncurons ncurons neurons

Fig. B.2 Basic neural network architectures.
(a) Single-layer feedforward network.
(b) Single-layer network with feedback -- Hopfield neural network.
(c) Multi-layer feedforward network.

170



synapses. The neuron transfer function for the software computation is an exact
mathematical function, while that for the VLSI implementation is an approximate
function. In addidon, perfect match and wide dynamic ratio of the synapse

weights are difficult to obtain in VLSI technologies.

One important factor in VLSI neural network design is ‘to increase the
amplifier gain. Figure B.3 shows the simple circuit realization of a2 neural model
using resistors. The synapse weight T; is realized with a conventional resistor
R; (ie., T; = 1/R;). For a negative synapse weight, a resistor and an inverted
neuron output are used. Note that the neuron input voltage V; is assumed to be
an independent voltage source and the internal voltage source resistance is
included in R;. Several VLSI chips [86,87] have been reported using this direct
resistor realization. The amplifier output voltage is determined by

n
2 VilR;

2
V, = f|——————| B2)
IR, + S UR;

i=1

Here, f (") is the transfer function of a neuron and R,, is the input impedance of
the neuron. On the other hand, the neuron output in software computation is
determined by

V, = f[ivilRi]' (B.3)

i=]

In the direct resistor realization method, large amplifier gain is needed due to the
effect of the denominator in (B.2). In addition, the relative synapse values are

more important than the absolute values in the VLSI implementation. In VLSI

171



Fig. B.3 A VLSI neuron with direct resistor implementation.

172



technologies, the relative tolerance in the device is much easier to be achieved

than the absolute tolerance.

173



Appendix C

Prototype Program for Analog MOS Circuit

Module Layout Generation

{ttttt-mﬂmtu SLAM -- Dcvclopmem Version 1.0 tttt&m’ttttat}

{#t*t*uttrt.- By Davicl Iaerhia Chcn at USC tltt‘tt‘!tt*}
['ttttaaaa.ut June 1991 tat------uau]

I‘**#ﬁ*.i.‘....‘l.t.’#..l"tt.tltt*"l"l‘tlttlttttll‘*l*t***tt***‘t/

/**** Analog MOS Circuit Recognition Module (Pascal Version) ****»»x/
/*‘****#***"**##ﬁ.“*tt‘.“tt*!tk**-ll*"t“***t**lll.*t*t****#****l

program circuit_recognition (input,output);

const
bl =0
maxm = 30;
maxdc = 10;
maxhi = 10;
maxsc = 10;
maxcm = 10;

var
transistor: array [l..maxm] of
record
m : integer;
d : integer;
g : integer;
s : integer;
u : integer;
sw: 0.1
end;
pl, p2, b2, cl, €2, o, i1, i2, p2ml, p2m2 : integer;
dc : amray [l..maxdc] of integer;
hi : array {1..maxhi] of integer;
sc : array (1..maxsc] of integer;
cm : array [l.maxcm] of integer;
pdm : array [l..maxm] of integer;

174



nmrofm : 0.maxm;
nmrofdc : 0.maxdc;
nmrofhi : 0..maxhi;
nmrofsc : 0..maxsc;
nmrofcm : 0..maxcm;
nmrofp4m : 0..maxm;

procedure ml;

var
one_char: char;
entry, vl, v2, i: integer;

begin

fori:=1to 60 do
begin
read(one_char);
write(one_char)

(basic circuit note cxtraction)

end;
readin;
writeln;
writeln;

entry :=0;
while not eof do

begin

read(one_char);
case one_char of

**! ¢ readln;
' * : readin;
'M’ : begin

entry := entry + 1;
with transistor{entry] do

begin
readin(m,d,g s.u);
sw:i=0;
writeln("M’ ,m:2,d:4,g:4,5:4,u:4)
end

end;

'V* : begin

read(one_char);

if one_char = 'D’ then
readln(one_char,pl)

else if one_char = 'S’ then

175



readin(one_char,p2)

clse
begin

read(one_char);

read(one_char);

if one_char = '+’ then
readin(il)

else

readin(i2)

end;
end;
lll : wgin

read(one_char);
read(one_char);
read(one_char);
read(one_char);
readin(vl,v2);

if vl = pl then

b2 = v2
else

b2 = vl;
end;

'C’ : begin

read(one_char);

if one_char = "L’ then

readin(o)
else

readln(clc2);

end

end

end;
nmrofm := entry ;
writeln('P1 = °, pl:4,’
writeln(’Il = °, i1:4,’
writeln("'Cl = °, cl:4,’
writeln('Bl = *, bl:4,’
writeln("O =", 04)
end;

procedure m2;

P2 =", p2:4);
12 =", i2:4);

C2 =", c2:4);
B2 =", b2:4);

{dc node recognition}

176



var
entry, entry2 : Integer;
dropit : boolean ;

begin

nmrofdc := 0 ;

for entry := 1 to nmrofm do
with transistor{entry] do

if d = g then
begin
dropit := failse ;

for entry2 := 1 10 nmrofdc do
if d = dc{entry2] then
dropit := true;
if dropit = false then
begin
nmrofdc := nmrofdc + 1 ;
dc{nmrofdc] := d
end;
end;
writeln;
for entry := 1 to nmrofdc do
writeln("dc(’,entry:2,") = ’,dc[entry):4);
end;

procedure m3; {hi node recognition)
var
entry, entry2, count : integer;
dropit : boolean;
begin
nmrofhi := 0 ;
for entry := 1 to nmrofm do
begin
count := 0 ;

for entry2 := 1 to nmrofm do
if transistor{entry).d = transistor(entry2).d then
count := count + 1 ;
if count > 1 then
begin
dropit := false ;
for entry2 := 1 to nmrofdc do
if transistor[entry).d = dc[entry2] then

177



dropit := true;
if dropit = false then
for entry2 := 1 10 nmrofm do
if transistor{entry].d = transistor(cnuy2).s then
dropit := true;
if dropit = false then
for entry2 := 1 to nmrofhi do
if wansistor{entry).d = hi{entry2] then

dropit := true;
if dropit = false then
begin

nmrofhi := nmrofhi + 1 ;
hi[nmrofhi] := transistor(entry].d
end;
end;
end;
writeln;
for entry := 1 to nmrofhi do
writeln("hi(’,entry:2,’) = ",hi(entry]:4);

end;
procedure m4; (sc node recognition}
var
entry, entry2, entry3 : integer ;
dropit : boolean ;
begin

nmrofsc = 0 ;

for entry := 1 to nmrofm do
begin
entry2 :=entry + 1 ;
while entry2 <= nmrofm do

begin

if transistor{entryl.s = transistor{entry2].s then
begin
entry2 := nmrofm + 1 ;
dropit := false ;

for entry3 := 1 to nmrofsc do
if transistor{entryl.s = sc{entry3] then

dropit := true;
if dropit = false then
begin

178



nmrofsc := nmrofsc + 1 ;
sc[nmrofsc] := transistor{cntry].s
end;
end
else
entry2 := entry2 + 1;
end;
end;
writeln;
for entry := 1 to nmrofsc do
writeln('sc(’ entry:2,") = °,sclentry):4);
end;

procedure m$; {cm node recognition)
var
entry, entry2, entry3 : integer ;
dropit : boolean;
begin
nmrofcm =0 ;
for entry := 1 to nmrofm do
begin
if (transistor{entry].s = p1) or
(transistor{entry].s = p2) then
begin
entry2 :=entry + 1 ;
while entry2 <= nmrofm do
begin
if (transistor{entry].s = transistor[entry2].s) and
(transistorf{entry].g = transistor(entry2]).g) then
begin
entry2 := nmrofm + 1 ;
dropit := false ;
for entry3 := 1 to nmrofcm do
if transistor{entry].g = cm(enry3) then

dropit := true;
if dropit = false then
begin

nmrofcm := nmrofcm + 1 ;
cm{nmrofcm] := transistor[entry].g
end;

end;

179



entry2 := entry2 + 1;
end;
end:
end;
writeln;
for entry := 1 to nmrofcm do
writcln('em(’ entry:2,") = '.cm(entry}:4);
end;

procedure mé6; (primitive p1 recognition}

var
entry, entry2, entry3 : integer;
dropit : boolean;
begin
for entry := 1 10 nmrofm do
if transistorfenoy).g = il then
for entry2 := 1 to nmrofm do
if (transistor(entry2].g = i2) and
(transistor[entry].s = transistor{entry2].s) then
begin
dropit := true ;
for enry3 := 1 to nmrofsc do
if transistor{entryl.s = sclentry3] then

dropit := false;
if dropit = false then
begin
writeln;

write("pl : (m’ transistor{entry].m:2);
writeln(’, m’ transistor{fentry2].m:2,")");
transistorfenry).sw ;=1 ;
transistor{entry2].sw = 1

end;
end;
end;
procedure m7; {primitive p2 recognition}
var

entry, entry2, entry3, count : integer;
dropit : boolean;

begin

writeln;

180



for entry := 1 to nmrofm do
begin
count := 1 ;
for entry3 := 1 to nmrofm do
if (entry < entry3) and
(transistor{entry].g = transistor{entry3}.g) then

begin
entry2 := entry3 ;
count := count + 1 ;
end;

if count = 2 then
begin
dropit := true ;

for entry3 := 1 to nmrofcm do
if wansistor{entry).g = cm[entry3] then
dropit := false;
if dropit = false then
begin
dropit := true ;
for entry3 := 1 to nmrofdc do
if transistor{entry].d = dc{entry3] then
dropit := false;
end;
if dropit = false then
begin
dropit := true ;
for entry3 := 1 to nmrofhi do
if (ransistor[entry2].d = hi[entry3]) and
(hientry3] < 0 ) then

dropit := false;
end;
if dropit = false then
begin

write('p2 : (m’transistorfentry].m:2);
writeln(’, m’ transistor[entry2].m:2,")");
transistor[entryl.sw =1 ;
transistor[entry2).sw = 1 ;
p2m1l := transistorfentry].m ;
p2m2 := mansistorfentry2).m ;
end;

end;

181



end;
end;

proccdure m8; (primitive p3 recognition)
var
cntry, entry2, count, el, ml : integer;
dropit : boolean;
begin
writeln;
for enury := 1 to nmrofcm do
begin
count := 0 ;
for entry2 := 1 to nmrofm do
begin
if transistor(entry2].g = cm[entry] then
begin
count := count + 1;
if count = 1 then

begin
ml := transistor(entry2].m;
el := entry2
end;
if count = 2 then
begin
dropit := false ;

if ((ml1 = p2m1) and (transistor{entry2].m = p2m2)) or
{(m1 = p2m2) and (transistorfentry2].m = p2m1)) then

dropit := true ;

if dropit = false then
begin
write('p3 (cm’entry:2,’) : m’,ml:2,;, m’);
write(transistor{entry2].m:2);
transistorfel]).sw = 1 ;
transistor{entry2].sw := 1
end;

end;

if count > 2 then

begin

write(", m’ transistor[entry2].m:2);

transistor(entry2).sw := 1

end;

182



end;
end;
writcin
end;
end;

procedure m9; {primitive p4 recognition)
var
entry, entry2, entry3, count : integer:
dropit : boolean;
nmrofp4g : 0..maxm;
pdg : array [1.maxm] of integer;
begin
nmrofpdg = 0 ;
nmrofpdm = 0 ;
for entry := 1 to nmrofm do
begin
count := 1 ;
for entry2 := 1 to nmrofm do
begin
if (entry < entry2) and
(transistor[entry).g = transistor[entry2]).g) and
(transistor[entryl.g < bl) then
begin
dropit := false ;
for entry3 := 1 to nmrofcm do
if transistorfentry].g = cm[entry3] then
dropit := true;
if (dropit = false) and (count = 1) then
for entry3 := 1 to nmrofpdg do
if transistor[entry].g = pdglentry3] then

dropit := true;
if dropit = false then
begin

count := count + 1;

if count = 2 then
begin
writeln;
write('p4 : m’ transistor[entry).m:2);
nmrofpdg := nmrofpdg + 1 ;
p4glnmrofpdg) := transistor[entryl.g ;

183



nmrofpdm := nmrofpdm + 1 ;
pém(nmrofpdm] := transistor{entry].m ;
transistor{cnry].sw := 1
end;
write(", m’ transistor{entry2].m:2);
nmrofp4m := nmrofpdm + 1 ;
p4m{nmrofp4m} := wansistor(enry2).m ;
transistor{entry2].sw := 1
end;
end;
end;
end;
writein
end;

procedure m10; {primitive pS recognition}
var
enay, entry2 : integer;
dropit : boolean ;
begin
writeln;
dropit := true ;
for entry := 1 to nmrofhi do
if hifentry) = o then
dropit := false;
if dropit = false then
for entry := 1 to nmrofm do
if transistor[entry].d = o then
begin
dropit := true ;
for entry2 := 1 to nmrofhi do
if (transistor{entryl.g = hi(entry2]) and
(transistor(entryl.g < 0) then
dropit := false ;
if dropit = false then
begin
writeln(’p5 : m’ transistor[entry]l.m:2);
transistor{entry].sw = 1
end;
end;
end;

184



procedure mll; {primitive pSc recognition}
var
entry, entry2 : integer;
dropit : boolean ;
begin
dropit := true ;
for entry := 1 to nmrofhi do
if hifentry] = o then
dropit := false;
if dropit = false then
for enry := 1 1o nmrofm do
if transistor{entry].d = o then
begin
dropit := false;
for entry2 := 1 to nmrofcm do
if transistor[entry].g = cm[entry2] then
dropit := true ;
if dropit = false then  {check duplicate with p5)
for entry2 := 1 to nmrofhi do
if transistor[entry].g = hilentry2] then
dropit := true
if dropit = false then  {check duplicate with p4)
for entry2 := 1 to nmrofp4m do
if transistor{entry).m = pdm(entry2] then

dropit := true ;
if dropit = false then
begin

writeln(’pSc: m’transistor{entry].m:2);
transistor(enryl.sw = 1
end;
end;
end;

procedure m12; {primitive p6 recognition)
var
entry, entry2 : integer;
begin
writeln;
for entry := 1 to nmrofm do
begin
if transistor[entry].s = cl then

185



for entry2 := 1 to nmrofhi do
if wransistor{entry).d = hi(entry2] then
begin
writeln('p6é : m’ transistor(entry].m:2,’, cc');
transistor{entry].sw := 1
end;
if transistor{entry].s = ¢2 then
for entry2 := 1 to nmrofhi do
if ransistor{entry]).d = hi[entry2] then
begin
writeln("p6 : m’ transistor{entry).m:2,’, cc’);
transistor(entry).sw := 1
end;
if transistor{entry].d = cl then
for entry2 := 1 10 nmrofhi do
if transistor[entry].s = hi[entry2] then
begin
writeln("p6 : m’ transistor(entry}.m:2,’, cc');
transistor(entry).sw := 1
end;
if transistor{fentry].d = ¢2 then
for entry2 := 1 to nmrofhi do
if transistor{entry).s = hi{entry2] then
begin
writeln("p6 : m’ transistor{entry].m:2,’, cc');
transistor(entry).sw := 1
end;
end;
end;

procedure m13; {primitive p7 recognition}
var
entry, entry2 : integer ;
eqdc : boolean ;
begin
writeln;
for entry := 1 to nmrofm do
with transistor(entry] do

if sw = 0 then
begin
eqdc := false;

186



for entry2 := 1 to nmrofdc do
if g = dclentry2] then

eqdc := true;
if (g=0bl)or
(g =b2) or
(eqdc = true ) then
begin
writein('p7 : m’m:2);
sw =1
end;
end;
end;
procedure ml4; {check unrecognized transistors)
var
entry : integer ;
begin
writeln;

for entry := 1 to nmrofm do
with transistor{entry) do
if sw = 0 then
writeln("unrecognized transistor : m',m:2);
end;

begin {main routine}
ml; {basic circuit note extraction}
m2; {dc node recognition}
m3; {hi node recognition)
m4; {sc node recognition}
m5; {cm node recognition}
m6; (circuit primitive recognition )
m7;
m8;
m9;
ml0;
mll;
ml2;
m13;
ml4;
end.

