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Abstract

The increasing demands of speed and performance in data
compression applications urge the VLSI data compression research. Our
VLSI data compression research has been inspired by the neural networks,
the parallel/pipelined processing, and the VLSI technologies. The primary
objective was to develop effective image compression algorithm and their
associated VLSI processors. The scope of our VLSI image compression
research covers: (a) lossless image compression and VLSI processors, (b)
lossy image compression and VLSI processors, and (c) neural network
applications to image compression and VLSI neuroprocessors. The
significant research results are presented in the following:

A high-speed image compression processor based on VLSI design of
systolic binary tree-searched vector quantizer has been developed.
Simulation results show that this design is applicable to many types of
image data and capable of producing good reconstructed data quality at
high compression ratios. Various design aspects for the binary tree-
searched vector quantizer, that include the functionality, testability, and
fault tolerance, were thoroughly investigated for VLSI implementation. A
specific 8-level binary tree-searched vector quantizer can be realized on a
custom VLSI chip that includes a systolic array of eight identical processors
and a hierarchical memory of eight subcodebook memory banks. The total
transistor count is about 300,000 and the die size is about 8.7 x 7.7 mm2 in a
1.0 um CMOS technology.

An adaptive electronic neural network processor that has been
developed for high-speed image compression based upon a frequency-
sensitive self-organization algorithm. Performances of this self-
organization network and a conventional algorithm for vector
quantization are compared. The proposed method is quite efficient and
can achieve near-optimal results. The neural network processor includes
a pipelined codebook generator and a paralleled vector quantizer, which
obtains a time complexity O(1) for each quantization vector. A mixed-

XV



signal design technique with analog circuitry to perform massively
parallel computation and digital circuitry to handle multiple-bit address
information is used. The prototype neural network processor chip for a
25-dimensional adaptive vector quantizer of 64 codewords was designed,
fabricated, and tested. It includes 25 input neurons, 25 x 64 synapse cells, 64
distortion-computing neurons, a winner-take-all circuit block, and a
digital index encoder. It occupies a silicon area of 4.6 x 6.8 mm?2 in a 2.0-
Hm scalable CMOS technology and provides a computing capability as high
as 3.2 billion connections per second.

A neural network based motion compression algorithm and its
associated VLSI neuroprocessor have been developed. The neuroprocessor
design is based on a locally connected multiple competitive neural
network developed for high performance optical flow computing systems.
The proposed VLSI neuroprocessor design can achieve a high-speed wide-
range motion estimation and thus an efficient image sequence
compression by taking advantage of the massively parallel neural
computing architecture and VLSI technology. An extendible VLSI
neuroprocessor has been designed with a silicon area of 2,482 x 5,636 A2 in
MOSIS scalable CMOS process. The mixed analog-digital design techniques
are utilized to achieve compact and programmable synapses with gain-
adjustable neurons and winner-take-all cells for massively parallel neural
computation. Measured results of the programmable synapse, summing
neuron, and winner-take-all circuitry are presented. A 1.25 x 1.17 cm? chip
in a submicron CMOS technology can accommodate 128 velocity-selective
neuroprocessors and achieve 166.4 Giga connections per second.
Computing of optical flow using one neural chip can be accelerated by a
factor of 379 than a Sun-4/260 workstation. Real-time motion estimation
on industrial video images is practical using an extended array of VLSI
neuroprocessors. Actual examples on moving vehicles are presented.

An efficient VLSI pipelined processor design for high-speed lossless
compression based on Rice algorithm has been developed. The Rice
algorithm is an adaptive lossless coding scheme that provides near-

xvi



optimal performance over a broad range of data entropies. The Rice
algorithm is also an efficiently implementable scheme for VLSI
realization. A VLSI pipelined architecture was designed to allow compact
implementation of a single-chip VLSI compressor. This lossless
compressor is named UNC-PSI14,K+ since it implements an advanced
version of the Rice 's universal noiseless coding method called PSI14,K+.
The chip layout was generated for a 1.0-micron CMOS technology. It
occupies a compact chip area of 5.1 x 5.3 mm2, with 49,000 transistors, 57
input/output pads, and 6 power/ground pads. The total power dissipation
is 0.4 watts at the 40 MHz system clock with a 50% switching duty cycle.
This compressor chip is mounted in an 84-pin pin-grid-array package. It
can operate up to 40 Mpixels/sec. The potential applications of the
proposed lossless compressor include database management systems,
scientific instruments, CAE workstations, desktop computing machines,
and the data systems that require high-speed compression without fidelity
loss.

xvii



Chapter 1

Introduction

1.1 Motivation

The goal of data compression is to reduce the communication and
storage costs for the data systems where reduction in the volume of
transmitted or recorded data is important. The data compression field was
intensively studied over the past four decades [1.1-1.11]. In the research field
of data compression, important contributions have come from information
sciences, computer sciences, signal and image processing, computer
engineering, VLSI technology, etc. The increasing demands of speed and
performance in data compression applications urge the VLSI data
compression research. The major driving forces behind this trend include:
* More demand is placed on the communication and storage sub-systems as
technology enhancement advances. Data compression techniques are
employed in several key driving applications such as high definition TV,
integrated information system, integrated service data networks, and the
space-science data system.
* Technology improvements make compact integration of sophisticated data
compression systems possible. These technology improvements include the
advances of VLSI fabrication technologies and parallel processing architecture
such as neural networks [1.12-1.16].



More efforts are still needed to develop high-speed high-
performance data compression systems. To achieve the goal of efficient data
compression, the following issues need to resolve:

* Due to different characteristics of various data sources, a sophisticated
compression system is required to handle all types of source data such as
speech, image, video, text, and binary files.

® Due to the intensive computation and real time processing requirements,
the implementation of a high-speed data compression system is required to
be with special-purpose parallel/ pipelined processors.

* The characteristics of compressed data also inevitably add additional
requirements to the data systems. Such requirements include more stringent
communication quality and buffering management.

Figure 1.1 shows an end-to-end high rate data system diagram. To
achieve a reliable high-speed communication and storage, the source data
compression and channel coding become essential portions of the advanced
high rate data‘ system. Improvements in the data compression algorithm,
architecture, software and hardware implementation, and associated system-
level design issues are critical to effectively achieve the goal of data
compression. OQur VLSI image compression research has been motivated by a
need of the high-speed high-performance data compression and inspired by
the neural networks, the parallel/pipelined processing, and the VLSI
technologies.
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12  Scope and Objective

The scope of our VLSI image compression research covers:
(a) lossless image compression and VLSI processors,
(b) lossy image compression and VLSI processors, and
(c) neural network applications to image compression and VLSI
Neuroprocessors.

Our work in each above-mentioned research topic includes:
(a) system-level simulation to compare performances of the candidate
algorithms for a targeted application,
(b) VLSI architecture design of the selected algorithm,
(c) VLSI functional and structural circuit and layout design,
(d) prototype chip design and fabrication, and
(e) testing and measurement.

The primary objective for each research topic was to develop an
effective algorithm and its associated VLSI processor. The ultimate objective
was to develop a high-speed high-performance image data compression

system in special silicon chips or wafers.

13  Approach: An Integrated Study of VLSI Image Compression

Study on the subject of VLSI image compression involves a broad
spectrum of disciplines that include application, algorithm, architecture, and
implementation. Figure 1.1 depicts an integrated design methodology that is

adopted for our VLSI image compression studies.



System Study The goal of the system study is to develop feasible system
specifications. The scope of the system study covers: (a) understanding of the
targeted application, (b) investigation of the implications of data compression
on the overall system parameters such as link bandwidth, storage capabilities,
compression needs, data quality, and so on, (c) system simulation on targeted
applications, (d) system refinement to facilitate the feasibility, and (e)
development of system specifications.

Algorithm Study The goal of the algorithm study is to develop effective
algorithm specifications. The scope of the algorithm study covers: (a)
understanding of the system specifications, (b) a survey of candidate
algorithms, (c) algorithm analysis on targeted data sample sets, (d) system
and algorithm refinement to facilitate the implementation, and (e)
development of algorithm specifications.

Architecture Study The goal of the architecture study is to develop
balanced hardware/software architecture specifications. The scope of the
architecture study covers (a) understanding of the algorithm specifications,
(b) parallelism extraction and mapping of the algorithm into architecture, (c)
architecture evaluation with software/hardware implementation
technologies, (d) algorithm and architecture refinement to facilitate the VLSI
implementation, and (e) development of architecture specifications.

VLSI Design and Simulation =~ The goal of the VLSI design and simulation
is to develop functional chip specifications. The scope of this task covers (a)
understanding of the architecture specifications, (b) select a chip design
style/method and associated tools, (c) design functional building blocks and

structural primitives to realize the targeted architecture, (d) simulate the



functional design, (e) verify the physical design, (f) design refinement to
facilitate the speed-area tradeoffs, the worst-case timing margins, and the
testability, and (g) generate a chip specification database.
VLSI Fabrication and Test The goal of the VLSI fabrication and test is
to realize the chip specification onto a real chip. The MOSIS provides chip
fabrication service through a variety of chip foundries [1.16]. The chip is
tested to be functional by using a chip tester and a system testbed.

Design and implementation of the application-specific processors in
VLSI are a highly challenging and iterative process. This integrated design
method for our VLSI image compression research has been very successful.
The success relies on a fundamental understanding of application, algorithm,
architecture, and VLSI implementation,
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14  Overview of the Dissertation

This dissertation contributes to real-time image compression
research with emphasis on the hardware development, in particular to the
high-speed high-performance VLSI image compressor design. Figure 1.3
shows an organization of various image compression research subjects
discussed in this dissertation. The following selected chapters are covered to
present our studies on the subject of VLSI image compression:

Chapter 2 starts with a brief introduction of widely used data
compression algorithms. Data compression can be divided into two
categories: lossless compression and lossy compression. Four lossy data
compression algorithms were investigated: predictive coding, block
truncation coding, transform coding, and vector quantization. Four types of
losses coding algorithm were also investigated: Huffman codes, Rice codes,
Limped-Ziv codes, and arithmetic codes. Furthermore, the image
compression algorithm using neural-network paradigms were investigated.
The limitations, assumptions, and applications for the algorithms were
discussed.

Chapter 3 presents a high-speed image compression processor based on
VLSI design of systolic binary tree-searched vector quantizer. Simulation
results show that this design is applicable to many types of image data and
capable of producing good reconstructed data quality at high compression
ratios. Various design aspects for the binary tree-searched vector quantizer,
that include the functionality, testability, and fault tolerance, were thoroughly

investigated for VLSI implementation. A specific 8-level binary tree-searched



vector quantizer can be realized on a custom VLSI chip that includes a
systolic array of eight identical processors and a hierarchical memory of eight
subcodebook memory banks. The total transistor count is about 300,000 and
the die size is about 8.7 x 7.7 mm? in a 1.0 um CMOS technology. The
throughput rate of this high-speed VLSI compression system is 25M pixels
per second and its equivalent computation power is 400 MIPS. Portions of
this chapter were presented at the 1990 IEEE VLSI Signal Processing, Workshop
at San Diego, CA. [1.17], the 1991 Advanced Research in VLSI Conference at
Santa Cruz, CA [1.18], and the 1991 IEEE Workshop on Visual Signal Processing
and Communications, at Taiwan, Republic of China [1.19].

Chapter 4 presents an adaptive electronic neural network processor that
has been developed for high-speed image compression based upon a
frequency-sensitive self-organization algorithm. Performances of this self-
organization network and a conventional algorithm for vector quantization
are compared. The proposed method is quite efficient and can achieve near-
optimal results. The neural network processor includes a pipelined codebook
generator and a paralleled vector quantizer, which obtains a time complexity
O(1) for each quantization vector. A mixed-signal design technique with
analog circuitry to perform neural computation and digital circuitry to handle
multiple-bit address information is used. The prototype neural network
processor chip for a 25-dimensional adaptive vector quantizer of 64
codewords was designed, fabricated, and tested. It includes 25 input
neurons, 25 x 64 synapse cells, 64 distortion-computing neurons, a winner-
take-all circuit block, and a digital index encoder. It occupies a silicon area of

4.6 x 6.8 mm2 in a 2.0-um scalable CMOS technology and provides a



computing capability as high as 3.2 billion connections per second. The
experimental results for this neural-based vector quantizer chip and the
winner-take-all circuit test structure were also presented. Portions of this
chapter were presented at the 1991 IEEE first Data Compression Conference at
Snowbird, Utah [1.20], the IEEE international Conference on Acoustics, Speech
and Signal Processing, at Toronto, Ontario, Canada [1.21], the 1991 International
Joint Conference on Neural Networks, at Seattle [1.22], and the IEEE Trans. on
Neural Network, May 1992 [1.23].

Chapter 5 describes a neural network based motion compression
algorithm and its associated VLSI neuroprocessor design. The neuroprocessor
design is based on a locally connected multiple competitive neural network
developed for high performance optical flow computing systems. The
proposed VLSI neuroprocessor design can achieve a high-speed wide-range
motion estimation and thus an efficient image sequence compression by
taking advantflge of the massively parallel neural computing architecture and
VLSI technology. An extendible VLSI neuroprocessor has been designed with a
silicon area of 2,482 x 5,636 A2 in MOSIS scalable CMOS process. The mixed
analog-digital design techniques are utilized to achieve compact and
programmable synapses with gain-adjustable neurons and winner-take-all
cells for massively parallel neural computation. Measured results of the
programmable synapse, summing neuron, and winner-take-all circuitry are
presented. A 1.25 x 1.17 em? chip in a submicron CMOS technology can
accommodate 128 velocity-selective neuroprocessors and achieve 166.4 Giga
connections per second. Computing of optical flow using one neural chip

can be accelerated by a factor of 379 than a Sun-4/260 workstation. Real-time
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motion estimation on industrial video images is practical using an extended
array of VLSI neuroprocessors. Actual examples on moving vehicles are
presented. Portions of this chapter were presented at the 1990 IEEE
International Conference of Computer Design at Cambridge, MA [1.24], the 1991
IEEE international Conference on Acoustics, Speech and Signal Processing, at
Toronto, Ontario, Canada [1.25], and has been accepted for publication in the
IEEE Trans. on Neural Networks [1.26].

Chapter 6 presents an efficient VLSI pipelined processor design for
high-speed lossless compression based on Rice algorithm. The Rice algorithm
is an adaptive lossless coding scheme that provides near-optimal
performance over a broad range of data entropies. The Rice algorithm is also
an efficiently implementable scheme for VLSI realization. A VLSI pipelined
architecture was designed to allow compact implementation of a single-chip
VLSI compressor. This lossless compressor is named UNC-PSI14,K+ since it
implements an advanced version of the Rice 's universal noiseless coding
method called PSI14,K+. The chip layout was generated for a 1.0-micron
CMOS technology. It occupies a compact chip area of 5.1 x 5.3 mmZ2, with
49,000 transistors, 57 input/output pads, and 6 power/ground pads. The
total power dissipation is 0.4 watts at the 40 MHz system clock with a 50%
switching duty cycle. This compressor chip is mounted in an 84-pin pin-grid-
array package. It can operate up to 40 Mpixels/sec. The potential
applications of the proposed lossless compressor include database
management systems, scientific instruments, CAE workstations, desktop
computing machines, and the data systems that require high-speed

compression without fidelity loss. Portions of this chapter were presented at
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the 1987 IEEE Aerospace EASCON Conference, Washington [1.27], the 1988
SPIE Conference, Los Angeles [1.28], NASA Technology Briefs, October 1989
[1.29], and the 1991 IEEE First Data Compression Conference, Snowbird Utah
[1.30].

Chapter 7 discusses potential future research and development

directions that are worth of further investigation.

12
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Chapter 2

Data and Image Compression

Efficient compression of data would significantly decrease both the
communication and storage costs [2.1]. Data compression can be roughly
divide into two categories, lossless compression and lossy compression. A
lossless compression algorithm seeks to represent a given data set with the
fewest number of bits possible without any fidelity loss while a lossy
compression algorithm provides higher compression factors at the expense of
some distortions in the reconstructed data set [2.2].

In this chapter, we focus on these algorithms have been
investigated for an integrated information processing system [2.12] which has
various signal representations including speech, image, video, text, binary
file, etc. Section 2.1 review the traditional lossless data compression
algorithms. Section 2.2 review the traditional lossy data compression
algorithms. Section 2.3 investigated the neural network based data and image
compression. The limitations, assumptions, and applications for each

algorithm were examined and reported.

21  Lossless Compression

Lossless compression is usually required in such situations where

the compression system must be designed without prior knowledge of the
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structure or end use of the original data. Lossless coding is a data
compression techniques that is employed to compress the data without
inducing any distortion in the reconstructed data. Its maximum compression
ratio is limited by the entropy of the source data. There are two types of
lossless coding algorithm: Huffman coding [2.2,3] and universal noiseless
coding [2.7,8]. The universal noiseless coding algorithm only needs to know
the probability ordering of the source data while the Huffman coding
algorithm requires the knowledge of the probability distribution. The
assumption on the knowledge of the probability ordering is more realistic
since the source data can be preprocessed (e.g. by taking difference of
adjacent pixels). The preprocessed data (e.g. difference image) typically
assumes some degree of probability ordering (e.g. higher probability for
smaller difference in adjacent pixels).

For this reason, we focus only on the universal noiseless coding
technique due to lack of any prior information on the source data statistics.
The advantages of the universal noiseless coding are: 1) No distortion in the
reconstructed data; 2) No need to know the probability distribution; and 3)
simple encoding and decoding procedures. Its drawbacks are: 1) Algorithm
performance is more sensitive to channel errors; 2) Output data rate (i.e.,
compression ratio) is not controllable; and 3) Maximum compression ratio is
limited by the source entropy.

Among existing lossless data compression algorithms [2.3-8], the
universal noiseless coding (UNC) is an effective method for producing
reconstructed data without any fidelity loss. This adaptive algorithm

provides excellent performance over a broad range of data contents. A high-
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speed UNC coder is therefore proposed to implemented at a low hardware
cost by using a VLSI pipelined architecture [2.9-10]. Notice that the noiseless
coding technique alone is not feasible to reduce the data volume as required
for the advanced data system. It is better suited as a post-processing stage for
further reduction of data compressed by a lossy compression algorithm to

maximize the compression to distortion noise ratio.

22  Lossy Compression

Four data compression algorithms were investigated for the
advanced data system. There are predictive coding, block truncation coding,
transform coding, and vector quantization algorithms. The limitations,
assumptions, and applications for each algorithm were examined as the

following:

22,1 Predictive Coding

The predictive coding technique is a simple coding algorithm that
provides a relatively small compression ratio with reasonably good image
quality [2.12]. Its major limitation is that it cannot compress data below 1 bit
per pixel and its image quality at 1 bit per pixel is marginal. Another
limitation is that it provides very limited flexibility in selection of
compression ratio versus data quality. If the source data is stationary, the
predictor need not be updated, which makes it possible for real-time

applications. However, if the source data statistics vary with time, buffering
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of the data and retaining of the prediction coefficients is required. Predictive
coding is best suited for applications where very simple encoders and
decoders are required and the compression ratio requirements are low (i.e.,
less than 4:1).

Compared to the block truncation coding algorithm, it offers about
the same data quality but provides less flexibility in the compression ratio
versus data quality trade-off. Also its prediction coefficients would require
training of data sets if the source statistics vary significantly. Compared to
the transform coding and vector quantization algorithms, the predictive
coding algorithm cannot achieve as high a compression ratio and its data

quality is usually 2 to 3 dB worse.

2..2.2 Block Truncation Coding Algorithm

The block truncation coding (BTC) algorithm [2.16] has the
following advantages: 1) simple encoding and decoding procedures; 2) small
memory requirements; 3) adaptivity to local image statistics; and 4) selectable
compression ratios up to K:1. where K is the number of bits per sample in the
original data. Its major limitation is similar to that of predictive coding, i.e.,
the maximum compression ratio is K:1 and the image quality at this
compression ratio is marginal. Another limitation is that at the same
compression ratio, the data quality using the BTC algorithm is about 2 to 3 dB
worse than that of the adaptive transform coding or the vector quantization
algorithm. For the algorithm to perform well, it assumes that the statistics of

each data block are primarily characterized by its first two moments. If
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higher order statistics exist, the reconstructed image quality degrades. In
summary, the BTC algorithm appears to be a promising candidate for a data
system requiring small compression ratios, low implementation cost, and

some adaptivity to data statistics.

2..2.3 Transform Coding Algorithm

The adaptive transform coding algorithm is a technique capable of
compressing the image data to a user specified compression factor given that
the associated image quality degradation is tolerable [2.13,14,15]. It generally
yields better image quality than both the predictive coding and block
truncation coding algorithms at the same compression ratio. Its major
limitation is that it is computationally intensive in both encoding and
decoding, requiring a large number of two dimensional transforms. Another
limitation is that it requires a large storage buffer from which the source
statistics are derived. It assumes that the statistics of each data block can be
well characterized by the lower frequency terms in the spectra such that the
bits can be more efficiently assigned to these transform coefficients that the
higher frequency terms.

In summary, the adaptive transform coding algorithm is promising
for a single-encoder, single-decoder application such as a high-rate

communication link that requires both high compression ratio and good data

quality.

