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Abstract

A new higher-order statistics—based adaptive interference canceler is introduced to elimi-
nate narrowband and wideband interferences in environments where the interference is non—
Gaussian and a reference signal, which is highly correlated with the interference, is available.
The new scheme uses higher-order statistics between the primary and reference inputs and
employs a gradient-type algorithm for updating the adaptive filter coefficients. The higher-
order statistics~based filter is independent of Gaussian uncorrelated noises and insensitive
to both the reference signal statistics and the step size parameter. It is demonstrated, by
means of extensive simulations, that the higher-order statistics-based filter can elit.nin?te
both narrowband and wideband interferences effectively. Compared with the second-order
statistics-based filter, the higher-order filter converges faster and has smaller excess errors.
In addition, as expected, the higher—order statistics-based filter outperforms the second-order

filter when Gaussian uncorrelated noises are present.

*This work was supported by the Office of Naval Research under contract N00014-92-J-1034.



I. Introduction

When a signal of interest (SOI) is corrupted by an additive interference and an auxiliary ref-
erence signal, which is highly correlated with only the interference is available, the elimination of
the interference is accomplished by an adaptive noise canceling procedure. The reference signal
is processed by an adaptive filter to match the undesired interference as closely as possible, and
the filter output is subtracted from the primary input, which consists of the SOI and interference,
to produce a system output. The objective of an adaptive noise canceler (ANC) is to produce
a system output that best fits the SOI. Applications of ANC include the canceling of several
kinds of interference in electrocardiography, speech, antenna sidelobe interference, and telephone

circuits [15, 16].

In this paper, we assume that the interference is a narrowband or wideband signal. A con-
ventional transversal ANC, which is denoted in this paper as ANC-SOS algorithm, utilizes the
LMS algorithm and second-order statistics (SOS) [8, 16, 17]. The utilization of the ANC-SOS
algorithm for eliminating narrowband interferences is well analyzed in [6] and {13]. However,
applying the ANC-SOS algorithm in practice, we usually encounter two major difficulties. The
first is that the ANC-SOS filter is affected directly by uncorrelated noises at the primary and
reference inputs. The second is that the ANC-SOS algorithm is problem-dependent; i.e., it
is very sensitive to both of the reference signal statistics and the choice of step size. For an
ANC algorithm which is not sensitive to the reference signal statistics, several adaptive lattice
structures have been introduced [5, 7, 11, 12]. However, Honig and Messerschmitt [9] have con-
cluded that the lattice convergence speed is not independent of the input signal statistics and
that the adaptive lattice filter does not always converge faster than its transversal counterpart.

In addition, the lattice ANC algorithm in the presence of uncorrelated noises has not been studied.

Therefore, it is important to obtain an ANC algorithm which is independent of both uncor-
related noise sources and the statistics of the reference signal. The utilization of higher—order
statistics (HOS) can provide such an adaptive filter in those applications where the interferences

can be regarded as non-Gaussian processes and the uncorrelated noise sources as stationary,



zero-mean, Gaussian processes. We will call this filter an adaptive noise canceler based on
higher-order statistics (ANC-HOS). Higher-order statistics or spectra have been given a lot of
attention lately due to their ability to preserve information of non-Gaussian stationary random
processes [10]. Chiang and Nikias [1, 2, 3] have introduced adaptive schemes for time-delay
estimation (or system identification) using third- and fourth-order cumulants. Dandawate and
Giannakis [4] have developed a similar scheme as an ANC-HOS using the third—order cumulants
and have shown that their filter is a better estimate of the relationship between the interference
and reference signals in the case where an uncorrelated noise source is present only at the reference
input. However, when the probability density function of the reference signal is symmetric, the
third-order cumulants of the reference signal are identically zero [14]. Moreover, an ANC can not
eliminate uncorrelated noises and the ANC system output is highly related to the noises. Thus,
a reasonable objective should be the ability of the algorithm to restore the SOI. We compare
the performance of the ANC-SOS algorithm and that of the ANC-HOS algorithm by means of

