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Abstract

Several issues on signal sampling and wavelet coefficient computation for a contin-
uous time signal with biorthogonal wavelet bases are studied in this research. Discrete
wavelet transform (DWT) is often used to approximate wavelet series transform (WST)
and continuous wavelet transform (CWT), since they can be computed numerically. We
first estimate the approximation error of computed DWT coefficients by using the Mal-
lat and Shensa algorithms, and show a procedure to design optimal FIR prefilters used
in the Shensa algorithm to reduce the approximation error. Then, we examine a specific
prefiltering process by which the computed DWT coefficients can be made exactly the
same as the WST coefficients for signals belonging to the wavelet subspaces. A formula
characterizing the aliasing error resulted from general signals with such a prefilter is
also derived. Finally, numerical examples are presented to show the performance of the
optimal FIR prefilters.

1 Introduction

Wavelet transforms have recently recognized as useful tools for various applications such as
signal and image processing (1], [2], [3], (6], [8], [10], [11], [12], [16], [18), [23], [24], [27], [30],
(32], [33], numerical analysis [4], (15], [17] and physics [22]. There are three types of wavelet
transforms being discussed in the literature, namely, continuous wavelet transform (CWT)
(12), wavelet series transform (WST) [9], [10], [13], [18], [19], [20], [21] and discrete wavelet
transform (DWT) [25], [30]. These wavelet transforms based on biorthogonal wavelet bases
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are briefly summarized below. For a more detailed discussion on definitions, properties and

advantages of biorthogonal wavelets, we refer to [5), [7], [28] We will use the notation
. . . - t—b
fin(t) & PPt —k), jkeZ, and fop(t)=lal/2f(—), a#0,bER.

Let 1(t) and 9(t) be, respectively, a real wavelet function and its dual such that {9;x(2)};
and {%;x(t)};+ form a biorthogonal wavelet basis in L?(R). Then, for f(t) € L3(R), its
CWT with respect to the wavelet 1(t) is defined as

CWT{f(t);a,b} £ /_ °; F(O)bap(t)dt,

where a and b are called the scale and time parameters, respectively. The WST of f(2) is
obtained by sampling its CWT in the scale-time plane (a,b) with the so-called “dyadic”
grid, i.e.

WST{f(t);j,k} = CWT{f(t);a=2",b=k277}, j,k€ Z.

Thus, the WST coefficients, also denoted by b;, can be determined by
o0
bia WST{(t)5k = [ fOwn(t)dt, k€ 2. (L.1)
-0

Moreover, f(t) can be reconstructed via
F(&) = 32D biabir(t).
j ok

If the t as well as parameters (a, ) all take discrete values, which is recognized as a natural
wavelet transform for the discrete-time signal f(mAt) with m € Z, the resulting transform
is called the DWT of f(¢). It is clear that only the DWT coefficients can be computed
numerically, and the CWT and WST coefficients have to be approximated by the DWT
coefficients in practice.

Several numerical algorithms have been proposed to compute the DWT coefficients such
as the Mallat algorithm [9], [18], [19], [20], [26], the “4 trous” algorithm of Holschneider
et al. [14], and the Shensa algorithm (23], {25} as a unified approach for the former two.
The relationship of the Mallat and Shensa algorithms can be explained as follows. Let the
sequence z[n] be obtained by sampling a function f(t) € L%(R), i.e. z{n] = f(nAt). Mallat
[20] proposed an effective recursive algorithm to compute the DWT of z[n] by implementing
a recursion with cascaded quadrature mirror filter banks [29]. Shensa [23], [25] suggested

to prefilter the sequence z[n] by which the z[n] is convolved with a sequence g[n] to obtain
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a new sequence 2’[rn] and then the same recursion is applied to z'[n]. Thus, the Mallat
algorithm can be viewed as a special case of the Shensa algorithm with g[nr] chosen to be
the unit impulse sequence §[n].

Efficient implementations and detailed computational complexity analysis for these al-
gorithms were discussed by Rioul and Duhamel [23]. However, an important issue is the
numerical accuracy of the computed DWT coefficients b;-'k with respect to the true WST
coefficients b;x as defined in (1.1). We [34], [35] have analyzed the error between b;x and
b x for the case that the wavelet basis ¥;x(?) is orthonormal, i.e. ¢;x(t) = P;x(t). In this
research, the analysis is extended to the general biorthogonal case.

This paper is organized as follows. In Section 2, we review biorthogonal wavelet trans-
forms and the Mallat and Shensa algorithms. An upper bound for the error between b; «
and the computed b}, by the Shensa algorithm is derived in Section 3 (see Proposition
3). Based on the error bound, we discuss the design of optimal prefilters for the Shensa
algorithm in Section 4. Note that the computed DWT by the Shensa algorithm can also be
interpreted as the exact WST of another continuous time signal f’(¢) obtained from z[n]
through a D/A converter x(t). The optimal D/A converter is studied in the same section.
Then, we show that there exists a class of signals whose computed DWT coefficients are
exactly the same as the WST coefficients (see Propositions 5 and 6), and derive a bound
for the aliasing error resulted from general signals not belonging to this class in Section
5 (see Propositions 8, 9 and 10). Numerical examples are given to demonstrate that the
Shensa algorithm with optimal prefiltering is significantly better than the Mallat algorithm

in Section 6.

