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Abstract

This dissertation deals with the analysis of visual motion from image se-
quences, with emphasis on the following three points: (a) Use of long image
sequences (b) Use of recursive estimation techniques and (c) Integration of
feature matching and motion estimation. The objective is to estimate motion
parameters (pose, velocities, etc.) and 3-D structure parameters relating the
camera(s) to the scene.

The basic idea is to extract salient points from the image sequence, and to
relate their image plane trajectories to the motion and structure parameters.
This is accomplished by using simple models for translational and rotational
motion, and, for monocular sequences, a central projection model for imaging.
The time evolution of unknown parameters is represented as a plant model,
and the observation of the data as a measurement model. This state-space
representation is suitable for recursive solution. A Kalman filter, or one of its
variations, is used to estimate the unknown model parameters. Various meth-
ods of initialization are developed, including least-square batch algorithms,
linear methods, and iterated filter-smoothers. This approach is then applied
to three different situations :

1. Passive navigation : This deals with the case of a single moving camera

in a stationary environment.

2. Target tracking : Here the camera is stationary, and the goal is to track

the motion of a rigid object within the camera’s field of view.

3. Obstacle avoidance : In this application, the situation is more general;
a (stereo) camera is moving in a traffic environment containing several

moving obstacles, some of them possibly nonrigid.

xi



The algorithms developed are tested on real and synthetic data, demonstrating
their robustness in the presence of measurement and modelling errors.

A new method is presented to obtain feature point correspondences from
an image sequence, which fits in very neatly with the recursive estimation ap-
proach. In this method, Gabor wavelets are used to label salient image points,
and point correspondence is treated as a labelled graph matching problem. The
matching of feature points is interleaved with the recursive estimation of mo-
tion and structure parameters, using the predictive capabilities of the Kalman
filter.

The general problem of motion analysis is highly nonlinear, and techniques
such as extended Kalman filtering are not guaranteed to be stable. A method
is suggested for predicting the qualitative performance of the estimation tech-
nique, based on an empirical analysis of the model at selected solution points.
By examining the Hessian of the objective function corresponding to a model,
properties of the model such as uniqueness of solution, conditioning, etc. are

analyzed.
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Chapter 1
Introduction

The analysis of visual motion from image sequences (“motion analysis”) is one
of the most challenging problems in the field of computer vision. Apart from
its relevance to the understanding of biological vision systems, motion analysis
has a number of practical applications in robotics, vehicle navigation, traffic
safety, Intelligent Vehicle and Highway Systems (IVHS), aviation and space
exploration, among others. It is not surprising, therefore, that research efforts
in this field have increased exponentially in the past two decades, particularly
in the last few years. Scores of papers are published annually, covering both
the theoretical as well as the practical aspects of motion analysis, and several
conferences and workshops are being held to deal exclusively with this area of
computer vision.

A wide variety of methods have been developed, each with its own distinct
characteristics and claims to superiority over other approaches. Methods based
on the computation of temporal and spatial image gradients, also known as
“optic flow” methods, have been in existence for several years. The other
major category of motion analysis methods consists of the ones based on feature
correspondences. In both these categories, literally hundreds of algorithms are
currently available. There are also a vast number of techniques that combine
motion analysis with other forms of visual processing such as stereopsis, texture

analysis, etc.



In spite of this veritable explosion of research activity, a satisfactory method
of processing and understanding image sequences—one that is practical, ro-
bust and versatile—has proved elusive. Although significant progress has been
made in understanding the theoretical nature of the problem, these theoretical
results have not, in general, been successfully translated into workable algo-
rithms. Most existing methods suffer from several major drawbacks. Many
of them work only if the input data are practically noise free; in most real
applications a considerable amount of measurement noise and modelling error
is unavoidable. Very few existing methods deal with the motion problem in its
entirety, addressing only one of the several steps required to solve it. For in-
stance, many methods based on feature correspondences assume that the latter
are given to them by some preprocessing stage. Some are designed to work only
under very restrictive conditions, these being an integral part of the assumed
model. Such methods may fail in the presence of even minor modelling errors.

This research work was performed with the goal of developing a paradigm
for motion analysis which is free from at least a few of these flaws. Existing
techniques are combined with new methods to develop a framework for motion
analysis applicable to a broad range of situations; three specific applications

are discussed in detail, with experimental results on real and synthetic data.

1.1 Statement of the Problem

The goal of this research is to process image sequences to extract information
that could be used for various applications such as autonomous navigation
and object tracking. This is to be accomplished based on a set of feature
points extracted and matched over the entire sequence. The parameters we
are interested in estimating are the motion and structure parameters relating
the camera(s) to the external environment. The specific parameters of interest
will depend on the application; for instance, in analyzing an image sequence
obtained by a moving camera in a stationary environment, the relevant motion

parameters are those related to the translation and rotation of the camera, and



the relevant structure parameters are the 3-D locations of feature points in the

scene.

1.2 Overview of the Methodology

In this research, analysis of image sequences is done by a system of several
interacting algorithms, constructed using a variety of engineering tools. The

salient features of this system are given below.

o Feature extraction, description and matching: Motion algorithms based on
the computation of image gradients are very sensitive to noise, and are
computationally expensive. Although feature-based methods are usually
more robust and efficient, they involve additional work in the form of fea-
ture extraction and matching. Much of the earlier work in feature-based
methods side-stepped these issues, and are therefore of little practical
value. In this work we address these issues, and suggest ways of incorpo-

rating them into the overall motion analysis system.

Different kinds of features can be used for motion analysis, such as points,
lines, polygons, regions, corners, etc. Points are the simplest kind of
features, and can be found in most scenes, natural or man-made. Lines
and higher order features are richer in information, and in some cases
easier to detect, but may not occur in outdoor and natural scenery. For
this reason, we restrict our attention to point features. Point features
may be extracted using a variety of interest operators [62, 58]. We use
the method described in [47]. Gabor wavelets are used to describe, or
“label” feature points, and these points are treated as nodes of a labelled
graph. The problem of feature matching is then reduced to one of labelled
graph matching. For one of the real image sequences, we use a method
developed by Zheng and Chellappa, based on a novel approach to image

registration [76].

e Problem geometry: The image sequence used as input to the motion anal-

ysis system may be generated in several ways. The most general situation



is that of several independently moving cameras in an environment con-
taining multiple independently moving objects. Most motion analysis
problems are a subset of this scenario. In Chapter 4, we examine the
case of a single moving camera in a stationary environment. In Chap-
ter 6 we look at the converse situation, involving a stationary camera
viewing a moving object. In Chapter 7, a far more general situation is

dealt with, involving stereo imagery and multiple moving objects.

Motion models: The idea of using a motion model is to describe the
motion using a fixed number of parameters, independent of the length of
the image sequence. Thus the data contained in a sequence of arbitrary
length can be used to estimate a fixed number of parameters. Greater
smoothing can be achieved by using a large number of image frames.
The validity of using motion models is based on the fact that in most
real applications, the relative motion between the cameras and the scene
is smooth, due to the damping and inertia present in all physical systems.
Deviations from smoothness can be modelled as system noise. Although
a purist would eschew the use of models on the grounds that they impose
an artificial smoothness on the estimation process, the rewards of so doing
far outweigh the price paid. Furthermore, in a recursive framework, the
estimates adapt to deviations from the model, and hence the penalties of

assuming a model of low dimensionality are negligible.

Imaging models: Motion models describe the trajectories of feature points
in space. These trajectories are usually not observed directly, unless
there are two or more cameras. If there is only one camera, we observe
the projections of these trajectories onto the image plane. This is done
by perspective (or central) projection, a highly nonlinear process. A lot
of work on monocular motion analysis is directed towards untangling
and simplifying the highly nonlinear equations relating 3-D motion and

structure parameters to the image plane locations of features.

Batch and recursive estimation: Given a 3-D motion model, and the loca-

tions of features in the image sequence (i.e. the image plane trajectories



of features), we would like to estimate the unknown model parameters.
The estimation techniques which could be used are of two basic types—
batch and recursive. In a batch procedure, all the information available
about the motion (i.e. all the 3-D measurements) is used together in
a single-stage estimation of the motion and structure parameters. This
approach is robust and simple, and reasonably fast for a linear problem,
but suffers from the drawback that the estimates will be available only
at the end of the sequence, after measurements from all the images in
the sequence are available. Furthermore, a large amount of memory is
required to store these measurements. In the recursive approach, the pa-
rameters to be estimated are placed in a state vector, which is updated as
and when each new data set (which in our case corresponds to the next
image in the sequence) becomes available. Data which have already been
processed are discarded. This approach is is much faster and requires
much less storage than the batch approach. However, unlike batch algo-
rithms, recursive algorithms usually need to be supplied with an initial
guess before they can start processing the incoming data. The speed of
convergence of the recursive approach depends on the accuracy of the
initial guess provided. A good compromise would be to use the batch
approach over the first few image frames, and use the batch estimates
thereby obtained to initialize the recursive estimator. Then, for the re-
mainder of the sequence, the recursive estimator can be used to “track”
the motion. Other methods of initialization, such as linear two-frame

methods, can also be used if only a rough initial guess is required.

Interleaving estimation and correspondence A major advantage with recur-
sive techniques such as Kalman filtering is the ability to predict feature
positions in space, and hence in the image, ahead of time. This capability
can be used to reduce the search space for match points in the incom-
ing images. We have successfully integrated the predictive capabilities of
the recursive filter with the algorithm used to find the correspondence

between features in successive images. This is described in Chapter 3.



1.3 Applications

Motion understanding is a vital part of most biological vision systems. Many
animals rely on their ability to detect movement to find their prey and to evade
predators. Frogs, for instance, have a very poor sense of static vision, but are
able to catch insects by visually detecting their movement. Visual motion
understanding is also useful in primate survival, although in this case it is not
the primary sensory modality. The ability to perceive and interpret motion is
essential to many human activities like driving, operating machinery, sports,
etc. Thus from a biological point of view, visual motion understanding is a
topic of great relevance in the development of intelligent robots with human-
like capabilities. In the field of computer vision, however, we do not restrict
ourselves to biologically relevant models, although we do use the knowledge
gained by studying human motion perception. We are also interested in specific
applications requiring capabilities which biological systems may not possess,
or which do not require their degree of sophistication. Biological systems are
inherently qualitative in the way they process information, and the information
processing is directed towards specific goals like grasping an object or fleeing
from an approaching predator. In certain applications, like target tracking,
it may be necessary to precisely estimate physical parameters of an object’s
motion, and to determine its structure. In these cases, the computations have
to be quantitative in nature. In this dissertation, we look at the motion problem
from a signal processing standpoint, rather than a biologically motivated one.

Motion analysis is finding applications in many areas. Applications in
robotics include locating, identifying and grasping objects using visual infor-
mation. Another important application is visual navigation for autonomous
vehicles. This dissertation examines this problem in detail, and presents a
solution which incorporates the principles outlined in the previous section. Al-
though this “passive navigation” problem is the main focus of this work, two
other applications are also addressed: target tracking and obstacle avoidance.

In passive navigation, the goal is to utilize the information contained in an
image sequence to determine the motion of a moving camera, and the structure

of the environment around it. In target tracking, the camera is assumed to be

6



stationary, and a single moving object is assumed to be present within the field
of view of the camera. The objective here is to determine the kinematics and
structure of the object. Target tracking has applications in defence, commercial
aviation, space exploration, etc. The problem of obstacle avoidance is related to
the navigation problem, but is slightly different in the sense that no landmarks,
lane boundaries, etc. may by assumed to be present, and the obstacles may

themselves be in motion. This has applications in traffic safety.

1.4 Original Contributions

The original contributions of this research are as follows:

¢ Estimation theoretic methods are applied successfully to several motion

analysis applications.

¢ New motion models are developed for two applications: passive naviga-

tion and obstacle avoidance.

e Previous work on object tracking [9] is extended to the case of 3-D motion

and structure estimation.
o Gabor wavelets are used for feature correspondence.
e Motion estimation is interleaved with feature correspondence.

A new method of analyzing model-based formulations is presented.

1.5 Organization of this Dissertation

Chapter 2 reviews some of the published work in the field of motion analysis,
concentrating on long-frame, model-based and recursive approaches. A new
method of obtaining feature point correspondences is presented in Chapter 3.
The passive navigation problem is discussed in Chapter 4. A method of an-
alyzing and evaluating model-based formulations is presented in Chapter 5.

The target tracking problem is examined in Chapter 6. Chapter 7 discusses



the obstacle avoidance problem. Directions for future research are presented
in Chapter 8.



Chapter 2
Review of the Literature

Feature-based motion estimation techniques have become very popular in the
past few years, and the active research that has been going on in this area
has resulted in a large body of literature. Considerable research effort also
goes into the so-called optic flow methods, which, in contrast to feature-based
approaches, rely on computations of a dense image flow field. Although this
research is based solely on feature correspondences, it is appropriate to mention
some of the key work in optic flow, such as [5, 1, 39, 74].

Much of the early work on feature-based motion analysis was focussed on
the two-frame motion problem. The goal was to look at just two images from
a sequence, and to determine the coordinate transformation (motion) of the
camera(s) between the two time instants, and the 3-D structure of selected
feature points. If a monocular pair of images is used, these quantities can be
determined only upto a scale factor. Preliminary work on two-frame methods
was done by Roach and Aggarwal [57] and Tsai and Huang [63], among others.
Further progress was made by Yasumoto and Medioni [70], Fang and Huang
[27], Aggarwal and Mitiche [2]. These methods had the advantage of being
model-free, in general, but they were very sensitive to measurement errors. It
was found that only a slight improvement could be obtained by increasing the
number of points.

Several new trends have emerged in this field in recent years, such as

the use of motion models [66, 15, 61, 30], and estimation theoretic methods



[34, 24, 19, 4, 42, 65, 38, 20]. The use of motion models simplifies motion anal-
ysis by reducing the number of parameters to be estimated and allowing the
use of image sequences of arbitrary length. Sensitivity to measurement noise
and feature point occlusions can be reduced by incorporating the information
contained in long image sequences. Batch and recursive estimation techniques
can be used together for real-time motion analysis and tracking applications.
These approaches can be combined to yield a powerful paradigm for visual mo-
tion analysis, which is simple, robust, flexible and efficient. The work presented
in this dissertation is based on this paradigm.

In the rest of this chapter, we shall discuss significant contributions to
long-frame motion analysis, classifying the methods as applicable to passive
navigation or to target tracking. Some of the methods presented below may
be applicable to both situations, but will be discussed only in the context of

one of them.

2.1 Passive Navigation

Possibly the most exciting application of motion analysis is to the visual navi-
gation of autonomous vehicles. With the growing interest in Intelligent Vehicle
and Highway Systems (IVHS), vision-based systems are being seriously con-
sidered for traffic safety applications. Some of the leading research efforts in
this area are discussed below.

At the University of Munich, Germany

Pioneering work in the navigation of outdoor vehicles was done by Dickmanns,
Graefe et al [23, 24]. Their work is based on a 4-D model of the world (with
time being the fourth dimension). They use integrated spatio-temporal models,
monocular image sequences and recursive estimation techniques in a control
framework. They have developed a microprocessor-based system for motion
control, and successfully used it to navigate a motor vehicle on a freeway, under
certain controlled conditions such as the presence of distinct road boundaries.
Their spatio-temporal approach can also be tailored to other applications such

as the balancing of an inverted pendulum. Their work is definitely one of
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the more successful applications of recursive techniques to practical motion
analysis problems. In their published work, however, they do not analyze in
detail the dynamic performance of the algorithms they use.

At Honeywell Systems and Research Center, U.S.A

Roberts, Bhanu and others have recently developed a state-of-the-art motion
analysis system [58] which incorporates inertial measurements into the motion
estimation framework. They select feature points in the image sequence using
a combination of Laplacian and Hessian operators, and match them using a
variety of metrics. These matches are combined with inertial measurements
of linear and angular velocities to produce sparse range measurements, which
are interpolated to obtain a complete range map. This is used to navigate the
vehicle. They demonstrate their system on indoor and outdoor imagery.

At Plessey Research and Technology, UK

The “DROID” vision system developed by Stephens, Harris, Charnley et al.
[62) is designed to test the limits of performance that can be attained using a
purely passive system. It uses feature-based structure from motion principles
to from an approximate depth map of the environment of the moving vehicle.
Rough estimates of the camera’s ego-motion which are obtained by inertial
sensors are refined using 3-D point matches obtained using stereo and temporal
matching. Sparse range measurements obtained by binocular and motion stereo
are interpolated by Delaunay triangulation. The navigation of the vehicle is
now guided by the resulting depth map. The researchers are currently working
on motion segmentation and path planning.

At INRIA, France

Faugeras, Deriche, Ayache, Zhang et al. have developed a vision system for
the INRIA mobile robot, based on trinocular stereo and line correspondences
[3, 4, 75]. They are primarily interested in indoor environments, where a large
number of line features may be assumed to be present. Trinocular stereo is
shown to yield more robust 3-D measurements than the traditional binocular
stereo. They use the Extended Kalman Filter as the main mechanism to op-

timally combine various noisy measurements of egomotion and 3-D structure
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to form and maintain a cumulative representation of the environment of the
mobile robot.

At the University of Massachusetts, Amherst: Kumar and Hanson [43] use struc-
ture from motion principles to estimate the pose of a camera, and to incre-
mentally refine it using a sequence of images. They have developed robust
techniques capable of handling gross errors in the data. The pose estimation
is based on a set of recognized landmarks (3-D lines) appearing in the image
under perspective projection. They have used their algorithm on both indoor
and outdoor scenes. In [43] they analyze the sensitivity of the pose estimates
to accurate estimation of camera parameters. Dutta, Manmatha et al. have
created a database of real image sequences with complete pose and structure
ground truth [25]. The sequences were obtained from a camera attached to
a land vehicle moving on different kinds of surfaces such as metalled road,
unpaved road, etc. Different kinds of environments are also considered, rang-
ing from those with several man-made objects to purely natural scenes. They
have discussed various issues relating to the extraction of motion and structure
parameters from approximate translational motion—the type of motion most

commonly encountered in autonomous land vehicle (ALV) applications [48].

2.2 Target Tracking

Target tracking has been an area of very active research for several decades.
Until about ten years ago, most of the research focussed on radar-based track-
ing, with defence applications [7]. With the advances made in image processing
in recent years, visual tracking is receiving a lot of attention. In this section, we
shall discuss the work of Gennery [34], Shariat [60], Weng, Huang and Ahuja
[66], Broida [9], Young [71], Franzen [30] and Heel [38].

Gennery was one of the first researchers to work in this area. His experiments
on tracking known 3-D objects are reported in [34]. Gennery used a Kalman-
like recursive filter, line features and incorporated feature prediction into his

system.
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Shariat investigated the use of more than two frames for motion analysis,
using the assumption that the motion of the object is approximately constant.
He estimates the translation vector, axis of rotation and amount of rotation,
given the correspondences of 1 point in 5 frames, 2 points in 4 frames, etc. He
develops a different algorithm for each case. He uses the rigidity constraint
explicitly to reduce the motion estimation problem to one of solving a set of
polynomial equations, which he does using an iterative approach. Convergence
is accelerated using an “initial guess generator.”