errors between each system output and the SOL

In this paper, we introduce a new ANC-HOS algorithm using n—th (n > 2) order cumulants to
cancel narrowband and wideband interferences. We show that the ANC~HOS filter is independent
of white or colored Gaussian uncorrelated noises and insensitive to both the reference signal
statistics and the step size. It is important to note that the ANC-HOS algorithm may not work
better than the ANC-SOS algorithm when the total power of the uncorrelated noises is quite
large, because an ANC can not remove uncorrelated noises. However, we demonstra.t;a tliat when
the noise powers are small, but not negligible, the ANC-HOS filter can eliminate the interference
more effectively than the ANC-SOS filter. The outline of the paper is as follows. The problem
definition and preliminaries for an ANC algorithm are given in Section II. In Section III we
introduce the ANC-HOS algorithm using a gradient-type algorithm and briefly describe the
difficulties in utilizing the ANC-SOS algorithm. We develop the ANC-FOS filter using fourth-
order cumulants to eliminate narrowband and wideband interferences in Section IV. Section V
discusses the required computational complexity by the ANC-FOS algorithm. We present and
compare performances of the ANC-FOS and the ANC-SOS algorithms for canceling several



narrowband and wideband interferences, in Section VI. Conclusions are drawn in Section VII.

II. Problem Definition and Preliminaries

Let {z(k)} and {2(k)} denote measurements of the primary and reference sensors, respectively,
satisfying
z(k) = s(k) + I(k) + ny(k) (1)

z(k) = w(k) + n(k) (2)

where {s(k)} is the signal of interest (SOI), {I(k)} is the interference (narrowband or wideband),
{w(k)} is a reference signal highly correlated with the interference, and {n,(k)} and {n.(k)}
are uncorrelated sensor noises. We assume that the SOI is zero-mean and any kind of a signal,
i.e., deterministic or random, or a combination of both and uncorrelated with the interference
and the reference signal. The reference signal is a stationary, zero-mean, non-Gaussian random
process. The noises {n,(k)} and {n,(k)} are zero-mean, white or colored Gaussian, uncorrelated
with each other and independent of the SOI, interference, and reference signal. Moreover, we
assume that the relationship between the interference and reference signal can be represented by

a linear-time-invariant (LTI) transformation so that

1K) = Y oGl ). @)
i
Let {y(k)} be an adaptive filter output
N-1 N-1
y(k)= D h(§) 2(k —5) = D h() [wlk - 5)+ ne(k - 5)) (4)
j=0 3=0

where N denotes the number of taps and {h(n), n = 0,1,...,N — 1} is the adaptive filter
coefficients. Then the ANC system output {e(k)} is given by

e(k) = (k) — y(k) = s(k) + n (k) (5)

where {n.(k)} is the ANC system output noise. We can represent the system output noise as

N1
ne(k) = ny(k) + np(k) = Y h(i)ne(k - 7) (6)

=0
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Figure 1: Adaptive noise canceler (ANC) with uncorrelated noises at the primary and reference

inputs.

where

N-1
ni(k) = I(k) = 3 h(j) wk - 5).

7=0
Although an ANC can eliminate the interference completely, the ANC system output contains

the uncorrelated noises. Figure 1 shows the block diagram structure of an ANC system.

III. ANC Based on Higher-Order Statistics (ANC-HOS)

In this section, we introduce an ANC-HOS algorithm using a gradient-type algorithm and
HOS and show that its filter is independent of Gaussian uncorrelated noises. In addition, the
difficulties in using the ANC-SOS algorithm in certain signal/interference environments will be

described briefly.

A. Basic Scheme of ANC-HOS

To develop an ANC-HOS algorithm, we need to assume that there exists at least one order
n such that the n-th (n > 2) order cumulants of the reference signal are not identically zero.
Under this assumption, let Cz,....(71,...,Tn-1) denote the n-th order cross—cumulants between

the primary and reference inputs and Cy,...;(71,...,Tn—1) denote the n—th order cross—cumulants



between the ANC-HOS filter output and the reference input. Since the n—th order cumulants of

a stationary, zero-mean, Gaussian process are identically zero [10], we have
sz...z(fl, seey Tn_l) = C[w...w(‘rl, cvey Tn_l) = Z g(j) Cw...w(j + Tl, ceey ,j + T"_.l) (7)
J

