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Abstract

Most conventional SFS (Shape from Shading) algorithms have been devel-
oped under the assumption of orthographic projection. However, the assumption
is not valid when an object is not far away from the camera and, therefore, it
causes severe reconstruction error in many real applications. In this research,
we develop a new iterative algorithm for recovering surface heights from shaded
images obtained with perspective projection. By dividing an image into a set
of nonoverlapping triangular domains and approximating a smooth surface by
the union of triangular surface patches, we can relate image brightness in the
image plane directly to surface nodal heights in the world space via a linearized
reflectance map based on the perspective projection model. To determine the
surface height, we consider the minimization of a cost functional defined to be the
sum of squares of brightness error by solving a system of equations parameter-
ized by nodal heights. Furthermore, we apply an successive linearization scheme
in which the linearization of the reflectance map is performed with respect to
surface nodal heights obtained from the previous iteration so that approximation
error of the reflectance map is reduced and accuracy of reconstructed surface
is improved iteratively. The proposed method reconstructs surface heights di-
rectly, and does not require any additional integrability constraint. Simulation
results for synthetic and real images are demonstrated to show the performance
and efficiency of our new method.

1 Introduction

Recovering explicit geometric information of 3-D objects from 2-D projected images has
been important for many computer vision problems. It supplies a great deal of useful
information for both basic and higher level vision tasks. Among various available depth

cues, shading often provides reliable dense depth information of an underlying smooth
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object. Since initiated by Horn [7], (8], the shape from shading (SFS) problem has received
a lot of attention. Among many significant developments made in this area, we want to
point out the following: characteristic strip expansion (7], [8], variational approach (5}, [10],
[11), [15], [18], [30], [31], [32], [39], Fourier transform approach [26], direct height recovery
[10], [17], [19], [35], optimal control approach [4], photometric stereo [3], [13], [16], [21], [23],
[27], [29], [33)], [36], [37], [38], etc. For a thorough review for work before 1990, we refer to
[12] and [10]. More recent work includes (1], (2], [4], {16}, [17], [19}, [21], [22].

The modeling of image formation process, which defines a transformation between sur-
face shape and projected image intensity, is crucial for the SFS problem. The image for-
mation process depends mainly on the projection model, the surface reflectance property,
surface orientations and the lighting condition. A projection model defines the geometric re-
lationship between a surface point and the projected point on image plane. Two commonly
used projection models are perspective and orthographic projections [9]. By perspective
projection, we mean an ideal image forming model which works like a pin hole camera that
forces the light rays to go through one single point, and thus the position of a projected
point on the image plane is dependent on both the depth and position of a surface point in
the world space as well as the focal length of the camera. If the size of the objects in view
is small compared to the viewing distance, perspective projection can be approximated as
orthographic projection in which all rays are parallel to the optical axis, and the position
of a projected point is independent of the depth of a surface point. Most conventional
SFS algorithms assume orthographic projection to simplify the analysis. However, objects
are often not located very far away from the camera in many real applications so that
orthographic projection is not appropriate and distortions of reconstructed surfaces occur.
To make the SFS algorithm practically useful, one may have to adopt the more general
perspective projection model.

Few attempts have so far been made to solve the SFS problem under the perspective
projection assumption. Penna [24], [25] proposed a local SFS algorithm applicable to a single
image of a smooth object or an opague polyhedron with perspective projection. He derived a
system of algebraic equations from the image irradiance equation, which describes the local
surface geometry of an object, and solved it by using the Newton method. However, no
experimental result with real images was reported in [24], [25]. According to our experience,

local SFS algorithms in general suffer from noise and are therefore not very useful when
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applied to real images. In this paper, we present a new iterative SFS algorithm by using
images under perspective projection. Our algorithm is robust, fast and insensitive to noise,
since it is based on global minimization approach. Given one reference hoda.l height, it
determines the absolute surface height directly by discretizing and solving the minimization
problem. No integrability problem arises in our formulation. More recently, methods of
combining shading and geometric stereo information for the SFS problem were proposed
[14], [17], [20], [28]. However, since orthographic and perspective projections are assumed,
respectively, for SFS and stereopsis, there exists an obvious inconsistency in their work. In
contrast, imposing stereo data information in our new perspective SFS algorithm is natural
and and consistent, since the same perspective projection imaging model is used for both
SFS and stereopsis.