Broida [9] has used batch and recursive techniques to estimate the 3-D mo-
tion and structure of a rigid object, based on point feature correspondences
form a monocular image sequence. He uses the assumption of smooth motion,
like Shariat. His method is capable of handling an arbitrary number of points
and frames, unlike that of Shariat. Although his experiments deal with motion
of constant linear and angular velocities, his general approach is applicable
to smooth motion of any degree of complexity. He uses an estimation theo-
retic approach to estimating the unknown model parameters from the noisy
input data. He proposes a two-step approach to the problem, using a batch
approach on the first few frames in the image sequence , and using a recursive
approach over the remaining frames in the sequence, with the batch estimate
being used as an initial guess for the recursive estimator. He uses a maximum
likelihood approach for batch estimation, and an Iterated Extended Kalman
Filter (IEKF) for recursive estimation. He suggests the use of approximate
Cramér-Rao lower bounds to predict the performance of the estimator.

Young developed an approach similar to that of Broida, applicable to stereo
data {72, 73]. The assumption of stereo data, and the consequent avoidance
of the nonlinearities of perspective projection enables the use of higher-order
motion models. Whereas Broida’s experiments assumed constant translational
and rotational velocities, Young demonstrates his algorithm on motion involv-
ing constant acceleration and constant precession. He also does not require a
batch initialization step, since his recursive procedure converges rapidly from

an arbitrary initial guess. He gives a constructive proof for the uniqueness
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of motion parameters. He shows that for uniform sampling rate, three non-
collinear feature points in five consecutive frames contain all the information
necessary to uniquely determine the motion parameters.

Weng, Huang and Ahuja have proposed a Locally Constant Angular Mo-
mentum (LCAM) model for long-frame object motion, based on rigid-body
dynamics. Their model constrains the motion, over short intervals of time, to
be a superposition of precession and translation. It allows the instantaneous
axis of rotation to change from frame to frame. They have developed a linear
algorithm for the problem which can handle an arbitrary number of points and
frames.

Franzen has proposed a batch method applicable to “chronogeneous” motion
[30], which includes uniform acceleration and constant angular velocity rotation
as special cases. He develops a closed-form method to recover structure of
features undergoing known affine interframe transformations. He then uses
this method to factor out the structure parameters in the case of unknown
motion, reducing the problem to one of determining the motion parameters
alone. He proceeds to solve this using iterative techniques.

Heel has suggested combining two-view motion estimation, based on im-
age gradients, with recursive filtering on the depth estimates to obtain dense
structure estimates of the object. Since he uses two-view motion estimation,
he does not require a motion model. He estimates the motion parameters by
relating the image intensity gradients directly to the 3-D motion parameters,

without requiring optic flow or feature correspondences.
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Chapter 3
Feature Point Matching

In this chapter, we present a scheme for obtaining the trajectories of points of
interest (feature points) in a long sequence of monocular images. We combine
the method of recursive filtering used for motion analysis with the technique
of labelled graph matching as applied in [16, 17] for obtaining feature corre-
spondences for pattern recognition.

The problem of trajectory estimation is formulated as a recursive tracking
problem based on a plant model and a measurement model. The parameters
relating to the position and motion of the points are contained in a state vec-
tor, whose time-evolution is represented by the plant model. In this chapter, a
linear model is assumed for the motion of the feature points in the image plane,
each point being treated individually. The measurement vector contains the
observed feature point positions on the image. The observation model repre-
sents the relationship between the state vector and the observations. Together,
the two models constitute a state space representation of the problem, suitable
for solution with a linear Kalman filter. In later chapters, 3-D models will be
used in place of the simple 2-D model used here.

Feature point correspondence is posed as a labelled graph matching prob-
lem, with the feature points treated as nodes of a labelled graph. This technique
has been applied in (186, 17] for face recognition, with encouraging results. The

problem of trajectory analysis is somewhat similar to the object recognition
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problem in the sense that both usually require a correspondence between dis-
tinct features in two or more images, or between a stored pattern and a test
pattern. In both cases, labelled graph matching provides the required invari-
ance to limited amounts of distortion, unlike correlation-based methods which
are known to be sensitive to distortion.

The performance of the labelled graph matching procedure depends on the
manner in which feature points are selected and labelled. The images in the
sequence have to be suitably processed to extract features and to obtain a
rich description (labelling) of the features so that the probabililty of errors in
matching is reduced. A feature point can be labelled in several ways, based on
the intensity distribution in a neighbourhood around it. Image gray levels can-
not be used directly, since they do not usually remain constant over significant
time intervals. A better approach is to use wavelet-type oriented feature detec-
tors, which are less sensitive to illumination changes, and have several desirable
properties such as variable resolution and optimal localization in the spatial
and frequency domains [21, 56]. In this work Gabor wavelets (sometimes called
Morlet functions [37]) are used to label feature points.

The matching of feature points is interleaved with the recursive estimation
of trajectories. Current information about the trajectories is used to predict the
future positions of feature points, thereby reducing the search time for finding
match points. Feature points are not assumed to have already been extracted
in all the images in the sequence; instead, selected feature points in the first
image in the sequence are “tracked” over successive images in the sequence
by labelled graph matching between consecutive image frames. Thus feature
point extraction in all images but the first is done automatically. Results on

synthetic and real image sequences are presented.

3.1 Formulation for Recursive Solution

The idea here is to formulate the estimation of a point’s trajectory as a recursive
tracking problem, based on a plant model and a measurement model. In this

chapter, no 3-D model is assumed for the motion; we simply assume that the
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image plane trajectories of feature points are smooth. Since no 3-D model is
available, each point is treated separately. In later chapters, we will develop
specific 3-D models for different situations, and use these models instead of the
model] developed in this section.

)T

The motion of a point p = (z,y)’ in the image is modelled by the following

equation:
p(t) = p(0) + P(0) ¢ + B(0) £*/2! +--- + p™(0) 2" /n!, (3.1)

where where n is small compared to the number of frames in the sequence.
(In other words, it is assumed that derivatives of p(¢) higher than the nth are
negligible for all t.) Typically, one would select n =1 or n = 2.

The quantities to be estimated i.e. the position of the point and the deriva-

tives thereof are contained in a state vector s, defined by

e

p(t) (3:2)

| p(2) |

The plant model describes the time evolution of the state vector. Using (3.1),

which expresses the assumption that p{™)(t) = 0¥ m > n, it can be written as
$(t) = Fs(t) + w(t) (3.3)

where w is a noise term included to take into account modelling errors, and

the matrix F is of the form

0L 0 0 - 0]
00 I, 0 --- 0
F=|: ! : (3.4)
00 I
0 0 0
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where I, is the 2 x 2 identity matrix. Equation (3.3) has to be discretized, in
order that it can describe the evolution of the state vector from one sampling
instant to another. The discrete version of the plant model can be found by

integration of (3.3) over the sampling interval (i.e. interframe period), and the

result is
s(k)=F s(k—1) + wg (3.5)
where the matrix F is given by
(L tL 51 A
0 L th 5L - Egh
F=|: 1 2 (3.6)
0O o I t I,
(0 0 L |

The input data to the estimator is in the form of image point positions,
one for each sampling instant. The measurement model, which shows the
relationship between the state vector s and the observation (measurement)
vector z is given by

z(k) = H s(k) + vy (3.7)

where

H=[1230305---50] (3.8)

The problem formulation is now ready for recursive solution by a Kalman

filter. The relevant equations are given in Appendix A.

3.2 Feature Point Labelling

In our implementation, we use a form of wavelet decomposition called Morlet

transform [37} converting the image into a “resolution pyramid” by filtering

with Gabor-like kernels of the form:

(_ ki pxy? )
20

G(x, k) = elikX) ¢ (3.9)
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Each kernel has two vector arguments, 2-D position (x) and wave number (k).

The filtering consists of convolving the image I(x) with the kernels G(x, k) i.e.
F(x,k) = / [(x)G(x — ¥, k)dx'. (3.10)

By varying k in magnitude and orientation (phase), we get a vector of labels
f(x,k) at each pixel x. The magnitude represents local spatial frequency (i.e.
resolution) of the feature detector. In our experiments, we found it sufficient
to use four levels of resolution, and four orientations at each level. Since the
kernels consist of complex numbers, this results in a label vector of 16 complex
numbers for every point in the image. This vector will be referred to as a
jet.! Matching two points can now be done by comparing their jets, and can
be accomplished with greater reliability than what would be possible by using
image intensities alone.

This method also provides a means for automatic selection of points of
interest. For example, they can be extracted using some kind of thresholding
criterion on the magnitude of the label vector at each image point. The thresh-
old has to be adaptively chosen from the given image, with the idea of obtaining
the desired number of feature points. Another approach is described in [52]. In
this chapter, feature points are chosen by inspection in the first image, and are
“tracked” over the entire sequence, thereby automatically performing feature

point extraction in succeeding images.

3.3 Feature Point Matching

Feature point matching between two images I; and I; is performed using the
principles of labelled graph matching, which have been successfully applied in
[17] for performing distortion-invariant pattern recognition. Let us assume that
feature points in I; are available, and that we wish to find the matching points
in I5. The feature points are treated as nodes in a labelled graph, with the

(vector) labels being the jets obtained by convolution with the Gabor wavelet

In (16, 17], the term “jet” is used to refer to a vector containing the magnitudes of the
convolved outputs, rather than the complex-valued outputs themselves.
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Figure 3.1: Labelled graph matching applied to motion correspondence
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kernels. Neighbouring feature points in I; are linked to form a topological
graph. This can be done automatically, using the interpoint distance as a basis
for linkage; in our work this is done by inspection. Matching then consists of
dynamically assigning image points in I; to the given feature points in ;. This
assignment is guided by three criteria (a) the similarity of the jets of potential
match points (b) the preservation of the local topology of the graphs of the
feature points in the two images and (c) the nearness of the match points to
their predicted locations. The matching is be treated as minimization of an

energy function of the form
Y [Cs(i, ") + aCr(3,4") + BCp(3,7")] (3.11)

where Cs(,7’) is the “ similarity cost” , Cr(¢,4’) is the “topological cost”
determined locally for the ith feature point, and Cp(i,i’) is the “diffusion
cost.” The terms « and S8 are weighting parameters. The prime on the second
argument of the functions (i’) refers to fact that it is the match point in the
second image corresponding to the ith point in the first image. These costs
may be computed in many different ways. Some discussion of this can be found

in [16, 17]. For instance, we could use the following cost functions:

Cs(i,i') = Y [lljet(s) — jet(i")|’] (3.12)
Cr(i,¢) = D [d(i,5) - d(, 5] (3.13)
JEN(i)

where N(z) is the set of neighbours of point i, and d(.,.) measures the Eu-
clidean distance between image points. Computation of the diffusion cost will
be explained in the next section. If the Cs or Cp cost terms for a point are
inordinately high after minimization, it is assumed that the point has been
“lost” due to occlusion or other causes, and it is not tracked any further.

The discussion so far has assumed that the matching is done at all resolu-
tions simultaneously, i.e. in a non-hierarchical manner. Indeed, this is the way
in which it is done in [16, 17]. We have found that greater speed and accu-

racy can be achieved by a hierarchical approach, using the matches obtained
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at coarser levels to guide the matches at finer levels. Here “coarse” and “fine”
refer to the magnitude of the spatial frequency of the Morlet kernel, the highest
frequency corresponding to the finest resolution. At coarser levels, the search
is conducted in a larger neighbourhood, sampling it sparsely, and at finer levels

in a smaller, densely sampled neighbourhood.

3.4 Interleaving Motion Estimation and

Correspondence

The matching process described above will require that the location of match
points in I; be known approximately to start with. If this is not the case, the
search region for match points will be very large, resulting in extremely high
computation time, and highly increased probability of false matches. This is
where the strength of the recursive filtering approach lies; given the current
state vector s; corresponding to ith feature point, the position of the point can
be predicted at future time instants with a known uncertainty (or confidence).
To be precise, the position of the feature point in the incoming image can be

predicted as:
p;(klk—1)=H Fg;(k—-1]k-1). (3.14)

(The notation is explained in Appendix A.) The covariance, or uncertainty, of

this prediction can be shown to be:
Ci(k/k — 1) & Cov(p,(k|k — 1)) = H(F Pi(k — 1|k — 1) FT + Q,)HT. (3.15)

The predicted feature point positions can then be used to initialize the match-
ing process, and the covariance of the prediction to control the “diffusion” i.e.
search of match points during the matching. In other words, the search for a
match point is conducted in a region around its predicted location, the size of
this region being proportional to the uncertainty of the prediction. Further,
the diffusion cost term Cp in (3.11) is chosen so as to favour matches close

to their predicted locations. To be precise, it is selected to be the sum of the
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“Mahalanobis” distances from the predicted locations, i.e.
Cp(i) = Jo(Bi(klk — 1) = zi(k)) Cilk/k — 1) (By(klk — 1) — z(k)) (3.16)

The matching procedure yields the measurement z;(k), which is then used to
perform a “measurement update” on the state vector s;. This is done for all
the feature points. The system is then ready to process the next image in the

sequence.

3.5 Experimental Results

The method was tested on a number of image sequences, both real and syn-
thetic, with different patterns of image motion. Results for one synthetic and
three real image sequences are discusses in this section. In the motion model,
a value of n = 1 was used, corresponding to constant image-plane velocities for
the feature points. This assumption is not very restrictive, since a well-designed
recursive algorithm has the ability to track the states even in the presence of
model deviations. As mentioned earlier, the topological graphs are created by
inspection. We have experimented with different topologies for a given set of
points, and the results indicate that the algorithm is not very sensitive to the
topology, as long as a reasonable number of connections (at least two for each
point) are maintained. We have also tried different values of the parameters
o and #in (3.11). Good performance was obtained over a fairly wide range
of values of these parameters. In general, it is difficult to predict in advance
the optimal values for o and 3 for a given image sequence. Some knowledge of
the true motion is required in order to decide which of the three components
of the cost function should be favoured over the other two.

The results for the synthetic sequence are shown in Fig. 3.2. The lst,
3rd and 6th frames of the sequence are shown in Fig. 3.2(a), (b) and (c). The
sequence was generated by moving a geometric pattern against a uniform back-
ground. The motion of the points is not along straight lines, but along curved

trajectories. The graph topology used for matching is shown in Fig. 3.2(d).
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The images are completely noise-free, and the feature points are clearly dis-
tinguishable, and can be accurately localized. It is not unreasonable to expect
perfect matching under such a “best-case” scenario. This is indeed the case, as
the results in Fig. 3.2(e) and (f) indicate. The trajectories determined by the
method are shown superimposed on the first and last images in the sequence,
to enable the observer to validate them.

The results for the real image sequences are shown in Figs. 3.3 - 3.5. The
first sequence (called the “robot-arm” sequence), consisting of ten 512x512
images, was taken by a camera mounted on a PUMA robot arm. The 1st,
5th and 10th frames from this sequence are shown in Fig. 3.3(a), (b) and (c).
Its motion is approximately a rotation around the optical axis of the camera.
The scene is the interior of a room with several objects, and several polygonal
patterns on the floor, walls and ceiling. The corners of these polygons are
ideal choices for feature points, since they are precisely localizable, and can be
expected to have Gabor profiles easily distinguished from those of neighbouring
points. The selected feature points and the topological graph are shown in
Fig. 3.3(d), and the resulting trajectory estimates are shown in Fig. 3.3(e) and
(f), superimposed on the 1st and 10th frames, respectively.

The second real sequence (called the “coke-can” sequence), containing 16
images of dimensions 512x512, was obtained by a camera moving forward along
its optical axis. The original sequence has 151 closely sampled image frames,
from which we selected every 10th image. The 1st, 8th and 16th frames from
the sampled sequence are shown in Fig. 3.4(a), (b) and (c). The scene is the
top of a table with several small objects on it. The features in this case are
not so well defined. For instance, the tops of the pencils have been chosen
as feature points, although they are several pixels wide. This is not seem to
be a serious problem, because the multi-scale nature of the Gabor wavelet
representation makes it possible to treat extended features as point features,
and match them within the same framework. The selected feature points and
the topological graph are shown in Fig. 3.4(d), and the resulting trajectory
estimates are shown in Fig. 3.4(e) and (f), superimposed on the 1st and 16th

frames, respectively.
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The third real sequence, known as the UMASS Rocket sequence, was ob-
tained from a camera moving with approximately constant orientation and
axial translation. In this case, a 3-D motion model (explained in the next
chapter) was used. The 1st, 8th and 16th frames from the Rocket sequence are
shown in Fig. 3.5(a), (b) and (c). The selected feature points and the topo-
logical graph are shown in Fig. 3.5(d), and the resulting trajectory estimates
are shown in Fig. 3.5(e) and (f), superimposed on the 1st and 16th frames,

respectively.
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Figure 3.2: Matching results for the synthetic image

sequence,




Figure 3.3: Matching results for the robot-arm sequence.

-1



(a) (d)

Figure 3.4: Matching results for the coke-can sequence.
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Chapter 4
Passive Navigation

In this chapter, we develop the long-frame approach for the passive navigation
problem, in which the objective is to aid the visual navigation of a vehicle {or
mobile robot) in an environment containing stationary obstacles and possibly
some navigational landmarks. The term “navigation” is used here in a very
general sense; it also applies to such situations as the maneuvering of a robot
arm amidst various objects on an assembly line. The vehicle is assumed to be
equipped with a camera which obtains images of the scene at regular inter-
vals, generating an image sequence. The various parameters of interest in the
navigation of the vehicle! are to be estimated based on a set of feature points
identified and matched over the image sequence. The kinematic parameters of
interest (motion parameters) are the position of the camera, its velocity, and
higher-order translational parameters; its attitude (orientation), angular veloc-
ity, and higher-order rotational parameters. The structure parameters involved
are the 3-D locations of unknown feature points in the scene.

One could take two different approaches to this problem, depending on the
application, and on the kind of additional information available. The first ap-
proach represents all quantities of interest in the camera’s coordinate system
(CCS), and estimates them relative to the camera. The second approach es-

timates the “absolute” values of all parameters in a world coordinate system

1The camera is assumed to be rigidly fixed to the vehicle. Hence the words “camera” and
“vehicle” or “robot” are used interchangeably in the rest of the chapter.
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Approach 1 Approach II
Primary Motion from Structure, Structure from Motion,
mechanisms reference navigation dead reckoning
Representaion World coordinates Camera coordinates
Quantities Absolute pose, Structure and motion
of interest motion and structure relative to camera
Additional Known landmarks, Velocities measured using
information navigational beacons inertial navigational sensors
Motion model Smoothness assumption Smoothness assumption
is useful is useful
Possible method Pose estimation from Motion stereo over the first
of initialization the first few frames few frames
Application Partially known or “Unknown” environments
domains controlled environments (e.g. highway)
(e.g. office, assembly line)

Table 4.1: Comparison of different monocular approaches to visual navigation

(WCS) external to the vehicle, in which, as discussed in [40], the placing of
a few easy to recognize beacons (or navigational landmarks) can considerably
simplify the task of navigation. The two schemes are compared in in Table 1.
In this chapter, we develop both the approaches. Our basic idea is to develop
models for the motion of the camera, the time-evolution of this motion, and the
observation of point features in the environment, and to formulate the problem
as one of recursive state estimation. Based on N frames of data, with noisy
image coordinates of M features in each frame we form estimates of the un-
known parameters in the assumed models using an iterated extended Kalman
filter (IEKF). The initial guess for the IEKF can be obtained in various ways,
as described in Chapter 4.3. The matching of feature points is interleaved
with the recursive state estimation. Current motion and structure estimates
are used to predict the future positions of feature points, thereby reducing the

search time for finding match points.