2 Review of biorthogonal wavelets and discrete wavelet trans-
form

2.1 Basic properties of biorthogonal wavelets

We review briefly basic properties of biorthogonal wavelets in this subsection. Most material
covered can be found in the book by Chui [5]. Consider a real mother wavelet function
¥(t), the associated scaling function ¢(t), and their dual functions ¥(t) and 4.S(t) such that
{¥ix(t)}; rez and {$;x(t)}; ez form a biorthogonal wavelet basis in L%(R). Let the Fourier
transform of f(t) € L2(R) be denoted by

fw) = /_ Z f(t)etdt
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and
Hw)=) hne™™ and Gw)=)_ gne™™
n n

be the associated filters of ¢(t) and 1(t), respectively, such that they satisfy
. w, 5 W - W, 2 W
¢w)=H(Z)é(3), and  ¥(w)=G(5)(3)-
Similarly, we associate the following dual filters

Hw) = Z hne=™  and G(w)= E gne~ ™

with the dual wavelet and scaling functions 9(t) and ¢(t), respectively. One can derive the
following well known properties for biorthogonal wavelets (see Chapter 5 in [5]):

Hw) = ﬁ H2 ), and $w)= ﬁ H(2 ), (2.1)
k=1 k=1
{ Hw)AW) + Gw)Gw) =1, 22)
Hw)H(w + 7) + Gw)G(w + 7) = 0,
Y ¢(w + 2km)H(—w — 2k7) = 1, (2.3)
k
and .
$(w) = #) : (2.4)
Ek:-oo |¢(w + 2k7r)|2
Note that one possible solution for the second equation of the system (2.2) is
Gw)=e“Hw+r) and Gw)=e“H(w+r), (2.5)

which is often imposed to simplify the filter desgin procedure.
Let (V;) ;ez denote the multiresolution wavelet subspaces in L%(R) corresponding to the
dual scaling function ¢(t), and f;(t) be the projection of f € L3(R) in V; for an arbitrarily

fixed integer J. In mathematical terms, we can write

F1@0) =Y cardn(®) = 30 bindin(t), (2.6)
k i<d &
where -
ik = /_ - f(®)dai(t)dt, (2.7)



and b; is defined in (1.1). The coefficients b;x with j < J can be obtained from c; via
Cia1k = V2 Y hn_zkCjpm, (2.8)
n

and

bj—1k = V23 gn-2kCipn. (2.9)
n

forj=J,J-1,--.,J.+ 1. Besides, one can reconstruct cs from cj_x and b;x, J. < j < J,
via

Cim = V2 (Z ho-2k€i-1k + Zén-zkbj-l,k) : (2.10)
k k

2.2 Mallat algorithm

We see from (2.8) and (2.9) that coefficients b, are related to ¢jx through two filters H
and G recursively. By examining the definition of cjx in (2.7) and the lowpass property of
the scaling function ¢(t), one concludes that c;y is close to f(k/2”) for sufficiently large J.
Thus, it seems natural to replace ¢z with f(k/27). To compute wavelet coefficients with
the Mallat algorithm, we choose

i) & 2ln] = S(53).

and apply the recursion

M, =V2 E ha-akcih), (2.11)
SA—,[])I‘ - ‘/-Zgn-ﬂc Jn ’ (2'12)

forj=J,J-1,---,J.+ 1. The bS'.k in (2.12) is called the wavelet coefficients obtained
from the Mallat algorithm. The reconstruction formula (2.10) is also applicable for the
(M). The recursion in (2.11) and (2.12) stops at

j = J. which corresponds to the coarsest resolution appropriate for a certain application.

reconstruction of c(M) from c(M) and b

Without loss of generality, we let J. approach to —oo so that the Mallat algorithm defines
the discrete wavelet transform (DWT) for the sequence z[n] [23], i.e.

DWT{z(n); j,k} = k)$ i< J,keZ.

The computed coefficients bt k) are in general not the same as the WST coefficients b;x as
given in (1.1). Their difference will be examined in Section 3 as a special case of the Shensa

algorithm.



2.3 Shensa algorithm

To compute wavelet coefficients with the Shensa algorithm, we first perform a prefilering
on the sampled signal z[n) = f(n/2”) to obtain a new sequence z'[n], i.e.

&'[n] = Y z[m]q[n — m}, (2.13)

m

and then apply the recursion (2.11) and (2.12) to z’[n]. The DWT coefficients of z'[n],
denoted by
Mol s 21 2 p(8)
DWT{'” [n];Jak} - bj'ka J< J’k € Z,

are called the wavelet coefficients obtained from the Shensa algorithm. Note that the
computed wavelet coefficients bg-i) are the WST coefficients of a certain continuous-time

signal f'(t). That is, we can write

295K = [ fentat (2.14)

so that
27925 = WST{f'(t); 5, k}.