187



,‘l'.' » '..--....’.’..."....‘.‘..’/

/‘.t't.‘.t.‘ll"- neuﬁLC ".."."."...'It.l‘-t./

I.-‘........".".'-"U'-l‘..‘-’-‘l..'.l..“.t"l“l‘t’

#include "netlist.h”

{

mainQ

int row,column;

double sqri();

struct BLOCK sop;

int ijk.m,p;

int arg,index,rownet{3]{20];
int count[3};

int wmax,Imax,row_L(3];
char input_string(30});

FILE *fpl,*fopen();

struct INDIVIDUAL_TX wx(100];
struct PRIMITIVE_CELL cell[60);

int tx_num,cel_num,mos;
float aspect,area,
float blk_area();
struct NETBOX *net(100];
char *malloc();
LINK head[50],temp;
int Ncount,count_listQ:
int net_length(Q,length;
int net_name(50];
[revenes * /
sop.name="sop";
/*“*ﬁ-v * ‘tl'tlt*‘*tt*t**/

if ((fpl=fopen(“recog_module”,"r")) ==NULL){
printf("Orror: Cannot open recog_module”);
exit(1);
)
while (fscanf(fpl, "%s", input_string) != EOF) (
if(stremp(input_string, "x_num") == 0){
fscanf(fpl, "%d", &tx_num),
for(i=0; i<tx_num; i++)(
fscanf(fpl, "%s", (x[i).name));
fscanf(fpl, "%d", &(x[il.dm.net));

188



fscanf(fpl, "%d", &(x([i].gat.net));
fscanf(fpl, "%d", &(x[i].src.net));
fscanf(fpl, "%d", &(wx{i].sub.net));
fscanf(fpl, "%d", &(x(i).L));
fscanf(fpl, "%d", &(x{i).W));
}/* end of for i */

)/* end of if */

if(stremp(input_string, "net_num”) == 0)(
fscanf(fpl, "%d", &(sop.net_num));
for(i=0; i<sop.net_num; i++){
fscanf(fpl, "%d", &(net_name[i]));
)

}

if(stremp(input_string, "input_net”) = 0){
fscanf(fpl, "%d", &(sop.input_net_num));
for(i=0; i<sop.input_net_num; i++)(
fscanf(fpl, "%d", &(sop.input_net_list(i]));
)

}

if(stremp(input_string, "output_net") = 0){
fscanf(fpl, "%d", &(sop.output_net_num));
for(i=0; i<sop.output_net_num; i++){
fscanf(fpl, "%d", &(sop.output_net_list(i]));
)

}

if(stremp(input_string, "sensitive_net") == 0)(
fscanf(fpl, "%d", &(sop.sensitive_net_num));
for(i=0; i<sop.sensitive_net_num; i++)(
fscanf(fpl, "%d", &(sop.sensitive_net_list[i]));
}

}

if(stremp(input_string, "cel_num”) = 0)(
fscanf(fpl, "%d", &(sop.cel_num));
for(i=0; i<sop.cel_num; i++)(
fscanf(fpl, "%s ", (sop.cell(i].name));
fscanf(fpl, "%c", &(sop.cell[i}.type)):
fscanf(fpl, "%d", &(sop.cellil.tx_num));
for(3=0; j<(sop.cellfil.tx_num); j++){

fscanf(fpl, "%d", &mos);
sop.cell(il.tx(jl=tx[mos];

}/* end of for j */

189



}/* end of for i */
)™ end of if ¥/
if(strcmp(input_string, "matrix") == 0){
fscanf(fpl, "%d", &(sop.row));
fscanf(fpl, "%d", &(sop.column));
for(j=0; j<sop.column; j++){
for(i=0; i<sop.row; i++)(
fscanf(fpl, "%d ", &(sop.matrix[i](j}(0]));
for(k=1; k <= sop.mamix[i][jl[0]; k++){
fscanf(fpl, "%d ", &(sop.matrix{i](jJ(k])):
}/* end of for k */
}/* end of for i */
}/* end of for j */
}/* end of if */
if(strcmp(input_string, "aspect”) == 0){
fscanf(fpl, "%f", &aspect);
}
}/* end of while */

/**ﬁtt‘##l#“t“#‘#tt‘t‘*#*#tt#*##ttt*ttttttt‘t*!#‘t.'/

/*t##*ﬁ * ERERE v#‘ltll*#tt##**t‘t**/
for(i=0; i < sop.net_num;i++)(
Ncount = 0;
for(j = 0;j<sop.cel_num;j++)(

for(k = O;k<sop.cell(jl.tx_num;k++){

if(sop.cellfjl.x(k].dm.net == net_name(i]){
Ncount++;
head[Ncount] = (LINK) malloc(sizeof(ELEMENT));
head[Ncount]->x = sop.cell(j].tx(k).drn.x;
head[Ncount]->y = sop.cell[j].ix{k].dm.y;
head[Ncount]->dsg = 1;
head[Ncount}->cel = j;
head{Ncount)->tx = k;

}

if(sop.celljl.x[k].gatnet == net_namel[i])(
Ncount++;
head[Ncount] = (LINK) malloc(sizeof(ELEMENT));
head{Ncount}->x = sop.cell{jl.ix(k].gatx;
head{Ncount]->y = sop.cell[j].tx[k].gat.y;
head{Ncount]->dsg = 3;

190



head[Ncount]->cel = j;
hcad{Ncount)->x = k;

}

if(sop.cellj].tx{k).src.net == net_name(i])(
Ncount++;
head[Ncount] = (LINK) malloc(sizcof(ELEMENT));
head[Ncount}->x = sop.cell(j].tx(k].src.x;
head[Ncount}->y = sop.cell(j].xx{k].src.y;
head{Ncount]->dsg = 2;
head(Ncount]->cel = j;
head{Ncount]->tx = k;
}
}
)
netfi] = head(1];
for(m = 1;m<Ncount;m++) head{m]->next = head{m+1];
head[Ncount]->next = NULL;
/*1'**#*&###*#‘**#*****"#*#*#*#****'****t‘.’
for(i = 0;i < sop.net_num;i++){
temp = net(i];
do{
. printf("%d,%d,%d,%d0,net_name(i] ,temp->dsg,temp->cel,temp->tx);
temp = temp->next;
} while(temp != NULL);
}

/#****** Tk *k L **#*#*.ﬁl

)}/* end of main */

/* Function*/

/* Count a list recursively. */
int count_list(head)

LINK head;

{

191



if (head = NULL)
return(0);
clse
return(1+ count_list(head->next));

L b -—ll‘.‘t‘tl.‘l.‘..‘..".t“"‘.'.‘,

192



/‘.‘...“t““‘ittt"..'"..O..‘.‘.“.“‘t't‘..‘t“.l.‘/
/‘.‘-““lt‘-.-lt..‘ ﬂeﬂkhh 'll‘.‘..-l..‘l‘.‘..lt-/

/.I--‘..‘**t“‘*ttt“‘titt.'*-*..*..‘..*.3...‘..-..*.'.[

#include <stdio.h>
#include <ctype.h>
#include <strings.h>
#include <sys/file.h>
#include <sys/types.h>

#define  dc2py 1 /* diff contact to poly gatc (edge to edge) */
#define mc 4 /* metal contact */

#define halfmc 2 /* 0.5 * mc ¥/

#define  wc2dc 4 /* well contact to diff contact (edge to edge) */
#define  pyw 2 /* poly extensin to diff */

#define mc2mc 4 /* metal contact spacing (edge to edge) */
#define  dc2dc 4 /* diff contact to diff contact (edge to edge) */
#define  tox 430.0 /* oxide thickness */

#define MAX(x,y) (((x)>=(@)? (x): (¥D)

#define  MIN(xY) (X)) <=() ?(x): &)

#define MOD(X) (((x) >= 0) ? ((int)((x/8.0)+0.5))
: ((In((x/8.0)-0.5)))

struct POINT (
int x;
int y;

|

struct LINE {
struct POINT pl;
struct POINT p2;
int material;
B

struct RECT (
int lix;

int ly;
int urx;
int ury;

%

193



struct FORM {
int tl;
int 2;
int 13;
int 14;
int 15;
int 16;

|

struct TRAN (
char *name;
int timestamp;
int pinnum;
int diode;
struct POINT dm,gat,src;
struct RECT box;

)i

struct CELL {
char *name;
int timestamp;
int pinnum;
int xnum;

struct POINT dm([10],gat{10],src[10]);
struct RECT box;

k
struct PIN (
int net;
int priority;
int x;
int Y
K
struct INDIVIDUAL_TX (
char name{10];
int w;
int L
int par;
struct PIN dm,gat,src,sub;
)i

struct PRIMITIVE_CELL (

194



char name(10);

char type:
int x_num;
int w;
int L
struct INDIVIDUAL_TX «x(10);
struct POINT origin;
int orient;

I

struct BLOCK (
char *name;
int timestamp;
int net_num;
int input_net_num;
int input_net_list(20];
int output_net_num;
int output_net_list[S];
int sensitive_net_num;
int sensitive_net_list(S];
int cel_num;
int Wi
int L
int row,column;
int matrix(3](31(3];

struct PRIMITIVE_CELL cell{60];
)i

struct NETBOX (
struct NETBOX *next;
int x;
int y;
int x;
int dsg;
int cel;

B

typedef struct NETBOX ELEMENT;
typedef ELEMENT * LINK;

/* drain=1 source=2 gate=3 */

195



/“l-l..“lﬁ““‘..*..‘.**..ﬂ't‘.ﬂ..*.“l.‘#.““‘l‘t‘l‘,

/‘.'..tt.‘...."...'.. macm.h ‘..‘l’l.l..tl"“t"t‘l’

/*..t."***'t'l-*-...‘-‘.....#’..‘!‘t.l.‘.l'..‘t.tt.#'l./

#include <stdio.h>
#include <crype.h>
#include <strings.h>
#include <sys/file.h>
#include <sys/types.h>
#define  dc2py 1 /* diff contact to poly gate (edge to cdge) */
#define mc 4 /* metal contact */
#define halfmec 2 /* 0.5 * mc */
#define wc2dc 4 /* well contact to diff contact (edge to edge) */
#define  pyw 2 /* poly extensin to diff */
#define mc2mc 4 /* metal contact spacing (edge to edge) */
#define  dc2dc 4 /* diff contact to diff contact (edge 10 edge) */
#define  tox 430.0 /* oxide thickness */
#define  MAX(x,y) (((x) >= () ? (x): ()
#define  MIN(x,y) (x) <= () ? (x): ()
#define MOD(x) (((x) >= 0) ? ((int)((x/8.0)+0.5))
: ((nt)((x/8.0)-0.5)))
struct POINT {
int x;
int y;
)
struct LINE (
struct POINT pl;
struct POINT p2;
int material;
JH
struct RECT
int Iix;
int lly;
int urx;
int ury;
|5

196



struct FORM (

k

int tl;
int 2;
int 3;
int 14;
int t5;
int 6;

struct TRAN {

char *name;

int timestamp;
int pinnum;

int diode;

struct POINT dm,gat,src;
struct RECT box;

)i

struct CELL {
char *name;
int timestamp;
int pinnum;
int txnum;

struct POINT dm([10),gat(10],src[10];
struct RECT box;

K

struct BLOCK {
char *name;
int timestamp;
int pinnum;
int celnum;

struct POINT vdd,vss,in{20],0ut[20],dm(20],gat[20],src[20];
stuct RECT box;

197



,‘...'...‘-.0.0......‘..-...'It...-‘.".-.."Ottttf
/“l...ﬁ‘-..“...' ‘nodgen£ QU‘.‘.‘.....'.‘.*"'{

/*..t.“.‘.‘.‘ﬂ......‘...'..‘...U..O..t......l‘.*.!

#include "macro.h”

main()

{
char *name;
int  isignalin,signalin_list(20];
int  signalout,signalout_list(10];
int net,pin,list{200](4];
int sen,sen_list(10];
int rightlower,left,upper;
struct BLOCK  bl,module();

name="bk1.mag";
printf("Please enter the input signal numberh");
scanf(" %d",&signalin);
printf("Please enter the input signal name:hn");
for(i=0;i<signalin;i++){
scanf(" %d",&signalin_list(i]);
}
printf("Please enter the output signal numberh");
scanf(" %d",&signalout);
printf("Please enter the output signal name:h”);
for(i=0;i<signalout;i+=+){
scanf(" %d",&signalout_list(i]);
)

printf("Please enter the intemal net number:n”);
scanf(" %d",&net);
printf("Please enter the pin numberh”);
scanf(" %d",&pin);
for(i=0;i<pin;i++){
printf("Please enter the net list of #%d pin:[net_num,dm(1)/src(2)/
gat(3),cel_num,tx_num}h",i);
scanf(" %d,%d,%d,%d" &list{i][0],& List[i)(1],&list(i](2),&List(i][3]):
}
printf("Please enter the sensitive net numbern");
scanf(" %d",&sen);

198



printf("Please enter the sensitive net name:h");
for(i=0;i<sen;i++)(

scanf(" %d".&sen_list[il);
}
printf("Please enter the right_offseth”);
scanf(" %d” &right);
prindf("Please enter the lower_offseth”);
scanf(” %d" . &lower);
printf("Please enter the left_offsetn”);
scanf(" %d".&left);
printf("Please enter the upper_offsetn");
scanf(” %d".&upper);

bl=module(name,signalin,signalin_list,signalout,signalout_list,net list,
pin,sen,sen_list,right,Jower,left,upper);

struct BLOCK module(fname, insignal_num,insignal_net,outsignal_num,

outsignal net,net_num,netlist,pin_num,sen_num,sen_netright_offset,
lower_offset,left_offset,upper_offset)

char *fname;

int  insignal_num,outsignal num,net_num,pin_num,sen_num;

int  right_offsetlower_offsetleft offset,upper_offset;

int  netlist[200](4],insignal_net[20],outsignal net[10],sen_net(10);

(

FILE *fpl,*fopen();

int ij.cel_num,degree refer,offset;

int timestamp;

int borderllx,borderlly, borderirx,borderlry;

int borderurx, borderury,borderulx,borderuly;

extern time_t time();

char *infile,bk_name[10].cel_name[80](10],m_name(80](10};
char change,dir,align;

struct POINT  coordinate,place();

struct FORM  transform[100],rotate Q,upsidedown();

struct RECT  box[100];

struct CELL  *cel_pt[100);

struct CELL  gen_difinQ.gen_cm(Q,gen_cap(,cel(100];
struct BLOCK  bk;

int dummy,vias_num,wires_num,mighty_does_work;

199



char cel_type(10),input_string[20];
sttuct POINT  vias[200];
swuct LINE  wires{500];

/".‘ =e = '-.."..*..'.‘-"‘.'.l....t'..“"'.’

for(j=0;j<10:j++)(
if(fname(j] != °.") bk_name(jl=(name(j);
else {
bk_name[j}=" *;
break;
)
}
bk.name=bk_name;
bk.pinnum=0;
printf("How many primitive cells are included in this block (%s):h".bk.name);
scanf("%d" &cel_num);
bk.celnum=cel_num;
printf("Please tell me the first cell name [".mag]), its lix,lly will be
align to (0,0)x");
scanf(" %s",cel_name[0]);
printf("What type is this cell ? (difin/tx/cm/cap)h”);
scanf(" %s",cel_type);
if( stremp(cel_type, "difin") == 0) {
cel[O]=gen_difin(cel_name{0]);
}
if( sremp(cel_type, "cm™) = 0) {
cel[0)=gen_cm(cel_name(0]);
}
if( soemp(cel_type, "cap”) = 0) (
cel[0)=gen_cap(cel_name[0]);
}
box[0]=cel(0].box;
cel_pt[0] = &cel(0];
transform[0).tl = 1;
transform[0).2 = 0;
transform[0}.3 = 0;
transform(0).t4 = 0;
transform[0].t5 = 1;
transform[0].t6 = 0;

/

L 2 --:#-t#‘Olt&tt“il..'tt.t...t.‘#**#“t‘#‘*}

printf("Do you want do (rotation), (upsidedown), or (no change)
on this cell? fr/u/n):h");

200



scanf(" %c".&change);

if (change="r"}{
printf("How many degrees? [0/90/180/270):h");
scanf(" %d”,&degree);
transform(0]=rotate(cel_pt(0},degree).

)

if (change="u")(
transform(0}=upsidedown(cel_pt(0]);

}
transit(cel_pt(0],0,0);
transform[0].63 = wansform({0].t3 - box{0].lx + 0;
transform(0).t6 = transform(0).t6 - box{0).lly + 0;

/**t****l*******l‘t*t#*****‘**mt***#*lt*tt*tt**#!t#tlﬂltﬁl****t#*it}
for(i=1;i < cel_num;++i)(

printf("Please enter the next cell name:");

scanf("%s" cel_namel(i]);

printf("What type is this cell ? [difin/tx/cm/cap}:h");

scanf(" %s",cel_type);

if( sremp(cel_type, "difin™) = 0) {(
celli]l=gen_difin(cel_nameli]);

)

if( stremp(cel_type, "cm") = 0 ) {
cel{i]=gen_cm(cel_namel[i]);

)

if( stremp(cel_type, "cap”) = 0) (
celfil=gen_cap(cel_namefi]);

)

box(i)=cel[i].box;

cel_ptfi] = &celfi];

transform[i].tl = 1;

transform(i].2 = 0;

transform[i].t3 = O;

transform[i].t4 = 0;

transform[i].t5 = 1;

transform{i].t6 = 0;

printf("Do you want do (rotation), (upsidedown), or (no change)

on cell [%s)? [r/u/n):h”cel name(i]);
scanf(" %c",&change);
if (change=="r"){

201



printf("How many degrees? [0/90/180/270):n");
scanf(" %d",&degree);
transform(i]=rotate(cel_pt(i],degree);

)

if (change="u"){
transform(i}=upsidedown(cel_pt(il);

}

printf("Enter the following placement informations for cell {%s]):
h",cel_namef(i]);

printf("reference cell name, direction [E/W/N/S], align (I(lower)
fu(upper)1(left)/r(right)], offseth”);

scanf("  %d,%c,%c,%d" &refer,&dir,&align,&offset);

coordinate = place(cel_pt[il,cel_pt(refer)dir,align,offset);

ransform([i).13 = transform{i].t3 - box[i].llx + coordinate.x;

transform[i].t6 = transform{i].t6 - box([illly + coordinate.y;

}

/*********#****t###‘#*****&#t#*tt**#****##**#*#******#*##*****#*t*/

bk.box.lix = cel_pt{0]->box.Ux;

bk.box.lly = cel_pt[0]->box.ly;

bk.box.urx = cel_pt[0]->box.urx;

bk.box.ury = cel_pt(0]->box.ury;

bk.pinnum = cel_pt[0]->pinnum;

for(j=1;j<cel_num;j++)}{
bk.box.llx = MIN(bk.box.llx, cel_pt[j]->box.11x);
bk.box.lly = MIN(bk.box.lly, cel_pt[j]->box.1ly);
bk.box.urx = MAX(bk.box.urx, cel_pt[j]->box.urx);
bk.box.ury = MAX(bk.box.ury, cel_pt[jl->box.ury);
bk.pinnum = bk.pinnum + cel_pt[j]->pinnum;

)

borderlix=bk.box.lx - left_offset*(mc+mc2mc);
borderlly=bk.box.lly - lower_offset*(mc+mc2mc);
borderlrx=bk.box.urx + right_offset*(mc+mc2mc);
borderiry=bk.boxly - lower_offset*(mc+mc2mc);
borderurx=bk.box.urx + right_offset*(mc+mc2mc);
borderury=bk.box.ury + upper_offset*(mc+mc2mc);
borderulx=bk.box.lix - left_offset*(mc+mc2mc);
borderuly=bk.box.ury + upper_offset*(mc+mc2me);