224 Vector Quantization Algorithm



Vector quantization (VQ) has been show as an effective method for
speech waveform coding and image data compression [2.17,18]. It is capable
of producing good reconstructed image quality at high compression ratios.
As compared to the adaptive transform coding, the primary advantage of the
VQ algorithm is its extremely simple decoding procedure, which makes it a
promising technique for the single-encoder multiple-decoder data
compression systems.

Vector quantization appears to be the most viable technique for the
advanced data system. This judgment is based on the reconstructed image
quality at the required high compression ratio, regular data flow pattern in
the encoder, and a simple decoding procedure (table look-up). By
combination of tree-searched VQ and systolic processing, a high throughput

compressor can be realized at a low hardware cost.

22.5 Summary of Results

Four lossy compression algorithm were evaluated. Among them,
predictive coding and block truncation coding are two simple coding
algorithms that provide reasonably good image quality at small compression
ratios. Their common major limitation is that they cannot compress the data
below 1 bit per pixel and the image quality at 1 bit per pixel is marginal.
Transform coding and vector quantization are more complex algorithm,
however, they are capable of producing good reconstructive image quality at

higher compression ratios. The transform coding algorithm achieves high
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performance at the cost of high complexity in both the encoder and decoder.
Although vector quantization also requires a computationally intensive
process in encoding the data, its decoding procedure is a simple table look-
up. Moreover, the regular data flow pattern in the vector quantization
encoder allows efficient implementation using both parallel and pipelined
processing techniques.

The results show that the vector quantization algorithm appears to
be the most viable technique for an advanced data system. Besides, universal
noiseless coding algorithm is suited as a post-processing stage for further
reduction of data compressed by vector quantization algorithm to maximize

the compression to distortion noise ratio.

2.3  Neural Networks for Data and Image Compression

Artificial neural networks serve an important purpose that is to
extract and emulate the functions and operations from biological neural
networks for our next generation artifacts. Artificial neural networks also
serve as vehicles to study neuroscience by synthesizing low level finding and
high level hypotheses together into a artificial system that can be simulated
and compared with the behaviors of living systems.

Neural network approaches appear to be very promising for
intelligent information processing [2.19-28] due to their massively parallel
computing structures and self-organization learning schemes. A number of
studies have been reported on using artificial neural networks for VQ and

image compression applications [2.29-32]. The existing works in image

24



compression using neural networks share the same key idea which is
performing the feature extraction or classification at the source data to

achieve data compression.

2.3.1 Associative Memory

J. Solomon et al. applied associative model to do multispectral
image compression [2.37]. The approach is based on the minimized energy
search which is state dependent. Full information retrieval can be achieved by
partial input. The percentage of the spurious state is high if the codewords are
not orthogonal. The scheme proposed is similar to ordinary VQ. The
codebook is prepaid and stored in the Hopfield Net before encoding. The way
to generate codebook is similar to supervised learning. The desired set of
primitives are used to train the associative memory. Then the trained
associative memory serve as a classifier(encoder) to classify(encode) the
image vectors. Whenever a image vector present, the list of stored codewords

is searched, and the best match codeword and its index is produced.

2.3.2 Multi-layer Perceptron

G. W. Cottrell et al. used multi-layer perceptron with error back
propagation (EBP) learning to do image compression [2.33]. Multi-layer
perceptrons are feed-forward nets. The back-propagation algorithm uses a
gradient search technique to minimize a cost function equal to the mean

square difference between the desired and the actual net outputs.



EBP is a gradient search techniques that may find a local minimum in the
LMS cost function instead of the desired global minimum. The local minima
in VQ corresponds to clustering two or more disjoint cﬁdewords into one. The
number of presentations of training data required for convergence is very
large (more than 100 passes through all the training data). A three-layer
perceptron can form a codebook and then work as an ordinary vector
quantization. The way to generate codebook is the supervised BPE learning.

Training and testing are separate into two phase.

2.3.3 Hierarchy Associative Memory

L. D. Jackel et al. reported the experiment result of image vector
quantization using associative memory model and the concept of the
hierarchy neural network [2.36] . The scheme proposed is based on
associative memory model. Training and testing are separate into two phase.
The codebook is prepared before encoding. The desired image vectors are
used as training prototypes to train the associative memory. Then the trained
associative memory serve as a classifier(encoder) to classify(encode) the
image vectors. The VQ proceeds by first matching image vector to the best
mothership and then matching to the appropriate rowboat by using hierarchy
neural networks. The scheme is similar to an ordinary VQ. An unique point
has be made is the use of neural net hierarchy in considering the practical

memory size of ANN chip.

2.3.4 Winner-Take-all Competitive Network
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J. G. Daugman et al. modeled the actually neurobiologically
recorded receptive profiles with 2-D Gabor and treat these simulated
receptive profiles as the visual primitive to do vector quantization with
winner-take-all model. The generation of codebook is by supervised training
the winner-take-all nets with the known 4,096 visual primitives. [2.34]. In this
image data VQ compression scheme, each (8x8) pixel region is represented by
a single 12-bit quantity which specifies the victor in the winner-take-all
competition among 4,096 candidate visual primitives. The compression ratio

about 40:1 (0.1875 bits/ pixel) was reported.

2.3.5 Kohonen's Self-Organizing Feature Maps

Kohonen's algorithm creates a learning vector quantizer (LVQ) by
adjusting weights from common input nodes to M output nodes arranged in
a two dimensional grid as shown in Fig. 2.1. Output nodes are extensively
interconnected with many local connections. Continuous-valued input
vectors are presented sequentially in time without specifying the desired
output. After enough input vectors have been presented, weights will specify
cluster or vector centers that sample the input space such that the point
density function of the vector centers tends to approximate the probability
density function of the input vectors [2.24]. Kohonen's net does not perform
the iterative K-means training algorithm (LBG algorithm). Instead, each new
pattern is presented only once and weights are modified after each

presentation. The Kohonen net does, however, form a pre-specified number
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of clusters as in the K-means algorithm, where the K refers to the number of
clusters formed. This algorithm can perform well in noise because the number
of classes is fixed, weights adapt slowly, and adaptation stops after training.
This algorithm is thus an ordinary VQ when the number of clusters desired
can be specified before use and the amount of training data is large relative to
the number of clusters desired. It is similar to the LBG algorithm in this

respect.
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Fig. 2.1 Structure of Kohonen's self-organizing feature maps.

As shown in Fig. 2.1, the network consists of two layers of units, a

linear input layer and an internal processing layer. The internal processing
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layer contains inhibitory connections and provides a "top-down" training
signal to connections between the two layers. Two dimensional array of
output nodes used to form feature maps. Every input is connected to every
output node via a variable connection weight. Kohonen's algorithm to

perform VQ using self-organizing feature maps is described in the following:
Algorithm : Kohonen's self-organizing feature maps

Step 1: Initialize Weights
Initialize weights from N inputs to the M output nodes to small
random values. Set the initial radius of the neighborhood of each
node.
Step: Present New Input
(Note: No classification provided.)
Step 3: Compute Distance to All Nodes
Compute distance dj between the input and each output node j
using
N-1
dj=Z [x{(t) -wij(t)]2
i=0
where x; (t) is the input to node i at time t and wij is the weight
from input node i to output node j at time t.
Step 4: Select Output Node with Minimum Distance (Winner)

Select the node j* as the output node with minimum dj.

Step 5: Update Weights to Node j* and Neighbors
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Weights are updated for node j* and all nodes in the neighborhood
defined by NEjx(t). New weights are
wij(t+1) = wij(t) + OLxi(t) - wij(B)]
For j belong to NEj* and 0<i<N-1.
N(t) is a gain term (0< N(t) <1) that decreases in time.
(Weights eventually converge and are fixed after the gain term is
reduced to zero.)
Step 6: Repeat by Going to Step 2

2.3.6 Grossberg's Adaptive Resonance Theory (ART) Network

The Carpenter/Grossberg's Adaptive Resonance Theory (ART)
network [2.26-28] consists of attentional subsystem and orienting subsystem.
Familiar events are processed within an attentional subsystem, which is a
two-layer competitive learning network.

ART network [2.28] forms clusters and is trained without
supervision. This net implements a clustering algorithm that is very similar to
the simple sequential leader clustering algorithm described in [2.41]. The ART
is completely described using nonlinear differential equations, including
extensive feedback. In typical operation, the differential equations can be

shown to implement the clustering algorithm presented in the following;:

Algorithm: Carpenter/Grossberg's Adaptive Resonance Theory (ART)
Step 1. Initialization
tj0) =1
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bjj(0) = 1/(1+N)
0<i<N-1
0<j<M-1
Setp, 0<r <1
In these equations bij(t) is the bottom up and t;;(f) is the top down connection
weight between input node i and output node j at time t. These weights
define the exemplar specified by output node j. The fraction p is the vigilance
threshold which indicates how close an input must be to a stored exemplar to
match.
Step 2. Apply New Input
Step 3. Compute Matching Scores
N-1
Hi=Z bit) xj 0<j<M-1
i=0
In this equation y; is the output of output node j and xj is element i of the
input which can be 0 or 1.
Step 4. Select Best Matching Exemplar (Winner)
Wj* = max [uj}
j
This is performed using extensive lateral inhibition as in the maxnet.
Step 5. Vigilance Test
N-1
HXT=Z x{
i=0

N-1
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[HTXI =2 tij*
i=0
If 1ITXI1/ 1IXI]>p then go to Step 6, otherwise goto Step 7.
(i.e. Number of one bits in common normalized by the number of one bits in
input.)
Step 6 Disable Best Matching Exemplar
The output of the best matching node selected in Step 4 is temporarily set to
zero and no longer takes part in the maximization of Step 4. Then go to Step 3.

Step 7A (Training). Adapt Best Matching Exemplar

tiju(t+1) = t58) x;
N-1
bije(t+1) = tiltx; /(0543 tlthx)
i=0
Step 7B (Testing). Output the Label of Best Matching Exemplar
Step 8. Repeat by Going to Step 2
(First enable any nodes disabled in Step 6 for new input data)
The structure of VQ using ART net is shown in Fig. 2.2. The
adaptation of best matching exemplar only happen during codebook training
phase. In the testing phase, the ART works as a self-adjusting search to find

the best match from the learned codewords.
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Fig. 2.2 Structure of VQ using ART.
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24  Conclusion

For lossless data compression, the universal noiseless coding
(UNC) is an effective method for producing reconstructed data without any
fidelity loss. This adaptive algorithm provides excellent performance over a
broad range of data contents. A high-speed VLSI design of the UNC coder
will be presented in Chapter 6.

For lossy image compression, the vector quantization algorithm
appears to be the most viable technique for an advanced data system.
Various design aspects for the VLSI vector quantization, that include the
functionality, testability, and fault tolerance, will be thoroughly investigated
in Chapter 3.

Image compression and classification is an area that neural network
models have been very successful. The progress in artificial neural network
technology, especially the mixed-signal VLSI has shown the potential to
support a real time adaptive vector quantization for image compression
applications [2.42, 2.43). The follow-up research reported in Chapter 4 will be
emphasized on the use of adaptive self-organized neural networks to a VLSI

neural network based image compressor.
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Chapter 3

A High-Speed VLSI Systolic Vector Quantizer for Image Data
Compression

Abstract- A high-speed image compression processor based on VLSI design
of systolic binary tree-searched vector quantizer has been developed for the
increasingly strong demands on large-volume data communication and
storage requirements. Simulation results show that this design is applicable
to many types of image data and capable of producing good reconstructed
data quality at high compression ratios. Various design aspects for the binary
tree-searched vector quantizer including the functionality, testability, and
fault tolerance are thoroughly investigated for VLSI implementation in a 1-
pum CMOS technology. A specific 8-level binary tree-searched vector
quantizer can be realized on a custom VLSI chip that includes a systolic array
of eight identical processors and a hierarchical memory of eight subcodebook
memory banks. The total transistor count is about 300,000 and the die size is
about 8.67 x 7.72 mm2 in a 1.0 pum CMOS technology. The throughput rate of
this high-speed VLSI compression system is 25M pixels per second and its
equivalent computation power is 400 MIPS.

3.1 Introduction
Image compression is essential to reduce the image transmission or
storage costs for broad areas of applications such as high-definition television,

teleconferencing, remote sensing, radar, sonar, computer communication,
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facsimile transmission, and image database management {3.1,3.2). According
to Shannon's source coding theorem, asymptotic optimal performance can be
obtained by coding vectors instead of scalars [3.3-3.5]. Over the past decade,
vector quantization (VQ) has developed from a theoretical possibility into a
powerful technique for speech and image compression at medium to low bit
rates [3.6-3.14]. Since late 1980s, a variety of design techniques have been
developed for VQ [3.12-3.14] and some real-time hardwares have been
designed [3.15-3.18]. The emphasis in VQ appears to have shifted from basic
research to system development, in particular to high-speed VLSI
implementation of speech and image coders at low and medium rates. The
driving forces behind this trend are as follows. (1) Advances of technologies,
especially progress in VLSI technology, make more sophisticated data
compression systems possible. (2) The increasingly strong demands on large-
volume data communication and storage requirements. (3) Several key
driving applications require data compression techniques such as high
definition TV, advanced multi-media information system, integrated service
data networks, satellite imaging system, and the space science data and
communication system.

The primary advantage of the VQ method, as compared to other
high compression ratio methods such as the adaptive transform coding [3.19],
is its extremely simple decoding procedure, that makes it a great potential
technique for the single-encoder multiple-decoder data compression systems.
The major limitation of the VQ method is the high complexity involved in the
codebook search. To effectively reduce the codebook search complexity, the

scheme of tree-searched vector quantization was proposed such that the
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codebook search complexity only grows linearly rather than exponentially as
the codebook size increases (3.8, 3.9]. VLSI design of the full-searched vector
quantization algorithm has been reported in the literature [3.15-3.17]. In this
chapter we present an algorithm-specific VLSI design based on the binary
tree-searched VQ algorithm and its associated systolic architecture. By
combining tree-searched VQ and systolic processing, a high throughput
vector quantizer can be realized on a single VLSI chip using the 1.0 ym CMOS
technology. A spedific 8-level binary tree-searched vector quantizer has been
designed which is applicable for the advanced image processing systems.
This chapter is organized as follows. Section 3.2 reviews the full-
searched and the tree-searched vector quantization algorithms. Section 3.3
describes the systolic processing architecture. Section 3.4 discusses the
detailed hardware design for the binary tree-searched vector quantization
algorithm. Section 3.5 presents the VLSI implementation. Section 3.6
describes testability and fault tolerance. Section 3.7 presents an adaptive
method to construct a codebook and the simulation results for binary tree-

searched vector quantizer. The conclusion is given in Section 3.8.
3.2 Vector Quantization
3.2.1 Full-Searched Vector Quantization
Vector quantization can be viewed as a mapping Q from a M-

dimensional vector space #M into a finite subset C of %M :

Q gM >, (3.1)
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where C={C;jl i=0, 1,2, .., N-1} is the set of reproduced vectors and N is the
number of vectors in C. Each C;j in C is called a codevector and C is called the
codebook for the vector quantizer.

Figure 1 shows the functional block diagram of the vector
quantizer. In the encoding phase, every source vector X(#) is compared with
each codevector Cj in C and the codevector of the smallest distortion is chosen
to represent X(f). The index of the codevector of the minimum distortion is
used as the encoded output and transmitted through the channel. That is if
D (X(t), C) <D (X(#),C), 0<i,i<N-1,i#i, then i(f) represents X(p). It is
denoted by

min’!

i0= D (X(),.C)
0<i €N-1 (3.2)

’

where D(*¢) being the distortion function, D (X(¢), C) being the distortion
between X(f) and C,, and ¢ being the time index. For most distortion
measures, such as the mean-squared error, the vector distortion can be
written as the sum of the scalar distortion, i.e,,
D) =D (X(®),C) = 1:21 (X®-Cf
j=0 (3.3)
where Xj(f) being the jth component of the source vector X(t), C;j being the jth
component of the i# codevector C,.

On the other side of the channel, the received indices are used to
select the codevectors from the codebook to reproduce the source vectors
during the decoding phase. This process is a table look-up operation and can
be expressed as

X0=Cp. (3.4)



3.2.2 Tree-Searched Vector Quantization

The codebook search efficiency is an important issue in vector
quantization design and can be solved by incorporating tree structure into the
codebook [3.14]. The codebook search complexity of the tree-structured VQ is
a logarithmic function of the size of the codebook. This technique divides the
codebook into consecutive subcodebooks. Codebook bit-length is
n = m+nz + ...4+ny bits. Codevector index assignment is n7 bits for the first
level, 1 bits for the second level,... , and ny bits for the Lth level. Codebook
size is N= N1N>...Ni...N. where N= 2" and N; =2" . Codevector notation is
C! for the first level, C? for the second level,... , and C¥ for the Lth level.  For
the tree-searched VQ, the encoding procedure is executed by comparing the
source vector X(t) with the codevectors in the consecutive subcodebooks. The
encoded index of the source vector X(t) is f;(t) for the first level, fg(t) for the

second level, ..., and fL(t) for the Lth level. That is denoted by
. min’!
= DX@.C;)
0<i <Nl (3.5
. min-!
1) = DX®).C? . .)
0<i, <Nyl HO

. min1
L= D(X().C¥

4 . L)
0 <iy < N1 G lz(t)... zbl(t)zL'

The final encoded index for the source vector X(f) is
i) = 1 007, 66

The decoding procedure is a table lookup,
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i = k - L 4 H
X0=Cito = 0ho. Lo (3.7)

3.2.3 Binary Tree-Searched Vector Quantization

Among tree-searched VQs, the binary tree-searched scheme is the
most efficient way of searching through the codebook to find the near
optimum reproduction codevectors for the source vectors. The number of the
binary tree level L is same as the codebook bit-length ».

The codebook search of the binary tree-searched VQ can be

expressed as

. min-

LO= D (X(.C} )

i,=0,1 (3.8)

, min! .

i) = D(X(0.C* ..)

2 iz ~0,1 1l(t) i

- min?

i@= D (X(©®,C% . 2 L)

n in ~0,1 zl(t) zz(t)... zn.l(t)zn .
The final encoded index for the source vector X(t) is

i(n= L@ L) ... in(t). (39)
The decoding procedure is still a table lookup,

X(=C%& =C2% . .

X0=Ciy =€ 0o, (3.10)

3.2.4 Vector Quantization Algorithm Trade-Offs



Image compression is achieved by using vector quantization since
fewer bits are needed to represent the codevector indices than the source
vectors. VQ algorithm trade-offs are summarized in Table 3.1.

For full-searched VQ, the rate is R = n/M bits per pixel where n
being the codebook bit-length. The codebook search complexity is N
operations per pixel for a codebook of size N. Each operation includes one
substation, one multiplication, one addition, and one memory access. The
decoding complexity is one memory access. The codebook memory size is
NMK bits.

For tree-searched VQ, the compression ratio is KM/n.  The
codebook search complexity is 2”1+ 2"2+ ... +2"L gperations per pixel. The
decoding complexity is one memory access. The total codevector number of
the encoder is 2"1+ 2"1*"2+ ... +2"**", The effective codebook for the
decoding is { Cf' vi=dyiydy ).

For binary tree-searched VQ, the compression ratio is KM/n. The
codebook search complexity is 2n operations per pixel. The decoding

complexity is one memory access. The total codevector number of the encoder
is 2(N -1). The effective codebook for the decoding is { C', 1 =1i,...i }.

3.3 Systolic Architecture for Vector Quantization

3.3.1 Systolic Architecture for Full-Searched Vector Quantization
The codebook search and encoding procedure of the full-searched
VQ shown in (2) can be expressed in a general matrix-vector multiplication

form, where the multiplication operator represents the evaluation of scalar
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distortion and the addition operator is the sum of the scalar distortions.
Therefore, ( 2) can be implemented using systolic processing since matrix type
computations are well suited for this technique [3.20-21]. A dependence
graph of the full-searched VQ algorithm is shown in Fig. 3. 2 to illustrate the

dependence of the computations.

Distortion-Stay Systolic Array

If the dependent graph of the full-searched VQ is projected along
the j-direction, then it leads to a linear systolic architecture as shown in Fig.
3.3. In this distortion-stay systolic array, the distortion value D; is associated
with processing element i that the distortion is computed, where 0 < i < N-1.
The D; accumulates the intermediate result as the codevector component Cij
moves downward and the source vector component X; synchronously moves
to the right. After M clock cycles, D; will contain the distortion between the
source vector and the ith codevector. To perform (2), two variables, I and D,
are required to record the index and distortion of the codevector of the
current minimum distortion. The variable D is initialized to be a large
number. Both I and D enter processing element 0 following determination of
Dg. They move down the array one processing element per clock cycle. At
processing element i, D is compared with D;. If D;< D, thenI=iand D = D;
. At the output of processing element N-1, I will contain the codevector index
of the minimum distortion, representing the quantized source vector.

For the continuous data encoding, the next source vector with its
own (I, D ) pair immediately follows the current source vector such that the

data are continuously piped through the array. This can be achieved by
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cycling the codevector components Cjj into processing element i as the input
data flows into the array. Each Djis reset after the vector distortion is
determined.

For this systolic architecture, N processing elements are required.
The codebook search and encoding speed is increased by a factor of N over a
single processing element architecture. The pipeline latency is N+M -1 clock
cycles. The throughput rate is constant at 1 pixel/clock for any vector
dimension and codebook size.