It has been shown in [23] that

Fit)= Zz[n]x(?’t - n),

n

where x(t) is a D/A converter (or interpolant) and related to the prefilter coefficients g[n]
via

gln] = / : x(t)9(t - n)dt. (2.15)

It is clear that the only difference between the Mallat and Shensa algorithms is the
prefiltering (2.13) adopted in the Shensa algorithm. Once initial sequences z[n] and z'[n]
are given, the same recursion formulas (2.11) and (2.12) are applied for both algorithms.
Thus, the Mallat algorithm can be viewed as a special case of the Shensa algorithm where
g[n) is the unit impulse sequence §[n}, and we will only examine the error between b;; and

2-J/ 265-:? for the Shensa algorithm in the following section.

3 Error estimation of computed wavelet coefficients

We see from the previous discussion that the difference between the WST coefficients {b;}
and the DWT coefficients {2~/ 2b§i)} is resulted from the difference between the input
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sequences cj in (2.7) and 2~7/2z'[k]. This can be written as
ek & bjp — 279/ = DWT{cyp ~ 27772 [n); , k}. (3.1)
An estimate of the difference between {cjt}rez and {2-7/2z[k]}rez is given below,

Proposition 1 For k € Z,

cop — 2792k = Lk / * F(—2w)(d(w) — Q(w))e~*dw (3.2)
, o : .
where

Q(w) =Y _ qln]e™

Proof: See Appendix A.1. O
In particular, if f(t) is 2/7 band-limited, i.e., f(w) = 0 for |w| > 277, we have the following

corollary.

Corollary 1 If f(t) is 2/n band-limited,

J=- T u
Sleas -2 = T [ 2o - b, (3)

k

Proof: When f(t) is 277 band-limited, (3.2) becomes
J/2 T . . .
Crk — 2'-’/23'[,:] = _22_1r_ /_ﬂ, f(_2-’w)(¢(w) _ Q(w))e“k“’dw,

for all k¥ € Z. Then, by using the Parseval equality, (3.3) is proved. O

Equation (3.3) gives a precise formula for the error between ¢z and 2~//22[k] in terms
of the prefilter characteristic @(w), which therefore plays a key role in reducing the error e; i.
By using (3.3) and (2.15), one can also formulate the error in terms of the D/A converter

x(t) as follows.

Corollary 2 If f(t) is 2/7 band-limited,
2J—1 T . “
Sleas - 2722k = Z= [ 12 0)PA@) - f)ido,  (3.4)
% -7

where
A(w) S Z H(w + 2mm)%(-w — 2mn). (3.5)



A direct consequence of Corollary 2 is that if the D/A converter x(t) is chosen to be the
sinc function, ¢y is exactly the same as 2~9/2z'(k] for all k so that b;; = 2"’/2b§-,sk) for
J < J,k € Z. However, for x(t) to be the sinc function, the corresponding prefilter sequence
g[n] as given in (2.15) has an infinite duration.

Based on the error estimate in terms of a filter characteristic Q(w) as given in Proposition
1, we are ready to estimate the error e; between b;x and 2~/ 2b_$-3? . The key is the analysis
of the recursive procedures as given by (2.11) and (2.12). Let s[nr] be an arbitrary discrete
sequence used as the input to the filters H(w) and G(w) so that it is decomposed into an

approximation sequence a[zn] and a detail sequence d[n]:
a[k] = V2 Y hn_aslnl, (3.6)
n
and
dlk] = V2 gn—2k5[n). (3.7)
We have the following proposition. "

Proposition 2

Y- la[n}l? + 3 1d[n]l* < Cmax ) Is(n)I,

Comax = max_(|H@)I* +1G(w)P [Re(H)H (w + 7) + GL@)G(w + )

) + we[gr%rﬂ]

w€[-m,x)
(3.8)
In particular, if
|H@w)? +|GW)I? = 1,
{ Re(H(DH(S +7)+ GDG(§ +m) = 0, WL (3.9)

then

3 lafn)? + 3 ld[]? = |sr]l. (3.10)
n n n
Thus, the decomposition (3.6)-(3.7) preserves energy.

Proof: See Appendix A.2. O

For othorgonal wavelets, since H(w) = A(w) and G(w) = G(w), (3.9) holds as a direct
consequence of (2.2). However, the identity (3.9) in general fails for biorthogonal wavelets
so that the decomposition process does not preserve the energy and it is difficult to derive
a precise error formula for the norm of e;« as done in [35]. We will instead derive an upper

bound for the error estimate.



