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Abstract

A combination of an analog front-end chip and a digital neural multiprocessor
array chip can play an important role in exploring and exploiting vision processing
which demands tremendous parallel communications and computations. The analog
front-end chip which integrates a photosensor array and pre-processing elements, and
performs edge detection on an image captured in the photosensor array is presented.
The nature of analog processing obtained in the analog edge detection chip can pro-
vide high parallelism for the whole system, eliminating sequential procedure caused
by A/D conversion which is required in a digital processor. The photosensor are
realized using parasitic bipolar transistors in a digital CMOS process. The edge
detection are done by convolution using the 3 x 3 Laplacian operator. The edge
detection chip consisting 50 x 66 cells can be implemented in a chip of 7.9 mm x 9.2
mm, using the MOSIS 2.0-um CMOS p-well technology. A digital multiprocessor
array chip is also described. The digital multiprocessor array chip can construct 1-
dimensional ring-connected systolic and 2-dimensional mesh-connected systolic array,
which can effectively perform representative neural network algorithms such as the
back-propagation network, and competitive learning. A systolic array, where com-
munication and computation are well balanced, is a suitable architecture for neuro-
computer because its features such as regularity and modularity are desirable for
VLSI implementation. The digital multiprocessor array chip includes four-
bidirectional buses connecting the four nearest cells and 256 words of 8-bit data
cache for supporting the systoilc array operation. Twenty processing elements have
been implemented in an 19.3 mm x 20.9 mm chip, using the 0.5-um CMOS technol-

ogy provided by TRW, Inc. and achieve 2 billion connection updates per second.



Chapter 1

Introduction

Machine vision processing is one of the most challenging tasks in intelligence
systems, because in which massive computations, communications, and complex
algorithms are required. In vision processing, the input data are usually in the analog
format which is sensory-data sampled by an image sensor, and are represented as pic-
ture elements (pixels) of image matrices. (In a video rate high-resolution signal, 1024
x 1024 pixels per frame are produced.) These data are digitalized by A/D converters,
and are further processed by digital processors. The primary goal of machine vision
processing is to obtain the descriptional information of objects in the input image,
where the output data are no longer of the form of pixels, but of symbols that
correspond to knowledge models previously stored in the database. Machine vision
processing consists of different kinds of computation which requires a unique
representation of the data and different types of communication. To implement
vision processing in a compact hardware system, the system should provide massive
and fast parallel computation and communication capabilities, and many specialized

processing elements.

Besides the hardware requirements, constructing software for vision processing
may be an intractable task. When we construct a vision processing system using
conventional microprocessors or digital signal processors, no matter whether the sys-
tem is a single processor system or a multiple-processor system, software must be
virtually perfect if it is to work properly. In the early development of machine vision
processing, however, it might be that the efficient algorithms or knowledge rules are
not well known. Some of the existing algorithms are too expensive, or difficult to

develop the software implementation.

A new approach to the machine vision processing which dose not require com-

plicated algorithms or rules and can significantly reduce the complexity of software
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that must be developed has recently become available [1]. Such an approach is
based on the neurocomputing. Neurocomputing is the technological discipline con-
cerning with parallel, distributed, and adaptive information processing. The primary
information processing structures in neurocomputing are artificial neural networks.
By definition, artificial neural networks provide massively parallel computation capa-
bility and adaptability or the learning capability which often eliminates the obligation
of understanding of the algorithms or rules to be strictly specified in a conventionally
programmed system. This salient feature makes artificial neural networks and neuro-
computing very attractive to the information processing community, especially for
machine vision processing. Figure 1.1 shows the schematic diagram of a neural-
based system for advanced information processing. Artificial neural networks can be
used to implement specialized pre-processors and post-processors, which have
efficient interface with the real world. For example, consider the auto-vehicle navi-
gation system. We can employ the neural network systems for a pre-processor and a
post-processor. The neural network pre-processor can recognize the condition of the
road by using pattern recognition and/or motion detection. The symbolic host com-
puter can make decisions for the vehicle. For instance, to avoid an obstacle ahead
the vehicle can use the information from the neural network processor According to
the decisions made by the host computer, the neural network post-processor at the
action point which controls the wheels, the breaks and the engine, can find an
appropriate degree for the wheels to around, the right timing to apply the break, and

so on, to control the vehicle to avoid the obstacle.

There are two major implementation technologies of artificial neural networks:
electronic and optical methods. The optical neural networks have a strong potential
with more parallelism for communication and computation than the electronic ones.
Due to the unique nature of optics, at present, the implementation technologies need
further development for large-scale and real-world applications. Electronic method

consisting of analog, digital, and mixed-mode scheme can use the state-of-the-art



very large scale integration (VLSI) technologies that have advanced rapidly and con-
tinuously. It is largely due to the advent of VLSI technologies that has made the
neurocomputing practically possible. The neurocomputers constructed by VLSI tech-

nologies can provide key platforms to explore the machine vision processing.

In the following chapter, we will overview the studies on artificial vision pro-
cessing and neural networks. Chapter 3 presents a compact system configuration for
early vision processing, by using an analog edge detection chip and a digital neural-
based multiprocessor chip. In Chapter 4, the analog edge detection chip is described
in detail. Chapter S describes the digital neural multiprocessor array chip. Finally,

Chapter 6 gives concluding remarks.