Distortion-Move Systolic Array
As shown in Fig. 3. 4, a dual systolic architecture for the full-

searched VQ is derived by projecting the dependence graph along the i-

direction. In this distortion-move systolic array, the distortion value D;
moves while the source vector component X; stays in the processing element
j- The input data X; is loaded into processing element j, where 0 < j< M-1 .
As the codevector component Cjj moves downward, the distortion value D;
moves synchronously to the right. Parameter D; accumulates the
intermediate result of the distortion as it moves toward the end of the array.
After D; flows out of processing element M-1 , it will contain the distortion
between the source vector X(t), and the ith codevector, C;. To perform (2), a
comparator is added to the right end of the array, which keeps track of the
codevector of the minimum distortion. This array structure was first
presented by Capello, et al., for the design of a real-time speech compression
system [3.16]. It was later revised by Dianysian and Baker into a two-level

systolic structure [3.17].
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For the encoding of a continuous source vector sequence, the next

source vector components are sequentially loaded into the processing

elements immediately following computation of the distortion between Xp
and CN.1,0 the time when DN.7 flows out of processing element 0 and into
processing element 1. The same data flow pattern of Cj; is repeated for each

source vector. This can be realized by storing the codevector components Cj;

in processing element j and cycling these components as the input data flows
into the array. The comparator is reset following final comparison of all
distortions of the current source vector.

For this type of architecture, M (vector dimension) processing
elements and one comparator are required which results in an encoding
speed gain factor of M over a single processing element. The pipeline latency
is N + M -1 clocks. The throughput rate can be as fast as M pixels per N
clocks, where the clock represents the internal clock of the systolic array.
Since M is normally less than N, the throughput rate is slower than 1

pixel/clock.

3.3.2 Systolic Architecture for Tree-Searched Vector Quantization
Equation (5) shows that the tree-searched VQ encoder is simply a
cascaded series of the full-searched VQ encoders. The key is to correctly
address the next level subcodebook. This can be realized by relating the
index of the current tree level to the indices of the previous tree levels. The
combined indices are then used to address the next level subcodebook. In
this section, we extend the systolic architecture from the full-searched VQ to
encode the data for the tree-searched VQ. We focus the study on the
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architecture presented in Fig. 3.3. The design based on Fig. 3. 3 has the
following advantages for the tree-searched VQ: 1) Ease of expandability; 2)
Improved throughput/complexity ratio; and 3) High speed uniform rate
throughput for a tree-structured codebook.

Figure 3.5 shows an example of a systolic architecture for the tree-
searched VQ. It is essentially a concatenation of L systolic arrays of the full-
searched VQ shown in Fig. 3.3, where L being the number of tree-levels.

Each stage corresponds to one tree-level. The codevectors of each
subcodebook are arranged as follows. Codevector Cjy ... j; are allocated to

processing element ij of the th stage array. There are N7....Nj.1 codevectors

in each processing element of the Ih stage array. During VQ codebook
searching, the codevectors are addressed by the combined indices of the
previous stages, i7...ij.7. For this systolic architecture, the I*# stage contains Nj
processing elements, which amounts to }Jf;l N; processing elements. The
pipeline latency is Zio1 (Np -1+ LM clock cycles. The system throughput rate
is 1 pixel/clock which is constant for any tree-structured codebook. This can
be compared with a systolic architecture for the tree-searched VQ based on
Fig. 3.4 that requires ML systolic processing elements with throughput rate of
M/ [Zf; N 1] pixel/clock. The architecture based on Fig. 3.3 is more favorable
when Nj « M which is generally true for the tree-searched VQ.

3.3.3 Systolic Architecture for Binary Tree-Searched Vector
Quantization

Figure 3.6 shows a binary tree-searched VQ codebook structure.
The codebook searching operation can be organized as finding a path from

the root to a leaf in a binary tree. The computation at each level as specified
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in (8) can be performed by one processor that comprises two systolic
processing elements. A binary tree of depth n can be mapped into a linear
array of n processors as shown Fig. 3. 7. The source vector sequence { X(£)}
continuously flows through the array. At each stage, the source vector is
compared with two codevectors. After the index of the current tree-level is
obtained, it is tagged to the indices from the previous tree-levels to address
the next level subcodebook. The index is attained at a rate of one bit per
stage. At the end of the array, the concatenated indices are formed to
represent the coded data. This final indices are n bits in length. Recall that the
tree depth L is equal to the codebook bit-length n for the binary tree-searched
VQ. The overall system requires 2n systolic processing elements. The
pipeline latency equals n(1+M) clock cycles. The throughput rate is 1 pixel
per clock cycle.

3.34 Systolic Architecture for Binary Tree-Searched Vector
Quantization with Difference Codebook

Using the mean-squared-error (MSE) criterion as a distortion
measure, the distortion computation between the source vector X and the
codevectors at the same binary tree level (Cp and C3) for a binary tree-

searched VQ is
M M
Do(t) = 3, [XP() + CG1- 2, X{(t)Cy)
j=1

l = i=]

M M

Di( =Y, XAt +CH1-2) X0 Cy
j=1 j=1 . (3.11)

The binary tree-searched VQ algorithm can be further simplified by

computing the distortion based on the difference of the codevector pair
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[3.18]. This results in significant reduction of hardware complexity. The key

idea is to combine and simplify the distortion computation between the

source vector X and the codevectors at the same binary tree level: Cg and Cjz.

ie.,
McA.C2 M
Do(f) - Da(t) _ Yy, GG-Cjj_ 2, X{ICoj- Cyj)
2 j=1 2 J
M
=A-), X{0) &
p (3.12)
where
&= (3.13)

0= [Coj- Cyjl.

Instead saving of Cgj and Czj, &j and A are stored in the subcodebook. Here
8 and A are the 1Storder difference and the ond.order difference,
respectively. This technique is called the difference-codebook binary tree-
searched VQ design. For this difference-codebook design, the codebook
search complexity is reduced from 2n to n operations per pixel which is about
half of the raw-codebook (i.e. original) scheme. The total memory size is
reduced from 2(N -1) MK bits to (N - 1) [M(K+1) + (2K+ logp M)] bits. For
instance, the total memory size for an 8-level 16-dimensional 8-bit-per-pixel
binary tree-searched VQ is reduced from 2x(256-1)x16x8 = 65,280 bits to (256-
1)x[16x(8+1)+(2x8+logn16] = 41,820 bits by using the difference-codebook
scheme instead of raw-codebook scheme. Thus a 64% reduction in the
memory size is achieved. For the systolic binary tree-searched VQ with
difference-codebook, the pipeline latency equals to nM clock cycles. The
throughput rate is 1 pixel per clock cycle and the rate is n /M bits per pixel.
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3.3.5 Comparisons for Various Systolic VQ Schemes

The performance comparisons for variant systolic VQ schemes are
shown in Table 3.2. Among them, the systolic design for the binary tree-
searched VQ is to be the most viable technique for realizing a high
throughput vector quantizer at a relatively low hardware complexity. This
architecture demonstrates that by a proper combination of tree-searched VQ
and systolic processing a high throughput vector quantizer can be attained by
using a small number of processors. Such an architecture has the advantages
of modularity, regular data flow, simple interconnection, localized
communication, simple global control, and pipeline processing. Hence it is
well suited for VLSI implementation. A detailed VLSI design of this systolic
binary tree-searched VQ is presented in the following .

3.4 Array Processors Design for Binary Tree-Searched Vector Quantization
As shown in Fig. 3.8, there are three major functional blocks of the
systolic binary tree-searched vector quantizer (BTSVQ): 1) Array controller;
2) Systolic processing element (PE) array; 3) Codebook memory banks. The
array controller interprets control information from the host system to set up
the BTSVQ quantizer and generates timing and control signals to operate it.
The array controller is implemented by using the Motorola DSP56000 signal
processor. The codeboook memory banks and processing elements design for
the raw-codebook BTSVQ and the difference-codebook BTSVQ are described

as follows, respectively.



3.4.1 Raw-Codebook Binary Tree-Searched VQ Design

Detailed functional designs of the raw-codebook memory and
processing element of the binary tree-searched VQ are shown in Fig. 3.9 and
Fig. 3.10, respectively.

Raw-Codebook Memory Design

The hierarchical codebook memory banks stores the n-bit codebook
that is divided into #n subcodebooks. Each codevector pair in level-I are stored
in the I-th subcodebook. The size of subcodebook memory of the I-th
processor is 2IMK bits. Although the subcodebook memories differ in size,
they assume a regular structure in terms of memory cell design. The
subcodebook memory can be programmed by the host computer during the
set-up mode. While in the codebook searching and encoding mode, each
subcodebook memory is controlled by its associated PE.

Raw-Codebook PE Design

The major functional blocks of each systolic processing element
(PE) of the BTSVQ are: 1) source vector pipeline buffer; 2) distortion
computing data path; and 3) index generator.

The source vector pipeline buffer is K-bit wide and M-word deep. It
serves a first-in-first-out buffer for every source vector of M elements. The
output of vector that is pipelined through the array enable the systolic
processing.

The distortion computing of the raw-codebook PE design is
primarily two mean square error operations. During the VQ encoding, the
codevector-pair components are addressed by the combined indices of the

L A

previous PEs, ‘1*2 ~¥/. 1. An accumulator collects the intermediate result as
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the codevector pair Codd,j and Ceven,j moves downward and the input data
Xj moves to the right synchronously. After M clock cycles, The accumulator
will consecutively contain the inner product between the input data vector

and the selected codevector-pairs.

The index generator compares the distortion measurement Djand
Dg. If D1 > Dg., then the i is assigned to be 0. Otherwise, i is assigned to be
1. Index it is tagged to the indices of the previous tree-levels to correctly
address the next level subcodebook. At the end of the array, the concatenated

indices, n bits in length, are formed to represent the coded data.

3.4.2 Design of Systolic Difference-Codebook Binary Tree-Searched VQ

Detailed functional designs of the difference-codebook memory
and processing element is shown in Fig. 3.11 and Fig. 3.12, respectively.
Difference-Subcodebook Memory Design

The hierarchical codebook memory banks stores the n-bit codebook
that is divided into n difference-subcodebooks. The first-order difference, 0,
and second-order difference, A, of each codevector pair in level-! are stored in
the subcodebook I. The size of difference subcodebook memory in level / is 2
I [M(K+1) + 2K+ log M)] bits. Although the subcodebook memories differ in
size, they assume a regular structure in terms of memory cell design. The
subcodebook memory can be programmed by the host computer during the
set-up mode. While in the codebook searching and encoding mode, each
subcodebook memory is controlled by its associated PE.
Difference-Codebook PE Design
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The major functional blocks of each systolic processing element
(PE) of the BTSVQ are: 1) source vector pipeline buffer; 2) distortion
computing data path; and 3) index generator.

The source vector pipeline buffer is K-bit wide and M-word deep. It
serves a first-in-first-out buffer for every source vector of M elements. The
output of vector that is pipelined through the array enable the systolic
processing.

The distortion computing data path of the DCPE design is
primarily an inner product operator. During the vector quantization, the
difference-codevector components are addressed by the combined indices
from the previous PEs, i 132 d ;.1 Anaccumulator collects the intermediate
result A' as the difference codevector component § moves downward and the
input data Xj moves to the right synchronously. After M clock cycles, The
accumulator will consecutively contain the inner product between the input
data vector and the selected difference codevector.

~ The index generator compares A with A'. Here, A is the pre-stored
threshold, and A' is the value computed by the data path in the DCPE array.
If A is greater than A', the it is assigned to be 1. Otherwise, it is assigned to be
0. Index i1 is tagged to the indices from the previous tree-levels to correctly
address the next level subcodebook. At the end of the array, the concatenated
indices, which aren bits in length, are formed to represent the quantized
vector. Notice that the index generator can be effectively implemented by
using an pre-loaded accumulator that executes a successive addition of x(j) &j)
to the pre-loaded - 4, where j =0, 1,..., M-1. The most significant bit (MSB) of

the accumulator register represents the encoded bit i1 . If the computing result
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is equal or less than zero, the i is assigned to be 1. Otherwise, i is assigned

to be 0.

3.5 VLSI Implementation

In this section, we consider a detailed VLSI design of the systolic
difference-codebook BTSVQ. For image compression application, the binary
tree-searched VQ design with an 8-bit codebook of 4x4-pixels vector
dimension is selected for evaluation which results in a compression ratio of
16:1. Here, each pixel and codevector element are represented with 10-bit 2's
complement number.

The main blocks of the VLSI chip are an 8-PE systolic array and a
hierarchical memory of 8 subcodebook memory banks. A functional diagram
of the processing element is shown in Fig. 3.12. The major functional unit of
each PE are the 10-b x 10-b multiplier and the 24-bit adder. The multiply-and-
accumulate operations are performed in a single processor cycle that is
overlapped with the hierarchical memory read cycle. The operation timing is
shown in Fig. 3.13. The silicon area for each PE is 1171 pm x 1629 pm in a 1-
pm CMOS technology. The n-level hierarchical memory banks based on
RAMs. For the I-## memory bank, 2!/ +3 x 10 RAM cells and 2! -1 x 24 RAM
cells are used to store the first-order difference and the second-order
subcodebook respectively. The silicon area for the 8-th level memory of the
first-order and second-order difference-subcodebook is 2283 pm x 2815 um
and 800 pm x 1558 um, respectively. A chip layout is shown in Fig. 3.13.
The chip size is about 8.7 x 7.7 mm2. The area, power, and the longest delay

for the chip and its major building blocks are summarized in Table 3.5.
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For the BTSVQ implementation, the targeted encoding rate is 25 M
pixels per second and the end-to-end pipeline latency equals to 136 clock
cycles. It provides a computing capability of 400 MIPS for the high-speed
image compression systems. The encoding rate is constrained by the longest
delay path of the multiplier. Table 3.6 summarizes the 1.0 um 8-PE BTSVQ
chip information. Use other faster multiplier circuit can greatly increase the
speed. Use of the 0.5-um VLSI technology will double the performance.

The subcodebook memory can be programmed by the host system
via the controller during the training mode. While in the encoding mode,
each subcodebook memory can only be accessed by its associated PE. In the
training mode, the first-order codevector differences and the second-order
codevector differences are derived and stored in the subcodebook memory. In
the encoding mode, the source vectors are received via the array controller.
The PE performs an inner product between the source vectors and the
codevector differences. The inner product result is compared with the second-
order codevector difference which is loaded in the threshold register at the
rising edge of each vector clock. An one-bit index is generated and
concatenated with indices from previous PEs to address the subcodebook of
the next PE. The final concatenated indices are formed in the last PE to

represent the coded data.

3.6 Testability and Fault Tolerance Design
It is important to achieve a long lifetime for the compressor with a
high confidence value. A fault tolerant architecture is required to achieve

these goals. By combination of architectural fault tolerance and inherent error
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detection capability, a highly reliable VQ encoder can be attained. As shown
in Fig. 3.14, the linear systolic array of the VQ encoder is augmented with a
spare PE and dynamic reconfiguration switches (RS). Two switch designs,
type A and type B, are presented to support the fault tolerance
reconfiguration. If there is a permanent fault in any active PE, the faulty PE
will be detected and isolated. Meanwhile, the spare PE will be activated via
the reconfiguration switches. The reconfiguration switches are controlled by
the fault-detection flag register which is a part of the array controller. The
preliminary step for any reconfiguration policy aiming at fault tolerance is the
testing and diagnosis of the system itself. In the following, we first discuss
the fault model followed by the testing procedure to locate the faulty PE. A
single computation unit (such as multiplier or adder) fault model is used
[3.19], where we assume that at most one computation unit could be faulty
within a given period of time which will be reasonably short compared with
the mean time between failures. Two basic mechanisms can be applied to
detecting faults in this type of system: on-line concurrent error detection and
periodic self-test. On-line single error correction for arithmetic operations can
be accomplished by arithmetic codes such as AN code or Residue code [3.20].
Temporary distortion of images due to transient faults may be tolerable for
applications. Hence the second error, if any, can be detected by periodic self-
test which is performed during power-up and periodically during operation
by temporarily halting the data compression task.

For the DCPE design, predetermined test inputs can be applied.
Since there is only one data path, pre-computed results corresponding to the

inputs need to be pre-stored. The comparator then compares the generated
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results with the stored values. If the two are the same, the PE is fault-free;
otherwise, the same input is reapplied to determine if the fault is permanent
or transient. If a permanent fault is detected, reconfiguration is required to
replace the faulty PE. Following isolation of the faulty PE, the spare PE is
switched in to maintain the integrity of the PE array.

The hardware overhead of the proposed self-test and
reconfiguration scheme is about 20%. In the PE level, the overhead hardware
includes two reconfiguration switches, one multiplexer, two registers, two
comparators, one flag register, one n-input OR gate, one control line, n input
lines, and one output line. In the system level, only one spare PE is required.
It has been shown that error correction using arithmetic code is also effective
[3.20]. The arithmetic code introduces redundant bits in the number
representation. A proportional hardware increase takes place in register array
and data path. The estimated hardware overhead is from 20% to 40%.

The reliability improvement by the use of fault tolerance scheme
can be addressed as follows. If each PE has a reliability of R, then the
reliability of 8 PEs is R8. For the reconfigurable array with one spare PE, the
reliability becomes R%+ 9 R8 (1 - R). For example, if R = 0.950, the reliability of
non-redundant PE array is 0.663 while the reliability of one spare PE array is
0.929. This represents a 40% increase in reliability. To handle the second PE
failure, the PE array can be reconfigured to effectively reduce the codebook
bit-length by one bit. In other words, the last tree level is bypassed. This
approach will slightly degrade the image quality since smaller number of
codevectors are available. However, the reliability can be further improved to

98%.
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3.7 System Simulation Results

3.7.1 Algorithm for Constructing Codebook

An adaptive method to construct a codebook for binary tree-
searched vector quantization has been developed. In computer simulation,
the dynamic scalar training ratios are used to adjust the codebook through the
backpropagation technique [3.21]. This achieves a better performance than
traditional LBG splitting-2 methods [3.6]. If the dynamic vector training
ratios are used, the best binary tree-searched structure that is achievable in
this method can be reached. After the training step, a good binary tree-
searched codebook can be obtained. To speed up the training and encoding
processes, the codebook construction can also be implemented by using the
presented systolic architecture as the core computation element.

The .vector quantizer of binary tree-searched scheme were first
proposed by R. M. Gray et al. [3.8] and is a natural extension of the Splitting-2
algorithm for generating initial code guesses in the LBG algorithm [3.6]. Our
method begins with a full-searched codebook and then finds a better tree-
searched scheme for the codebook. The Splitting-2 Relationship (S2R)
algorithm records the tree-structure relationship. The Back Propagation
Centroid (BPC) algorithm first groups the codevectors into closely disjoint
pairs and then forms centroids of the pairs as the node labels of the
immediate ancestors of the pairs. It works backward through the tree and

groups close pairs. The Adaptive Training Ratio (ATR) algorithm has been
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developed to combine the S2R and the BPC algorithms and finds a good
adaptive training ratio for constructing the tree-searched codebook.

From the LBG and the Splitting-2 methods, the representative
codevectors of different layers are

0* layer: Y0=(Y\?, Y% » . Yo iy ]

12 layer: Y}, Y,!
l‘h Iayer: Y(I), Yl’ geeey Y2'-’l .

L™ layer: Y§, YE,.... Yoty

The desired i** tree-searched codevectors at the I*# layer of the S2R
method are:

cl=y!, 1=1,.,L

The desired i** tree-searched codevectors at the I# layer of the BPC
method are:

Cl=v! I=L

Cl= %( i eyl ) I=L-1, .., 1
Here, L is the number of layers, M is the vector dimension, Y,! is the itk
codevector at the I** layer, and C; is the desired i*# tree-searched codevector
at the I layer. The £ and Y41}, are considered to be the closest codevectors
because they are obtained from the same parent in the process of the
Splitting-2 method.

The desired i** tree-searched codevectors at the I layer of the ATR

method are:
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Ci=Y!, I=L

cl=y}-RiY}- %( Y +Y N 1=L1, .., 1.
The adaptive training ratio R} = {R}; | 0 SR <1; j=1,..,M) is a vector
at the i** codevector at the /*# layer. If all the element of R} are the same, R/ is
used as a scalar. In image processing, most of the neighboring pixels have
similar gray levels. If the vector dimension of vector quantization is not too
big, the scalar training ratio could be used to achieve a good balance between
the distortion error and training time. The range of R}; is from 0 to 1. If R);
equals to zero for all i, j, and I, the ATR method is the same as the S2R
method. If it equals to one, the ATR method is the same as the BPC method.
In order to find the best training ratio, all possible cases have to be
considered. These are (ZL-Z)xMxS adjustments of the codevectors and
retrievals of the training data where S is the number of samples in the range
[0,1]. If the least-mean-squared error is used as the criterion for data retrieval,
the best training ratio set can be found. If the elements of the vector data are
similar, the scalar training ratio can be used. The total training time is (ZL-
2)xS time units. If a constant is used as a training ratio then the training time

is S time units.