Proposition 3 If f(t) is 2/n band-limited, then

- s 2"'
3 les-1k—2 J/%‘,_’”|2+z:|e1-lk| < Crmax If( -270)?1Q(w) - (w)|?dw,
k
(3.11)
and
ij lej—1xl* < cmzk; leju = 2722, for j< T -1, (3.12)

where e; 1 is defined in (3.1) and Cyax i3 given in (3.8). Furthermore, if (3.9) is true, then
> Yhhie- 2R = 2 [T foiew) - dllde. (3.19)
i<Jd &

Proof: This proposition can be derived directly from

2_J/2c§'§)1,k \/izn hn—2k(c_1'n - 2—J/2 ;s)),
-1k = V2L, gn-2k(cjn — 272

Ci-Lk = (3.14)

(3.4) and Proposition 2. O
By recursively applying the error bound (3.12) to (3.14), we obtain another error bound
for computed wavelet coefficients with respect to a 2’7 band-limited signal f(¢) and j < J,

ie.
i = ik skl S Cmax 0 w)*1Q(w) — ¢(w)| dw. (3.15)
k -

By examining (3.13) and (3.15), we may conclude that for a signal with energy concentrated

in frequency band [-277,277], the integral term
T . s
C1a@ = [ 1F(-20)1Q(w) - $w)Pdo (3.16)
is the dominant term of the error. Thus, it is natural to minimize Cy4(Q) for the design of

prefilter Q(w) to reduce the error e; .

4 Optimal FIR prefilter design for Shensa algorithm
4.1 Determination of optimal FIR prefilter

In this section, we consider the determination of the optimal filter g,[n] (or Q,(w)) which
has a finite length and minimizes the cost function Cy4(Q) as given in (3.16). To do so, let



us expand Cy 4(Q) as a function of g[n] as follows.
Cro(@ = [ I-20)PI T alnle™ - §w)
AY ¢*[n] - Y Bamalnlglm]+ ) _ Cugln] + D,

n<{m n
where
w -~
A= [ (-2, (4.1)
-
el -~
Bum = 2/ |f(~27w))? cos((n — m)w)dw, for n # m, (4.2)
-7
Co= [ 1F(-2"w)PRe(B(w)e ), (43)
and
T ~ -
D= | 2w)Pidw)Pde. (4.4
The solution of the above problem can be solved from the following equations:
0C14(Q)
— 2 =0, forn € 2. 4.5
Balr] 49

Let the prefilter be an FIR filter of length N with filter coefficients g[n] = 0 for n < Ny
and n > Ny and N2 — Ny = N > 0. Then, with (4.5), one can show that the optimal g,[n],
N; € n €< Ny — 1, can be solved from the following linear equations:

TIQO = Cl, (4.6)

f = 24, n=m,
= —Bnms n # m,

Cl = (—CN“ _CN1+I7 R} _CN2—2’ _CNz—l )t’

do = (9[N1], @o[N1 + 1], -+ -, o[ N2 — 2], go[ N2 — 1])’,

and A, B,,,, and C,, are defined by (4.1), (4.2) and (4.3), respectively.

For some applications, it may be preferable that the prefilter does not depend on a signal
while some partial knowledge of signals is available, say, the rough shape of signal spectra.
To compute the WST coefficients for this class of signals, we may adopt a procedure using a
nonnegative weighting function F(w) to replace the term | f(~2?w)|? in (3.16). For example,

consider
Fw)=e"",a>0. (4.7)
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where the parameter a can be adjusted according to different applications. If the input signal
is known in advance, it is natural that the error bg:? resulted from the signal-independent
optimal prefilter is larger than that resulted from a signal-dependent optimal prefilter. Their

performance comparison will be given in Section 5.

4.2 Determination of the optimal D/A converter

In Section 4.1, we discussed the optimal prefilter g,[n] with a fixed length N minimizing
the cost function Cy,4(Q). In this section, we will examine the optimal D/A converter x,()
associated with the optimal prefilter. Recall (2.15) for the relation between x(t) and g¢[n).

Now, we define
q(s) = / x(t)¢(t — s)dt, s€ R

so that g[n] = g(n) for all » € Z. In other words, ¢(s) is a continuous-time signal which
interpolates ¢[n] at interger points. Let §(w) be the Fourier transform of ¢(s). Then, we

have
§(w) = %(w)$(-w), w € R. (4.8)
Thus, given ¢(s), X(w) can be solved if ¢(—w) # 0.

In the following, we assume that the scaling function satisfies
$(w) # 0, for |w| < =, (4.9)

which is equivalent to
H(w) #0, for |w| < 7/2
due to (2.1). The scaling functions of most common wavelets satisfy (4.9). One possible

choice of ¢(s) is

a(s) = Yl 1‘"’""’" (4.10)

(s -
Since there is only a finite number of nonzero coefficients in ¢[n}, ¢(s) in (4.10) is a = band-

limited signal so that (4.8) holds for w € [—,7]. This implies that, with respect to the
optimal g,{n), an optimal D/A converter x,(t) can be obtained from its Fourier transform

Qa(_w)
(-w)
where X[ 4j(w) denotes the indicator function which is equal to 1 when w € [a,b) and 0

Xo(w) = X[-Tr.ﬂ'l(w)7 (4.11)

otherwise and Q,(-w) = ¥, ¢o[nJe~™~. Thus, we prove the following proposition.
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Proposition 4 For the optimal prefilter go[n] in (4.6), the x,(t) satisfying (4.11) is a
corresponding D/A converter in (2.15) for the Shensa algorithm.