Chapter 2

Overview of Vision Processing and Artificial Neural Networks

2.1 Overview of Vision processing

The primary goal of machine vision processing is interpretation and/or recogni-
tion of 3-dimensional (sometimes 2-dimensional) objects mapped onto the 2-
dimensional images. For high-level interpretation, the principal unit of information is
symbolic descriptions of an object or a set of image events extracted from the image.
The description includes relationships both to features of object itself, i.e. other 2-
dimensional symbolic tokens extracted from the sensory data, such as lines, regions,
and surfaces and to other objects in the 3-dimensional scene [2]. High-level interpre-
tation can only take place after a certain amount of low-level processing has been
processed. The major low-level processing includes the classical image processing
techniques such as edge detection, segmentation. At the low-level processing, the
primary unit of information is the pixel, consisting of the color or intensity values of
the image, and possibly range data for the visible surface element associated with
each pixel. There is no simple computational transformation of the pixel-based
image into symbolic description. It is known that many levels of representation and
many stages of processing must take place to interpret a scene. The intermediate-
level processing bridges the low-level processing and the high-level processing. At
the intermediate-level, the basic unit of information is a description of an image
event extracted from the image data. Figure 2.1 shows multi-level structure of

machine vision processing.

Low-level Processing: Low-level processing consists mainly of operations on pixels
and local neighborhoods of the pixels. Examples of the processing belong to this
level are edge detection, edge linking, contour tracing, linear approximation, and seg-

mentation. Some of these tasks are iconic, i.e. the input and output are based on



pixels. Since signal processing is pretty local, it can be easily achieved in a parallel
machine. At the later stages of the low-level processing, functions such as linear
approximation and segmentation, will produce symbolic results. The results are in a
list format such as the list of edges forming the contours, or the list of straight lines

that approximate the contours [3].

Intermediate-level Processing: This level is viewed as a bridge between the sensory
data to the knowledge world. The information of the image, obtained in the low-
level processing is reorganized to be suitable for recognition of the object in the
high-level processing. Grouping, splitting, and labeling processes are involved.
These processes are quite global. The data representation at this stage consists of 2-
dimensional image events such as regions and lines, or 3-dimensional line segments.
The 3-dimensional motion and depth information are key factors to perform matching
the objects with the 3-dimensional objects. Pattern matching, such as Kanji character

and fingerprint identification, is included in this level.

High-level Processing: High-level processing generates object descriptions which
represent information about the 3-dimensional world in a representation that can be
used to form symbolic identification of image events. The result of the high-level
processing is symbolic representation of a particular object in an image which is
matched with a knowledge model that was previously stored in the database. There
are two methods to perform matching between the object and a knowledge model.
One is data-directed, i.e. the bottom-up, method. It derives depth data from the
image and use it in matching. The other one is knowledge-based, i.e. the top-down,
method. In this method, prior knowledge of an object is used to verify interpretation
of ambiguous image data. A symbolic LISP machine is a desirable processor for this

level processing.



To implement vision processing that has the above-mentioned features in a
hardware system, the system should provide [2] (1) the ability to process both pixel
data and symbolic data, (2) fast and massive computation capability for pixel-level
data, and (3) transformation capability of the data; from analog sensory data into

digital image data, and from the image data into a set of meaningful symbols.

Consider the case when high-resolution video signals are input of some vision
system using digital processor(s) in order to understand computation and communica-
tion complexity in early vision processing (low- and intermediate- level processing).
There are 30 frames per second to be processed and each frame consists of 1024 x
1024 pixels. It leads the fact that 30 million processing operations and communica-
tions per second are required to process one operation on one pixel in the input
images. Of course, even simple processing such as edge detection algorithm includes
around ten instructions in one process. This example shows that early vision pro-
cessing is quite computationally expensive. Table 2.1 [3] lists the complexity of
some representative early vision processing algorithms. Notice that the number of
integer and floating-point operations that takes place in the system for each algo-
rithm, as mentioned before, are bigger than the complexity listed in Table 2.1 by one

to three orders of magnitudes.

Various researchers have presented parallel implementations of vision processing
ranging from individual modules for edge detection to the entire process of the
machine vision processing. J. Little et. al from Massachusetts Institute of Technol-
ogy use the Connection Machine for edge detection and the Hough transform [4]. S.
Levitan et. al. from University of Massachusetts construct a parallel system to imple-
ment the entire process on the Image Understanding Architecture [2]. The other
examples of parallel implementation can be found in [5,6,7). Many of them employ
the single-instruction multiple-data (SIMD) structure or multiple-instruction multiple-
data (MIMD) structure, or combination of these structures such as SIMD-and-SIMD,
SIMD-and-MIMD.



2.2 Overview of Artificial Neural Networks

An artificial neural network uses a parallel and distributed information process-
ing structure consisting of processing elements, which are interconnected through the
connection wires. The schematic diagram of a typical processing element inspired by
the biological model in neurocomputing is shown in Fig. 2.2. The input signals x,,

X3, ..., Xy are provided to the processing element. The output signal is determined by
n
Zyy =f(wo+ Eowjixi ) §Y)

where wj; is the synapse interconnection weight, and f(.) denotes the transfer function
of the neuron. The output signals can branch into as many collateral connections to

other neural units.

