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Abstract

Sensor response, location uncertainty and use of sample statistics can severely degrade the per-
formance of optimum beamformers. In this report, we propose blind estimation of the source
steering vector in the presence of multiple, directional, correlated or coherent Gaussian interferers
via higher-order-statistics. In this way, we employ the statistical characteristics of the desired sig-
nal to make the necessary discrimination. without any a-priori knowledge of array manifold and
direction-of-arrival information about the desired signal. We then improve our method to utilize
the data in a more efficient manner. In any application, only sample statistics are available, so
we propose a robust beamforming approach that employs the steering vector estimate obtained
by cumulant-based signal processing. We further propose a method that employs both covariance
and cumulant information to combat finite sample effects. We analyze the effects of multipath
propagation on the reception of the desired signal. We show that even in the presence of coherence,
cumulant-based beamformer still behaves as the optimum beamformer that maximizes the Signal
to Interference plus Noise Ratio (SINR). Finally, we propose an adaptive version of our algorithm.

Simulations demonstrate the excellent performance of our approach in a wide variety of situations.
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Chapter 1

Introduction

Array processing techniques play an important role in enhancement of signals in the presence of
interference. A number of books, and an extensive literature [1]-[9] have already been published.
Capon’s minimum-variance distortionless response (MVDR) beamformer [10] has been a starting
point for both signal enhancement and high-resolution direction-of-arrival (DOA) estimation.

In recent years, there has been an increasing interest in high-resolution array processing tech-
niques based on eigendecomposition of the covariance matrix of received signals [11]-[21]. To recover
the signal of interest in the presence of interfering signals, the so-called COPY function [17] is used.
In this procedure, DOA’s for all signals are first estimated. and then the minimum-variance proces-
sor that reconstructs the desired signal and minimizes the contribution of all interference sources
is implemented. All of the previously referenced methods rely on complete knowledge of responses
and locations of array elements and/or DOA information of the desired signal.

If the array manifold is unknown, or there are uncertainities, it is then necessary to calibrate
the array [22]-[23]; however, this is not a practical thing to do, since calibration must be done quite

frequently, and, each time, array-manifold information must be stored. In addition, calibration
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sources may be required. Even small errors in the calibration procedure may considerably degrade
the performance. Sensitivity analyses of high-resolution methods and MVDR beamforming have
been presented in [24]-(32].

In this report, we shall employ higher-order statistics of received signals to estimate the steering
vector of the non-Gaussian desired signal in the presence of directional Gaussian interferers with
unknown covariance structure. We assume no knowledge of array manifold and DOA information
about the desired signal. Desired signal may be voiced speech, sonar signal, radar return or a
communication signal. In our work, we specialize to the communications scenario, which requires
the use of fourth-order cumulants. Following a mathematical formulation of the problem in Chap-
ter 2, we describe basic properties of cumulants and blind estimation and optimum beamforming
procedures in Chapter 3.

Any estimation procedure is subject to errors, as is our cumulant-based source steering vector
estimation method. In theory, cumulants are blind to Gaussian noise; however. their estimates are
corrupted by such noise. In order to obtain satisfactory results, longer data lengths are necessary in
cumulant-based signal processing. To alleviate the effects of estimation error in the beamforming
step, we propose a more efficient estimation procedure that fully utilizes the data acquired by the
array. We further suggest a method of combining cumulant and covariance information to yield
better estimates. Then we employ a robust beamforming method based on artificial noise injection
to combat mismatch in the source steering vector. We consider the estimation error as a mismatch
and successfully apply this robust approach to our problem. These methods are presented in
Chapter 4.

In a communications environment, multipath propagation almost always take place. In this case,

all eigendecomposition-based techniques and MVDR fail. Only in some specific array configurations
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is it possible to decorrelate incoming signals and then estimate their DOA’s. We analyze the
behavior of our cumulant-based approach in Chapter 5. We show that our proposed approach
behaves as the optimum beamformer that maximizes the Signal to Interference plus Noise Ratio
(SINR).

For real-time operation (a necessary requirement in communications applications) we propose
an adaptive implementation of the cumulant-based beamformer in Chapter 6. We then present
simulation experiments to indicate the performance of our approach in Chapter 7. Finally, we draw

our conclusions in Chapter 8.



Chapter 2

Problem Formulation

We formulate our problem in a narrowband fashion. In array processing. a problem is classified as

narrowband if the signal bandwidth is small compared to the reciprocal of the time required for

the signal wavefront to propagate across the array. For a discussion on bandwidth, see [36]-[37).
In our formulation, lower and upper case italic letters are used to represent scalars. lower case

bold-faced letters are used for vectors, and. upper case bold-faced letters are used for matrices.

2.1 Signal Model

Consider an array of M elements, with arbitrary sensor response characteristics and locations.
Assume there are J Gaussian interference signals { i;(¢), j = 1,2,...,J }, and a non-Gaussian
desired signal d(t), centered at frequency w,. We assume sources are far away from the array so
that a planar wavefront approximation is possible. The additive noise present is assumed to be
Gaussian with unknown covariance. With these assumptions. the reccived signal at the Ath sensor

can be expressed, as
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J
(1) = ar(8a) d() + D anl8i,) i;(t) + nilt) (2.1)

=1

where,
e 0, : the direction-of-arrival of the wavefront corresponding to emitter z.

o ai(0;) : response of the kth sensor to xth signal wavefront, including the phase factor asso-
ciated with the travel time of the signal wavefront with respect to a reference point; without

loss of generality, this point can be taken as the first sensor location.
o d(t) : the desired non-Gaussian signal as received at sensor 1, with variance 3.

e i;(t): the jth interferer waveform as received at sensor 1; interference signals are assumed to

be independent of the desired signal. and they are Gaussian processes.
o ni(t) : the additive noise at the kth sensor.

Equation (2.1) can be rewritten in matrix notation, as

r1{1) - 1| d(t) ny(1)
r2(1) a(t) na(t)

= | alba), a(6;,). -+~ a(6;,) R (2:2)
rar(t) ) ’ | is(t) 1 | nar(t) ]

where a(@;) represents the M x1 steering vector for the wavefront from emitter z, which can be

expressed as

alfe) = | ay(8), a2B:), .... arr(8y) (2.3)
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We define the array manifold as the collection of steering vectors over all DOA’s of interest. Alter-

native expressions for the received signal vector are,
r(t) = Az(t) + n(t) = a(fg) d(t) + Api(?) + n(i) (2.4)
In this last expression, we partitioned the Mx(J + 1) steering matrix A as,

A = [ a(s), A ] (2:5)

where the M xJ matrix Ap, is the steering matrix for interference sources.

In this report, we address the problem of optimum beamforming with an array of sensors whose
responses and locations are completely unknown; hence, although we may have a priori knowledge
about the direction-of-arrival of desired signal. we can not perform beamforming due to the lack of
knowledge of array manifold. In [38], this problem is addressed; however, [38]’s algorithm is limited
to a single interference signal. We investigate the possibility of a more general solution; namely,
signal recovery in the presence of multiple interferers whose correlation structure is unknown. Before
presenting our approach, which employs higher-order statistics, we demonstrate the limitations of

covariance-based array processing for this problem.

2.2 Covariance-Based Approaches

Currently used high-resolution methods of DOA estimation and minimum-variance distortionless
response beamforming (MVDR) employ the covariance matrix of signals received by the array. The

wavefront covariance matrix, S, is defined as the covariance of the source signals as received at the
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reference point, i.e., at sensor 1:

S = £ {z(t) 2" (1)} (2.6)

where () denotes complex conjugate transpose. Using the received signal model in (2.4), we can

express the M xM covariance matrix R of array measurements in the following two ways:

R = £{r(t)r"(1)}) = ASA" + R, = 03 a(by) a"(64) + R, (2.7)

where R, is the noise covariance matrix,

R, = £ {n)nf(1)} (2.8)

and, R, is the covariance matrix of the undesired signals, i.e.,

R, = £ {[Afi(t) + n(t)][Ari(t) + n(t)]7 } (2.9)

In general, the noise covariance matrix. R,. is unknown. With some restrictions on array
orientation and noise covariance structure. some approaches for high resolution DOA estimation
are proposed in [39]-{40] that do not require this information; however, these techniques have
their limitations due to involved assumptions. Even with complete knowledge of noise covariance
structure, source localization is still impossible without the knowledge of array manifold. In [20],
ESPRIT algorithm is devised to overcome this problem; however, ESPRIT requires transitionally
equivalent subarrays with known displacement vectors, which may also be impractical due to all

the constraints on array orientation. In [33], an eigendecomposition-based beamforming approach
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is proposed which assumes the identifiability of the signal subspace and availability of the steering
vector information for the signal of interest. Good results were obtained under these assumptions;
however, this method can not handle coherent interference and spatially colored noise.

In [41)-[43], blind estimation of steering vectors for independent emitters is discussed with the

following conclusion:

Blind estimation of source steering vectors is not possible with only second-order statis-
tics, but employing higher-than-second-order cumulants, it is possible to estimate source

steering vectors up to a scale factor.

MVDR beamforming is an alternate approach for signal recovery. This approach however,
requires knowledge of the steering vector for the desired source up to a scale factor and uses the
covariance matrix R of received signals for processing. The output of the MVDR beamformer y(t)

can be expressed as [10)

y(t) = wr(t)y = (B R a(6y) )7 r(2) (2.10)

where the constant 3, is present to maintain a specified response for the desired signal and w
denotes the weight vector of the processor.

From the above expression. it is clear that MVDR beamforming requires knowledge of a(8y).
Without knowledge of array manifold, it is not possible to determine a(84) even in the case of known
84. Therefore, MVDR beamforming can not be directly applied to our problem. In addition, the
MVDR beamformer is quite sensitive to errors in assumed sensor locations and characteristics [24)-
[29].

In many applications, multipath propagation takes place resulting in coherent sources. Coher-
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ence presents a serious problem to DOA methods; it leads to a singular source covariance matrix
S, for which it is not possible to estimate source locations except in some specific array configura-
tions [44)-[50]. In the MVDR case, source coherency does not represent a problem as long as there
is no source correlated with the desired signal; however, this situation is rarely met in practice.
In general, the desired signal is subject to multipath propagation, and performance of MVDR ap-
proach degrades severely [51]-[52]. An optimum beamforming procedure has been suggested in [53]
to overcome the coherence problem by using a linear array of elements with identical directional
characteristics.

We are therefore looking for a method that can overcome all these problems. In the next chapter,

we present an approach that accomplishes this by combining cumulant-based blind estimation and

MVDR beamforming.



Chapter 3

Cumulant-Based Optimum

Beamforming

In the previous chapter, we discussed the problem of optimum beamforming and concluded that it
is not possible to recover a desired signal in the presence of multiple interferers, unknown sensor
noise covariance, and multipath propagation without any information about array manifold. In
this chapter, we propose a method to overcome these problems. We propose a two-step procedure:
higher-order-statistics for blind estimation of the source steering vector, followed by MVDR beam-
forming based on second-order statistics of received signals and steering vector estimate provided
by the first step. Before describing our method we first present a brief review of higher-order

statistics.