The basic idea of our approach is based on a triangular element surface model and a
linearized reflectance map. The projected image is divided into a set of nonoverlapping
triangular domains with homogeneous brightness in each triangle. The surface normal of
each triangular patch can be represented by its three nodal vectors in the world space. By
using the perspective relationship between the projected and true surface nodal points, one
can establish a linear relationship between image intensity and the surface nodal heights via
the image irradiance equation with a linearized reflectance map. To determine the nodal
heights, we minimize a global cost functional defined to be the sum of squared brightness
error over each projected triangular image domain. The minimization problem is equivalent
to solving a linear system of algebraic equations parameterized by the nodal heights, and
thus can be efficiently solved by MG (Multi-Grid) or PCG (Preconditioned Conjugate Gra-
dient) algorithms. To minimize approximation error of the linearized reflectance map, we
employ a successive linearization scheme in which nodal heights obtained from the previous
iteration are used as reference points for linearization at the current iteration.

This paper is organized as follows. In Section 2, we discuss models of projection, re-
flectance map and triangular element surface approximation. The perspective SFS problem
is formulated as a finite dimensional optimization problem which minimizes a quadratic cost
functional consisting of squares of brightness error, and the construction of stiffness matrix
and load vector is examined in Section 3. The formulation is generalized to incorporate
multiple photometric stereo images in Section 4. Experimental results on several synthetic

and real images are given in Sections 5.



2 Discussion on the Model

Similar to most other SFS work, the mate object surface and a distant single light source
are assumed in this work. Distinctive features of our model such as the reflectance map with
perspective projection and the triangular element surface approximation will be examined

in detail in this section.

2.1 Reflectance Map with Perspective Projection

A projection model defines a relationship between points in the 3-D space and their cor-
responding pixels in a 2-D picture. The perspective projection imaging model provides a
natural first-order approximation to image formation process, in which all rays pass through
a fixed point, called the center of projection or the view point. Consider a viewer-centered
Cartesian coordinate system with the origin at the center of projection and the —Z-axis
aligned with the optical axis as depicted in Fig. 1. Let the z- and y-axes of the image plane
be parallel to the X- and Y-axes and the focal length, the distance between the origin and
the image plane, be f. Then, a surface point P = (X, Y, Z)T is transformed to a projected
image point p = (z,y, —f)T via following perspective relationship,

X Y
- ?s y= -fii (2‘1)

=

which relates the image coordinates (z, y) to the world coordinates (X, Y, Z) of a point with
a given focal length f. Orthogonal projection can be viewed as a special case of perspective
projection model when an object is far away from the viewer. That is, if the depth range of
an object is quite small compared with the average distance from the viewer to the object,

we have the following approximations:
z = mX, y & mY, (2.2)

where m = —é;, and Zj is the average depth value of Z. Since m is positive constant, one
may rescale the image coordinate in a way such that z = X and y = Y for convenience.
Thus, by orthographic projection, one assumes all rays are perpendicular to the image plane
and parallel to optical axis as shown in Fig. 2.

Note that under orthographic projection, the spatial relationship between image points

(z,y) is preserved in the world plane but not under a perspective projection since the






relationship is distorted by Z at each point by (2.1). Since one has to determine three
dependent variables (X, Y, Z) for given image point (z,y) with perspective projection, but
only the variable Z with orthographic projection, the perspective SFS problem is more
difficult than the orthographic SFS problem.

With perspective projection, an image intensity E(z,y) at point (z,y) on the image

plane is formed through the image irradiance equation,
E(z,y) = BE(X,Y,Z) = R(p(X,Y),¢(X,Y)), (2.3)

where R is the reflectance map function, p(X,Y) = %g{r'ﬂ and ¢(X,Y) = Z&XN)
we assume ideal Lambertian surface illuminated by a single distant point light source, the

reflectance map can be written as

K
N——" K>0
R(p,q)=4 Virr+ed’ ’ (2.4)
0, K <o,
where
K = —pcosTsino — ¢sin rsin o + coso,

and where 7 is the composite albedo of the surface, 7 and o are the tilt and slant angles
of the illumination direction pointing toward the light source. This is typically a nonlinear
function depending on the surface gradient p(X,Y) and ¢(X,Y).