The artificial neural network can be characterized by (1) Data transformation
structures (Networks) and (2) Learning rules. The data transformation networks can
be divided into two classes. One is the single-layer network, called associative net-
work. In this class, linear associate networks which are associated with the Hebb’s
learning law [8] and the Widrow learning law [9] and recursive associate network
such as the Hopfield network [10] are included. The other data transformation net-
work is multi-layer data transformation structures. The back-propagation neural net-
work [11], self-organization map [12], and counterpropagation network [13] are

included. Table 2.2 shows popular networks and their properties [14].

The learning rules are strongly associated with the network structures. Learning
is the process of self-adapting of the weights associated with the connections. The
first popular leaning rule, named Hebb’s leaming rule [15], which shows that the
neural networks can learn for a certain function, was presented in 1957. According
to the Hebb’s rule, if an input and output are activated at the same time, the weight-
ing between the input and output is increased. This type of learning is called unsu-
pervised leamning, which does not require reference data, targeted output data. On

the other hand, supervised learning requires the desired output data as a reference.



The simple delta rule is applied to adjust the weights, using the error between the
desired output and actual network output. The back-propagation learning is the
supervised leaning. The root-mean-square error at the output layer propagates back-
ward through the network and is used to update the weights between the layers.
Many derivatives from the simple delta rule and the back-propagation network learn-
ing are used for efficient learning rules. The counterpropagation learning, which can
be applied only to three-layer networks, combines the competitive leaning [12] and
the delta leaning rule. Another type of leamning rules is called reinforcement learning
[16], that resides between the unsupervised learning and supervised learning. In this
learning, an external observer guides the network, giving a response as to whether
the network output is good or not. The learning rule of a Boltzmann machine [17] is

based on the stochastic process, which is a simulated annealing technique.

2.3 VLSI Implementation of Neural Networks

Neural computing demands a tremendous quantity of computation and commun-
ication. Therefore, multiprocessors, array processors, or massively parallel processors
are most appealing architectures for the neurocomputer design. For hardware imple-
mentation, we need to map the neural network onto array architectures. There are
two kinds of approaches for the mapping: (1) the direct design approach, (2) indirect
design approach. From the viewpoint of implementation technologies, there exist the
analog implementation, the digital implementation, and the mixed-mode implementa-
tion. Figure 2.3 shows simple examples of implementations of the neural processing
element shown in Fig. 2.2 in an analog and a digital approach, respectively. In Fig.
2.3 (a), the weights, w;; are realized with resistors. The transfer function can be real-
ized using an operational amplifier. The digital processor has a pipeline architecture
which has been originally developed in the digital signal processor chip for signal
processing applications. Loading two data from two registers to the multiplier, multi-

plying them and accumulating the products are executed in parallel by this pipelined



architecture.
(1) Direct design:

In the direct design, the neural computing architecture directly imitates the struc-
ture of artificial neural networks. Consequently, a large number of communications
in the connectionist nets are supported directly by hardware, which tends to become a
limiting factor of the maximum size of neural networks. Most existing dedicated
neural network processors emphasize single chip implementation instead of the com-

plete system construction.

Analog circuits can process more than 1 bit per transistor and provide very high
speed processing, which compares favorably to digital circuits [18]. For real-time
early vision processing, dedicated analog processing chips offer the most appealing
alternative. The asynchronous updating properties of analog devices can provide
extremely high speed computation which are qualitatively different from those of any
digital computer [19]. The analog circuits will occupy an essential portion in electri-
cal systems because the integration of analog sensors and neural-based pre-processing

and post-processing is vital to many real-world applications.

Although the analog circuits are more attractive for the biological type neural
networks, its suitability for the connectionist type network is very limited. Compared
with digital circuits, analog circuits are more sensitive to noise, crosstalk, temperature
effects, power supply variations and so on. Since the higher the precision the more

chip area will be required, analog precision is usually limited to no more than 8 bits.

Many of the early work on the analog neural network implementation can be
found in the text book [20] written by C. of Mead, California Institutes of Technol-
ogy.

(2) Indirect design:

By indirect mapping, the original neural network structure can be converted into

multiple processor architecture. A desirable architecture would have local intercon-

nections only and the computations are performed in the pipeline fashion. To



achieve such a design, matrix-based mapping methodology is the most mature and
effective tools for neural and other information processing applications. The tool can
accommodate several key models, such as Hebbian, delta, competitive, and back-
propagation learning rules in single-layer feedback networks and multi-layer feed-
forward networks. This approach matches well with the design principle of VLSI
system, which exploits highly regular, parallel, and pipeline architecture, and reduces

the communication complexity.

One of the major concern in the indirect design approach is how to map a given
algorithm onto the hardware array systematically and efficiently. Mapping strategies
would define efficiency of the processing, complexity of communication of the data,
and the number of iterations of computation. Especially communication with exter-
nal memory is one of the most time-consuming tasks in the whole process. Including
initialization of the local memory embedded in each processor, strategy of load and
reload data between the local memory and the external memory should be carefully

designed.