10
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3.1 Higher-Order Statistics: Definitions and Properties

Let {z1,22,...,2,} be a collection of random variables and {v;,vs....,v,} be a collection of
deterministic variables. We can stack these variables in vectors x = [1'1.:r2....,:v,,]T and
v = [vl,vg,...,v,,]T. Then, the nth-order cumulant of the random variables is defined as the
coefficient of (v;,vz,...,v,) in the Mac-Laurin series expansion of the cumulant-generating func-
tion

Kx(v)=In( E{exp[jvTx]}) (3.1)

An alternate approach that defines the nth-order cumulant in terms of a weighted sum of joint
moments of orders up to n is provided in [535].
For zero-mean real random variables, which we frequently encounter in applications, the second-,

third-, and fourth-order cumulants are expressed, as

cun.y) = E {x)aq}

cum(zy,zg,23) = E {22923} (3.2)
cum(z),x9,%3,24) = E {z1222324} — E {222} E {x324} -
E {z\23} E {x224) - E {xy24} £ {2223}

There are several ways of collecting these random variables. In array processing, we collect
samples of delayed sensor outputs; in system identification, we collect samples from a random
process. In the system identification context, if 2(t) is a random process, stationary up to order =,

then the nth-order cumulant of 2(t), Cp(T1.72.....7n-1). is defined as the nth-order cumulant
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of the random variables {z(t),z(t + 7).....2(1 + Ta=1)}. i.e.,

Caaz(T1,720 . ooy Tom1) = cum(z(), 2(t+ 1), ..., 2(1 + Ty)) (3.3)

Due to the stationarity assumption, the nth-order cumulant of the random process z(t) has (n — 1)
degrees of freedom {7}, 72,...,7,—1}. Since the nth-order cumulant can be expressed as a sum of
joint moments of the random variables of orders up to n, its existence is established if all absolute
moments of orders m < n exist and are bounded.

Note that for zero-mean processes the second- and third-order cumulants are identical to covari-
ance and third-moment respectively. The third- and higher-order cumulants of Gaussian processes
are identically zero. This fact can be used for detection and characterization of deviations from
non-Gaussianity [56)].

The following properties of cumulants are used frequently in applications [55]:
o [CP1] If {a;}}., are constants and {2;}!_, are random variables, then

=1

n
cum{aZy, 0%, ..., 0y Tpn) = ( H a;) cum(zy,%2,...,Tpn) (3.4)

=1

¢ [CP2] Cumulants are additive in their arguments,

cum(zy + 1,22, .. Tp) = cum(T,T2,....Tn) + cum(y;, T2,...,Ty) (3.5)
¢ [CP3] If the random variables {z;}%, are independent of the random variables {y;}7,, then

i=1

curn(Ty + Y1, T2 + Y2, - - T+ Yn) = cuM(Ty,22... ., To) + cum(yr, y2,. - 5 Yn) (3.6)
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¢ [CP4] Cumulants suppress Gaussian noise of arbitrary covariance, i.e., if {2;}%, are Gaussian

random variables independent of {z;}; and n > 2, we have

cum(zy + 21, T2+ 22, .y Tn + 2p) = cum(xy, T2, ..., Ty) (3.7)

¢ [CP5] If a subset of random variables {z;}".; are independent of the rest, then

Cum(ay,22y...,2) =0 (3.8)

¢ [CP6] If o, is a constant, then

cum(a, + 1,22, ..., p) = CUM(ZT1, T, ..., Ty) (3.9)

Cumulants are blind to phase shifts and scale factors. This originates from their definition.
Third-order cumulants are blind to processes that have a symmetric probability density function;
consequently, fourth-order cumulants must be used in such environments. Cumulants of indepen-
dent and identically distributed (i.i.d.) random processes are delta functions, i.e., if x(¢) is such a
process, then

Cn,.x:(Tl, T2e00eyTn-1 )= Tn.x 6r|.r2,...,'r,,_| (310)

where v, . is the nth-order cumulant of a single time sample from z(t). It is important to note
that joint moments do not possess this property. Furthermore, cumulants of order higher than two
are blind to Gaussian noise and can reveal phase characteristics of the system under consideration.

On the other hand, covariance-based approaches are blind to phase information and sensitive to
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Gaussian noise. These properties, as proved in [57). make higher-order statistics candidates to
previously unsolvable signal processing and communication problems.

In applications, we do not have access to true cumulants; we estimate them from the received
data. The presence of additive Gaussian noise does effect the quality of the estimates, due to
finite sample averaging in the estimation procedure. In order to get satisfactory results, longer
data lengths are required for higher-order processing. An analysis of the asymptotical behavior of

estimates of higher-order statistics can be found in [58].

3.2 Estimation of desired signal steering vector

In this section, we employ cumulants of received signals. to estimate the steering vector of the
desired signal up to a constant factor. As described in Section 3.1, third-order cumulants are
blind to signals with symmetric probability density function. On the other hand, most signals in
communication environments have symmetric density [unctions, which motivates the use of fourth-
order cumulants!. First, we defline the fourth-order zero-lag cumulant operator of complex processes

{x1(8), (1), 23(1), 24(1)}, based on (3.2). as

cum {$1(t),1’2(l),l’3(l), .'L"g(f.)} é E {.‘l'l(t).’l'g(l-):l?g(f.).'l:‘;(f)} - F {.'Ifl(t).’l,'g([)} E {.1.‘3(1).174(“}

= E{zi(D)as(t)} E{za(t)2a(t)} — E{a()xa(t)} E {22(t)ra(t)} (3.11)
Next, consider the vector ¢ = [¢y.¢5... .. ci\,]7.. defined as
e 2 cum{m(t). Py B m()} =120 M. (3.12)

! An estimation procedure based on third-order statistics is presented in Appendix A.
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As suggested in [55], there are various ways of defining fourth-order statistics of complex random
processes. We follow the approach presented in [59] in (3.12). Since interference signals are in-
dependent of the desired signal and they are Gaussian with zero fourth-order cumulants ([CP4]),

using (2.1) in (3.12) we can express ¢; as

¢ = cum {al(Gd)rl(t),a{’(()d)(ln(t),a{’(()d)d"(t),a,(éld)d(t)} (3.13)

Using [CP1], we obtain

er = a(80)° af (84) a4 @(8a) (3.14)

where 444 denotes the zeroth lag of the fourth-order cumulant of the desired signal. Defining

By = |a1(84)1% af’(8,) 444 we have the following expression for the AM/x1 vector c:
1 B o

c = 32 a(by) (3.15)

Observe that the vector ¢ is a replica of the steering vector of the desired signal up to a scale factor.

We show in the next section how this information can be used to recover the desired signal.

3.3 Interference Rejection

With the knowledge of the steering vector of the desired signal. interference rejection is possible
using the following minimum-variance distortionless response formulation: find the weight vector

w that minimizes the power, w/ R w, at the output of the beamformer subject to the constraint

H

w’ ¢ = 1, where c is obtained via the cumulant-based estimation procedure described in Sec-
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tion 3.2. The solution to this optimization problem is well-known [10], and can be expressed as

Weum =3 R ¢ (3.16)

! ¢)~!is present in order to maintain the linear constraint.

where the constant 83 = (¢ R~

Due to the constraint wf ¢ = 1, the power minimization procedure does not cancel the desired
signal, but rejects all interference components and sensor noise in the best possible manner. Note
that this is accomplished without knowledge of covariance structure of interference signals, sensor
noise or array manifold. In the sequel. we refer to the processor in (3.16) as CUM,. The proof

that this cumulant-based beamformer is identical to the maximum SINR processor is provided in

Chapter 5, where the general multipath case is treated.



Chapter 4

Robust Beamforming

In this chapter, we first propose an approach that utilizes the received data in the estimation of
the source steering vector in a more efficient manner. We then suggest a method that uses both
cumulants and covariance information under some scenarios. Finally, we employ a robust method

to combat the effects of estimation errors.

4.1 Efficient Utilization of Array Data

In the previous chapter, we presented a method of blind estimation of the desired source steering
vector from the received data; however, the proposed approach is rather inefficient in the sense that
only the first sensor is taken as reference. For example, if the connection from this element to the
processor is broken, then the estimation objective can not be accomplished. Similarly, due to poor
receiving circuitry following this array element, the refercnce signal may be very noisy, degrading

the quality of the estimate. We can overcome these difficulties by using multiple reference elements.
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Define the matrix C with the (&,{)th element,
Cra 2 cum{ri(!), 'r{.’(l). r{.’(t),r[(t)} where k0= 1...., M. (4.1)

With true statistics, the cross-cumulant matrix C will have rank 1, since all its columns are scaled
replicas of the desired source steering vector; however, with sample statistics this condition never
holds. The left singular vector of C with the largest singular value can be used as the estimate of
the desired source steering vector removing the effects of noise. In this way. we utilize array data
more efficiently!. The beamformer that employs the steering vector estimate obtained in the way
described above is referred to as the CUM; beamformer in the sequel.

In addition, the Total Least Squares algorithm, that takes the errors in both the received data
covariance matrix estimate and the steering vector estimate into account, is a better choice for
computing the optimuin weight vector, as suggested in [52], but it is computationally expensive.
If extra computations are feasible. we suggest the use of the Constrained Total Least Squares

algorithm [60], for even better numerical results.

4.2 Covariance-Cumulant (C?) Approach

In some array processing applications. sensor noise covariance structure has a definite structure
enabling a whitening operation on the received data. The principal cigenvectors of the covariance
matrix of this processed data reveal the subspace spanned by the steering vectors of directional
signals illuminating the array [17]. Hence, the steering vector estimate obtained by the cumulant-

based approach can be improved by projecting this estimate on the subspace spanned by the

'A method that utilizes the array data even more cfliciently is presented in Appendix B.
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principal eigenvectors of the covariance matrix. This improved estimate can then be used in the
beamforming procedure of Section 3.3. The motivation behind this approach is that covariance
estimates exhibit less variance than cumulant cstimates. but in the covariance domain we can not
identify the source steering vector if there are multiple sources. This procedure yields an estimate of
the steering vector from covariance-matrix information by employing the cumulant-based estimate

as side information. A mathematical description of this approach is presented below:

1. From the received data, estimate the covariance matrix R and the desired signal steering

vector ¢ by the cumulant-based procedure.

2. Perform an eigendecomposition of the sample covariance matrix. to reveal the signal and
noise subspaces: the eigenvectors of R with the repeated minimum eigenvalue span the noise

subspace [17], while the rest span the signal subspace.

3. Assume the signal subspace is (J + 1) dimensional. Then, the basis vectors for the signal
subspace, obtained from the eigendecomposition procedure, can be sorted in an Mx(J + 1)

matrix E; with the column space identical to the signal subspace.

4. Project the cumulant-based steering vector estimate c, on the signal subspace to obtain an

improved estimate ¢n,p, as

Cimp = EsE,flc

5. Compute the weights for the beamformer, as

— -1
Wimp = R Cimp
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4.3 Robustness Constraint

Any estimation procedure is inevitably subject to errors. MVDR beamforming is extremely sen-
sitive to mismatch [24]-[30}, especially in high SNR conditions and in arrays with large number
of elements. A variety of constraints have been summarized in [6] assuming perfect knowledge of
element characteristics and locations: however, in our case these methods are not applicable since
there is no available information about the array manifold to design effective constraints.

Errors in the steering vector estimate result in signal cancellation. This mismatch condition,
arising from non-perfect estimation. can be viewed as the problem of optimum beamforming with
an array of sensors at slightly perturbed locations. In [35]. a method that constrains the white
noise gain of the processor is proposed for the solution of the latter problem. In this section, we
use the same approach to alleviate the eflects of estimation errors in cumulant-based optimum
beamforming.

In order to understand the mismatch problem and find a way to alleviate its effects, we need
to analyze the problem analytically. Consider the power response of a beamformer with a weight

vector w, as a function of DOA 8, defined as
P(8) & |wHa(8) (4.2)

with a(@) denoting the steering vector for an arrival from 8. The derivative, 3P(8)/88, can be

expressed, as

9 P(0)

M d
=g = 2Ref wHa(8) | E wi 55 af'(0) 1} (4.3)

Now consider the following scenario: we have an MVDR processor looking at 8,. which is the
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expected DOA for the desired signal. Instead. the source illuminates the array from #; which is
very close but not equal to 8,. In this case, the beamformer treats the desired signal as interference
and nulls it; however, due to the distortionless response constraint for 8,, and since the angles are
very close, the derivative 9 P(#)/36 must be large in magnitude for # between 84 and 8,. From the
derivative expression (4.3), it is clear that this is possible only if the norm of the weight vector
increases, since the inner product, w*a(8), and, the derivatives, {Z «/'(6) }}, are bounded. In
this situation, the constraint is maintained by increasing the angle between the weight vector and
the look-direction steering vector. This phenomena was exploited in [34], for tuning the beamformer
to acquire a weak desired signal in the presence of strong interference.