202



/‘-‘..‘..."-‘..‘"“.‘.l'.‘...‘..".*.‘.“ﬂ‘.&.‘.‘t'..““.."'tt/
infile="mighty_in";
if((fp1=fopen(infile,"w")) = NULL){
printf("0an’t open file name = %sn" infilc);
exit(1);
}

/.“"“ L L L] L 2 -’O.’.."‘-.‘."'.‘-‘.-.'..‘.t....-.’/

fprind(fp1,"number_of_nets %dh",insignal_num-+outsignal_num+nct_num+2);
/"***‘**tt#t#tﬁt#t.“..t'..‘.ttttttU’.tl.tt!ttttttt-t‘tttt.ttttttl
fprintf(fp1, rectagoncomers 4n");
fprind(fpl,"%d %dh" MOD(borderllx),MOD(borderlly));
fprind(fpl,"%d %dh" ,MOD(borderirx),MOD(borderlry));
fprintf(fp1,"%d %dh",MOD(borderurx),MOD(borderury));
fprintf(fpl,"%d %dh",MOD(borderulx),MOD(borderuly));
bk.vdd.x = MOD(borderllx)+(MOD(borderurx)-MOD(borderlix))/2;
bk.vdd.y = MOD(borderury);
bk.vss.x = MOD(borderllx)+(MOD(borderurx)-MOD(borderllx))/2;
bk.vss.y = MOD(borderlly);
/* input/output signals come out from top */
/* bkin[0).x = MOD(borderllx)+10;
bk.in[0].y = MOD(borderury);
bk.in(2].x = MOD(borderllx}+20;
bk.in[2].y = MOD(borderury);
bk.in[1}.x = MOD(borderllx)}+30;
bk.in{1].y = MOD(borderury);
bk.in[6).x = MOD(borderlix)}+40;
bk.in[6).y = MOD(borderury);
bk.in(7].x = MOD(borderllx)+50;
bk.in{7).y = MOD(borderury);
bk.in[8].x = MOD(borderlix)+60;
bk.in[8).y = MOD(borderury);
bk.in[4].x = MOD(borderllx);
bk.in{4].y = MOD(borderury)-20;
bk.in{3].x = MOD(borderlix);
bk.in(3].y = MOD(borderury)-40;
bk.in[5].x = MOD(borderlix);
bk.in[5).y = MOD(borderury)-60;
bk.in[9].x = MOD(borderllx)+20;
bk.in(9).y = MOD(borderlly);
bk.in[10].x = MOD(borderlix)}+40;
bk.in[10).y = MOD(borderlly);

203



bk.in(11).x = MOD(borderllx)+60;
bk.in(11].y = MOD(borderlly);
bk.in[12]).x = MOD(borderlix)+80;
bk.in[12).y = MOD(borderlly);
bk.out{0}.x = MOD(borderurx)-20;
bk.out[0].y = MOD(bordcrury);
bk.out[1].x = MOD(borderurx)-40;
bk.out{1).y = MOD(borderury);
*/
bk.in[0).x = MOD(borderlix)+5;
bk.in(0).y = MOD(borderury);
for(i=1;i<insignal_num;i++){
bk.in(i].x = bk.in(i-1].x+5;
bk.in(il.y = MOD(borderury),
}
bk.out{0).x = MOD(borderurx)-5;
bk.out(0).y = MOD(borderury);
bk.out[1].x = bk.vdd.x-10;
bk.out[1].y = bk.vdd.y;
bk.out[2].x = bkvdd.x+10;
bk.out[2].y = bk.vdd.y:
bk.out[3].x = bk.vdd.x-20;
bk.out{3].y = bk.vdd.y;
bk.out{4].x = bk.vdd.x+20;
bk.out[0].y = bk.vdd.y;

/* for(i=1;i<outsignal_num;i++){
bk.out(i].x = bk.out[i-1].x-5;
bk.out(il.y = MOD(borderury);
) ¥/
/ﬁ.ttllﬂllU‘t*tt‘tt#*t*‘*ﬁ*lt“itttttl’#tt#*ttt*t‘#*t‘ﬂ*ﬁ*!*t**tt.*ﬁ/
fprintf(fp1,"number_of pins %dh",pin_num+insignal_num+outsignal num+2);
fprintf(fpl,"1 %d %d 2h"bk.vdd.x,bk.vdd.y); /* net#l is vdd */
fprintf(fp1,"2 %d %d 2h"bk.vss.x,bk.vss.y); /* net#2 is vss */
for(i=0;i<insignal_num;i++){
fprintf(fpl,"%d %d %d 1n",insignal_net[i],bk.infi].x,bk.in[il.y);
} /* input signal net */
for(j=0;j<outsignal_num;j++){
fprintf(fp1,"%d %d %d lh",outsignal net(j],bk.out[j].x,bk.outfjl.y);
} /* output signal net */
for(i=0;i<pin_num;i++)(

204



if (nedist(i)(1]==1) /* drain port */
fprinuf(fp1,"%d %d %d 1h"nedist(i}(0], MOD(cel_pt(nedist(i}(2]}
->dm(netlist{i](3]].x), MOD(cel_pt(netlist(i]{2)]->dm(ncdist[i)(3]).y)):
if (nedist[i][1]==2) /* source port */
fprintf(fp1,"%d %d %d 1h"nedist(i](0], MOD(ccl_pt[netlist[i]{2])
->src[netlist{i]{3]].x), MOD(cel_pt(netlist(i]{2]]->sec{ncdist{il[3]].y)):
if (nedist[i][1}==3) /* gate port */
fprintf(fpl,"%d %d %d lh"nedist(i}{0], MOD(cel_pt{netlist{i]{2])
->gat[netlist{i](3]].x), MOD(cel_pt{netlist[i}{2]]->gat(nedist(i][3]].y));
)

/tt'#lﬁlﬁtt‘..*t.“‘..‘“ltttl‘tt-Ilt“t‘tt.ltt!‘ltttl.#ttl"*tt.l/
if(sen_num != 0)(
fprintf(fp1,"sensitive_nets %dh" sen_num);
for(i=0;i<sen_num;i++) fprintf(fpl,"%d ",sen_net(i]);
fprintf(fp1,"n");
}

P#**t*#t********llll****#**llttttll*t********t*t****t***t#*****"l"l****/

fprintf(fp1,”obstacles %dh".cel_num * 8);
for(i=0;i<cel_num;i++){
fprintf(fpl,"%d %d %d %d 1h", MOD(cel_pt(i)->box.llx), MOD(cel_pt(i]
->box.1lly), MOD(cel_pt[i]->box.urx), MOD(cel_pt[i]->box.lly)):
fprintf(fpl,"%d %d %d %d 2h", MOD(cel_pt(i]->box.llx), MOD(cel_pt(i]
->box.1ly), MOD(cel_pt[i]->box.urx), MOD(cel_pt[i]->box.1ly));
fprintf(fpl,"%d %d %d %d 1h", MOD(cel_pt(i}->box.urx), MOD(cel_pt[i]
->box.lly), MOD(cel_pt(i]->box.urx), MOD(cel_pt(i]->box.ury));
fprintf(fp1,"%d %d %d %d 2h", MOD(cel_pt[i}->box.urx), MOD(cel_pt[i]
->box.lly), MOD(cel_pt(i]->box.urx), MOD(cel_pt(i]->box.ury));
fprintf(fpl,"%d %d %d %d lh", MOD(cel_pt[i]->box.urx), MOD(cel_pt[i]
->box.ury), MOD(cel_pt[i]->box.llx), MOD(cel_pt(i]->box.ury));
fprintf(fpl,"%d %d %d %d 2h", MOD(cel_pt[i]->box.urx), MOD(cel_ptli]
->box.ury), MOD(cel_ptfi]->box.llx), MOD(cel_pt[i]->box.ury));
fprintf(fpl,"%d %d %d %d 1h", MOD(cel_pt[i]->box.lx), MOD(cel_pt{i]
->box.ury), MOD(cel_pt[i]->box.llx), MOD(cel_pt(i]->box.1ly));
fprintf(fp1,"%d %d %d %d 2h", MOD(cel_pt[i]->box.lix), MOD(cel_pt[i]
->box.ury), MOD(cel_pt[i}->box.lix), MOD(cel_pt{i]->box.lly));

/* VAR RNREE L #lttttt’
felose(fpl);
,‘******t#*.‘.*t*‘####‘- WP RN “'##tt*ttt&‘t#**t*.tt*“t**ttt/

system("/home/pacific/cad/cadbin/mighty_wj mighty_in mighty_out");

205



mighty_does_work=0;
/*‘t**.“t!‘tﬂttti&‘tttltttt#tﬁtt.tttttt.'tttl‘tttt.tttttt*‘tttttt/
/* read in the routing results of mighty from "mighty_out” */
if ((fpl = fopen("mighty_out”,"r")) = NULL){ /* if cannot open */
printf("Crror: cannot open mighty_out™)
exit(1);

}

/‘.‘i““‘*"ﬁ.t‘l.“tl.It..‘.*"tt‘..m..*“l‘.tl“tt““‘tttt.ttt/
while ( fscanf(fpl, "%s", input_string) != EOF) (

if( stremp(input_string, "vias") == 0) (
mighty_does_work=1;
fscanf(fpl, "%d", &vias_num);
for(i=0;i<vias_num;i++) {
fscanf(fpl, "%d", &dummy);
fscanf(fpl, "%d", &vias(i}.x);
fscanf(fpl, "%d", &vias[il.y);
fscanf(fpl, "%d", &dummy);
fscanf(fpl, "%d", &dummy);
)

)

if(stremp(input_string, "wires”) == 0 ) (
fscanf(fpl, "%d", &wires_num);
for(i=0si<wires_num;i++) (
fscanf(fpl, "%d", &dummy);
fscanf(fpl, "%d", &wires[i].pl.x);
fscanf(fpl, "%d", &wires[il.pl.y);
fscanf(fpl, "%d", &wires[i].p2.x);
fscanf(fpl, "%d", &wires[i].p2.y);
fscanf(fpl, "%d", &wires[i].material);
)

}

if(sremp(input_string, ".end”) == 0 ) break;

}

if(mighty_does_work ==0){
prindf("MIGHTY cannot get a reasonable resulisth”);
printf("Please try again.n");

}

/‘.tt“ * t#‘...#"ttt.tttt*‘#tt*“***ﬂtt#tt/

if((fp1=fopen(fname,"w")) = NULL){

206



printf("0an’t open file name = %sh" fname);
exit(1);
)

timestamp = time((time_t *) 0);
bk.timestamp=timestamp;
fprintf(fp1,"magicn”);

fprintf(fpl,"tech scmosh”);
fprintf(fp1,"timestamp %dh" timestamp);

/t.‘* L2 2] EBEEEN L LE ] ".“*“tt'ttt/

for(i=0;i<cel_num;i++)(
for(j=0;j<10;j++)(
if(cel_namel(i}(j] != ".") m_namel(i]{jl=cel_name(i](jl;
else break;
)
fprindf(fpl,"use %s %s_On",m_name[i],m_name(i]);
fprindf(fpl,"timestamp %dh" cel(i].timestamp);
fprintf(fpl, transform %d %d %d %d %d %dh"transform(i).tl, transform(i).2,
transform(i].t3,transform(i).t4,ransform(i).tS, transform{il.t6);
fprintf(fpl,"box %d %d %d Fodn”box(i].llx,box[i).ly,box[i].urx,box[i}.ury);
}

/**.*llll**#**t*ll*#.‘ L2 "'*ll**‘**##**#*#t*****t*t**‘lﬁ*#tt/

printf("vias_num=%d",vias_num);
for(i=0;i<vias_num;i++){
fprintf(fpl,”<< m2contact >>h");
fprintf(fpl,"rect %d %d %d %dn",vias{i).x*8-halfmc,vias[i).y*8-halfmc,
vias{i].x*8+halfmc,vias(i].y*8+halfmc);
}
free
printf("wires_num=%d",wires_num);
for(i=0;i<wires_num;i++){
if(wires{i].material = 1){
fprintf(fpl,"<< metall >>h");
fprintf(fp1,"rect %d %d %d %dh" wires[i).p1.x*8-halfmc,wires[i].pl.y*8
-halfme,wires(i].p2.x*8+halfmc,wires(i].p2.y*8+halfmc);
)
if(wires(i].material = 2){
fprintf(fpl,"<< metal2 >>h");
fprintf(fp1,"rect %d %d %d %dh",wires(i].p1.x*8-halfmc,wires(i].p1.y*8
-halfme,wires{i].p2.x*8+halfmc,wires[i].p2.y*8+halfmc);

e e h ek Ty * /

207



)
)

/.I....- L 1 ] I..--....‘-l.-‘-tll-."...‘.-.....t“,

fprindf(fpl,"<< metal2 >>h");

fprinif(fp1,"rect %d %d %d %dh" borderllx,borderlly-2*mc,borderirx borderiry);
/* Vss line */

fprinuf(fpl,"rect %d %d %d %dh" borderulx,borderuly borderurx,borderury+2*mc);
/* Vdd line */

/‘-""...-“.".-.".'t...‘l.‘..""..t‘.'"t....*....ﬂ..-.....“/

fprintf(fpl,"<< end >>0");

/‘tt.‘.'.“..l".."".“"l"OC'.‘*‘.*"’.O‘ttl""t‘ltt‘tttttt‘tl

fclose(fpl);
return(bk);
}
/‘ttt‘tt#t*‘t#** RPN *‘ttttitt*tt‘*t*t*t*t‘**#*tt*#tt##*t****#t*t’
/ L 2] t 2.t 2 L] /
/* place.c is to place a cell w.r.t specified reference cell */
/* return a struct POINT *f
r */
/*ﬂ L2 L ] t 2 22 1] » *k e kg ‘****l*****/

struct POINT place(cell refer,dir,align,offset)
struct CELL *cell, *refer;

char dir,align;
int offset;

(

struct POINT shift;

offset = offset * (mc + mc2mc);
l! - E2 R 222 2222 2 2R ¢ 22t L *x /

switch (dir) {

208



case ‘e’ : /* east of the reference cell */
casc 'E’ : /* east of the reference cell */
if (align = 'I")(
shift.x = refer->box.urx + offsct;
shifty = refer->box.lly;
transit(cell shift.x,shift.y);
)
if ((align == "r'Xalign = "u"))(
shift.x = refer->box.urx + offset;
shift.,y = refer->box.ury - (cell->box.ury - ccll->box.lly);
transit(cell shift.x,shift.y);
)
break;
case 'w’ : /* west of the reference cell */
case 'W' : /* west of the reference cell */
if (align == I")(
shift.x = refer->box.llx - (cell->box.urx - cell->box.lix) - offset;
shifty = refer->box.lly;
transit(cell shift.x,shift.y);
)
if ((align == 'r"Xalign = 'u"))(
-shift.x = refer->box.llx - (cell->box.urx - cell->box.llx) - offset;
-shift.y. = refer->hox.ury - (cell->box.ury - cell->box.lly);
transit{cell shift.x,shift.y);
)
break;
case 'n’ : /* north of the reference cell */
case "N’ : /* north of the reference cell */
if (align == "1"){
shift.x = refer->box.llx;
shift.y = refer->box.ury + offset;
transit(cell,shift.x shift.y);
}
if ((align == "r'Xalign == 'u"))(
shift.x = refer->box.urx - (cell->box.urx - cell->box.lx);
shifty = refer->box.ury + offset;
transit(cell,shift.x,shift.y);
}
break;
case 's’ : /* south of the reference cell */
case 'S’ : /* south of the reference cell */

209



if (align == "1"){
shift.x = refer->box.llx;
shift.y = refer->box.lly - offset - (ccll->box.ury - cell->box.1ly);
transit(cell,shift.x,shift.y);

}

if ((align = 'r’Xalign = ‘u"))(
shiftx = refer->box.urx - (cell->box.urx - cell->box.lx);
shift.y = refer->box.lly - offset - (ccll->box.ury - cell->box.lly);
ransit(cell,shift.x,shift.y);

)
break;

}

/*ttltU...t‘.t.ttt‘ﬁttt‘t‘ttlll‘ttttttttiltt‘.’tttttltttttl*ttttsl
return(shift);

}

/t*‘t"ﬁtt‘*tt*#*******i*l.“t*ttt*#*#****ttt*t#.*tt#ttt*t*t#*tt/

/* rotate.c is used to rotate a cell */

/* result : retumn a struct of FORM */

r* pin location has been changed */

/*t***—v b2 e e Je e e tt*tt#t#t*l**#***/

struct FORM rotate(cell,degree)
struct CELL *cell;

int degree;

{

struct FORM transform;

int i,dx,dy,sx,sy,gx.gy,tempx,tempy;

/**“".*******tt*t*tttttlt.‘l##*tt***********ﬁ****&******#**#**I

switch (degree)(
case 0 : /* rotate clockwise 0 degree */
transform.tl = 1;
transform.2 = 0;
transform.t4 = 0;
transform.tS = 1;
transform..3 = 0;
transform.t6 = 0;