2.2 Triangular Element Surface Approximation

A triangular element surface model has been recently proposed and applied successfully to
the SFS problem with orthographic projection [19], [21]. By the model, we approximate
a smooth surface with a union of finite triangular surface patches so that the orientation
(surface normal) of each triangular patch can be uniquely determined by its three vertices
vectors. Projection of triangular surface patches with nodal points through the perspective
law (2.1) produces corresponding triangles and nodal points in the image plane. We assume
that the image intensity within each triangular image domain is homogeneous and equal
to that generated by the corresponding triangular surface patch so that a direct relation-
ship between image intensity and surface nodal heights can be established via the image

irradiance equation (2.3).



3 Formulation of Perspective SFS

3.1 Image Formation on a Triangular Surface Patch

For a smooth and non-occluded object surface, there exists a one-to-one correspondence
between triangular patches on a surface and triangles in the image plane. They are denoted
respectively by S; and T, ¢ = 1,2,...,M;, where M; is the total number of triangles.
Similarly, nodal points on a surface and the corresponding projected points in the image
plane are denoted by P; and pi, i = 1,2,..., My, respectively, where M, is the total number
of nodal points. Consider a small triangular surface patch Sx and projected triangle T} on

image plane as shown in Fig. 3.

Figure 3: Image formation on a triangular surface patch.
Let Vi be the index set of vertices points of Tk or Sk. Then, from Fig. 3, we have

Vk = {i1j7 l}



The image intensity Ej over T} is determined by

E; Ri(pr, 9x)

CO80 — pr COSTSIn o — g sinTsino

- , 3.1
" St +q) )

where (pg, gx) is the gradient of Sx. The surface normal nj of the triangular surface patch

S can be determined with its three nodal vectors P;, P; and P; by

(P; -P) x (P —P;)
[(P; —P:)x (P —-Pi) |

(X; - X5,Y;=Y3,2; - Z)) x (X1 = Xi, 1 = Y5, 21 - Z))
[ (X; - X,Y;-Y,2; - Z)x (Xi - Xi, Y1 - Y5, 20 - Zy) |

n = (3.2)

By using (2.1), we can rewrite (3.2) as

_ (3(=:Zi - 2;2;), 3 (i Zi - 4;Z5), 25 — Zi) X (3(=iZi - mZ), 3 (wiZi - w2), Zi - Zi)
| (3(2:2: = 232;), 3 (%:Zi — ¥ Z3), Z5 — Zi) X (3(2:Zi = 2121), 3 (viZi — wZ1), 2o - Zi) |

ng

Besides, the surface normal ny is related to the gradient (pz, gx) via

ng = (_Pk’ —4qk, l)T
Vi+ei+at

Then, it is straightforward to verify that

ag B
- — == 3.3
Dk T ’ qr T ) ( a')
where
ar = flyi-9)ZiZ; + (v — %)Z:Z1 + (y; = w)Z; 21},
B = fllz;-2)2:Z;+ (zi = 2)Z: 21 + (21 - z;)Z; 21}, (3.3b)
T = (ziy; = ;%) Z:iZ; + (21yi — 2ip) Z: Zy + (259 — 21y5)Z; 2.

Since the image points (z;, %:), (z;, ¥;) and (z1, y1) are known, ax, B and 7, are functions
of only three nodal height variables Z;, Z; and Z;. By substituting (3.32) and (3.3b) into

(3.1), we obtain 2 nonlinear reflectance map function with variables Z;, Z; and Z;,

Yk €COST — a cosTsino — P sin7sino
(eF + L+ 7"

Local linear approximation of the reflectance map can be achieved by taking Taylor

series expansion of Ri(Zi, Z;, Z) about a reference nodal height (29, Z7, Z}) through the

Rk(Z;,Zj, Zz) =7 (3.4)
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first order term,

oR z.,z,z
Ru(Z:,25, ) % Bu(20,28, 20) + (8 - 22T T B0 o 0o (39)
ORWZ;i, Z;, Zh) BR (Z;, Z;, Zy)
. 70 k 3y 41 _ 70 k\ L1y &5, &1
2= =572 gy +(2 - =52 g0y

Thus, we can express the brightness Ej over T} as a linear combination of the surface nodal
heights Z;,i = 1,..., My, ie.