It is worthwhile to comment that the x,(t) satisfying (4.11) is however not the unique
solution to (2.15) for a given g,[n].

5 Sampling and aliasing error estimation
5.1 A sufficient condition for error-free WST coefficient computation

We showed in Section 3 that the WST coefficients of a 2’7 band-limited signal can be
exactly computed by using the Shensa algorithm with the interpolant x(t) being the sinc
function. In this subsection, we present another class of signals whose WST coefficients can
be exactly obtained from the DWT of their samples. In the following, we assume that the
dual function ¢(2) is real and continuous and satisfies

a). $(t) = O(Jt|"1~¢) as t — +oo, ¢t € R,

b). d(w) = ¥, $(w + 2k7) # 0,w € R.
Let {V;};cz be the multiresolution analysis of L*(R) corresponding to #(2), i.e., for each
jeZ,

V; = closure{linear span{d;r() : k € Z}}.

Then, the Walter sampling theorem [31] for orthogonal wavelet subspaces can be easily
extended to biorthogonal wavelet subspaces. The generalized sampling theorem is stated
as follows.

Proposition 5 Let the dual function #(t) be real and continuous, and satisfy the above

conditions (a) and (b). Besides, the interpolant x(t) has the Fourier transform

#(w) = {g(“j’,—)) (5.1)

and 3, | f(n/27)]? < 0o for some integer J. Then, f(t) € V; if and only if

=3 f(2l,)x(2’ t—n). (5.2)

For the rest of this section, we assume the interpolant x(2) of the form (5.1). Based on

Proposition 5, we have a straightforward corollary.
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Corollary 3 If f(t) € Vj for some integer J > 0, then the WST coefficients of f(t) can be

ezactly computed from the Shensa algorithm with the scaling function ¢(t), that is,
WST{f(t); 4, k} = 27/ DWT{2'[n;5,k}, j < J,k € Z.

Since V; approaches L2(R.) as J goes to infinity, V; provides a suitable model to approx-
imate L2(R) for large J. However, it is in general difficult to verify the condition f(t) € Vy
for a given finite J so that Proposition 5 has its limitation in practice. We now present a

condition which is more general and easier to verify.

Proposition 8 If the interpolant x(t) satisfies (5.1), then the following two statements are
equivalent:
(i) f(t) € L}(R) satisfies the condition

® o od 1\ -ikw
/mf(-z W) = gl =0, VE €T, (5.3)
(ii) The WST coefficients of f(t) can be exactly computed from the Shensa algorithm with

the scaling function §(t), i.e., bjx = 27/, j < J,k € Z.

Proof: See Appendix A.3. O
The following proposition tells us that condition (5.3) in Proposition 6 is more general

than that given in Proposition 5.

Proposition 7 If f(t) € Vs, then f(t) satisfies (5.3). But, the converse is not true in

general.

Proof: See Appendix A.4. O

5.2 Aliasing error estimation

For a general signal f(t) not necessarily satisfying (5.3), b;x may be not equal to 2~/ 2b§i)
even if x(t) is of the form (5.1). It is because that the aliasing error f(¢) — f'(¢) may occur

where

£ = X (@t = k).
k

In the following, we always assume that ¥, | f(k/27)]? < oo to guarantee f'(t) € L*(R).
The objective of this subsection is to estimate ||f — f’||. To do so, we first need a result
proved in [36]. Let Uj(¢€) be the signal set

Us(e) & {f(t) € L’(R): _/R |f(w)Pdw < 62}- (5.4)

—[-27 7,27 7]

13



Then, we have the following property.

Proposition 8 If f(t) € Uj(¢) for some € 2 0, then

Bilf,6,8) - (1+ C)ome < I - £l < Bu£,6,8)+ (14 C) =,

-1 /7 . 2 /
B4 = 2= ([ 1 0ra - edona) . 69)

1/2

where

C = E |(w + 21:11')|2 ma.x Z |¢(w + 2k1r)|2]

wG[—n’,

= max ¢( ) max ¢(w) , (5.6)
we[—w,w] ¢(w) w€[=m,7) ¢(w)

and f3(t) is the projection in (2.6) of f(t) in Vj.

Proof: See the proof of Theorem 1 in [36]. O
Since {x(2't — n)}, is a basis of V; (see Walter [31]), we know that f(t) € V;. We
decompose the error || f — f’|| into two parts: the high resolution error || f — f7]| and the low

resolution error ||f; — f'||- If the wavelet basis is orthonormal,
Wf =12 =Nf = £l? + 11 = £
We now state an upper bound result for the error estimate.