210



break;
case 90 : /* rotate clockwise 90 degreec */
transform.tl = 0;
transform.2 = 1;
transform.t4 = -1;
transform.t5 = O;
transform.t3 = cell->box.l1x-cell->box.lly;
transform.16 = cell->box.lly+cell->box.urx;
for(i=0;i<cell->txnum;i++) {
dx = tansform.13 + cell->dm({i].y;
dy = transform.t6 - cell->dm[i].x;
cell->dm(i}.x = dx;
cell->dm{il.y = dy;
sx = transform.t3 + cell->srcli].y:
sy = transform.t6 - cell->srcfi}.x;
cell->srcfi].x = sx;
cell->src[il.y = sy;
gx = transform.t3 + cell->gat(il.y;
gy = transform.i6 - cell->gat(i).x;
cell->gatfi].x = gx;
cell->gatfil.y = gy;
}
tempx = cell->box.urx;
tempy = cell->box.ury;
cell->box.urx = cell->box.lIx + tempy - cell->box.lly;
cell->box.ury = cell->box.lly + tempx - cell->box.lx;

break;
case 180 :/* rotate clockwise 180 degree */
transform.tl = -1;
transform.2 = 0;
transform.t4 = 0;
transform.t5 = -1;
transform.t3 = cell->box.lix+cell->box.urx;
transform.t6 = cell->box.ly+cell->box.ury;
for(i=0;i<cell->txnum;i++)(
dx = transform.t3-cell->dm[il.x;
dy = transform.t6-cell->dm(il.y;
cell->dmfil.x = dx;
cell->dmfil.y = dy;
sx = transform.t3-cell->srcfi].x;

211



sy = transform.t6-cell->srcfil.y;
cell->srcfi).x = sx;
cell->srcfil.y = sy;
gx = transform.3-cell->gatfi] x;
gy = transform.t6-cell->gatfi].y;
cell->gat(i}.x = gx;
cell->gat(i].y = gy:
}

break;
case 270 :/* rotate clockwise 270 degree */
transform.tl = 0;
transform.t2 = -1;
transform.t4 = 1;
transform.tS = 0;
transform.t3 = cell->box.lx+cell->box.ury;
transform.t6 = cell->box.lly-cell->box.1lx;
for(i=0;i<cell->txnum;i+){
dx = transform.t3-cell->dm(i].y;
dy = transform.t6+cell->dm(i].x;
cell->dm(i).x = dx;
cell->dm(il.y = dy:
sx = transform.t3-cell->srcfil.y;
sy = transform.t6+cell->srcfi].x;
cell->srcfi].x = sx;
cell->src(il.y = sy;
gx = transform.t3-cell->gat(i].y;
gy = wransform.t6-+cell->gat(i].x;
cell->gat[i].x = gx;
cell->gatfil.y = gy;
)
tempx = cell->box.urx;
tempy = cell->box.ury;
cell->box.urx = cell->box.llx + tempy - cell->box.lly;
cell->box.ury = cell->box.lly + tempx - cell->box.Ilx;

break;
)

/"-..ﬂ"t#t.t**.‘. =% tt*'tt't‘i‘t‘tt‘.t“t'...t“t-/

return(transform);

212



/‘."..-.-.-‘......‘.“..‘..‘...-.-.-O-tl..‘..‘.‘..‘-'.....-.---/

/* wansite is used to make cell wansit =/
/* result ; retum VOID */
r~ pin location has been changed */

/‘..‘.‘.'..‘.lt..’.‘l..-‘t.....'."‘.".ﬁ".-.lt‘-.‘.".......l-/

transit(cell x,y)
struct CELL *cell;
int X,Y;

{

int i,dx,dy.sx,sy,gx.gy;

/‘t‘**t#tt*##tt'.*#*#*ﬁt**#*******#**!*****##t#*t**#*#**&*#*t*#*/

for(i=0;i < cell->txnum;i++){
dx = x - cell->box.lix + cell->dm(i].x;
dy = y - cell->box.lly + cell->dmf(i).y;
cell->dm(il.x = dx;
cell->dm(il.y = dy;
sx = x - cell->box.lIx + cell->srcfil.x;
sy =y - cell->box.ly + cell->srcfil.y;
cell->srefil.x = sx;
cell->srcfi).y = sy;
gx = x - cell->box.lix + cell->gat[i].x;
gy =y - cell->box.lly + cell->gat[i].y;
cell->gatfil.x = gx;
cell->gatfil.y = gy:

}

cell->box.urx = x + cell->box.urx - cell->box.Ilx;
cell->box.ury = y + cell->box.ury - cell->box.lly;
cell->box.llx = x;
cell->box.ly = y;

Ftt*lﬁ‘#*.*#tt#**#* RREERE Lt B gk tt‘tt*#“/

213



/‘-.....-.-‘-.‘-'O.‘..‘-.--..'-‘....t.“tl.-l..’...'...t“ t..l'./

/* upsidedown.c is used 0 make cell upsidedown s/

/* result : return a struct of FORM */

/* pin location has been changed */
/‘."‘-O.‘I-.....'-..'... L £ 2 ..Itlttt..l‘..tt‘t-t/

struct FORM upsidedown(cell)
struct CELL *cell;

{
struct FORM transform;
int i,dx,dy,sx,sy.gx,8y;

[HESEEE AR R R R R R R RR R KRR R R

transform.tl = 1;

transform.t2 = Q;

transform.t4 = 0;

transform.t§ = -1;

transform.t3 = 0;

transform.t6 = cell->box.lly+cell->box.ury;

for(i=0;i<cell->txnum;i++){
dx = mansform.t3+cell->dm(i].x;
dy = transform.t6-cell->dm(i).y;
cell->dm(i].x = dx;
cell->dm(il.y = dy;
sx = mransform.t3+cell->srcfi].x;
sy = transform.t6-cell->srclil.y;
cell->srcfil.x = sx;
cell->sre(il.y = sy;
gx = transform.t3+cell->gat(i).x;
gy = transform.t6-cell->gat(il.y;
cell->gat{i].x = gx;
cell->gat(il.y = gy:

)

/‘lﬂl#"***l‘*‘.“*ttt‘*#*t**#**t"- *tt*ﬁ**##t#**/

return(transform);

214



/‘.l.-.‘..-‘..‘..“".-l..tt.‘-""--.'..-........,...-'-.-.'.til

/* gen_cap.c is used to generate capacitor */
/* return a struct CELL =/
/* a magic file will be generated. */

/#tt‘*ﬁ‘l‘!ﬁ&#‘t'“.t.t'.t*“t‘t‘tt‘tt-l“...‘ﬁ“tt"".t"**ti./

struct CELL gen_cap(fname)
char *fname;

{
FILE *fp1,*fopen();
int ij.area,width,length;
int x0.x1,x2x3,x4;
int y0.yl.y2,y3.y4;
char cap_name[10};
double cap,unit;
int timestamp;

extern time_t time();
struct CELL  cap_cell;
/ﬁt*#***#*#**‘*#**#***************ttt#*l#*t*t#tt**************t*/
if((fp1=fopen(fname,"w™)) == NULL){
printf("0an’t open file name = %sh" fname);
exit(1);
)
for(§=0;j<10;j++){
if(fname(j] != ".") cap_name(j]=fname(j];
else {
cap_name(j]=" ’;
break;
)
)

cap_cell.name=cap_name;
/ttttt---- % ok oot et L 1 MR *t/

printf("Please enter the capacitance value[PF] in floating number formath");
scanf("%If" ,&cap);
unit=0.0003457*(1000.0/tox); /* 1ox=1000A SiO2 capacitance=0.3457 fFfum**2 */

215



area=(int)(cap/unit);
area=area-4*4*5; /* subtract the arca uscd for connection */
printf("The capacitance area is %d UM**2h" area);
printf("Please enter the width and the length of a rectangular capacitor:h”);
scanf(" %d,%d" &width,&length);
prindf("width=%d length=%dh",width,length);
/* Landmark assignment for cap */

x0 = 0; /* xO=lower left comer of nwell arca */
x1 = x0+mc; /* x1=lower left comer of pdiffusion area */
x2 = x1+mc+l; /* x2=lower left comer of poly area */

x3 = x2+length;  /* x3=upper right comner of poly area */
x4 = x2+length/2; /* x4=poly plate connection */
/tl.tl.I..‘.‘-Itt‘tt‘lt..‘.‘..'.‘"..".."‘.‘.'.tt..‘.t“‘t.‘.ttt/
y0 = 0; * yO=lower left comer of nwell area */
yl = yO+mc; /* yl=lower left comer of pdiffusion area */
y2 = yl+mc+l; I* y2=lower left comer of poly area */
y3 = y2+width; /* y3=upper right comer of poly area */
y4 = y2+width2; /* yd4=poly plate connection */
,ttt'tl!t.lt*"t‘*‘tt“““‘ltttttl‘l"*'-— t i 2] L2 2 1 ] tt/
cap_cell.box.llx=x0-mc;
cap_cell.box.lly=y0-mc;
cap_cell.box.urx=x3+1+3*mc;
cap_cell.box.ury=y3+1+3*mc;
cap_cell.pinnum=2;
cap_cell.txnum=4;

,**“* *.‘*‘.*‘.***"“"*"'**.**'*.t‘***.*‘**’*l
timestamp = time((time_t *) 0);

cap_celltimestamp=timestamp;

fprintf(fp1,"magich"™);

fprintf(fp1,"tech scmosh™);

fprintf(fp1,"timestamp %dn" timestamp);
l*****"***.‘...*t*‘**‘.‘tﬁ‘.‘.‘ﬁ‘#* * L 2 2 ] *‘.*ﬂ**/
fprintf(fpl,"<< nwell >>nh");

fprintf(fp1,"rect %d %d %d %dn" x1,y1,x3+1+mc,y3+1+mc);
,****.*****"******** MRk Sk e e ******‘**‘*/
fprintf(fp1,"<< nsubstratendiff >>h");

fprintf(fpl,"rect %d %d %d %dn" x0,y0,x4-halfmc-me,yl);

fprintf(fp1,"rect %d %d %d %dh" x4+halfmc+me,y0,x3+1+2*me,yl);
fprintf(fp1,"rect %d %d %d %dh"x0,y0,x1,y4-halfmc-mc);

fprintf(fp1,"rect %d %d %d %dh" x0,y4+halfmc+me,x1,y3+1+2*mc);




fprinuf(fpl,"rect %d %d %d %dh" x0,y3+1+mcx4-halfmc-mc,y3+1+2*mc);
fprintf(fpl,"rect %d %d %d %dh” x4+halfmc+me,y3+1+me,x3+142*me,y3+142*mc);
fprintf(fpl."rect %d %d %d %dh" x3+1+mc,y0.x3+1+2*mc,y4-halfmc-mc);
fprintf(fp1."rect %d %d %d %dh"x3+1+mc,yd+halfmc+me,x3+1+2*mc,y3+1+2*mc);
/‘t."t““‘..‘t‘t‘ttt"t*‘tt‘".'..'-.-.t."..‘.tttﬂtttttt.'-“tt/
fprintf(fpl,"<< pdiffusion >>h");

fprinuf(fpl,”rect %d %d %d %dh" x1,y1x3+1+mc,y3+1+mc);

/t“‘.“t**‘&ﬂ‘ﬁ‘.#tttttﬁtt*ttt*lt*-lttt#t“t‘.“tt‘ttttt‘tt‘tt.tl/
fprintf(fp1,"<< pdcontact >>h");

fprintf(fpl,"rect %d %d %d %dn"x1,yd4-halfmc-2*mc,x1+mc,y4-halfmc-mc);
fprintf(fpl,"rect %d %d %d %dh" x1,yd+halfmc+mex1+mc,yd+halfme+2*me);
fprinuf(fpl,“rect %d %d %d %dn"x3+1,y4-halfmc-2*mc,x3+1+mc,y4-halfme-me);
fprintf(fpl,"rect %d %d %d %dnh" x3+1,yd+halfmc+me x3+1+me,y4+halfmc+2*mc);
fprintf(fp1,"rect %d %d %d %dn"x4-halfmc-2*mc,y1,x4-halfmc-me,y1+mc);
fprintf(fpl,"rect %d %d %d %dch" x4+halfmc+me,yl x4+halfmec+2*me,yl+mc);
fprintf(fp1,"rect %d %d %d %dh" x4-halfmc-2*mc,y3+1x4-halfmc-me,y3+1+mc);
fprintf(fpl,"rect %d %d %d %dch" x4+halfmc+me,y3+1 x4+halfmc+2*me,y3+1+mc);

[v‘* ] L2 **ﬁ*t#***‘*‘ﬁ*ﬁ*t‘*/
fprintf(fpl,"<< polysilicon >>h");

fprintf(fpl."rect %d %d %d %dh"x2.y2.x3.y3);

fprintf(fpl,"rect %d %d %d %dh"x0,y4-halfmc,x2,y4+halfmc);

fprintf(fpl,"rect %d %d %d %dh” x4-halfmc,y0.x4+halfme,y4);

fprintf(fp1,"rect %d %d %d %dh" x3,y4-halfme x3+1+2*mc,y4+halfmc);

fprintf(fpl,"rect %d %d %d %dh"x4-halfmc,y3 x4+halfme,y3+142*mc);

/ ¥ - LI 2 22 Lt 2] /
fprintf(fp1,"<< nsubstratencontact >>n");

fprintf(fp1,"rect %d %d %d %dh" x0,y4-halfmc-2*me,x1,y4-halfmc-mc);

fprintf(fp1,"rect %d %d %d %dh" x0,yd+halfmc+mex1,yd+halfmec+2*me);
fprintf(fpl,"rect %d %d %d %dn" x3+1+mc,y4-halfimc-2*mc x3+1+2*mc,y4-halfmc-mc);
fprintf(fp1,"rect %d %d %d %dh" x3+1+mc,yd+halfmc+mce,x3+1+2*me,yd+halfmc+2*mc);
fprintf(fp1,"rect %d %d %d %dh" x4-halfmc-2*me,y0,x4-halfmc-me,y1);

fprintf(fpl,"rect %d %d %d %dh" x4+halfmc+me,y0xd-+halfme+2*me,yl);
fprintf(fpl,"rect %d %d %d %dh" x4-halfmc-2*mc,y3+1+mc,x4-halfmec-me,y3+1+2*mc);
fprintf(fp1,"rect %d %d %d %dh" x4+halfmc+me,y3+1+mc,x4+halfmc+2*mc,y3+1+2*mc);

‘—v'**‘/

7

fprintf(fp1,"<< polycontact >>h");

fprintf{fp1,"rect %d %d %d %dh" x0-mc,y4-halfmc x0,y4+halfmc);
fprintf(fpl,"rect %d %d %d %dh" x4-halfmc,y0-mcx4+halfmce,y0);
fprintf(fp1,"rect %d %d %d %dn" x3+1+2*mc,y4-halfme,x3+1+3*mc,y4+halfmc);

217



fprinuf(fpl,“rect %d %d %d %dh" x4-halfmc,y3+1+2*mc x4+halfme,y3+1+3*mc);
/‘.."--..-...'-'.‘.‘..-.v SEESS *".t‘.!“...“..“l/
fprintf(fpl,"<< metall >>h");

fprintf(fpl,"rect %d %d %d %dh"x1,y1x3+1+mcy2-1);

fprintf(fpl,"rect %d %d %d %dh"x1,y1x2-1,y3+1+mc);

fprinu(fpl,“rect %d %d %d %dh”x1,y3+1,x3+1+mc,y3+1+mc);

fprintf(fpl,"rect %ed %d %d %dh” x3+1,y1,x3+1+mc,y3+1+mc);

fprinuf(fpl,"rect %ed %d %d %dh"x4-halfmc-2*mc,y0-mc x4-halfmc-me,y0);

fprinuf(fpl,"rect %d %d %d %dh” x4+halfmc+mce,y0-mc,x4+halfmc+2*mc,y0);
fprind(fpl,"rect %d %d %d %dh" x0-mc,yd-halfmc-2*mc,x0,y4-halfme-mc);

fprimuf(fpl,"rect %d %d %d %dh" x0-mc,yd+halfmc+me,x0,y4+halfmec+2*mc);
fprinuf(fpl,"rect %d %d %d %dh" x4-halfmc-2*mc,y3+1+2*mc x4-halfmc-me,y3+1+3*mc);
fprintf(fp1,“rect %d %d %d %dn" xd+halfmc+me,y3+1+2*me x4+halfmc+2*mc,y3+1+3*mc);
fprintf(fp1,"rect %d %d %d %dh" x3+1+2*mc,y4-halfmc-2*me,x3+1+3*me,y4-halfmc-mc);
fprintf(fpl,"rect %d %d %d %dh"x3+1+2*mc,yd+halfmc+mc,x3+1+3*me,yd+halfme+2*mc);

/**i**t*#*******#**#*****t*#**#‘#*ttt******##***‘**#*#******#**#**/

fprintf(fp1,"<< end >>h");

,*#*#****#*tt**##****tt&##t*ﬁt*‘tttt********t**#t##*#*#***#**#*t**/
cap_cell.dm(1]).x=x4-+halfmc+mc+halfmc; /* south side */
cap_cell.dm(1]).y=y0-mc;
cap_cell.src[1].x=x4-halfmc-mc-halfmc;
cap_cell.src[1].y=y0-mc;
cap_cell.gat[1].x=x4;
cap_cell.gat[1].y=y0-mc;
cap_cell.src[3].x=x4+halfmc+mc+halfme; /* north side */
cap_cell.sre(3).y=y3+1+3*mc;
cap_cell.dm(3).x=x4-halfmc-mc-halfmc;
cap_cell.dm(3].y=y3+1+3*mc;
cap_cell.gat(3).x=x4;
cap_cell.gat(3]).y=y3+1+3*mc;
cap_cell.src(2] x=x0-mc; /* west side */
cap_cell.src{2).y=y4+halfmc+mc+halfmc;
cap_cell.dm(2].x=x0-mc;
cap_cell.dm(2].y=y4-halfmc-mc-halfmc;
cap_cell.gat[2]).x=x0-mc;
cap_cell.gat2].y=y4;
cap_cell.dm(0).x=x3+1+3*mc; /* east side */
cap_cell.dm[0].y=y4+halfmc-+mc+halfme;
cap_cell.src[0).x=x3+1+3*mc;
cap_cell.src[0].y=y4-halfmc-mc-halfmc;
cap_cell.gat[0].x=x3+1+3*mc;

218



cap_cell.gat(0].y=y4;
/“..“.'....““......“.‘-‘l..I.'I‘.""II.""l“*..“‘t.t""./
fclose(fpl);

return(cap_cell);