4.1 Approach I

The fundamental model of this section is that the motion of the camera during

the observation period is smooth enough so that it can” be represented by
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a dynamic model of relatively low dimensionality. As mentioned earlier, all
the parameters of interest, including the kinematics of the camera and the
structure of environmental landmarks, are represented in a world coordinate
system (WCS), the origin of which is not observed, in general. The WCS
is a stationary coordinate system external to the moving vehicle. A camera-
centered coordinate system (CCS) is also defined. The translational kinematics
of the camera are defined to be the position and motion of the origin of the
CCS with respect to the WCS. Camera rotational kinematics are defined to be
the camera’s angular displacement and motion with respect to the WCS. The

geometry of the problem is shown in Fig. 4.1.

4.1.1 Motion Model

Assuming that the motion of the origin of the CCS pg(?) can be accurately
modelled by a constant n** derivative,

n (k) _ k
palt) = prlte) + 3 —oral)| L) (1)

t=to

Thus, the translational motion during the observation period is modelled by a
finite number (3n) of parameters, which are simply the nonzero derivatives at
a single point in time.

The modelling of rotational motion is unavoidably nonlinear. The most
common methods of representing rotation are by Euler angles, or by the axis
of rotation n = (n;, na, n3), and the angle of rotation about the axis 0. Alter-

natively, we may write the rotation matrix R(t) in terms of the unit quaternion

q= (ql’ 925 43, q4)T as follows:

d-¢-d+a 20+ apn) 2(q193 — 9294)
R=| 2qg—au) -@G+8d3-3+6 20+ aqu) (4.2)
2(g193 + 9294) 2q203 — quqa) —G—ai+E+4q]

Since rotational displacement (also termed attitude or orientation) has only

three degrees of freedom, the four components of the unit quaternion q are
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Figure 4.1: Models of motion and imaging used for passive navigation
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constrained by the condition |q] = 1. The unit quaternion is related to the
(n, 8) representation of the angular relation between coordinate systems by the

relation
(91,92, 93, 94)T = (n15in8/2, nysin0/2, nzsin0/2, cos0/2)T (4.3)
The quaternion q propagates in time according to the differential equation (31]
4(t) = Ywe)al?), alte) = qo (4.4)

where (w,) is a matrix which is related to the instantaneous angular velocity

w; = (wg,wy,w;) as follows

0 Wy  —Wwy Wy
Qg =s| 7 0 e (4.5)
2 wy —wr 0 w,

Usually, it is reasonable to assume that w is either zero (corresponding to
constant camera orientation) or constant in time, and let the recursive filter
handle minor deviations. If a higher order model is desired, one may model
w(t) using a truncated Taylor series of the form

n aWw(t)| (- to)*
w(t)=w(to)+kz=:l 5 o (4.6)

t=to

The number of rotational parameters to be estimated (in addition to the four
quaternions) is 3n, where n is the order of the rotational motion. Typically

one would choose n < 2,
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4.1.2 Observation Model

The measurement model for a single point p = (z,y,z)7 is

’ z
p=(;\/)=(i‘iiﬁ)+(2i)=h[p]+n, (4.7

z
where f, and f, are the horizontal and vertical focal lengths, (Xo, Yo) is the

centre of the image plane, and n, and n, are measurement noise terms.

Combining the previous results, we obtain the following model expressing
the relationship between the parameters to be estimated and the observed
image locations of the feature points. Let p; = (i, ¥i, zi)T be the world co-
ordinates of match point i. Let pg(t) = (zr(t), yr(t), zr(t))T be the world
coordinates of the origin of the moving camera-centred reference frame. Let
R(t) be the 3 x 3 coordinate transformation matrix that aligns the world coor-
dinate axes with the camera coordinate axes, changing with time as the camera

rotates. Let p;o(t) be the 3-D camera-centered coordinates of match point ¢

at time ¢, given by
Pic(t) = R'(t) (p; — Pa(?))

At time £, the image plane measurements of the match points are, using the

central projection model,

pi(tk) = h[pic(te)] + n(ts),

where A[.] is the projection operator and n is the measurement noise. This can

be written as

pi(ts) = (Xi, Yo)i = h[R (1) (p; — Pa(t))] + n(t), (4.8)

where:=1,2,...,Mand k =1,2,..., N for M match points (M} of which cor-
respond to navigational landmarks, and the remaining M, to unknown points)

and N image frames in the sequence.
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Figure 4.2: Schematic diagram of motion analysis

4.1.3 Recursive Formulation

The general problem is posed for solution by a recursive algorithm, by sepa-
rating the statement of the problem into a plant model a measurement model.
The parameters of interest are placed in a state vector, whose time-evolution
(based on the motion model) is given by the plant equation, and whose re-
lationship to the observed data is given by the measurement equation. This
formulation is appropriate for solution using an IEKF.

The motion model presented in the previous section is fairly general, and
depending on the application, one can choose specific cases of it. In all our

experiments so far, we found it sufficient to use a simple motion model of
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constant translational velocity v and constant camera orientation q. This does
not mean that the resulting estimator is inapplicable to more general situations;
on the contrary the methods give good results even in the presence of significant

model deviations, as the experimental results will illustrate.

4.1.4 State Space Representation

The following d —dimensional vector of parameters is selected:

[ pa(t) )

\
q(t)
s(t) = P1 (4.9)
P2

L Pu, /dxl

The time derivative of s(t) is
s(ty=1 . (4.10)

Using (4.9) and (4.10) the discrete version of the plant equation can be

written as follows:
s(k+1) = F s(k) + wy (4.11)

where F is the d x d state transition matrix, given by

L L oo - 0
0 5,00 -+ 0

F=1. Co (4.12)
0 000 - Iy
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and w; is a discretized plant noise term used to compensate for errors in
modelling.

Using (4.7), the vector-valued measurement function (2M x 1) is

p1(k) hy (k) ni(k)
z(tx) = pgfk) = hsz) + nsz) = h[s(k)] + nx  (4.13)
pr(k) ha (k) na (k)

The covariance R} of the measurement noise n; can be assumed to be o2 times
the identity matrix, where o2 is the variance of the measurement noise in each

coordinate.

4.1.5 IEKF Implementation

The relevant equations and notation for the IEKF can be found in [41] and
in Appendix A. In order to implement one for our problem, it is necessary
to determine the linearized measurement function H(k), of dimensions m x d,

defined by
dh [s]

s |s=s(klk—-1)

In our case, with the state vector s as in (4.9), h[s] as in (4.13) we obtain

H(k) = . (4.14)

(B

H,

H(k)=| Hp,
I{Mu'i'l
\ Hu |

Where M) and M, are, respectively, the number of known and unknown fea-

tures in the image sequence. Each 2 x d submatrix H; (corresponding to the
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ith image point p;) is defined as follows:

ap;(k)
Js

H; = (4.15)

s=8klk—1)

g_|(Hs 0 H 00 . 0H 0. 0)ifi<M,
T (H,,,. 0 H, 0 --- 0) otherwise

where H,,, H, and H,, are the partial derivatives of p; with respect to pp,
q and p; respectively, and 0 denotes a 2 x 3 zero matrix. The location of
H, corresponds to the location of the ith feature point in the state vector, if
t < M,. In order to obtain expressions for these terms, let us define a new
notation for the rotation matrix R and the 3-D location of the feature point in

the CCS. Let
R=(R, R, R,)

be the rotation matrix, written in terms of the rows of its transpose, and

A OR, a OR, a OR,
085 R S 5 Ry & 2
R q aq yq aq q aq
Using (4.2), we can write
q q2 g3 92 —@1 —q 43 g4 —q1
Rug=2 —q2 4 q4 Ry =2 I 92 g3 . Ry =2 —qq4 43 —q2
—q3 —q4 Q1 4 —q3 q2 G 92 43
G4 —q3 q2 @B ¢ —q —q2 qQ1 q4
Let
P = p; — Pr(t)
and

fa A A
t=Rp; y=Rp; 2=R.p
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Using the above notation,

(f:c%"‘xo)
Pi= ¥
fy'z+Y0

The derivative terms may now be obtained directly as:

=l(f,[zR,q—szq]) P
2 fy[Zqu_szq] T 7

It is necessary to normalize the quaternion estimate immediately after the

_1 ( fx[:ch—sz])
T2 flyR: — 2R,

measurement update. It has been shown that this does not adversely affect
the performance of the estimator [6, 10]. Numerical aspects of filter tuning,

convergence, and stability are discussed in Chapter 6.

4.1.6 Experimental Results

The estimation algorithms developed in the earlier sections were tested on
both synthetic as well as real data. Two examples of experimental results with

synthetic data, and two real image examples are presented in this section.

Experiments with Synthetic Data

An aerial view of the environment for the Rocket sequence is shown in Fig. 4.3.
Ten feature points (indicated by asterisks), and the approximate positions of
the camera (indicated by dots), are shown. There is one more feature point,
which is not shown because it is at a very large distance from the vehicle.
The scales of the axes are in metres. (The environment is actually taken from
the set-up used for obtaining the Rocket sequence, but different kinematic
parameters are used here in simulating the camera motion.) Four points out
of the 11 are treated as landmarks of known 3-D location, and the structure of
the remaining seven points is estimated, along with the kinematic parameters
of the camera.

The simulated measurements are generated using the following steps:
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1. The 3-D coordinates of the feature points in the CCS are computed for
the desired number of frames using the motion model and pre-determined

values of the motion and structure parameters.

2. The image locations of the feature points are computed using the imaging

model and camera calibration parameters.

3. The image coordinates of the feature points are quantized to the desired
resolution. In the experiments reported here, an image size of 512 x 512
pixels was assumed. The measurement noise can be directly calculated

from the image resolution used.

The image plane trajectories obtained by the above procedure are shown in
Fig. 4.4. In the first example, the model assumptions of constant orientation
and velocity are followed exactly. The image plane trajectories of the feature
points are straight lines (except for the errors due to spatial quantization).
In the second example, the camera is permitted to accelerate translationally,
and to rotate with a small, linearly increasing angular velocity, violating the
constant orientation and constant translational velocity assumptions.

The results of the forward pass of the initialization step (Section 4.3) are
shown in Figures 4.20 and 4.21. The final estimation results are shown in Fig-
ures 4.5 and 4.6 as a function of the frame number. The solid lines represent
the true state values, and the dashed lines their estimates. The dimensions
of position and structure estimates are metres, and those of the velocities are
metres/second. Three of the seven structure estimates are shown. The results
for the first example are obviously better, but the results for the second ex-
ample, notwithstanding its model deviations, are only slightly worse. We have
obtained similar results for other values of motion and structure parameters,
and with greater noise levels. These experiments demonstrate the ability of a
recursive filter based on very simple models to adapt to and degrade gracefully

under significant model deviations.
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Experiments with Real Data

The real image sequences used are the Rocket ALV sequence [25] and the
“Robot” sequence [44], both created at the University of Massachusetts.
Results with the Rocket sequence:

Some images from the Rocket sequence (consisting of 16 images?) are shown in
Fig. 4.7 and Fig. 4.8. The results of feature extraction are shown in Fig. 4.9.
We use only the features which (approximately) correspond to those for which
3-D ground-truth data are available , since it is not possible to validate results
obtained for other features. An aerial view of the locations of some of the
selected features are shown in Fig. 4.3, along with the different positions of the
camera during its motion. The results of the forward pass of the initialization
step are shown in Fig. 4.22, and the final estimation results in Fig. 4.11. The
estimates of the position, velocity, orientation, and locations of three of the
seven unknown points are shown. There are minor errors in the estimates of
position and velocity, while the orientation estimates and the final structure
estimates are reasonably accurate.

The motion of the vehicle is approximately an axial translation, and its
orientation is approximately constant. However, as indicated by the image
plane trajectories of feature points illustrated in Figures 4.10, the motion is not
very smooth since a fair amount of apparently random variation is present in
the camera’s orientation. The challenge here is to track these variations, while
preserving the simplicity of the models developed earlier. There is also some
discrepancy (of several pixels) between the actual image locations of feature
points, and their locations predicted by the camera calibration and the ground
truth. This could be due to a variety of reasons, such as camera calibration
errors and the fact that the features chosen from the images do not correspond
exactly to those for which ground truth was measured. Currently we treat this
as additional measurement noise, but in future work we hope to be able to find

the sources of error and correct them.

2The original sequence has 30 images, of which we used first 16.
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FFigure 4.8:
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Figure 4.9: Feature points extracted from the first image of the Rocket sequence
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Figure 4.11: IEKF results for the Rocket sequence
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Results with the Robot sequence:

The Robot sequence (Figs. 4.12-4.12), in contrast to the Rocket sequence,
involves predominantly rotational motion. The images were obtained by a
camera attached to a Puma2 robot arm, moving in a rough circle almost paral-
lel to the image plane. The axial component of the motion is fairly small. The
scene is the interior of an office room, containing many man-made objects and
rectangular patterns on the walls and floor. The corners of these rectangles are
logical choices for feature points, since they can be expected to have clearly
distinguishable intensity profiles, and therefore should be easy to match. In the
work done by Kumar and Hanson [44], there are 12 known points (landmarks)
and 20 unknown points, distributed evenly throughout the room. For this ex-
ample our feature extractors picked up very few of the points chosen by Kumar
and Hanson (for which they provide ground-truth 3-D measurements), so we
located the 32 points in the first image by inspection. The image trajectories
of these feature points are shown in Figs. 4.14-4.15.

The Rocket image sequence, in a manner of speaking, complements the
Rocket sequence, because unlike the latter, it is taken in an indoor environment,
and has a substantial amount of camera rotation. One would expect the results
to be poorer, because the motion is even more in violation of the assumed
model than in the previous case. However, this is not really the case, as the
IEKF estimates in Fig. 4.16 indicate. The estimation results are in general
as good as or better than the ones for the Rocket sequence, except for the
velocity estimates. The poor quality of the velocity estimates is due to the fact
that the rotation of the camera, which dominates the motion, is not directly
represented in the model, leading to the observation of a kind of “pseudo-
translation” between successive frames. However, this does not seem to affect
the other state estimates.

It is apparent in both these cases (Rocket and Robot) that the motion of
the camera does not obey the model developed in Section 3, since neither its
translational velocity nor its attitude is constant. However, the IEKF seems to
be capable of handling these model deviations, as the state estimates indicate.
This is essentially due to the ability of the IEKF to “forget” the past, and
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Figure 4.15: Trajectories of the unknown points of the Robot sequence
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respond to the present; an ability which can be controlled by varying the
assumed plant noise covariance. Some discussion of how this can be done is
can be found in [10]. Thus the IEKF can be “tuned” to specific applications,
depending on the extent of the model deviations expected.

The performance of the method depends to some extent on the number and
location of the navigational landmarks. We have experimented with different
configurations of the features chosen as the known landmarks. As one would
expect, results improve as the number of landmarks increases, and they are
more widely dispersed. In general it is advantageous to have landmarks that
are fairly distant from the camera, and approximately in its path. These are
less likely to disappear quickly from the field of view of the camera. This is also
consistent with the idea of goal-oriented navigation, the goal being one of the
distant landmarks. In the Rocket experiment reported, the four most distant
feature points were treated as landmarks, and in the Robot experiment, the 12
points selected by Kumar and Hanson in [44] were used. We did not attempt
the high level processing needed to identify the features as landmarks, as would
be required in a real application. This is application dependent, and should be

done based on knowledge of the appearance of the landmarks.

4.2 Approach II

In this section, we will address the passive navigation problem from a camera-
centred standpoint—wherein the parameters of interest are represented in the
coordinate system of the camera. We assume that additional information in
the form of translational and rotational velocity measurements is available
and we remove the previous assumption of partially known structure. This
formulation is more similar than the world-centred approach to other work on
passive navigation, such as [62, 58].

As mentioned earlier, measurements the dynamics of the camera are as-
sumed to be available. These mostly take the form of (instantaneous) linear
and angular velocity measurements at the sampling instants, obtained using

inertial sensors. Higher order motion parameters may be derived from these;

58



in this research we do not attempt to do this, since the first order measure-
ments are usually sufficient by themselves for estimation of structure. Thus we

assume that the derivatives of the velocities are negligible.

4.2.1 Motion Model

The camera’s dynamics consist of its instantaneous translational velocity v and
rotational velocity w, both referenced to the CCS. Since the rotational velocity,

and hence the axis of rotation, is assumed to be constant, it follows that
w=0 (4.16)

Although the linear acceleration is implicitly assumed to be negligible, the
instantaneous velocity in the CCS changes as the camera rotates—in other
words, although the velocity vector points in the same direction always (to an
external observer), it is referenced to a rotating coordinate system. This is
expressed by

V=—wXV (4.17)

The imaging model is the same as that used in Approach I.

4.2.2 Recursive Formulation
The following vector of states is chosen:

(v )

w

P
P2

s(t) (4.18)

\ Pm /
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The time derivative of s(t) is

( —Ww XV \
0
) —wXp,—V
W=16W=1 _ 0 _v (4.19)

\ —W X Py —V |

Using (4.19) the discrete version of the plant equation can be written as

follows:

( R(k, k + 1)v(k) \
w(k)
R(k, k + 1)(py(F) — v(k)

o )
D= Rk, b+ 1)(py(k) - vik))

+ wy (4.20)

\ R(k,k+1)(pps(k) — v(k)) )
where wy. is a discretized plant noise term, and R(k,k + 1) is a 3 x 3 matrix

representing the rotation between frames k and k + 1. If the angular velocity

T

w(k) = (wg,wy,w;)" is small, this matrix is approximately given by

1 —w, Wy
Rkk+1)=]| w, 1 —w, (4.21)
—wy Wy 1

Since the plant equations are nonlinear, it is necessary to compute the

linearized plant function F, defined by

of(s)
s |s = s(k|k —1)

F= (4.22)
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where the time dependency has not been shown. It is convenient here to define

a notation for the cross product of two 3 x 1 vectors as follows:

x Xy =[x]y

where

0 —Z3 )
7Y

= Z3 0 -2

T2 2 0

Using this notation, we can write F’ as follows:

[ -[<]

0 0
0 0 0 0
0

© © © ©
©c © © ©

\ ~Is [Py] 0 O - 0 -]
The measurement equation is

[ v )

/1
P2

z(k) = h(s) + n(k) = +n(k)

\ om /,

(4.23)

(4.24)

(4.25)

(4.26)
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The linearized measurement function H is of the form

(I; 0 0 0 © 0 )
0 I 0 0 O 0
0 0y O O 0
H= (4.27)
0 0 0 a O 0
L0 0 0 0 0 0 oy)
where the a; terms are given by
[z z
9p; z 0 f
a; = 70, = f ! (4.28)
P; 0 fy-z-:%

4.2.3 Experimental Results

The algorithm presented in this section was tested on synthetic and real data.
The unknown parameters are the 3-D locations of feature points in the CCS.
The results are shown in Figs. 4.17-4.19. In the first synthetic example, the
camera velocities are larger than in the second example. The results indicate
that the recursive algorithm converges faster if the camera motion is larger.
This is analogous to the observation that stereo depth computations are more
accurate if the baseline of the stereo cameras is bigger.