Note that the white-noise amplification factor for any processor with a weight vector w is wH w;
hence, the nulling phenomena can be prevented if the white noise level at the processor is sufficiently
high so that output power minimization criterion limits the increase in the norm of w. This can be
achieved by perturbing the covariance matrix estimate of array measurements by a scaled identity

matrix as,

R,=R+ ¢l (4.4)

where ¢ is a non-negative parameter which adjusts the strength of perturbation. Alternatively, it

is possible to coin a term virtual SNR. SNR,,. defined as

2
SNR, = SNR — 10logy, (‘:"") (4.5)

2

n

We then determine the weight vector as,

w=R>"a(4,) (4.6)
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A recent method presented in [35]) performs this procedure in an adaptive fashion by a simple
scaling of the weight vector. In our case, we do not have source DOA information, but we do have
an estimate of the steering vector. It is therefore possible to use this estimate in place of a(8,) in

(4.6} to formulate the cumulant-based processor with limited signal nulling property.



Chapter 5

Multipath Phenomena

Eigendecomposition-based high-resolution methods [11]}-[21] have proven to be effective means of
obtaining bearing estimates of far-field narrowband sources from noisy measurements. The perfor-
mance of these algorithms is severely degraded when coherence is present. Several methods have
been proposed to solve the coherent signals problem with restrictions on array geometry [44]-[50];
however, with lack of knowledge of array manifold it is not possible to solve the coherence problem.
MVDR beamforming also fails to perform optimally, when interference signals are correlated with
the desired signal [51]-[52]. In some scenarios. even the conventional beamformer outperforms the
MVDR approach due to signal cancellation in the MVDR beamformer.

In Chapter 3, we showed that the cumulant-based beamformer is not affected by the presence
of coherence among interfering Gaussian signals as long as they are not correlated with the desired
signal. The same is not possible for high-resolution DOA estimation methods; but, the MVDR
beamformer may perform equally well if the desired signal steering vector is known and a satisfactory
estimate of R is available. In this chapter. we show that the cumulant-based approach is not

affected by the presence of multipath propagation of the desired signal. In addition. we show that

23
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the cumulant-based processor turns out to be the mazimal-ratio-combiner [61] tha! mazimizes the
SINR.

With the presence of multipath propagation or smart jamming, our signal model in (2.1) changes

to
L J
ri(t) = d(t) D ax(8a) m+ Y anl8i,) i(1) + nif2) (5.1)
=1 =1
or in vector form
i 7 m
2 .
r(t) = a(f4,). a(B4,), -, a(bu,) d(t) + Aji(t) + n(?) (5.2)
) S

where the set of scalars { g, 72,..., 2 } constitute the multipath coefficients for an L-ray scenario.
The set of vectors, { a(f4,), a(f4,), ..., a(f4,) } are the corresponding steering vectors of the

L-ray model. Letting

2
a(odl )s a(gdg )7 ) a(arll_) . = AD Uj (5'3)

o
e

L

we can reduce the signal model for multipath phenomena to the single-ray propagation model of

Section 2.1,

r(l) = bd(t)+ Api(t) + n(t) (5.4)
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because we can view the vector b as a generalized steering vector for a single desired signal although
it may not be a vector in the array manifold. Therefore, following our work in Chapter 3, cumulant-

based blind estimation procedure will yield

c=04Db (5.5)

where B4 = |b1]? b 444, in which b; is the first component of b. Incorporating (5.5) into the

constrained power minimization procedure, we obtain the following weight vector,

Weumn = 55 R—l ¢ = ‘34,55 R—I b (5.6)

where 85 = (¢ R~ ¢ )\,
Next, we find an alternate expression for Weu,,. Recall that the optimization problem which

H

results in W,y is: minimize w”Rw subject to wfe = 1, or by (5.5). w/b = 1/3,. We can express

the output power in the following way by using (2.9) and (5.4),

w'Rw = o} | w? b > + w/R,w (5.7)

but, due to the constraint w”b = 1/3,. the first term in the above expression is a constant.

Therefore, the original optimization problem can be translated into : minimize w”R,w, subject

H

to wc =1 or equivalently, w/b = 1/3,. The solution to this problem is

Weum = 36 R;l c (5.8)
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where 8 = (¢¥ R~! ¢)~!. Of course, this solution can also be expressed in terms of b, as

Weum = 7 R;] b

where 87 = £40.

26

(5.9)

Note that although (5.8) and (5.9) are alternate expressions for we,,. they are not the way to

actually compute we,,,, since R, is not available in general.

Next, we determine the weight vector that vields the maximum SINR. SINR can be expressed

as a function of the weight vector of the beamformer, as

wH b bl w

SINR(W) =0 “Crp

/2

. 1/2 -1
Defining, v = Ru/ w so that w = R, /" v, we can reexpress (5.10), as

Hpl/2y 2
SINR(w) = SINR(R;2v) = o3 | v R/ b |

vi v

Applying the Schwarz inequality [50] to (5.11), we find that

SINR(w)= SINR( R;¥?v) < 2| R;Y?* b ||? = 03b" R

where equality holds if and only if

v=8sR;?b

(5.10)

(5.11)

(5.12)

(5.13)

in which 8g is a non-zero constant. Consequently, the optimum weight vector wgingr, which yields
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the maximum SINR, can be determined from w = R;l/zv and (5.13), as
wsing = s Ry' b (5.14)

Based on this derivation, some comments are in order. It is clear, by comparing (5.9) and (5.14),
that the cumulant-based beamformer does indeed yield the maximum possible SINR, since Wy,
is just a scaled version of wsiyr. This observation proves that the cumulant-based beamformer is
optimal. In addition. wg,, can be computed from the received data. whereas wginr. as imple-
mented in (5.14), requires knowledge of R,, which can not be determined from the received data
in the presence of the desired signal. Finally, note that robust approaches presented in Chapter 4

are directly applicable in the presence of multipath.



Chapter 6

Adaptive Processing

In real-world applications, adaptive beamforming is an important requirement, especially when the

desired signal source is in relative motion with respect to the array. In this chapter, we address this

problem by providing an “estimate and plug” type of adaptive algorithm for the CUM; method.
The beamforming procedure (3.16) requires the inverse of the sample covariance matrix to

compute the weights. We can estimate the covariance matrix recursively, as
R = (1 = a)Riot + agr(O)r? (1) (6.1)

Since we need to propagate the inverse of Ry. we use the Sherman-Morrison formula [62], to obtain

5 =1 1 5 -1 : t_-lll'(f')"H(t)Rt——ll
: = . [RiZ; — Hinp -1
1 1 - a1 = ()R r(1)]

] (=1.2,... (6.2)

with R.al = vI where v is a large positive number and o controls the learning rate for second-order

statistics.
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To compute the weight vector, we also need the cumulant-based estimate of the source steering

vector ¢. We can estimate it recursively as

a(t) = (1 = a2)é(t = 1) + azl [M(OPPrf ()ri(t) - 2p(2)q(t) — v (2)2(2)) (6.3)

with the auxilary processes defined as

p(t) = (1 — as)p(t = 1) + aglri(1)]?

q(t) = (1 - aa)g(t = 1) + agr{ (t)ri(1)
vty =(l-a3)o(t-1)+ agrf(t)
2(t) = (1 = az)a{l = 1} + agry(1)r(1)

The auxiliary processes are required in order to implement the cross-correlation terms in (3.11). The
initial values for the auxilary processes can be set to zero. Different learning rates are provided
to emphasize the fact that higher-order statistics require longer periods to acquire the required
information.

We can perform adaptive beamforming by computing the weight vector at each time as

w(t) = R7e(t) (6.4)

and obtain the array output, as

y(t) = wh(t)e(1). (6.5)
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Adaptive versions of CUM; and C? methods will appear in a later publication.

30



Chapter 7

Simulations

In this chapter we present various experiments to illustrate the performance of cumulant-based
beamforming. In all of the experiments we employed a uniformly spaced linear array. rather than
an arbitrary geometry. This is done for two reasons: covariance-based techniques are mainly
designed for this type of array structure, e.g., the spatial smoothing algorithm [44]- [50}, so that it
will be possible to compare both previous and future work with our current results. In addition,
allowing a sufficient number of multipath rays, it is possible to represent any arbitrary steering
vector by the linear array, since the steering vectors of the uniformly spaced isotropic linear array
exhibit Vandermonde structure, resulting in linearly independent vectors for different DOA’s. In
all batch type of experiments, the record length is 1000 snapshots and the array has 10 isotropic

elements with uniform half-wavelength spacing.
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7.1 Experiment 1: Desired Signal in White-Noise

In this experiment, we employ the linear array described above for optimum reception of a BPSK
signal, which is expected to arrive from broadside in the presence of temporally and spatially white,
equal power, circularly symmetric sensor noise; however, the desired source illuminates the array
from 5° broadside.

Our first MVDR beamformer, MVDR,, looks to broadside, i.e., a mismatch condition. Our
second MVDR beamformer, MVDR;, uses exact knowledge of DOA of the desired signal. We also
employ the cumulant-based beamformer of Chapter 3, CUM,, and the improved cumulant-based
beamformer CUM; of Section 4.1. We investigate the performance of these processors for the
following two elemental SNR levels: 20 dB for a strong signal and 0 dB for a weak signal. Note
that the white-noise gain of any processor is limited to 10 dB by the number of sensors [35).

The beampattern responses (4.2), and white-noise gains of these beamformers are presented
in Figure 7.1 for SNR=20 dB. All responses are normalized to have a maximum value of 0 dB.
For comparison purposes, the optimum beamformer response, calculated by using true statistics
in (3.16), is presented as the dashed curves. Observe that due to the mismatch condition, MVDR;
nulls the desired signal. More interestingly. the MVDR, processor that utilizes the true DOA
information does not improve the SNR, due to the mismatch arising from the use of a sample-data
covariance matrix. The cumulant-based processors, CUM,; and CUM3, yield excellent performance
without any knowledge of source DOA. It is very important to observe that the performance of
cumulant-based processors are better than that of the MVDR with exactly known look-direction.

We performed 100 Monte-Carlo runs to investigate the performance in a better way. The results

are given in Table 7.1.
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Figure 7.1: Beampatterns and white-noise gains of processors in a single realization for SNR =
20 dB : (a) MVDR;, (b) MVDR,y, (c¢) CUM,, (d) CUM,. The optimum pattern is illustrated in
dashed lines for comparison purposes.
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Table 7.1: Results from 100 Monte-Carlo Runs for Experiment 1

White-Noise Gain (dB)
Processor | SNR=20dB SNR=0dB
Mean | Std. | Mean | Std.
MVDR, -38.130 { 1.579 | 0.413 | 0.281
MVDR, 0.179 | 1.360 | 9.583 | 0.131
CUM; 9.954 | 0.015 | 9.058 | 0.359
CUM, 9.990 | 0.003 | 9.959 | 0.014

From these results, it is clear that cumulant-based processors are superior and the extra compu-
tation involved in CUM; reduces the variations. Note, also, that variations in the MVDR processors
are significantly larger than those of the cumulant-based counterparts. This agrees with the previ-
ous remarks about the sensitivity of MVDR processing to experimental conditions in a high-SNR
environment.