and
N-1

Cyzu-z(‘rl, ceey ru_l) = Z h(j) Cwu.w(j + Tl, ) ,j + Tﬂ.—l ). (8)
3=0

Note that (7) and (8) can be obtained by using the following facts: (i) the SOI and reference
signal are uncorrelated, (ii) the SOI, interference, and reference signal are independent from the
uncorrelated noises, and (iii) the SOI, reference signal, and noises are zero-mean processes. In
addition, we can easily show that Cy..w(T1,...,Tn-1) = Cs...z(71,. .., Tn—1) and that (8) can be
rewritten as

N-1

Cyz...z(fl, cony Tn—l) = Z h(]) sz(j + 7. ,j + Tn—l)- (9)
=0

Then, the “criterion of goodness” is defined as the sum of the squared errors between these two
n-th order cumulants as in [3], viz.

fg = Z e Z [ sz---z("'l, ase ,Tn—l) - Cyz...z(rl) LR ’Tn-l) ]2 (10)

Tn—1
where (7y,...,7,-1) may be defined to include the whole (n — 1)-D plane R*~!. Using a proper
domain ' C R"~1, we can simplify the criterion of goodness. The criterion, £, becomes a special

case of (10)

N-1 .o
£= E cee Z [ Crzz(TryeeeyTna1) — z h(5)Coz(G+11ye oy 5+ Tne1) ]2 (11)
(n yeTn—y) € r =0
or
£ = (sz---z - Cz---th)T(sz---z - Cz---th) (12)

where Cg,.... is an M x 1 column vector and C,..., is an M x N matrix. M denotes the number
of overdetermined equations. Note that M > N. When the m~th row component of C;,..., is

Czz.z(T1,...,Tn=1), the m-th row of C,..., becomes

[Cz...z(ﬁ, . .,T,._l),Cz...z(n + 1,. ey Tn=t + 1), . ',Cz...z(‘i'l + N - 1, veoyTn-1+ N - 1) ]T.
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Figure 2: The configuration of the adaptive noise canceler using higher—order statistics (ANC-

HOS).
H; denotes an N x 1 ANC-HOS filter coefficient vector
Hy, = [ h(0),h(1),...,R(N = 1) |¥.
The gradient of £ is given by
= a%% =2 (cl.C...Hy-Cl. C....). (13)
Then, the filter update equation takes the form

H(k + 1) = Ha(k) - w(k)V(R), W

where u(k) is the step size. Since the gradient V(k) consists of the n—th order cumulants of the
primary and reference inputs which are not affected by Gaussian uncorrelated noises, the update
equation (14) is independent of the uncorrelated noises. Figure 2 shows the block diagram

structure of the ANC-HOS algorithm for eliminating the interference.

B. ANC Based on Second-Order Statistics (ANC-SOS)

The ANC-SOS algorithm uses the LMS scheme based on SOS and the filter update equation
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is given by [8, 16]
H,(k +1) = H,(k) - 2pe(k)Z(k) (15)

where H,(k) denotes the ANC-SOS filter coefficient vector, u is a step size, and Z(k) = [z(k), z(k—
1),...,2(k—=N+1)]7 is a reference input vector. If there are uncorrelated noises, then the ANC—
SOS filter coefficients H,(k) are affected directly by both noise sources because Z(k) contains
{n:(3), i=k,k—-1,...,k— N + 1} and e(k) contains {n(k)} as in (6). Thus, the ANC-SOS
algorithm can not eliminate the interference effectively.