The following processor networks are the most common architectures in mul-
tiprocessor systems:
(1) Common Bus Connection,
(2) Linear Array,
(3) Ring Array,
(4) 2-dimensional Mesh Array, and
(5) Hypercube Array.

From the viewpoint of control methodology, there are four categories in mul-
tiprocessor architecture;
(1) Bus-oriented architecture,
(2) SIMD architecture,
(3) MIMD architecture, and

(4) Pipeline architecture.
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Bus-oriented architecture has been widely used for many years in the conven-
tional multiprocessor architectures. This architecture uses the common bus (single-
bus, multiple-bus) connection. Although high-speed bus can make the system very
effective, the number of processors in a system will be limited to a certain number
due to limitation of bandwidth of the bus. The MARK III and the MARK IV sys-

tems from TRW Inc. employ this architecture.

An SIMD machine is a parallel array of arithmetic processors with local
memory, which has control buses and data buses. Instructions are broadcast from a
host such that all processing elements executes the same instruction at the same time.
One prominent example of the SIMD architecture is the Connection Machine by

Thinking Machine, Inc.

In an MIMD machine, each processor can execute different instructions at the
same time, communicating either using a shared memory or a message passing
scheme. This architecture can offer very great architectural flexibility. Conse-
quently, control of data and instruction become more complex and software to be

developed will be complicated and difficult to design.

Typical pipeline array architectures are the systolic arrays and wavefront arrays.
A systolic array system is a network of processors that rhythmically compute and
pass data through the system [21]. Every processor regularly pumps data in and out,
each time performing some short computation, in order that a regular flow of data is
kept in the network [22]. Wavefront array is an asynchronous, data-driven computa-
tion array.

Examples of the pipeline array architecture are the WARP hardware from

Carnegie-Mellon University, and the advanced WARP chip, iWARP, from Intel Inc.
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Chapter 3

Compact System for Neural-Based Early Vision Processing

In the last caper, we reviewed the machine vision processing and artificial neural
networks. In those discussions, we found that a combination of an analog front-end
chip which integrates a sensor and pre-processing elements and a digital neural-based
multiprocessor array which provide massively parallel communication and computa-
tion can achieve extremely high efficiency as the pre-processing system for machine
vision processing. A dedicated analog chip which integrates photosensors and associ-
ated circuitry can provide a compact and efficient interface between the real world
and the signal processing system. A digital neural-based multiprocessor supports
most essential features in the early vision processing, such as passively parallel com-
putation, efficient communication, and simplification of complexity of the algorithms
to be developed. The combination of these two chips can keep high parallelism of

processing through the whole system.

In conventional early vision processing systems, the input image are sampled by
an image sensor which can be based on solid-state CCD or MOS technologies, and
represented in electrical signal which can be either the analog voltage or current
values. The electrical signal usually follows some industrial standard such as the
PAL format for video in order to simplify the interfacing to various systems, or it
may simply be a raster scan readout scheme [23]. Analog-to-digital conversion and
image normalization are conducted on the input signal before the main processing is
performed. In real-time or high-speed processing, however, the A/D conversion stage
is crucial. Impracticality of integration of an A/D converter and each signal genera-
tor in the image sensor requires the sequential digitalization of the signals generated.
While parallel execution of different parts of the algorithm can be done using many
processors, the sequential nature of data input will limit the degree of parallelism of

the digital system to a level lower than that is achievable by the system with parallel
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data generation and input. Only the dedicated analog processor that integrates image
sensors and processing elements can eliminate the explicit A/D converter without

leading to impractically low pixel density [24].

For the multiprocessor architecture, we choose the systolic array configuration,
because its excellent properties such as modularity, regularity, local interconnection,
and pipelining, are well suited to VLSI implementation of artificial neural networks.
The systolic array architectures have the following key advantage [21]:

1. The exploitation of pipelining is very natural in regular and locally connected net-
works. It yields high throughput and simultaneously saves the cost associated with
the communication.

2. It provides a good balance between the computation and communication, which is
most critical to the effectiveness of array computing.

3. In order to support most of the connectionist models, the VLSI array architecture

appears to be most viable.

Figure 3.1 shows the system configuration for neural-based early vision process-
ing by using the analog edge detection chip and the digital neural multiprocessor chip
[25]. The edge detection chip works as an image sensor as well as the pre-processor
for edge detection. The output data are in the binary format, i.e. the output of a pixel
which has an edge is with the logic-1 value, while the pixel which has no edge is
with the logic-0 value. The output data are transferred in a group of 8 bits to the
SRAM memory for buffering data. The binary format reduces the bandwidth of the
communication bus and the required capacity of the SRAM. Compared with the con-
ventional approach of having the input image signal converted by an A/D converter
and is not processed for edge detection, the 8-bit bus to transfer the data and 8-bit
cells in the SRAM to store are required for only one pixel. In our design, while, the
8-bit bus can carry 8-pixel data and one bit cell in the SRAM is enough to store one

pixel data.
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The digital multiprocessor array performs vision processing using neural net-
work algorithm in systolic array fashion. Necessary data for computation, such as
initial weight value and the target values, are loaded from the second SRAM module,
while the input image data is fed from the first SRAM module. The second SRAM
module also stores and re-loads the intermediate results which for multiprocessor
array. The system controller can be the SPARC station which controls the pro-
cedures of the analog and digital chips and the transformation of data between the
chips.