My
Ev= Y WkmZm + &, (3.6)
m=1
Where OR(Zi,2;,21) .
= Pt I(Z?-Z?ZP)’ if m€Vi={i,j,l} of T, (3.7)
0, otherwise,
and
Mn
& = RU(Z0,20,20) - 3 wim 2, (3.8)
m=1

3.2 Perspective SFS with A Single Image

Our objective is to determine the surface height Z;,7 = 1..., M,,. This can be achieved by

minimizing a cost functional defined as follows,

Mg Mt "
€= Z Er = Z(Ek - Ek)z, (3.9)
k=1 k=1

where £ denotes the cost term corresponding to the k-th triangular domain, and Ej and
Ey are the observed and reconstructed image intensities over the k-th triangular domain,

respectively. By substituting (3.6) into (3.9), we have

M; My

£ = YIE- (D wimZm + &)
k=1 m=1
MQ Mn Mn

= Y D0 wriwn; ZiZ; - 2(Ex — &) thZ + (B - &)?)
k=1 i=1j=1 i=1
Mn Mi M, Mn

3 Z 3@ wkwi)ZiZ; - ) (2 Z.:(Ek = &k )wri) Z;

l—l =1 k=1 =1 k=1

+ Z(Ek - &)?
k=1

= %zTAz -bTz+e, z2=[%1,22,.-,2m.)". (3.10)



(b)

Figure 4: (a) An example of a node configuration associated with node #; (b) Correspond-
ing T-point stencil operator.

The elements a; ; and b; of the stiffness matrix A and the load vector b can be determined,

respectively, as

Mg Mt
Gij =2 Wiikj, bi=2) (Ex—&ws 1<i,5< M. (3.11)
k=1 k=1

Thus, by minimizing above quadratic functional, one can determined the nodal height z

and this can be done by solving equivalent linear system of equations,
Az =b. (3.12)

Note that the element of the A, a;; = 0if ¢ and j are not the neighboring nodal points,
since in that case no triangle has both nodal points ¢ and j as its vertices and thus either
wir and wji is zero. Suppose that node ¢ has six neighboring nodal points jj,...,Js and
the six triangular domains surrounding it, T,..., T, as shown in Fig. 4(a). Then, we can
represent the stiffness matrix using a 7-point stencil operator form as illustrated in Fig.
4(b). The nonzero elements of stiffness matrix A and load vector b associated with node i
are determined in terms of the coefficients w’s in (3.7) and brightness E,..., E,, and they

are summarized in Table 1.
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aii 2(w; + Wi + Wi +whi + Wy + whi)
Bijy 2(wpipjy + Wik, )
Bijy 2(wriwkjy + wiiwiz, )
@i s 2(wriwijy + Wmimjs )
LI 2(wmt'wmj4 + Wninj, )
@i 2(wniwnjs + Woilojs )
@i, 2(woitwojss + WyiWpje)
bi | 2((Ex — &x)wri + (Bt = &)wis + (Em — €m )wmi
+(En - En)wﬂi + (Eo - Eo)wm' + (EP _ fp)wpl')

Table 1: Elements of stiffness matrix A and load vector b

3.3 Special Case: Orthographic Projection

It is clear that the orthographic SFS problem is a special case of the perspective SF'S prob-
lem so that the framework developed above applies to both orthographic and perspective
projected images. Under the orthographic projection assumption and by using (2.2) with

m = 1, one can approximate the surface normal n; by

(5 = Zi U5 — ¥ir 25 — Zi) X (%1 — i, w1 — ¥, 21 — Z;) (3.13)

n; =
| (zj — i ¥i = ¥y Z; — Zi) X (w1 — 20, 1 — ¥n Z1 — Z3) |

Then, the gradient (p,gx) become

ok B
= — = — 3.14
Dk 7k ’ qr 71:’ ( a‘)
where .
dr = (v —wZi+ (v — i)+ (v - 4%:)Z;,
Br = (z1—12;)Zi + (25 — )21 + (zi — 21)Z;, (3.14b)
dr = (zijuw - wy) + (@Y — 250) + (2 — zow).