3.7.2 Simulation Results

The criteria used to characterize the distortion, the radiometric
error, induced by the data compression are the mean-squared error (MSE)
and the signal-to-distortion ratio (SDR). The signal-to-distortion ratio is
defined as the average intensity of the reconstructed image data divided by

the mean- squared error between the original and reconstructed image data.
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A constant training ratio for all codebooks was used in the
computer simulation in Table 3.4 and Table 3.5. For both images, the
performance of the ATR method is the best. In the "Girl" image, the second
best is the BPC method. In the "Moon" image, the S2R method is better than
the BPC method. It is obvious from Fig. 3.16(a) and 3.17(a) that the more
layers in the tree can produce larger a training ratio. That is to say, the
performance of the BPC method will be close to that of the ATR method at a
large number of tree layers. Furthermore, a good training ratio exists
between 0 and 1. The curves shown in Figures 3.16 (b) and 3.17(b)
monotonically decrease to the lower bound and then increase monotonically.
By comparing the original "Moon" image with the reconstructed "Moon"
image in Fig. 3.18 , the quality of the ATR binary tree-searched VQ at a
compression ratio 16 is observed to be very good. If a different vector
dimension is considered, the small vector dimension would give better
performance but the compression ratio would be smaller. The performance
for different vector dimensions is shown in Fig. 3.19 for the ATR binary tree-
searched VQ. The reproduced Girl image by a 10-level binary tree-searched
vector quantizer using S2R, BPC, and ATR methods is shown in Fig. 3.20. The
reproduced image quality is very good.

3.8 Conclusion

By combining the binary tree-searched algorithm and the systolic
processing architecture, a high-speed VLSI vector quantizer has been
developed for advanced information processing system where reduction of

data communication or storage volume is important. An adaptive method to
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construct a codebook for binary tree-searched vector quantization was also
presented. The reconstructed image quality at a compression ratio 16 is
observed to be very good. The 8-level binary tree-searched vector quantizer
chip includes a systolic array of eight identical processing elements and a
hierarchical memory of eight subcodebook memory banks. The total
transistor count is about 300,000 with a pin count of 84. The die size is about
9.37 x 9.27 mm? in a 1-um CMOS technology. The projected throughput rate
is more than 20 M samples per second. A fault tolerant architecture was also
presented. Fault tolerance is included in the system design to eliminate a
single failure in the reconfigurable linear array structure. It is shown that by
the use of an additional spare processing element and effective
reconfiguration mechanism the reliability of the entire system can be
improved by over fifty percent. Recent advances in communication,
computer, and consumer electronics have created tremendous needs for
efficient and high-speed data compression. This VLSI compressor chip meets
low-power, light-weight, small-volume, high-speed, and user-transparent
requirements and can play a crucial role in the high-performance data

processing systems.
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Fig. 3.13 Operation timing of the binary tree-searched vector quantizer.
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Fault-Tolerant Binary Tree-Searched Vector Quantizer
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Fig.3.15  Fault-tolerant systolicarray architecture of the BTSVQ.
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Fig. 3.16 (a) MSE vs. tree layer plot of S2R, BPC, ATR, and LBG for a 4x4
window on the 512x512-pixel 256-gray-level girl image. (b) MSE of
the ATR method with scalar training ratio changes from 0 to 1.

85



(@ MSE

-, e, ..u--u.u....n.. BPC

S 6 7 8
Tree Layers
(b) MSE 120
st ‘
110} Tree Layers .

R
o
..
K3
s
.
..
-
..
o
-

75 . : : : : ; . : . R
0 01 02 03 04 05 06 07 08 09 1
Fig. 3.17 (a) MSE vs. tree layer plot of S2R, BPC, ATR, and LBG for a 4x4

window on the 256x256-pixel 256-gray-level moon image. (b) MSE
of the ATR method with scalar training ratio changes from 0 to 1.



(a) Original image

(b)

Fig.3.18 (a) The original 256x256-pixel 256-gray-level moon image.
(b) The reproduced 256x256-pixel 256-gray-level moon image using
8-level binary tree-searched vector quantizer and ART method;

MSE = 79.76; CR =16.
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Fig. 3.19 MSE of ATR for various windows on the 256x256-pixel 256-gray-
level moon image.



(b) BPC method : MSE : 66.27

(c) ATR method ; MSE : 65.63

Fig.3.20 Reproduced Girl image by 10-level binary tree-searched vector
quantizer for a 4 x 4 window on the 512 x 512-pixel 256-gray-level
Girl image.

(a) S2R method; MSE = 83.26; CR = 12.8.
(b) BPC method; MSE = 66.27; CR = 12.8.
(c) ATR method; MSE = 65.63; CR = 12.8.
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Fig. 3.21 Reconstructed image by using the binary-tree searched vector
quantizer and ATR method for a 4x4 window on the 1024x1024-

pixel 256-gray-level Synthetic Aperture Radar image of Los
Angeles, CA.

(a) 7-level tree; MSE = 148.85; CR = 18.3.
(b) 8-level tree; MSE = 140.87; CR = 16.
(c) 9-level tree; MSE = 135.2; CR = 14.2.



Table 3.1 Hardware performance comparison for variant systolic VQ

designs.
Full-Searched Full-Searched | Tree-Searched Tree-Searched
vQ vQ vVQ vVQ
(Input-Vector (Codevectar (Input-Vector (Codevector
Projected) Projected) Projected) Projected)
# of L
Processors N M Z N ML
1=l
bits of L L
Memory NMK NMK [2 N,t] MK ['2 N}] MK
1sl =l
Throughput L
Rate 1 MN 1 LE ]
(pixel/clock) (MLy sl N
Pipeline § 5
Latency M4+N-1 M4+N-1 ,z_l[(Na I HM] 5'; (M -1)+N]
(clocks) _

Note: N: total number of codevectors;N; : number of codevectors atlevel I; n: codebook bit-
length; M: vector dimension; K: number of bits per pixel; L: number of tree-levels.
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Table 3.2 Hardware performance comparison for variant binary tree-
searched VQ designs (codevector projected).

Binary Binary
Tree-Searched VQ Tree-SearchedVQ
w/ Raw Code book w/ Diffference Codebook
# of
Processors 2n n
bitsof
Memory 2(N-1I)MK N-DIM(K+1)+ 2K+log M)]
Throughput
Rate 1 1
(pixel/ dock)
Pipeline
Latency n(1+M) ™M
(clocks)

Note: N : to tal number of codevectors;N, : number of codevectorsa tlevel I n: codebook bit-

length; M: vector dimension; K:numtber of bits per pixel; L:number of tree-levels; p: p ipeline
delay of PE (assumed = 1).
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Table3.3  Pin definition of the raw-codebook binary tree-searched VQ.

Signal  Type Description

MEMORY BANK:

PCLK Input System clock at pixel rate.

VEA_EN  Input To enable the vector element address generator.
VCLK Input System clock for the vector.

A(15:0) Input System address bus.

E/T Input To select either training mode or encoding mode.
R/W Input To select either memory read or memory write.
D(15:0) Input System data bus.

DCn(15:0)  Output 16-bit output port of subcodebook # n.

IDn Input 1-bit index input form PE # n.

ID(n-1,0) Output n-bit encoded data for source vector.
PROCESSING ELEMENT # n:

DCn(15:0) Input Codeword-pairs from subcodebook # n.

PCLK Input System clock at pixel rate.

VCLK Input System clock for the vector.

DI(7:0) Input 8-bitinputimage data.
DO(7:0) Output 8-bit 16-stage pipelined image data.
IDn Output 1-bit index of source vector generated at PE # n.

RESET Input System reset.
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Table 3.4 Pin definition of the raw-codebook binary tree-searched VQ.

Signal Type = Description

MEMORY BANK:

PCLK Input System clock at pixel rate.

VEA_EN Input To enable the vector element address generator.

VCLK Input System clock for the vector.

A(15:0) Input System address bus.

E/T Input To select either training mode or encoding mode.
R/W Input To select either memory read or memory write.

D(19:0) Input
DCFn(8:0) Output
DCSn(19:0) Output
IDn Input

ID(n-1:0) Output

System data bus.

8-bit output port of 1st order subcodebook # n.
20-bit output port of 2nd order subcodebook # n.
1-bit index input form PE # n.

n-bit encoded data for source vector.

PROCESSING ELEMENT # n:

DCFn(8:0) Input
DCSn(19:0) Input
PCLK Input
VCLK Input
DI(7:0) Input
DO(7:0) Output
IDn Output
RESET Input

8-bit input port from 1st order subcodebook # n.
20-bit input port from 2nd order subcodebook #n.
System clock at pixel rate.

System clock for the vector.

8-bit input image data.

8-bit 16-stage pipelined image data.

1-bit index of source vector generated at PE # n.

System reset.
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Table 3.5 Size, power, and speed of BTSVQ-8 chip and its building block.

Size Power Longest Path Delay
(microns (microwatts (ns)

BTSVQ-8 8672x7719 451311 37.08

PE 1171 x 1629 25778 37.08
10x10-mult. | 610x 664 7334 35

ram128x24 800 x 1558 - 14.5
ram2048x10 2283 x 2815 - 18.19

nand 17.2 x 46.2 - 0.74

Note: The process isNational Semiconductor Corporation's
1 micron N-well silicon gate CMOS process.
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Table 3.6 Chip information

Chip Name BTSVQ-8

Application Digital Image Compression
Algorithm Binary tree-searched vector quantization
Architecture Systolic Array: 8 PEs
Compression ratio 16

Input format 4x4-pixel block

Output format 8-bit index for each vector
Design Method Full custom using cell compiler
Process 1.0 micron CMOS

Die Size 8672 x 7719 microns

Total # of Device 300,000

No. of Pads 68

Package 84-pin PGA

Power 0.5 watts

Speed 25 M samples/sec
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Table 3.7 The SNR and MSE of S2R, BPC, ATR, and LBG for a 4x4-pixel

window on the 512x512-pixel 256-gray-level girl image.

Algorithms Binary Tree Search Full Search
No. of S2R BPC ATR LBG
Tree Layers SNR [ MSE | SNR | MSE | R | SNR [ MSE | SNR | MSE
6 22.88 | 10681 | 23.12 |101.06 | 0.6 | 23.47 | 93.19 | 25.01 | 6537
7 23.18 | 99.54 | 23.68 | 88.77 | 0.6 | 23.94 | 83.59 | 2585 | 53.84
8 23.55 | 9139 | 2421 | 78.56 | 0.7 | 24.33 | 76.37 | 26.63 | 45.01
9 2381 | 86.23 | 24.58 | 72.18 | 0.7 | 24.66 | 70.83 | 27.40 | 37.73
10 23.96 | 83.26 | 2495 | 66.27 | 0.8 | 24.99 | 65.63 | 28.24 [ 31.05

*SNR: Signal to Noise Ratio **MSE: Mean Square Error ***R: scalar training ratio
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Table 3.8 The SNR and MSE of S2R, BPC, ATR, and LBG for a 4x4-pixel
window on the 256x256-pixel 256-gray-level moon image.

Algorithms Binary Tree Search Full Search

No.ob S2R BPC ATR LBG

TreeLayers\(| sNR | MSE | SNR | MSE | R | SNR | MSE | swR | MsE
5 2212 | 10484 | 2169 |11586 |05 | 2226 | 101.62| 2291 | 87.47
6 2248 | 9663 | 22.18 | 10334 | 03 | 2260 | 9383 | 2362 | 7420
7 2278 | 9018 | 2250 | 96.15 | 0.4 | 2294 | 8679 | 24.41 | 6188
8 2307 | 8436 | 2279 | 8995 | 05 | 2331 | 7976 | 2535 | 4982

*SNR: Signal to Noise Ratio **MSE: Mean Square Error ***R: scalar training ratio
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Chapter 4

A VLSI Neural Processor for Image Data Compression

Using Self-Organization Networks

An adaptive electronic neural network processor has been
developed for high-speed image compression based upon a frequency-
sensitive self-organization algorithm. Performances of this self-organization
network and a conventional algorithm for vector quantization are compared.
The proposed method is quite efficient and can achieve near-optimal results.
The neural network processor includes a pipelined codebook generator and a
paralleled vector quantizer, which obtains a time complexity O(1) for each
quantization vector. A mixed-signal design technique with analog circuitry
to perform neural computation and digital circuitry to process multiple-bit
address information is used. The prototype neural network processor chip
for a 25-dimensional adaptive vector quantizer of 64 codewords was
designed, fabricated, and tested. It includes 25 input neurons, 25 x 64 synapse
cells, 64 distortion-computing neurons, a winner-take-all circuit block, and a
digital index encoder. It occupies a silicon area of 4.6 x 6.8 mm?2 in a 2.0-um
scalable CMOS technology and provides a computing capability as high as 3.2
billion connections per second. The experimental results for this neural-based
vector quantizer chip and the winner-take-all circuit test structure are also

presented.
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4.1 Introduction

Image compression is essential to reduce the image transmission or
storage costs for broad areas of applications such as high-definition television,
teleconferencing, remote sensing, radar, sonar, computer communication,
facsimile transmission, and image database management [4.1]. According to
Shannon's source coding theorem, asymptotic optimal performance can be
obtained by coding vectors instead of scalars [4.2]. Over the past decade,
vector quantization (VQ) has developed from a theoretical possibility into a
powerful technique for speech and image compression at medium to low bit
rates [4.3]-[4.6]. However, a high-speed VQ adapting to the changing-source
data statistics is difficult to implement using the popular Linde-Buzo-Gray
(LBG) algorithm [4.6], which requires that the entire training data be
processed in a batch mode. Neural network approaches appear to be very
promising for intelligent information processing [4.7]-[4.11] due to their
massively paralleled computing structures and self-organization learning
schemes. A number of studies have reported using artificial neural networks
for VQ applications [4.12]-[4.15].

In this chapter, a modified self-organization algorithm and its
associated VLSI neural network processor have been developed for adaptive
vector quantization. Section 4.2 describes the frequency-sensitive self-
organization algorithm and system-level analysis results. Section 4.3 presents
a massively paralleled VLSI neural network hardware to implement this
algorithm. Section 4.4 discusses the detailed circuit design of the neural
network processor chip. Section 4.5 presents the experimental results. The

conclusion is given in Section 4.6.
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4.2 The Learning Algorithm

The fundamental theory of self-organizing networks was presented
by Grossberg [4.7]-[4.9], Kohonen [4.10, 4.11], and other researchers [4.16]-
[4.19]. One major challenge of using a basic self-organization network is that
some of the neural units may be under-utilized. Various modifications have
béen proposed to address this problem [4.7, 4.16, 4.20]. Our frequency-
sensitive self-organization (FSO) method modifies Grossberg's variable-
threshold competitive learning method (4.7, 4.8, 4.9] by applying a winning
frequency and its associated upper-threshold value to the centroid-based
learning rule. It systematically distributes the codevectors in the vector space
R™ to approximate the unknown probability density function of the training
vectors. Codevectors quantize the vector space and converge to cluster
centroids. This FSO method can produce near-optimal results, which will be
shown later.

A synapse weight vector is stored as a codevector. In the one-
iteration FSO scheme, the training data must pass once in constructing the
codebooks. It is a fast and powerful scheme for adaptive vector quantization
due to its relatively low computing requirement and massively paralleled
computing structure. The one-iteration FSO scheme for adaptive vector
quantization is described as follows:

1) Initialize the codevectors W; and the winning frequency F; for

each distortion-computing neuron:
Wi(0) =Rq@), 4.1)
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FO)=1,i=1,.., N,
where R(.) is a random vector-number generation function, M is the number
of vector components, N is the number of codevectors, and
Wi(0) = [Wi1(0), Wi2(0), ..., Wi m(0)]. Notice that the first N input vectors can
also be used as the initial codevectors instead of using results generated from
R().

2) Compute the distortion Di(¢) between an input vector X(#) and all
codevectors:

M
D) = dX (), Wit) = Y, X;0)-W;(O2, 4.2)
j=

where t is the training time index.
3) Select the distortion-computing neuron with the smallest

distortion and set its output O;(#) to high:

_q1 if D;(®) <Di(t), 1<i,j<N, i#j, 4.3)
Ode) = {0 otherwise.

'4) Update the codevectors with a frequency-sensitive training rule

and the associated winning frequency:

Wi(e+1) = Wi()) + S() OADIX () - Wi(1)) “.4)
L ;
50 = {F,(t) if ISF,(.t)SFth,
0 otherwise, 4.5)
Fi(e+1) = F(1) + Oi), (4.6)

where S(#) is the frequency-sensitive learning rate, and F is the upper-
threshold frequency. Notice that only the winning codevector is updated.
The training rule moves the winning codevector toward the training vector by

a fractional amount which decreases as the winning frequency increases. If Fj
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is larger than Fgj, then set S(t) to zero and no further training will be
performed for this neural unit.

5) Repeat steps (2) through (4) for all training vectors.

Use of the upper-threshold frequency can avoid codevector under-
utilization during the training process for an inadequately chosen initial
codebook. The selection of the upper-threshold frequency is heuristic and
depends on source data statistics and training sequence. Empirically, an
adequate Fg is chosen to be two to three times larger than the average
winning frequency. The impact of different upper-threshold frequency values
on mean-squared errors is illustrated in Fig. 4.1. The initial codebooks are
created from a random number generation function. A good upper-threshold
frequency value lies between 350 and 450 for a synthetic aperture radar (SAR)
Ice image and between 250 and 350 for a Girl image.

The performance of the one-iteration FSO method can be
incrementally improved by using iteration to adjust codevectors into better
cluster centroids. The codebook obtained from the previous iteration is used
as the initial values of the current iteration. After the first iteration, the
upper-threshold frequency is not needed, because a good initial codebook is
available. This method is called the multiple-iteration FSO method.

In the LBG method, the initial codebook could be obtained from the
splitting-2 algorithm [4.6]. The iteration of grouping and calculating centroids
in the LBG method is similar to that of updating the closest codevector for
each incoming data vector through the centroid technique in the FSO method.
Therefore, the iterating FSO method without the use of upper-threshold
frequency asymptotically approximates the LBG method. If the learning
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process in the FSO method is repeated with the same termination criterion for
the LBG method, the result of the multiple-iteration FSO method appears
very close to that of the LBG method.

The original and reconstructed SAR Ice images using the one-
iteration and two-iteration FSO methods for the 10-bit codebook are shown in
Fig. 4.2. Histograms of the reconstructed images are almost identical to that of
the original image as illustrated in Fig. 4.3. The mean-squared error (MSE)

measure is used to evaluate the reconstructed image quality,

Ni-1 Na-1 R 2
MSE=Y ¥ Il ix, ¥) :’ (x, I
x=0 y=0 N 14v2 (47)

where I is the original image of size N1x N3 and I' is its reconstructed image.

The MSE values of images using the one-iteration, two-iteration FSO methods
and the LBG method are listed in Table 4.1 and also plotted in Fig. 4.4. The
performance figures given for the three algorithms are obtained by training
the same picture and measuring MSE with Eq. (4.7). Performance of the FSO
method is very close to that of the LBG method. The reconstructed images
using the FSO method on 5 x 5-pixel subimage blocks are reasonably good.
The large dynamic range of images requires that the effective
compression algorithms are adaptive to the image statistics. For the vector
quantization approach, edge degradation is very severe if no adaptation is
allowed for different scene characteristics. If the codebook trained from the
FSO method for the SAR Ice image shown in Fig. 4.2(a) is used to encode and
decode the Girl image without any modification, the mean-squared error is
1063, as shown in Fig. 4.5(a). After training this inadequate codebook by
using the FSO method, a much smaller MSE value of 60 can be achieved as
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shown in Fig. 4.5(b). This result illustrates that the codebook can be
successfully adjusted according to the statistical change of the source data.

In an electronic system design, the resolution limit for the synapse
matrix by analog circuitry is a very important factor. The simulation results
from the FSO method for different signal resolutions are shown in Fig. 4.6.
Performance of the 8-bit resolution case is reasonably close to that of floating
point computation. If the codebook size is large, the performance for the 8-bit
resolution and that for the floating point computation are not distinguishable.
In a large codebook, each codevector is trained from a small portion of source

data and, thus, the error induced by finite resolution is also small.

43  VLSI Neural Processor Architecture

The proposed very large-scale integration (VLSI) neurocomputing
architecture for adaptive image compression using the frequency-sensitive
self-organization network is shown in Fig. 4.7. The FSO network consists of
two layers: an input layer and a competitive layer.

The input layer consists of M input neurons, which correspond to
the elements of the M-dimensional input vector. Each input neuron gets its
input from the external data bus and distributes the buffered signal to N
distortion-computing neural units in the competitive layer through the
synapse matrix. Each distortion-computing neuron calculates a square of
Euclidean distance between its codevector and the input vector. The
competitive process is performed throughout the whole layer by the winner-

take-all operation. The winning neural unit is determined according to the
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minimum distortion criterion. The synapse weights are then updated
according to the FSO learning rule as specified in Egs. (4.4), (4.5), and (4.6).

By using the massively paralleled neural computing paradigm and
the mixed-signal VLSI design technique, the FSO network can be
implemented on VLSI. The block diagram of a VLSI design of the FSO neural
network processor is shown in Fig. 4.8. The high-level functional blocks of
this neural network processor include a paralleled vector quantizer chip and a
digital pipelined codebook generator chip.

For the paralleled vector quantizer, a mixed-signal VLSI design
technique is used. The analog circuitry performs massively paralleled neural
computation and digital circuitry processes multiple-bit address information.
This neural-based vector quantizer realizes a full-search vector quantization
process for each input vector at a time complexity O(1). It consists of the
input neurons, programmable synapses, summing neurons, winner-take-all
cells, and an index encoder. The programmable synapse matrix is composed
of M x N synapse cells, which correspond to N M-dimensional codevectors.
The output neuron array is composed of N summing neurons, which perform
paralleled summation of the distortions between the input vectors and
codevectors. The winner-take-all block consists of N competitive circuit cells
which perform paralleled comparison among N inverted distortion values and
choose a single winner. This block also provides a sufficiently high output
level for the winning neuron against the rest. The index encoder circuit is an
N-to-n decoder that uses binary codes to encode N classes.