The real image sequence used is the Rocket sequence, which was described
in a previous section. Measured camera kinematics are derived from the posi-
tion ground truth available with the image sequence. The structure estimates
are initialized using motion stereo over the first two image frames (see Ap-
pendix B). The results of recursive estimation are shown in Fig. 4.19, as a
function of the frame number. The true parameter values are shown by solid
lines, and their estimates by dashed lines.The dimensions are metres/second
for the translational velocity and metres for the structure parameters. The

sampling period is assumed to be one second.
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It is evident from the first two graphs that there is considerable fluctuation
in the linear and angular velocities, particularly in the latter. This is obvi-
ously a deviation from the constant velocity assumption. These fluctuations
are smoothed over by the EKF, the extent of smoothing depending on the rel-
ative values chosen for the covariances of the plant and measurement noises.
These covariances have to be chosen with some care; they have to reflect the
various uncertainties in the problem. The measurement noise should ideally
be determined by calibration, and should take into account quantization noise,
sensor noise, unmodelled lens distortions, etc. The plant noise should reflect
the degree of nonlinearity of the model as well as the extent of model deviations
expected. Lower values for plant noise lead to greater smoothing.

Range estimation results for four of the seven points tracked are shown in
Fig. 4.19. These points are at a distance of 15-40 metres from the camera at the
start of the motion. Points 1 and 3 have large errors initially, and these errors
are progressively reduced as the EKF uses the information from the remaining
frames in the sequence. The effects of filtering are somewhat less apparent
for the remaining points, because their initial estimates are themselves fairly
accurate. We were unable to get comparable range results for points more than
100 metres away from the camera.

The primary mechanism in this approach, structure-from-motion, is based
on image plane displacements of feature points due to camera motion (typ-
ically less than 10 pixels between frames). The structure of feature points,
as in stereo triangulation, bears an inverse relationship to the magnitudes of
the image displacements, resulting in structure estimates that are not very ro-
bust for small camera motion and for distant objects. Even when the camera
motion is significant, points very close to the focus of expansion may not be
accurately ranged. If high measurement noise is also present, the accuracy will
degrade still further. However, with reliable inertial measurements, high image
resolution and accurate camera calibration, range results may be comparable

to those obtained using active methods.
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4.3 Initialization

An approximate nonlinear filter like the IEKF usually requires a reasonably
good initial guess in order to converge. In our past work [10, 18], we have
used a least-squares batch approach over the first few image frames to obtain
an initial estimate. In this section, we examine this and other approaches to
obtaining the initial guess, and compare the results obtained with each. The
discussion here focuses on Approach I for passive navigation. The initial guess
requirement for Approach II is not critical, and hence is not discussed here,

but the results of this section may be extended to that approach as well.

4.3.1 Batch Formulation

For the approach discussed in Section 4.1, the unknown model parameters form

a d —dimensional vector 8, given by

( Pr(0) \

v
a
6=| p, (4.29)

P2

\ Pm,

The orientation of the camera is represented by the 3-component vector a
in the above expression, instead of the 4-component unit quaternion q. This is
done to avoid the constraint which would be needed on the estimation process
if the unit quaternion were estimated directly. The relationship between a and

q is given by (4.3) and the following equation:

m 0
a=| n, 0 (4.30)

n30
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The data on which the estimation is based are the the image point mea-

surements of M points in N frames, denoted by
p;(k)=hi(0,k) +ni(k); :=1,....,. M ; k=1,...,N, (4.31)

where h;(0, k) is defined to be the location of of the ith feature point in the kth
image in the sequence, computed using the motion and structure parameters
in the vector 6, and the model in (4.8). The noise terms in n;(k) are assumed
to be zero mean, independent, and identically distributed (i.i.d.), for all points
over the sequence.

The batch estimation problem may now be stated as follows: find the best
estimate of 8 given the measurements p;(k) and the observation model (4.8).
For our particular problem, wherein no prior information is assumed about
#, and with minimal assumptions about the measurement noise, the “best”
estimate may be considered to be the one which minimizes the squared dis-
crepancy between the measurements and the corresponding values predicted
by the model, i.e.

N-1M=1
6= argmin 3= Y- lloi(k) = hi(@, K| (4.32)

i=0 =0
This least-squares minimization can be done using a standard optimization
program, such as the ones used in [15, 45]. Any knowledge about the ranges or
values of the parameters can be used to reduce the search space for a solution.

Results are shown in Table 4.2.

4.3.2 Computing the approximate covariance of the

batch estimate
For most applications, it is useful, if not essential, to have some idea of the
“correctness” of the estimated parameter set. An elegant estimation-theoretic

method exists for the computation of the lower bounds of the error in estimating

a set of parameters, given the conditional statistics of the observed data on
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parameter | true value | synth. ex. 1 | synth ex. 2 | Rocket seq.
P 2.6223 2.6493 2.7206 2.7910
-0.9764 -0.9896 -0.9652 -2.4334
1.2291 1.1979 1.4850 0.6845
v 0.0000 -0.0026 -0.0340 0.0076
-0.5000 -0.5199 -0.5041 -0.3004
0.6000 0.6195 0.5159 0.7811
a 0.6791 0.6784 0.6841 0.6414
0.2049 0.2052 0.2074 0.2047
0.0804 0.0790 0.0729 0.0576
P: -0.3432 -0.2947 0.0935 -0.2155
-24.0720 -24.8835 -21.7560 -25.1813
15.6780 16.1074 14.2698 15.9375
P, -0.3164 -0.3293 -0.2271 -0.4029
-31.3890 -31.5967 -30.3622 -33.2501
21.9370 22.1114 21.2843 22.7937
P3 -0.1964 -0.2357 0.3828 -0.2992
-13.8470 -14.1233 -11.5285 -15.1524
10.5080 10.6892 8.9826 10.9141
Py -0.2264 -0.2563 0.6799 -0.8556
-20.1580 -20.4462 -14.5313 -23.7982
18.4360 18.6887 13.5331 21.1771
Ps -0.1764 -0.2338 0.1454 -0.6456
-10.8410 -11.1329 -9.8557 -11.9839
17.4630 17.8969 15.7233 19.5261
Ps -0.2164 -0.2311 0.1667 -0.5256
-14.2320 -14.4354 -12.6393 -15.4828
28.0400 28.3878 24.6411 31.4431
Pz -0.3764 -0.3356 0.3567 -0.0433
-24.7840 -27.4434 -21.2779 -23.9073
11.0530 12.0585 9.7499 10.7841

Table 4.2: Results of batch estimation, Approach I. Estimates of camera po-
sition, velocity and orientation, and structure estimates of the first seven un-
known points are shown.

69



which the estimates are based. Using this technique, the so-called Cramér-
Rao lower bounds (CRLBs), on the covariance of the estimation error can be
computed, and used as an approximation to the true error covariance.® Similar
methods are used in [14, 68].

For the purpose of deriving the CRLBs, we represent the conditional p.d.f.

of the measurements as multivariate Gaussian,? of the form:

I‘i:[‘ "i_[‘ 2,(':);: (@501 (4.33)

9 2
k=0 i=0 <%0

where z is a vector containing all the measurements, and o2 is the variance of
the measurement noise in each coordinate, to be obtained during calibration.

Let the estimation error covariance be
A A ~
Co = £{(6-6)(8-6)}

Define the d X 1 column vector

N dln p( /9)
08

and the d x d matrix
J & £{dd" /e}

(The matrix J is called the Fisher information matrix.) Then the basic theorem

used to compute CRLBs can be stated as:

Co>J! (4.34)

3Strictly speaking, only the approximate CRLBs will be determined by the method dis-
cussed in this section. This is because we need to know the bias on the estimation error to
compute the exact CRLBs. Since it is usually not possible to obtain this information, the
derivation assumes unbiased estimates.

4The Gaussian assumption is not required for obtaining the batch estimate.
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Using the expression in (4.33) for the conditional p.d.f. of the data,

1 N-1M-1

In p(z /0) =K — 5= 3 3 llei(k) - hi(6, K)|I"

k-O 1=0

-1 M=-1 . T
- 53 5 AR ) - ho. b

Using the assumption that the measurement errors are independent, the Fisher

information matrix can be obtained in the following form.

N-1M-1

E Y di(k)Tdi(k

=0 =0
where each of the d;(k) terms is of dimension 2 X d, given by

a(k) 2 O (gok) .

The term on the right-hand side of the above expression can be simplified
further, using the basic model equations. The derivation is similar to that for
the H; terms in Section 4.1, so it will not be repeated here. The computation
of the J matrix requires the true values of the parameters, which obviously
will not be known in a real problem. Hence the batch estimate 8 is used as an

approximation to the true parameter vector 8 in the derivation of CRLBs.

4.3.3 Initialization Using an IEKF-Smoother

The disadvantage of the batch approach is that the procedure is iterative, and
may require several hundred iterations to converge. Further, it performs poorly
when the input data do not conform closely to the assumed model. On the
other hand, the recursive approach is fast, has a fixed number of steps, and
can handle model deviations better.

We found that it is possible to use an iterated extended Kalman filter-
smoother (IEKF smoother) instead of the least-squares batch approach. The
procedure is as follows: the motion parameters are first initialized to some

trivial, but reasonable, values (for instance, all the velocities can be set to zero,

71



and the camera’s initial position can be set to zero, and it can be assumed to
aligned with the WCS). Then the IEKF is run on the first 2-8 frames of the
sequence in a purely motion-from-structure mode, using the known landmarks.
A fairly large number of local iterations (2-6) are used. In the next step, the
IEKF is run in reverse back to the first frame. This combination of forward
iterated filtering and backward smoothing results in a very good initial guess for
the motion parameters. The structure parameters are initialized by assuming
the 3-D points to lie at the intersection of the corresponding direction rays
(from the origin of the CCS to the corresponding image point) with a sphere
of some arbitrary radius (say 50 metres) around the camera. With these initial
values, the recursive estimator can converges rapidly. Further improvement
may be possible if the initial structure estimates are obtained by motion stereo
over the first two or three frames.

Initial estimates obtained using this method are shown in Figs. 4.20-4.22.

4.3.4 Error Model for Structure Estimates

One of the very important factors in the performance of a recursive estimator
is the suitability of the error models used. We use the term “suitability,” rather
than “accuracy,” because experimental results show that the actual values of
the error covariances are not important; what is crucial is that the form of the
error model should capture the uncertainties in the physical models of motion
and imaging. We have observed that structure estimates, in particular, are
strongly affected by the choice of error model. Structure errors tend to be
very unequally distributed in the three dimensions, due to the highly nonlinear
nature of the imaging process; errors in range are of far greater magnitude
than errors in azimuth and elevation in the CCS. If the error probabilities
are represented approximately by an ellipsoid, the ellipsoid tends to be very
eccentric. This has to be taken into account while initializing the recursive
estimator. In fact, structure estimates converge rapidly even from very wild
initial guesses, as long as decent values are used for the error covariance.

The first problem we address is this: given the image coordinates p =

(X,Y)T of a point, estimate its position p, in 3-D, relative to the camera,
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Figure 4.20: Synthetic data, example 1: initial guess using IEKF smoother
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Figure 4.23: Ellipsoidal approximation of structure error

and the covariance associated with this estimate, assuming it to be at a(n)
(arbitrary) distance z from the camera. The estimate of the point’s 3-D location

is simple; it is given by
X
p.=z| Y |=]| 2Y (4.35)
1

It’s error covariance can be approximated by an eccentric ellipsoid with its
major axis aligned with the direction ray connecting the origin of the CCS to
the point (Fig. 4.23). This cigar-shaped ellipsoid is characterized by a radial

deviation o, and a lateral deviation oy, such that

ar > 0 (4.36)
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Figure 4.24: Standard form of ellipsoid

To obtain a mathematical expression for it, consider the “standard” form of

an ellipsoid in (Fig. 4.24), which is defined by the equation

-1

of 0 0
p’ of 0 p = const (4.37)
0 o?
.e.Cx

This ellipsoid has the same shape as the one in (Fig. 4.23), but its major
axis is aligned with the z-axis, rather than with the direction ray. We need
to determine the rotation which will align the unit vector in the z-direction,
z = (0,0,1)7, with the unit vector along the direction ray, n = p/||p||. Let Ro

be the corresponding rotation matrix . Then,

Roz=n (4.38)
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If q, is the corresponding quaternion, the above equation can be written using
quaternion algebra [67] as
q*z*{4=n (4.39)

Post-multiplying both sides by q
q*xz=n%*q
This can be written as a standard matrix-vector product

([z], —[n])a=0 (4.40)

0 -2
a-(0 )

0 —n’
[n]l_(n @)

Equation (4.40) can now be solved to obtain the quaternion of rotation q. Rp

where

and

can then be computed. Using Ry and the standard form of the ellipsoid in

(4.37), we can now write the equation of the error ellipsoid in (Fig. 4.23) as:

pT RIC'Ry p = const (4.41)
N ——
2ct
If the rotation between the CCS and the WCS is given by the matrix R, the

equation of the error ellipsoid in the WCS can be written as:

p’ RT C7'R..,, p = const (4.42)
——

A
.—.C'wl
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4.4 Conclusions

Feature-based motion analysis holds promise for such applications as passive
navigation and obstacle avoidance. The need for simplicity and robustness sug-
gests a model-based, estimation-theoretic approach. This chapter dealt with
the development of such an approach for the passive navigation problem, us-
ing simple motion models in conjunction with recursive estimation techniques.
The results indicate that the methods developed here have the necessary ro-
bustness and flexibility to perform satisfactorily in a real application, wherein
considerable model deviations and measurement noise can be expected. In the
following chapters, we apply similar principles for object tracking and traffic

image analysis.
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Chapter 5

Model Evaluation

Model-based formulations are at the core of our approach to motion analysis.
One of the criticisms levelled against such formulations is the lack of a solid
theoretical basis; the performance of such formulations cannot, in general, be
predicted in advance. In particular, conditions for uniqueness and of solution
and robustness of parameter estimates, such as those that have been estab-
lished for two-frame and other fixed-frame methods (e.g. (64, 29, 67, 26]), have
not been extended to general long-frame methods, except for specific cases.
Uniqueness conditions for the case of a stationary camera and moving object
are presented in [15] for uniform translation, using monocular data and in [73]
for constant acceleration and constant precession, using stereo data. These
results are not readily generalizable to other situations. Further, uniqueness
results by themselves are not sufficient to analyze a model based approach; one
could even argue that uniqueness results are largely irrelevant for practical ap-
plications, since one would anyway use a highly overdetermined system in order
to combat the effects of noise and modelling errors. The crucial thing is to be
able to predict the accuracy with which the model parameters will be estimated
from the input data. This kind of “robustness” analysis has been done for the
two-frame structure-from-motion problem in [26], in an algorithm-independent
way. Their results are not applicable to motion analysis using longer image

sequences.
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In this chapter, we outline an empirical approach to analyzing long-frame
model-based formulations, which is applicable to any problem which falls into
this category. The basic idea is to study the eigen decomposition of the Hessian
of the batch objective function at a solution point, and to determine the shape
of the objective function in the vicinity of the solution. This gives important
clues about the global nature of the objective function. Similar ideas have
been used in [9] to determine local uniqueness of solution, and in [14], where
CRLB’s are used as approximate performance bounds. In this chapter, we
go much further, looking not just at the Hessian or its eigenvalues, but also
at its eigenvectors, and the rows of the eigenvector matrix. The approach is
developed for the passive navigation problem (Approach I), as a test case, but

is applicable to other model-based formulations as well.

5.1 The Objective Function

The objective function of the batch formulation captures most of the essential
features of the model-based formulation. Consider the objective function for
the passive navigation problem, which minimizes the squared discrepancy be-
tween the measurements p,(¥) and the corresponding values 2;(8, k) predicted

by the model, i.e.
N-1M-1

G=3 3 lleik) — hi(8, k)| (5.1)

i=0 =0

A (local) minimum of the objective function G should satisfy the following

conditions:
a 0G
VG|9=0 vy =0 (5.2)
" ao g=0miu
9 a o*G
VGlog . = 2T oo 0 (5.3)

The first equation, which states that the gradient of the function should be zero
at the minimum, gives the condition for the existence of a stationary point. In
order for this stationary point to be local minimum of the function, it should

satisfy the second condition, which states that the Hessian of the objective
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function evaluated at the point should be positive definite. In other words, all
the eigenvalues of the Hessian should be positive.

In most of our work, we take for granted that these conditions are satisfied.
What is of great interest to us, then, is the relative magnitudes of the eigenval-
ues, and the eigenvectors they correspond to. This is because in the vicinity of
a minimum point, the objective function can be approximated by an ellipsoid
(in d dimensions) whose axes correspond to the eigenvectors of the Hessian,
with lengths proportional to the inverse of the square root of the corresponding
eigenvalues. This is seen more clearly by looking at a Taylor series expansion

of the objective function near the solution point.

G(8) G(8min)

(0 - emin)TVGwHG:Gmm

(8 — 0.min)TV2G(8)|g-p,,,. (0 — Oumin)

min(

+ + +

(5.4)

The first term in the above equation is constant, and can be ignored. The
second term vanishes because of condition (5.2). We are therefore left with the
third term and higher order terms. The latter may be ignored for 8 =~ 8,,;,.

Defining the Hessian
A
H(o) = VZG(0)|0=0.,..»,. (5’5)

we may thus write G approximately as

G(0)1920,,, = 5(6 — Omin) H(8)(60 — O (56)
By studying the properties of the Hessian H, we can gain insight into the
local structure of the objective function near a solution point, and thereby into
the nature of the function itself. If the objective function does not have a
good structure, it implies that the model-based formulation is flawed. What is
precisely meant by a “good” structure will become clearer at a later stage of

the analysis.
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The gradient of the objective function, from (5.1), is obtained as

N-1M-1 ALY — b LT
ve=y 3 2B KOO,y _nesy 6

Defining the 2 x d matrices d;(k)

a 9hi(0, k)T
dif) & 202,
we can write
N-1M-1
VG =Y Y d(k)B(pi(k) - hi(8, k) (5.8)
k=0 =0
The Hessian is now derived as follows:
N-1M-1 N-1M-1
H=V(VG) =Y Y di(k)8Td:i(k)0 + Y > V(di(k)8)(pi(k) — hi(8,k))
k=0 i=0 k=0 i=0
(5.9)
Setting 8 = 8,,;, in the above equation, we get
N-1M-1
H=H@®)g.g, . = 2 dilk (5.10)
k=0 1=0

The other term vanishes because in the absence of noise, (p;(k) — hi(@min, k)) =0
for all z and k. The derivation of the d;(k) matrices is similar to that of the H;
terms in Chapter 4. It can be seen that the Hessian at the solution point min
is independent of the measurements.

In the rest of this chapter, we adopt a “hands-on” approach, looking at a

specific instance of the model used in Chapter 4.
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5.2 Case Study : Passive Navigation

Let us select the following d—dimensional set of parameters :

(pr )

v

q
6=|p, (5.11)

P2

\ pM" }dxl

where the first three components are referred to the initial time instant ¢. We
are now going to look at a specific value of 8, given in Table 5.1. This will be
the solution, or minimum point, at which we will study the behaviour of the

objective function.

