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Abstract

A new algorithm is presented for the computation of dense optical flow and motion
boundaries from an image sequence using two or more frames. The algorithm is based
on a novel parametric smoothness model by decomposing optical flow into irrotational
and solenoidal fields, and imposing the smoothness constraint on each field separately.
This model implies smooth translation and rotation of the underlying motion process.
In contrast, the smoothness constraints used in all previous work do not distinguish
the translational and rotational components but simply combine them as a whole. The
derivation of the parametric smoothness model sheds new light on the interpretation
of the conventional membrane model. The problem of over-smoothing across motion
boundaries can be resolved to a high degree by successively improving the estimate of
the parameters of the smoothness model. Significant improvements by the proposed
new algorithm over classical gradient based methods have been obtained for a class of
test problems.

1 Introduction

Optical flow is a 2-D vector field that measures the disparity between adjacent frames
in a sequence of images. The information contained in the computed flow field can be
used for image sequence compression [19, 20] or the determination of the relative depth
map and/or three-dimensional motion and structure [1]. Since the flow field is usually
not unique over extensive regions of its support, there have been many attempts to limit
the scope of estimation to regions for which only a good estimate can be obtained. These
techniques range from computation of the flow only for highly conspicuous points [3] to flow
along some boundaries [5, 11, 26] or some regions obtained by thresholding an appropriate

function [7, 15]. Although we do not explicitly address any application issues in this paper,
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our intended target is motion compensated coding. For such an application, we need an
estimate of the flow over the entire region of support, which is often known as dense optical
flow. In this paper, we are mainly concerned with the computation of dense optic flow from
at least two frames of an image sequence.

The desired algorithm should have the following properties.

e An estimate of the flow should be available for all of the pixels in the region of support
with the exception of occluded regions which must be identified.

e The algorithm is able to provide a robust estimate of the flow from two frames and
improved estimation quality with more frames. This requirement is needed due to

practical limitation on the size of the frame storage buffer in actual implementation.

¢ The complexity of the algorithm should be low and, hopefully, in the order of N?log(N)

per image frame of size N X N.

e The algorithm is capable of estimating subpixel flow fields. This is useful for applica-
tions where only a low resolution estimate of the flow is needed so that computational

time can be significantly reduced in processing the subsampled image sequence.

The algorithm presented in this paper meets all above requirements. It is based on a
regularization approach similar to previous work in [13, 17] but with a novel parametric
smoothness model consisting of two parameter functions p(z,y) and w(z,y). Borrowing
techniques from fluid mechanics, we decompose optical flow into two flow fields, i.e. the
irrotational and solenoidal fields, and impose the smoothness constraint on each field sepa-
rately. This implies smooth translation and rotation of the underlying motion process. In
contrast, the smoothness constraints used in all previous work do not distinguish the trans-
lational and rotational components but simply combine them as a whole. The conventional
membrane model is shown to be equivalent to the choice of p(z,y) = 0 and w(z,y) = 0in our
model. An accurate estimate of the parameters p and w can greatly enhance the computed
flow field. The problem of over-smoothing across motion boundaries can be resolved to a
high degree, and an estimate of occluding boundaries is obtained as a by-product. Since
the nature of motion is characterized by p and w, we may incorporate a prior knowledge of
motion obtained from earlier frames in an image sequence into p and w by assuming that
they are smooth time-varying functions. In this work, we focus on the two frame case where
an iterative algorithm is proposed for estimating p and w. The general multiple frame case

will be reported later.



This paper is organized as follows. Gradient based methods for optical flow computa-
tion are reviewed in Section 2. To put various problems arising in optical flow computation
into perspective, some fundamental characteristics of optical flow are discussed in Section 3.
Section 4 forms the crux of our method, where a parametric smoothness model is derived.
In Section 5, we apply our algorithm to a set of four test problems ranging from a sim-
ple translation and rotation to combined motion along all axes. We end our presentation
in Section 6 with a few concluding remarks. Numerical implementation of the algorithm
is given in the Appendix. In particular, we derive equations for both constrained gradi-
ent projection method and the Gauss-Seidel relaxation which is appropriate for multigrid

implementation.

2 Review of Gradient Based Methods for Computing Op-
tical Flow

There have been many efforts reported in the literature for computing optical flow. Most
of these methods can be classified into one of four major categories: gradient based [13],
contour based [5, 11, 26], correlation based (2, 23], and spatiotemporal-frequency based
[10). Since our method falls into the gradient based category, its basic idea and some
related results are reviewed in this section.