}

/'.‘.......‘-.-..-‘ sERS ‘t“‘t."ttt.t-t.l"....‘-...../

/'..‘.‘.“.‘l".-'-.'.............".."*..I".’tt.‘t!.l“t'...'l

/* gen_cm.c is used to generate current mirror cell s/
/* return the box of the cell */
/* a magic file will be generated. >/
/‘ltl'-tl!‘l"l.t - ‘tttlltttt!ttt'ltttttttlt‘tlt/

struct CELL gen_cm(fname)
char *fname;

(
FILE *fpl,*fopen();
char type;
int diode,bulk,width,Jength ,num;
int ij.x_num,xcor,ycor,shift{10];
int timestamp;
extern time_t time();
char tx_name{10]{10),cm_name{10],m_name[10][10];

struct CELL  cm;
struct TRAN  gen_x(),trans{10];
Y b » *a% WK bl
if((fpl=fopen(fname,"w")) = NULL){
printf("Oan’t open file name = %sh",fname);
exit(1);
)
for(j=0:j<10;j++){
if(fname(j} != ".") cm_name[j}=fname(j};
else (
cm_name{jl=" °;
break;
}
)

cm.name=cm_name;
cm.pinnum=0;

219



printf("How many transistors are included in this cell (%s):h",cm.name);
scanf("%d",&tx_num);
prinf("Please enter the transistor type {p/n]:h");
scanf(” %c".&type);
for(i=0;i<tx_num;++i)(
printf("Please enter a file name for #%d transistor:",i);
scanf("%s",x_name{i]);
printf("Enter its [diode(1/0)],[bulk(1/0)).[width],(length],[gate number}:n");
scanf("%d,%d,%d,%d,%d" ,&diode,&bulk,&width,&length,&num);
trans(i}=gen_tx(type,diode,bulk,width,length,num,tx_namef{i]);
cm.pinnum=cm.pinnum-+trans{i).pinnum;
cm.drnfi}=trans(i}.dm;
cm.srcfi]=trans(i].src;
cm.gatfil=trans{0].gat; /* common gate */

}

cm.pinnum=cm.pinnum-(x_num-1);/* common gate */
cm.txnums=tx_num;
/t"tt‘tt*t*tttt**t*****t*****#tt.‘#“.‘.!*‘*!I#t&.**#*#*********t/
cm.box.lIx=trans{0).box.lIx;
cm.box.lly=trans[0].box.1ly;
cm.box.urx=0;
for(i=0;i<tx_num;++i) cm.box.urx=cm.box.urx+(trans(i].box.urx-trans(i].box.llx});
cm.box.urx=cm.box.urx+{tx_num-1)*dc2dc+trans(0].box.lix;
cm.box.ury=trans{0].box.ury;
for(i=0;i<tx_num;++i) cm.box.ury=MAX(cm.box.ury,trans{i].box.ury);
shift[0]=0;
for(i=1;i<tx_num;++i){
shift(i}=shift{i-1]+(trans[i-1].box.urx-trans[i- 1].box.lix)+dc2dc;
em.dm(i).x=cm.dm{i].x+shift[i];
cem.srcfi]. x=cm.src[i}.x+shift[i];
}
for(i=0;i<tx_num;++i){
cm.srefil.y=cm.box.ury;
}

/tt*##t*** Nk Heoe e e e e ok ***‘*****‘#*#*t‘*#***#****#*’*tt/

timestamp = time((time_t *) 0);
cm.limestamp=timestamp;
fprintf(fp1,"magich");
fprintf(fp1,"tech scmosh”);

220



fprintf(fp1,"timestamp %dh" timestamp);

/‘tt“.lt.‘t‘t#.*'".U-l"ﬂ'l....l‘--'l.-tttt't‘.ttt“‘..‘tt"t“‘/

fprintf(fp1,"<< polysilicon >>n");

fprintf(fp1,"rect %d %d %d %dh".cm.box.llx,cm.box.lly,cm.box.urx.cm.box lly+mc);
/‘tﬁtt'*tt‘tt.*'lt'.-.'.tttltttt‘tt.l.‘.i"t!"t"tt'tt‘l‘l-"tt.-/
fprintf(fpl,"<< metall >>h");

for(i=0;i<tx_num;i++)(

fprintf(fpl,"rect %d %d %d %dh”.cm.srcfi].x-halfme, trans(i).src.y-me.cm.srci]

x+halfmec,cm.box.ury);
)
/ﬁtlttt.ﬁ*‘tltt‘.t.t.tl.tt..t."“illtllll- * -vtttt-t/
for(j=0;j<10;j++){
if(x_name[0](j] != ".") m_name([0](jl=tx_name[0](j};
else {
m_name[0](j}=" "
break;
)
)

fprintf(fpl,"use %s %s_On",m_name{0),m_name(0]);

fprind(fp1, timestamp %dn" trans(0].timestamp);

fprintf(fp1,"transform 1 0 0 0 1 Oh");

fprintf(fpl,"box %d %d %d %dh" trans{0].box.llx,rans[0].box.lly,trans{0]
.box.urx,trans[0].box.ury);

,‘* **t/
xcor=0;
ycor=0;
for(i=1i<tx_num;++i){
for(j=0;j<10;j4++)(
if(x_name(i](j] != ".") m_name(i](j}=tx_namel(i](j];
else {
m_name[i](jl=" "
break;
)
}
fprind(fp1,"use %s %s_Oh",m_name[i],m_name(i]);
xcor=xcor+trans{i-1].box.urx+dc2dc;
fprintf(fpl,"timestamp %dh" trans(i).timestamp);
fprintf(fp1,"transform 1 0 %d 0 1 On",xcor-trans{0].box.lIx);
fprintf(fpl,"box %d %d %d %dh" trans(i].box.lixtrans(i).box.lly,trans(i]
box.urx,trans[i].box.ury);

221



}

,‘ﬂ"t‘t....‘...ﬁ‘3‘.“.."t"-'.U"‘t“‘l..“'t."'...'.'..-'ttttl

fprintf(fpl,"<< end >>h");
/‘....-‘.‘.‘..l..."..'..."....-‘.'.....-.‘.....-'.'...'...‘ltt..l
fclose(fpl);
return(cm);

}

/".‘......".."’......‘-..-..l...Q.'....-..D..’.U.'U..........'.ltﬂt’l!.'[

lt".‘*..l.....‘.“.'..l‘.‘.‘ll‘...l-.‘l‘!.l...l‘..'.l‘.'t.."'.}

/* gen_difin.c is used to generate a common source input pair */
/* return a struct of the CELL */
/* a magic file will be generated. */

/‘t#"ttt‘ﬂl*.‘.‘t.“““...*“!ttttt"'*-tt..lttt..lltlﬂttlt.‘tl

struct CELL gen_difin(fname)

char *fname;

(
FILE *fpl,*fopen();
int x0,x1,x2x3,x4 x5 x6;
int y0,y1,y2,y3,y4,y5.y6;
int j,franstep xvar,yvar;
int width,length,num;
char type.difin_name[10],anti_type;
struct CELL difin;
int timestamp;
extern time_t time();

/ﬁt*#t**t*ﬁ*tt*tt#t***t**l##*#ﬁ#**lt'**'U'*#l‘#“tt**ﬁ‘*‘t*titt*}
if((fp1=fopen(fname,”w")) = NULL)(
printf("0an’t open file name = %sh" fname);
exit(1);
)
for(j=0;j<10;j++){
if(fnamefj] != '.") difin_name(jl=fname(j];
else (
difin_name(j]=" ’;
break;
}
)



difin.name=difin_name;
1‘#"t‘tl“*&“.“t'*...t*l*t.ttt‘.“l-.'.‘l-l.ltt‘tﬁ‘.itl“tlt*"/

printf("Please enter the [type],[width],[length],and [gate num] of

input ox:h™);

scanf(" %c,%d.%d,%d"  &type,&width,&length,&numy);

if(type=="p’) anti_type="n’;

if(type=="n") anti_type="p’;

width=width/num;
/ﬁttttt#ttt*t*##*‘***““**t*##‘**‘**l*“t.**t#*'.‘!t‘tttttt*tt#/
/* Landmark assignment for fet */

transtep =mc+ 2*dc2py+length;

x0 =0; /* xO=the left bound of diffusion area */
x1 = xO+halfmc; /* x1=the beginning of the drainA */
x2 = xl+transtep; f* x2=the beginning of the common source */

switch (num % 2)(
case 0 : /* even number of tx’s requested */
x3 = x1+4*manstep*(num/2); /* x3=the end of drainA */

x4 = x3-2*wanstep; f* xd=the end of drainB */
x5 = x2+2*transtep*(num-1); /* x5=the end of common source */
break;

case 1 : /* odd number of x's requested */
x3 = x1+4*transtep*((num+1)/2-1); /* x3=the end of drainA */

x4 = x3+2*transtep; /* x4=the end of drainB */
x5 = x2+2*transtep*(num-1); /* x5=the end of common source */
break;

}

x6 = MAX(x3x4);

Flt*ﬂ***‘t#**#’*#*****#** Bk *k -***##*********/
y0 = 0; /* yO=the lower bound of diffusion area */
yl = yO+width; /* yl=the upper bound of diffusion area */

y2 = yl+wc2dc+halfme; /* y2=center of common source rail
we2de=well contact to diff contact
mc=min metal contact */

y3 = y2+mc2me+mc; /* y3=center of polyA rail

mc2me=metal contact to metal contact */

y4 = y3+mc2me+mc; /* yd=center of polyB rail */

y5 = y0-mc2mc-1-halfmc; /* yS=center of drainA rail */

y6 = y5-mc2me-mc; f* y6=center of drainB rail */

ﬁ****************t*t****#*#*#*****m £ 2] 0 2 e e o e & kK **/

difin.pinnum=5;
difin.txnum=2;

223



difin.box.llx=x0;
difin.box.lly=y6-haifmc;
difin.box.urx=x6+halfmc;
difin.box.ury=y4+halfmc;

if(x6=x3)(
difin.dm([0]x=x1;
difin.dm[0].y=y6-halfmc;
difin.dm(1].x=x6-2*transtep;
difin.dm{1].y=y6-halfmc;
difin.src[1].x=x6+halfmc;
difin.src(1].y=y2;
difin.gat[0].x=x1+halfmc+dc2py+halfmc;
difin.gat[0].y=y4+halfmc;
difin.gat{1).x=x6-2*transtep+halfmc+dc2py+halfmc;
difin.gat{1].y=y4+halfmc;
difin.src[0].x=x1-halfmc;
difin.src[0).y=y2;

)

if(x6==x4)(
difin.dm(0]).x=x1;
difin.dm({0].y=y6-halfmc;
difin.dm(1).x=x6;
difin.dm{1].y=y6-halfmc;
difin.src[0]).x=x6+halfmc;
difin.src[0}.y=y2;
difin.gat{0].x=x1+halfmc+dc2py+halfmc;
difin.gat[0].y=y4+halfmc;
difin.gat[1].x=x6-transtep+halfmc+dc2py-+halfmc;
difin.gat{1].y=y4+halfmc;
difin.src{1].x=x1-halfme;
difin.src{1).y=y2;

)

/‘ttt‘tt ***** *tta*#ttt*tnttttmttttttttt&t&tt-ttta/

timestamp = time((time_t *) 0);
difin.timestamp=timestamp;
fprintf(fp1,"magich”);

fprintf(fpl,"tech scmosh"™);
fprintf(fp1,“timestamp %dch" timestamp);

/**tt* e e s ke ok "*‘#l###*t#t##****tt*ﬁ*/

fprintf(fpl,"<< %cdiffusion >>h"type)

224



fprintf(fp1,"rect %d %d %d %dh” x0,y0,x6+halfme,y1);
/ttﬁ"‘t‘."".‘..*..t-‘t.*ﬁ‘.lO.!t-‘ltttt...‘ttlilltiﬁtttlt‘ttti‘/
fprinf(fpl,"<< %csubstrate%ccontact >>h™,anti_type,anti_type);

for(xvar = xl;xvar <= x6;xvar = xvar+transtep)(

fprin(fp1,"rect %d %d %d %dh"xvar-halfmc,y2-halfme xvar+haifmc,y2+halfmc);
)

/‘.l"..".."“.“.’.‘.t‘..‘l-..l-.......'.'-..‘t.t“........"l‘/
fprintf(fpl,”"<< polysilicon >>h");
for(xvar = x1+halfmec+dc2py;xvar <= x6-halfmc-dc2py-length;xvar = xvar+transtep)(
fprintf(fp1,"rect %d %d %d %dh" xvar,y0-pyw xvar+length,y2+halfmc);
)
if(x6==x3){ /* x6=drainA */
for(xvar = x1+halfmc+dc2py;xvar < x6;xvar = xvar+4*transiep) (
fprintf(fpl,"rect %d %d %d %dn",xvar,y2+halfme xvar+length,y3-halfmc);
fprintf(fpl,"rect %d %d %d %dh”xvar+3*transiep,y2+halfme,xvar+3*transtep
+length,y3-halfmc);
)
for(xvar = x2+halfmc+dc2py;xvar < x6;xvar = xvar+4*transtep)(
fprintf(fp1,"rect %d %d %d %dn" xvar,y2+halfmc xvar+length,y4-halfmc);
fprintf(fpl,"rect %d %d %d %dh" xvar+transtep,y2+halfmc,xvar+transtep
+length,y4-halfmc);
}
)
if(x6==x4)( /* x6=drainB */
for(xvar = x2+halfmec+dc2py;xvar < x6;xvar = xvar+4*transtep)
fprintf(fp1,"rect %d %d %d %dn"xvar,y2+halfmc xvar+length,y4-halfmc);
for(xvar = x2+transtep+halfmc+dc2py;xvar < x6;xvar = xvar+4*transtep)
fprintf(fpl,“rect %d %d %d %dn"xvar,y2+halfmcxvar+length,y4-halfmc);
for(xvar = x1+halfmc+dc2py;xvar < x6;xvar = xvar+4*transtep)
fprintf(fpl,"rect %d %d %d %dh" xvar,y2+halfme xvar+length,y3-halfmc);
for(xvar = x1+3*transtep+halfmc+dc2py;xvar < x6;xvar = xvar+4*transtep)
fprintf(fpl,"rect %d %d %d %dn" xvar,y2+halfmcxvar+length,y3-halfmc);
}

l.tt*#**t**t#*t‘*****tt#tl*lt!*— kK e 20 20 2 2 o e e o o e e t##tt*ttﬂt/
fprintf(fpl,"<< polycontact >>h");
if(x6==x3){ /* x6=drainA */
for(xvar = x1+halfmc+dc2py;xvar < x6;xvar = xvar+4*transtep)(
fprimtf(fpl,”rect %d %d %d %dn" xvar,y3-halfmc xvar+MAX(length,mc),y3+halfmc);
fprintf(fpl,"rect %d %d %d %dh",xvar+3*transtep,y3-halfme xvar+3*transtep
+MAX(length,mc),y3+halfmc);

225



}
for(xvar = x2+halfmc+dc2py;xvar < x6;xvar = xvar+4*ranstep)
fprintf(fpl,"rect %d %d %d %dh",xvar.y‘t-halfmc.xvar+MAX(lcngth.mc).y4+halfmc);
fprintf(fpl,"rect %d %d %d %dn”xvar+transiep,y4-halfme xvar+transicp
+MAX(length,mc),y4+halfmc);
}
}
if(x6==x4){ /* x6=drainB */
for(xvar = x2+halfmc+dc2py;xvar < x6:xvar = xvar+4*transtep)
fprinuf(fpl,"rect %od %d %d %dn" xvar,y4-halfmc xvar+ MAX(length,mc),yd+halfmc);
if((xvar+transtep)<x6)(
fprintf(fp1,"rect %d %d %d %dn",xvar+transtep,y4-halfme,xvar+transtep
+MAX(length,mc),y4+halfinc);
}
}

for(xvar = x1+halfmc+dc2py;xvar < x6;xvar = xvar+4*transtep)
fprintf(fpl,"rect %d %d %d %dn" xvar,y3-halfmcxvar+MAX(length,mc),y3+halfmc);
if((xvar+3*transtep)<x6)(
fprintf(fp1,"rect %d %d %d %dh" xvar+3*transtep,y3-halfmc,xvar+3*transtep
+MAX(length,mc),y3+halfmc);
)
)
}

. ,‘t*t**ﬁ*t****#lﬂl#ﬁtU#***********‘l**‘***‘*********#*t*t‘*‘*********/

fprintf(fpl,"<< polycontact >>h"); /* can be replaced by m2contact */
if(x6==x3){ /* x6=drainA */
for(xvar = x1;xvar <= x6;xvar = xvar+4*transtep){
fprintf(fpl,"rect %d %d %d %dh" xvar-halfmc,y5-halfme,xvar+halfme,y5+halfmc);
if(xvar+2*transtep < x6)
fprintf(fp1,"rect %d %d %d %dh" xvar+2*transtep-halfmc,y6-halfmc xvar
+2*transtep+halfmc,y6+halfmc);
)
)
if(x6==x4)( /* x6=drainB */
for(xvar = x2+transtep;xvar <= x6;xvar = xvar+4*transtep)
fprintf(fpl,"rect %d %d %d %dhn" xvar-halfmc,y6-halfmc,xvar+halfme,y6+halfmc);
for(xvar = x1;xvar < x6;xvar = xvar+4*transtep)
fprintf(fp1,"rect %d %d %d %dn" xvar-halfme,y5-halfmc,xvar+halfmc,yS+halfmc);

226



,‘tt.“*"..-"t‘.ll."ﬁ‘.*‘tlt-tl*-l‘."’tt't‘!t.t"“‘tlttt!l#tt‘t*/

fprintf(fpl,"<< %cdcontact >>h" type):

for(xvar = xl;xvar <= x6;xvar = xvar+transtep){

fprintf(fpl,"rect %d %d %d %dh" xvar-halfme,y0,xvar+halfme,yl1);
)