We performed the same experiment for 0 dB SNR condition. Figure 7.2 illustrates the beam-
pattern responses and white-noise gains of the processors. Monte-Carlo results are also given in
Table 7.1. In this low-SNR condition, MVDR results are expected to improve since the mismatch
conditions for the desired signal will be masked by the presence of white noise of comparable power,
as explained in Chapter 4. MVDR, processor does not offer a significant gain due to the persistent
mismatch condition, but MVDR; yields a near-optimum result, since presence of higher-level noise
masks the mismatch due to the use of a sample-covariance matrix. The performance of CUM,
processor is slightly below than that of MVDR; and exhibits more variations. This is due to the
inefficient use of the array data, since a high-level of noise corrupts the cumulant estimates and
with CUM,; there are no precautions to combat these errors. As expected, CUM; overcomes this

problem by using SVD. Results in Table 7.1 indicate that CUM, achieves the best performance
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Figure 7.2: Beampatterns and white-noise gains of processors in a single realization for SNR =
0 dB : (a) MVDR,, (b) MVDR,, (¢) CUM;, (d) CUM;. The optimum pattern is illustrated in
dashed lines for comparison purposes.
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Figure 7.3: Power of cumulant-based heamforming: {a) received signal at the reference element at
SNR = 0 dB, (b) output of CUM, processor.

with minimum variations.
Finally, to demonstrate the power of cumulant-based beamforming, we illustrate the received
signal and the output of CUM; processor for SNR=0 dB case in Figure 7.3. It is clear that CUM;

is capable of sufficient noise rejection for performing correct decisions.

7.2 Experiment 2: Spatially Colored Noise and Multipath Prop-
agation

In this experiment, we investigate the performance of the proposed approach in the presence of

spatially colored noise. We employ the linear array of the previous experiment. We assume that the
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Figure 7.4: Beamforming in the presence of spatially colored noise: (a) Spatial Power Spectral
Density of noise, (b) Beampattern of CUM;, processor. The optimum pattern is illustrated in
dashed lines for comparison purposes.

noise field is created by a set of point sources distributed symmetrically about the broadside of the
linear array. As suggested in [63], this source structure is typical when the noise field is spherically
or cylindrically isotropic. In this case, the noise covariance matrix is symmetric-Toeplitz. In our

experiment, we use the following structure for the covariance matrix of undesired components,

R,(i.j) =08 li=Jl (7.1)

The spatial power spectrum of undesired components is illustrated in Figure 7.4a. It is clear
that most of the noise leaks into the system from broadside. The desired signal illuminates the
array from broadside, with an SNR of 10 dB. To illustrate the optimum combining property of our
approach, we implanted an exact replica of the desired signal illuminating the array from 60°, where

noise power is relatively less when compared to that from broadside. The beampattern of CUM;
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Table 7.2: Results from 100 Monte-Carlo Runs for Experiment 2

Processor | SNR, (dB)

Mean Std
CUM,; 23.641 | 0.017
CUM, | 23.645{ 0.015

processor is given in Figure 7.4b. For comparison purposes, we present the response of the optimum
beamformer based on exact statistical information, as a dashed curve. The maximum-possible SNR
at the output is 23.689 dB for this scenario. It is clear that the response of CUM3 is almost identical
to that of the optimum beamformer: both processors emphasize the signal illuminating the array
from 60°, since the noise contribution is less in this region. We performed 100 Monte-Carlo runs
for this scenario, and the results are presented in Table 7.2. It is clear that both cumulant-based
processors perform equally well. The reason for this phenomenon is the presence of the multipath
from 60° through a low-noise background that virtually increases the effective SNR, which, in
turn, alleviates the effects of estimation errors. Note that the peak of the beampattern is slightly
shifted from 60°, in order to receive less interference. Similar behavior is observed in covariance-
based direction-of-arrival estimation in the presence of colored noise resulting in biased estimates

of parameters.

7.3 Experiment 3: Effects of Robustness Constraint

In this experiment, we illustrate the effects of the robustness constraint of Section 4.3, on a CUM,
processor in the presence of white noise. We employ the same array as in the previous experiments.
We employ CUM,, since this processor uses the data inefficiently, and requires a robust approach. In

our experiment, we consider the situation with SNR=0 dB. Figure 7.5 illustrates the beampatterns
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Figure 7.5: Beampattern of CUM; processor for varying virtual SNR: (a) 0 dB, (b) -6 dB, (c) -10

dB, (d) -20 dB. The optimum pattern is illustrated in dashed lines for comparison purposes.
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of CUM, processor for several SNR,, values. It is clear from the results that, as the perturbation
increases, the patterns match better since the mismatch due to estimation errors in the steering
vector estimate are masked by the presence of virtual increased level of noise. This method should
be used sparingly in the presence of jammers, because increasing the virtual noise level results in

diverting the capability of the array from nulling the directional interference.

7.4 Experiment 4: Multiple Interferers

In this experiment, we consider the problem of beamforming in a multipath environment in the
presence of multiple jammers. We employ the same array as in the previous experiments. The
signal of interest originates from a BPSK communication source. and it is expected from broadside;
however, due to multipath effects. multiple delayed and shifted replicas are received. There are
two jammers, and one is subject to multipath as well. Table 7.3 summarizes the signal structure.

Note that there are 10 wavefronts illuminating the array and it is not possible to estimate their

Table 7.3: Signal structure for Experiment 4

Source Power (dB) | Multipath Coeff. | DOA

(0.0.-0.5) ~10°

(0.9895,-0.0311) | -2°

(1.0,0.0) 0°

BPSK 10 (-0.6472,-0.4702) | 6°
(-0.8,0.0) 8°

(0.1414,0.1414) | 11°
(0.0462,0.0191) | 18°

JAMMER, 10 (1.0,0.0) 26°

{0.5657,0.5657) 327

JAMMER, 10 (1.0.0.0) —1°
NOISE 0 — -

DOA’s with any existing high-resolution method; hence, signal-COPY algorithms [17] can not be
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used even with perfect knowledge of the array manifold.

Due to presence of coherent wavefronts, second-order statistics are not spatially stationary along
the array; hence, it is not meaningful to define SINR at an array element. Instead, we compute the
SINR at the output of the optimal processor by employing true statistics. The maximum possible
SINR, is found from (5.12) to be 12.677 dB. From Table 7.4, we observe that CUM, performs very
well under these severe conditions. Performance of CUM, is effected by strong interferers since this
processor does not utilize all of the available information. Finally, we observe that MVDR with
correct look-direction cancels the desired signal due to coherence. Note that CUM, exhibits less
variations than other processors.

To gain more insight into the operation of the processors, we illustrate the beampatterns for
MVDR and CUM; in Figure 7.6. We focus on the region where the wavefronts are received by the
array. It is observed that the MVDR processor does not null the jammer from —1°, since it main-
tains the look-direction constraint for 0° and tries to minimize the output power by destructively
combining the coherent wavefronts. On the other hand, CUM; is blind to Gaussian interferers,
and, as in Experiment 2, it estimates the generalized steering vector of the desired signal and
combines the wavefronts to enhance SINR at the output., CUM; puts a null on the jammer from

—1°, destructively combines the wavefronts from the first jammer by weight-phasing rather than

Table 7.4: Results from 100 Monte-Carlo Runs for Experiment 4

Processor SINR, (dB)
Mean Std
MVDR | -28.424 | 4.405
CUM, 4.110 | 2.118
CUM, 10.290 | 0.746
c* 11.879 | 0.627
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null-steering, and reinforces the wavefronts from the desired source.

Finally, we implemented the C? beamformer suggested in Section 4.2: we first estimated the
steering vector as done for CUM,, but then further projected it into the subspace spanned by
the principal eigenvectors of the sample covariance matrix. We used the resultant vector as the
estimate of the desired signal steering vector, and constructed an MVDR beamformer based on it.
The performance of the resultant processor is demonstrated in Table 7.4.

We observe that by combining cumulants with covariance information. we obtain the best

results.

Beampattem (dB)
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Figure 7.6: Beampatterns and array gains of processors: (a) MVDR with correct look direction,
(b) CUM;. The optimum pattern is illustrated in dashed lines for comparison purposes.

7.5 Experiment 5: Adaptive Processing

In this experiment, we demonstrate the results from the adaptive version of CUM,; approach as

described in Chapter 6. We employved the 10 element uniform linear array of previous experiments.
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The initial pattern of the beamformer is designed to be isotropic, by letting ¢(0) = [1,0,...,0}7.
Desired signal illuminates the array from broadside with SNR=10 dB. A jammer with power equal
to that of the desired source is present at 30°. Note that there is no nonstationarity involved in this
experiment; our aim is to demonstrate the evolution of the beamforming process and indicate the
data lengths required for cumulant and covariance estimation. Tracking properties will be included
in our future work, including comparisons with adaptive versions of CUM, and C? processors.
Figure 7.7 illustrates the beampattern of the adaptive CUM; processor as time evolves. After
100 snapshots, the beampattern is still close to isotropic. At 300 snapshots, covariance matrix
estimate is improved, indicating the presence of desired signal from broadside. At this time point,
the cumulant-based steering vector estimate has not matured, so it can not prevent the desired
signal from being cancelled. After 500 snapshots, cumulant estimates get better. and there is a
tendency to cancel the interference rather than the desired signal. Finally, after 700 snapshots the

processor removes the interference by null steering.

7.6 Experiment 6: Effects of Data Length

In this experiment, we employ the linear array of Experiment 1, with the same noise conditions,
and vary the data length to observe the behavior of the beamformers CUM;, CUM2, MVDR, and
MVDR,. Figure 7.8 demonstrates the variation of white-noise gain of the processors with data
length, for 0 dB and 20 dB SNR levels. Each point on the plots is obtained by averaging the results
from 50 Monte-Carlo simulations.

From Figure 7.8a it is clear that CUM; outperforms all the processors, including MVDR,

which utilizes the correct look direction for all data lengths. Furthermore, small sample properties
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Figure 7.7: Beampattern of the adaptive CUM; processor as a function of time: desired signal is
from broadside and the jammer is from 30° as indicated. (a) t=100, (b) t=300, (c) t=500, (d)
t=700.
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of CUM, are quite impressive, motivating further research for developing its adaptive version. Low
SNR masks the mismatch in MVDR;, due to the use of sample covariance matrix; hence, as can be
seen from Figure 7.8a, CUM, is inferior to MVDR,;.

Figures 7.8b and 7.8c, indicate the effect of higher SNR on performance. CUM; and CUM;
perform almost identical for all data lengths. Their gain is larger than 9 dB even for less than 50
snapshots. MVDR; can not recover in this experiment since the mismatch results in severe signal
cancellation. We do not include the response of MVDR,, because its performance drifts around
-35 dB.

These results indicate that our approach has very promising small sample behavior that deserves

more research. This will be a topic of another report.
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Abstract

Sensor response, location uncertainty and use of sample statistics can severely degrade the per-
formance of optimum beamformers. In this report. we propose blind estimation of the source
steering vector in the presence of multiple, directional, correlated or coherent Gaussian interferers
via higher-order-statistics. In this way, we employ the statistical characteristics of the desired sig-
nal to make the necessary discrimination. without any a-priori knowledge of array manifold and
direction-of-arrival information about the desired signal. We then improve our method to utilize
the data in a more efficient manner. In any application, only sample statistics are available. so
we propose a robust beamforming approach that employs the steering vector estimate obtained
by cumulant-based signal processing. We further propose a method that employs both covariance
and cumulant information to combat finite sample eflects. We analyze the effects of multipath
propagation on the reception of the desired signal. We show that even in the presence of coherence,
cumulant-based beamformer still behaves as the optimum beamformer that maximizes the Signal
to Interference plus Noise Ratio (SINR). Finally, we propose an adaptive version of our algorithm.

Simulations demonstrate the excellent perforiance of our approach in a wide variety of situations.
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Chapter 1

Introduction

Array processing techniques play an important role in enhancement of signals in the presence of
interference. A number of books, and an extensive literature [1]-[9] have already been published.
Capon’s minimum-variance distortionless response (MVDR) beamformer [10] has been a starting
point for both signal enhancement and high-resolution direction-of-arrival (DOA) estimation.

In recent years, there has been an increasing interest in high-resolution array processing tech-
niques based on eigendecomposition of the covariance matrix of received signals [11]-[21]. To recover
the signal of interest in the presence of interfering signals, the so-called COPY function [17] is used.
In this procedure, DOA’s for all signals are first estimated, and then the minimum-variance proces-
sor that reconstructs the desired signal and minimizes the contribution of all interference sources
is implemented. All of the previously referenced methods rely on complete knowledge of responses
and locations of array elements and/or DOA information of the desired signal.