Given an image sequence E(z,y,t), optical flow (u,v) is defined as velocities in a small

time duration such that
E(z + ubt,y + vét,t + 6t) = E(z,y,1). (2.1)

By taking the first term in the Taylor series expansion of (2.1), optical flow can be modeled
to the first degree of approximation by the optical flow constraint equation:

Esu+ Eyv+ E =0, (2.2)

where the subscript denotes partial differentiation with respect to the given variable. It
is evident that the optical flow constraint imposes only one constraint for two unknown
variables per image pixel so that we need at least one more constraint to uniquely determine
the flow field. All gradient based methods use the optical flow constraint, but consider
different ways to impose additional constraints.

One way to avoid the under-determined problem is to impose the constant velocity con-

straint for neighboring flow fields. Several methods were proposed under this assumption.
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The local optimization method assumes two or more neighboring pixels to have the same
displacement value so that a set of linear equations based on the optical flow constraint is
obtained [14, 15, 19]. With the clustering method, one attempts to detect clusters of the
intersection of optical flow constraint equations from different pixels in the velocity space
[21). With the differential method, one can obtain three more equations for each pixel by
differentiating the optical flow constraint equation with respect to z, y and ¢ under the
assumption that u and v are constant [9, 24].

Another approach to solve the under-determined problem is via regularization. The
method of Horn and Schunck [13] is perhaps the most popular technique for computing
optical flow due to the simplicity of its implementation. Here, one assumes that the overall
flow satisfies a certain global smoothness constraint. For example, by using the membrane

model, one defines an energy function
&= //(E,u + Eyv 4 E)? + Mul + w2 + v2 + v2) dz dy, (2.3)

which is minimized for the desired estimate of (u,v). The A is known as the Lagrange
multiplier which determines the degree of smoothness in the computed flow. There are two
major difficulties with this method. First, this method ignores the presence of occluded
regions and very inaccurate flow may be concluded in these regions. Second, the global
smoothness constraint tends to smooth the solution across discontinuities so that there is a
leakage of the flow into the stationary background.

An attempt was made in [6] to remedy these problems by setting the smoothness term
to zero in regions near contours of zero-crossings under the assumption that motion dis-
continuity is a subset of intensity zero-crossings. Another solution based on an oriented
smoothness constraint was proposed by Nagel in [17]. A weighting matrix depending on
gray value variations was introduced so that the smoothness requirement would be retained
essentially only for the normal component of the flow. By enforcing the flow at the gray
value corners, the initially proposed weighting matrix contained both first- and second-order
derivatives of the intensity process. However, Nagel recommended to use only first-order

derivatives in his later work [18] to make the computational algorithm simple and robust.



3 Discussion on Optical Flow Constraint Equation and Flow
Field Characterization

The validity of the optical flow constraint equation was studied in [22]. In this section, we
will provide more insights into this equation and discuss its limitation, which provides us a
better understanding of the nature of optical flow.

Given a optical flow field (u,v), we can decompose it into the normal and tangential
components denoted by a and 3, respectively, along the iso-brightness contours as shown
in Figure 1, where the vector (p, ¢) with p = E; and ¢ = E, is the image gradient direction.
We can rewrite the GCE, i.e. (2.2), in the product form as

(Ezy Ey)(u, ”)T = |(Ex, Ey)| |(u,v)| cos§ = —E, (3.1)

where 0 is the angle between (E, E,) and (u,v). Thus, based on (3.1), the @ component

of the flow can be expressed as E
— L

T EvE

By using the geometry shown in Figure 1, we can also express (u, ) in terms of (e, 3)

(3.2)

_ _E. . __ By ,
R 69

v = 7%5—30 + Véfl'?yﬂ
It is clear that the optical flow constraint or, equivalently, (3.2) provides information for
the a component, but no information for the 8 component. Thus, the 3 flow can only be
determined by imposing additional constraint such as the smoothness constraint discussed
in Section 4.

Even with (3.2), there exist difficulties with the computation of . First, the computa-
tion may be not robust due to noise. Second, it is possible that E2 + E2 = 0 so that the
computed a from (3.2) may be quite erroneous. This will be detailed in Section 3.1, Third,
occluded regions exist due to moving objects. While spatio-temporal filters can be used to
reduce the effect of noise and occluded regions, the resolution in the computed flow field
decreases. Ideas for detecting occluded regions and the spatio-temporal filtering technique

will be given in Sections 3.2 and 3.3.