Proposition 9 If f(t) € Uj(¢) for some € > 0, then
If = £l € Bi(f,,8) + C1Ba(f,6,8) + (1 + C)——\/12=1;e, (5.7)

where By(f,$,d) is defined by (5.5),

— o . 271/2
Bl ) = [ [z [ i (40 - 525) -'*“dw] .69
rall B

cl=( Z|¢(w+2kw)|2)m=( max (‘")) , (5.9)
& wel-r] §(w)

and C is the constant in (5.6).
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Proof: See Appendix A.5. O
When f(t) is 2/7 band-limited, we know from (5.4) that ¢ = 0 so that the above
proposition can be simplified.

Corollary 4 If f(t) is 2/n band-limited so that f(t) € Uj(e€) with € = 0, then

If = £'ll € Bi(f,,8) + C1B3(f, 6, ), (5.10)
where B, (f,$,d) is defined by (5.5),
2.]-1 1 Eg 1 2 172
N /_ i £l _od 2] _
B3(.f$ ¢,¢) - p |:27l' /_“ 'f( 2 w)l ¢(w) 5(—(») dw] )

and C; is the constant in (5.9). Moreover, if the wavelet basis is orthonormal, then C; = 1

and

Vf = FII? = (Br(£, 4, 9))* + (Ba(f, 6, $))*

Note that the upper bound in (5.7) involves two functions B,(f, ¢, ¢) and Ba(f,¢,9)-
For biorthogonal wavelet basis, it is possible to derive another upper bound for the estimate
of ||f = f'|| involving By (f, ¢, #) only as stated below.

Proposition 10 If f(t) € Uj(e) for some € > 0, then
If -l £Q+C2)Bi(f,9,0)+ (1 + C2)(1 + C)—-\/12.—_7;¢, (5.11)

where B, (f,$, ) is given by (5.5),

2 % 1/2
- (S l$w + 2km))2 d(w) 1 5.12

© = A i3w)] Ha\dw) Ben P
and C is the constant in (5.6).

Proof: See Appendix A.6. O
Besides, an immediate consequence of Proposition 10 applied to 277 band-limited signals

can be stated as follows.

Corollary 5 If f(t) is 2/n band-limited, then

If = £l £ (1 + C2)Bu(f, ¢, 9)- (5.13)

15



Finally, since
32 i - 27 = Y 3 Ibsx = WST{f ey, k"

i<d k i<J k
= I / F(@)p;p(t)dt - / f()bix (t)dt
J<J
< DIf - fI%,

where D is a positive constant only depending on the basis, all estimates derived for || f— f'||
such as (5.7), (5.10), (5.11) and (5.13) can in fact be used as a bound for |b;x — 2""/2b§-i)|.

6 Numerical Examples

Numerical examples are given below to show the performance of the optimal prefilters
designed in Section 4 for biorthogonal wavelets. Similar study has been performed for the
orthogonal case in [34). The biorthogonal wavelet basis adopted here is given in [7). The
filters are

—iw\? iw\?
H(‘*’)=(1+'2 ) , and I?(w)=(1+e )e"‘“(1+2sin2(%’)),

2 2

and filters G(w) and G(w) are determined according to (2.5). The graphs of | H(w)|?+|G(w)|?
and Re ((F(w_)H (w+7) + GW)G(w + 1r)) are plotted in Figure 1. We see from the figure
that the constant Cmax in Proposition 3 is 1.5 4 0.75 = 2.25 so that the discrete wavelet
transform does not preserve the energy of input discrete time signals. The test function
considered is .
£(t) = sm(2 1rt)

which is 2/7 band-limited with J = 6. We focus on noncausal filters ¢(—Ny),¢(—N1 +
1),...,q(Ny — 1),q(Ny) of length N = 2N, + 1, and both signal dependent and signal in-
dependent optimal prefilters are designed. For the signal independent case, we choose the
weighting function

F(w) = e, a=00L

Tables 1 and 2 show the filter coefficients for N; ranging from 0 to 5.
The errors ¢;, j = 5,4, 3, between the true WST coefficients and the computed ones are

defined as
120

es = 3 |b5k——b( 2,
k=-120
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length Ny %o[n], —N1 << N

0 1.0000

1 0.6766 0.4347 -0.0976

2 -0.0783 0.6766 0.4347 -0.0976 0.0573

3 0.0518 -0.0783 0.6766 0.4347 -0.0976 0.0573
-0.0405

4 -0.0379 0.0518 -0.0783 0.6766 0.4347 -0.0976
0.0573 -0.0405 0.0314

5 0.0298 -0.0379 0.0518 -0.0783 0.6766 0.4347
-0.0976 0.0573 -0.0405 0.0314 -0.0256

Table 1: Signal dependent optimal prefilters for the test function f(t)

length N, w[n], -N1 <n< N

0 1.0000

1 0.6749 4349  -0.0965

2 -0.0770 0.6763 0.4348 -0.0974 0.0563

3 0.0508 -0.0780 0.6765 0.4347 -0.0976 0.0571
-0.0397

4 -0.0371 0.0516 -0.0782 0.6766 0.4347 -0.0976
0.0572 -0.0403 0.0307

5 0.0291 -0.0377 0.0517 -0.0782 0.6766 0.4347

-0.0976 0.0572 -0.0404 0.0312 -0.0250

Table 2: Signal independent optimal prefilters with weighting function for a = 0.01

17
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and plotted in Figure 2. Recall that the Shensa algorithm with the prefilter of length 1 is
in fact the Mallat algorithm. Thus, we see a clear advantage of the Shensa algorithm with
optimal prefilters of even very short length. There is no substantial difference for signal
dependent and signal independent cases if an appropriate parameter a of the weighting func-
tion in (4.7) is used for this particular test problem. In Figure 3, we show the corresponding
optimal D/A converter x,() with respect to Q,(w) in Tables 1 and 2 with lengthes 3 and
5.