5.2.1 The Rank of H

Local uniqueness at a solution point is determined by the rank of the Hessian
at that point. If the Hessian is not of full rank, it means that the solution
is locally underconstrained, and therefore not globally unique. On the other
hand, if the Hessian is of full rank, it implies local but not global uniqueness
of solution. Physically, rank deficiency of the Hessian corresponds to one or
more directions, or degrees of freedom, along which the value of the objective
function does not change.

The rank of the Hessian, determined by numerical methods, is shown in
Table 5.2, as a function of the number of known feature points (M} ),the number
of unknown feature points (M,) and the number of image frames (N). The
rank of the Hessian must be compared with d, the dimension of the parameter
vector, since the Hessian is of size d x d. The following features of the Hessian

can be immediately deduced:
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parameter

value

P

2.6223
-0.9764
1.2291

0
-0.5000
0.6000

0.3324
0.1003
0.0394
0.9370

P

15.8866
-123.2330
144.9800

P2

6.5806
-36.4954
50.2220

P3

-0.5052
-44.1819
27.5550

P4

0.1266
-30.9723
32.3000

Ps

-0.3432
-24.0720
15.6780

Table 5.1: Parameter values chosen for the case study
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M,=0,d=10
NM,|0]|1]2|3]|4
0 0ojojojof|o
1 0]214]|6|6
2 014|8(91]9
3 0158|919
M,=1,d=13
NMg[O|1]1 23| 4
0 ojojoJjofjfo
1 21416 | 8| 8
2 48111 12(12
3 5(8(11]12]12
M,=2,d=16
NM. 0| 1 2134
0 o(0|10]01]0O
1 41 6| 8|10]10
2 8{11]14]15(15
3 81114 ]15(15

Table 5.2: Rank of the Hessian for various combinations of My, M, and N
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1. The rank of the Hessian, relative to d, increases with the number of

known points M and the number of frames N.

2. For a fixed number of frames, the Hessian attains its maximum rank for

M. = 3. Further increase in M;. does not improve the rank.

3. With two exceptions, for a fixed number of known points, the Hessian
attains its maximum rank for N = 2. Further increase in N does not
improve the rank. The two exceptions are: M, = 0; Mg =1 and M, =
1; M, = 0.

4. The Hessian never attains full rank. Its maximum rank is d — 1.

Most of the above observations are intuitively obvious. More known points
means more constraints; more image frames means more data. This explains
observation (1). It can be shown, from simple geometrical considerations,
that at least three non-collinear points are required to unambiguously locate a
camera. This leads to observation (2). A minimum of two frames are needed
to estimate velocities (observation 3). The final observation will be explained

in a later section.

5.2.2 The Eigenvalues of H

The rank of the Hessian determines local uniqueness; the range of its eigenval-
ues determines local “conditionedness” of the objective function. The eigenval-
ues of the Hessian for My = 3, M, = 2 and N = 4 are tabulated in Table 5.3,
and shown graphically in Fig. 5.1. Let them be denoted as A; to A, in in-
creasing order. It can be seen that the first eigenvalue ), is so small relative
to the others that it can be treated as zero for all practical purposes. This is
not surprising, because, as Table 5.2 shows, the Hessian is rank-deficient. (The
reason for this will become clear when we look at the eigenvectors in the next
section.)

Even after deleting \,, the range of eigenvalues, shown in Fig. 5.2, is very
large (about 10%). This implies that the local ellipsoidal approximation of the

objective function is extremely eccentric. Minimization techniques which do
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eigenvalue value

A 1.7742950e-10
A2 1.0444110e-02
A3 1.8810705e-01

A4 8.1348714e+00
As 3.5169326e+-01
Ae 4.7979428e+-01
A7 6.9335979e+01
As 5.4268867e+02
Ao 8.7092143e-+02
Ao 1.3647324e4-03
A 2.4613791e+03
A2 4.3714300e+03
M3 8.5598526e+03
A1s 1.0778459%¢+07
AIG l.7921092€+07

Table 5.3: Eigenvalues of the Hessian

not take this fact into account may not perform very well. This is applicable
to gradient-based methods such as conjugate gradients and gradient descent.
Methods which use the Hessian in addition to the gradient, such as the modified
Newton’s approach, are likely to work better. It may also be possible to re-

parametrize the problem in such a way as to reduce the range of eigenvalues.

5.2.3 The Eigenvectors of H

The somewhat hazy picture of the objective function that has emerged becomes
clearer when we look at the eigenvectors of H, some of which are tabulated
in Tables 5.4. Let us denote by e;,e,,... the eigenvectors corresponding to
eigenvalues Ay, Ao, .. ..

Let us first try to find an explanation for the rank deficiency of H. The
eigenvector corresponding to the zero eigenvalue, ey, is tabulated in the third
column of Table 5.4. It can be seen that (except for numerical inaccuracies) all

the components of e; are zero ezcept those corresponding to the quaternions.
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parameter €1 €2 €3

P -0.0000 | -0.0001 | 0.0016
0.0000 | 0.0141 | -0.0167
-0.0000 | -0.0169 | 0.0203
v 0.0000 | 0.0000 | -0.0010
-0.0000 | -0.0140 | 0.0201
0.0000 | 0.0167 | -0.0226
q 0.3324 | -0.0000 | 0.0000
0.1003 | 0.0000 | -0.0000
0.0394 | -0.0000 | 0.0000
0.9370 | 0.0000 | -0.0000
| P -0.0000 | -0.1006 | -0.0480
-0.0000 | -0.7657 | -0.3637
0.0000 | 0.4689 | 0.2214
P -0.0000 | -0.0831 | 0.1752
-0.0000 | -0.3406 | 0.7193
0.0000 | 0.2446 | -0.5165

Table 5.4: The first four eigenvectors of the Hessian

This implies that €, lies completely in the subspace defined by the quaternion q.
In fact, it can be shown that the nonzero subvector of e, is identical tp q upto a
sign inversion. If we refer back to the introduction of quaternions in Chapter 4,
we find that the four component quaternion has only three degrees of freedom,
and hence has to be constrained to have unit magnitude. Since we did not
enforce this condition in the objective function, we ended up with the extra
degree of freedom. Thus hidden constraints in the model can be discovered by
examining the eigenvectors corresponding to vanishing eigenvalues.
Eigenvectors corresponding to large eigenvalues are “good” directions, in
the sense that the objective function has the desired “bow]” shape along these
directions. Conversely, eigenvectors corresponding to small eigenvalues are
directions along which the objective function is more or less flat, and hence
hard to minimize accurately. This general idea can be developed still further

by examining the rows of the eigenvector matrix E, defined by
E=le;e3 -+ ed] (5.12)
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Figure 5.3: Rows corresponding to the position parameters

(We ignore the first eigenvector.) These rows can be divided into different
groups, based on the components of 8 they correspond to. These groups of
rows are shown graphically in Figs. 5.3 to 5.7. Analogous to “good’ and “bad”
eigenvectors, we can also classify the unknown model parameters in 8 as good
or bad, depending on their contributions to good and bad eigenvectors. For
instance, quaternions are “good” parameters, in the sense that they contribute
to eigenvectors on the higher end of the scale, as illustrated by Fig. 5.5. This
is equivalent to saying that in the subspace corresponding to the quaternions,
the objective function has a nice bowl shape, and hence can be minimized with
high accuracy. The structure parameters, on the other hand, contribute mainly
to the bad eigenvectors (Figs. 5.6 and 5.7), indicating that it will be difficult
to estimate the structure parameters accurately from the input data. These

remarks may be verified by looking at the experimental results in Chapter 4.

91



16

0.8

0.6}

04

0.2

Al

0.6

Figure 5.4: Rows corresponding to the velocities

08|
0.6
04}
0.2}

o}

0.2}
0.4}
0.6}
0.8}

16

14

12

10

10ns

.

to the quatern

ing

Rows correspondi

.
.

5.5

igure

F

92



16

1

0.4
0.2}
0

0.2}
04}
0.6}
0.8

0.6

Rows corresponding to the structure parameters (Point no.1)

Figure 5.6

16

Rows corresponding to the structure parameters (Point no.2)

.
.

Figure 5.7

93



Chapter 6
Target Tracking

The models developed in the previous chapters were for a moving camera in
a stationary environment. Though this is the most common application of
motion analysis, the complementary problem of a fixed camera looking at a
moving object is also of great interest. In this chapter, we present a long
frame approach to the determination of the kinematics and structure of a
rigid moving object based on a monocular sequence of images obtained by
a stationary camera.’

Fig. 6.1 illustrates the basic models for motion, structure, and the observa-
tion of the object. The object is assumed to be rigid, and its motion is assumed
to be “smooth” in the sense that it can be modeled by retaining an arbitrary
number of terms in the appropriate Taylor series expansions. Translational mo-
tion involves a standard rectilinear model, while rotational motion is described
with quaternions. Neglected terms of the Taylor series are modeled as process
noise. A state-space model is constructed, incorporating both kinematic and

structural states, and recursive techniques are used to estimate the state vector

as a function of time.

1The work discussed in this chapter is based on the model proposed, but not implemented,
by Broida in [9]). In this chapter, details of the implementation of this model are presented,
the performance of the recursive algorithm is analyzed. This work was done before the
matching techniques of Chapter 3 were developed, and hence feature point correspondence
was done manually.
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A set of object match points is assumed to be available, consisting of fixed
features on the object, the image plane coordinates of which have been ex-
tracted from successive images in the sequence. The measured data are the
noisy image plane coordinates of this set (or of a subset of this set) of object
match points, taken from each image in the sequence. High image plane noise
levels (up to ~10% of the object image size) are allowed. The problem is for-
mulated as a parameter estimation and tracking problem, which can use an
arbitrarily large number of images in a sequence. The recursive estimation is
done using an Iterated Extended Kalman Filter (IEKF), initialized with the
output of a batch algorithm run on the first few frames. Approximate Cramér-
Rao lower bounds on the error covariance of the batch estimate are used as
the initial state estimate error covariance of the IEKF. The performance of the
recursive estimator is illustrated using both real and synthetic image sequences.

Previous work by Broida and Chellappa in this area is discussed in [11,
12, 13, 15). In [11] a one dimensional (1-D) image of a two dimensional ob-
ject (2-D) undergoing 2-D motion was examined, to explore the properties of
central projection imaging and the viability of the object/motion modeling
approach. Some knowledge of object structure was assumed, and a recursive
solution method was used on simulated data. The favourable results presented
there were extended to a 2-D image of a 3-D object, undergoing 3-D motion,
and the various models were more fully developed—this research was reported
in a workshop [12]. A recursive solution was applied to simulated imagery
involving pure translation and unknown structure. In {13], rotational motion
was included, and a batch approach was applied to synthetic data: the exper-
iments involved known object structure. In [15], the general case of unknown
structure and motion (both translational and rotational) was addressed, and
a batch method was shown to be effective in two experiments involving real
imagery.

In the present chapter, we deal with the more general case of motion involv-
ing both translation and rotation, assuming no knowledge about the structure

of the object undergoing motion. Details of the models used are given in [9, 10].
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Figure 6.1: Models of motion and imaging used for object tracking

96



Here we summarize the recursive formulation, and discuss experimental results

and implementational aspects.

6.1 Formulation for Recursive Solution

In this chapter, we deal with the case of motion involving constant translational

and rotational velocities. With this assumption, and assuming M object fea-

ture points, the following set of states is chosen.

([ 2r(t)/2r(t) )
yr(t)/zr(1)
&/zr(1)
y/zr(t)
2/zp(t)
q(t)
q2(t)
q3(1)
ga(t)

Wy
W;
z1/zr(1)
y1/zr(1)
z1/zr(t)

zar/zr(t)
yl”/zR(t)

/ S1 \

S2
S3
S4
S5
36
87
Sg
Sg
S10
S
812
813
S14

S15

S3M+10

S3M+11

\ zM/zn(t) )

\ SaM+12 |

(6.1)

t

The origin of the object-centred coordinate system is expressed as

sr(t) = (zr(1),yr(t), 2r(t))T
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and the angular displacement between the object and camera coordinate sys-
tems are represented by the quaternions (q1(2), ¢2(t), ¢3(t), ¢a(t)). The scalar

terms z;, ¥i, z; are the coordinates of the i*# feature point in the object-centered

system. The translational velocities are (Z,y, 2) and the angular velocities are

(wgywy,w;). The The time derivative of s(t) is

5(2)

( #/2r(t) - [or(t)/zr(0))[2/2R(1))
9/2r(t) — [yr(t)/zr(t)][2/2R(t)]
—[2/zr(t)](2/2R(¢)]
—[9/2r(t)][2/2R(2))
—[2/zr(t))?
0.5(w:q2 — wyqs + wzq4)
0.5(—w.q1 + wzqs + wyqa)
0.5(wyq1 — wzq2 +w:2qa)
0.5(—we 1 — wyq2 — w2 43)

0
0
0
~[or/ 2R ][/ zr(0)
—[n/zr(®))[2/zr(1)]
—[=1/zr(1)][2/zn(1)]

—[zm/zr(2)][2/2R(2))
—[ynm/zr(t))[2/2r(2)]

\ —(2m/zr(t)][2/2R(1)] )

83 — 8183 \
S4 — 8285
—838s
—3848s

—s?
0.5(s1287 — $1188 + $1059)
0.5(— 31256 + S1088 + S51159)
0.5(s1156 — $1087 + $1259)
0.5(—s1086 — S1187 — S1258)
0
0

0
—35135s5
—351455

—8158s5

—S3M+10S5

—383M+1185

—S3M+1285 ¢
(6.2)
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The vector-valued measurement function (2M x 1) is

( S](tk) + R,,-(S, l,tk) \
14+ RZ(S, l,tk)

1+ Rz(s, l,tk) Vit
si(te) + Re(s,2, 1) 1(tx)
1+ Rz(s, 2, tk) XZ(tk)

p(tx) = hs(te) ]+v(te) = sg(fﬁ;fé’,(;f;)tk) +v(t) = Yg(‘tk) +v(ty).

s1(t) + Ro(s, M, ;) (v (te)
14 R.(s, M,1;) \YM(tk)J
sa(tr) + Ry(s, M, tr)

\" 1+ R.(s,M,t) /4,
(6.3)

The abbreviations represent components of matrix-vector products, for exam-
ple the scalar term R,(s, 1, ;) refers to the z—component of the product of the
rotation matrix with the normalized (2, y, z) coordinates of the :** match point,

R(s,11) - (S3i410, S3i+11, 83i412)7 - For example, denoting the rs component of
R(s,tx) as R,,

R.(s,1,tx) = Rusiz+ Ri2sia+ Rizsis
= (¢ — ¢ — 2+ ¢3) =1 /zr(t) + 2(q1q2 — 4304) 11 /2R(2)
+ 2(q193 + q294) 21 /zR(2). (6.4)

This problem formulation is appropriate for solution with a filter such as an
EKF. The measurement function h[:] (ratios of functions of states) is highly
nonlinear, which requires the iteration of the measurement function. Hence an
IEKF is used for estimation. The relevant equations are given in Appendix A.

In order to implement an IEKF, we need to obtain expressions for the

linearized plant and measurement functions. With the state vector s as in
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(6.1), h[s] as in (6.3), the linearized measurement equation is given by

A0 wWO0s 00--0

0 w, 00 sS50-.-0
a2 B == | T T T DT
PMO"l{OOOO"'SM
(6.5)
where )
- 0
P.-=(1+Rz(’5 1 );ISiSM, (6.6)
O TFRD
the W; submatrices are of dimension 2 x 4 with elements
~ORL(2 LOR.(2
01+ RN B - (s + R 22
Wi(1,k) = : : L)< k<4, 6.7

(14 RG)TED = (o2 4 Ry o
(1 RO 1<k<4, (68)

and the S; submatrices are of size 2 x 3 with elements

Wi(2, k) =

(1 4+ R.(2))Ri1 — (51 + Ro(2)) R

Si(1,1) = A (6.9)
s, = (DRt RO
5,3 = LHEL ))(ff_;zfé’);’{ () (6.11)
sz = U +R:(i))(?j‘r;2((s?);r Beld)) B (6.12)
Si(22) = LEEL ))(?ﬁ;z((s:);; Beli)) R (6.13)
52,3 = X ('))(?ﬁ;z(::);; Beli)) s (6.14)
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The linearized plant function is given by

of K 0 0
F(s)=—a(:—) 0 /O (6.15)
Fs 0 F

where

R = 0 0 —-s5 0 —s3 (6.16)

/ 0 $12 —Sn S0 S9 —Sg 87\
—s12 0 Si0 S11 S8 Sg —Sg
s —S10 0  s12 —87 S S
F =05 | —s;0 —s11 —$12 0 —s5 —s7 —sg (6.17)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
\ 0 0 0 0 0 0 0 /
(0000 =—s3 )
0 000 —3S14
0 00O —S15
0 000 —s46
o= o000 s (6.18)
0 000 —S18
\ 0 0 0 0 —s3ar4r2 )
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[—ss 0 0 0 0 )
0 -s5 0 0 0
. 0 0 —s5 0 0 6.9
T 0o 0 0 0 '
\ 0o 0o o o —s5 )

In our implementation, we deviate slightly from the traditional IEKF by
including a quaternion normalization step immediately after the measurement
update. This is done to keep the norm of the quaternion vector equal to unity.
An analysis of the effects of such a step on the performance of a similar recursive
estimator is done in [6], wherein the authors conclude that “the estimation
errors are not affected by the normalization operation.” This normalization
is a result of an extra degree of freedom. Rotational motion involves three
parameters w;, w,, and w;, while a quaternion has four elements. A “continuous
normalization” can be achieved by dividing through by a fourth (cosine) term—
this results in a representation of rotational motion known as Gibbs parameters
[69]. Unfortunately, Gibbs parameters do not evolve in time in a way conducive

to simple modeling such as equations (4.4) and (4.5).

6.2 Experimental Results

The performance of the recursive algorithm was tested on simulated as well
as real image sequences. The algorithm is the same for both cases, but the
performance analysis is done differently because the “ground truth” is known
only for the experiments using simulated data. The next two sections discuss
the set-up and the results of experiments using simulated and real data. This is
followed by section describing the details of the implementation of the IEKF—

such as parameter selection—and related numerical issues.



6.2.1 Experiments with Simulated Imagery

The object whose motion is to be studied is a rigid transparent cube of side
four units. The axes and origin of the object-centred coordinate system are
chosen to coincide with the physical axes and centroid, respectively, of the
hypothetical cube. The corners of the cube are chosen as the feature points.
The recursive formulation can easily be modified to handle self-occlusion (the
disappearance of some feature points due to the motion of the object), but for
simplicity it has been assumed that no feature point is missing in any of the
frames in the image sequence.

Experimental results for four different cases are reported below. The mea-
surement noise level indicated in each case is the ratio of the standard deviation
of the quantization error to that of the signal (expressed as a percentage). The
signal standard deviation is defined to be the root-mean-square distance of the
feature points from their centroid, computed during the frame when the object
is farthest from the camera. The initial state estimates mentioned in Cases 1-3
are obtained by the batch procedure described in [9].