8.1 a-Indeterminate Regions

For regions with a small value of E§+E3, we call them the a-indeterminate regions. We can

either interpolate the o flow from the boundaries of such regions or simply report a zero flow
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Figure 1: Normal and tangential components of the flow.

in these regions as explained below. Consider a simple example consisting of the translation
of a rigid body object formed by regions (b,c,d) over a background (a) as shown in Figure
2. Let us assume that regions (2), (c), and (d) have constant gray values and region (b) has
sufficient gray value variation such that the translation of this region can be determined
from (3.2). Thus, regions (a), (c) and (d) are a-indeterminate regions with E2 4 E? = 0
Obviously, we should report zero flow over the background (a). If region (d) has the same
gray value as the background (a), no flow should be reported in that region either. However,
if (d) has a different gray value, we may or may not report a flow in that region depending
on our belief of whether (d) is part of the object or part of the background. The same
argument applies to region (c) except that we may still want to report a flow in that region
even if (c) and (a) have the same gray values. Based on this simple example, it becomes
obvious that the decision whether to interpolate from the boundaries or to set the flow equal
to zero over a-indeterminate regions cannot be entirely based on local information and is
not an issue that can be resolved at low-level vision.

We suggest to interpolate the flow from the boundaries of these regions, and also mark
them as a-indeterminate. The decision to choose between zero and interpolated values is left
to higher level of vision and is not considered in this paper. We denote the a-determinate

regions as
Qaet = {(.’B, y) I Ez + E: > 7)}; (3'4)

where, 7 is a small positive threshold value. The a-indeterminate regions are the compliment



Figure 2: Flow in a-indeterminate regions.

of 44 denoted by Qge;. To summarize, we have

-F
‘—2_"—2 (zi y) € Rget,
a(z,y) = v EZ + Ey (3.5)

Indeterminate (z,y) € Qqet-

3.2 Occluded Regions

To give an example of occluded regions, consider a simple translation of an object in the
scene. There are regions in the first frame that are to be covered in the second frame, and
new regions in the second frame that were previously covered in the first frame. We denote
the union of occluded regionsin both frames as Qor. Even if we knew the location of 4, we
still could not estimate a from local information since there is no corresponding region in
the other frame. Thus, the value of a computed from (3.2) is invalid in Q. Note that the
value of « is not necessarily zero in occluded regions because the occluded region may not
be part of the stationary background. One such example is self-occlusion where parts of the
moving object occludes other moving parts of the same object occurring in, say, rotation.
It is possible to determine the occluded regions with the knowledge of exact optical flow
(u,v). However, it is usually not easy to determine the exact flow (u,v) if the occluded
regions are not known ahead of computation. This dilemma can be resolved by estimating
the non-occluded regions (NOR) with the definition of optic flow (2.1) and an estimate of
(u,v) as described below. Let us denote E(z;,y;,%) and E(z:,y;,tk + 6t) as E, and E,,
respectively. Without loss of generality, we choose §t = 1. Given E; and an estimate (4, 9)



of the flow, we can obtain an estimate of Eq with (2.1), i.e.
Ex(zi, y5) = Ea(zi + i, 95 + 9). (3-6)
By comparing El(z.-, y;) and Ey(z;,y;), we have an estimate of the non-occluded regions as
Qnor = {(2ir 95) : |Ba(i,95) — Ea(zi,95)l < 7}, (3.7

where 7 is a small number. The estimate (por can be used to improve the estimated optical
flow (i, ) as detailed in Section 4.3.

It is worthwhile to mention a fine point with the computation of (3.6). Note that the
range of (u, v) is the 2-D vector field of real numbers while the domain of E is a 2-D integer
lattice

Q= {(ziayj) | ia] =0,1,---,N - 1}-

To obtain an estimate of E; over €2, we should look for the corresponding subpixel location
in E; for each pixel in F;. This means that the computations in (3.6) requires subpixel

interpolation. One commonly used 2-D interpolation scheme is the bilinear interpolation.

8.3 Spatio-Temporal Filtering

In the above discussion, we considered the use of image sequence E(z,y,t) to estimate first-
order partial derivatives. However, it is sometimes more advantageous to use a smoothed
version of the image sequence for two major reasons. First, noises and quantization errors
present in an image sequence are magnified by differentiation so that numerical computation
of partial derivatives obtained directly from E(z,y,t) often gives a poor approximation of
true partial derivatives. The quality of these approximations can be improved by smoothing

the intensity E(z,y,t)in both spatial and temporal domains by an isotropic Gaussian filter,

i.e.
A(:I:, Y, t) = G(I’ Y, i) ¥ E(z’ Y, t), (3'8)
where
G(z,y,t) = cex ——32 ty ¢
z = - -

and where o, and o, are the parameters that determine the amount of smoothing in spatial
and temporal directions, respectively, and ¢ is the normalization constant. Numerical ap-
proximation of partial derivatives of E(z,y,t) can be computed by, say, central differences

applied to A(z,y,1).