/.--l't"“.....“.‘.....lO.‘.‘.l.....*‘.lt“'.“-‘U....'-‘.-.t..-'/
fprintf(fpl,"<< metall >>h");
if(x6==x3)( /* x6=drainA */
for(xvar = x1;xvar <= x6;xvar = xvar+3*transtep){
fprinf(fpl,"rect %d %d %d %dn" xvar-halfmc,yS+haifmcxvar+halfme,y0);
if(xvar+2*transtep < x6)
fprimif(fpl,"rect %d %d %d %dn" xvar+2*transtep-halfme,y6+halfme xvar
+2*transtep+halfmec,y0);
}
)
if(x6==x4)( /* x6=drainB */
for(xvar = x2+transtep;xvar <= x6;xvar = xvar+4*transtep)
fprintf(fp1,"rect %d %d %d %dn",xvar-halfmc,y6+halfme, xvar+halfme,y0);
for(xvar = x1;xvar < x6;xvar = xvar+4*transtep)
fprintf(fpl,“rect %d %d %d %dn" xvar-halfmc,y5+halfme xvar+halfme,y0);
}
for(xvar = x2;xvar <= x6;xvar = xvar+2*transtep){
fprintf(fp1,"rect %d %d %d %dh" xvar-halfmc,y1,xvar+halfme,y2-halfmc);
}
fprintf(fp1,"rect %d %d %d %dh" x1,y2-halfmc x6,y2+halfmc);
if(x6=x3){ /* x6=drainA */
fprintf(fp1,"rect %d %d %d %dn"x1+halfmc+dc2py,y3-halfme x6-halfme-dc2py,
y3+halfmc);
fprintf(fp1,"rect %d %d %d %dn" x2+halfmc+dc2py,y4-halfmc x6-transtep
-halfmc-dc2py,y4-+halfmc);
)
if(x6==x4)( /* x6=drainB */
fprintf(fpl,"rect %d %d %d %dn" x1+halfmc+dc2py,y3-halfme,x6-transtep
-halfmc-dc2py,y3+halfmc);
fprintf(fp1,"rect %d %d %d %dh" x2+halfmc+dc2py,y4-halfme x6-halfme-dc2py,
y4+halfmc);
}
fprintf(fpl,"rect %d %d %d %dh" x1-halfmc,y6-halfmc,x1+halfmc,
y5-halfmc); /* for gate A port */
fprintf(fp1,"rect %d %d %d %dn" x1+halfmc+dc2py,y3-halfmc x1+halfmc+dc2py

227



+mc,yd+halfmc); /* for drain A port */
/.t.'-"..-"U.t.-‘.“.......'..‘.‘t'.’.“."'tttt“tl.'....“.--titt.../
fprintf(fpl,”<< polysilicon >>h");
if(x6==x3)( /* x6=drainA */
fprintf(fpl,"rect %d %d %d %dn"x1-halfmc,y5-halfmc x6+halfme,yS+halfmc);
fprintf(fpl,“rect %d %d %d %dh" x2+wansiep-halfme,y6-halfme,
x6-2*transtep+halfmc,y6+halfmc);
}
if(x6==x4){ /* x6=drainB %/
fprintf(fpl,"rect %d %d %d %dh",x2+wansiep-halfme,y6-halfme,
x6+halfmc,y6+halfmc);
fprintf(fpl,"rect %d %d %d %dn" x1-halfmc,y5-halfmc x6-2*transtep
+halfmc,y5+halfmc);
}

/‘t*&***&***tt‘***#**‘***tﬁ*.l*‘.t‘l‘t‘.lt*"t#lt*tt‘tﬁttttttt'!llttt“ﬂﬁtt’

fprintf(fp1,"<< end >>h");

/*tﬁ****‘****.***t**tt***#****#tt##**#‘#U*#tt‘#*ﬁ#**#**#tt‘*tt#tt#t#*tt*#**/

fclose(fpl);
return(difin);
}
/‘t'l#*t**#***lt#*t.*‘#**#ﬂﬁ‘#*t*tl****ﬁ e e e afe e -ttt*t‘*********/
/tt‘##tt‘tt*#t*&t*‘#*t#*tlltll&ttl‘**tl*.* * *##**#/
I* gen_tx.c is used to generate individual transistor */
gen_ g
/* result : return a struct of TRAN */
Fid a magic file will be generated. */
/tit.t* 21 2 ] **lt‘*ttt.tttt#*.t**t.tt*tlt/

struct TRAN gen_tx(type,diode,bulk,width,length,num fname)
char fname[10];

int diode,bulk,width,length,num;
char type;

(

FILE *fpl,*fopen();

int x0x1.x2.x3.x4,x5;

int y0,y1,y2,y3,y4,y5;

int transtep,xvar,yvar,

int j.timestamp;

extern time t time();

struct TRAN tran;

228



char  anti_type;
char  m_name(10);

if(type="p") anti_type='n";
if{type=="n") anti_type="p";
width=width/num;
P‘..tl‘ X 2] l‘t‘tttt‘!tl“tl.t‘-.tt‘t.t'l't..‘..t“/
if((fpl=fopen(fname,"w")) == NULL){
printf("0an’t open file name = %sn" fname);
exit(1);
)
for(j=0;j<10;j++){
if(fname(j] != ".") m_name(j]=fname(j];
else {
m_name[j]=" °;
break;
}
}

tran.name=m_name;

tran.diode=diode;

if(diode==1) tran.pinnum=2;

if(diode==0) tran.pinnum=3;

/* Landmark assignment for fet */

ranstep =mc+ 2*dc2py+length;

x0 = 0; /* xO=left bound of diffusion area */

x1 = xO+halfme;  /* xl=the beginning of source */

x2 = xl+transtep; /* x2=the beginning of drain */

switch (num % 2)(

case 0 : /* even number of gate of tx's requested */
x3 = x2+transtep*(num-2); /* x3=the end of drain */
x4 = x3+transtep; /* x4=the end of source */
break;

case 1 : /* odd number of x's requested */ :
x3 = x2+transtep*(num-1); /* x3=the end of drain */
x4 = x3-transtep; /* x4=the end of source */
break;

}

x5 = MAX(x3,x4); /* x5= the max of x3 and x5 */

/#l***#t***#*#*t*#t******t‘t**t*#******#**‘#*‘t##*t*tt******#**‘*’
yo=0; * yO=lower bound of diffusion area */
y1 = yO+width; /* yl=upper bound of diffusion area */

229



y2 = yl+wc2dc+halfme; /* y2=center of common source rail
wc2dc=well contact to diff contact
mc=min metal contact */
y3 = y0-mc2mc-halfme; /* y3=center of poly rail or common drain rail
mc2me=metal contact to metal contact */

i*“*"‘**".*ﬂ.‘.*'.***t‘*ﬁ‘.t*“‘.**"'.l‘*tt.l‘tt“l‘t‘lt..*t*i/
timestamp = time((lime_t *) 0);

tran.timestamp=timestamp;

fprinuf(fp1,"magich”);

fprintf(fpl,"tech scmosh”);

fprintf(fpl,"timestamp %dn" timestamp);

Il‘ttl"‘tttt‘l‘#!‘tt‘tttt'ttll‘t’#“*.‘*t‘i.l..lt't.tttt#t‘t‘tttt/

fprintf(fp1,"<< %cdiffusion >>h" type);

fprintf(fpl,"rect %d %d %d %dh"x0,y0,x5+halfme,y1);

l*itﬁ***#*******l**#&***lt********‘##*t****&**t.'t*#tt******‘&#t#*l

if (bulk==1)(

fprintf(fpl,"<< %csubstrate%ccontact >>h",anti_type,anti_type);

for(xvar = x1;xvar <= x§;xvar = xvar+transtep)

fprintf(fp1,"rect %d %d %d %dh" xvar-halfmc,y2-halfme xvar+halfme,y2+halfmc);

}

/‘**#**‘**&*l***##**‘***.#t#tt‘t***#*l**t**t***t****#*************/

fprintf(fp1,"<< polysilicon >>h");

for(xvar = x1+halfmc+dc2py;xvar <= x5-halfmc-dc2py-length;xvar = xvar+transtep)
fprintf(fp1,"rect %d %d %d %dh" xvar,y3+halfmc,xvar+length,y1+pyw);

fprintf(fp1,"rect %d %d %d %dh” x0,y3-halfmc x5+halfmc,y3+halfmc);

I*#**‘**# kg S e e e e

if(diode==1){
fprintf(fp1,"<< polycontact >>h");
if(x5=x3){ /* x5=drain */
for(xvar = x2;xvar <= x5;xvar = xvar+2*transtep)
fprintf(fpl,"rect %d %d %d %dh",xvar-halfmc,y3-halfmc,xvar+halfme,y3+halfmc);
}
if(x5=x4){ /* x5=source */
for(xvar = x2;xvar < x5;xvar = xvar+2*transtep)
fprintf(fp1,"rect %d %d %d %dn",xvar-halfmc,y3-halfmc,xvar+halfme,y3+halfmc);
}

)
if(diode==0)

vvv-mvv**/

230



fprintf(fp1,”<< polycontact >>h");
fprinu(fpl,"rect %d %d %d %dh”x1-halfmc,y3-halfmc,x 1+halfme,y3+halfmc);
)

i‘ - L L2 ] ‘t"..“‘ltt."..‘...t..t‘..‘t."’
fprinuf(fpl,"<< %cdcontact >>h" type);

for(xvar = xl;xvar <= x5;xvar = xvar+mranstep)(

fprindf(fpl,"rect %d %d %d %dh” xvar-halfmc,y0,xvar+halfme,y1);

}

/t.t.*..‘*““t‘.'.".t.ﬁ.‘tt“*t't-"‘.-...t‘...t#.tt‘ttttt-*ltttt/

fprintf(fpl,"<< metall >>h");
if(x5==x3){ /* x5=drain */

for(xvar = x1;xvar < x§;xvar = xvar+2*transtep)

fprintf(fp1,"rect %d %d %d %dh"xvar-halfmc,y1.xvar+halfme,y2+halfmc);
for(xvar = x2;xvar <= x5;xvar = xvar+2*transtep)

fprintf(fp1,"rect %d %d %d %dn" xvar-halfmc,y3-halfme xvar+halfme,y0);
)
if(x5==x4){ /* xS=source */

for(xvar = xl;xvar <= x5;xvar = xvar+2*transtep)

fprintf(fp1,"rect %d %d %d %dh" xvar-halfmc,yl,xvar+halfmc,y2+halfmc);
for(xvar = x2;xvar < x5;xvar = xvar+2*ranstep)

fprintf(fp1,"rect %d %d %d %dn" xvar-halfmc,y3-halfmc,xvar+halfmc,y0);
}

fprintf(fp1,”rect %d %d %d %dh" x1-halfmc,y2-halfmc,x5+halfmc,y2+halfmc);

if(diode=0)(
if(x5==x3) /* x5=drain */
fprintf(fp1,“rect %d %d %d %dn" x2-halfmc,y3-halfmc x5+halfmc,y3+halfmc);
if(x5=x4) /* xS=source */
fprintf(fpl,"rect %d %d %d %dn" x2-halfme,y3-halfmc x5-transtep+halfmc,
y3+halfmc);
}

il »* » #tt******‘***#tﬁ*t#t**‘*#**‘.*t#t***‘/

fprintf(fpl,"<< end >>h");

/******t#****#**ttt*‘*t***#**t#*****‘t******.#***tt***t#***t***&t*t**#**ttﬁl

tran.box.llx=0;
tran.box.lly=y3-halfmc;
tran.box.urx=x5+halfmc;

231



tran.box.ury=y2+halfmc;
if(diode==0){
tran.dm.x=x3;
tran.dm.y=y3-halfmc;
tran.src.x=x1;
tran.sre.y=y2+halfme;
tran.gat.x=x1;
tran.gat.y=y3-halfmc;
}
if(diode==1){
tran,dm.x=x2;
tran.dm.y=y3-halfmc;
tran.src.x=x1;
tran.src.y=y2+halfmc;
tran.gat.x=x2;
tran.gat.y=y3-halfmc;
)

/t £ 2 £ .11 ] tt**"t*ttt&tt‘tt.tttt‘t*#*ttttt##tt*tt*t*tttt*t/
fclose(fpl);
return(tran);

)

/#t*‘***#**#**“*##**i!***tt*#**ttt******t**t*****ﬁ***t&***t**t********t**!/

232



CF
CG
CcM

CM-OPIL

CMRrrR

DC

Appendix D

Symbols

Voltage gain

Op-Amp open-loop voltage gain
Bias node

Capacitance

Compensation capacitor

Load capacitor

Capacitor plate

Cascode current mirror primitive
Correction factor

Common-gate devices primitive
Simple current mirror primitive
Op-Amp input-stage load primitive
Common mode rejection ratio
Transistor drain terminal

Diode-connected node



HI

Thias

Error factor

Op-Amp unity-gain bandwidth
Transfer function

Transistor transconductance

Transistor output conductance
N-channel transistor output conductance
P-channel transistor output conductance
Transistor gate terminal

Amplifier circuit transconductance

Cell height

Horizontal cut

High-impedance node

Input node

Bias current

Bias current of differential amplifier
Insensitive net

Transistor transconductance coefficient

Transistor channel length

234



LS

NY

PSM

Psrr

Less-sensitive net

Transistor

Neutral net

Parameterizable neuron

Noisy net

Output node

Power source node

Power dissipation
Parameterizable synapse matrix
Power supply rejection ratio
Transistor output resistance
Recognition rule

Resistance

Shape constraint relation
Neuron input resistance
Synapse connection resistance
Amplifier output resistance

Transistor source terminal

235



SC

SC-IN

Source-coupled node

Input differendal pair primitive
Slew rate

Transistor type

Settling time

Single transistor primitive
Synapse weight

Transmission gate

Op-Amp output driver primitive
Transistor substrate terminal
Positive supply voltage
Vertical cut

Neuron input voltage

Input voltage

Minus input voltage

Positive input voltage

Input voltage range

Input-referred noise

236



Y

Neuron output voltage
Output voltage swing
Input offset voltage
Output voltage
Reference voltage
Analog input voltage
Neuron threshold voltage
Negative supply voltage
Cell width

Transistor channel width
Phase margin

Threshold constant

237



Appendix E

Glossary

ADC: Analog-to-digital converter. See A/D Converter.

A/D Converter: Analog-to-digital converter. A circuit which converts an analog
(continuous) voltage or current into an output digital word.

AFE: Analog front end, the analog interface part of a digital signal processing
system. It typically contains a digital-to-analog converter, an analog-to-digital
converter, and some pre- and post-filtering.

AGC: Automatic gain controller. An amplifier circuit with a digitally controlled
gain for use in communications and data acquisition systems.

Al: See Arificial Intelligence.

Artificial Intelligence: The subfield of computer science concerned with
developing intelligent computer programs. This includes programs that can solve
problems, learn from experience, understand language, interpret visual scenes,
and, in general, behave in a way that would be considered intelligent if observed
in a human.

Axon: An output of a biological neuron.

ALU: Arithmetic logic unit. A circuit which provides arithmetic and logic
operations on data in a digital processor.

Analog Multiplier: A key analog signal processing circuit which gives as its
output, the product of two variables (voltage or current).

Artificial Neural Network: See Neural Network.

BICMOS: Bipolar CMOS, a new technology which supports both bipolar and
CMOS devices.

Bottom-Up Layout Generation: A layout style that is used to generate mask

238



geometries of a circuit starting from the transistor (bottom) level of the circuit
hierarchy. This expression is derived from the relative positions of design
operations in the flowchart.

C: A low-level, efficient, general-purpose programming language associated with
the UNIX operating system. C is normally used for system programming.

CAD: Computer-aided design, the use of computer technology to assist in the
design process, e.g., the design of integrated circuits.

CAMP: An experimental expert system developed at USC to assist the design of
operational amplifiers.

Cascode: A common analog circuit technique used to increase the small signal
output resistance of an amplifier circuit.

Cascode Current Mirror: An improved current mirror with the use of cascode
techniques. The output resistance of the cascode current mirror is significantly
greater than the simple current mirror.

Cascode Current Source; An improved current source with the use of cascode
techniques.

Channel Router: A router which can handle regular regions with fixed pins on
two sides of the regions and floating pins on the other two sides.

Chopper-Stabilized Op-Amp: An operational amplifier which employs a special
chopper (modulator-demodulator) circuit to reduce the low-frequency noise of
input transistors.

Circuit Recognition: A rule-based method for identifying key logic functions or
circuit elements using a computer program.

Class-A Op-Amp: An Op-Amp with the class-A amplifier configuration. The
class-A amplifier is a circuit whose power consumpdon and output current avai-
lability are fixed independenty of the value of the signal applied to it.

Class-AB Op-Amp: An Op-Amp with an input to output class-AB configuration.
The class-AB amplifier is a circuit whose power dissipation and output current
availability are a function of the applied signal with peak values that can be
many times larger than the stand-by ones.

239



CMFB: Common-mode feedback circuit, typically used in fully-differential
operational amplifiers to control the common-mode voltage of the differential
outputs.

CMOS: Complementary metal oxide semiconductor, a MOS technology that has
both n-channel and p-channel devices available. It becomes a dominant technol-
ogy for both analog and digital VLSI applicatons. :

CMRR: Common-mode rejection ratio, is the ratio of differential voltage gain to
common-mode voltage gain of an amplifier, generally expressed in dB.

Comb Filter: A special class of digital FIR filter. A comb filter of length D is
an FIR filter with all D coefficients equal to one.

Common-Mode Input Voltage Range: The voltage range over which the input
common-mode signal can vary. Typically, this range is several volts less than
the higher power supply voltage and several volts greater than the lower power
supply voltage.