The errors in the output estimates of the ILKF in each frame are displayed
graphically. It must be noted that the position, structure and translational
velocity estimates, and therefore the corresponding errors, are normalized by
the (time-varying) z—coordinate of the centre of the object-centred coordinate-
system. In the cases discussed, four feature points were tracked over 100 frames,
and the following parameters were used to generate the motion: w; = w, =
w, = 0.2; v, = 0.25; v, = 0.2; v, = 0.15. The object is assumed to be at
location (0,0,10) at start. Focal length and sampling period are both assumed
to be unity. It is assumed that the feature points have been matched over all
the frames. There is no special reason for selecting four points, except that
it seems unreasonable to expect many more feature point correspondences. In
general, the greater the number of matched feature points in each frame, the
better will be the performance of the IEKF in terms of speed of convergence
and estimation accuracy.

Case 1: (Fig. 6.2) A moderately low measurement noise level of 2.5% was

used in this case. A crude initial state estimate (with errors of 20% or more
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in some states) was used. As the figures indicate, the position and velocity
estimates converge quite well, requiring about 30 frames for satisfactory con-
vergence. Most of the structure parameters seem to have a small but constant
steady-state error, and the attitude parameters (i.e. the quaternions) exhibit
sinusoidal oscillations of small magnitude about the correct values. This is
probably due to the fact that different combinations of structure and attitude
parameters can result in the same spatial position of the feature points—which
means that any large errors in the initial structure estimate can cause cor-
responding errors in the attitude estimates. This problem can be solved by
providing more accurate initial structure estimates, or by imposing additional
constraints on the structure. Knowledge about the structure of the object can
also be used for this purpose.

Case 2: (Fig. 6.3) The measurement noise level here was fairly high (10%),
and the initial guess was crude as in Case 1 . The results are similar to those
obtained for Case 1, except that the convergence is slower. For instance, the
angular velocities converge in about 50 iterations, compared to 25 iterations
required for Case 1. This is mainly due to the higher measurement noise.

The above two experiments demonstrate the basic convergence properties
of the IEKF, given an inaccurate initial estimate and noisy observations. In
actual practice, a much better initial guess can be obtained, resulting in a
greatly improved performance, as shown by the next experiment.

Case 3: (Fig. 6.4) In this case, the measurement noise was the same as
in Case 1, but a much more accurate initial state estimate was used. As
the graphs show, the filter “locks on” to the motion almost immediately, and
tracks it faithfully. The price we pay for this excellent performance of the
IEKF is the greater amount of time spent in getting the (more accurate) initial
estimate. All the same, this case is the one of greatest practical interest, since
it demonstrates the ability of the IEKF to track the motion effectively given a
good initial guess (which can be obtained by the batch algorithm).

Case 4: (Fig. 6.5) In this case all the initial values of the state vector
were set to zero (except the quaternions, which can be trivially initialized

if it is assumed that the object-centred and the inertial coordinate systems
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are aligned at the start of the experiment). Noise-free measurements were
used. This case demonstrates the performance of the IEKF in the absence of
any information about the initial conditions. The velocity and position states
of the the IEKF, after an initial period of wild fluctuations, converge quite
fast, in about 25 iterations. The performance is interesting, considering the
extreme nonlinearity of the problem, and the consequent mismodeling produced
by linearization. The quaternions, however, do not converge at all, and the
structure states seem to converge very slowly. Furthermore, a high degree of
instability was observed in the solution, due to ill-conditioning of the matrix to
be inverted in the computation of the Kalman gain; its generalized inverse had
to be used instead. The performance deteriorated rapidly when small amounts

of noise (as low as 2.5%) were added to the measurements.

6.2.2 Experiments with Real Imagery

This experiment involves randomly selected points on the side of the tyre of a
car approaching the camera (Fig. 6.6). Seventeen images were made, with eight
feature points per frame. The feature points were marked with adhesive dots to
facilitate the measurement process. The car was moved approximately 3 inches
between each frame, corresponding to a tyre rotation of about 14.8 degrees.
The direction of the translation was towards the camera (i.e. in the positive
z-direction), with a fairly large component to the right (positive x-direction),
and a small downward component due to the positioning of the camera. The
object image size (i.e. the size of the tyre) is about 2 inches at the start of
the sequence, and about 3 inches at the end. The total rotation was about 4
radians, and the total translation about 45 inches. The photographs were dig-
itized to a resolution of 50 pixels/inch. Two previously chosen reference points
were located on all the images, and the distances of the feature points from
them were measured on a Sun workstation. A simple geometrical transforma-
tion was used to reference all measurements to the coordinate axes in the first
image. This was done to reduce errors due to small camera movements during
imaging , and the positioning of the photographs during scanning. Feature

point correspondences were obtained manually by inspection. The focal length
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Figure 6.6: First and last {rames of the real image sequence
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Figure 6.7: Actual and estimated image point trajectories for car sequence

of the imaging system was not known, and was assumed to be unity. This has
the effect of scaling the translation and structure parameters up or down, but
is not a serious problem since anyway the latter can only be determined up to
a scale factor.

As mentioned before, the actual state values are not known to us, so it is
not possible to display the errors in the state estimate. Instead, the actual
and the estimated trajectories of the feature points are shown in Fig. 6.7. The
filter should ideally “lock on” to the motion of the target within the first few

frames, and should track it efficiently in spite of small errors in measurement
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and modeling. Fig. 6.7 seems to confirm that the IEKF is doing a reasonably
good job of tracking the moving object.

6.3 Selecting the IEKF Parameters

In order to run the IEKF, the following parameters have to be supplied in

addition to the image point measurements:
1. Initial estimate §(0)
2. Initial error covariance P(0)
3. Plant noise covariance matrices Q)
4. Measurement (observation) noise covariances matrices R .

A reliable way to obtain a good initial estimate is to run the batch estima-
tion algorithm on the first few frames. For the particular motion parameters
chosen in the simulations, the batch algorithm required about 250 iterations to
converge. For Cases 1 & 2, only a crude initial guess was desired, and hence the
batch algorithm was forcibly terminated after about 75 iterations. For Case 3,
final output of the batch algorithm after convergence was used. In all three
cases, the first 10 frames were used for obtaining the initial state estimate.
For the real image sequence, the initial guess was obtained by running a batch
estimation algorithm on the first 14 frames for about 150 iterations.

If a sufficiently accurate batch solution is available, approximate Cramer-
Rao lower bounds (CRLBs) can be found for the error in the initial guess i.e.
the initial error covariance [14]. In the experiments described above, this was
possible only for Case 3 and the real image experiment. In the remaining
simulations, ad hoc values were used for P(0).

The variance of the measurement noise is known for the simulated data,
being a direct function of the grid resolution. (For instance, a grid resolution
8 = 0.04 was used for Case 2, which results in noise variance 62 ~ 1.33x1074.)
Since this does not depend on time, we may set Ry = R = 02 x I, assuming

the measurement errors to be independent. For the real image experiment,
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determination of the actual measurement noise is difficult, since this involves
modeling the various sources of error in the imaging system. In our research,
it was assumed that the only noise in the measurements is quantization noise
resulting from the scanning of the photographs. Using this assumption, the Ry
for the real image experiment were chosen as in the cases involving simulated
data.

There is no simple method for selecting “good” values for the plant noise
matrices @, which play an important role in filter performance. If the Qx
chosen are inappropriate for the problem, the filter is likely to diverge, or
converge to the wrong value. This is mainly due to the extremely nonlinear
nature of the problem, particularly in the observation equations. The filter has
therefore to be “tuned” for satisfactory convergent behaviour. Convergence
implies that the Kalman gain matrices generated by the IEKF should decrease
in magnitude at an appropriate rate. The Kalman gain sequence of the IEKF

is given by
K(K)nps = P(kIk — VHR)T [Hk)P(HE - DHBT + R|™  (6.20)

The time varying estimate error covariance P in the above equation is a
function of the initial error covariance P(0), the measurement noise R and
the plant noise Q. Since P(0) and R are fixed, the only way to control the
above equation is through the plant noise Q. In our implementation, we have
used the term G;Q,G7 in (A.21) as the tuning parameter, assuming it to be
a scalar multiple ¢ times the identity matrix, for all ¢. A very low value for
¢ would result in a rapid reduction of the predicted estimate error covariance
and the Kalman gain, making the estimates insensitive to the measurements. A
very high value would have exactly the opposite effect, causing the estimates
to respond to every minute error in the measurements. Clearly, both these
extremes are undesirable, since they will have an adverse effect on the filter
convergence. In our simulations we have chosen, by trial and error, those values
of ¢ that have resulted in good filter performance. Several other strategies are
possible, involving adaptive estimation, as discussed in [50]. These issues have

to be addressed in future work on recursive motion estimation.
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Another effect which can be observed in certain rare cases is the ill-conditioning

of the matrix inversion involved in (6.20). The H matrix in the equation is very
sparse, and the pre- and post-multiplication of P by H and H7 respectively
results in a sparse matrix which has mostly off-diagonal elements, and is there-
fore likely to be ill-conditioned. The matrix inversion in (6.20) guaranteed to
be well-conditioned only if the measurement noise covariance R is sufficiently
large (i.e. a large multiple of the unit matrix) and is the dominant term in
the matrix summation involved in (6.20). This condition was not satisfied in
Case 4, and the generalized inverse was therefore used. The computation of the
generalized inverse of a matrix requires the specification of a threshold param-
eter (e), below which all singular values of the matrix are set to zero. Higher
values of e result in greater numerical stability, but lead to loss of information
contained in the smaller singular values. The selection of the threshold could
made automatic by specifying that all singular values falling below a certain
fraction of the largest one should be treated as zero. In future work, other
numerically stable approaches such as the square root information filter should

be examined.
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Chapter 7
Obstacle Avoidance

The analysis of traffic scenes is the subject of intense research as a part of
the European project Prometheus. The scenes are viewed from a land vehicle
(henceforth to be referred to as the “observer”) which could be stationary
or in motion, in an environment which contains one or more stationary or
independently moving objects (referred to as “obstacles”). One of the basic
objectives here is to detect and understand the relative motion (with respect
to the observer) of the various obstacles in its vicinity. This goal has to be
accomplished primarily with the help of the image sequences provided by one
or more cameras in the observer.

In this chapter, it is assumed that the observer is equipped with two cam-
eras, which provide stereo image pairs at a sufficiently high frame rate to
enable the detection and analysis of the fastest-moving obstacle which may
be encountered in a realistic situation. The theory of stereo vision has been
extensively studied [49, 51] and several methods have been developed for the
processing of stereo image pairs to obtain 3-D information about a scene (for
instance [36, 46, 53]). We are, however, constrained by the need for real-time
processing, and the need to handle images of complex and diverse objects. The
algorithm discussed in [55], which matches contour chain points in a pyramidal

framework, is ideal for our purpose, since it is fast and deals equally well with
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natural and man-made objects, however complex their shape. We use this al-
gorithm both for stereo matching as well as for the determination of optic flow
[54], using contour chain points as primitives.

The outputs of the stereo and optic flow algorithms can be combined to
determine the (noisy) 3-D trajectories of the contour chain points over an ar-
bitrarily long image sequence. These noisy trajectories can then be filtered,
either recursively or in a batch framework to determine the filtered 3-D posi-
tions and the parameters of the 3-D motion of selected points at any given time
instant. The motion parameters may be computed to any order of complexity,
but a second-order model (assuming constant acceleration) is usually sufficient
for most purposes.

In order to perform the filtering, it is necessary to know the accuracy of the
3-D information provided by the stereo algorithm. To be more specific, it is
necessary to know the mean and covariance of the 3-D position error! given a
measurement of the 3-D position of a point in the scene (as computed by the
stereo algorithm). Many methods exist in the literature to analyse the effects
of quantization error on the accuracy of stereo triangulation (e.g.[59, 4, 8]).
However, most of these methods do not result in explicit expressions for the
statistics of the 3-D error, as is required for trajectory estimation. In this chap-
ter, we present a simple method of obtaining the mean and covariance of the

position error from the 3-D position vector obtained using stereo triangulation.

7.1 Formulation of the Problem

The basic problem environment consists of a land vehicle (the observer) sur-
rounded by various objects (the obstacles), any one or more of which could be
moving independently. In this work, no knowledge about the motion of the
observer is known, although it will be shown later how such information may
be obtained from the output of the trajectory estimation algorithms. In such a

situation it is necessary to decide the coordinate system in which the data will

1Strictly speaking, one needs to know the complete probability density function of the
error, but for most practical purposes a knowledge of its mean and covariance is sufficient.
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Figure 7.1: Schematic diagram of the temporal analysis

be represented. One could represent all the 3-D information in the coordinate
system of the observer (OCS), or in a (hypothetical) world coordinate system
(WCS). It is also possible to imagine a coordinate system attached to each
independently moving obstacle. Since the goal is to analyse the movement of
objects with respect to the observer, it seems reasonable to represent data in
the observer’s coordinate system.

It is also necessary to decide the primitives to be used in the analysis—
points, lines, curves or entire objects. An object-based formulation (10, 60, 66]
would require complex (possibly nonlinear) motion models, as well as segmen-
tation of the 3-D data before the temporal analysis. Even if the motion of
the observer and the obstacles can be modelled in a simple manner, the rela-
tive motion of an obstacle (as a whole) with respect to the observer may not
be easy to model. Therefore, object-based models should be used only when
more information (such as segmentation or observer motion) is available. A
line-based approach [19, 42, 65, 75] would require fewer preconditions to be

met, but would in general work well only for scenes composed of man-made
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objects with polygonal surfaces. A method based on curves [39, 28] would be
applicable to a wider variety of scenes. However, curves are hard to model
and manipulate, and present several mathematical and practical difficulties.
Points, then, are the obvious choice of primitives for our problem. Further-
more, if we restrict ourselves to points lying on contour chains, there are other
advantages [55].

In order to estimate the trajectory of 3-D scene point in time, it is useful
to make some assumptions about its motion. The fundamental assumption we
make is that the trajectory is “smooth” i.e. it can be represented by a small
number of parameters, and that this number is not dependent on the number
of image frames over which the motion is analysed. To be precise, it is assumed

that the motion of a point p(t) in the WCS can be modelled as:
p(t) = p(0) + H(0) ¢ + H(0) */2! + --- 4 p(0) " /n, (7.1)

where where n is small compared to the number of frames in the sequence.
(In other words, it is assumed that derivatives of p(t) higher than the nth are
negligible for all ¢.) Typically, one would select n =1 or n = 2.

Let us now consider the motion in the WCS of two points, one (p,) on a
moving obstacle, and the other (p.) being the origin of the coordinate system
of the observer. Using the model in (7.1), their trajectories in the WCS can be

written in the form
Po(t) = Po(0) + Po(0) t + Fo(0) £2/2! + - -+ + p{™(0) £*/n! (7.2)

and
Pe(t) = Pel0) + Be(0) ¢ + P(0) £2/21 + -+ 4 I (0) t*/nl. (7.3)

Since we are interested in the relative trajectories of points in the scene
with respect to the observer, we have to express (7.2) in the OCS. If the OCS
is assumed to be aligned with the WCS, this can be done simply by subtracting
from (7.2) the trajectory of the origin of the OCS, given by (7.3), as follows:

po(t) —p(t) = po(0) — p(0) + (Po(0) — pc(0)) ¢ (7.4)
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+(5o(0) — P:(0)) /2! + - - - + (p{?(0) — p{M(0)) t*/n!

defining
p(t) £ polt) = p(2), (7.5)

we can reduce (7.4) to the form (7.1), thereby establishing the validity of the
model in (7.1) even for the trajectories determined in the OCS. Equation (7.1)
will henceforth be the basic motion model used in the estimation of point

trajectories relative to the observer.

7.2 The Stereo Algorithm

The stereo algorithm used in this work has been developed as a part of the
Prometheus project referred to earlier. In this section, we present its salient
features. A more detailed description is given in [55]. The basic issues of
interest are the primitives used for matching, the matching criteria and the
organization of the data.

As mentioned earlier, due to the complex nature of the images encoun-
tered, contour chain points are the obvious choice of matching primitives. The
extraction of contour chain points is performed in three steps: gradient com-
putation [22], hysteresis thresholding to eliminate noise, and the chaining of
contour points (35]. The contour chains serve two purposes: they are used
to propagate disparities, and they help in reducing false targets. They pro-
vide a rich 3-D description of the environment, greatly facilitating the further
interpretation of the scenes.

Stereo matching is performed by optimizing a similarity function. For two
contour points, (x;,¥) in the left image and (z,,y,) in the right image the

similarity function is defined as:

G Ly - G Ty Yr 2 0 xy, — 0 v Yr 2
f(mhylvxrayr) = [ (SL[ yl) 5z (’L Yy )] + [ ('Ul yl) = ((L' /] )]
G é

where G (z,y) and 0 (z,y) are, respectively, the gradient norm and the orien-

tation at the point (z,y); and Sg and Sy are respectively the thresholds on the
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gradient norm and the difference in orientation .

For all (z;,¥;) in the left image (z;,y;) is a potential match in the right image

if the following conditions are satisfied.
L |G (zi,y1) — G (%rjy yrj)| < Se
2. 10 (i, 1) — 0(ej> yr5)| < So
3. f (i, Ytis Trj, Yrj) Minimum w.r.t. j

If a point (zrjo, ¥rjo) in the right image satisfies the above criteria, then the
correspondence between the pair ((zi, ¥i) , (Trjo, Yrjo)) is validated if
S (Ztiy Yiis Trjos Yrjo) is minimal w.r.t. z. The matching process is then symmet-
ric, and uniqueness is guaranteed.

Although the above criteria are fairly stringent, matching based on similar-
ity alone is prone to error. Ambiguities in matching often occur, and suitable
criteria have to be selected for validation of matches. The so-called second
stereo law, which basically requires local continuity of disparities, is then ap-
plied. The consistency of matches obtained using the similarity criteria is
tested, using contour chains as local support—matches which do not have
supporting local evidence are rejected. For each pair of matched points the
disparity vector (consisting of its norm L, and its orientation f) is determined.
The vectors are then checked for continuity along the chain. A matching pair

of points ¢ is validated if:

|L6'L1| - l.
Z (L:‘"I'LJ”i'Jl" S SL
i€V _
j;VJ‘ -5l
and
| B: = B6; | 1
(Bi+5})|£—j|" Ssﬁ

>
ievi S !

jevli—gl
where V; is a local neighborhood of the pair ¢ along the chain, Sy, and Sj are

thresholds and n defines the neighborhood size.

120



A four-level pyramidal structure is used for data representation. A coarse-
to-fine strategy is used for matching, starting with the level of the pyramid
corresponding to the coarsest resolution. The disparity information obtained
at a particular resolution is used to restrict the search space for matching at the
next higher resolution, all the way up to the highest resolution. This approach
leads to greater speed of processing, and also helps to limit the number of false

matches.