The second reason to require spatio-temporal filtering has to do with the validity of the
optical flow constraint (2.2). It was shown in [22] that the optical flow constraint is valid
even across spatial discontinuities for a piecewise continuos intensity process. Temporal
discontinuities are more difficult to handle. For example, consider the image of a Lambertian
sphere with a time-varying radius r(¢) over a stationary background b(z,y). The image of
the sphere can be written as

)
B y9=1 V'~ @)
b(z,y) otherwise.

z? 4+ y? < r3(1),

The exact value of the flow can be computed from (3.3) as

or (z y 2, .2 .2
(u,9)= 57(1"1') Try<r,
(0,0) otherwise.

It is obvious that if (¢) has a discontinuity at i, the flow (u, v) at ¢o cannot be determined.
For this reason, we have to avoid significant changes in the temporal domain around the
same coordinate (z,y).

In case of an image sequence E(z;,y;,1x) for which the domain of E is only defined on
a 3-D lattice, the optical flow constraint is valid if the discretized values of (E;, Ey, E;) ap-
proximate the differentiation of the continuos model well. Assuming that E(z,y,t) has been
sampled at a sufficiently high rate, we can use the Gaussian function in (3.8) for smoothing.
By using the properties of convolution, we can differentiate the Gaussian function before

applying the convolution to compute various partial derivatives, i.e.

A = (GxE); = G:*E,
Ay = (GxE)y = Gy+E, (3.9)
A = (G*E), = GixE.

3.4 Flow Field Characterization

To summarize, we can classify an image into four characteristic regions:

1. regions with high gray scale variation such as intensity corners: flow is obtained from

the membrane model;
2. a-determinate region: the o component of flow can be determined from (3.2);

3. a-indeterminate region: the o component of flow cannot be determined from (3.2);
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4. occluded regions which have no corresponding regions in the other time frame and

thus no flow information is available.

For the complete determination of flow, we need both a and 8 components of the flow.
We have seen that the first order approximation of (2.1) by (2.2) contains no information
about the 8 component. However, the # component may be recovered by adding appropriate
smoothness constraint in some special cases. For example, in regions where the local gray
value structure is sufficiently characteristic of the underlying motion, such as gray value
corners and extremum, it was shown in [18] that the membrane model of Horn and Schunck
[13) imposes sufficient constraint to fully determine both components of the flow. Another
example was considered by Waxman and Whon [25]. They showed that it is possible
to recover the 8 component of the flow from at least 12 local measurements of the a
components, if the optical flow is caused by the motion of a planar patch. Their result can
also be used to approximate the motion of a quadratic patch.

From the above discussion, we see the limitation of the optical flow constraint equation
in determining the optical flow. The importance of the smoothness constraint cannot be
overlooked. Most smoothness constraints derived so far do not take the underlying motion
into consideration. In the following section, we will derive a smoothness model by using

concepts borrowed from fluid dynamics.
4 Derivation of a Parametric Smoothness Model

4.1 Flow Model Based on Fluid Dynamics

Given a 2-D vector field u(z,y), we can determine its divergence and curl, respectively, by
Vu=p, and VXxp=uwi,,

where i, = i; X i, is the unit vector perpendicular to the plane. By using the terminology
from fluid dynamics, the field p is called solenoidalif V-p = 0 and irrotational if V x p = 0.
We can decompose a general velocity field p into the solenoidal and irrotational components,
i.e.

®=p, + [ ) (4'1)

where g, and u; satisfy the following constraints:

V.p, =0, V x p, = wi,, (4.2)
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and

Vep; =p, Vxup;=0. (4.3)

Let us assume that p, = 0 in (4.1) so that the flow g = (u,v)T contains only the
irrotational component g; = (u;,v;)7, i.e. u = u; and v = v;. Clearly, u and v are not
independent variable due to the irrotational constraint. We know from (4.3) that they are

related via

dv Ou

9z oy’
We can derive an equivalent but more useful expression by introducing a scalar potential
function ¢ such that

9 _ 8¢
% = uy, d 8y = . (4-4)
Then, the first equation in (4.3) is reduced to
2¢ 9%
322 + '5;5' = p. (4.5)

If p was known exactly, then we could solve (4.5) to obtain ¢ and consequently (u, v).
In general, p is not known and therefore we must use an estimate of p, denoted as 5. In

this case, we can solve for ¢ by minimizing the cost function

&= //(¢z: + Gy — ﬁ)z dz dy.