7 Concluding remarks

In this paper, we studied the error estimate between the true WST coefficients and the
computed ones from samples of a continuous time signal by using the Shensa algorithm
with biorthogonal wavelet bases. We discussed the design of optimal prefilters used in the
Shensa algorithm, and showed that they provide significant improvement on the accuracy
of computed wavelet coefficients over the Mallat algorithm. A related issue with prefiltering
is the interpolation of samples of a continuous time signal. The accuracy of the interpo-
lated signal via sampled points plays a key role for the error estimate of computed WST
coefficients. Optimal interpolants corresponding to optimal prefilters were also discussed.
Finally, we considered the generalization of the Walter sampling theorem for signals in
biorthogonal wavelet subspaces, and examined several error bounds for the aliasing error if

signals to be sampled are not necessarily in wavelet subspaces.
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Appendices

A.1 Proof of Proposition 1:

and

Since

279/25/[k]

CJk

Thus, (3.2) is proved. O
A.2 Proof of Proposition 2:
Let S(w) = 3, s[n]e~*. Take Fourier transforms of (3.6) and (3.7),

and

Therefore,

2~J/2 Z z[m]qlk — m]

1 [® . .
2 Y o [ Feml® duglh — m)

J/2  po0 .
22_1r/_°° f(2Jw)Ze"”"‘dwq[k— m]

2r J-

9J/2 oo .
5 f(-27w)Q(w)e™*dw,

J/2 s . )
g_ /oo f(sz) Z ezw(m—k)q[k _ m]ezwkdw
Aad m

27/2 / °° F(@)$(27t — k)dt

21/2 /O:o f(t)El;r L: q“s(w)e:'w(z-’t—k)dw(it

222 s et

JI2 oo R .
2_2; /_ "~ H-2w)dw)e R,

A) = == [F@S() + A+ 5 + 7)),

D(2w) = % [E@)S() + Gla + MS(w +7)]

> laln)l? + 3" ld[=]l?
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= o ([ 1@paos [ 1p@)ras)
= = [ (erGr+ieGmisGre
HHG + 0P + 1605 + mISC + M) do

12 [" Re (HGHG +7)+ GGG +mNSGSG +)) o]

-1

IA

x/
3 [ (H@F +16)F) Is)Pas

-

1 [~/2 . , .
T /_,,,2 (1 @+ +(6G(w+ ™)) 15w + 7)|*dw

1 T
=
= 5 | (@) +16@)) 1) Pds

e [ e (A 1)+ GG + )| (S0P + FEFHIF) o

Conare [ 15 (w) e
max g . W

= Cmax Z Js(n)|2.

Re ((H(—i)H(% +1)+GEGE + w))

(ISP +15GG + o ) do

IA

a
A.3 Proof of Proposition 6:
It is clear from the discussion in Section 2 that b;; = 2"’/265‘1), j < J,k€Zif and
only if
Clk = 2—'”22'[16], keZ.

Therefore, we only need to prove that the above equation is equivalent to the condition

(5.3). To do so, we examine what 2~7/22/[k] is.

2= k) = 272 > z[m]qlk - m]

m

= 2 XOT it - (k- m))eimlas

= 2 [T T -y [ fw)emioml v

o 1 [ . ) 1 [ . .
- 2J/2/°°X(t)2'2_ﬁ. -/_oo ¢(wl)esw1(t-(k—m))dw1.2_7r.‘/_°° f(—'z'lw)e_wmdwdt

Jf2 . ) 00 ) .
= 2= / * (-2'w) / x(t) / d(wr )e""‘(“")i E ™= duy, dtduw
T —-00 —-00 27 m

27 J-oo
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2 oo . o o
= TR [ xo [ denentd T - @ - 2mm)dundeds

21/2

o ; 00 ) . k
= ?‘/-oo .f(_2 w) -/—oo X(t);(ﬁ(w.'. 2mﬂ-)et(w+2m1r)(t- )dtdw

992 oo, ) N | |
= —/ f(-2 w) Z¢(U + 2m1r)/ x(t)ei(w+2mw)tdte_,kwdw
27 J-oo Z -

29/2 peo [ “
- /_oo f(—2"w) Ztﬁ(w + 2mr)x(—w — 2m1r)] e thw

— _22 ® 2 ¢( o 2m1r) —ikw
= o ./_oo f(—2"w) E¢(w+2mﬂ)m] k dw

_ -2-’_/2- /;: f(—2‘]w) Em ¢(w + 2;7-(71):’35_“’ - 2m7r)] e~k g,
by (23) 292 [ . —ikw
A / <I>(- )e dw

For the form of ¢, we refer to the proof of Proposition 1. Thus, condition (5.3) is equivalent
to cgx = 9-J/2g! [k] and Proposition 6 is proved. O
A .4 Proof of Proposition 7:

f(t) € V; implies, by Proposition 5,

f®)= Zf( x(2't —n) 2 f(2).