For the digital pipelined codebook generator, the digital-signal-

processing (DSP) circuit can be used. The digital codebook generator is a
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coprocessor to support a high-speed neural-network learning algorithm. The
generator consists of an interface and timing control block, a DSP-based FSO
trainer, a dual-port vector memory, a vector address handler, and a digital-to-
analog (D-to-A) converter array. The vector address handler uses the digital
n-bit index of the winning neural unit generated by the paralleled vector
quantizer chip to access the corresponding winning codevector and
frequency. The DSP-based FSO trainer counts the winning frequency and
then updates the codevector of the winning neural unit. The updated
codevector is written to both the digital codebook memory and the analog
synapse matrix. The digital codebook memory is built with two-port dynamic
memory and organized as N-word by 8xM-bit to reduce the I/O
communication traffic. An incremental adaptation of the codebook is
performed in a read-modify-write cycle only when a winning codevector is
chosen. The vector address handler is also shared by the paralleled vector
quantizer to address the corresponding synapses for codevector loading,
modification, and refreshing. The image data is accessed from the host
computer through the interface and timing control block. The image data is
divided into subimage blocks and can be stored in the dual-port vector
memory. A subimage block is handled as a digital input vector. The digital
input vector is converted into the analog value using the D-to-A converter

array and fed to input neurons of the paralleled vector quantizer.

4.4 Detailed Circuit Implementation
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Advanced studies to improve the circuit performance and to reduce
the area/power of the electronic building blocks are essential to implement
the highly complex neural systems in VLSI technologies [4.21, 4.22, 4.23].
Computer simulation and laboratory experiments on these neural circuits

have been conducted.

4.4.1 Input Neuron

In the input layer, each input neuron consists of a unity-gain buffer.
The input signal is composed of M input lines and each input line is applied
to one row of N synapse cells. The load capacitance for the input neuron is
quite significant. It is around 5 PF for the N = 64 case. Thus, the input
voltage needs to be buffered before it is distributed to the synapse cells. The
input neuron is a conventional operational amplifier in a unity-gain
configuration. The experimental input neuron has a DC gain of 95.82 dB. The
settling time to within 0.1% accuracy is 80 nsec for the 3 Vp-p input pulse.

4.4.2 Programmable Synapse

The programmable synapse design is a modified wide-range
Gilbert multiplier {4.22], which can perform real-valued multiplications in
four quadrants and achieve 8-bit precision. In order to realize the function
specified in Eq. (4.2), the synapse cell calculates the square of the difference
between the input voltage and the synapse weight value. Figure 4.9 shows
the circuit schematic of the synapse cell and the size of each transistor. The
layout of one synapse occupies 112 A x 82 A in the MOSIS-scalable CMOS
design [4.24].
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In order to achieve a wide operation range, the components of the
differential pair for (V1-V2) and (V3-Vy) are separated using the current
mirror circuitry. The output current is obtained from the cascade-current
mirror stage, consisting of transistors M2; through M 4. It can be
approximated by

: / k
L= % (V1 -VZXV3-V4)’ (4.8)

where k is the current gain from transistor M3(4) to transistor Mz3(16), and f1
and i1 are the transconductance coefficients of transistors M1 and M11,
respectively. Figure 4.10 shows the measured DC characteristics of the
synapse cell. The linearity error is less than 2% for an input voltage range of
-1.5 V to 1.5 V. In order to calculate (Xj-W,-j)z, the inputs are rearranged.
Here Xj is applied to V1, V3 and W,'j is applied to V3, V4 for the (i,j)th
synapse cell. Then Eq. (4.8) can be simplified to
Lj= '\/ % (X;W; 2, forl<isN,and1sj<M. (49)

In Fig. 4.11, the simulated output characteristics of the square function are
shown. The center of the parabolic curves is shifted by the weight values.
The input voltage Xj is fed into the synapse cell through the input neuron.
The synapse weight value is dynamically stored on the capacitance of the
MOS transistors. It must be refreshed periodically since a parasitic leakage

exists at the diffusion-to-substrate junction.

4.4.3 Output Summing Neuron
The output summing neuron converts the summed current into an

analog voltage, which is sent to the winner-take-all (WTA) circuit. The output
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of each summing neuron is the distortion measure. The minimum among the
distortion measures is chosen as the winner in the competitive layer. Since
the WTA circuit only selects the maximum input, the sign of the output of
each neuron needs to be reversed. The inverting operation of the output
neuron converts the summed current into the voltage with the sign reversed
as shown in Fig. 4.12(a). The circuit diagram and the transistor sizes for the
amplifier used in the output neuron are shown in Fig. 4.12(b). Current
summation occurs at every column of the synapse matrix. To ensure the
linear current-to-voltage conversion for a wide operation range, the output
neuron is designed to support a summing current of more than 1 mA. Ithasa
large output buffer to handle a large amount of summed current. The settling
time to within 0.5% accuracy is 25 nsec for a 0.8-mA summed current and 2-
pF load capacitance. Linear resistance is used to convert the current into the
voltage. Since the accuracy of an untrimmed passive resistor is very low
(possibly up to 20% error), multiple MOS transistors biased in the triode
region are used to synthesize the linear resistance [4.25]. The layouts of the
current summing neuron and the linear floating resistor occupy 116 A x 228 A

and 116 A x 64 A, respectively.

4.4.4 Winner-Take-All Cell

The performance of the WTA circuit built with transistors biased in
the subthreshold region [4.26] is moderately limited due to the inherently
low-speed operation and a small noise immunity. Our modified WTA circuit
operates in a strong inversion region and can provide fully binary output

values that are easily interfaced with digital circuitry for network learning.

110



Our analog WTA circuit can determine the winning cell at one cycle, instead
of logyN clock cycles using MAXNET [4.27].

The WTA circuit schematic and the size of each transistor are
shown in Fig. 4.13. Each cell occupies 58 A x 96 A in the scalable CMOS
design. One WTA cell consists of two portions. The first portion converts
input voltage into the current which is compared and redistributed in the
common signal line. In the second portion, the current is converted into the
output voltage. All transistors operate in the saturation region. V¢ is the
common-ncde voltage to which all source terminals of input transistors M7
are connected. As the number of inputs increases, the circuit can be extended
by abutting this common signal node from the cells. Through this node, the
total bias current is contributed by every cell. Since the source terminal is at
the same voltage for all the cells, the current flowing through each cell is
proportional to V2. Thus, the largest input can fetch the largest current out
of the total bias current. This largest current can make the corresponding
output saturated at the positive supply voltage value. On the other hand, the
other outputs will be pushed toward the negative power supply value. The
total bias current is provided by the transistor M5 of the cells. Instead of
using a fixed amount of the total bias current, each cell provides its own share
of the bias current. Since the bias current increases in proportion to the
number of inputs, the circuit response time is quite independent of the

number of inputs.

4.4.5 Analysis of Large Number of Winner-Take-All Cells
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Let the inputs with the same input voltage level be assigned into
groups 1 through L. The group i has njelements. The current flowing

through each cell in group i is
By v
li=5-(Vi-Veu-Va § (4.10)
The total bias current is distributed in the following way:
L
Y mIL;=NIp
im (4.11)
and
5
N=) n
o 412)

where N is the number of competitive inputs, and I is the bias current

flowing in transistor M5 of each cell. When the input voltage to the j-th group
is the largest, the number of cells in the j-th group should be one and the

current flowing in this cell, I; , should be larger than the current flowing

through a single cell in any other group to ensure the winner-take-all

operation,

I >max {l;,i=1,2,..,Land i ) (4.13)
or equivalently

Vi >max {V;,i=1,2,..,Landi# } “.14)

To facilitate the analysis of this WTA circuit in a large network, the
following conditions are assumed. There are three groups of input voltages:
the winning voltage V', the second largest input voltage Vi, and the smallest
one Vs. The numbers of cells in these groups are 1, L, and N-L-1, respectively.
From Eq. (4.10), the current flowing through a single cell in each group can

be expressed as
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_B
tw =5~ (Vw-Veu Van P, (4.15)

IL= PZL(VL‘VCM Va1
and

Is= %(Vs-VCM Va P
The total current is

Itotal=1xIw + L xIp +(N-L-1) x Is. 4.16)

In Fig. 4.14, calculated results for a 1000-input WTA circuit are
shown. Vw, VL, and Vs are set to 2.51, 2.50, and 2.49 V, respectively. As the
number of the second largest input increases, the current flowing into the
winning cell decreases monotonically. This results from the fact that more
current is consumed by the cells in the second group, while the total bias
current is constant. In Fig. 4.14(a), calculated results of the output levels are
shown. In Fig. 4.14(b), the response time of the winning output voltage is
shown. The output level of the winning cell decreased due to the reduced
available current. Similarly, the response time of the circuit increased, because
the amount of charging current was reduced.

In the case where the differences between competitive inputs are
small, the performance of the WTA circuit can be degraded severely. The
resultant input current in the winning cell is not large enough to be
completely differentiated from all losing cells. Thus, the output voltage
difference between the winning and losing cells is not large enough to be
directly interfaced with the digital index encoder, because the winning cell
output has intermediate value between 0 and 5 V. Although the winning

output is still larger than any other output, the response time for the above
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condition is quite long. More charging current is consumed by the transistor
M3 (Fig. 4.13), which is now biased in the linear region. To circumvent these
problems, a cascaded version of the winner-take-all circuit can be used.

One of the main sources to restrict the number of the WTA cells to
be connected side by side is the resistance along the common signal line. An
analysis of the parasitic-resistance effects on the number of the WTA cells is

given in Appendix 4.A.

4.4.6 FSO Network

Figure 4.15 shows the functional block diagram and physical layout
of one slice of the FSO network consisting of key circuit blocks. The
simulated processing time for one network iteration is less than 500 nsec.
Each iteration cycle includes input buffering, synapse multiplication, neuron
summing, winner-take-all operation, and index encoding. In Fig. 4.16, SPICE
simulation results of the circuit are shown for one typical operation. The load
capacitances for each block are effectively included. The major delay in the
network is at the input neuron due to the large load capacitance associated
with the long signal wire. Transistor sizes of the input neurons can be
increased to reduce the delay time.

In the neural-based vector quantizer chip design, the number of 8-
bit synapse cells for each output summing neuron is 25. Careful transistor
sizing and layout generation are performed. The common-centroid layout
technique can greatly alleviate the device mismatch effect [4.25]. Use of large
devices can also reduce sensitivity to mobility variation and channel-length

modulation variation [4.28]. The carefully chosen device sizes of Fig. 4.9 help
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to keep the variation of the transconductance constant p below 1% [4.29]. In
addition, the operational dynamic range of the synapse cell can be increased
with larger devices, which can ensure the 8-bit accuracy for the analog
circuitry. Notice that the analog-computing accuracy requirements for image
compression are much more relaxed than those for image recognition [4.30]. It
is probable to have the second closest codevector represent the input vector if
these two codevectors are extremely close. The induced degradation is
negligible from a lossy image-compression view. In general, the distances
among codevectors are much larger than that can be differentiated by one
least significant bit. This situation is supported by our FSO algorithm.
However, the high-accuracy vector matching may be required for other
applications such as pattern recognition with a large vector dimension. For
high-accuracy vector matching applications, an analysis of device-variation

effects on the FSO network dimensionality is given in Appendix 4.A.

4.5 Testing of the Neural Network Chip

Testing of VLSI neural network chips is an important task in
constructing artificial neural systems. The experimental results for the
neural-based vector quantizer chip and its associated circuit cells are
presented.

The testing of the vector quantizer chip was performed by using a
dedicated test bed as shown in Fig. 4.17. It consists of an IBM PC/AT
computer, an digital signal processing coprocessor, an interface board, an HP

1650A logic analyzer, and an HP 4145B semiconductor parameter analyzer.
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The HP 4145B analyzer is used to measure the characteristics of the neural
circuits. The logic analyzer is used for diagnosing and debugging digital
functions. An interface board is used to accept the image data from the host
computer and to convert them into the analog signal format. The analog
outputs of the 25 D-to-A converters are sent to the neural-based vector
quantizer chip via 25 sample-and-hold LF398A amplifiers from Texas
Instruments Inc. The Motorola DSP56000 boards are used for updating the
synapse values. During the learning phase, the DSP board receives the
codebook index and calculates the new synapse values. These output data
and new synapse values are stored in the digital memory. The updated
synapse values are converted into the analog signal and sent to synapse cells.

To investigate the characteristics of large WTA circuit, a separate
200-cell WTA circuit was tested. The measured results are shown in Fig. 4.18.
The input of cell-101 is increased linearly. The second largest input is set to
2.52V, and the others to 2.50 V. Figure 4.18(a) shows five curves representing
the output voltages of cell-101 that correspond to the cases where the
numbers of the second largest inputs are 2, 50, 100, 150, and 199, respectively.
A higher input voltage is needed for the winning cell since more current
flows to the group of cells having the second largest input as its number
increases. Figure 4.18(b) shows the variation of the threshold for a winning
cell across the test structure. The five curves correspond to the outputs of
cell-1 with different positions of the second largest input at cell-2, cell-50, cell-
100, cell-150, and cell-200, respectively. From the measurement results, it is
clear that a cell can be a winner if its input is greater than those of the other

cells by 15 mV. The measured response time of the WTA circuit is around 60
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nsec at 1-pF load capacitance for cases ranging from 50 cells to 200 cells. As
the number of the cells increases, the charging current available for the
winner is increased. On the other hand, the parasitic capacitance through the
common signal line is also increased. The combined effecés of these two
factors determine the response time.

The prototype neural network processor chip for a 25-dimensional
adaptive vector quantizer of 64 codevectors was fabricated in a silicon area of
4.6 mm x 6.8 mm using the 2-um CMOS technology from the MOSIS Service
of the USC/Information Sciences Institute at Marina del Rey, CA [4.24]. This
prototype chip includes 25 input neurons, 25 x 64 synapse cells, 64 distortion-
computing neurons, a winner-take-all circuit block, and a digital index
encoder. The die photo of this neural-based vector quantizer chip is shown in
Fig. 4.19. The power lines from analog and digital blocks are separated to
avoid noise coupling from digital parts to the highly sensitive analog parts.
This chip can also be extended to implement vector quantization of a larger
codebook. An adaptive vector quantizer of 1024 codevectors can be
implemented by cascading 16 such prototype chips or by using a larger
design in a submicron fabrication technology [4.31]. The performance of the
neural-based vector quantizer chip is summarized in Table 2.

In Fig. 4.20, the functional testing results of the vector quantizer
chip is shown. The original image is a 100x100-pixel House image. The
reconstructed image is created by using the codebook generated by the neural
computing test bed.

46 Conclusion
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A frequency-sensitive self-organization network has been described
and shown to be effective for adaptive vector quantization. The efficiency of
this FSO network is measured by its compression ability, the resulting
distortion, error tolerance, and the suitability for VLSI implementation. Based
upon this frequency-sensitive self-organization method, a neural-based
adaptive vector quantizer has been developed. By using a mixed analog-
digital design approach in the massively paralleled computation blocks, the
advantages of small silicon area, low power consumption, and reduced I/O
requirement can be achieved. A VLSI chip for 25-dimensional vector
quantizer of 64 codevectors has been fabricated and tested. Its throughput
rate is 2 million vectors per second and its equivalent computation power is
3.2 billion connections per second. It achieved an intrinsic compression ratio

of 33.
Appendix 4.A: Analysis of Non-ideal Effects

Fundamental limitations of analog neural computing are caused by
non-ideal factors such as the process variation, transistor mismatches, and
offset voltage. Several effects that determine the dimensionality of the

network with the 8-bit accuracy are analyzed.

4.A.1 Effects of Device Variations on the FSO Network Dimensionality
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The operation of the network is restricted by the variations of device
parameters such as process non-uniformity and transistor mismatches in
synapse matrix. To consider the effect of the parameter variations of devices
on the processing accuracy, two columns are considered among the synapse
matrix. In two columns, all pairs of two synapse values are assumed to be the

same except for one pair of synapse values as follows:

Wyii=Wy=W; foralliandi#k. (A1)
The summed output current in each column is expressed from Eq. (9) as
M
h=hgt Y, i,
i=1, izk (A2)
and
M
Lelyt Y, Iy.
=1, Bk (A3)
The difference of these two currents is
Tow = Iy-I=lipt 4, (A4)
where
o = Your (X - Wi - Vo (Xe - W P, (A5)
and

M
I,= Y, (Voy - Yo )XX;- Wi
i=1, ik (A6)

Here, lisb is the current determined from the desired synapse values, while I4
is the current due to the variations of the device parameters. Ideally, if there
are no parameter variations in the devices, then /4 is zero and the difference
current can be determined only from /iss. In practice, the absolute current
value determined from the desired synapse values must be larger than that

due to the device parameter variations. That is,
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Wiss| > V1A, (A7)
Considering the following conditions:

o= 0k = 0, @i = g (1+4), 0= (1- 4),
then Egs. (A5) and (A6) become

Vit = Watg [(X e - Wig) + (X - War)] (Wi - Wag)

(A8)

and

0= '24: vaoll1+a4-V1-a)x;-w; P
=1, izk , (A9)

respectively. For illustration purposes, assume that all inputs are to be

matched to their weight values in the post-training process so that

X;-W;=Vy,foralli. . (A10)
Then the number of the possible inputs is determined as
M<1s—2We- Wl
Va{l1+4-11-2) (A11)

In the case of 8-bit accuracy computation, the minimum difference of the
synapse value is Vrs /2%, Vrs is the full-scale dynamic range. The number of
possible inputs in Eq. (A11) is shown in Fig. 4.A.1 with respect to Vm. If the
variation is within 1.5%, then the 5x5 input can be applied with the matching
between input and synapse values of 1% of the full dynamic range.

4,A.2, Effects of Parasitic Resistance on the Number of the WTA Cells

One of the main sources to restrict the number of the WTA cells to

be connected side by side is the resistance along the common signal line. An
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analysis of the parasitic-resistance effects on the number of the WTA cells is
given in this section.

Through the common signal line, the input currents are
redistributed and compared one another. In general, the common signal line
is made of the metal, of which sheet resistance is very small. However, the
length of this line is so long that the resistance value cannot be ignored when
the connected number of cells are large and comparison occurs between two
far ends of this line. The voltage drop across the common signal line causes
the gate-to-source voltage of each input transistor to be different although the
applied input voltage is the same.

To analyze the effect of this finite resistance value along the
common signal line on the number of the cells, simple model is introduced in
Figure A.2, where each cell is represented by the equivalent current source.
The current flowing through each cell is IB for the state of equilibrium. When

an input voltage is applied to all cells, the current is represented by

I= I +4 (A12)
with the condition of
N
Y. 4.=0, (A13)
- i
j=1

where N is the number of the competing cell. If the largest input voltage is
applied to cell-1 as the winning input, then the difference of the input

voltages between this cell and cell-i is expresses as,

V&-V&:ﬁd I,+4, - IB+A‘.)+RJ§ D4, (Al4)

where f = p Cox (W/L) and R is the unit resistor value of the common signal

line between two adjacent cells. The first term in (23) is the voltage difference
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for the different current assuming the perfect match of two cells. The second
term in (23) is the voltage drop along the common line from cell-1 to cell-i,
which is zero for the ideal case. Thus, for the proper WTA operation, the
magnitude of the first term must be larger than that of the second term. In
Figure 9, the above two terms are shown for the two ends of cell-1 and cell-N

given the following conditions:

L= I+, .. (A15)
I= I+ (EL-Gn)a, .. (A16)
Iyy = IB g v (A17)
2
and
Iy=1y- (14, (A18)

where A is 80 nA. From the process parameter, the sheet resistance is known
to be 0.026 Q per square and there are 14 squares in the common signal line of
each cell from the layout. Figure 9 shows that about 600 cells can be
connected in series and Figure 10 shows the schematic block diagram to

increase the number of the competing cells.
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Fig. 4.1 Plots of mean-squared errors of image compression versus the
upper-threshold frequency. The one-iteration FSO method is used
for a 6-bit codebook on 5x5 subimage blocks. (a) SAR Ice image of
Beaufort Sea, Alaska; 512 x 512 pixels. (b) Girl image; 512 x 512 pixels.
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Fig. 4.2 Image compression using the FSO method on 5x5 subimage blocks.
(a) Original SAR Ice image of Fig. 4.1(a).

(b) Reconstructed image using 10-bit one-iteration FSO codebook;
MSE=86.31.

(c) Reconstructed image using 10-bit two-iteration FSO codebook;
MSE=82.35.
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Fig.4.3 Histogram of the 512 x 512-pixel SAR Ice image.
(@) Original image.
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Fig. 44 Mean-.squared errors of image compression using the FSO method
and the LBG method on 5x5 subimage blocks of the 512 x 512-pixel
SAR Ice image.