If the array manifold is unknown, or there are uncertainities, it is then necessary to calibrate
the array [22]-[23]; however, this is not a practical thing to do, since calibration must be done quite

frequently, and, each time, array-manifold information must be stored. In addition, calibration
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sources may be required. Even small errors in the calibration procedure may considerably degrade
the performance. Sensitivity analyses of high-resolution methods and MVDR beamforming have
been presented in [24]-[32].

In this report, we shall employ higher-order statistics of received signals to estimate the steering
vector of the non-Gaussian desired signal in the presence of directional Gaussian interferers with
unknown covariance structure. We assume no knowledge of array manifold and DOA information
about the desired signal. Desired signal may be voiced speech, sonar signal, radar return or a
communication signal. In our work, we specialize to the communications scenario, which requires
the use of fourth-order cumulants. Following a mathematical formulation of the problem in Chap-
ter 2, we describe basic properties of cumulants and blind estimation and optimum beamforming
procedures in Chapter 3.

Any estimation procedure is subject to errors, as is our cumulant-based source steering vector
estimation method. In theory, cumulants are blind to Gaussian noise; however, their estimates are
corrupted by such noise. In order to obtain satisfactory results, longer data lengths are necessary in
cumulant-based signal processing. To alleviate the effects of estimation error in the beamforming
step, we propose a more efficient estimation procedure that fully utilizes the data acquired by the
array. We further suggest a method of combining cumulant and covariance information to yield
better estimates. Then we employ a robust beamforming method based on artificial noise injection
to combat mismatch in the source steering vector. We consider the estimation error as a mismatch
and successfully apply this robust approach to our problem. These methods are presented in
Chapter 4.

In a communications environment, multipath propagation almost always take place. In this case,

all eigendecomposition-based techniques and MVDR fail. Only in some specific array configurations
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is it possible to decorrelate incoming signals and then estimate their DOA’s. We analyze the
behavior of our cumulant-based approach in Chapter 5. We show that our proposed approach
behaves as the optimum beamformer that maximizes the Signal to Interference plus Noise Ratio
(SINR).

For real-time operation (a necessary requirement in communications applications) we propose
an adaptive implementation of the cumulant-based beamformer in Chapter 6. We then present
simulation experiments to indicate the performance of our approach in Chapter 7. Finally, we draw

our conclusions in Chapter 8.



Chapter 2

Problem Formulation

We formulate our problem in a narrowband fashion. In array processing. a problem is classified as

narrowband if the signal bandwidth is small compared to the reciprocal of the time required for

the signal wavefront to propagate across the array. For a discussion on bandwidth, see [36)-[37].
In our formulation, lower and upper case italic letters are used to represent scalars, lower case

bold-faced letters are used for vectors, and, upper case bold-faced letters are used for matrices.

2.1 Signal Model

Consider an array of M elements, with arbitrary sensor response characteristics and locations.
Assume there are J Gaussian interference signals { i;(¢), j = 1,2,....J }. and a non-Gaussian
desired signal d(?), centered at frequency w,. We assume sources are far away from the array so
that a planar wavefront approximation is possible. The additive noise present is assumed to be

Gaussian with unknown covariance. With these assumptions. the received signal at the Ath sensor

can be expressed, as
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wn

J
(1) = ar(04) A1) + D arl(Bi)) (1) + na(t) (2.1)
=1

where,
e 0, : the direction-of-arrival of the wavefront corresponding to emitter .

o a;(0;) : response of the kth sensor to xth signal wavefront, including the phase factor asso-
ciated with the travel time of the signal wavefront with respect to a reference point; without

loss of generality, this point can be taken as the first sensor location.
e d(t) : the desired non-Gaussian signal as received at sensor 1, with variance o3.

e i;(t) : the jth interferer waveform as received at sensor 1; interference signals are assumed to

be independent of the desired signal. and they are Gaussian processes.
o ni(t) : the additive noise at the kth sensor.

Equation (2.1) can be rewritten in matrix notation, as

ri(t) - 1 | d) n(t)
r2(t) i1(1) na(t)
= | a(a), a(8;,). -+, a(6;,) I (22)
| i) ) ) | ) | ] rald)

where a(f,) represents the AMx1 steering vector for the wavefront from emitter z, which can be

expressed as

ald:) = | a;(8,), aa(by). .... ars(8y) (2.3)
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We define the array manifold as the collection of steering vectors over all DOA’s of interest. Alter-

native expressions for the received signal vector are,
r(t) = Az(t) + n(t) = a(8q) d(t) + Api(t) + n(?) (2.4)

In this last expression, we partitioned the M x(J + 1) steering matrix A as,

A = [a(gd), Ap ] (2.5)

where the M xJ matrix Ay, is the steering matrix for interference sources.

In this report, we address the problem of optimum beamforming with an array of sensors whose
responses and locations are completely unknown; hence, although we may have a priori knowledge
about the direction-of-arrival of desired signal, we can not perform beamforming due to the lack of
knowledge of array manifold. In [38], this problem is addressed; however, [38]’s algorithm is limited
to a single interference signal. We investigate the possibility of a more general solution; namely,
signal recovery in the presence of multiple interferers whose correlation structure is unknown. Before
presenting our approach, which employs higher-order statistics, we demonstrate the limitations of

covariance-based array processing for this problem.

2.2 Covariance-Based Approaches

Currently used high-resolution methods of DOA estimation and minimum-variance distortionless
response beamforming (MVDR) employ the covariance matrix of signals received by the array. The

wavefront covariance matrix, S, is defined as the covariance ol the source signals as received at the
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reference point, i.e., at sensor 1:

S = & {z(t)z" (1)} (2.6)

where (-)# denotes complex conjugate transpose. Using the received signal model in (2.4), we can

express the MxM covariance matrix R of array measurements in the following two ways:

R = £{r(t)r(1)} = ASAY + R, = o%a(8y)a(8s) + R, (2.7)

where R, is the noise covariance matrix,

R, = £ {n{1)nf(1)} (2.8)

and, R, is the covariance matrix of the undesired signals. i.e.,

R, = £{[Ari(t) + n()][Ari(t) + n(t) )"} (2.9)

In general, the noise covariance matrix. R,. is unknown. With some restrictions on array
orientation and noise covariance structure, some approaches for high resolution DOA estimation
are proposed in [39)-[40) that do not require this information; however, these techniques have
their limitations due to involved assumptions. Even with complete knowledge of noise covariance
structure, source localization is still impossible without the knowledge of array manifold. In [20],
ESPRIT algorithm is devised to overcome this problem; however, ESPRIT requires transitionally
equivalent subarrays with known displacement vectors. which may also be impractical due to all

the constraints on array orientation. In [33]. an eigendecomposition-based beamforming approach
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is proposed which assumes the identifiability of the signal subspace and availability of the steering
vector information for the signal of interest. Good results were obtained under these assumptions;
however, this method can not handle coherent interference and spatially colored noise.

In [41]-[43], blind estimation of steering vectors for independent emitters is discussed with the

following conclusion:

Blind estimation of source steering vectors is not possible with only second-order statis-
tics, but employing higher-than-second-order cumulants, it is possible to estimate source

steering vectors up to a scale factor.

MVDR beamforming is an alternate approach for signal recovery. This approach however,
requires knowledge of the steering vector for the desired source up to a scale factor and uses the
covariance matrix R of received signals for processing. The output of the MVDR beamformer y({)

can be expressed as [10]

y(t) = we(t)y = [B R a(8s) 17 (1) (2.10)

where the constant f3; is present to maintain a specified response for the desired signal and w
denotes the weight vector of the processor.

From the above expression, it is clear that MVDR beamforming requires knowledge of a(y).
Without knowledge of array manifold, it is not possible to determine a(8y) even in the case of known
84. Therefore, MVDR beamforming can not be directly applied to our problem. In addition, the
MVDR beamformer is quite sensitive to errors in assumed sensor locations and characteristics [24]-
(29)].

In many applications, multipath propagation takes place resulting in coherent sources. Coher-
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ence presents a serious problem to DOA methods; it leads to a singular source covariance matrix
S, for which it is not possible to estimate source locations except in some specific array configura-
tions [44)-[50). In the MVDR case, source coherency does not represent a problem as long as there
is no source correlated with the desired signal; however, this situation is rarely met in practice.
In general, the desired signal is subject to multipath propagation, and performance of MVDR ap-
proach degrades severely [51]-[52]. An optimum heamforming procedure has been suggested in [53]
to overcome the coherence problem by using a linear array of elements with identical directional
characteristics.

We are therefore looking for a method that can overcome all these problems. In the next chapter,

we present an approach that accomplishes this by combining cumulant-based blind estimation and

MVDR beamforming.



Chapter 3

Cumulant-Based Optimum

Beamforming

In the previous chapter, we discussed the problem of optimum beamforming and concluded that it
is not possible to recover a desired signal in the presence of multiple interferers, unknown sensor
noise covariance, and multipath propagation without any information about array manifold. In
this chapter, we propose a method to overcome these problems. We propose a two-step procedure:
higher-order-statistics for blind estimation of the source steering vector, followed by MVDR beam-
forming based on second-order statistics of received signals and steering vector estimate provided
by the first step. Before describing our method we first present a brief review of higher-order

statistics.

10
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3.1 Higher-Order Statistics: Definitions and Properties

Let {z1,%2,...,2,} be a collection of random variables and {v),v2,...,v,} be a collection of
deterministic variables. We can stack these variables in vectors x = [zy.2,...,2,]7 and
v = [vl,vg,...,vn]T. Then, the nth-order cumulant of the random variables is defined as the
coefficient of (v;,vs,...,v,) in the Mac-Laurin series expansion of the cumulant-generating func-
tion

Kx(vy=In( E{exp[jvTx]}) (3.1)

An alternate approach that defines the nth-order cumulant in terms of a weighted sum of joint
moments of orders up to n is provided in [55].
For zero-mean real random variables, which we frequently encounter in applications, the second-,

third-, and fourth-order cumulants are expressed, as

cum(xy,xp) = F {a) a2}

cum(zy,z2,23) = E {2723} (3.2)
cum(xy, 22, x3,24) = E {z1z20324} — E {2122} E {2324} -
I {.’L‘].’!fg} E {’Lz’l'|} - F {.’l?|.1,'4} E {:L'QIL';;}

There are several ways of collecting these random variables. In array processing, we collect
samples of delayed sensor outputs; in system identification, we collect samples from a random
process. In the system identification context, if z(t) is a random process, stationary up to order n,

then the nth-order cumulant of x(t), Cn»(T1,72.....Th=1), is defined as the nth-order cumulant
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of the random variables {z(t),z(t + 7),...,2(t + Tm=1)}, ie.,

Cra(T1, T2y oy Tn1) = cum(z(t),2(1+ 1), ... 2(l + Tha1)) (3.3)

Due to the stationarity assumption, the nth-order cumulant of the random process z(t) has (n —1)
degrees of freedom {ry,72,...,7x=1}. Since the nth-order cumulant can be expressed as a sum of
joint moments of the random variables of orders up to n, its existence is established if all absolute
moments of orders m < n exist and are bounded.

Note that for zero-mean processes the second- and third-order cumulants are identical to covari-
ance and third-moment respectively. The third- and higher-order cumulants of Gaussian processes
are identically zero. This fact can be used for detection and characterization of deviations from
non-Gaussianity [56].