Even if there are no uncorrelated noises, the performance of the ANC-SOS algorithm is
problem—-dependent, i.e., it is very sensitive to a given problem. For a good narrow-bandwidth

notch, the step size of the ANC-SOS algorithm should be satisfying the following relationship [6]

2
L7 o

where A is the amplitude of interference. Since these three parameters are closely related and
we can control only N and p, the performance of the ANC-SOS is highly dependent on A. For
a relatively small amplitude of the interference, the ANC-SOS filter may converge very slowly.
On the other hand, for a relatively large amplitude of the interference, the ANC-SOS filter may
converge fast, but produce large excess errors after convergence. Through simulations, we have
also found that when the amplitude of the interferénce is a fixed constant, the perfc;rm-ance of
the ANC-SOS algorithm is sensitive to the step size u. Thus, the performance of the ANC-SOS
algorithm can deteriorate more severely when the interference is a sum of multiple narrowband

signals or wideband signals. Table 1 shows a summary of the ANC-SOS algorithms.,

IV. ANC-HOS Applied to Sinusoidal Interference

Assuming that the interference is a sinusoidal signal whose phase is a random variable uni-
formly distributed over [—x, 7], we develop an ANC-HOS algorithm to eliminate the interference.
Since the third-order cumulants of the interference are identically zero [14], we have to develop

the ANC-FOS algorithm using fourth-order cumulants.



- Table 1: Summary of the ANC-SOS Algorithm with N taps

Let: z(i) primary input at iteration ¢
Z(i) = [2(3), 2(i = 1)y. ., 2(§ = N +1))T reference input vector at iteration §
et . . . ANC-SOS system output at iteration ¢
H,(5) = [A°(0),A*(1),-.. . A (N = 1))T filter coefficient vector at iteration ¢
Initial Conditiions: B=pfN, ps €1 step size .
¢(0)=0
H,(0)=H,; initial guess
At iteration i: i=1,2,3,...,

H,(i) = Ho(i — 1) - 2pe(i - 1)2(i - 1)
e(§) = =(i) — HT (i)Z(i)

For simplicity, we choose the domain I' = {(71,72,73)} C R3 for the criterion of goodness,

which satisfies the following conditions
0, S M-1, m2n, n2m. (17)

Letting 7y — 72 = m, 13 — 73 = n, we can represent the criterion of goodness, &, as

M-1 7 N-1
E= Z E [szzz(rls n-m,n— n) - Z h(j)szzz(j +m,j+nn—-mj+n - n) ]2
73=0 m,n=0 j=0
or
5 = (szzz - szzsz)T(szzz - szzsz) (18)

where C_,.; is an M M+16 2M11) & 1 column vector and C;;.. is an M M'He IM41) N matrix.

H; denotes an N x 1 ANC-FOS filter coefficient vector.
Let us note that, in practice, the theoretical fourth-order cumulants need to be substituted

by their estimates. Using the relationship between fourth-order moments and cumulants,
Cruys(k; 11,72, 73) = E{z(k)w(k+n1)y(k+72)z(k+73)} - E{z(k)w(k+ 1)} E{y(k+m2)z(k+73)}

—E{z(k)y(k + 12)} E{w(k + 11)z(k + 73)} — E{z(k)2(k + 13)} E{w(k + m)y(k + )},

we obtain the estimate Cypyy:(k; 71,72, 73) in terms of estimates of fourth-order moments. Thus,
when we have {z(1),z(2),...,z(k+ M + N = 3),z(k+ M + N - 2)} and {2(1),2(2),...,2(k +
M+N-3),2(k+ M+ N-2)},for0< r, 72,73 < M+ N—-2,7 > 73, and 7y > 73, we obtain

9



Table 2: Summary of the ANC-FOS Algorithm with N taps

Let: z(t) primary input at iteration 1
Z(s) = [2(i), 2(i = 1),...,2(i - N + 1)) reference input vector at iteration i
et ) ) ) ANC-FOS system output at iteration ¢
H, (i) = (h*(0), k¥ (1),..., 5 (N = 1))T filter coefficient vector at iteration ¢
Initial Conditiions: M parameter to decide the number of equations
J forgetting factor
s <1 step size parameter

Cz22:(0;7,7—m,7—n)=0, r=0,1,....M—-1, m,n=0,1,...,7
Cis::(0;7,7—m,7—n)=0, v=0,1,...,.M -1, m,n=0,1,...,7
H,(0) = H, initial guess