In the next two chapters, detailed design of the analog edge detection chip and

the digital neural multiprocessor chip are described.
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Chapter 4
The Analog Edge Detection Chip

Searching for an alternative analog processing array that does not require A/D
conversion has attractive considerable attention [26, 27, 28, 29, 24, 30]. While some
analog processing arrays are inspired by their biological counterparts [26, 28], the
others are analog implementations of known algorithms that do not resemble any pro-
cessing technique used in the biological neural system [29, 24, 30]. In both cases,
analog hardware cannot be conveniently programmed as the digital processors, and is
mostly hardwired. The circuit is constructed according to Kirchhoff’s laws and the
terminal characteristics of the components embody the desired algorithm. Although
such circuit synthesis is guided by experience, and ingenuity, and the approach is ad
hoc and limited in its generality. When successfully executed, it may offer a saving
in power and enhancement in speed by orders of magnitude over the digital approach
[31].

Edge detection is the first essential step in early vision processing as shown in
the functional block diagram of Fig. 4.1. A number of algorithms for edge detection
are available in the literature. Representative algorithms among them are the Sobel

filter, the Median filter, and the Canny algorithm [32].

First the edge detection algorithm used in our chip is described. Then hardware

implementation is detailed.

4.1 Edge Detection Algorithm

Implementation of processing elements embedding with photo-sensors requires
simple algorithms in order to increase pixels density. We choose the discrete Lapla-
cian operator with a 3 x 3 window. Consider a 3 x 3 window of pixels shown in

Fig. 4.2. The Laplacian can be approximated as follows [33]:

PE _ 1
Fl g( Eij—2E;+En;) ey
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where E(x, y) represents the image brightness, x and y are coordinates, and ¢ is the

spacing between picture cell centers. Therefore,

2
ﬂ.’.a_E:L(E‘.

at & +E;jr+Einj +Ejon—4E; ;). &)

_]J

The result is zero in the region of constant brightness.

Such approximation to differential operators are used in the finite difference
solution of partial difference equations. This convolutional weight can be represented
by the stencil shown in Fig. 4.3. A stencil is a pattern of weights used in computing
a convolution, which shows the spatial relationships between the places where the
weights are applied. The stencil of Fig. 4.3 shows the Laplacian operation is
equivalent to convolution of the sequence of functions that feature a central depres-

sion surrounded by a positive wall.

Figures 4.4 shows computer simulation results of edge detection using the 3 x 3
Laplacian operator. The input images are with 256 x 256 pixels and quantized in 8-

bit gray levels.

4.2 Hardware Implementation

Our edge detection chip consists of 50 x 66 mesh-connected cells, 48 sense-
amplifiers, a column decoder, and multiplexor, and output registers. Figure 4.5
shows the block diagram of the edge detection chip. Each cell has a photosensor and

a processing element which computes the convolution.

4.2.1 Embedded Photosensor

An image focused on the chip surface is sampled by a matrix of embedded pho-
tosensors. The photosensor generates image current depending on intensity of the

input light and supplies it into the processing element within the same cell. The

-16-



photosensor is economically fabricated by parasitic vertical bipolar transistors in a
standard CMOS process, whose collector current is proportional to the light intensity
incident on the collector junction along the p-well boundary, as shown in Fig. 4.6. In
the room light environment, the output currents ranging from nano-amperes to tens of
nano-amperes are obtained, while hundreds pico-ampere currents are observed as the

dark currents.

4.2.2 Processing Cell

The edge detection algorithm described in section 4.1 can be implemented using
current mirror circuit shown in Fig. 4.7. The current induced by the photosensor is
duplicated by current mirror circuits formed with transistors M1-MS5 in two direc-
tions. Basic cell schematic is shown in Fig 4.8, which is originally proposed by C.
Chong et. al. [30]. Since the photo-current may be of a few hundred pico-amperes to
tens of nano-ampere, current mismatch is very large especially in the current dupli-
cated by p-MOS transistors. To minimize current mismatch, cascoded current mirror
circuits [34] are used. The circuit schematic of the improved cell is shown in Fig.
4.9. Figure 4.10 shows SPICE simulation results of the output of the current mirror
circuit. The photo-current is mirrored in the current mirror circuit consisting of
transistors Mnl - Mn6, Mpl and Mp2. Transistors Mp3 - Mp10 distribute the dupli-
cated currents to the four nearest-neighborhood cells. The W/L ratio of transistors
Mn5 and Mn6 is designed to be four times to generate a subtracting current. At the
drain of MnS$, currents from the four adjacent cells are merged to performed the con-

volution of the Laplacian operation. The output current is given by,
low =limj + i + lijo + 1 j = 45 4)

where /; ; is the current generated in the cell (i, j).
The presence of an edge is defined in the cell on the brighter side. In this case, the

condition for the detection of an image edge is
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where I, is a threshold value. In a simple case, it will be zero. No edge is present if

low <1y (6)

SPICE simulations have been done on the 8 x 8 sub-array, which are shown in
Fig. 4.11. The produced photocurrents are 100 pA in the dark side and 10 nA in the
bright side. The results show that edge detection is properly performed by choosing
an appropriate threshold value. The cell size is 140 um x 140 pm in a 2-um CMOS
technology. Figure 4.12 shows a selective layout of cell array and decoder circuit in

the edge detection chip.