7.3 Stereo Error Analysis

In analyzing the errors in the 3-D position p of a point calculated by a stereo
algorithm (using the corresponding 2-D measurements from the stereo pair),
our goal is to obtain an expression for the error Ap, and to determine its mean
u and covariance C. We are not interested in the “absolute” statistics of the
error, such as those calculated in [59], but rather in the mean and covariance
of the error given the true 3-D position. The error is assumed to be entirely
due to the quantization of the image plane, and other factors such as stereo
mismatches and calibration errors are not considered in this chapter. As will
be seen later, it is simpler to calculate the statisics of the error using spherical

rather than Cartesian coordinates. The error is defined by
Ap=p—p (7.6)

where p is the (unknown) true 3-D position, and p is its stereo estimate. The

mean and covariance of the error are defined by

p=E{ap} (7.7)

and
C =& {(ap)(ap)} - puT. (7.8)

If (x1,yr) and (z R, yRr) are the (true) image coordinates of the point p in the

left and right image, respectively, the basic equations of the stereo algorithm
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are as follows:

d = zp—znR (7.9)
T = MTL (7.10)
y = byTL (7.11)
z = % (7.12)

where d is the stereo disparity, and b and f are, respectively, the baseline and
focal length of the imaging system.

The measurements of the image coordinates zr, yr, etc. are corrupted by
quantization noise, which causes errors in the quantities computed using (7.9-
7.12). Denoting the actual measurements by <z, ¥, etc., and the errors by Ad,

Az etc. we obtain

Ad = d—d
= (&L —2Rr) — (zL — zR)

= A:EL—A:BR (7'13)

If the grid size in the z-direction is p;, the random variables Azz and Azpg
will be uniformly distributed in [—p./2, p./2]; and if they are assumed to be
independent, the p.d.f. of Ad can be obtained as

~JrlAd]+ 50 1A <0

p(Ad) = (7.14)
0 otherwise
The error in z is given by:
Az = z2—2
_ bf bf
T d+Ad d
—Ad
= b (d(d + Ad))
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The error in z is given by:

Az

Q

__Ad bf
d+ad d
Ad
d+Ad >

z—z
b:L’L b:l:L
d+Ad  d
b:L'L b.‘L‘L
d+Ad " d

bey (-_Ad)
d(d + Ad)
Ad b:l![,
“d+Ad d
Ad '
Td+ad”

ifzp >0

Similarly, the error in y is given by

Ay

= §y—y
byL by,
d+Ad  d
byL byy,
d+Ad” d

= b __Ad_

= UL\dd+ Ad)

__Ad by

d+Ad d
Ad

- Y

d+Ad

Q

Combining the above results, we can write

I
|
au
+
>
W
h & 8

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)
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or

Ad
d+Ad?

The approximations (7.16) and (7.18) are needed to obtain simple expres-

Ap = —

(7.21)

sions for Az and Ay, as functions of only one random variable, i.e., Ad. But
the resulting expressions give only the error in the radial direction, as is evident
from (7.21). The other (lateral) components of the error have to be derived
separately. It is convenient at this point to switch to a spherical coordinate
system, computing the statistics of the error in the range r, the azimuth ¢ and
the elevation 8. The error statistics in the Cartesian coordinates can then be
obtained using the Jacobian of the Cartesian-to-spherical transformation.

The range r is defined by

ﬁ
il

\I2ll
\ /mz + y2 + 22

(bxr)? + (byL)? + (bS)%. (7.22)

d

The observed range is given by

~»
Il

13l
= i+ g2+ 22

= - +1A V(650 + (o) + (b2
~ d+Ad\/ (bxr)? + (byr)? + (bf)2, (7.23)

using the same approximation as before. The range error is given by

Ar

r—r

= [ - 3] Vi + v o2

= (s Vibe + (o + @1

- _ (d f‘id) . (7.24)
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It is interesting to compare the above result with (7.21).
It is now possible to derive expressions for the (conditional) mean g, and

variance o2 of Ar, defined by
A
pr = E{Ar [1} (7.25)

and
o2 S e{(ar)? Ir} - u2. (7.26)

e{-(755) 7}

Using (7.24), we get

pe =
= ""9{' (dfid) /"}
- _r/_‘: (dj:u) (-pl—im + pl—x) du, (7.27)
using (7.14). The above integration can be performed, and the final result is
" [l—%ln(l—a)——ln(l-*-a)—-l] (7.28)
where
a«= ";—’. (7.29)

The integral converges only if p./d < 1. If p,/d << 1, the above expression

2
N (-%) r. (7.30)

The derivation of o7 is similar. Since the mean of the range error is small,

simplifies to

one may write

Q
©
Q
Cn
et e,
N
+|
S’
~
o
>
N——
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= 2 "‘( u )2 el
= "/_,,, Tra) (ol + o) dw (7.31)

which gives .
ol = [1 - iln(l —a?) - =In (1 t a)] r?, (7.32)

a? a \l-a
with the same definition of a and the same convergence criterion as before. For

a<<l1

l

ol =~ (%) ", (7.33)

The azimuth angle ¢ and the angle of elevation 8 are defined by the following

equations.

tan¢ =

|8

TL
= =L 7.34
7 (7.34)
y yL

Vit 422 [x2 + f?

The measurement error in the azimuth angle is given by

tanfd = (7.35)

$-¢
tan($ — ¢)
tan ¢ —tan ¢
1 4+ tan ¢ tan ¢
(@L—2)/f
1 +tan?¢
A:L'L

= ey (7.36)

e

A¢

Q

&

Since the quantization error Az is assumed to be uniformly distributed in
[—pz/2, p= /2], we can write the p.d.f. of A¢ as

Pz Pz
AQSNL{(—'Zf(1+tan2q5) ’ ‘2f(1+t,an2¢)) (7.37)

From the above, we can obtain the mean p4 and variance o3 as
He = 0 (7.38)
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and

1 p2
2= = 7.39
% f2(1 + tan? ¢)2 12 (7.39)

In a similar manner, we obtain the following expressions for the statistics of

the error in ¢:
fe =0 (7.40)

and 2 | 5
— i '}
70 = (F2 4+ 22)(1 + tan?0)2 12

The results obtained for r,  and ¢ can be expressed in vector notation, to

(7.41)

obtain the 3-D mean pu, and covariance C; of the stereo error in the spherical

coordinate system. The mean is given by

ir
s = | pe (7.42)
1o

Unlike the errors in the Cartesian coordinates, which have strong mutual cor-
relations, the errors in r, ¢ and 0 are nearly uncorrelated. It is reasonable,

then, to approximate the error covariance matrix in spherical coordinates as

gt 0 0
Cs = 0 O'g 0 (7.43)
0 0 o}

If J is the Jacobian of the Cartesian-to-spherical transformation, the mea-
surement error mean u and covariance C in z, y and z are approximately given
by:

= Jug (7.44)

and
C=Jc,JT (7.45)
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A final approximation is involved in computing gz and C: the true 3-D
position vector p is never available (except possibly during calibration), and

the measured position vector p has to be used instead.

7.4 Batch Estimation

The basic motion model, described by (7.1), assumes the trajectory of a point
to be of the form

p(t) = p(0) + p(0) t + H(0) t*/2! + -+ + p™)(0) 1*/nl,

where n is assumed to be small. The noisy measurements of the point’s posi-

tion, available at N discrete time instants, are written as
pi,i=0,1,...,N—1

The ith measurement, p;, is obtained at time instant ¢;, ¢ = 0,1,...,N — 1.
These measurements may be collected in a single measurement vector z, defined

by

.
Do
P (7.46)

| PN-1

The parameters to be estimated may likewise be placed in a single param-

eter vector 8, given by

»(0)
#(0)
6=\ p0) |. (7.47)

| P™(0) |
The batch estimation problem may now be stated as follows: find the best

estimate of @ given the measurements z and the motion model (7.1). For
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our particular problem, wherein no prior information is assumed about 8, the
“best” estimate may be considered to be the one with the maximum likelihood.

To be more precise, the “best” estimate is the one given by

6=m max 1 p(z /6) (7.48)

where the inverse sign is used to indicate that we require the value of 8 that
maximizes the conditional p.d.f of z (and not the maximum value of the p.d.f.).

Assuming that the measurements are mutually independent,

p(z /0) = H p(p;i /0) (7.49)

=0

The mean of the error in each measurement is known, and can be subtracted
from it. Assuming this to have been done already, the statistics of p; are
obtained as follows:

The mean is given by
E{pi [0} =p: (7.50)

with

pi = p(0)+p(0) t; + p(0) £2/2! + -« + p!™(0) 27 /n!
- T.6 (7.51)

The matrix T; in the above equation is given by
T, 2 [13 L2 Iy e P 13] (7.52)
where I3 is the 3 x 3 unit matrix. The covariance is given by
£{(p - -p)'} =0, (7.53)

where C; is obtained as explained in the section on stereo error analysis.
At this stage, it is useful to assume that the error is Gaussian in nature.

This assumption is obviously not valid in a rigorous sense, since errors due to
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quantization are usually bounded. However, it is a reasonable approximation
when the errors are small in magnitude compared to the measurements [42].
The advantage of making this assumption is that it allows us to obtain a closed-
form expression for the batch estimate. With this assumption, and using (7.50)
and (7.53),

N-1

—L(5:=p;)TC (5i—pi
p(z /9) — ];!; o 3/2|C l3e 3(Bi=pi) C7 (Pi—pi)

-1
— -3 (Fi-T.0TC T (5:i-T.0)
= ]_;[ 5 3/2|C' E —_—— 2 P (7.54)
The above Gaussian likelihood function has to be maximized w.r.t 8. It is well
known that this is equivalent to minimizing the negative of the log-likelihood
w.r.t 8. Applying this principle, and eliminating the terms independent of 8,
we get

6 = min Z — T:6)7C7\(p; - T:9) (7.55)

i=0

Expanding the r.h.s. of (7.55) and setting it to zero,
—a-NZ ¢+ 07TTCTIT0 — 67TT C7 Vi — 57 CTT6) | 0
20 = T h 0=~

Using the following two identities of matrix calculus:

T
O(Ma) = M and (a_Ma) = 2Ma,
Oa da
we obtain
N-1 X N-1
23" TIC'T0 -2 TIC B =0 (7.56)
i=0 i=0
Defining
A N=1
M= TIC'T, (7.57)
=0
and
A N
bs S 17C 5, (7.58)
1=0
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we can write (7.56) as

A

Md=b (7.59)

The rank of the square, symmetric matrix M depends on the number of
terms in the summation (/N). In general, if the number of point measurements
N is much greater than the number of derivatives estimated (n), M will be

nonsingular. In that case,

6=M"1b (7.60)

The statistical properties of the above estimate can be easily derived. Let us
define

N EY (7.61)
The statistics of interest are the mean and the covariance of the estimation
error A6.
pe = £{A6)
= ¢ {é} "y
= M'¢{b}-6

N-1
= M' Y TTC'e {3} - 6

=0

Using (7.50) and (7.51)

N-1
pg = M'Y TIC'T.0-6
1=0

= M7'M6-6
= 0 (7.62)

The covariance of the estimate is computed as follows:

{(6-90)b-0)}
1 N-1 T

{[M_l > TICT (b~ Pe)] lM—I > TICT (B — Pi)] }

i=0 1=0

Cg = g

&
= £
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N-1N-1
= MY Y T7C € {5 - pi) (s —p,-)T}JCj“Tj M

t=0 ;=0

Ci

Using (7.53) and the assumption that measurement errors in two different 3-D

measurements are uncorrelated,

N-1
CO — M—l ZT:TC:_IT;I M—l
i=0

M
= M (7.63)

7.5 Recursive Estimation

The idea here is to formulate the estimation of a point’s trajectory as a recursive
tracking problem, based on a plant model and a measurement model. The
quantities to be estimated i.e. the position of the point and the derivatives

thereof are contained in a state vector s, defined by

- -

p(1)
p(t)
p(t) (7.64)

o

| ()

The difference between the above state vector and the parameter vector 8
estimated by the batch procedure is that the terms in s are referenced to the
current time instant ¢, rather than to the initial time instant ¢{ = 0.

The plant model describes the time evolution of the state vector. Using
(7.1), which expresses the assumption that p{™(¢) = 0¥ m > n, it can be writ-

ten as

s(t) = Fs(t) + w(t) (7.65)
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where w is a noise term included to take into account modelling errors, and

the matrix F is of the form

0 0 0 0]
00 I, 0 0
F=|: : (7.66)
0 0 o vov wov Iy
‘0 0 -+ oo st 0]

Equation (7.65) has to be discretised, in order that it can describe the evolution
of the state vector from one sampling instant to another. The discrete version
of the plant model can be found by integration of (7.65) over the sampling

interval (i.e. interframe period), and the result is
s(k)=Fs(k-1)+ w; (7.67)

where the matrix F is given by

[ 2

I th §I; -« ... &I
0 L th L £l
0 0 T t Iy
0 O I

The input data to the estimator is in the form of 3-D point positions, one for
each sampling instant. The measurement model, which shows the relationship
between the state vector s and the obervation (measurement) vector z is given
by

z(k) = H s(k) + vi (7.69)

where
H=[I3SOEOE--~30] (7.70)

and the measurement noise v has the statistics described in Section 7.3.
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7.6 The 3D Segmentation

Once the motion parameters of the 3D contour chain points are estimated
by this recursive method we need to interpret them in terms of the motion
of the various physical objects in the scene. A segmentation of the contour
chain points into groups of points close in 3D is performed. Then for each
labeled group of points we compute the statistics (mean, standard deviation
and number of points) of its motion parameters. The segmentation algorithm
is based on a criteria checking the continuity of the disparity (calculated by
the stereo algorithm) between chains close in 2D [54].

The algorithm has four phases:

¢ Noise removal: the contour chain points for which the disparity is below
a certain threshold are removed, and the contour chains for which the

ratio )
number of 3D points associated with the chain

number of points in the chain

is below a certain threshold are removed.

¢ Neighborhood creation: for each chain a neighborhood is created by grow-
ing around its extremities. Once a chain coherent in terms of the disparity

with the current chain has been found the growing is stopped.

o Labelling: each chain belonging to this neighborhood and coherent in
terms of the disparity with the current chain receives the label of the

current chain.

¢ Fusion: once all the chains have been processed, the labels are refreshed
and the output of the algorithm are groups of chains spatially coherent
in 3D.
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7.7 Experimental Results

The recursive algorithm was tested on several real image sequences, and sample
results on one stereo image sequence (with seven image pairs?) are discussed
in this section. The estimation was done for n =1 i.e. assuming constant
velocities. The first and last pairs of the sequence are shown in Figs. 7.2 and
7.3. The contours extracted from the first and last right image in the sequence
are shown in Fig. 74.

The points lying on the extracted contour chains were chosen as primitives
for the stereo matching, and the reconstructed 3-D results are shown in Fig. 7.8,
as visualised from above (i.e. in the z-z plane). It is possible to identify the
van, the cyclist and the marks on the road. Fig. 7.6 shows a sample of typical
results for optic flow, using the same primitives and the same algorithm used
for the stereo matching.

The optic flow between successive images can be used to obtain the image
plane trajectories of contour chain points, as shown in Fig. 7.7. The trajectories
that begin in the first image and reach the final one are shown in Fig. 7.8,
superimposed on the first and final right image. (This eliminates the shorter
trajectories.) The trajectories contained inside the box in the lower image in
Fig. 7.8 are selected to demonstrate the performance of the recursive filter.

The selected (noisy) trajectories are shown (in plan) in the upper image in
Fig. 7.9. The effects of the quantization errors are evident. The same trajecto-
ries, after filtering, are shown in the lower image in Fig. 7.9. The trajectories
are smoother, although some of them appear to be still fairly noisy. Further
smoothness can be attained by reducing the initial covariance of the velocity
states, but this may reduce the accuracy of the velocity estimates. The es-
timates of the velocities are shown in Figs. 7.11 and 7.10, superimposed on
the last right image, for the second and seventh sampling instants respectively.
The velocities in the z-, y- and z-directions are shown, respectively, with hor-

izontal, vertical and diagonal arrows, whose lengths are proportional to the

2The original sequence had 16 image pairs. Alternate image pairs, from the first through
the 13th are used for the temporal analysis.
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lifetime | count Ve T, Vi Zy V. L,

5 203 | 0.095 | 0.90 | 8.72 | 6.53 | -0.74 | 0.99

van 6 290 | 0.125 | 0.895 | 9.45 | 4.495 | -0.68 | 0.56
7 197 | 0.085 | 0.715 | 9.525 | 4.26 | -0.685 | 0.54

5 41 |-0.925 | 0.41 | 4.055 | 3.35 |-0.225 | 0.195

motor- 6 20 | -0.95 | 0.515 | 5.215 | 3.95 | -0.28 | 0.2
cycle 7 19 | -0.985 | 0.505 | 4.875 | 3.735 | -0.265 | 0.195
road 5 20 [ 0.095 | 0.225 | -6.58 [ 2.415 | -0.585 | 0.285
mark 6 18 | 0.15 |0.215 | -7.265 | 1.32 | -0.515 | 0.195
7 16 0.14 | 0.225 | -7.145 | 1.27 | -0.545 | 0.17 |

Table 7.1: Statistical analysis of the velocity estimates (V,,V,,V,) expressed

in km/h.

magnitudes of the velocities they represent. The velocity of the observer can
be recovered from the (apparent) velocities of the points on the road. For the
image sequence under consideration, velocities of 10-15 km/hr for the observer,
and 20-25 km/hr for the van were obtained, all in the direction of increasing
depth.

The results of segmentation are shown in Fig. 7.12. Contours belonging to
different objects are shown with different grey levels. We can distinguish the
van, the motorcycle and the markings on the surface of the road. Table 7.7
summarizes the statistical analysis of the velocities of three objects in the
scene (van, motorcycle and road line mark) at three different time instants.
The velocities are expressed in kilometers per hour. As this scene was taken
in a busy urban street the various objects were moving slowly relative to each
other When a sufficient number of points are observed, and the velocities are
significant, we can verify that velocity estimates are more consistent as the

frame number increases.

7.8 Conclusions

In this chapter, we have presented a method of tracking points in a scene over

an image sequence of arbitrary length, using stereo and optical flow, and to

136



analyse the point trajectories in 3D using estimation theoretic methods. The
algorithms are shown to give meaningful results on real image data obtained
from moving vehicles in real traffic situations. The estimates of the point tra-
jectories can be used to assist in navigation and obstacle avoidance. A detailed
discussion of the possible ways in which the estimates can be interpreted to

achieve these objectives is beyond the scope of this chapter.
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Figure 7.2 First and final images

taken by the left camera.
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Figure 7.3: First and final images taken by the right camera.
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Figure 7.4: Contours extracted from the first and final right images
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Figure 7.5: 3-D (stereo) results for the first and last image pairs
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Figure 7.6: Optic flow between right images 1 & 2
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Figure 7.7: Image plane trajectories of points detected in the first image
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ure 7.8: Image plane trajectories of length =7
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[Migure 7.10: Velocity estimates at { = 2
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Figure 7.11: Velocity estimates at 1 =7
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Chapter 8

Conclusions and Directions for
Future Research

Existing methods of visual motion estimation and analysis are deficient in many
respects; a method which is robust, realistic, practical and general-purpose does
not exist for this problem. The only systems which have experienced at least
some success are those that have been designed for very specific applications,
and for highly restricted environments.