Table 4.1 Performance comparison of three VQ methods

igorithms one-itera tion FSO two-itera tion FSO LBG
Codebook Size MSE | SDR | Btk | MSE SDR Fth MSE | SDR
10-bit 8631 [18.16 20 8235 |1837 20 7864 |[1861
9.bit 10136 {1747 40 9789 | 17.62 40 9284  |1789
8-bit 11504 |1692 80 11208 | 17.03 80 10695 |17.28
7-bit 12751 |1647 160 | 12441 | 1658 160 11980 |1678
6-bit 14227 |16.00 320 | 13856 | 1611 320 138.78 1630
Note: MSE: Mean-Squared Error; SDR: Signal-to-Distortion Ratio; Fth: Upper-Threshold Frequency.
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(b)

Fig. 4.5 Adaptive image compression using the FSO method.
(a) Girl image reconstructed by using a 10-bit FSO codebook from
SAR image; MSE = 1062.59.
(b) Girl image reconstructed by using a 10-bit FSO codebook with
adaptive training; MSE = 59.84.
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Fig. 4.6 Mean-squared errors of image compression using the one-iteration
FSO method for 6-bit, 8-bit, 10-bit, and floating-point resolutions on
5x5-pixel subimage blocks of the 512x512-pixel SAR Ice image.
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Normalized waveform

a5k IN: -05t05V.
Vin: -05t005V.
2 Ist -3to3pA.
Vout : -10 to 10 mV.
OUT: -5to5 V.

©
w
T

0 0.5 ] 1.5 2 25
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Fig. 4.16 The characteristics of the FSO network slice.
IN = signal to the input neuron.
Vin = the buffered input fed to the synapse cell.
Is = output current of the synapse cell.
Vout = output voltage of the output neuron.
OUT = output voltage of the WTA cell.
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Fig. 4.18 Measurement results of a 200-input WTA test structure.
(a) Output voltages of the winner with different numbers of cells
having the second largest input: 2, 50, 100, 150, and 199, from left to
right.
(b) Output voltages of the winner with different positions of the
cell having the second largest input: 2, 50, 100, 150, and 200, from
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-based vector quantizer prototype chip.

Fig. 419 A die photo of the neural



(a) (b)

Fig. 420 Functional testing results for the neural-based vector quantizer
chip.
(a) Original image.
(b) Reconstructed image.

146



Number of Inputs, M
120 .

100

80

device variation = 1.0 %

.......................................

device variation = 2.0 %

0 'l L i i N
001 002 003 004 005 006 007 008 009 0.1
Matching Voltage Vi, = X; - Wy [V]

Fig.4.A.1 The number of the possible dimensionality versus the
matching voltage with different device variations.

147



N-cell WTA dircuit

comumon /

signal line

common
signal line

Fig. 4A.2  Simple model of the winner-take-all circuit.

148




Chapter 5

VLSI Neural Network Processor for Optical-Flow Based Motion
Compression

In this chapter, we describe a neural network based motion
compression algorithm and its associated VLSI neuroprocessor design. The
neuroprocessor design is based on a locally connected multiple competitive
neural network developed for high performance optical flow computing
systems. The proposed VLSI neural processor design can achieve a high-
speed wide-range motion estimation and thus an efficient image sequence
compression by taking advantage of the massively parallel neural computing
architecture and VLSI technology. An extendible VLSI neuroprocessor has
been designed with a silicon area of 2,482 x 5,636 A2 in MOSIS scalable CMOS
process. The mixed analog-digital design techniques are utilized to achieve
compact and programmable synapses with gain-adjustable neurons and
winner-take-all cells for massively parallel neural computation. Hardware
annealing through the control of neurons' gain helps to efficiently search the
optimal solutions. Measured results of the programmable synapse, summing
neuron, and winner-take-all circuitry are presented. A 1.25 x 1.17 cm2 chip in
a submicron CMOS technology can accommodate 128 velocity-selective
neuroprocessors and achieve 166.4 Giga connections per second. Computing
of optical flow using one neural chip can be accelerated by a factor of 379

than a Sun-4/260 workstation. Real-time motion estimation on industrial
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video images is practical using an extended array of VLSI neuroprocessors.

Actual examples on moving vehicles are presented.

51 Introduction

5.1.1 Motion Estimation and Video Compression

The goal of video compression is to eliminate the temporal and
spatial redundancy of video image sequences and thus reduce the bandwidth
and storage required for the transmission and recording of the video signal.
Fig. 5.1 shows a generic motion-compensated predictive video compression
system. Delta modulation performed pointwise between successive frames
can reduce temporal redundancy over regions where there is no motion.
However, the motion-compensated predictor makes the delta modulation
more generally effective since the motion of regions in the scene is
determined so that image points between which the modulation differences
are derived can be more accurately chosen.

Motion estimation has been studied extensively by several
researchers in the context of video compression [5.1] - [5.11]. Much of the
work in video compression is closely related to work in optical flow
determination. The pel-recursive motion estimation algorithm for video
compression developed by Netravali and Robbins [5.7] is similar to the
optical flow estimation derived by Horn and Schunck [5.3], except for two
important differences: (1) Honr and Schunck use smoothed velocity estimates
and (2) the pel-recursive equations use a fixed parameter rather than the

factor varies with the magnitude of the image gradient. The algorithm of
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Netravali and Robbins has problems on the converge and performance
accuracy [5.8 ].

The apparent difference between the work on image compression
and the work on optical flow estimation is due to the different motivation for
the investigation. Although video compression does not require neither
high-accurate estimation of the motion nor the sharp detection of motion
boundaries, a better motion estimation algorithm could reduce the video
bandwidth further. But any such improvement must be justified against the
complexity of the hardware required to implement the video compression

technique.

5.1.2 Optical Flow Estimation

Optical flow is the apparent motion of the brightness patterns in an
image. Generally, the optical flow corresponds to the motion field [5.3].
Optical flow provides information about the spatial arrangement of the
objects, the rate of change of these arrangements in a given scene, and also the
perceiver's own movements. The important parameters about the three
dimensional structure and motion of the scene can be obtained by analyzing
the optical flow field [5.12]). For video compression application, optical flow
provides motion vectors to choose the difference-modulated image points
that correspond to the displaced versions of the same patch of image frame.

Optical flow is estimated from the time varying imagery and
commonly represented by a dense motion field that assigns a two-dimensional
velocity vector to every point on the visual field. According to the nature of

the measured primitives, existing approaches to optical flow computing can
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be divided into two type: the image intensity based approach and the token
based approach.

intensity Based Approach The intensity based approach relies on the
assumption that changes in intensity are strictly due to the motion of the
object. The image intensity values and their spatial and temporal derivatives
are used to compute optical flow. By expanding the intensity function into a
first-order Taylor series, Horn and Schunck [5.3] derived an optical flow
equation using the brightness constancy assumption and spatial smoothness
constraints. An iterative algorithm for solving the resulting equation was also
developed.

Token Base Approach The token based approach is to consider the
motion of tokens such as edges, corners, and linear features in an image. The
key advantage of the token based approach is that tokens are less sensitive to
variations of the image intensity. The token based approach provides the
information of the object motion and shape at edges, corners, and linear
features. An ir'\terpolation procedure has to be included when dense data are

required.

5.1.3 Neural Network Applications to Optical Flow Computing

The optical flow computing is very computation intensity and
difficult to perform for high-speed applications on general-purpose
computers. This problem can be alleviate by using a novel VLSI
neuroprocessor design for high-speed optical-flow estimation.

Recently, several researchers used neural networks to conduct

optical flow computing [5.13-5.15]. To prevent the smoothness constraint
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from taking effect across strong velocity gradients, a line process has been
incorporated into the optical flow equation. The resulting equation is non-
convex and includes the cubic and some higher terms. Instead of using an
annealing algorithm which is very time consuming, a deterministic algorithm
was used to obtained a near-optimum solution. Convergence of such a
network was obtained within a few iteration cycles. An analog and binary
resistive neural networks was used in [5.13] for computing the optical flow
using Horn's method [5.3]. Basically, this mixed analog-digital neural
network approach is to first use Horn's optical flow equation to find a
smoothest solution and then to update the line process by lowering the
energy function of the network repeatedly. No attempt was made to detect
large displacements.

In order to obtain a dense flow field, the intensity based approach is
preferable. However, the intensity value may be corrupted by noise appeared
in natural images and partial derivatives of the intensity value are sensitive to
rotation. Itis ciifficult to detect the rotational objects in natural images based
on such measurement primitives. Under the assumption that changes in
intensity are strictly due to the motion of the object, Zhou et al [5.14] use the
principal curvatures of the intensity function to compute the optical flow
because they are rotation-invariant. The intensity values and their principal
curvatures are estimated by using a polynomial fitting technique. Under the
assumption of local rigid motion and the smoothness constraint, a neural
network with maximum evolution function was developed to compute the
optical flow on rotation invariant measured primitives extracted from

successive image frames. A deterministic decision rule was used for the

153



updating of neurons states. The deterministic annealing process achieves
convergence within a few iteration cycles. This neural network can detect
large displacements.

This chapter presents a locally connected multiple competitive neural
network and its associated VLSI array neuroprocessors for high performance
optical flow computing using Zhou's method [5.14]. The proposed optical
flow neuroprocessor is applicable for high-speed motion compression due to
its massively parallel processing architecture, VLSI implementation, and good
estimation performance. An extendible VLSI neuroprocessor has been
designed with a silicon area of 2,482 x 5,636 A2 in MOSIS scalable CMOS
process. The mixed analog-digital design techniques are utilized to achieve
compact and programmable synapses with gain-adjustable neurons and
winner-take-all cells for massively parallel neural computation. Measured
results of the programmable synapse, summing neuron, and winner-take-all
circuitry are presented. A 1.25 x 1.17 ecm2 chip in a submicron CMOS
technology ca;l accommodate 128 velocity-selective neuroprocessors and
achieve 166.4 Giga connections per second. Computing of optical flow using
one neural chip can be accelerated by a factor of 379 than a Sun-4/260
workstation. Real-time motion estimation on industrial video images is
practical using an extended array of VLSI neuroprocessors. Actual examples

on moving vehicles are presented.

52  Optical Flow Computing Using Neural Networks
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A neural network for optical flow computing based on work by
Zhou and Chellappa [5.14] is defined below. Let k., (i,j) and k,, (i®k, j®l) are
the principal curvatures of the first image, k,, (i, j) and k,,(i®k, j®!) are the
principal curvature of the second image, g,(ij) and g,(i®k, j®I) are the
intensity values of the first and second images, respectively, while vi,j k1 is
the output state of pixel (i,j) with velocity (k,I), where 1<i< Nr,1<j< N,
-Dx<k<Dx, -Dy <l <Dy. The symbol ® denotes that

foup f0SatbsSN_N,
a®b — { 5.1)
0 otherwise
The principal curvatures are defined as
k(i) =M+ (M2- Gk (5.2)
and
T3 1
kyij)=M-(M?- Gk 53)
where G and M are the Gausian and mean curvatures given by
G- P26 el [nl
iz g2\ aig | 5.4)
and
1 [azg(i,,) . azga,,)]
2 ¥ o (5.5)

A polynomial fitting technique is used to estimate the derivatives. A
smoothness constraint is used for obtaining a smooth optical flow field and a
line process is employed for detecting motion discontinuities. Sy is an index
set for all pixels in a 2Wr+1 x 2Wc+1 smoothing window centered at point
(i,j). The line process consists of vertical and horizontal line, LY and LR, Each

line can be in either one of the two states: 1 for being active and 0 for being
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idle. The corresponding error function for computing the optical flow from a

pair of image frames can be expressed as

D,

(4 Nc D x y
E=>2 2 X (5.6)
i=1j=1 k=-D, I=-Dy
. . 2 . . . 2
[ Ak G- kytik, jo T+ A [k G - kytik, jo) [+
+[8,) - g,k job v,

B 2
+{< Z (7 Y ij il v(i,ﬂ@s,k.l)

2 2
+ 1 [( Dkt " Pionind (1Ll + (0,0 -0, 2 (1-L5, )]

+D Ll +LE D]

where A, B, C, and D are empirical constants, and S = Sp - (0,0) is an index set
excluding (0,0). The first term of Eq. (5.6) is to seek velocity values such that
all points of two images are matched as closely as possible in a least-squares
sense. The second term is the smoothness constraints on the solution. The
third term is a line process to weaken the smoothness constraint and to detect
motion discontinuities. Parameters A, B, C, and D are used for weighting the
relative importance of each term. The constant A in the first term determines
the relative importance of the intensity values and their principal curvatures
to achieve the best results. The line process weakens the smoothness
constraints by changing the smoothing weights, resulting in space-variant
smoothing weights. For example, if all lines are on, the weights will be B/2.
If all lines are off, the weights at the four nearest neighbors of the center point
are increased by C/2. These parameter play an important role in the

algorithm behavior.
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Let Tjjkl:mmnkl be the synaptic interconnection weight from
neuron (mnk,l) to neuron (ijkl), Ij k] be the bias input,V ={ v; Jkl 1<ig
Ny, 1<j< Ng, -Dx< k< Dy, -Dy <1< Dy be a binary neuron state of neural
network with v; ; ;. | denoting the state of the (i j,k,})-th neuron, Ny and N be
the maximum dimensions of neuron layer in i and j axes, respectively, and Dx
and Dy be the maximum values of velocity components in k and I directions,

respectively. The interconnection weights and bias inputs are defined as

T:,],kl mukl = 2B E @, (mn)®s G.7)
ses
+ CLA-Ly, )8, 801 1+ (L6, ;e(-n,n
+(-L 00 ,m‘s;,n + (-Lge sy i SiymSim
-[48B+C(4-L t),k.l fo;e(l),k.l Ln;.k.l G(l)z.k.l)] im J.n

and
Iips = Ak ) - kyy (0K, JODF + Ak ) - kyoliE, jODT +
+ [gl(i,]) - 8,(i®k, j@l)]z}
(5.8)
where &, , is the Dirac delta function. The interconnection weights

Ti jk,l;mn k]l consist of the smoothness constraints and the line process only. The

bias input Ij j k1 contain all information from the images. The term

D[L! +L1'; 1] 18 ignored since it does not contain neurons states. And thus

1,7kl
the error function for computing the optical flow is transformed into the

energy function of the neural network that is defined by
N, NN D, D,

133 3 5

i=1j=1 k=D, I=D,
C X Tt mak®manka Vit LjaaPiins >
(m-i,n-eS, ) (5.9)
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A locally connected multi-layer neural network for optical flow
computation is shown in Fig. 5.2. A set of (2Dx + 1)(2Dy + 1) layers of neurons
are used to represent the optical flow field. Each layer corresponds to a
different velocity and contains Ny x N neurons if the images are of size Ny x
N¢.  All neurons in the same layer are self-connected and locally
interconnected with other neighboring neurons in a smoothing window of
size (2Wr + 1)(2Wc + 1) . There are no interconnections between neurons in
the different layers except those in the same hypercolumns. Every image pixel
is represented by (2Dx + 1)(2Dy + 1) mutually exclusive neurons which form
a hyperneuron for velocity selection. When the (i, j, k, I)-th neuron at the point
(i, j) in the (k, 1)-th layer is active high, the velocity of pixel (i, j) is kB and IB in
the k and [ direction, respectively. Here, B is the sampling bin size of the
velocity component range.

Optical flow computation is performed by the neuron evaluation
using a massively parallel updating scheme which is based on the minimal

mapping theory [5.17]. The initial states of the neurons are set as
1 I, ,=max(l.. ;-D,<p <D,-D,sq <D,)
ey = ik ] i k Lt '
V;ixd [0 Ak WjipA (5.10)

which are completely determined by the bias inputs. If there are two maximal
bias inputs at point (i,j). then only the neuron corresponding to the smaller
velocity is initially set at 1 and the other one is set at 0. This is consistent with
the minimal mapping theory. In the updating scheme, the minimal mapping
theory is also used to handle the case of two neurons having the same largest
inputs. Since the first and second terms in Eq. (5.6) do not contain the line

process, the updating of the line process is prior to the updating of neuron
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states. Let L;7/y™ and Li:;.':k"’,” denote the new and old states of the vertical line
L:’ i Tespectively. Let ¥, be tl1e2potential of vertical line L,'; 1 given by

Vija = %‘ Uikt " Vinrjn (5.11)
Then, the new state is determined by

L0 e 1 if y/‘.,’.’k’,>0

ijkl = ( 0 otherwise. 5.12)

Whenever the states of neurons v;;,, and v; 41,k are different, the vertical line
will be active in the case that C is greater than zero. If C is zero, then all lines
are inactive, which mean that no line process exists in the network operation.
A similar updating scheme is also used for the horizontal lines.

At each step, the (i j,k,I)-th neuron synchronously receives inputs
from itself and neighboring neurons, and a bias input,

Wikl = > Tint; mngPmnia * Lijaa
(m-i,n-)eS, ) (5.13)

The u;;,, is then processed by the maximum evolution function O(.) to

determine the velocity of the pixel,

0,1 =00 )={:) Z h:_g;‘;’ =max (g Dy SP Dy, -Dy<q <Dy)
(5.14)
Notice that only the winning neuron is active high and the other neurons of
the same hypercolumn are turned off. The network operation will be
terminated whenever the energy function of the network reaches a minimum.
Energy function minimization of the optical-flow neural network proceeds
similar to Hopfield networks [5.18]. When the network reached a stable state,

the optical flow field is determined by the neuron states.
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The neural network algorithm for the optical flow computing can
then be summarized as follows:
1. Set the initial state of the neurons.
2. Update the state of all lines synchronously.
3. Update the state of all neurons synchronously.
4. Check the energy function. If energy does not change anymore, stop;
otherwise, go back to step 2.

In view of high parallelism and local conductivity, this network is
well suited for VLSI implementation and thus real-time applications.

5.3  VLSI Optical-flow Neuroprocessors Design

A special purpose VLSI neuroprocessor has been designed to fully
exploit algorithm parallelism of the neural-based optical flow computing and
to enable real-time applications. A VLSI architecture for effective
implementation of the multi-layer stochastic neural networks is obtained by
projecting the 3-dimensional neural networks along the velocity profile

direction into a 2-dimensional plane. As shown in Fig. 5.3, each small frame

represents one velocity-selective hyperneuron which contains (2 Dy+1)(2Dy+1)
velocity-sensitive neurons to specify (2Dx+1)(2Dy+1) velocity selections. Each

hyperneuron is interconnected with its (2Wp+1)X2W,+1)-1 neighboring

hyperneurons through a point-to-point interconnection which contains one

output port and [(2W,+I1}2W¢+1)-1] input ports. The hyperneuron is

designed as a neuroprocessor within which the velocity selectivity of an

image pixel can be conducted. A functional diagram of the velocity-selective
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hyperneuron is shown in Fig. 5.4. Its building blocks include a velocity-

sensitive neuron array and a neighbor interconnection block.

5.3.1 Velocity-sensitive neurons array

The velocity-sensitive neurons array has (2Dx+1)(2Dy+1) velocity-
sensitive neurons which are laterally connected through winner-take-all
circuits. The velocity selectivity is generated by a competition mechanism
which is implemented with the winner-take-all circuits. Only the velocity-
sensitive neuron which corresponds to the maximum excitation will be the
winner to represent the velocity for the given pix¢k shown in Fig. 5.5,

the velocity-sensitive neuron is built with one synapses array, one summing

neuron, and one winner-take-all cell. The synapses array contains (2W, ,
1)(2W, + 1)+1 programmable synapses of s-bit accuracy. The synapse weights
Tijkl;mnkl are stored in the synapse capacitors and dynamically refreshed by
the digital synapse memory block. The binary outputs Vg of its
neighboring neurons are routed to the corresponding mask ports to perform
the network evaluation. The summing neuron is functioning as a parallel
current adder. Each summing neuron with its associated programmable
synapses array perform a parallel inner-product computation as specified in
Eq. (5.13). The winner-take-all cell contributes to a maximum evolution function
on the analog outputs of summing neurons as specified in Eq. (5.14). The

binary output of winner-take-all cell represents the velocity status.

5.3.2 Neighbors Interconnection
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To solve the three dimensional interconnection problem for optical
flow computing, the analog point-to-point interconnection for local
communication and the digital common bus for global communication are
used. Since each pixel is affected by its near neighbors , each hyperneuron has
to receive/send information from/to the neighboring hyperneurons during
the network operation. Data communication between these locally
interconnected hyperneurons become one key factor on the overall system
performance. There are three methods accomplish the local data
communication with trade-offs between the operation speed and silicon area.

The first method is to use the digital bit-serial point-to-point

interconnection. The [(2Dx + 1)+ 2Dy + 1)}-bit vi ikl mnpq ‘s are transmitted in

a bit-serial order by using a time-multiplexing technique. The total number of
the interconnection lines is reduced by a factor of [(2Dy + 1) (2Dy 4 1)}
However, the time required for data transfer increases with the same factor.
Besides, the required hardware overhead includes multiplexing control
signals, the associated decoding circuit, and one-bit latch for each synapse.

The second method is to use bit-parallel point-to-point
interconnection scheme. The Vijklmnpq ‘s are transmitted by using the word-
wide point-to-point interconnections. A high data rate is achieved. However,
the total number of interconnection lines for each hyperneuron is as large as
[(2Dy+1)(2Dy+DII(2Wy+1)+(2W+1)]. The silicon area for the interconnection
routing is large. The required large pin count become a major constraint for
hardware implementation.