4.2.3 Sense-amplifier and I/O circuit

To reduce delay time caused by the small magnitude of the currents, the two-
stage current sense-amplifiers are used. Figure 4.13 shows the schematic of the
amplifier. The first stage amplifier, SO, is a bidirectional current sense-amplifier
which converts the output current from the cell to a voltage values, and magnifies it
by the value of the resistor R (> 5,000 Q). The second sense-amplifier, S1, operates
as a comparator. The representation of the output data is a binary format. The thres-
hold voltage is set by external calibration at the positive input of S1. For the
moderate output currents of tens of nanoc-amperes, the time constant of a cell output
column line of one picofarad capacitance is about one microsecond [35]. Figure 4.14
shows the detailed circuit schematic of the sense-amplifiers used in SO and S1.
Transistor M3 and M, form an improved cacode stage to increase the voltage gain
and M,, operates as a resister for proper frequency compensation. The amplifier vol-

tage gain can be 100 dB.

The procedure to output the edge data is similar to that used in static RAM. To
keep high parallelism in the chip, a sense-amplifier is implemented in each column.

In the block diagram of the chip shown in Fig. 4.5, the row decoder selects one row.
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The currents are magnified according to the Laplacian weights and distributed into
adjacent cells using analog current mirror circuits. The output signals of cells in the
row arrive at the sense-amplifiers in the column. The sense-amplifiers generate the
output edge data. This process is performed with all column data but the most out-
side columns simultaneously, which supports high parallelism. The most outside
cells in four sides will experience the fringe effect, because there are no neighboring
cells outside the cell array. The input from the lacking cells are connected to ground.
Therefore the number of effective data are 48 by 64. The data are stored in a two-
stage 48 bit buffer register and arranged in 6 groups of 8 bits. The multiplexor
chooses one group from the six groups at one clock. The output data are sent in a
group of 8 bits to the buffer SRAM, which reduces the required capacity of the
SRAM because one output data occupies one bit instead of eight bits in the 8-bit
gray representation usually used in a digital processing input. The data can be read
out in 30 p-seconds. Most of the requested time are due to the response time of the
sense-amplifier. Since the time to output the data from the sense-amplifier is in the
order on tens of nano-seconds, all data in the same row are read out in about 30 -
seconds. This is valid for the case when there are 256 columns in a row, which
shows that the analog approach achieves quite high-speed processing, including read-

ing out the data.

The edge detection chip consisting 50 x 66 cells array can be implemented in a
7.9 mm x 9.2 mm, using the MOSIS 2.0 pm p-well CMOS technology. The power
supply voltages are 5 V, -5V and 0V. The total power dissipation of the chip is 2 W

when a generated current in a cell is 10 nano-amperes.
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Chapter 5
The Digital Multiprocessor Array

This chapter presents the digital multiprocessor design for machine vision pro-
cessing and artificial neural networks, which has been under development in the
University of Southern California [36]. The high-level architecture is similar to the
Touchstone Delta System from Intel Corp. [37] and the Systolic Cellular Array Pro-
cessors system from Hughes Co. [38]). The design can support the 1-dimensional

systolic ring connection and 2-dimensional mesh-connected configuration.

5.1 System Architecture
(1) Ring Systolic Array

The overall system architecture of a ring systolic array used in our system is
shown in Fig. 5.1. The host computer serves as the interface between the user and
the systolic array. It provides the problem-specific parameters, such as input patterns,
initial values, convergence-controlling parameters. The controller specifies and moni-
tors the executions in each PE and also performs loading and receiving data for each
PE. The control line is designed in a broadcast fashion since all commands which

are performed in all the PE’s are the same during each clock cycle.

(2) Mesh-Connected Array

A mesh-connected architecture requires two-way communication between each
PE and all of its nearest neighbors, as shown in Fig. 5.2. The I/O operations occur
on the right-most and left-most columns. The top and bottom rows inside the proces-
sor array are connected in a wrap-around fashion. The controller is used to control
all of the operations in mesh-connected processors. The system memory is a two-
port memory which is shared by the processor array. It receives data and instructions

from the host computer when the host call is received by the array controller. It also
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loads data into the host computer following system call. Data are only transmitted to

this system memory from the right-most and left-most columns or vice versa.

5.2 Algorithm Mapping

Various algorithms for early vision processing and neural network applications
can be mapped onto the multiprocessor array. For example, the mapping of the
back-propagation neural network and the competitive learning in a self-organization

network onto the mesh-connected PE array are described.