Now we assume that g; = 0in (4.1) and the flow & = (u, )T contains only the solenoidal
component g, = (u,,v,)7, i.e. u = u; and v = v,. We see from (4.2) that u and v are

related via ou B
known as the divergence free constraint. Due to this constraint, we can introduce a stream
function % such that

d d
% ., and 5% = v, (4.6)
The second equation in (4.2) can be rewritten as
%y %
922 + (9—'11'" =w.

Similar to the above discussion, we require minimization of circulation of the flow and obtain

the following cost function

£, = //(¢,, + ¥y — @) de dy.
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The general optical flow consists of both the irrotational and solenoidal components. Let
us use the same framework and introduce the potential function ¢ and the stream function
9. We know from (4.4) and (4.6) that the velocity field can be expressed as

u=ui+"s=¢:‘—¢y’
v=vi+va=¢y+¢z‘

Combing the two constraints, we get the cost functional for the general flow case, i.e.
&= //(¢zz + Pyy — ﬁ)z dzdy + .//(11’:1:3 + thyy — ‘:’)2 dz dy. (4.7)

Finally, by recognizing that
G2z + ¢yy =tz + vy, and Yzz + "nbyy = Ur — Uy,

we can rewrite the cost function (4.7) as

& =//(u,+vy —ﬁ)zdzdy+//(v,— uy — &) dz dy. (4.8)

Evidently, the flow computed from (4.8) depends only on the estimates of p and w. It is
instructive to look at the Euler equations of this energy function. The overall integral is of

the form
/ F(u,v, ug, vz, uy, vy) dz dy,

with the corresponding Euler equations

9 9
Fu—%Fu,—'a_yFu, = 07

9 Lij
Fv_—azFux_a_yFuy == 0.

We assume that (5,&) is not a function of (u,v) or its derivatives. Performing the required
differentiations and simplifying, we obtain the following set of Euler equations:

Viy - (f’y +a:) = 0. (49)

Given a pair of (5,&) and a set of boundary conditions, we can solve (4.9) for its solution
denoted by (&, ) that minimizes the energy function (4.8). Therefore, under fixed boundary

conditions, there is a one-to-one relationship between (5,&) and (i, %).
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4.2 Equivalence to Membrane Model

Now, we are ready to incorporate the smoothness model into the optical flow constraint

equation with regularization. Consider the energy function
£= //(A,u + Ao+ A dedy + ,\/f(u, +v, - B 4 (vs — uy — &) dedy.  (4.10)

where the first integrand is the smoothed version of the optical flow constraint equation.
The corresponding Euler equations are of the form

Viu—(p:—@y) = 3(Azu+ Ayv+ A)A,

Vv — (by + ) $(Azu + Ay + Ar)A,. (4.11)

Comparing (4.11) to the Euler equations of the membrane model of Horn and Schunck

[13], we obtain the following equivalence theorem.

Theorem 1 IfG(z,y) = §(z,y), # = 0 and & = 0 then the system (4.11) of Euler equations
is the same as that derived from the membrane model given in (2.3).

This result sheds new light on the interpretation of the membrane model in terms of di-
vergence and curl of the flow field, i.e. the membrane model is equivalent to assuming a
curl-free and divergence-free flow field. With our generalized model (4.10), any prior knowl-
edge of either curl or divergence of the flow can be incorporated through the Euler equations
in (4.11).

Furthermore, by comparing (4.9) and (4.11), we see that the optical flow constraint
basically provides the right-hand-side of (4.11). Even if the right-hand-side of (4.11) becomes
singular, i.e. A;u+ Ayv+ A; = 0, A, = 0, or A, = 0, the solution to (4.11) will not be
oversmoothed due to the existence of p and w. Thus, the nature of motion characterized
by the functions p and w can play an important role in optical flow computation. Given a
sequence of images, it is possible to estimate the p and w by assuming that they are smooth
time-varying functions. We will focus on the case consisting of only two image frames in

this work, and describe an iterative procedure to estimate p and w in the next section.