At iteration i: t=1,2,3,...,

Forr=0,1,.... M=1, m,n=0,1,...,7
C,:,,(t,‘r.r—m T—-n)= f C'““(:—l 17 =m7—n)+z()z(i+7)2(i + 7 = m)z(i+ T~ n)
C’""(t T—m,T—~n})= ~. Crzzz(i; 7,7~ m,7—n)
For j=0,1,...,N -1
Cnn(t';f.'r-m+j,f-—n+j)=!-Cuu(t’—l;f.‘r—m+j.‘r-n+.i)+
. z(f)z(i+ v+ )2+ 7 -m+f)2(i+r=n+3)
szzz(‘;"‘l‘j."‘"‘"’j;""“‘l‘j)=‘l"'Cxxx:(";f"'j"r-m'*'j»f—""'j)

Construct C,,,,(x) and C,u,(t) such that A - -
Crres(f) = [Crz2:(430,0,0),Crz22(i:1,0,0), Craas(is 1, o 1)yeeesCrzez(is M =1, M -1, M - 1)]T
Ci2::(:;0,0,0) Cizsa(i;N-1,N-1,N -1)
é_txz:(i; 1,0,0) b szx:(i;NoN - lvN - 1)
sz:z(") = Crr::(i;1,0,1) ve Crzzz(i;N,N - 1,N)

é:::l(i;M-l:M_l,M—l) ':' C.'"u(i;M+N-2,N}+N-2.M+N—'2) A
V(@) =2 [c,,,,(a)czm(-)ny(s) - €, ()Casaali)]

u(i) = g [ tr {€7,,,()Crs2:(i)}

H, (i) = Hy(i - 1) - p(i)V(i)

e(k) = z(k) - ﬁT(t)Z(t)

10




Table 3: The Number of Multiplications per Iteration of the ANC-SOS and the ANC-FOS

Algorithms
type
of number of multiplications per iteration
algorithm
ANC-SOS 2(N+1) N=16| N=24| N=32 | N=64
34 50 66 130
ANC-FOS N=8| N=8 | N=16 | N=16
for IMM4+1)CM+1)(N+1)(N+4)+3N+1 | M=4 | M=5 | M=4 | M=5
Narrowband 3265 5965 10249 18749
ANC-FOS N=8| N=8 | N=16 | N=16
for MM+ )M +1)(N+1)(N+5)+3N+1 | M=4 | M=5 | M=4 | M=5
Wideband 3535 6460 10759 19684
k
- 1 ke ol Nl 2 . .
szzz(k; T, T2, T3) = % Z J z(])z(J + n1)2(j + 72)2(j + 73) (19)
i=1
. QLA
Cozaa(kimy72,73) = £ D FF2(3)2(5 + 1)z + 12)2(5 + ) (20)
j=1

where 0 < f < 1 and f is a forgetting factor which controls the shape of the window of data
being used at each iteration. We choose f = 1 for the stationary case. Table 2 shows a summary

of the ANC-FOS algorithm.

V. Computational Complexity

The computational complexity of an algorithm is an important aspect in the a,da.i)ta..tion pro-
cess and therefore should be taken into account. We use the number of multiplications per itera-
tion as a figure of merit. Table 3 shows the computational complexity of the ANC-FOS and the
ANC-SOS algorithms. From Table 3, it is apparent that the number of multiplications required
by the ANC-FOS algorithm is very large. We, therefore, conclude that the improved performance
of the ANC-FOS algorithm over the ANC-SOS algorithm is achieved at the expense of more com-
putations. Through simulations, however, we have also found that the ANC-FOS filter with a

small N can produce better results than the ANC-SOS filter having a large N.
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VI. Experimental Results

We consider some typical examples to compare the performance of the ANC-FOS algorithm
with that of the ANC-SOS algorithm for eliminating narrowband and wideband interferences.
Comparisons are presented in terms of the error between the SOI and its reconstructed version -
by each ANC algorithm. We assume that the SOI is deterministic BPSK having two states, s;

and 3o, satisfying

cos(2rx f,T k), for s,
s(k) = (21)
— cos(2x f,T k), for sq

where f,T = 0.43 and the duration of one state is 20 samples. The reference signal is assumed

to be a sum of real-valued sine waves
wi(k) = A; sin2rfiTk+¢:), i=1,2,3 (22)