Then

| s0sunttyat
= / > 3 z[n]x(27t - n)272 (271 - k)dt
= 27925 [n) /_ °:° X(t = n)(t — E)dt

= 2792 > z[n)efk - n] = 2922k

n

CJk

By using the same proof given in Proposition 6, we prove the fact that f(t) satisfies (5.3).

On the other hand, even though condition (5.3) implies f;(t) = f'(t) as proved in
Proposition 6, we do not have f(z) = f(t) in general. Thus, (5.3) does not guarantee
f(t) = fs(t). This proves the second part of Proposition 7. O
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A.5 Proof of Proposition 9:

Since ||f — f/l < IIf = fsll + |If5 — Fll and a bound for the term ||f — fs|| is given in
Proposition 8, we only have to estimate the bound for || f; — f’|| below. Due to (2.6) and
that {x(27t — n)}, is a basis of V; (see Walter [31]), we know that both f;(t) and f(¢) are
in V;. Therefore, by (2.14),

=]
L.
1 o0
- =l
1 [~ _ .
.2_1‘:/ Z(c.l.k”2 m:c'[k])e thw
|%
1/ -J —ikw
< @5 [ [Senn - 2 Tke

= (C1)*Y less — 2772 (K],
k

2
s = 12 dt

> (ear = 2722 (K] gun(?)
k

2 ~
|¢(w)l?dw

Z(CJJ: _ 2—J/2zl[k])e—ikw
k

2

> (6w + 2km)|2dw

k

2
dw

where the second and last equalities are due to the Parseval Theorem. By the form of ¢
in the proof of Proposition 1 and the form of 2’[k] in the proof of Proposition 6, Proposition
9 is proved. O
A..8 Proof of Proposition 10:

Since f3(t) € V;, we know by Proposition 5 that

£2(8) = S Salo)X(@'t ~ k).
k

Therefore,
B0 =10 = YUl - fax@'t - k)
k
® . 27 k k —itkw
= 5 [ S G - S
Let

Fiw) = Y(sla) - fe™
k

= 273 °(f5(27 (w + 2k7)) - f(2 (w + 2km))).
k
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Therefore,

JRLEOR

IA

295 [ 1£2(27w + 26m)) = 2 (0 + 2km)) P
k -1

27 [|fs(2w) - f(2lu)

2\Ifs - P

2227 1 - flI%.

Going back to f;(t) — f'(t), we have

L) - f()=

1 [ é(55)
27['2'] P 6(2%)

FJ(ZEJ-)e"t“’dw.

Thus, applying the Parsevel theorem, we have

£z - £

where

Cy=

1 [ #(%)

2«22J./°o I&(;og,)

1 [ dw)

- oo [ imore

1 " |¢(w + 2k7)|2

= wr ko e
1 / Tk 6w + 26)|?

T e (8P

Cfr - fIP

w
[PIEs ()P

|Fy(w)l?dw

IA

w€[—m,7)

Therefore,

3 % 1/2
oy (Calde 2P g[m](qs(w)) 1

|2(w)| $w)) le@w)

W =N <Nf = fsll+11fa = FUL NS = £5ll(1+ Co).

Combining Proposition 8, Proposition 10 is proved. O
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Figure 1:

Figure 2:

Figure 3:

Figure Captions

(a) |H@)? + |G(w)I? and (b) Re (HW)H(w + 7) + G@)G(w + 7).

The errors es, €4 and e3 between desired b;, and computed bs-:s,?. (a): The opti-
mal prefilters are signal dependent in Table 1; (b): The optimal prefilters are signal
independent in Table 2.

Xo(t) corresponding to the optimal prefilters g,[n] in Tables 1-2. (a): for g,[n] with

length N; = 1 in Table 1; (b): for go[n] with length Ny = 1 in Table 2; (c): for g,[n]
with length N; = 2 in Table 1; (d): for g,[n] with length Ny = 2 in Table 2.
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Figure 2: The errors es, ¢4 and e3 between desired b; and computed bs-i). (a): The optimal

prefilters are signal dependent in Table 1; (b): The optimal prefilters are signal independent
in Table 2.
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Figure 3: x,(t) corresponding to the optimal prefilters g,[r] in Tables 1-2. (a): for g,[n]
with length N; = 1 in Table 1; (b): for g,[n] with length N; = 1 in Table 2; (c): for g,[n]

with length Ny = 2 in Table 1; (d): for g,[r] with length N1 = 2 in Table 2.
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