5.2.1. Back-propagation Neural Networks
(1)The Feedforward Phase

The calculations during the feedforward operation in an artificial neural network
are mainly matrix-vector multiplication:

ny

S+ 1) = X wyd + Da;(h) (1)
j=t
a;(l +1)=f(5:( + 1),6;(! +1)) )

where ! represents the layer number. The table-look-up method is used for dealing

with the nonlinear transfer function.

(2) The Back-propagation Phase

The data propagate from the output layer back to the input layer. The weight
updating rules are the following:

Aw( + 1) =n8;( + Da; (1) 3
Wi+ ) = wiil + 1) - Aw( + 1) 4)

The calculations for §;’s are different in the output layer and in the hidden layers.

For the output layer:
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8;(1) = (5(1) — a; (INS5(S; (1) &)

For each hidden layer:

N
k=1
8;(1) = &;(07"(S;(). ™

Equations (5) and (7) are executed by one column of PEs and (3), (4), and (6) are
executed by the whole matrix of PEs. 9; is the error term in the present layer and §,
is that in the next layer. Each processing element has the same value of n which is
the updating rate in the data cache. Figure 5.3 shows the mapping of the back-
propagated phase into the PE matrix. The right block is for updating weights
between the output layer and the hidden layer. The left block is for updating weights
between the hidden layer and the input layer. For a back-propagated neural network
with more than one hidden layer, the left block can be repeated by the number of the
hidden layers. In this case, the left block represents operations for updating weights

between two hidden layers.

The host machine receives ¢; — a; and calculates §;’s according to (5). At the
right block, a;’s propagate leftward and §;’s propagate upward. After receiving a;
and §;, the PE calculates Aw; and updates w; by using (4). Notice that the §;’s at
this block are also §,’s for the left block. Therefore, before §; moves upward, the PE
also calculates 8,w,; and accumulates it with the 8,w,; from the right PE and moves
it leftward. Finally, the ¢;’s are obtained at the leftmost column of PE matrix and is

sent through the delta function generator for calculating §;’s of the hidden layer.

At the left block, 8;’s move leftward and a;’s move upward. If there is only one
hidden layer, each PE only performs (3) and (4). On the other hand, if there are more
than one hidden layer, each processing element has to perform (3), (4) and (6), as the
processing elements in the right block do, for preparing the §;’s for the following

hidden-layer weight adjustments.
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5.2.2. Self-Organization Neural Networks

Vector quantization has emerged in recent years as a powerful technique that

can provide large reduction in bit rates while preserving the essential signal charac-

teristics. The Kohonen self-organization feature map and the frequency-sensitive

learning have been shown to be quite effective for vector quantization codebook

design [39]. The mapping of the self-organization learning algorithm onto the mul-

tiprocessor chip is described as follows:

(D

)

3)

(4)

&)

Input vectors x;, k =1, 2, ..., n, to n rows of processors are applied to the pro-

CESsors.

Weight vectors, which are also called code vectors, c¢;’s moves downward to
perform distortion calculation E; = d(x; c;) for all output neural units. An index

pointer p, indicating the current winner also passes to the right processor.

After calculations in the k—th row have been completed, p,(m) indicated the
output unit in the first row with the smallest distortion. Label this unit as the

winner and its weight vector as c;".

Adjust the selected weight vector
¢t + 1) = ¢ (t) + eO)x, (1) — ¢ ()]

and write it back into the system memory, where t is the training time index.

Repeat steps (3) to (4) for all other rows.

Notice that the adjusted weight vector ¢; (¢ + 1) will not be applied to the on-going

processing in the other rows. It only affects the next training cycle. The value

selected for e(¢r) does not depend on the magnitude of the data. The training rule

moves the weight toward the training vector by some fractional amounts, e(z). Typi-

cally, 0 < &(t) <1 and the e(¢) value decreases as training progresses.
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5.3 Processing Element Design

Figure 5.4 shows the building blocks of one processing element. After the ini-
tialization phase, the initial parameters will be down-loaded into the system memory.
One on-chip data cache memory with 256 words of 8 bit data is included in each PE
to accelerate data processing. The memory management unit determines memory
allocation policies which include block replacement schemes, fetch and main memory
update strategies. The memory management unit is shared by all PEs and is inside

the controller. Four I/O ports available for four-directional communication.

The detailed floor plan for a single PE is shown in Fig. 5.5. The data bus is 8
bits and address bus is 16 bits. Addresses from the external address bus are passed
through the peripheral address bus to both the data cache and the next processor.
High level language from the host computer are first compiled into macroinstructions
which are sent to the controller. The controller decodes these macroinstructions into
microinstructions and broadcast them to all PEs via the 43 Mcode lines shown in Fig.
5.4. The register bus is separated into four buses, REG1, REG2, CPU1, and CPU2.
A multiplexor is used to multiplex these four buses into the internal data bus. When
a data is to be sent from the data cache to the register file, or vice versa, CPU1 bus

is used.

The execution unit in each PE includes a 8-bit multiplier and a 20-bit adder.
The two operands of both multiplier and adder can come from the CPU1 and CPU2
buses, or the REG1 and REG2 buses depending on the addressing mode. One
operand is from the CPU1 or REG1 bus only, the other operand is from the CPU2 or
REG2 bus only. The 16-bit output of the multiplier is sent to the register file
through the REG1 bus only while the 20-bit result of the adder is sent to the register
file through the REG2 bus only.