The third method is to use a analog bit-parallel point-to-point

interconnection. The ”ijkl,mnpq 's are converted to an analog value and then
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transmitted to the neighboring hyperneurons. The analog ”ijkl,mnpq 's are

converted back into digital values at the receiving sites. This method is quite
effective since it allows the network to operate at a very high speed and also
achieve a compact layout. The required I/O port and silicon area for
interconnection routing are practical for multi-hyperneuron hardware
implementation.

Table 5.1 compares these three above-mentioned neighbor
interconnection methods. Recent studies on electro-optic computer have
shown that the limitation of conventional electrical interconnection can be
overcome by using electro-optical interconnect through the free space. The
electro-optic devices, such as photo detectors and modulators can be
integrated on a chip to circumvent the communication bottlenecks [5.19].

This prospective approach is under investigation.

5.3.3 Digital Co-processor

The digital co-processor calculates and stores the synapse weights
and bias inputs in a static-RAM which has
[QWp+1)(2W+1)+1 ](ZDx+1)(2Dy+1) s-bit words for each hyperneuron. The s-
bit D-to-A converter transforms the digital representation of the synapse
weights into analog values for charging the weight-storage capacitance of the
synapse matrix. While doing the retrieving process, the write-through
circuits allow a concurrent writing of the converted data to the corresponding
synapse capacitor. A two-port static-RAM and differential amplifier-based

synapse design allow network retrieving and learning processes to occur
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concurrently. The digital synapse memory can be shared by a cluster of

hyperneurons.

54  Detailed Circuit Implementation

Advanced studies to improve the circuit performance and to reduce
the area/power of the neural building blocks are essential to implement the
highly complex neural systems in VLSI technologies [5.16]. Computer
simulation and laboratory experiments on these neural circuits have been

conducted.

5.4.1 Programmable Synapse
Figure 5.6 shows a circuit design of a programmable synapse cell.
It is a modified transconductance amplifier that can perform real-valued

masking operations and achieve 8-bit precision. In order to realize the

function specified in Eq. (5.13), the synapse cell produces output current I
according to mask voltage V5 and weight voltage 4 The mask voltage of
each synapse cell is directly dependent on the binary value of the vy, , k|
which is the velocity status of the neighboring pixels. When the V,u 5 is at
logic 1, the Vs is connected to Vi, and provides the amplifier with a
specific bias current Iiygx. While the V01 is at logic 0, the Vi, is connected
to the negative power supply Vs so that there is no synapse output current is
produced. Therefore, the Vy,sk perform a masking operation on the synapse

weight voltage V.. The layout of one synapse occupies 112 A x 82 A in the

MOSIS-scalable CMOS design.
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Figure 5.7 shows the measured DC characteristics of the synapse
cell. The bias voltage controls the dynamic range of the synapse cells by
adjusting the bias current in the transconductance amplifiers. The maximum
synapse conductance is decided by devices of the differential pair and the
bias current, while the minimum synapse conductance is determined by the
resolution of the synapse weight value. The synapse weight value is
dynamically stored on the capacitance of the MOS transistors. It must be
refreshed periodically since a parasitic leakage exists in the diffusion-to-
substrate junction. An 8-bit resolution can be supported in this DRAM-like
synapse cell [5.16].

54.2 Output Summing Neuron

The output summing neuron sums up the synapse output currents
and converts the summed current into the output voltage, which is sent to the
winner-take-all (WTA) circuit. The output of each neuron is the selectivity
measure and the maximum among them is chosen as the winner in the
competitive layer. The output neuron has its summed current converted into
the voltage with the sign preserved. In Fig. 5.8, the circuit diagram and the
transistor sizes for the amplifier used in the output neuron are shown. To
ensure the linear current-to-voltage conversion for a wide operation range,
the output neuron can support the summing current up to 1 mA. It has a
large output buffer to allow a large amount of current. Linear resistance is
required to convert the current into the voltage. Since the accuracy of a
passive resistor is very low (possibly up to 20% error) without the additional

trimming technique, multiple MOS transistors biased in the triode region can
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be used to synthesize the linear resistance. The layouts of the current
summing neuron and the linear floating resistor occupy 116 A x 228 A and 116

A x 64 A, respectively.

54.3 Winner-Take-All Cell

The winner-take-all circuit functions as a multiple-input parallel
comparator. Only the WTA cell with the maximum input voltage will have
the logic-1 output value, while the other cells have the logic-0 output value.
The WTA circuit schematic and the size of each transistor are shown in Fig.
5.9. Each cell occupies 58 A x 96 A in the scalable CMOS design. One WTA
cell consists of two portions. The first portion converts input voltage into the
current which is compared and redistributed in the common signal line. In
the second portion, the current is converted into the output voltage. All
transistors operate in the saturation region. Vi, is the common node voltage to
which all source terminals of input transistors M1 are connected. As the
number of inputs increases, the circuit can be extended by abutting this
common signal node from the cells. Through this node, the total bias current
is contributed by every cell. Since the source terminal is at a common voltage
for all the cells, the current flowing through each cell is proportional to ViZ,
Thus, the largest input can fetch the largest current out of the total bias
current. This largest current can make the corresponding output saturated at
the positive supply voltage value. On the other hand, the other outputs will
be saturated at the negative power supply value. The total bias current is

provided by the transistor Mz of the cells. Instead of using a fixed amount of

the total bias current, each cell provides its own share of the bias current.
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Since the bias current increases in proportion to the number of inputs, the

circuit response time is independent of the number of inputs.

5.4.4 Velocity Status Register

The velocity status of image pixel is represent by the
(2Dj+1)(2Dy+1) binary output of winner-take-all circuits. As show in Fig. 5.10
, the velocity status can be encoded and stored in a register which is accessible
by the digital co-processor through the digital system bus.

54.5 Neighbor Interconnection Sender

The neighbor interconnection sender is used to convert the encoded
binary code to the analog value and send it to the neighboring
neuronprocessors. It is implemented by using a voltage-scaling digital-to-
analog converter as shown in Fig. 5.11. The voltage-scaling converter uses a
series of resistprs connected between V,.ef and V—ref to provide intermediate
voltages. For an N-bit converter, the resistor string would have 2N 4+ 1
resistor segments. Unity-gain followers are used to buffer the resistor string
from conductive loading. Each tap is connected to a switch that is controlled

by the digital word.

5.4.6 Neighbor Interconnection Receiver
When the analog velocity information from the neighboring

neuroprocessors is received, the neighbor interconnection receivers are used

to convert the analog values back to the (2Dg+1)2Dj+1) -bit binary codes.

Notice that only one of these bits is logic-1 and the others are logic-0. Each
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neuroprocessor has a total of (2W;+I1)X2Wj+1)-1 neighbor interconnection
receivers. A high-speed receiver is implemented by using a voltage-scaling
analog-to-digital converter as shown in Fig. 5.12. One voltage-scaling resistor
is used to generate reference voltages. Each reference voltage is shared by
comparators in the same velocity-sensitive neural unit. A comparator and its
combinational circuit are associated with each synapse cell. The

combinational circuits are used to make sure that only one of the

(2Dy+1)(2Dy+1) binary outputs is logic-1.

5.5  Experimental Results

5.5.1 Prototype Chip

Figure 5.13 shows the layout design for a 25-velocity selective
hyperneuron. A size of 5x5 smoothing window and Dx = Dy =2 are used. The
25-velocity selective hyperneuron for one image pixel is implemented with a
silicon area of 2,482 x 5,636 A2 and contains 25 neurons, 25 x 27 synapse cells.
Two raw of synapses are used to increase the resolution of the synapse
weights updated by the bias inputs. The extra raw of synapses are also used
to enhance the fault tolerance of the network. With an advanced submicron
CMOS technology, 125 neuroprocessor can be accommodated into one VLSI
neural chip of 12.5 mm x 11.7 mm in size. The chip layout is shown in Fig,.
5.14. It requires a 240-pin PGA package. The analog interprocessor data
communication requires 192 pins. Th interconnection routing area occupies
23% of the chip area. In the digital bit-parallel method, 960 pins are required

for the interprocessor data communication. Only 24 neuroprocessors can be
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accommodated in the same chip area and 85% of the chip area is used for the
interconnection routing. Use of compact and electrically programmable
mixed-signal neural units is the key to achieve high-density hardware
design. The point-to-point interconnections among hyperneurons are

effectively designed using the analog bit-parallel method.

5.5.2 Chip Performance Measurement

Table 5.2 shows that the measured processing time for one network
iteration is about 500 nsec. Each iteration cycle includes input buffering,
synapse masking, neuron summing, winner-take-all operation, velocity status
encoding, digital-to-analog conversion, and analog-to-digital conversion. The
computation power of the 128-neuroprocessor chip is about 166.4 Giga
connections per second. Computing of optical flow using one 128-
neuroprocessor chip can be accelerated by a factor of 379 than a Sun-4/260 (a
16 Mz SPARC processor) with 16 MB of RAM. The performance is based on
a 2 MHz system clock rate for the 2-um neural chip implementation. Use of
the 0.5-um VLSI technology will approximately improve the performance by
a factor of 4.

Figure 5.15 shows the measurement results of the two-stage 9-cell
winner-take-all circuits. The winner-take-all circuits achieve a resolution of
10 mV. In the mixed-signal neural chip design, the common-centroid layout
technique can greatly alleviate the device mismatch effect. Use of large
devices can also reduce sensitivity to mobility variation and channel-length
modulation variation. The carefully chosen device sizes of help to keep the

variation of the transconductance constant p below 1%. In addition, the
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operational dynamic range of the synapse cell can be increased with larger

devices, which can ensure the 8-bit accuracy for the analog circuitry.
56  Optical-flow Neuroprocessor Based System

5.6.1 System Implementation and Operation

Real-time optical flow computation on industrial images is practical
using an extended array of hyperneurons. Figure 5.16 shows an overall
system configuration for a real-time optical flow system using velocity-
selective hyperneurons array. The system contains a host computer, an array
controller, a parallel up/down load interface, and a hyperneurons array.

The operation for computing the optical flow on the high-speed
neural system can then be summarized as follows:
1. The host system set the initial state of the optical-flow neuroprocessors
array by down-loading the corespondent sub-image pixels, initial velocity
maps, and syn#se weights to the velocity sensitive neurons.
2. All velocity-sensitive neurons are parallel operated to synchronously
update all the velocity maps of the sub-image.
3. Apply electronic deterministic annealing mechanism to search the optimal
solution. Repeat Step 1 and step 2 till the whole image is done.
4. Detect occluding elements and update bias inputs accordingly. Compute
optical flow with new bias inputs.
5. Determine the optical flow field according to the stable velocity maps.

The optical flow field can then be used for the motion-compensated

video image compression.
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5.6.2 Hardware Constrained System-Level Analysis

Incorporating the application and hardware implementation
constrains, system-level analysis on different images have been conducted to
illustrate the performance of the optical flow estimation chip. Since the
electronic neural processor is designed for video coding, computing for the
terms which are weighted by the parameter C is not included to simplify the
neuron-state updating of the network. The parameter C is set to be 0 in the
system-level simulation to virtually emulate the hardware performance. In
additions, the mismatch effect of neural circuits is included in the system-
level analysis.

Two sets of successive image frames directly produced by a CCD
camera were used. To estimate the principal curvatures and the intensity
values, a 5 x 5 window was chosen and a third order polynomial was used for
all frames. Figure 5.17(a) shows four successive image frames with a sedan
moving from left to right against a stationary background. The size of each
image frame is 100 x 135 pixels. The maximum displacement of the sedan
between the time-varying image frame is 5 pixels. By setting A =4, B =250, C
= 0, Dx =5, and Dy =], the velocity field was obtained after 36 iterations.
Figure 5.17(b) shows the final result with using synapse weights obtained by
including the effects of process variation. Comparing with the result in Fig.
5.17(c), which the effects of process variation are not included, the motion
information of the moving object still can be successful detected.

Figure 5.18(a) shows another four successive image frames with a

mobile missile launcher moving from left to right have also been used for
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system-level analysis. The size of each image frame is 130 x 160 pixels. The
maximum displacement of the mobile missile launcher between the time-
varying image frame is 7 pixels. By setting A =4, B =850, C=0, Dx =7, and
Dy =1, the velocity field was obtained after 36 iterations. The final velocity
fields of mobile missile launcher with and without including the device
mismatch effects are shown in Fig. 5.18(b) and Fig. 5.18(c), respectively. The
parameter A is set to be 4, because four successive image frames are used.

The parameter B is chosen by using trial-and-error method.

5.7  Conclusion

In this chapter we presented an effective VLSI neuroprocessors
design for high-speed high-accuracy optical flow based image sequence
compression by using the massively parallel neural computing architecture
and mixed-signal VLSI design techniques. The work includes: (1) Algorithm
improvement and simulation for the optical flow computing; (2) Application-
specific multi-layer stochastic neural network architecture development; (3)
Detailed circuit and chip design to fully explore the mixed analog-digital
neural network capability in high speed optical flow computing. (4)
Integration of this neuroprocessor chip into an advanced optical flow
computing system. The proposed VLSI optical flow computing system is also
essential for other potential optical-flow based applications such as motion

perception, scene analysis, and motion estimation.
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Fig. 5.6 Circuit schematic of the programmable synapse cell.
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Velocity status: outputs from winner-take-all circuits.
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Fig. 5.10 Velocity status register of a hyperneuron that is accessible by the
digital co-processor through the digital system bus.
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Fig.5.11 Neighbor interconnection sender based on a voltage-scaling digital-
to-analog converter .
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Fig.5.12 Neighbor interconnection sender based on a voltage-scaling
analog-to-digital converter .
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Fig.5.13 The layout of one velocity-selective neuroprocessor. The 25-
velocity selective hyperneuron for one image pixel is implemented
with a silicon area of 2,482 x 5,636 A2 and contains 25 neurons, 25 x

27 synapse cells.
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Fig.5.15 The measurement results of the two-stage winner-take-all circuits:

(a) Output of the 9-cell WTA test structure with one input

sweeps from 1.47V to 1.52V, the second input is connected to 1.5V.
(b) Output of the 9-cell WTA test structure with one input sweeps
from -0.015V to 0.035V, the second input is connected to 0.015V.
(c) Output of the 9-cell WTA test structure with one input sweeps
from -1.53V to -1.48V, the second input is connected to -1.5V.
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Fig.5.16 System diagram for real-time optical flow computing using VLSI
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(b) (c)

Fig. 5.17 System-level analysis on a sequence of four sedan images.
(@) The four temporal images of a moving sedan.
(b) By setting A =4, B =250, C =0, Dx =5, and Dy =1, and using
device mismatch effect, the velocity field was obtained after 36
iterations.
(c) Using same conditions as (b) except the device mismatch
effect has not been included.

190



(0

Fig.5.18 System-level analysis on a sequence of four sedan images.
(a) The four temporal images of a moving missile launcher.
(b) By setting A =4, B=2850,C =0, Dx =7, and Dy =1, and using
device mismatch effect, the velocity field was obtained after 36
iterations.
(c) Using same conditions as (b) except the device mismatch
effect has not been included.
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Table 5.1 Comparison of Neighbor Interconnection Schemes

Method | Analog Bit-Parallel | Digital Bit-Paralled | Digital Bit-Serial

Performance Interconnection Interconnect ion Interconnection
. X/5 (ns)
Interrconnection time 1 1/5 X = vector dimension
of velocity vector.
Interrconnection area 1 X 1
Pin count X XW X
Chip Size 15x28 cm? 15 x 28 em?2
Number of Processor] 64 12
K
% | Interconnection 23% of chip 8% of the chip
& | Routing Area
&
& | PinCount 178 3250
: é .
Net work Iteration 522 250
Speed Performance | g03x1010 2.08x 1010
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Table 5.2 Measured Network Iteration and Operation Speed.

loading of 50 pE

Measured Results
Input Neuron Buffering 50 ns
(parallel with weight loading)
Synapse Masking (Multiplication) 120 ns
g
| Output Neuron Summing 20 ns
&
= 38ns
%4 Winner-take-all Operation
§ Encoding and Data Latch 50 ns
& , ,
o] Velocity vector to value conversion 84 ns (loading 5 pF)
(ie. digital-to-analog conversion)
&
Velocity value to vector conversion 263 ns (loading 50 pF)
(i.e. analog-todigital conversion)
Velocity State Readout S0 ns
Network iterations time with an output 263 ns
loading of 5 pE
Network iterations time with an output 522 ns

Totoal Processing Time for M weights and
N iterations with an output loading of 5 pF.

343N + 100 M (ns)

Totoal Processing Time for M weights and
N iterations with an output loading of 50 pF.

522 N + 100 M (ns)
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Chapter 6

High-Speed VLSI Pipelined Processor Design for Lossless
Image Data Compression

Abstract

An efficient VLSI pipelined processor design for high-speed lossless
compression based on "Rice algorithm" has been developed to meet the
increasing strong demands on high-volume/high-speed image data
communication and storage. The Rice algorithm is an adaptive lossless
coding scheme that provides near-optimal performance over a broad range of
data entropies. The Rice algorithm is also an efficiently implementable
scheme for VLSI realization. A VLSI pipelined architecture was developed to
allow compact implementation of a single-chip VLSI compressor. This
lossless compressor is named UNC-PSI14,K+ since it implements an
advanced version of the Rice 's universal noiseless coding method called
PSI14,K+. The chip layout was generated for a 1.0-micron CMOS technology.
It occupies a compact chip area of 5.1 x 5.3 mm?2, with 49,000 transistors, 57
input/output pads, and 6 power/ground pads. The total power dissipation
is 0.4 watts at the 40 MHz system clock with a 50% switching duty cycle. This
compressor chip is mounted in a 84-pin pin-grid-array package. It can operate
up to 40 Mpixels/sec. The potential applications of the proposed lossless
compressor include database management systems, scientific instruments,
CAE workstations, desktop computing machines, and the data systems that

require high-speed compression without fidelity loss.
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6.1 Introduction

Most real-world applications produce varied source symbol
distributions. The optimality of variable length codes such as Huffman code
is only efficient for a given source symbol distribution over a narrow range of
data entropies. One of the earliest approaches of the adaptive variable length
coding to alleviate this limitation was that developed by Robert F. Rice of Jet
Propulsion Laboratory (JPL) and subsequently called the "Rice algorithm."
Rice's universal noiseless coding technique appeared in its early form in [6.1]
and was generalized in [6.2-6.4]. References [6.1-6.4] provide the development
and analysis of some practical adaptive techniques for effective entropy
coding of a broad class of data sources. Extensions and modifications to the
original algorithms have been applied for a diverse set of applications in
various forms [6.5-6.9]. The Rice algorithm is an adaptive scheme that
provides near-optimal performance over a broad range of data entropies.
Unlike Huffman coding, it does not require prior statistics of data. The Rice
algorithm is also an efficiently implementable scheme for VLSI design. High-
speed VLSI architectures of the Rice machine were presented in [6.10] and
[6.11] to meet real-time satellite image compression requirements of the Earth
Observation System satellite. Recent work at JPL has delivered a working
VLSI lossless compressor that implement a special version of Rice machine
called PSIss+ for space imaging applications [6.12]. A VLSI coder/encoder
chip set based on the PSIss+ algorithm has been also produced at the

University of Idaho in conjunction with the Goddard Space Flight Center
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[6.13]. The algorithm definitions and performance characteristics of the PSIss+
was provided in [6.14]).

This paper presents a high-speed VLSI processor design for the
UNC-PSI14,K+ algorithm that is a more general and improved version of the
Rice machine [6.4]. Section II describes the technique and performance of the
UNC-PSI14K algorithm. Section III is devoted to a detailed VLSI architecture
and circuit design. Section IV describes a high-speed VLSI chip
implementation of the UNC-PSI14,K encoder.

6.2  The Rice Algorithm and Its Performance

6.2.1 Rice's Universal Noiseless Coding Technique

Rice's universal noiseless coding is an adaptive lossless data
compression technique that is employed to compress the data without
inducing any distortion in the reconstructed image. A brief description of the
Rice coding technique is given first to relate the Rice algorithm to an effective
VLSI design. Interested readers are referred to [6.1-6.4].
Standard source transform

Since the Rice's universal noiseless coding assumes that the data are
in probability decreasing order, the source data must be preprocessed (e.g., by
taking difference of adjacent pixels) so that the algorithm can apply. The
prediction and relabelling operations are used to map the original source data
into standard source data. The prediction operation reduces the data entropy if
there is a high correlation among adjacent pixels. The prediction operation

involves the operation of taking differences between consecutive samples:
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A = x(i) - x(i-1) 6.1)

where x(i) is the i th sample and x(i-1) is the i-1 th sample.