The following properties of cumulants are used frequently in applications [55]:
o [CP1] If {a;}, are constants and {;}/; are random variables, then

i=1 i=1

n
cum(a1zy, 0222, ....0,Tn) = ( H a; ) cum(zy,29,...,2y) (3.4)
=1

¢ [CP2] Cumulants are additive in their arguments,

cum(xy) + Y1, 22,-...Tp) = CuM(T1. T2, ... Tn) + cum(y. T2, ..., Ty) (3.5)

e [CP3] If the random variables {z;}/, are independent of the random variables {y;}1,, then

cum(zy + N, 32+ Y2uee ooy + Yn) = cum(zy, 2., 80) + cum(Y1. Y25 s Yn) (3.6)
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e [CP4] Cumulants suppress Gaussian noise of arbitrary covariance, i.e., if {2}, are Gaussian

random variables independent of {2;}/=, and n > 2, we have

cum(zy + 21,22+ 224+ ..y Tn + 2n) = cum(z1,22,...,2y) (3.7)

e [CP5] If a subset of random variables {z;}?., are independent of the rest, then

cum(xy,22,...,2,)=0 (3.8)

e [CP8] If a, is a constant, then

cum(o, 4+ 1,22.....%p) = cum(zy,T2....,Ty) (3.9)

Cumulants are blind to phase shifts and scale factors. This originates from their definition.
Third-order cumulants are blind to processes that have a symmetric probability density function;
consequently, fourth-order cumulants must be used in such environments. Cumulants of indepen-
dent and identically distributed (i.i.d.) random processes are delta functions. i.e., if z(¢) is such a
process, then

Cn,J:(T]s T24 0009 Th=1 ) = Tnr 61‘1.1’2.....1’"_1 (3'10)

where v, ; is the nth-order cumulant of a single time sample from 2(¢). It is important to note
that joint moments do not possess this property. Furthermore, cumulants of order higher than two
are blind to Gaussian noise and can reveal phase characteristics of the system under consideration.

On the other hand, covariance-based approaches are blind to phase information and sensitive to
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Gaussian noise. These properties, as proved in [57]. make higher-order statistics candidates to
previously unsolvable signal processing and communication problems.

In applications, we do not have access to true cumulants; we estimate them from the received
data. The presence of additive Gaussian noise does effect the quality of the estimates, due to
finite sample averaging in the estimation procedure. In order to get satisfactory results, longer
data lengths are required for higher-order processing. An analysis of the asymptotical behavior of

estimates of higher-order statistics can be found in [38].

3.2 Estimation of desired signal steering vector

In this section, we employ cumulants of received signals. to estimate the stecring vector of the
desired signal up to a constant factor. As described in Section 3.1, third-order cumulants are
blind to signals with symmetric probability density function. On the other hand. most signals in
communication environments have synunetric density functions, which motivates the use of fourth-
order cumulants!. First, we define the fourth-order :cro-lag cumulant operator of complex processes

{z1(1), z2(1), z3(1), z4(1)}, based on (3.2). as

cum {x,(1), 22(1), 23(1), z4(1)} gk {xi(z2(Oaa(B)aa()} — E{21(D)xa(t)} E {x3(t)za(2)}

- E{zi(tes()} E{z2(t)2alt)} ~ E{ei(Daa(t)} E {zalt)ra(t)) (3.11)

Next, consider the vector ¢ = [¢}.¢a.. . ..c‘,”]j . defined as

a2 cum{rt0). rfy. P ()} =120 0. (3.12)

! An estimation procedure based on third-order statistics is presented in Appendix A,
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As suggested in [55], there are various ways of defining fourth-order statistics of complex random
processes. We follow the approach presented in [59] in (3.12). Since interference signals are in-
dependent of the desired signal and they are Gaussian with zero fourth-order cumulants ([CP4]),

using (2.1) in (3.12) we can express ¢; as

¢ = cum {al(Bd')d(t),a{'(()d)dH(t), a{"(()d)d"(t), a(8q)d(1) } (3.13)

Using [CP1]), we obtain

e = len(8))® e (84) vua ai(64) (3.14)

where 74,4 denotes the :croth lag of the fourth-order cumulant of the desired signal. Defining

B2 = |a1(84)]? af!(84) a4 we have the following expression for the M x1 vector c:

¢ = 3, a(fy) (3.15)

Observe that the vector ¢ is a replica of the stecring vector of the desived signal up to a scale factor.

We show in the next section how this information can be used to recover the desired signal.

3.3 Interference Rejection

With the knowledge of the steering vector of the desired signal. interference rejection is possible
using the following minimum-variance distortionless response formulation: find the weight vector

w that minimizes the power, w” R w, at the output of the heamformer subject to the constraint

H

w? ¢ = 1, where ¢ is obtained via the cumulant-based estimation procedure described in Sec-
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tion 3.2. The solution to this optimization problem is well-known [10], and can be expressed as

Weum = IB3 R'c (3.16)

where the constant 33 = (¢ R™! ¢)~! is present in order to maintain the linear constraint.

Due to the constraint w¥ ¢ = 1, the power minimization procedure does not cancel the desired
signal, but rejects all interference components and sensor noise in the best possible manner. Note
that this is accomplished without knowledge of covariance structure of interference signals, sensor
noise or array manifold. In the sequel, we refer to the processor in (3.16) as CUM,. The proof
that this cumulant-based beamformer is identical to the maximum SINR processor is provided in

Chapter 5, where the general multipath case is treated.



Chapter 4

Robust Beamforming

In this chapter, we first propose an approach that utilizes the received data in the estimation of
the source steering vector in a more efficient manner. We then suggest a method that uses both
cumulants and covariance information under some scenarios. Finally, we employ a robust method

to combat the effects of estimation errors.

4.1 Efficient Utilization of Array Data

In the previous chapter, we presented a method of blind estimation of the desired source steering
vector from the received data; however, the proposed approach is rather inefficient in the sense that
only the first sensor is taken as reference. For example, if the connection from this element to the
processor is broken, then the estimation objective can not be accomplished. Similarly, due to poor
receiving circuitry following this array element. the reference signal may be very noisy, degrading

the quality of the estimate. We can overcome these difficulties by using multiple reference elements.

17
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Define the matrix C with the (&, !)th element,
Chri 2 cum{rk(t),rt’(l). r,{,’(t), ri(1)} where kI=1.... M. (4.1)

With true statistics, the cross-cumulant matrix C will have rank 1, since all its columns are scaled
replicas of the desired source steering vector; however, with sample statistics this condition never
holds. The left singular vector of C with the largest singular value can be used as the estimate of
the desired source steering vector removing the effects of noise. In this way. we utilize array data
more efficiently!. The beamformer that employs the steering vector estimate obtained in the way
described above is referred to as the CUM; beamformer in the sequel.

In addition, the Total Least Squares algorithm, that takes the errors in both the received data
covariance matrix estimate and the steering vector estimate into account, is a better choice for
computing the optimum weight vector, as suggested in {52], but it is computationally expensive.
If extra computations are feasible. we suggest the use of the Constrained Total Least Squares

algorithm [60], for even better numerical results.

4.2 Covariance-Cumulant (C?) Approach

In some array processing applications, sensor noise covariance structure has a definite structure
enabling a whitening operation on the received data. The principal eigenvectors of the covariance
matrix of this processed data reveal the subspace spanned by the steering vectors of directional
signals illuminating the array [17]. Hence, the steering vector estimate obtained by the cumulant-

based approach can be improved by projecting this estimate on the subspace spanned by the

YA method that utilizes the array data even more efficiently is presented in Appendix B.
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principal eigenvectors of the covariance matrix. This improved estimate can then be used in the
beamforming procedure of Section 3.3. The motivation behind this approach is that covariance
estimates exhibit less variance than cumulant estimates. but in the covariance domain we can not
identify the source steering vector if there are multiple sources. This procedure yields an estimate of
the steering vector from covariance-matrix information by employing the cumulant-based estimate

as side information. A mathematical description of this approach is presented below:

1. From the received data, estimate the covariance matrix R and the desired signal steering

vector ¢ by the cumulant-based procedure.

2. Perform an eigendecomposition of the sample covariance matrix, to reveal the signal and
noise subspaces: the eigenvectors of R with the repeated minimum eigenvalue span the noise

subspace [17], while the rest span the signal subspace.

3. Assume the signal subspace is (J + 1) dimensional. Then, the basis vectors for the signal
subspace, obtained from the eigendecomposition procedure, can be sorted in an Mx(J + 1)

matrix E; with the column space identical to the signal subspace.

4. Project the cumulant-based steering vector estimale ¢, on the signal subspace to obtain an
improved estimate c;,,,, as

H
Cimp = EsEs C

5. Compute the weights for the beamformer, as

— -1
Wimp = R Cimp
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4.3 Robustness Constraint

Any estimation procedure is inevitably subject to errors. MVDR beamforming is extremely sen-
sitive to mismatch [24]-[30], especially in high SNR conditions and in arrays with large number
of elements. A variety of constraints have been summarized in [6] assuming perfect knowledge of
element characteristics and locations; however, in our case these methods are not applicable since
there is no available information about the array manifold to design effective constraints.

Errors in the steering vector estimate result in signal cancellation. This mismatch condition,
arising from non-perfect estimation. can be viewed as the problem of optimum beamforming with
an array of sensors at slightly perturbed locations. In [35]. a method that constrains the white
noise gain of the processor is proposed for the solution of the latter problem. In this section, we
use the same approach to alleviate the effects of estimation errors in cumulant-based optimum
beamforming.

In order to understand the mismatch problem and find a way to alleviate its effects, we need
to analyze the problem analytically. Consider the power response of a beamformer with a weight

vector w, as a function of DOA 6. defined as
A
P(8) = |wHa(8)|? (4.2)

with a(8) denoting the steering vector for an arrival from 8. The derivative, dP(68)/28, can be

expressed, as

aP(8)

M 9
5 = 2Re{ wHa(0) | ; ey af'(8) 1) (4.3)

Now consider the following scenario: we have an MVDR processor looking at 8,, which is the
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expected DOA for the desired signal. Instead, the source illuminates the array from 63 which is
very close but not equal to #,. In this case, the beamformer treats the desired signal as interference
and nulls it; however, due to the distortionless response constraint for 8,, and since the angles are
very close, the derivative 3P(8)/28 must be large in magnitude for @ between 64 and 8,. From the
derivative expression (4.3), it is clear that this is possible only if the norm of the weight vector
increases, since the inner product, w//a(#), and, the derivatives, {% a,H(B) }f‘i, are bounded. In
this situation, the constraint is maintained by increasing the angle between the weight vector and
the look-direction steering vector. This phenomena was exploited in [34]. for tuning the beamformer
to acquire a weak desired signal in the presence of strong interference.

Note that the white-noise amplification factor for any processor with a weight vector w is wHw;
hence, the nulling phenomena can be prevented if the white noise level at the processor is sufficiently
high so that output power minimization criterion limits the increase in the norm of w. This can be
achieved by perturbing the covariance matrix estimate of array measurements by a scaled identity
matrix as,

R,=R+¢l (4.4)

where ¢ is a non-negative parameter which adjusts the strength of perturbation. Alternatively, it

is possible to coin a term virtual SNR, SNR,,. defined as

€+ 0,21
) ) (4.5)

n

SNR-U = SNR - lOlOgIO (

We then determine the weight vector as,

w=R>"'a(f,) (4.6)
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A recent method presented in [35] performs this procedure in an adaptive fashion by a simple
scaling of the weight vector. In our case, we do not have source DOA information, but we do have
an estimate of the steering vector. It is therefore possible to use this estimate in place of a(#,) in

(4.6) to formulate the cumulant-hased processor with limited signal nulling property.



Chapter 5

Multipath Phenomena

Eigendecomposition-based high-resolution methods [11]-[21] have proven to be effective means of
obtaining bearing estimates of far-field narrowband sources from noisy measurements. The perfor-
mance of these algorithms is severely degraded when coherence is present. Several methods have
been proposed to solve the coherent signals problem with restrictions on array geometry [44]-[50];
however, with lack of knowledge of array manifold it is not possible to solve the coherence problem.
MVDR beamforming also fails to perform optimally, when interference signals are correlated with
the desired signal [51]-[52]. [n some scenarios, even the conventional beamformer outperforms the
MVDR approach due to signal cancellation in the MVDR beamformer.