where A;’s and f;’s denote amplitudes and frequencies, respectively and ¢;’s are independent
random variables uniformly distributed over [-=,x). Note that 1T = 0.1, T = 0.25, and
faT = 0.3. Each interference signal {I;(k), ¢ = 1,2,3} is generated through three MA(2) sys-
tems excited by a reference signal {w;(k), ¢=1,2,3}. The corresponding MA coefficients equal
(1, 0.1, —0.3], [1, 0.5, —0.1], and {1, —0.2, 0.2], respectively. In all simulations, we choose the
step sizes u = p,/N for the ANC-SOS algorithm and u(k) = u;/tr{CL,,.(k)C:...(k)}, where
py < 1 for the ANC-FOS algorithm [2] to ensure the stability of the algorithms.

Ezperiment 1 (Sensitivity to Step Size): To investigate how the step size affects the convergence
rate of the ANC-SOS and the ANC-FOS algorithms, we compare them with several different
step sizes when the narrowband interference is {I2(%)} with A2 = 1. The numbers of taps of
the ANC-SOS and the ANC-FOS filters are both 32. The results obtained by the ANC-SOS
algorithm are shown in Fig. 3 when u, = 0.025, 0.05, 0.075, and 0.1. We notice that a small
value of p, causes slow convergence and a large value causes fast convergence. Figure 4 illustrates
results obtained by the ANC-FOS algorithm when pu; = 0.995, 0.9, 0.85, and 0.8. There are no
noticeable differences among these cases in terms of speed of convergence.

It has already been established that the convergence speed of the ANC-SOS algorithm is very

12



sensitive to the step size when the amplitude of the reference signal is a fixed constant. For
example, compare Fig. 3-(a) and Fig. 3-(d). The difference between two y,’s is 0.075 and the
actual difference between two step sizes is 23> 0075 = 0.00234375. On the other hand, the value of

py of the ANC-FOS algorithm does not seem to affect its convergence speed.

To cancel a single narrowband interference, we use N = 32 taps in the ANC-SOS filter and
N = 8 taps, M = 5 in the ANC-FOS filter. When the interference is a sum of narrowband
signals, we use N = 32 taps in the ANC-SOS filter and N = 16 taps, M = 5 in the ANC-FOS
filter. Note that g, = 0.05 for the ANC-SOS algorithm and p; = 0.995 for the ANC-FOS

algorithm in all narrowband interference cases.

Ezperiment 2 (Narrowband Interferences Without Additive Uncorrelated Noises): We assume that
there are no additive uncorrelated noises at both of the primary and reference inputs. In this
experiment we consider two cases: (i) a single interference and (ii) sum of two interferences. The
single interference is {I(k)}, where Ay takes different values. Figure 5 shows the error curves
generated by the ANC-SOS and the ANC-FOS algorithms. We see that when the number of
taps and the step size are fixed, a small value of A, causes slow convergence of the ANC-SOS
algorithm, whereas an large value of A; makes the: ANC-SOS algorithm converge fast at the
expense of large excess errors. On the other hand, the performance of the ANC-FOS algorithm
_ is much less sensitive to the magnitude of A;. The results from multiple interferences are shown
in Fig. 6. The interference is {I;(k)+ I,(k)} with 4; = /2 and A; = 0.50r A; = 0.5and 4; = 1.

Figure 5 and 6 demonstrate that the performance of the ANC-SOS algorithm is very sensitive
to both of the magnitude of A3 and the step size of the algorithm. Since both of the convergence
speed and the excess error are important in the adaptation process, we conclude that the use of
the ANC-SOS algorithm to eliminate a single narrowband interference is only appropriate when
the amplitude of the reference signal is known a priori and is also fixed. In the case of multiple in-
terferences, it is more difficult to choose values of the parameters of the ANC-S0S algorithm even
though each amplitude of the interference sources is known and fixed, because there are no ex-

plicit relationships among them. The results obtained by the ANC-FOS algorithm show that we

13



can use the ANC-FOS algorithm to cancel multiple interferences, as well as a single interference.
Moreover, both of the convergence speed and the excess error of the ANC-FOS algorithm are less
sensitive to both of the reference signal statistics and the step size. In addition, the error ampli-

tude in the output of the ANC-FOS algorithm is much less than that of the ANC-SOS algorithm.