The system clock is synchronized for the processor array. The global bus clock
cycle and the internal bus clock cycle are faster than 100 MHz and 200 MHz, respec-

tively. Each PE requires a total of 65 I/O lines for one-direction ring connected

24



communication.

A two-level microprogramming is used to speedup the network response
because most operations are repetitive and commonly used. For a particular program,
a systolic procedure is first implemented by a high level language in the host com-
puter, then is sent to the array controller. In order to increase the processor speed,
the internal bus is segmented into multiple local bus lines. Therefore, more steps can
be overlapped because they do not occupy the same bus. The speed of the processor
is limited by the multiplier. The Wallice multiplier is used in our design. Since the
Wallice structure can be separated into 4 x 4 multiplier blocks and Wallice tree
blocks, a pipeline procedure can be added. A fault detection and recovery module in
the controller is used for detecting the faulty processor, correcting and recovering

from errors by spare processors.

A prototype ring-connected 20-PE chip is designed on an area of 19.3 mm x
20.9 mm using the 0.5-pym CMOS technology from the VHSIC (Very high speed
integrated circuits) program of TRW, Inc. An simulated speed is 2 billion calcula-
tions per second. The fabricated chip will be available in the Fall 1992 semester for

hardware testing and system integration.

Figure 5.6 shows the relative performance of our processor array and the perfor-
mance requirements of the Grand Challenges on High-Performance Computing
[40,41].
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Chapter 6

Conclusion

Machine vision processing is one of the most computationally intractable
domains of artificial intelligence. In this thesis, an attempt to implement the early
vision processing system using the analog edge detection chip and the digital neural
multiprocessor array chip has been shown to be quite effective. The analog intelli-
gent sensor can provide much more parallelism than any other digital implementa-
tions and can reduce the hardware size. The artificial neural network approach to the
early vision processing is rather exciting, because the neural networks and the vision
processing have similar properties, such as massive parallel computation and com-

munication.

An analog edge detection chip is presented in Chapter 4. It accommodates 50 x
66 pixels on a silicon area of 7.9 mm x 9.2 mm in a 2-um CMOS technology. The
chip can provide binary format output which are suitable for digital processing to the
digital neural multiprocessor described in Chapter 5. The digital neural multiproces-
sor consists of a 20-ring-connected processing elements, which is implemented in sil-
icon area of 19.3 mm x 20.9 mm in a 0.5-um CMOS technology. The computational

capability is 2 billion calculations per second.

Finally, we believe that the mixed-mode neural network based system for early
vision processing presented in this thesis is very important one step to the construc-

tion of machine the vision processing system.
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Fig. 1.1 System configuration for neural-based vision processing using
an analog edge detection chip and a digital multi-processor chip.
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Fig. 2.1 Multplr level structure of vision processing.
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Fig. 2.2 Typical neural processing element model.
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(a) analog implementataion. (b) digital implementation.

Fig. 2.3 VLSI neuron model
(a) analog implementataion. (b) digital implementation.
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Fig. 3.1 System configuration for neural-based early vision processing using
an analog edge detection chip and a digital multiprocessor array chip.
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Fig. 4.1 Early vision processing.
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Fig. 43 Stencil of the convolution weight (3 x 3 Laplacian operator).
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Fig. 4.4 Computer simulation results of edge detection using the Laplacian operator.
(a) girl image: Upper: Original image Bottom: Edge image
(b) baboom: Upper: Original image Bottom: Edge image
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Fig. 4.5 Block diagram of the edge detection chip. The 50 x 66 cells, a decoder,
48 sense-amplifier, buffer regsiters, multiplexer, and output registers are
included.
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Fig. 4.6 Photosensor using parasitic biolar transistor in a p-well CMOS technology.
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Fig. 4.7 Current mirror circuit.
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Fig. 4.8 Circuit schematic of the basic cell.
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Fig. 49 Current mismatch improved circuit schematic.
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Table 2.1. Complexity of Algorithms in Early Vision Processing

Algorothm Complexity
Edge Detection o( 52)
Edge Linking o(2)
Contour Extraction o( ‘% )
Linear Approximation O(nl )

where i:i x i pixels image, I:avegrage contour length
n: number of contours

Table 2.2.  Major Neural Network Models and Properties

Neural model | Primary applications Swrengths Limitations
P Typed-character Oldest neural Cannot recognize
erceptron recognition network complex patterns
Retrieval of Does not leam,
Large-scal . ’
Hopfield data/images in “f;a st;::ne weights must
from fragments be set
Multilayer Simple network, .
Pattern cannot recognize
g::‘;g;:’ recognition z:rc gen;:’:lim:han complex patterns
. . Supervised
Back Wide range: speech Most popular, . training with
Pro . synthesis to loan - work well, and is
pagation lication scorin simple to learn abundant
app g P examples
Simple network
Boltzmann Pattern recognition that uses noise Long training
Machine for radar/sonar function to reach time
global minimum
. Better performance
af;nizin M;I::\);Ec:ll‘ :c ion than many Extensive
e & h algorithmic learning
Map onto another .
techniques
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