In Chapter 3, we showed that the cumulant-based beamformer is not affected by the presence
of coherence among interfering Gaussian signals as long as they are not correlated with the desired
signal. The same is not possible for high-resolution DOA estimation methods; but, the MVDR
beamformer may perform equally well if the desired signal steering vector is known and a satisfactory
estimate of R is available. In this chapter. we show that the cumulant-based approach is not

affected by the presence of multipath propagation of the desired signal. In addition. we show that

23
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the cumulant-based processor turns out to be the mazimal-ratio-combiner (61) that mazimizes the
SINR.

With the presence of multipath propagation or smart jamming, our signal model in (2.1) changes

to
L J
() = d(1) 3 arlBa) m+ 3 alBi,) i5(8) + ma(?) (5.1)
=1 1=1
or in vector form
i 1 m
Y .
r(t) = a(84,), a(Ba,), -+, a(fa,) d(t) + Api(t) + n(1) (5.2)
i R

where the set of scalars { m,72,....7y7, } constitute the multipath coefficients for an L-ray scenario.
The set of vectors, { a(8q,), a(fy,), .... a(f4,) } are the corresponding steering vectors of the

L-ray model. Letting

2
a(fs,), a(bs,). - aBy) || | = AD7 (5:3)

e

N

L -

we can reduce the signal model for multipath phenomena to the single-ray propagation model of

Section 2.1,

r(/) = bd{t)+ Agi(!) + n(t) (5.4)
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because we can view the vector b as a generalized steering vector for a single desired signal although
it may not be a vector in the array manifold. Therefore, following our work in Chapter 3, cumulant-

based blind estimation procedure will yield

c=04b (5.5)

where B4 = |b1)% b 444, in which b; is the first component of b. Incorporating (5.5) into the

constrained power minimization procedure, we obtain the following weight vector,

Weum = 35 R-l c = 134,’35 R--] b (5.6)

where Bs = (¢ R™' ¢ )L
Next, we find an alternate expression for We,,. Recall that the optimization problem which

!

results in Weym is: minimize w//Rw subject to we = 1, or by (5.5), wHb = 1/3;. We can express

the output power in the following way by using (2.9) and (5.4).

wlRw = 03 | wi b 1> + wiR,w (5.7)

but, due to the constraint wfb = 1/8,. the first term in the above expression is a constant.

Therefore. the original optimization problem can be translated into : minimize wHR,w. subject

H

to wHc =1 or equivalently, w/b = 1/3,. The solution to this problem is

Weum = Bs R;l c (5.8)
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where 85 = (¢¥ R~! ¢)~1. Of course, this solution can also be expressed in terms of b, as

Weum = B7 R;l b (59)

where 7 = £40s.

Note that although (5.8) and (5.9) are alternate expressions for Wy, they are not the way to
actually compute Wi, since R, is not available in gencral.
Next, we determine the weight vector that yields the maximum SINR. SINR can be expressed

as a function of the weight vector of the beamformer, as

, wHbbw

Defining, v = 3,/2 w s0 that w = R,,T'n v. we can reexpress (5.10), as
) H R1/2 2
SINR (w) = SINR ( R-/2 v) = a3-Y il b (5.11)
vH v
Applying the Schwarz inequality [50] to (5.11), we find that
SINR(w)= SINR(R;'?v) < a3||R;V?b |2 =03b”R "D (5.12)
where equality holds if and only if
v=p8s R;Y?b (5.13)

in which fg is a non-zero constant. Consequently, the optimum weight vector wsing, which yields
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1/2

the maximum SINR, can be determined from w = R, /“v and (5.13), as

waing = s R;' b (5.14)

Based on this derivation, some comments are in order. It is clear, by comparing (5.9) and (5.14),
that the cumulant-based beamformer does indeed yield the maximum possible SINR, since weum
is just a scaled version of wginr. This observation proves that the cumulant-based beamformer is
optimal. In addition, w,,,, can be computed from the received data, whereas wsing. as imple-
mented in (5.14), requires knowledge of R,, which can not be determined from the received data
in the presence of the desired signal. Finally, note that robust approaches presented in Chapter 4

are directly applicable in the presence of multipath.



Chapter 6

Adaptive Processing

In real-world applications. adaptive beamforming is an important requirement, especially when the

desired signal source is in relative motion with respect to the array. In this chapter, we address this

problem by providing an “estimate and plug” type of adaptive algorithm for the CUM,; method.
The beamforming procedure (3.16) requires the inverse of the sample covariance matrix to

compute the weights. We can estimate the covariance matrix recursively, as
R, = (1 — a;)Recy + ayr(0)r? (1) (6.1)

Since we need to propagate the inverse of R,. we use the Sherman-Morrison formula [62], to obtain

R r(rH(ORT]
"1- a1 = rH()R; L (1))

. 1 .
-1 -1
R, = - R, —a

] t=12,... (6.2)

with Ry! = 41 where 7 is a large positive number and a; controls the learning rate for second-order

statistics.
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To compute the weight vector, we also need the cumulant-based estimate of the source steering

vector c. We can estimate it recursively as

&(t) = (1 - a)élt — 1) + ol Ir(OPr{ (0)r(2) = 2p(8)a(t) — o7 (D)2(1)] (6.3)

with the auxilary processes defined as

p(t) = (1 = az)p(t = 1) + azjri(t)]?

q(t) = (1 — ag)g(t = 1) + azr{ ()ri(2)
o(t) = (1 - az)v(t — 1) + azri(t)
(1) = (1 = az)z{l = 1) + azgri(t)r(1)

The auxiliary processes are required in order to implement the cross-correlation terms in (3.11). The
initial values for the auxilary processes can be set to zero. Different learning rates are provided
to emphasize the fact that higher-order statistics require longer periods to acquire the required
information.

We can perform adaptive beamforming by computing the weight vector at each time as

w(t) = R7'é(1) (6.4)

and obtain the array output, as

y(t) = whior(). (6.5)
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‘Adaptive versions of CUM; and C? methods will appear in a later publication.

30



Chapter 7

Simulations

In this chapter we present various experiments to illustrate the performance of cumulant-based
beamforming. In all of the experiments we employed a uniformly spaced linear array, rather than
an arbitrary geometry. This is done for two reasons: covariance-based techniques are mainly
designed for this type of array structure, e.g., the spatial smoothing algorithm [44)- [50], so that it
will be possible to compare both previous and future work with our current results. In addition,
allowing a sufficient number of multipath rays, it is possible to represent any arbitrary steering
vector by the linear array, since the steering vectors of the uniformly spaced isotropic linear array
exhibit Vandermonde structure. resulting in linearly independent vectors for different DOA’s. In
all batch type of experiments, the record length is 1000 snapshots and the array has 10 isotropic

elements with uniform half-wavelength spacing.
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7.1 Experiment 1: Desired Signal in White-Noise

In this experiment, we employ the linear array described abhove for optimum reception of a BPSK
signal, which is expected to arrive from broadside in the presence of temporally and spatially white,
equal power, circularly symmetric sensor noise; however, the desired source illuminates the array
from 5° broadside.

Our first MVDR beamformer, MVDR,, looks to broadside, i.e., a mismatch condition. Our
second MVDR beamformer, MVDR3, uses exact knowledge of DOA of the desired signal. We also
employ the cumulant-based beamformer of Chapter 3, CUM;, and the improved cumulant-based
beamformer CUM; of Section 4.1. We investigate the performance of these processors for the
following two elemental SNR levels: 20 dB for a strong signal and 0 dB for a weak signal. Note
that the white-noise gain of any processor is limited to 10 dB by the number of sensors [35).

The beampattern responses (4.2), and white-noise gains of these beamformers are presented
in Figure 7.1 for SNR=20 dB. All responses are normalized to have a maximum value of 0 dB.
For comparison purposes, the optimum beamformer response, calculated by using true statistics
in (3.16), is presented as the dashed curves. Observe that due to the mismatch condition, MVDR,
nulls the desired signal. More interestingly. the MVDR; processor that utilizes the true DOA
information does not improve the SNR, due to the mismatch arising from the use of a sample-data
covariance matrix. The cumulant-based processors, CUM; and CUM,, yield excellent performance
without any knowledge of source DOA. It is very important to observe that the performance of
cumulant-based processors are better than that of the MVDR with exactly known look-direction.

We performed 100 Monte-Carlo runs to investigate the performance in a better way. The results

are given in Table 7.1.
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Figure 7.1: Beampatterns and white-noise gains of processors in a single realization for SNR =
20 dB : (a) MVDR,, (b) MVDR,, (c) CUM;, {(d) CUM;. The optimum pattern is illustrated in
dashed lines for comparison purposes.
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Table 7.1: Results from 100 Monte-Carlo Runs for Experiment 1

White-Noise Gain (dB)
Processor | SNR=20dB SNR=0dB
Mean | Std. | Mean | Std.
MVDR, -38.130 | 1.579 | 0.413 | 0.281
MVDR, 0.179 | 1.360 | 9.583 | 0.131
CUM;, 9.954 | 0.015 | 9.058 | 0.359
CUM, 9.990 | 0.003 | 9.959 | 0.014

From these results, it is clear that cumulant-based processors are superior and the extra compu-
tation involved in CUMj, reduces the variations. Note, also, that variations in the MV DR processors
are significantly larger than those of the cumulant-based counterparts. This agrees with the previ-
ous remarks about the sensitivity of MVDR processing to experimental conditions in a high-SNR
environment.

We performed the same experiment for 0 dB SNR condition. Figure 7.2 illustrates the beam-
pattern responses and white-noise gains of the processors. Monte-Carlo results are also given in
Table 7.1. In this low-SNR condition, MVDR results are expected to improve since the mismatch
conditions for the desired signal will be masked by the presence of white noise of comparable power,
as explained in Chapter 4. MVDR; processor does not offer a significant gain due to the persistent
mismatch condition. but MVDR,; vields a near-optimum result. since presence of higher-level noise
masks the mismatch due to the use of a sample-covariance matrix. The performance of CUM,
processor is slightly below than that of MVDR, and exhibits more variations. This is due to the
inefficient use of the array data, since a high-level of noise corrupts the cumulant estimates and
with CUM; there are no precautions to combat these errors. As expected, CUM; overcomes this

problem by using SVD. Results in Table 7.1 indicate that CUM; achieves the best performance
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Figure 7.2: Beampatterns and white-noise gains of processors in a single realization for SNR =
0 dB : (a) MVDR,, (b) MVDR,, (c) CUM;, (d) CUM,. The optimum pattern is illustrated in
dashed lines for comparison purposes.
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Figure 7.3: Power of cumulant-based beamforming: (a) received signal at the reference element at
SNR = 0 dB, (b) output of CUM, processor.

with minimum variations.
Finally, to demonstrate the power of cumulant-based beamforming, we illustrate the received
signal and the output of CUM; processor for SNR=0 dB case in Figure 7.3. It is clear that CUM,

is capable of sufficient noise rejection for performing correct decisions.