Note here that the surface gradients p; and gx derived with orthographic projection are
linear functions of Z;, Z; and Z; whereas they are nonlinear functions with perspective
projection as shown in (3.3). Similarly, we can express the reflectance map as a function of
variables Z;, Z; and Z; by substituting (3.14a) and (3.14b) into (3.1), i.e.

i COS T — O COSTSino — ﬂ.,,sin'rsina
- 32 N :
(dx® + Bk +Tk2)/2

By taking linear approximation of this reflectance map about a certain reference nodal

Ri(Z:,Z;,Z) =7 (3.15)

heights, the same shape reconstruction procedure as described in Section 3.2 follows.
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4 Perspective SFS with Photometric Stereo Images

We use the same framework to solve a related problem which is more robust and practically
important. That is, surface reconstruction from multiple perspective photometric stereo
images taken under different lighting conditions with the camera position fixed. Let us
consider a new cost functional which is the sum of squared brightness error associated with
each image. Suppose we have J different photometric images, then the cost functional to

be minimized is

M J . .
€ = ZE(E,‘:—E,':)2,

k=1j=1
M J . Mn R .
= 2 2 NBL = (X WimZm + &
k=1 j=1 m=1
= %zTAz -bTz + ¢, (4.1)

where the overall stiffness matrix A, the load vector b and & are the sum of each individual

stiffness matrix A;, the load vector b; and c;, respectively, i.e.

J J
A:ZA,‘ S=Ebj, E=Zc_,',
i=1

j=1 j=1
and the individual stiffness matrix and load vector can be computed by (3.11). The mini-

mization of the quadratic functional (4.1) leads to the solution of the system of equations
Az =b.

Simple analysis and observation shows that two photometric stereo images taken under

illumination directions of which tilt angles are orthogonal to each orther give the best

results as well as they make the algorithm stable and converge fast [21].

Note that since approximation error may result from linear approximation of a re-
flectance map, the reconstructed surface height may not be accurate. The approximation
error of a reflectance map depends primarily on the choice of the reference surface nodal
height values Z?, i = 1,..., M,. Successive linearization scheme has developed and suc-
cessfully applied in our previous work for the orthogonal SFS problem [19], [21] to reduce

the linear approximation error of the reflectance map. In this scheme, the surface gradients

for each triangular patch determined from the previous iteration was used as the reference
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gradient points for the linearization of the reflectance map at current iteration. The same
scheme can be used for our perspective SFS algorithm. The only difference is that since
in perspective SFS algorithm, the linearization is performed with respect ﬁo nodal heights
Z; directly while it is performed with respect to surface gradients (p, q) in orthogonal SFS
algorithm, explicit surface gradient(p,¢) information is not needed in this case. Fig. 5
shows the flow chart of perspective SFS algorithm with the successive linearization scheme.

Under perspective projection, even for finely and regularly sampled nodal points on an
image, the corresponding surface nodal points in the world plane may become sparse and
irregular due to the depth effect (see (2.1)). As a result, we often obtain a smaller number
of irregular surface height data points with respect to the actual size of the object. One
way to increase the resolution of the final result is to perform surface interpolation using
the sparse data points, which has been well studied in the context of surface reconstruction
from sampled data [6], [34], [31].

5 Experimental Results

We have tested the proposed SFS algorithm on several synthetic and real perspective pho-
tometric stereo images. For all test images, we perform the triangulation using the finest
grid points so that all nodal points coincide with image points. We assume that the height
of one surface nodal point (the ground point, say Z; = Z,.s) is known and fixed all the
time. Weset Z? = Z,e5,i = 1,..., M, at the first iteration. For the following iterations, the
linearization of the reflectance map is performed with respect to the surface nodal height
obtained from the previous iteration. We present reconstruétgd results based on a single
image and a couple of photometric stereo images generated by light sources with orthogo-
nal tilt angles for all the test problems. Similar to the results given in [21] with orthogonal
projection, the single image case gives a much less accurate result. To display a finer and
smooth reconstructed surface, interpolation based on the determined finite sparse surface
nodal height data has been performed.
Test Problem 1: Modified Sombrero