Ezperiment 8 (Narrowband Interferences and Additive Gaussian Uncorrelated Noises): We as-
sume that the uncorrelated noises are white Gaussian. We consider two cases in this experiment:
(i) a single interference and (ii) a sum of two or three interferences. Figure 7 illustrates the error
curves obtained by the ANC-SOS and the ANC-FOS algorithms, when the single interference
is {I;(k)} with A; = 2 and the variances of the uncorrelated noises take values 0.001, 0.0025,
0.005, or 0.0075. In multiple interference cases, the error curves obtained by the ANC-SOS and
the ANC-FOS algorithms are shown in Fig. 8 when both of the uncorrelated noise variances are
0.005 and the interference is {I;(k)+ I2(k)} with A, = v/2 and A, = 0.5 or {I;(k)+ L(k)+I3(k)}
with 4; = 0.5, A2 = 1, and A3 = 0.75.

Although the performance of the ANC-SOS and the ANC-FOS algorithms is greatly influenced
by the additive uncorrelated noises, the ANC-FOS algorithm converges faster and achieves less

excess error than the ANC-SOS algorithm.

Ezperiment § (Wideband Interferences (AM) Without Additive Uncorrelated Noises): The wide-
band interference is {I;(k)} with time-varying amplitude A;. We choose N = 16 taps and
4, = 0.1 for the ANC-SOS filter and N = 8 taps, M = 5, and jz; = 0.995 for the ANC-FOS
filter. Figure 9 shows the AM reference signal and the error curves generated by the ANC-SOS
and the ANC-FOS algorithms when A, has abrupt changes in value. Figures 10 illustrates the
results when A, is slowly time-varying. In both cases, the ANC-FOS algorithm converges faster
with smaller excess errors. For a realistic AM case, we assume that there are time-varying dis-
turbances in the reference amplitude generated through a lowpass filter excited by a uniformly
distrubuted random process. The cutoff frequency is f,T = 0.05. The AM signal and the results
obtained by the ANC-SOS and the ANC-FOS algorithms are shown in Fig. 11. In all slowly
time-varying AM cases, we see that the ANC-FOS algorithm outperforms the ANC-50S algo-
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rithm in terms of convergence and amplitude of output errors.

Ezperiment 5 (Wideband Interference (FM) Without Additive Uncorrelated Noises): Assuming
that the amplitude of reference signal is fixed, its frequency is time-varying. The relationship
between the reference signal and the interference is a MA(2) system whose coefficients equal [1,
0.5, -0.1]. Note that the parameters of the ANC-SOS and the ANC-FOS algorithms are same
as in Experiment 4. For a realistic FM signal, we have generated time-varying frequency dis-
turbance through a lowpass filter with f.T = 0.05 excited by a uniformly distributed random
process. Figure 12 shows the time-varying frequency of the reference signal and the error curves
obtained by the ANC-SOS and the ANC-FOS algorithms.

When there are time-varying disturbances in frequency, the error in the ANC-SOS algorithm is
much larger than that in the ANC-FOS algorithm. The result demonstrates that the ANC-FOS
algorithm outperforms the ANC-SOS algorithm in the FM cases. Note, however, that both of
the ANC-SOS and ANC-FOS algorithms are much more sensitive to perturbations in frequency

than in amplitude of the reference signal.

VII. Concluding Remarks

We have introduced in this paper the ANC-HOS formulations using a gradient-type algo-
rithm and higher-order statistics. To eliminate narrowband and wideband interférences, we
have developed the ANC-FOS algorithm using fourth-order cumulants. We have shown that
the ANC-FOS filter is independent of Gaussian uncorrelated noises and have considered its re-
quired computational complexity. In addition, through simulations, we have shown that the
performance of the ANC-FOS algorithm is not sensitive to both the step size and the reference
signal statistics. On the other hand, the performance of the traditional ANC-SOS algorithm can
be greatly influenced by the reference signal statistics, the step size, and additive uncorrelated
noises. In the ANC-SOS algorithm, when the step size is fixed, a small value of the amplitude
of the interference source causes slow convergence, whereas a large value causes large excess er-

rors. Although the ANC-FOS algorithm needs more computational complexity and more delays
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to compute gradients than the ANC-SOS algorithm, the ANC-FOS algorithm converges much
faster with less excess errors than the ANC-SOS algorithm. We have demonstrated that the
ANC-FOS algorithm can eliminate wideband interferences as well as narrowband interferences

very effectively.
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Figure 3: Ezperiment I: For interference {I(k)} with A; = 1, error curves obtained by the