Constraint-Based Layout Generation: A layout generation approach in which
the circuit layout constraints are internally generated and subsequently incor-
porated in the final layout generation using constraint-driven floorplanning and
routing techniques.

Constraint-Driven Floorplanning and Routing: A heuristic floorplanning and
routing procedure which is mainly driven by the internally generated layout con-
straints.

Critical Net: A critical circuit node which requires special layout care.

CTF: Continuous-time filter, an implementation of the classic active filter in the
continuous-time frequency domain.

Current Mirror: Two or more transistors connected so that current in one node
is duplicated in another node. Two MOS transistors, for example, having
sources tied together and gates connected by one of the drains, would duplicate
the current in that drain in the second drain.

Current Source: A circuit which provides a constant current source or sink to
the external circuitry.

240



DAC: Digital-to-analog converter. See D/A Converter.

D/A Converter: Digital-to-analog converter. A circuit which converts a digital
code word into an output analog (continuous) voltage or current.

Dangling Component: The wtansistor element whose source terminal is not
directly tied to a power supply.

Dendrite: An input of a biological neuron.

Design Synthesis: Generation of sized device-level schematic diagrams from per-
formance specifications and process specifications.

Differential Pair: Two tansistors whose sources (or emitters) are tied together
to a current source. The voltage difference between the two gates steers the
current between the two drains.

Digital Decimation Filter: A digital filter which reduces the sampling rate of
the signals from a high value Nf,. to a lower value f, where N is an interger
number greater than 1.

Diode-Connected Node: A circuit junction node that connects the gate terminal
of a transistor to its drain terminal (a diode configuration).

Domain Knowledge: Knowledge about the problem domain.

DRAM: Dynamic random access memory. A semiconductor memory which
uses charge storage on a capacitor to represent binary data values.

DSP: Digital signal processor. A programmable, computational processor that
allows effective implementations of typical digital signal processing tasks.

Dynamic Range: The ratio of the maximum input amplitude of an Op-Amp
without causing saturation or an excessive nonlinear distortion noise referred to
the input. Dynamic range is often termed as maximum signal to noise ratio.

Expert: A person who, through years of training and experience, has become
extremely proficient at problem solving in a particular domain.

Expert System: A computer program that relies on a body of knowledge to per-
form a somewhat difficult task usually performed only by a human expert. The

241



principal power of an expert system is derived from the "knowledge" the system
contains rather than exclusively from search algorithms and specific reasoning
methods. An expert system successfully deals with problems for which clear
algorithmic solutions do not exist.

Facsimile Modem: One type of modem that allows facsimile machines to
transfer graphics-oriented documents.

Fact: An elementary piece of knowledge. Facts are fixed data in the knowledge
base.

FIR: Finite impulse response. A filter impulse response that has a finite dura-
tion. The type of digital filter with a finite impulse response, called FIR filter,
is always stable.

Floorplanning: The task of determining the relative positions of the modules on
the plane so that performance objectives such as area, timing and power con-
sumption of the chip are optimized.

Folded Cascode Op-Amp: An Op-Amp which employs a folded cascode
configuraton to eliminate the internal high-impedance node. This Op-Amp is
useful in achieving a wide common-mode input voltage range.

Four-Quadrant Multiplier: An analog muldplier which can operate the multipli-
cation of two variables in four quadrants.

Full-Custom Design: A chip design approach in which all the mask geometries
are designed ad hoc by human designers with little help from CAD tools.

Full-Duplex Operation: The operation that allows a modem to transmit and
receive data simultaneously on a two-wire line at full speed. It requires the
ability to separate a receive signal from the reflection of the transmitted signal.

Fully-Differential Op-Amp: An Op-Amp which features fully differential (bal-
anced) signal paths from input to output. Compared to single-ended Op-Amps,
the fully-differential Op-Amps provide better power-supply noise immunity and
dynamic range performance.

Fuzzy Logic: An approach to approximate reasoning in which truth values and

quantifiers are defined as possibility distributions that carry linguistic labels, such
as frue, very ture, not very true, many, not very many, few, and several. The

242



rules of inference are approximate, rather than exact, in order to better manipu-
late information that is incomplete, imprecise, or unreliable.

Gilbert Multiplier: A four-quadrant multiplier which is the basis for most
integrated circuit analog multdpliers.

Half-Duplex Operation: The modem operation that is capable of passing signals
in either direction, but not in both simultaneously.

Heuristic: A rule of thumb or simplification that limits the search for solutions
in domains that are difficult and poorly understood.

High-Impedance Node: A circuit junction node that connects drain terminals of
multiple transistors.

Hopfield Neural Network: A neural network architecture proposed by Tank and
Hopfield [72] for solving certain engineering optimization problems. This net-
work is a single-layer neural network with feedback.

Hysteresis: The quality of a comparator in which the input threshold changes as
a functon of the input (or output) level. A comparator with hysteresis is needed
in a noisy environment.

IC: See Integrated Circuit.

Inference Engine: The part of a knowledge-based system or expert system that
contains the general problem-solving knowledge. The inference engine processes

the domain knowledge (located in the knowledge base) to reach new conclusions.

Integrated Circuit: A combinaton of interconnected circuit elements inseparably
associated on or within a continuous substrate.

Intelligent Sensor: A sensor that can be integrated with appropriate circuits.

Junction Node: A circuit node that connects two or more transistor terminals
together.

Knowledge: The information a computer program must have to behave intelli-
gently.

Knowledge Base: The portion of a knowledge-based system or expert system

243



that contains the domain knowledge.
Knowledge-Based System: See Expert System.
Layer: The group of neurons which are arranged into a disjointed structure.

Logic-Based Method: A programming method that uses predicate logic to struc-
ture the program and guide execution.

Layout Constraints: A set of constraints on area, aspect ratio, and performance
that needs to be satisfied for the given layout optimization problem.

Layout Synthesis: Generation of mask geometries form sized circuit schematics.

Macro-Cell Design Style: A design method in which large circuit blocks, cus-
tomized to a certain type of logic function, are available in a circuit library.

Mighty: A switch-box router developed at the University of California, Berkeley.
Min-Cut Algorithm: A floorplanning algorithm proposed by Breuer [63] for
slicing structures. This method is based on the recursive application of a bi-

partitioning procedure.

Mixed-Signal IC: A chip that contains mixed analog and digital circuits on the
same substrate.

Modem: A contraction of MOdulator-DEModulator, a system that connects data
terminal equipment to a2 communication line.

Module: A major building block for circuit subsystems. Typical module exam-
ples include Op-Amps and comparators.

Module Generation: A custom module design method based on a set of
parameterizable cell generators.

MOS: Metal oxide semiconductor. A process technology that uses a metal
oxide semiconductor field effect transistor, or MOSFET, as the basic active dev-
ice.

MOSIS: MOS implementation system. An MOS fabrication program sponsored
by the U.S. Department of Defense Advanced Research Projects Agency

244



(DARPA).

Multiple-Fixed-Architecture Approach: A design synthesis approach in which a
number of fixed circuits are stored in the design knowledge base.

Multi-Layer Neural Network: One type of neural network which is a feed-
forward network with hidden layers located in the middle stages.

Netlist: A file that contains the information that can be used to reconstruct a cir-
cuit schematic diagram.

Net Sensitivity: A measure of net criticality based on sensidvity classification
for analog circuit nets.

Neural Network: A parallel processing system which can be implemented by
hundreds of artificial neurons and thousands of synapses on a single chip. With
the immense computational power and self-learning capability, neural networks is
emerging as a new promising technology for solving complex problems.

Neuron: The basic cell in the nervous system. An artificial neuron is typically
implemented as an amplifier in the VLSI neural networks. See Appendix B.

Neuron Block: A circuit block that contains a group of neurons.

Neuton-Raphson’s Algorithm: An algorithm for solving nonlinear equations.
According to this algorithm, a solution for a nonlinear equation is quadratically
reached through tangential extrapolations of intermediate results.

NMOS: N-channel MOS. An MOS technology that uses only n-channel MOS-
FETs as the active devices.

Nyquist Rate: The minimum sampling rate, which is twice the highest frequency
of the input signal, required in a sampled-data system.

Op-Amp: Operational amplifier. A high-gain differential-input amplifier. It has
become one of the most versatile and important building blocks in analog circuit
design.

Oversampling A/D: A new type of A/D conversion technique in which the
input signal is sampled at a frequency much higher than the Nyquist rate.

245



Passive Components: These components include the capacitor and the resistor.

Phase Margin: A measure of Op-Amp stability; specifically, phase of output
voltage at unity-gain frequency relative to 180 degrees of phase lag.

PLL: Phase-Locked Loop is a circuit that locks an input analog signal onto a
particular frequency and phase. It is typically used in applications that require
the tuning or selecting of communication channels.

Primitive: The lowest-level circuit element in the given circuit hierarchy.
Primitive Recognition: See Circuit Recognition.

Predicate: A fact or rule in Prolog.

Predicate Logic: A formal language of classic logic that uses functions and
predicates to describe relations between individual entities.

PMOS: P-channel MOS. An MOS technology that uses only p-channel MOS-
FETs as the active devices.

PSRR: Power supply rejection ratio. The ratio of the open loop gain of the
Op-Amp to the change in the output voltage of the Op-Amp caused by the
change in the power supply.

RAM: Random-access memory. A volatle semiconductor memory whose con-
tent can be read and written.

ROM: Read-only memory. A semiconductor memory using the presence or
absence of a single MOS transistor as the storage mechanism.

Rule: A formal way of specifying a recommendation, directive, or strategy,
expressed as IF condition THEN action.

Sample-and-Hold: A circuit which accurately acquires and stores an analog vol-
tage on a capacitor for a specified period of time.

Scanline-Based Router: An incremental channel router that scans the channel
along its spine and evaluates all possible paths between a source and multiple
target points.

246



SCF: Switched-capacitor filter. An implementation of active filters in discrete-
time frequency domain (z-domain) using MOS technology. Each resistor is real-
ized with a switched capacitor.

Seif-Configuration Technique: A design synthesis technique that allows the cir-
cuit topology to be modified to meet the performance specifications during the
design process. This method uses circuit primitives such as current sources and
acdve load as "replacement parts” in a design.

Semi-Custom Design: A design style which uses the standard cell or gate array
approach.

Sense Amplifier: A circuit that is used to sense the state of DRAM memory
cells.

Sensitivity-Based Floorplanning: A heuristic floorplanning procedure in which
the relative positions of slicing structures are determined by a zone-sensitivity
partitioning algorithm.

Settling Time: The time elapsed from the application of a full scale step input
to a circuit to the time when the output has entered and remained within a
specified error band around its final value.

Shape Constraint Relation: The set of y-x pairs so that a rectangle module
with width equal to x and height equal to y contains at least a shape/orientation
realization of the module.

Sigma-Delta A/D: One type of oversampling A/D which uses a 1-bit DAC as
the feedback element to achieve the noise shaping function.

Sigma-Delta Modulator: A circuit which implements the noise shaping function
in a modulator loop. It converts the input analog signal to a digital bit-stream.

Signal-to-Noise Ratio: The ratio of the RMS voltage of the fundamental har-
monic to the RMS noise in a specified bandwidth about the signal frequency of
interest.

Simulated Annealing: An approach proposed by Kirkpatrick et al. [64] as an
effective method for finding good solutions of combinatorial optimization prob-
lems such as floorplanning. By simulating an annealing process, this method
generates moves randomly and checks whether the cost of the new configuration

247



satisfies an acceptable criterion based on temperature.

Single-Ended Op-Amp: The conventional type of Op-Amp which has a single-
ended output.

Single-Layer Neural Network: One type of neural network which contains a
neuron input stage, a synapse connection matrix, and a neuron output stage.

Sinx/x-Compensated Sample-ans-Hold: A circuit which can perform the
sample-and-hold operation without introducing the usual sinx/x distortion.

Slew Rate: The maximum rate, in volts per microsecond, at which the output
voltage of an Op-Amp changes when a square-wave or step input is applied.

Slicing Tree: A tree representation of the dissection of the slicing structures.
Soma: The cell body of a biological neuron.

Source Component: The transistor element whose source terminal is directly
tied to a power supply.

Source-Coupled Node: A circuit junction node that connects source terminals of
multiple transistors. -

SPICE: A widely accepted computer program for semiconductor circuit simula-
ton. SPICE was originally written by a group of researchers at the University
of California at Berkeley.

Standard-Cell Approach: A design approach in which a library of fixed pre-
designed cells is used to implement a circuit function.

Standard-Cell Library: A library of standard cells which contains the most
common circuit elements and blocks. These cells typically have fixed heights
with power supply rails running along the top and bottom.

Stockmeyer’s Algorithm: An algorithm introduced by Stockmeyer [65] to deter-
mine the optimal shape and orientation of the modules given their relative posi-
tions as a slicing structure.

Switch-box Router: A 2-dimensional router which can route regions with fixed
pins on all sides of the region.

248



Synapse: An input contact to a dendrite that in turn drives a neuron.
Synapse Matrix: A circuit block which contains a mawix of synapse modules.

Synapse Weight: A value which specifies the stength of the coupling between
an input of a neuron and an output of another neuron.

Thermal Matching: An effect which can be achieved by properly matching the
layout of sensitive circuit primitives with respect to the high-current output dev-
ices.

Tools: Computer programs that are used to help solving specific tasks.

Top-Down Design Synthesis: A design style that is used to generate sized
device-level schematic diagrams starting from the module (top) level of the cir-
cuit hierarchy. This expression is derived from the relative positions of design
operations in the flowchart.

Transconductance Amplifier: An unbuffered Op-Amp which has a high output
resistance.

Turbo Prolog: One version of Prolog, which is one of the leading languages for
artificial intelligence research and applications.

Unity-Gain Bandwidth: The frequency at which the gain of an Op-Amp equals
one.

UNIX: An operating system used in Sun workstations. Most UNIX software are
written in C.

VCO: Voltage-controlled oscillator. An oscillator whose frequency is controlled
by an external voltage.

VLSI: Very large scale integrated circuit. VLSI is used as a general term to
indicate today’s increasingly complex ICs with a very large number of com-
ponents.

Voltage Comparator: A circuit that has a binary output whose value is based
upon a comparison of two analog voltage inputs.

249



Zone-Sensitivity Partitioning: An algorithm that partidons a plane into multiple
layout zones based on sensitivity levels of circuit primitives.

250



Appendix F

Publications

Conference Papers:

(1]

(2]

(3]

(4]

[3]

A. H. Fung, D. J. Chen, Y.-N. Lai, and B. J. Sheu, "Knowledge-Based
Analog Circuit Synthesis with Flexible Architecture,” Proc. IEEE Int. Conf.
Computer Design, pp. 48-51, Cambridge, MA, Oct. 1988.

D. J. Chen, J.-C. Lee, and B. J. Sheu, "SLAM : A Smart Analog Module
Layout Generator for Mixed Analog-Digital VLSI Design," Proc. IEEE Int.
Conf. Computer Design, pp. 24-27, Cambridge, MA, Oct. 1989.

D. J. Chen and B. J. Sheu, "Automatic Layout Generation for Mixed
Analog-Digital VLSI Neural Chips," Proc. IEEE Int. Conf. Computer
Design, pp. 29-32, Cambridge, MA, Oct. 1990.

D. J. Chen and B. J. Sheu, "Automatic Custom Layout of Analog ICs
Using Constraint-Based Module Generation,” Proc. IEEE Custom
Integrated Circuits Conf., pp. 5.5.1-5.5.4, San Diego, CA, May 1991.

D. J. Chen, W. Ngai, S. Taylor, D. Shum, F. In’tveld, M. Uratani, H.
Ogawa, S. Hatiori, G. Kinoshita, and T. Kojima, "A Single-Chip Mixed
Analog/Digital Signal Processor for Voiceband Applications," Proc. IEEE
Custom Integrated Circuits Conf., pp. 24.4.1-24.4.4, San Diego, CA, May
1991 (from Sharp Corp.).

Journal Paper:

(1]

D. J. Chen and B. J. Sheu, "Automatic Layout Synthesis of Analog ICs
Using Circuit Recognition and Constraint Analysis Techniques," Int. Jour.
of Analog Integrated Circuits and Signal Processing, vol. 1, no. 1, Kluwer
Academic Publishers, March 1991.

251



(3]

(4]

(5]

(6]

(7]

(8]

(9

(10]

References

P. R. Gray, B. Wooley, and R. Brodersen (ed.), Analog MOS Integrated
Circuits, II, IEEE Press: New York, NY, 1989.

P. R. Gray and R. Meyer, Analysis and Design of Analog Integrated Cir-
cuits, 2nd Ed., Wiley: New York, NY, 1984.

A. B. Grebene, Bipolar and MOS Analog Integrated Circuit Design, Wiley:
New York, NY, 1984.

Y. Tsividis and P. Antognetti (ed.), Design of MOS VLSI Circuits for
Telecommunications, Prentice-Hall: Englewood Cliffs, NJ, 1985.

R. Gregorian and G. Temes, Anolog MOS Integrated Circuits for Signal
Processing, Wiley: New York, NY, 1986.

P. Allen and D. Holberg, CMOS Analog Circuit Design, Holt, Rinehart &
Winston: New York, NY, 1987.

R. Unbehauen and A. Cichocki, MOS Switched-Capacitor and Continuous-
Time Integrated Circuits and Systems, Springer-Verlag: Berlin, Germany,
1989.

R. Geiger, P. Allen and N. Strader, VLSI Design Techniques for Analog
and Digital Circuits, McGraw-Hill: New York, NY, 1990.

M. Haskard and I. May, Analog VLSI Design -- nMOS and CMOS,
Prentice-Hall: Englewood Cliffs, NJ, 1988.

R. Batruni, W. Hee, P. Lemaitre et al.,, "Mixed Digital/Analog Signal Pro-
cessing for A Single-Chip 2B1Q U-Interface Transceiver,” [EEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, pp. 26-27, San Francisco,
CA, Feb. 1990.