7.2 Experiment 2: Spatially Colored Noise and Multipath Prop-
agation

In this experiment, we investigate the performance of the proposed approach in the presence of

spatially colored noise. We employ the linear array of the previous experiment. We assume that the
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Figure 7.4: Beamforming in the presence of spatially colored noise: (a) Spatial Power Spectral
Density of noise, (b) Beampattern of CUM2 processor. The optimum pattern is illustrated in
dashed lines for comparison purposes.

noise field is created by a set of point sources distributed symmetrically about the broadside of the
linear array. As suggested in [63], this source structure is typical when the noise field is spherically
or cylindrically isotropic. In this case, the noise covariance matrix is symmetric-Toeplitz. In our

experiment, we use the following structure for the covariance matrix of undesired components,

R,(i.j) = 0.8 li=Jl (7.1)

The spatial power spectrum of undesired components is illustrated in Figure 7.4a. It is clear
that most of the noise leaks into the system from broadside. The desired signal illuminates the
array from broadside, with an SNR of 10 dB. To illustrate the optimum combining property of our
approach, we implanted an exact replica of the desired signal illuminating the array from 60°, where

noise power is relatively less when compared to that from broadside. The beampattern of CUM,
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Table 7.2: Results from 100 Monte-Carlo Runs for Experiment 2

Processor [ SNR, (dB)

Mean Std
CUM, 23.641 | 0.017
CUM, | 23.645 | 0.015

processor is given in Figure 7.4b. For comparison purposes, we present the response of the optimum
beamformer based on exact statistical information, as a dashed curve. The maximum-possible SNR
at the output is 23.689 dB for this scenario. It is clear that the response of CUM; is almost identical
to that of the optimum beamformer: both processors emphasize the signal illuminating the array
from 60°. since the noise contribution is less in this region. We performed 100 Monte-Carlo runs
for this scenario, and the results are presented in Table 7.2. It is clear that both cumulant-based
processors perform equally well. The reason for this phenomenon is the presence of the multipath
from 60° through a low-noise background that virtually increases the effective SNR, which, in
turn, alleviates the effects of estimation errors. Note that the peak of the beampattern is slightly
shifted from 60°, in order to receive less interference. Similar behavior is observed in covariance-
based direction-of-arrival estimation in the presence of colored noise resulting in biased estimates

of parameters.

7.3 Experiment 3: Effects of Robustness Constraint

In this experiment, we illustrate the effects of the robustness constraint of Section 4.3, on a CUM,;
processor in the presence of white noise. We employ the same array as in the previous experiments.
We employ CUM;, since this processor uses the data inefficiently. and requires a robust approach. In

our experiment, we consider the situation with SNR=0 dB. Figure 7.5 illustrates the beampatterns
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Figure 7.5: Beampattern of CUM, processor for varying virtual SNR: (a) 0 dB, (b) -6 dB, (c) -10
dB, (d) -20 dB. The optimum pattern is illustrated in dashed lines for comparison purposes.
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of CUM, processor for several SNR, values. It is clear from the results that, as the perturbation
increases, the patterns match better since the mismatch due to estiination errors in the steering
vector estimate are masked by the presence of virtual increased level of noise. This method should
be used sparingly in the presence of jammers, because increasing the virtual noise level results in

diverting the capability of the array from nulling the directional interference.

7.4 Experiment 4: Multiple Interferers

In this experiment, we consider the problem of beamforming in a multipath environment in the
presence of multiple jammers. We employ the same array as in the previous experiments. The
signal of interest originates from a BPSK communication source. and it is expected from broadside:
however, due to multipath effects. multiple delayed and shifted replicas are received. There are
two jammers, and one is subject to multipath as well. Table 7.3 summarizes the signal structure.

Note that there are 10 wavefronts illuminating the array and it is not possible to estimate their

Table 7.3: Signal structure for Experiment 4

Source Power (dB) | Multipath Coeff. | DOA

(0.0.-0.5) —10°

(0.9895,-0.0311) | —2°

(1.0,0.0) 0°

BPSK 10 (-0.6472,-0.4702) | 6°
(-0.3,0.0) 8

(0.1414,0.1414) | 11°
(0.0462,0.0191) | 18°

JAMMER, 10 (1.0,0.0) 26°

(0.5657.0.5657) | 32°

JAMMER, 10 (1.0,0.0) -1°
NOISE 0 — -

DOA’s with any existing high-resolution method; hence, signal-COPY algorithms [17] can not be
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used even with perfect knowledge of the array manifold.

Due to presence of coherent wavefronts, second-order statistics are not spatially stationary along
the array; hence, it is not meaningful to define SINR at an array element. Instead, we compute the
SINR at the output of the optimal processor by employing true statistics. The maximum possible
SINR, is found from (5.12) to be 12.677 dB. From Table 7.4, we observe that CUM; performs very
well under these severe conditions. Performance of CUM; is effected by strong interferers since this
processor does not utilize all of the available information. Finally, we observe that MVDR with
correct look-direction cancels the desired signal due to coherence. Note that CUM, exhibits less
variations than other processors.

To gain more insight into the operation of the processors, we illustrate the beampatterns for
MVDR and CUM; in Figure 7.6. We focus on the region where the wavefronts are received by the
array. It is observed that the MVDR processor does not null the jammer from —1¢, since it main-
tains the look-direction constraint for 0° and tries to minimize the output power by destructively
combining the coherent wavefronts. On the other hand. CUM; is blind to Gaussian interferers,
and, as in Experiment 2, it estimates the generalized steering vector of the desired signal and
combines the wavefronts to enhance SINR at the output. CUM, puts a null on the jammer from

—1°, destructively combines the wavefronts from the first jammer by weight-phasing rather than

Table 7.4: Results from 100 Monte-Carlo Runs for Experiment 4

Processor | SINR, (dB)
Mean Std
MVDR | -28.424 | 4.405
CUM, 4.110 | 2.118
CUM, 10.290 | 0.746
C’ 11.879 | 0.627
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null-steering, and reinforces the wavefronts from the desired source.

Finally, we implemented the C? heamformer suggested in Section 4.2: we first estimated the
steering vector as done for CUM,, but then further projected it into the subspace spanned by
the principal eigenvectors of the sample covariance matrix. We used the resultant vector as the
estimate of the desired signal steering vector, and constructed an MVDR beamformer based on it.
The performance of the resultant processor is demonstrated in Table 7.4.

We observe that by combining cumulants with covariance information. we obtain the best

results.
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Figure 7.6: Beampatterns and array gains of processors: (a) MVDR with correct look direction,
(b) CUM;. The optimum pattern is illustrated in dashed lines for comparison purposes.

7.5 Experiment 5: Adaptive Processing

In this experiment, we demonstrate the results from the adaptive version of CUM; approach as

described in Chapter 6. We employved the 10 element uniform linear array of previous experiments.



CHAPTER 7. SIMULATIONS 43

The initial pattern of the beamformer is designed to be isotropic, by letting ¢(0) = [1,0,...,0)7.

Desired signal illuminates the array from broadside with SNR=10 dB. A jammer with power equal
to that of the desired source is present at 30°. Note that there is no nonstationarity involved in this
experiment; our aim is to demonstrate the evolution of the beamforming process and indicate the
data lengths required for cumulant and covariance estimation. Tracking properties will be included
in our future work, including comparisons with adaptive versions of CUM3 and C? processors.
Figure 7.7 illustrates the beampattern of the adaptive CUM,; processor as time evolves. After
100 snapshots, the beampattern is still close to isotropic. At 300 snapshots, covariance matrix
estimate is improved, indicating the presence of desired signal from broadside. At this time point,
the cumulant-based steering vector estimate has not matured, so it can not prevent the desired
signal from being cancelled. After 500 snapshots, cumulant estimates get better, and there is a
tendency to cancel the interference rather than the desired signal. Finally, after 700 snapshots the

processor removes the interference by null steering.

7.6 Experiment 6: Effects of Data Length

In this experiment, we employ the linear array of Experiment 1, with the same noise conditions,
and vary the data length to observe the behavior of the beamformers CUM,;, CUM,, MVDR; and
MVDR,. Figure 7.8 demonstrates the variation of white-noise gain of the processors with data
length, for 0 dB and 20 dB SNR levels. Each point on the plots is obtained by averaging the results
from 50 Monte-Carlo simulations.

From Figure 7.8a it is clear that CUM, outperforms all the processors, including MVDR,

which utilizes the correct look direction for all data lengths. Furthermore, small sample properties
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Figure 7.7: Beampattern of the adaptive CUM; processor as a function of time: desired signal is
from broadside and the jammer is from 30° as indicated. (a) t=100, (b) t=300, (c) t=500, (d)
t=700.
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of CUM; are quite impressive, motivating further research for developing its adaptive version. Low
SNR masks the mismatch in MVDR; due to the use of sample covariance matrix; hence, as can be
seen from Figure 7.8a, CUM; is inferior to MVDR,.

Figures 7.8b and 7.8¢, indicate the effect of higher SNR on performance. CUM; and CUM,
perform almost identical for all data lengths. Their gain is larger than 9 dB even for less than 50
snapshots. MVDR, can not recover in this experiment since the mismatch results in severe signal
cancellation. We do not include the response of MVDR;, because its performance drifts around
-35 dB.

These results indicate that our approach has very promising small sample behavior that deserves

more research. This will be a topic of another report.
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Chapter 8

Conclusions

We have presented optimum beamforming algorithms for non-Gaussian signals, which are based
on fourth-order cumulants of the data received by the array. Our proposed methods do not make
any assumption about the sensor locations and characteristics, i.e., they are blind beamforming
methods. Cumulant-based estimation is employed to identify the stcering vector of the signal
of interest and MVDR beamforming using this estimate is used to remove Gaussian interference
components. We have suggested several approaches to combat effects of estimation errors. We have
also implemented a recursive version of the method to enable real-time beamforming. Simulation
experiments demonstrate the performance of our approaches in a wide variety of situations. It is
important to emphasize that the proposed methods outperform the MVDR beamformer that uses
exactly known look-direction information.

In our future work, we shall address the problem of optimum beamforming in the presence
of multiple non-Gaussian interferers and design of adaptive algorithms with better convergence

properties.



Appendix A

Third-order statistics based

estimation

In this appendix, we develop a. method to estimate the steering vector of the desired non-Gaussian
signal, based on third-order statistics. Unlike communication signals. speech and sonar signals,
consisting of phase-coupled sinusoids, possess non-zero third-order cumulants. In addition, the
estimates of third-order statistics exhibit less variance than that of fourth-order cumulants. There-
fore, it is important to present a beamforming procedure based on third-order statistics.

Let us assume the presence of a zero-mean, non-Gaussian desired signal, d(t), with a non-zero
zero-lag third-order cumulant, v43 = F {(I(l)(l”(l)d(z)}. that is corrupted by undesired signals
whose third-order cumulants are zero. Note that the restriction on the interference characteristics
is relaxed; i.e., we only require the third-order cumulants of the undesired signals be zero, rather

than assuming Gaussian interferers. Consider the vector c, formed as

e = cum{ry (1), rﬂ(!),rl(t)} (A.1)
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Then, using the signal model] (5.4) and [CP1], we obtain

o =bibllyas bt 1<iia< M (A.2)

or, in vector form

c=(bybyu3) b (A.3)

Equation (A.3) is the “third-order” counterpart to (5.5) and its generalized version (B.3).



Appendix B

Full utilization of array data

In this appendix, we extend the estimation procedure suggested in Section 4.1 to fully utilize the
array data. The estimation procedures presented previously in this report are in fact special cases

of the estimation procedure that will be presented here. Consider the vector c. formed as
= cum{r;,(t),rg(t),r,-’s’(t),rl(i)} 1=1.2,....M and | <1i.ip,i3 < M. (B.1)

Using the signal model (5.4) and [CP1], we obtain

e = by b OH 544 by (B.2)
or in vector form,
c = (bi,bHblvaq) b (B.3)

implying that the vector c is identical to the desired signal steering vector up to a scale factor.

The algorithm of Section 4.1 lets iy = i, = i3 = /. and varies i in the range 1 < i < M. to
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obtain a rank one MxA matrix, from which the estimation procedure is completed by identifying
the left eigenvector with the largest singular value. On the other hand, from (B.2) we realize
that we can collect more vectors by varying #;, 2, i3 individually. However, there is a redundancy
arising from the definition of fourth-order cumulants: the maximal set of non-redundant cumulants,
cum{r;,(t),rg(t),r{;’(t),r,-,(t)}, is obtained for the following range of indexes, {1 < i{; < M,1 <
tg £ 41,1 < iy £ 41,1 £ i3 < iz}. Performing an SVD on the matrix by stacking non-redundant
estimated steering vectors, we completely utilize the array data. This approach, however, requires

an SVD analysis of a large matrix, which may turn out to be prohibitive for real-time applications.
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