ANC-SOS algorithm (N = 32) when g, is (a) 0.025 (b) 0.05 (c) 0.075 (d) 0.1.
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Figure 4: FEzperiment I: For interference {I,(k)} with A, = 1, error curves obtained by the

ANC-FOS algorithm (N = 32) when sy is (a) 0.995 (b) 0.9 (¢) 0.85 (d) 0.8.
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Figure 5: Ezperiment 2: For interference {I3(k)}, the first column shows results obtained by the
ANC-SO0S algorithm (N = 32) when A, is (a-1) 0.5, (a-2) 1, (a-3) v/2, and (a-4) 2.; the second

column shows results obtained by the ANC-FOS algorithm (N = 8) when A, is (b-1) 0.5, (b-2)

1, (b-3) v/2, and (b-4) 2.
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Figure 6: Ezperiment 2: For interference {I;(k)+ I2(k)}, the first column shows results obtained
by the ANC-SOS algorithm (N = 32) when (a-1) A; = /2 and A, = 0.5 and (a-2) 4; = 0.5
and A; = 1.; the second column shows results obtained by the ANC-FOS algorithm (N = 16)
when (b-1) A; = V2 and A; = 0.5 and (b-2) A; = 0.5 and A, = 1.
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Figure 7: FEzperiment 3: For interference {I>(k)} and additive Gaussian uncorrelated noises,
the first column shows results obtained by the ANC-SOS algorithm (N = 32) when both noise
variances are (a-1) 0.001, (a-2) 0.0025, (a-3) 0.005, and (a~4) 0.0075.; the second column shows
results obtained by the ANC-FOS algorithm (N = 8) when both noise variances are (b-1) 0.001,

(b-2) 0.0025, (b-3) 0.005, and (b—4) 0.0075.
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Figure 8: Ezperiment 3: In the presence of additive Gaussian uncorrelated noises with variance
0.005, the first column shows results obtained by the ANC-SOS algorithm (N = 32) when the
interferences is (a-1) {I;(k)+I2(k)} with A; = 2 and Az = 0.5 and (a~2) {I; (k) + Lo(k)+ I3(k)}
with Ay = 0.5, A, = 1, and A3 = 0.75.; the second column shows results obtained by the ANC-
FOS algorithm (N = 16) when the interferences is (b-1) {I1(k) + L(k)} with A; = +/2 and
Az = 0.5 and (b-2) {I;(k) + I(k) + I3(k)} with A} = 0.5, A3 = 1, and A3 = 0.75.
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Figure 9: Ezperiment 4: For a wideband interference {I3(k)}, (a) amplitude modulation of A, (b)
the error curve obtained by the ANC-SOS algorithm (N = 16) and (c) the error curve obtained
by the ANC-FOS algorithm (N = 8).
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Figure 10: FErperiment 4: For a wideband interference {I;(k)}, (a) amplitude modulation of
Ay (b) the error curve obtained by the ANC-SOS algorithm (N = 16) and (c) the error curve
obtained by the ANC-FOS algorithm(N = 8).
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Figure 11: Ezperiment 4: For a wideband interference {I>(k)}, (a) amplitude modulation of
A, (b) the error curve obtained by the ANC-SOS algorithm (N = 16) and (c) the error curve
obtained by the ANC-FOS algorithm (N = 8).
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Figure 12: Ezperiment 5: For a wideband interference with constant amplitude, (a) frequency
modulation, (b) the error curve obtained by the ANC-SOS algorithm (V = 16) and (c) the error
curve obtained by the ANC-FOS algorithm (N = 8).
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