It is our opinion that this state of affairs is due to the shortcomings of the
current approaches to the problem, and not due to the nature of the problem
itself. We feel that the mathematical and algorithmic tools needed to address
the problem already exist; designing a successful motion analysis system will
involve the effective use of these tools to perform and to integrate the different
stages of processing required to solve the problem.

In this dissertation we have explained some of these tools, and how they may
be effectively combined into a model-based long-frame estimation-theoretic mo-
tion paradigm, which is applicable to a variety of situations, such as the single-
camera navigation of a land vehicle and the tracking of the motion of a rigid

object.
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8.1 Conclusions

One of the main discoveries made during this research was the fact that simple
motion models in conjunction with recursive methods can lead to very robust
algorithms. The experimental results on real image sequences demonstrate the
ability of the paradigm to cope with fairly large modelling and measurement
errors. None of the assumptions made (such as smoothness of motion) seems
to be critical to its success in a real application. The motion models used are
treated as “soft” rather than “hard” models, in the sense that the data are
only expected to conform to them approximately. For instance, the motion
model used for the experiments in Chapter 4 on passive navigation assumed
constant camera orientation, but the data for one of the synthetic sequences
and the real image sequence violate this assumption. Nonetheless, the recursive
estimator does not fail, although its performance is slightly degraded compared
to the experiment in which the model assumptions are obeyed exactly. The
real image experiment involved other modelling errors such as discrepancies
between the actual image point locations and those predicted by the structure
and pose ground truth and camera calibration parameters. The actual source
of error is not known—it could be a combination of incorrect ground truth
values and inadequate camera modelling—but its knowledge is not crucial to
the success of the recursive procedure. It would be helpful, of course, to have a
good model for the errors in the measured image-plane coordinates of feature
points. Currently we assume the image-plane errors to be independent and
identically distributed. If a more appropriate measurement error model is
available, it should be used instead.

Another important aspect of the motion analysis problem is the need to
integrate different stages of processing. The traditional approach views the
motion problem into a mapping from M feature correspondences to motion and
structure parameters. This attempt to treat motion analysis as a mathematical
abstraction is now widely acknowledged as inadequate, because it does not take
into account the various stages of processing required, such as feature extraction
and matching. Treating the feature correspondence problem as distinct from

the motion estimation problem can lead to methods that look good on paper
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but are difficult to apply on a practical problem. In this thesis, we have shown
how feature point matching can be integrated with motion estimation, in a
mutually beneficial way.

The models used in this research should not be viewed as definitive, but
as specific examples. The kind of motion models to be used depends on the
application. The selection of a suitable model is non-trivial; different, but
equivalent parametrizations of a problem can lead to recursive algorithms with
different strengths and weaknesses. For example, Euler angles can be used to
represent rotation instead of quaternions. This has the advantage of reducing
the number of states by one, but has the drawback that introduces trigonomet-
ric nonlinearities into the formulation. Therefore it is likely that in this case
the batch formulation (nonlinear least squares) will work better than before,
and the recursive formulation (linearized incremental least-squares) will not
perform as well as before. Concepts like this can be made somewhat more pre-
cise using the ideas presented in Chapter 5, on the evaluation of model-based

formulations.

8.2 Directions for Future Work

There are various possible extensions to our work. One could experiment with
higher order models. However it has been our experience that increasing the
complexity of the motion models could result in less robust parameter esti-
mates, unless the amount of data available is increased proportionately. The
issue of multiple rigid motion has to be addressed. This would involve seg-
mentation of the scene into different objects based on motion, and a separate
recursive filter for each independently moving component. A combination of
optic flow and feature-based methods may be necessary in this case.

In this section, we discuss some possible areas for future work in long-frame

motion analysis.
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8.2.1 A Different Model for Passive Navigation

The model used in Chapter 4 implicitly assumes that the origin of the CCS
coincides with the centre of rotation. As explained earlier, model assumptions
such as this need not be strictly valid; minor deviations are easily handled by
the recursive algorithm. But there may be applications where it is necessary
to determine the exact axis of rotation and its relationship to the camera’s
position. In such a case, a slightly different formulation, which has three addi-
tional parameters to express this relationship, is proposed in this section. This
formulation also incorporates line features in addition to point features. The
basic models of motion and imaging are shown in Fig. 8.1 and the geometry of

line features in Fig. 8.2.

Imaging Model
A point in space is represented as usual by its coordinates (z,y,2), and its
projection on the image (X,Y’) is given by

X=f-§, Y=f-g (8.1)

The camera focal length f is set to unity w.l.o.g. A line in space is represented
by two vectors
Pr
P=1 py
P:

The vector p is the perpendicular to the line from the origin, and v is a vector

in the direction of the line, so that

p-v=0. (8.2)
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Figure 8.1: Alternative models of motion and imaging for passive navigation
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Any point r = (z,y, 2)T on the line can be expressed as
r=p+av, (8.3)
for some scalar . The following constraint is used to identify v uniquely:
vl = 1. (8.4)

A line in the image can be represented by its slope m and its y-intercept c.
The equations relating the spatial(3-D) parameters of a line to those of its
projection on the image plane are found by considering the projection of a

general point on the line. Using (8.3) and (8.1), we get

Pz + Quy

X=2= (8.5)

2 p:tav,
Y = % ~Pytavy (8.6)

p: + av;

dY % P2Vy — Py
— = _O? T —— .7

m d.)\, % DUz — Pz VU (8 )
c=Y-mX (8.8)

The above equation should hold for any value of a. After some manipulation,

we can eliminate a to obtain

c= PzVy — PyUx
PV — PrU;

(8.9)

In practice, it is better to represent a 2-D line by the parameters d and ¢
as shown in Fig. 8.2. These may be determined from m and ¢ using simple

geometric relations.

Motion Model

All velocities are assumed to be constant in time, and the sampling period is
assumed to be fixed. The rotation of the camera is represented by the vector

w. The translational velocity is u. The translation vector T is the product
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Figure 8.2: Line feature in 3-D (a) and its projection onto the image plane (b)
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of the translational velocity and the sampling period Tyomp. The interframe

rotation angle @ is given by
0 =@l Toamp -

The rotation matrix R can be obtained from @ using a standard formula [63].
The initial displacement of the axis of rotation from the origin is represented

by To. To identify it uniquely, we impose the condition
w - To = 0. (8.10)

In addition, we use the following constraint to fix the global scale factor of the
system (which is required because of the loss of absolute depth information in
central projection)

IToll = 1. (8.11)

The (relative) motion of a point q in the scene is given by a recursive equation
(60] of the form:

Ay = R(q; = (- 1)T -To)+: T+ To. (8.12)

The equations relating to the motion of a line are obtained by considering the

motion of a general point on the line.

(P+av)im = R{(p+av)i—(i-1)T-To}+iT+To=
[R(p; — (i -1)T —To)+i T+ To )+ aRv; (8.13)

from which, by observation, we can write:
Piyr = B(p; = (i — )T = To) +i T + To. (8.14)

and
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The reason for denoting the above quantities with primes is that we have not
verified whether they satisfy the constraints (8.2) and (8.4). It is easy to see
that (8.4) is satisfied, since R is an orthonormal matrix, and hence we may
write:

Vit = Rvy, (8.16)

However, condition (8.2), which specifies that p should be orthogonal to v is

violated, and hence we have to reimpose this condition as follows:
Pis1 = Pip1 — (Pig1 * Vie1)Vin (8.17)

Batch Formulation

Let us assume that we have P point correspondences and L line correspon-

dences over N frames. The vector u of unknown parameters is

(w )
u
To
r

rp

u=| ? (8.18)

Pa
Vi

P,
V2

Pr
\ VL /

The input data (i.e. the observations) are given by the following equations:

Xi(k) = hx[l‘,‘(u, L)] +nyx(k) (8.19)
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Y,(k) = hy[l‘g(u, k)] + ny(k) (8.20)
di(k) = halpi(u, k), vi(u, k)] + na(k) (8.21)
¢i(k) he[pi(u, k), vi(u, k)] + ny(k) (8.22)

The functions hx etc. are known nonlinear functions obtained from the central
projection model for imaging. The terms nx etc. account for measurement
noise. The argument & denotes the frame number of the image in the sequence.

If the noise terms are assumed to be independent, a weighted least-square
estimate of u can be found by minimizing with respect to u the weighted sum

of the squared residuals

P M
G(u) = kZ D_{(Xi(k) = hx[ri(u, k)))* + B(Yi(R) — hy[ri(u, k)])}+
=1 i=1

L
S {v(di(k) = halpi(u, k), vi(u, k)))* + 8(8i(k) — ho[pi(u, k), vi(u, £)])*}{8.23)
i=1

subject to
w - To =0 (824)
| Toll = 1 (8.25)
p;-vi=0, i=1,...,L (8.26)
and
lvil=1, ¢=1,...,L. (8.27)

The weights 8, v and é have to be chosen depending on the expected variance
of the noise in each term.

The above minimization problem may converge very slowly on account of
the nonlinear constraints. To overcome this problem, we can change some of the
constraints, in such a way that the (modified) parameter vector can be obtained
by an unconstrained minimization procedure. The following modifications can

be made:
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e Instead of (8.11), the scale factor is set by fixing the z-component of Tp
to be unity. zg can now be removed from u. Using (8.10), one component

of w (say w. ) can be removed form u.

¢ Instead of (8.4), the constraint used is
v.y=1,o0ory, =1

Using this and (8.2), we can now remove the y-component of all the v;’s

and one component (say the z-component) of all the p;’s from u.

The modified minimization problem is unconstrained, and can be solved with

much greater ease than the original constrained minimization.

8.2.2 Improvements in Object Tracking

In the current implementation, as explained in Chapter 6, the observation
vector 2 in the state-space representation (6.3) contains only the image plane
coordinates of the feature points, which do not depend directly on the velocity
parameters of the state vector. Consequently, the estimation of these velocity
parameters are very much dependent on an accurate estimate of the initial state
error covariance matrix. The approximate CRLB’s computed from the batch
solution may not be close enough to the true variances to ensure convergence.
One possible solution would be to augment the measurement vector so as to

contain the image plane velocities of the feature points along with the image
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plane coordinates, so that

z(k) = : (8.28)

unr(tx)

\ var(tr) /

In the above equation, 2 and y are image plane positions, while u and v are
image plane velocities. The above modification prevents the algorithm from
being “purely recursive” since at least two images have to be processed simul-
taneously to compute observed velocities, but may be worthwhile if it results

in a substantial improvement in convergence.
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Appendix A

Kalman Filtering and its

Extensions

A brief description of the linear Kalman filter is given first, to establish nota-
tions and to motivate some of the approximations used in the nonlinear cases.

The continuous time plant (or signal) model evolves in time according to
x(1) = F'x(t) + Gywy. (A.1)
The discrete plant model is then given by
x(k+1) = Opprp x(k) + Grwy, (A.2)
where @41 1 = exp((tk41 — ti)F], and the discrete measurement model is
z(k) = H(k)x(k) + v(k), (A.3)

where the noise terms w and v are zero mean Gaussian random vectors with
covariances Cov(vy) = Ry, and Cov(wy) = Q.

Following [41], the estimate X(k + 1|k) denotes the predicted (extrapo-
lated) estimate, just after a time update, while the estimate X(k|k) denotes

the smoothed (filtered) estimate, just after a measurement update. The linear
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Kalman filter measurement update equation is
R(k|k) = R(k|k = 1) + K (k) [z(k) — H(k)%(k|k ~ 1)] (A.4)
where the measurement is z(k). The gain sequence is computed as
1«@=wa—nﬂwfpﬂ@muk-nHwF+Rq”. (A.5)

The error covariance matrix of the predicted state estimates P(k|k — 1) is

computed as
P(klk — 1) = ®ppy P(k— 1k — 1) @7, | + G:QxGT. (A.6)
The smoothed covariance matrix is
P(k|k) = [I = K(k)H (k)| P(k|k - 1), (A.7)
and the time update for the state estimate is
X(k + 1[k) = Prqrp X(K]K). (A.8)
The iteration is initialized with
P(0]0) = Po = E{(x(0) — p20)(x(0) — 11z0)"} (A.9)

and
%(0]0) = E{x(0)} = ptz0 = %(0). (A.10)

In the case of the the Extended Kalman Filter (EKF), the measurement

update equation is simply

%(k|k) = (klk — 1) + K (k) [2(k) - h{(k]k - 1)]], (A.11)



where h(x) reverts to Hx in the linear case. If the measurement function is

nonlinear, define the linearized measurement function as the 2M x d matrix

(k) = 20 . (A.12)
% |x = %(k|k — 1)
The gain for the EKF is then computed as
K(k) = P(k|k - 1)H(k)T [H(k)P(klk —DHE)T + Rk]_l. (A.13)

If h[-] is “close” to linear in the states, and state estimate errors are not too
large, the EKF can be reasonably effective. However, if h[-] is highly nonlinear,
the EKF may diverge. Similarly, if the errors in the state estimate are large,
the effect of the nonlinearity becomes more severe, and divergence is likely.
The IEKF is a slightly more sophisticated approximation wherein the mode
is used as an approximation to the mean of the posterior density given the
measurements, during an iterated measurement update. This local iteration is
the key feature of the IEKF.

The iterated measurement update equation is

R(k[K)nss = R(E—1)+K (k). Z(k)—h[fc(klk)n]—H(k)n{fc(klk—l)—ﬁ(klk)n}]
(A.14)
(n is the index for the local iteration, and k is the time index) where the

iteration is started with
%(k|k)o = X(k|k - 1) (A.15)

The gain for the IEKF is included in the iteration as
K(k)ats = P(klk — VHBT [HK)PEE - DHRT +R]™  (A16)

and the approximate measurement function is re-evaluated at

_ ohlx

H(k)w = =5

(A.17)

x = %(k|k)a
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Finally, after the iteration is found to yield no further improvement, the ap-

proximate smoothed covariance is computed as
P(k|k)a = [I = K(k)aH(K)a) P(k]k - 1). (A.18)

The states are propagated in time by numerical integration of the first order

system defining the plant. That is,

i - _
R(tpptlte) = /t Y R(rlte)dr + R(Eelt)- (A.19)

&

The covariance may be propagated in time by computing an approximate

state transition matrix, such as
F(x,) = fo(X¢) (A20)
and by integrating

B(i[ty) = F(R(t|te)) P(tlts) + PRI F(R(L))T + GQGT  (A.21)

Ptusilte) = [ Pty dt + P(telts): (A.22)

k

The term G,Q,G,T is the covariance of the vector Gyw; given above.
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Appendix B

Closed-Form Methods

If a very crude initial guess is sufficient, one can use single-frame or two-frame
methods. If sufficient data are available, one can develop linear, closed-form
algorithms to generate the necessary initial guess. In this section, we present
methods of this type to estimate the pose of the camera and structure of scene

points.

B.1 Single Frame Pose Estimation

The problem addressed in this section is the determination of the position and
orientation (R, T) of the camera relative to the WCS, given the 3-D world
coordinates and corresponding image coordinates of some feature points. This
is a pose-from-structure (PFS) problem.

The traditional approach is to formulate it as a least-squares minimization
problem. Given n points p,,Ps,...,P, in the WCS and their image plane

locations p,, p,,...,p,, minimize the following:

. n _ . 2
&Jlg)g lp; — h[Rp; + T)|| (B.1)

This can be solved using iterative optimization techniques. If six or more points

are given, a closed form solution may be obtained as follows. First we write
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the rotation matrix in terms of its row vectors:

R=|r, (B.2)

We can now write the equations relating the 3-D location of a point p to its
image p = (X', Y")T.

s P'r; + t.r
X = fx_—p s + Xo (B.3)

r p-ryti,
Y' = fy—p s +Y (B.4)

(B.5)

Let X = (X' — Xo)/fz and Y = (Y’ = Yo)/f,. In the rest of this section, it
will be assumed, without loss of generality, that these normalized values are
used for image coordinates. Substituting and cross-multiplying, we get two

equations per point

Xpr.+Xt;=pr;—t; =0 (B.6)
Yp:r.+Yt,—p-r,—¢t, = 0 (B.7)

which can be written as

re
—p 0 Xp' 10 X\
P P 3 (B.8)
-p' 0 Yp 01 Y r,

T

Thus each point yields two linear homogeneous equations in the 12 unknowns.
If six points are given, the system of equations can be solved using singular
value decomposition. However, the resulting rotation matrix may not be or-
thonormal, since this condition has not been enforced. In order to do so, it is
convenient to decouple the rotation and translation components in the equa-

tions. This is done as follows. We write the first three equations in a slightly
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different way:

-1 0 X [ pr 0 —Xip r;
0 -1 Y t, | =1 0 pi —-Yp r, (B.9)
-1 0 X, L, p; 0 —Xop) r,
. y . - — . ,
24 T 2c &r
From the above equations, we can express T in terms of r:
T=A"'Cr (B.10)

The translation terms from the remaining nine equations can now be factored

out as follows. Let M be the 9x 12 matrix corresponding to these nine equations

such that

M(;)zo

We partition M into two components as follows
M = [[MJoxo | [MiJoxs]
The nine equations can now be written as
Mir+MT=0

substituting for T from (B.10),

M,r+ M;A"'Cr=0
Defining the 9 x 9 matrix

M =M.+ MA"'C
we get a system of equations of the form

Mr=0

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)
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So our goal is to solve (B.16) in the least-squares sense subject to the constraint
that R is orthonormal. Once R has been determined, T’ can be computed from
(B.10). We have not thus far succeeded in obtaining a closed form expression
for the rotation matrix using (B.16). If the data are not very noisy, the follow-
ing method can be used:

(1) Solve (B.16) using the singular value decomposition without the orthonor-
mality constraint and (2) Project the solution into the space of orthonormal
matrices as is done in [67]

A similar approach has been used by Ganapathy in [32, 33].

B.2 Two-frame Motion Stereo

The objective here is to determine the 3-D world coordinates p of a point,
given its image coordinates for two camera positions, p, and p,, and the cor-
responding camera poses in the WCS. This is a structure from motion (SFM)
problem, and is in a sense the inverse of the previous one. Let (R;,T}) and
(R2,T,) represent, respectively, the relationship between the first and second
camera positions, and the WCS. Let p, and p, be the 3-D position vectors of

the point with respect to the two camera positions.

pp = Rip+Th (B.17)
P, = Rp+ T (B.18)

Let the corresponding (normalized) image points be p, and p,, given by

pr = (&1/z,m/n)" (B.19)
p; = (z2/22,92/22)" (B.20)

We can rewrite equations (B.17 and B.18) as

ap = R]])’i‘T; (B.21)
np, = Rp+ T (B.22)
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Using (B.21), we get
p=R{(z21p—Th) (B.23)

Substituting for p in (B.22),
— 2R R p, + 22p, = —RoRITi + T (B.24)

This equation can be written in the matrix form

F4
[— Rlepllpz]) ( ! ) = —RgRTTl + Tz (B25)

22

ip

A

We have therefore three linear equations in the two unknowns z; and z,, which

can be directly solved using the generalized inverse.

( z‘ ) = A* (-RRIT\ + T) (B.26)

22

We can then obtain p, and p, as

Pp = 21p (B.27)
P2 22P2 (B.28)

Using (B.17 and B.18), we can now write down the expression for p as

+
_ Ry I-p,
p= ( R, ) (TQ_pg) (B.29)
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