The relabelling step transforms an (n+1)-bit difference into an n-bit integer

representation:
0=f2A-1 , 0<A<®H
' {—2A ,—0<A<0
0+lal , |Al>6 6.2)
where 6 = MIN[6.x(i-1), 21 -1 - x(-1)] and n is the number of bits per input
pixel.
Fundamental Sequence

Let {s;} be the source symbols, # be the length of s; in bits, P; be the
probability of occurrence, {x;} be the symbol used to represent {s}, and {L} be
the length of X; in bits , where 0 < i < N-1 and N = 2%-1. The noiseless coding

minimizes the data volume required to represent the source data Without
inducing any distortion. It minimizes
L= PL
i . 6.3
This is achieved by using less data to represent the source symbols which

occur more frequently, i.e.,

Lis_L]. if Piz Pj ) (6.4)

The noiseless coding algorithms include the Huffman coding and

universal noiseless coding. The Huffman coding algorithm derives the
optimal set of {L i}’ which requires the knowledge of the exact probability

distribution [6.16,17]. On the other hand, the universal noiseless coding
algorithm derives a suboptimal set of {L;} which only requires the knowledge

of the probability ordering, i.e., it is assumed that (after relabling if necessary)
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Pi > Pi +1 for 0<i<N-2. (6.5)
In [64], X; is chosen as

x; = (0..0)1 , 6.6)
where there are i 0's inside the parenthesis. Hence,

and

If
L=Y (i+1)P,
i=0 ' (6.8)

The mapping of the source symbols resulting from Eq. (6.6) is called the
fundamental sequence. In [6.15], the "fundamental sequence"” is shown to be
equivalerit to a class of Huffman code under the Humblet condition [6.18] ,
for source symbol sets having a Laplacian distribution. The performance of
the fundamental sequence method depends on the source entropy. It is
shown that its rate is close to the theoretical limit while the entropy is
between 1.5 and 2.5 bits/pixel [6.4]. Its performance degrades while the
entropy increases.
Split-Sample Scheme

An approach to improve the performance of the fundamental
sequence method is achieved by the split-sample coding scheme [6.4]. This
approach splits the source symbols into two parts: most significant bits and
least significant bits. The least significant bits, which are considered to have
higher activity are passed to the receiving end without coding, and the most
significant bits, which are considered to have lower activity are passed to the
noiseless coding to reduce the redundancy.

The splitting method is described as follows:
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(a) Split each input sample into two parts: most significant bits and least
significant bits. |

(b)Transmit the least significant bits without coding.

(c) Apply the fundamental sequence coding to the most significant bits.

Let k be the number of least significant bits and n-k be the number
of most significant bits. The k-bit splitting method is equivalent to divide {s}

into 2n-k blocks of 2k symbols each. Let Q; represent the probability of the ith

block, then
i2t-1
0= X P, 6.9)
j=Gi-1)2*
and (i+1) bits are assigned to represent the symbols in the ith block. Hence,
2.1
L= Y, (k+i+1)Q,
i=0 . (6.10)

Note that when k = 0, (10) becomes (8). The optimal choice of k
depends on the shape of {P.). If P; decreases substantially as i increases,

smaller k will yield better results. Conversely, if P decreases slowly as i

increases, larger k will yield better results.

The assumption on the knowledge of the probability ordering is
quite realistic since the source data can be preprocessed . The preprocessed
data typically assumes some degree of probability ordering . For this reason,
the universal noiseless coding technique is more practical due to no need of
any prior information on the source data statistics.

Features of the Rice algorithm are summarized as the following;

Advantages
* No distortion induced in the reconstructed data by the coding

algorithm.
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* Does not require the complete knowledge about the source statistics.
Only probability ordering is required. More robust to mismatch in the
statistics.
¢ Prefix code. No extra information is required for time coding.
* Simple for implementati;m.

Disadvantages
* Require an extra buffer for generating synchronous output samples.
Buffer overflow and underflow may occur, which causes loss of data.
* Sensitive to channel bit errors. Any bit error causes loss of the
remaining data. Require a reference sample for each line to prevent an

error propagation.
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62.2 UNC-PSI14,K+ Algorithm

This section briefly summarize a practical configuration of the
UNC-PSI14,K+ algorithm. As shown in Fig. 6.1, the PSI14,K+ coder consists
of two separated functional parts: The front-end pre-processor is a predictor
followed by a symbol mapper, while the second part is an adaptive variable
length coder PSI14,K that performs the actual adaptive symbol coding. Figure
2 shows an algorithmic structure of the PSI14,K+ coding in more detail.
Preprocessing

The "+" in PSI14,K+ refers to those processings that precede the
actual coding by adaptive variable length coding. The UNC-PSI14,K+ design
presumes that preprocessing can be done by using control signal E1 to select
an external preprocessor or a build-in preprocessor. The function of an
external preprocessor can be arbitrary. The build-in preprocessor is defined
as a simple one-dimensional predictor and mapper as specified in Eq. (6.1)
and (6.2). In a&diﬁon, the predicted sample can be prepared by using control
signal E2 to select an external predicted sample or a internal predicted
sample.
Mid-step K-Sample Splitting

The "K" in PSI14,K+ refers to the K-Sample Splitting operation that
is a mid-step between the preprocessing and AVLC coding. The parameter K
gives an external control of the coder PSI14,K. Incrementing K by one will
shift the dynamic range upward by one bit/sample.
PSI14,K Code Options
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With K =0, PSI14,0 is equivalent to PSI14. With K # 0, the net effect
of a mid-step split of K bits is to transform each PSIi,k in the internal PSI14
into another Split-Sample option with K additional splits. The set of 12 code
operators of the internal PSI14 are elaborated below by using the notations
from [6.4].

Code Operator PSI0 Code operator PSI0,0 is defined as

PSIO[8 1= cfs[B,] *cfs(B,}* - ofs(B,) 6.11)

The variable-length code cfs[¢] is defined in [6.4]. The 3-tuple Bi's are derived

by the following operations:

FS=PSI8 1= 4,5, Ly, 6.12)

AN

ExPIFS] = (4, §,00* (8% (400

Ex*(FS) = B,*B,*..B,
where a = L (Ex3[F3]) {%] 3-tuples. .
Fundamental Sequence, PSI1,0 The Fundamental Sequence (FS) operator
forms the backbone for all reversible coding operators used in the UNC-
PSI14,K except for the Backup operator. It generates a codeword for each
entry value of gn. For each unsigned integer i of gn, its FS codeword is an
(i+1)-bit binary string consisting of i zeroes followed by a single one. The
non-zero one makes the code reversible and serves as a marker for the
decoding process. This operator is also called PSIj o[*] or PSI1[e].
Code Operator, PSIj k[*] This code operator combines the PSI7,0 with a k-
sample splitting operation, where 1 < k < 9. For each n-bit sample value of gn,
the sample splitting operation splits it into two sub-samples. One is the

decimal equivalent of the last k LSB bits and the other is the decimal
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equivalent of the first (n-k) MSB bits. Let SSn,k[6.8n] denotes an operator

which performs the SS operation on each n-bit unsigned value of a sample
sequence 8. Each sample is splitted into two sub-sample values and thus
two sequences are generated. The first, denoted as _I\Z""‘ is obtained from
grouping all sub-samples with (n-k) MSB bits from the original sequence. The
second, denoted as L, ; is obtained from grouping all sub-samples with the last
k LSB bits. By using an asterisk (*) symbol to define concatenation, an
application of the PSIj k code operator on 8" is then defined as follows:

PSI k(3 1=PSI1L.0[M™ * L, (6.13)
- Code Operator, PSI3[*] (Backup) The Backup operator takes the input block
of n-bit sample data before entering the AVLC as its output. This code
operator is defined as PSI3[e].
Optimal Code Selection

The optimum criteria for selecting the best option to represent is to
choose the winning code that produces the shortest coded sequence. A clear-
cut decision regions based on F() can be used to effectively choose the winner.
The equations lead to the decision regions for the internal PSI14 code is
specified in [6.4].
Other Algorithm Requirements

The number of bits of data quantization lies in the range of 2 < n <
16. The desired block size is over the range 1 < J < 16. The fixed block size J=
16 is practical for the majority of applications. The UNC-PSI14,K processes
input data on a line-by-line basis. The line starts when the ENABLE signal is
turned on and ends when it is turned off. Therefore, a line can be any length

of samples. Each sample consists of n bits in parallel. The final output from
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Fig.6.1 High-level functional block diagram of the PSI14,K+ coder.
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Fig. 6.2 An algorithmic structure of the UNC-PSI14 K+ coding.
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the UNC-PSI14,K after processing an input line is a compressed bit string of
data which is éompletely packed and there are no inter-block gaps between
compressed bit strings for the blocks. The compressed bit string are read out
by groups of 16 bits in parallel.

Figure 3 depicts the format for the output bit string from the UNC-
PSI14,K+ coder. It consists mainly of a reference sample and a collection of
compressed data blocks. The first n-bits of the compressed output bit string is
the first n-bit sample value of the input data line and can be used as the
reference sample. The compressed bit string for each data block consists of a
4-bit ID code and followed by either a backup block of | n-bit mapped
differences or a FS compressed bit string appended with J (k-+K)-bit sub-strings,
where k is determined by the selected code operator PSI7 k, The first 4-bit
field is a code ID which is transmitted as a header along with the compressed
bit string for each J-sample input data block. The output of split sample LSB
bits begins with the highest-order split bits and then followed by the lower-
order split bits.. If the Backup operator is selected, the output is a block of | xn
bits from the block of ] mapped differences.
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6.2.3 Performance Measurement

Entropy is a quantitative measure defined to represent the amount
of information for a data set [6.19]. The less likely an event, the larger its
information. Conversely, the more likely an event, the smaller its information.
For a single event i with a probability of occurrence Pj, its entropy is defined
to be

H;=-log, P, (bits). (6.14)
For a discrete memoryless source with k alphabets, the entropy is defined to
be

k k
H=) PH,=-) Plog,P, (bits). (6.15)

i=1 i=1

Here Pj is the probability of symbol i occurring out of k alphabets. When
logarithms to the base 2 are used in the entropy calculation, the resulting unit
of information is a binary bit.

In source coding, the above-defined entropy is the lower bound on
the average code length given memoryless source symbol statistics.
Performance of lossless coding is measured by using the following features.

Let P; be the probability of the ith sample and L; be the code length of the ith

sample, where 0 < i< N-1. The average code length is

L=, PL
i (6.16)
The code efficiency is
E=H
L (6.17)
The compression ratio is
CR = Ioi N (6.18)
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Fig.6.3 The PSI14,K+ compression output format.
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The maximum compression ratio for any lossless coding is

CR = log N

= 2. (6.19)

6.2.4 Experimental Results

The entropy and the bit rate of various images was calculated. The
results are shown in Fig. 6.4. Depending on the types of image, the entropy
appears in the range of 0 to bits/pixel. The differential entropy (the entropy
of the difference image) was also calculated. Note that in the UNC-PSI14,K
coding, the differences between consecutive data are coded instead of the
original data values. Unlike the optical image (e.g. pepper), little reduction in
the entropy was found for the synthetic aperture radar image (e.g. sea ice)
The reason is due to the speckle noise. It is concluded that the Rice algorithm
is an adaptive lossless coding scheme that provides near-optimal
performance over a broad range of data. In addition, the universal noiseless
coding algorithm would appear more advantageous for the smooth data but
not for the noisy data such as the SAR imagery.
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6.3  Design and Implementation of the VLSI PSI14,K+ Encoder

6.3.1 System and Chip Partition

Figure 6.5 shows an end-to-end high rate data system diagram. To
achieve a reliable high-speed communication/storage, the source and channel
codec become an essential portions of the advanced high rate data system
[6.20]. To design efficient hardware for the high rate data system, the
PSI14,K+ encoder chip and its system-level hardware co-processor design
have been developed by adopting a balanced software and hardware
implementation. Figure 6.6 shows a system-level hardware architecture for
the PSI14,K+ and its interfaces with other portions of the high rate
compression system. A FIFO-based post-end interface buffer is used to
alleviate the variable output rate issue of the adaptive lossless coding. The
source encoder outputs the compressed samples whenever the compressed
block is available. The internal word packer packs the encoded data and the
auxiliary data into words. Then the co-processor collects the compressed data
into the standard source packet for transmission or storage. Details of the

VLSI coder design will be described as follows.
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6.3.2 Preprocessor Module

A functional design of the Preprocessor module is shown in Fig.
6.7. The sample predictor module performs the de-correlation function by
taking differences between consecutive samples through the use of one delay
element and one subtracter. The prior sample value is used as the predicted
value. The prediction error is then defined as the difference between the
current sample value and the predicted value. Since each sample value has n
bits, the resulting difference is a (n+1)-bit number. For the first sample of the
line, its prediction error is set to zero by using DIFZ to reset the Preprocessed
Data Register. The Delta Mapper transforms the mapping function described
in Eq. (6.2) by using a 12-bit data path design that is composed of four
multiplexers, two adders, and one comparator. A physical layout design of
the Preprocessor module is shown in Fig. 6.8. The silicon area is 1321 x 822

pm2. The power dissipation is 17.7 mW at a 10 MHz clock rate.
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6.3.3 Adaptive Variable Length Coder

A functional design of the AVLC is shown in Fig. 6.9. The AVLC
receives the string of unsigned integers from the preprocessor and performs
coding to reduce its data rate on a block-by-block basis. Each block is made
up of 16 unsigned integers. For each input block, an option is chosen out of
12 available code operators, which include the Backup operator, the
Fundamental Sequence (FS) operator, and the FS with k-bit sample splitting
(SS), where 1 < k < 9. With the chosen option, the AVLC proceeds to perform
coding on the input block. The resulting compressed bit string with its code
ID are then sent to the data packer module for assembly.

A brief description of each building block is as follows:
Block Buffer. The Block Buffer module temporarily stores the current 16-
sample block to enable block-pipelined operation of the AVLC. At the end of
an input line, if less than 16 values remain, zeros will be appended to fill the
block. The resultant block will then be processed like other blocks. It is built
with 16 12-bit shift registers. The silicon area is 1554 x 828 pm2. The power
dissipation is 8.7 mW at a 10 MHz clock rate.
Code Selector. The Fo summer is used to sum up all the unsigned integers in
8. The set of decision regions as described in [6.4] is realized with a random
logic decoder. The silicon area is 728 x 1033 pm2. The power dissipation is
3.5 mW.
Code Operators. The Fundamental Sequence (FS) Generator generates a
codeword for each entry value of gn and records it by using a biased

accumulator to track the "single one" position of each entry in a FS sequence
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memory. The k-bit Sample Splitting and the mid-step K-bit Sample Splitting
are implemented with right-logical barrel shifters. The bit length of each block
is calculated by the same biased accumulator for generating FS sequence. The
PSI0 is implemented in a ROM table-look-up. Note that the twelve code
options are fully implemented with only three hardware coding blocks. The
silicon area of the Code Operator is 1097 x 1553 um2. The power dissipation is
8.8 mW at a 10 MHZz clock rate.

FS Packer. The FS Packer prepares 16-bit words for Formatter to pick up
from FS sequence with ID bits. Its silicon area is 1030 x 929 um2. The power
dissipation is 6.1 mW.

SS Packer. The SS Packer buffers and packs k lowest-order bits of the 16 split
samples into k 16-bit words for the Formatter module. It can be implemented
in a silicon area of 2177 x 2747 um2 with a power dissipation of 24.8 mW.
Backup Packer. If the backup code operator option is selected, Backup
Packer module buffers and packs the 16 mapped differences into 16-bit words
for the Formatter. The Backup Packer can be implemented in a silicon area of
1650 x 2964 pm?2 with a power dissipation of 2.2 mW.

Formatter. The final output from the UNC chip after processing an input
line is a compressed bit string of data . The Formatter completely
concatenates and reads out the packed words from FS Packer, SS Packer, or
Backup Packer modules to ensure that there are no inter-block gaps between
compressed bit strings. It can be built with barrel shifters and control logic
gates. The silicon area is 955 x 1908 pm2. The power dissipation is 6.3 mW.
Controller. The on-chip UNC controller is a simple finite state machine that

is implemented with a couple of D-type or JK-type flip-flops and
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combinatorial gates. The silicon area is 962 x 920 um2. The power dissipation
is4 mW.
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Fig. 6.9 Functional Block Design of the PSI14 adaptive variable length coder.

6.4 The Prototype Chip

A VLSI layout design of the UNC-PSI14,K chip has been done by
using a 1-pym CMOS technology. It occupies a compact chip area of 5.1 x 5.3
mm?2, with 49,000 transistors, 57 input/output pads, and 6 power/ground
pads. It is designed to provide a high throughput rate up to 480 MBit/sec at
40 MHz system clock. The chip information is summarized in Table 6.1. A

GDS-II layout of the 1-um UNC-PSI14,K chip is shown in Fig. 6.10.
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Salient features of the VLSI UNC-PSI14,K compressor design are:

* High data rate and low power: A single UNC-PSI14,K chip
provides a throughput rate of 480 MBit/second with a worst case power
dissipation of less than 0.4 watt by using a 1-micron CMOS technology.

* Algorithm-specific VLSI design: The algorithm-specific VLSI
design method is used to achieve an efficient system performance. The highly
pipelined data path and modular coder options can be effective implemented
in VLSL

* Compatibility with lossy compressors: It can be cascaded with
any high-ratio lossy compressor to further increase the compression ratio.

* Expandability to array compression system: Due to the inherent
nature of UNC-PSI14,K line-based compression algorithm, an array
compressor system offers ultra high-speed data processing through a parallel
array architecture using multiple UNC-PSI14,K compressor chips.

* Self-adaptive scheme: It uses an adaptive approach to compress
different data .contents by allowing a subset of code operators to be selected.

¢ Near-optimized compression ratio: The compressed data entropy
is very close to the entropy of the data source.

* Fixed-line error containment: UNC-PSI14,K has a fixed line

format and thus limiting error propagation.

6.5 Conclusion
An efficient VLSI pipelined processor design for high-speed lossless
compression based on the Rice's UNC-PSI14,K+ algorithm has been

developed for high performance data communication and storage
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applications. The Rice algorithm is an adaptive lossless coding scheme that
provides near-optimal performance over a broad range of data entropies. The
Rice algorithm is also an efficiently implementable scheme for VLSI systems.
The VLSI pipelined architecture was designed to allow compact
implementation in a single-chip VLSI compressor. The chip layout was
generated for a 1.0-micron CMOS technology. It occupies a compact chip
area of 5.1 x 5.3 mm2, and operates at a 40 MHz system clock. The potential
applications of the proposed lossless compressor include database
management systems, scientific instruments, CAE workstations, desktop
computing machines, and the data systems that require high-speed

compression without fidelity loss.
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Table 6.1. Characteristics of the UNC- PSI14,K+ Chip

Table 1. Chip information

Chip Name UNC compressor chip

Design Method Custom design using compiled cell
Process Technology 1.0 micron CMOS

Die Size 5.1 x 5.3 microns

Total # of Device 50,000

Total # of Cells 3224

No. of Pads 63

Package 68-pin PGA
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Fig. 6.10 A GDS-IIlayout plot of the I-mm UNC-PSI14,K+ design.
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Chapter 7

Future Work

Future research directions includes the following
recommendations:
¢ The application of FSO network to speech coding, pattern recognition,
sequence classification, multi-media transmission or storage systems, etc.
Among various neural network paradigms, the self-organization network has
the desirable property of effectively structured presentation of features of the
source signals. Self organization is required in several image and vision
processing applications such as image compression, pattern recognition,
pattern mapping, motion estimation, sequence classification, etc. Although
software simulations of these neural network paradigms can be performed.
The software implementation usually take too long to be practical for real
applications. Advances of effective hardware implementation of the neural
network can overcome this problem. The development of FSO
neuroprocessor is a significant success in the VLSI artificial neural network
research. Work should be done to apply the existing or modified FSO
neuroprocessor to other applications which are based on the same self-
organization neural network paradigm.
* The implementation of the proposed adaptive image compression system

by using 0.5 um VLSI technology.
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The standard IC technology will be ultra-dense sub-micron multilevel-
interconnection CMOS in the mid 1990's. The power dissipation density will
be much higher due to the multi-level interconnection and the vertically built
circuitry. Ultra low power dissipation density is required for the high
density of circuit elements. The traditional analog circuitry requires relatively
large area and power due to the relatively large voltage supply and swings.
Low voltage operation on the order of 1 volt or less will be required for the
sub-micron digital circuitry due to the geometries and will be desired for the
sub-micro analog circuitry due to the severely limited breakdown voltages. A
analog-digital mixed circuitry are essential to interface with an analog world
and also to integrate maximum amount of circuitry onto a single chip for an
efficient system implementation. Computation efficiency of the analog circuit
functions is desirable. For example, the multiplication can be perform in a
high density low power analog multiplier instead of a complicate digital
multiplier. The accuracy of the analog circuitry is often sufficient for the
system applications of the analog world.

* The use of VQ in combination with analog sensor.

The current approach using a uniform analog-to-digital converter followed by
lossy data compression is suboptimal. An advanced approach would be
convert the analog signal into vector codes by employing vector quantization
design techniques to tailor a better source code to represent the characteristic
of source data. Flexible and adaptable signal representation schemes will
become more and more important since the nature of the signals to be

represented for computing includes more and more physical-world signals
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such as sound, image, etc. which tend to be more hard to characterize
analytically.

* The new data compression approaches by combining source and channel
encoding.

In general, compressed data has increased sensitivity to noise or transmission
errors. The sample values within a block of compressed data may be all
invalidated by the error introduced by the communication channel. More
stringent communication quality and continuity requirements for transported
data must be applied. For planetary missions, typically the end-to-end bit
error rate requirement on compressed data is 1 x 106 whereas for
uncompressed data itis 1x 10-3. It is essential to use Reed-Solomon encoding
on the downlink channel to minimize the effect of noise on the quality of
compressed data.

e The optimal integration of error containment and error correction with data
compression.

Vector quantization sends compressed data in fixed sized blocks, thus
limiting error propagation. Rice algorithm has a fixed line format that
provides error containment. Work should be done to look for ways in which
data compression could improve error containment behavior and aid error

detection and correction.
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