The test object is a modified sombrero surface. A portion of its ground truth with
128 x 128 surface points is shown in Fig. 6(a). We set the focal length of the camera f and
the reference height Z,.s to be 150 and —300, respectively. Figs. 6(b) and (c) illustrate two
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Figure 5: Proposed perspective SFS algorithm.
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64 x 64 photometric stereo images generated with perspective projection and illuminated
by a distant light source from (7,0) = (45°45°) and (135°,45°), respectively. Note that
the two light source has tilt angles which are orthogonal to each other. Figs. 7(a) and (b)
show the reconstructed surfaces from the single perspective image shown in Fig. 6(c), and
combined photometric stereo images, respectively.
Test Problem 2: Mozart

The test images are synthesized from the 256 x 256 Mozart statue height data obtained
from the range data. We set the focal length of the camera f and the reference height
Z,¢s to be 300 and —600, respectively. The original ground truth of the surface and the
two 128 x 128 shaded images with illumination directions (7, o) = (45°,45°) and (135°,45°)
are shown in Figs. 8 (2)-(c). Note that since the original surface has discontinuities along
the object boundaries and on several points inside the object, the resulting images are not
ideal and have noises at the cdrresponding points. The reconstructed surfaces from a single
perspective image given in Fig. 8(c) and from combined images are shown, respectively, in
Figs. 9 (a) and (b). We observe some reconstruction error along the discontinuous boundary
even with photometric stereo images.
Test Problem 3: Agrippa

Two real perspective images are used for this test problem. The 128 x 128 test images of
Agrippa statue obtained by illuminating from directions (7,0) = (45°,45°) and (135°,45°)
are shown in Figs. 10(a) and (b), respectively. We assumed the focal length of the camera
f and the reference height Z,.s to be 300 and —600. Figs. 11(a) and (b) show the recon-
structed surface of actual size 256 X 256 from the single image given in Fig 10(b) and from

photometric stereo images, respectively.

6 Conclusion

We have proposed a new algorithm for recovering shape from shaded images under perspec-
tive projection. Our algorithm is based on a triangular element surface approximation and
a linearized reflectance map around a certain nodal height value. We relate image intensity
of a triangle to the surface nodal heights via image irradiance equation, and determine
surface nodal heights by minimizing the cost functional consisting of the sum of brightness

error associated with each triangle. It recovers surface heights directly instead of surface
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i

(b) (c)

Figure 6: The modified Sombrero test problem: (2) the ground truth of the modified sombrero
surface; and two synthetic images illuminated with (b) (albedo, tilt, slant) = (250, 135°,45°) and
(c) (albedo, tilt, slant) = (250, 45°,45°).
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(b)

Figure 7:  Results of the perspective SFS algorithms applied to the modified sombrero images:
(a) is the reconstructed surface from single image in Fig. 6(c); (b) is the reconstructed surface
using the photometric stereo images.
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(b) (c)

Figure 8: = The Mozart test problem: (a) the ground truth of the Mozart statue; and two
synthetic images illuminated with (b) (albedo, tilt, slant) = (250, 135°,45°) and (c) (albedo, tilt,
slant) = (250, 45°,45°).
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Figure 9:  Results of the perspective SFS algorithms applied to the Mozart images: (a) is the
reconstructed surface from single image in Fig. 8(c); (b) is the reconstructed surface using the
photometric stereo images.
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(a) (b)

Figure 10: The Agrippa test problem: two real images of the Agrippa statue illuminated with
(a) (albedo, tilt, slant) = (190, 135°,50°); (b) (albedo, tilt, slant) = (190,45°,45°).
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Figure 11:  Results of the perspective SFS algorithms applied to the Agrippa images: (a) is
the reconstructed surface from single image in Fig. 10(b); (b) is the reconstructed surface by the

photometric stereo images.
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orientations. No additional integrability constraint is required, and no boundary conditions
and smoothness constraints are employed. The recovery algorithm refines the reconstructed
surface iteratively by successive linearization scheme, in which the linearization is performed
based on updated surface nodal heights obtained from the previous iteration. We have in-
cluded several experimental results including both synthetic and real perspective images to
demonstrate the performance of the proposed algorithm.
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