252



(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

F. Cepl, A. Deierling, O. Duffner, H. Hauer, and D. Seitzer, "Integration
of A CMOS Mixed-Analog-Digital Eight Channel Speech Transmission
Circuit,” Proc. IEEE Custom Integrated Circuits Conf., pp. 12.3.1-12.3.4,
Boston, MA, May 1990.

D. J. Chen, W. Ngai, S. Taylor, D. Shum, F. In’tveld, M. Uranani, H.
Ogawa, S. Hauori, G. Kinoshita, and T. Kojima, "A Single-Chip Mixed
Analog/Digital Signal Processor for Voiceband Applications,” Proc. IEEE
Custom Integrated Circuits Conf., pp. 24.4.1-24.4.4, San Diego, CA, May
1991.

T. Schmerbeck, R. Richetta, and L. Smith, "A 27MHz Mixed
Analog/Digital Magnetic Recording Channel DSP Using Partial Response
Signalling with Maximum Likelihood Detection,” JEEE Int. Solid-State Cir-
cuits Conf. Dig. Tech. Papers, pp. 136-137, San Francisco, CA, Feb. 1991.

Y. Okada, T. Matsuura, T. Shinmi et al., "A Mixed Analog/Digital Video
Signal Processing LSI with On-Chip AD and DA Converters,” Proc. [EEE
Custom Integrated Circuits Conf., pp. 24.1.1-24.1.4, San Diego, CA, May
1989.

M. Ohta, S. Kobatake, K. Kohiyama et al., "A Single-Chip CMOS
Analog/Digital Mixed NTSC Decoder,"” IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers, pp. 118-119, San Francisco, CA, Feb. 1990.

J-C. Lee and B. J. Sheu, "Parallel Digital Image Restoration Using Adap-
tive VLSI Neural Chips," Proc. IEEE Int. Conf. Computer Design, Cam-
bridge, MA, Oct. 1990.

C. A. Mead, Analog VLSI and Neural Systems, Addison-Wesley: Reading,
MA, 1989.

C. A. Mead and M. Ismail, Analog VLSI Implementation of Neural Sys-
tems, Kluwer Academic Publishers: Boston, MA, 1989.

B. W. Lee and B. J. Sheu, Hardware Annealing in Analog VLSI Neuro-
computing, Kluwer Academic Publishers: Boston, MA, 1991.

253



(20]

[21]

[22)

(23]

[24)

[25]

[26]

(27

(28]

[29]

M. Ismail and J. Franca, Introduction to Analog VLSI Design Automation,
Kluwer Academic Publishers: Boston, MA, 1990.

P. E. Allen and H. Nevarez-Lazano, "Automated Design of MOS
Opamps," Proc. IEEE Int. Symp. Circuits and Systems, pp. 1286-1289,
May 1983.

R. J. Bowman and D. L. Lane, "A Knowledge-Based System for Analog
Integrated Circuit Design," Proc. IEEE Int. Conf. Computer-Aided Design,
pp. 210-212, Santa Clara, CA, Nov. 1985.

R. Harjani, R. A. Rutenbar, and L. R. Carley, "A Prototype Framework for
Knowledge-Based Analog Circuit Synthesis," Proc. IEEE Design Automa-
tion Conf., pp. 42-49, June 1987.

H. Y. Koh, C. H. Sequin, and P. R. Gray, "Automatic Synthesis of Opera-
tional Amplifiers Based on Analytic Circuit Models,” Proc. IEEE Int. Conf.
Computer-Aided Design, pp. 502-505, Santa Clara, CA, Nov. 1987.

M. Degrauwe, "An Analog Expert Design System,” Proc. IEEE Int. Solid-
State Circuits Conf. Dig. Tech. Papers, pp. 212-213, New York, NY, Feb.
1987.

E. Berkcan and M. d’Abreu, "Physical Assembly for Analog Compilation
of High Voltage ICs," Proc. IEEE Custom Integrated Circuits Conf., pp.
14.3.1-14.3.7, Rochester, NY, May. 1988.

B. J. Sheu, A. H. Fung, and Y.-N. Lai, "A Knowledge-Based Approach to
Analog Integrated Circuit Design," IEEE Trans. on Circuits and Systems,
vol. 35, no. 2, pp. 256-258, Feb. 1988.

R. Harjani, R. A. Rutenbar, and L. R. Carley, "Analog Circuit Synthesis
and Exploration in OASYS," Proc. IEEE Int. Conf. Computer Design, pp.
44-47, Cambridge, MA, Oct. 1988.

A. H. Fung, D. J. Chen, Y.-N. Lai, and B. J. Sheu, "Knowledge-Based
Analog Circuit Synthesis with Flexible Architecture," Proc. IEEE Int. Conf.
Computer Design, pp. 48-51, Cambridge, MA, Oct. 1988.

254



(30]

31

(32]

(33]

(34]

(35]

[36]

(37]

[38]

[39]

A. H. Fung, B. W. Lee, and B. J. Sheu, "Self-Reconstructing Technique
for Expert System-Based Analog IC Designs," [EEE Trans. on Circuits
and Systems, vol. CAS-36, pp. 318-321, Feb. 1989.

D. J. Chen and B. J. Sheu, "A Flexible Architecture Approach to Analog
Circuit Synthesis,” Proc. IEEE Workshop on Analog Circuit Engineering,
Princeton, NJ, April 1989.

D. C. Stone, J. E. Schroeder et al., "Analog CMOS Building Blocks for
Custom and Semicustom Applications," IEEE Jour. of Solid-State Circuits,
vol. SC-19, no. 1, pp. 55-61, Feb. 1984.

T. Pletersek, J. Trontelj, and L. Trontelj, "Analog LSI Design with CMOS
Standard Cells," Proc. IEEE Custom Integrated Circuits Conf., pp. 479-
483, 1985.

C. D. Kimble, A. Dunlop, G. Gross et al.,, "Autorouted Analog VLSL"
Proc. IEEE Custom Integrated Circuits Conf., pp. 72-78, Portland, OR,
May 1985.

J. Kuhn, "Analog Module Generators for Silicon Compilation," VLSI Sys-
tem Design, pp. 74-80, May 4, 1987.

E. Berkcan and M. d’Abreu, "Physical Assembly for Analog Compilation
of High-Voltage ICs," Proc. IEEE Custom Integrated Circuits Conf., pp.
14.3.1-14.3.4, Rochester, NY, May 1988.

M. Kayal, S. Piquet, M. Declercq, and B. Hochet, "SALIM: A Layout
Generation Tool for Analog ICs,"” Proc. IEEE Custom Integrated Circuits
Conf., pp. 7.5.1-7.5.4, Rochester, NY, May 1988.

J. Rijmenants, T. Schwarz, J. Litsios, and R. Zinszner, "ILAC: An
Automated Layout Tool for Analog CMOS Circuits," Proc. IEEE Custom
Integrated Circuits Conf., pp. 7.6.1-7.6.4, Rochester, NY, May 1988.

H. Y. Koh, C. H. Sequin, and P. R. Gray, "Automatic Layout Generation
for CMOS Operational Amplifier,” Proc. IEEE Int. Conf. Computer-Aided
Design, pp. 548-551, Santa Clara, CA, Nov. 1988.

255



(40

[41]

(42]

(43]

[44)

[45]

[46]

[47]

(48]

[49]

D. Garrod, R. Rutenbar, and L. Carley, "Automatic Layout of Custom
Analog Cells in ANAGRAM," Proc. IEEE Int. Conf. Computer-Aided
Design, pp. 544-547, Santa Clara, CA, Nov. 1988.

H. Onodera, H. Kanbara, and K. Tamaru, "Operational-Amplifier Compila-
tion with Performance Optimization,” IEEE Jour. Solid-State Circuits, vol.
SC-25, no. 2, pp. 466-473, Apr. 1990.

D. J. Chen, J.-C. Lee, and B. J. Sheu, "SLAM : A Smart Analog Module
Layout Generator for Mixed Analog-Digital VLSI Design," Proc. IEEE Int.
Conf. Computer Design, pp. 24-27, Cambridge, MA, Oct. 1989.

D. J. Chen and B. J. Sheu, "Automatic Layout Generation for Mixed
Analog-Digital VLSI Neural Chips,” Proc. IEEE Int. Conf. Computer
Design, pp. 29-32, Cambridge, MA, Oct. 1990.

D. J. Chen and B. J. Sheu, "Automatic Custom Layout of Analog ICs
Using Constraint-Based Module Generation," Proc. I[EEE Custom
Integrated Circuits Conf., pp. 5.5.1-5.5.4, San Diego, CA, May 1991.

D. J. Chen and B. J. Sheu, "Automatic Layout Synthesis of Analog ICs
Using Circuit Recognition and Constraint Analysis Techniques,” Int. Jour.
of Analog Integrated Circuits and Signal Processing, vol. 1, no. 1, Kluwer
Academic Publishers, March 1991.

L. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor
Circuits," Electron. Res. Lab. Memo UCB/ERL M520, University of Cali-
fornia, Berkeley, May 1975.

B. Johnson, T. Quarles, A. R. Newton, D. O. Pederson, and A.
Sangiovanni-Vincentelli, SPICE3 Version 3E.1 User’s Guide, Department
of Electrical Engineering and Computer Science, University of California,
Berkeley, Apr. 1991.

HSPICE User’s Manual H9001, Meta-Software Inc., Campbell, CA, 1991.

L. O. Chua and P.-M. Lin, Computer-Aided Analysis of Electronic Cir-
cuits: Algorithms and Computational Techniques, New York: Prentice-Hall,

256



(50]

(51

(52]

(53]

[54]

(551

(56]

[57]

(58]

[59]

p. 215, 1975.

P. R. Gray and R. Meyer, "MOS Operational Amplifier Design -- A
Tutorial Overview," IEEE Jour. Solid-State Circuits, vol. SC-17, no. 6, pp.
969-982, Dec. 1982.

C. Townsend, Mastering Expert Systems with Turbo Prolog, Chap. 2,
Howard W. Sams & Co.: Indianapolis, IN, 1986.

D. Shafer, Turbo Prolog Primer, Chap. 1, Howard W. Sams & Co.: Indi-
anapolis, IN, 1986.

J. McCreary, "Matching Properties, and Voltage and Temperature Depen-
dence of MOS Capacitors,” IEEE Jour. Solid-State Circuits, vol. SC-16,
no. 6, pp. 608-616, Dec. 1981.

D. Allstot and W. C. Black, Jr., "Technological Design Considerations for
Monolithic MOS Switched-Capacitor Filter Systems," Proceedings of the
IEEE, vol. 71, no. 8, pp. 967-986, Aug. 1983.

R. Ouen, "Automatic Floorplan Design," Proc. 19th Design Automation
Conf., pp. 261-267, June 1982.

D. F. Wong and C. L. Liu, "A New Algorithm for Floorplan Design,"
Proc. 23rd Design Automation Conf., pp. 101-107, June 1986.

C. E. Wy, L. M. Ni, and A. S. Wojcik, "Function Recognition of static
CMOS Circuits," Proc. IEEE Int. Conf. Computer-Aided Design, pp. 306-
309, Santa Clara, CA, Nov. 1987.

W. C. Black, Jr., D. J. Alistot, and R. A. Reed, "A High Performance
Low Power CMOS Channel Filter," IEEE Jour. Solid-State Circuits, vol.
SC-15, no. 6, pp. 929-938, Dec. 1980.

S. Qin and R. Geiger, "A +5-V CMOS Analog Multiplier," IEEE Jour.
Solid-State Circuits, vol. SC-22, no. 6, pp. 1143-1146, Dec. 1987.

257



[60]

(61]

[62]

(63]

[64]

[65]

[66]

[67]

(68]

(69]

(70]

S. Fujii, S. Saito, Y. Okada et al, "A 50-uA Standby 1Mx1/256Kx4
CMOS DRAM with High-Speed Sense Amplifier," IEEE Jour. Solid-State
Circuits, vol. SC-21, no. 5, pp. 643-647, Oct. 1986.

N. Lu and H. Chao, "Half-Vpp Bit-Line Sensing Scheme in CMOS
DRAM'’s," [EEE Jour. Solid-State Circuits, vol. SC-19, no. 4, pp. 451-454,
Aug. 1984,

R. Castello and P. R. Gray, "A High-Performance Micropower Switched-
Capacitor Filters," IEEE Jour. Solid-State Circuits, vol. SC-20, no. 6, pp.
1122-1132, Dec. 1985.

M. A. Breuer, "Min-Cut Placement,” Jour. Design Fault-Tolerant Comput-
ing, vol. 1, no. 4, pp. 343-362, Oct. 1977.

S. Kirkpatrick, C. Gelatt Jr.,, and M. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, May 1983.

L. Stockmeyer, "Optimal Orientatons of Cells in Slicing Floorplan
Designs," Information and Control, vol. 59, pp. 91-101, 1983.

H. Shin and A. Sangiovanni-V., "MIGHTY: A ’Rip-Up and Reroute’
Detailed Router,” Proc. IEEE Int. Conf. Computer-Aided Design, pp. 2-5,
Santa Clara, CA, Nov. 1986.

J. K. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G. Taylor,
"MAGIC : A VLSI Layout System," Proc. 21st Design Automation Conf.,
pp. 152-159, June 1984.

C. Tomorich, "MOSIS-A Gateway to Silicon," IEEE Circuits and Devices
Magazine, vol. 4, pp. 22-23, 1988.

H. Yaguthiel, A. Sangiovanni-Vincentelli, and P. R. Gray, "A Methodology
for Automated Layout of Switched-Capacitor Filters,” Proc. IEEE Int.
Conf. Computer-Aided Design, pp. 444-447, Santa Clara, CA, Nov. 1986.

D. Lucas, "Analog Silicon Compiler for Switched Capacitor Filters," Proc.
IEEE Int. Conf. Computer-Aided Design, pp. 506-509, Santa Clara, CA,

258



(71]

(72]

(73]

[74]

[75]

(76]

[77]

[78]

[79]

Nov. 1987.

R. P. Sigg, A. Kaelin, A. Muralt, W. C. Black Jr., and C. Moschytz, "An
SC Filter Compiler: Fully Automated Filter Synthesizer and Mask Genera-
tor for A CMOS Gate-Array-Type Filter Chip," Proc. IEEE Int. Conf.
Computer-Aided Design, pp. 510-513, Santa Clara, CA, Nov. 1987.

D. W. Tank and J. J. Hopfield, "Simple *Neural’ Optimization Networks:
An A/D converter, Signal Decision Circuit, and A Linear Programming
Circuit,” IEEE Trans. on Circuits and Systems, vol. CAS-33, no. 5, pp.
533-541, May 1986.

B. W. Lee and B. J. Sheu, "A Compact and General-Purpose Neural Chip
with Electrically Programmable Synapses,” Proc. IEEE Custom Integrated
Circuits Conf., pp. 26.6.1-26.6.4, San Diego, CA, May 1990.

T. Morishita, Y. Tamura, and T. Otsuki, "A BICMOS Analog Neural Net-
work with Dynamically Updated Weights," Proc. IEEE Int. Solid-State Cir-
cuits Conf. Dig. Tech. Papers, pp. 142-143, San Francisco, CA, Feb. 1990.

H. Graf and D. Henderson, "A Reconfigurable CMOS Neural Network,"
Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 144-14S,
San Francisco, CA, Feb. 1990.

Y. Arima, K. Mashiko, K. Okada et al, "A 336-Neuron 28k-Synapse
Self-Learning Neural Network Chip with Branch-Neuron-Unit Architecture,”
Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 182-183,
San Francisco, CA, Feb. 1991.

B. Boser and E. Sackinger, "An Analog Neural Network Processor with
Programmable Network Topology," Proc. IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers, pp. 184-1835, San Francisco, CA, Feb. 1991.

A. Oppenheim and R. Schafer, Digital Signal Processing, Prentice-Hall:
Englewood Cliffs, NJ, 1975.

L. Rabiner and B. Gold, Theory and Application of Digital Signal Process-
ing, Prentice-Hall: Englewood Cliffs, NJ, 1975.

259



(80]

(81]

(82]

(83]

(84]

[85]

(86]

(87]

(88]

K. Yamamoto, H. Ohtake, and J. Maruyama, "An Analog Front End for
2400b/s Split-Band Full-Duplex Modems," IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers, pp. 172-173, Anaheim, CA, Feb. 1986.

R. Castello, L. Tomasini, S. Pernici et al., "Analog Front-End of an ECBM
Transceiver for ISDN," Proc. IEEE Custom Integrated Circuits Conf., pp.
16.4.1-16.4.4, San Diego, CA, May 1989.

J. Roesgen and G. Warren, “"An Analog Front End Chip for V.32
Modems," Proc. IEEE Custom Integrated Circuits Conf., pp. 16.1.1-16.1.5,
San Diego, CA, May 1989.

J. C. Candy, "A Use of Double Integration in Sigma Delta Modulation,"
IEEE Trans. Comm., vol. Com-33, pp. 249-258, March 1985.

J. L. McCreary and P. R. Gray, "All-MOS Charge Redistribution Analog-
to-Digital Conversion Techniques - Part 1" IEEE J. Solid-State Circuits,
vol. SC-10, no. 6, pp. 371-379, Dec. 1975.

Y. Tsividis, "Analog MOS Integrated Circuits -- Certain New Ideas,
Trends, and Obstacles,” IEEE Jour. Solid-State Circuits, vol. SC-22, no. 3,
pp. 317-321, June 1987.

H. P. Graf and P. deVegvar, "A CMOS Implementation of A Neural Net-
work Model," Proc. Stanford Conf., pp. 351-362, MIT Press: Cambridge,
MA, 1987.

B. W. Lee, "VLSI Design of Adaptive Neural Systems," Ph.D. Thesis,
Department of Electrical Engineering, University of Southern California,
Los Angeles, May 1990.

Professor C. R. Crowell, University of Southern California, Private com-
munication, 1991.

260