4.3 Estimation of p and w Using Two Image Frames

Let us start with a membrane model by assuming (3,&) = 0 everywhere and obtain an initial
estimate (u°,v°) by minimizing (4.10). From (u° v°) we obtain an estimate of occluded

regions as described in section 3.2. Given an estimate of the location of occluded regions
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with their boundaries, {22, and an estimate of the flow in those regions (u°, v°), we require

(ﬁo &0) = (div(u°, vO)’ Curl(uov "0)) (z: y) € le'i
? 0 otherwise.

Then, we formulate an optimization problem for minimizing € in (4.10) subject to the two

constraints: - ( 0 0) ( 0
(‘Il. ,'0) = (u,v"), z,y)eﬂor,
. -0 - 4.12
(p,w = (po’wO). ( )

Although, these parameters p and w are chosen to be nonzero only over s‘zg,, they cannot
affect the solution, denoted by (u!,v!), over the occluded regions since the solution is fixed
over these regions by the first constraint. The parameters in fact force a membrane model
over non-occluded regions with the exception on their boundaries. The boundary conditions
of each non-occluded region is no longer zero since (5,&) is non-zero on the boundaries of
these regions. To conclude, at the first iteration, we force a membrane model subject to
certain boundary conditions derived from (u°, v®) and, therefore, obtain a better solution
than the one provided by the membrane model if a good approximation of £, and the value
of flow in that region is available.

We can generalize the above procedure to obtain an iterative algorithm. In each iteration
of the algorithm we use the previous estimates of the flow to determine a new estimate of
§}¢.. In practice, we have found that better results can be obtained in the subsequent
iteration of the above algorithm, if we replace the constraints in (4.12) with the following

set of constraints:

(u,041) = (4% (z,9)€ ﬁgﬂ
(ﬁ ‘D) - (div(“ov vO), curl(uo, vO)) (xa y) € an (4'13)
’ (div(@t, 3%), curl(@, %))  otherwise,
where the superscript £ denotes the £th iteration of the algorithm and
@¢ = local average (u‘),
#¢ = local average (vf).

The above set of constraints are the same as the constrains in (4.12) with two notable
exceptions. First, the estimate of Q. is obtained from the estimates of (u,v) computed in
the previous cycle of the algorithm. Second, instead of requiring that the p and w of the
flow to be zero over non-occluded regions, we estimate them from a smoothed version of
(u,v) computed in the previous iteration.

We summarize the overall algorithm in Table 1.

14



Table 1: Optical flow computation algorithm with two frames

Initialization
¢ Set (p,&) = 0 and obtain (u® v°) as the minimum point of the energy
function in (4.10).
e Compute an estimate of occluded regions 2. from (u?, v°).
o Compute (u',v!) as the minimum point of the energy function in (4.10)
subject to the constraints in (4.12).
For{=1,2,---do
e Smooth (u¢,v%) by convolving it with a Gaussian window.
e Compute an estimate of occluded region Q¢, from (u%, v%).
o Compute (uf*!,v%!) as the minimum point of the energy function in (4.10).
subject to the constraints in (4.13).

5 Experimental Results

We have chosen to test our algorithm on complex synthetic images (in the sense that the
motion boundaries are a small subset of the intensity zero-crossings) so that the result can
be compared with the ground truth. Four sets of experiments representative of various
problems encountered in computation of optical flow have been performed. In all cases, the

input images are 64 x 64 pixels.

e FEzperiment 1: Irrotational flow.
A sphere (Figure 3a) of radius 20 pixels is translated perpendicular to the plane of
view so that in the second frame the sphere has a radius of 21 pixels. The true optic

flow (Figure 3b) has sharp discontinuities on the motion boundaries.

o Ezperiment 2: Solenoidal flow.
A sphere (Figure 4a) is rotated 5 degrees along the axis passing through the center of
the sphere and perpendicular to the plane of view. The true flow (Figure 4b) achieves

its maximum on the boundaries of the sphere.

o Ezperiment 3: Pure translation.
A sphere (Figure 5a) is translated 0.5 pixels to east and 0.5 pixels to the south. The

underlying motion field (Figure 5b) is piecewise constant.

o Ezperiment 4: General motion.
The motion of a sphere (Figure 6a) is the combination of the above tree types of
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motion so that the flow field has complex characteristics (Figure 6b).

In each experiment, we first pre-smooth the input images by a spatio-temporal Gaussian
filter, where 3 x 3 spatial windows are used to maintain a good resolution of discontinu-
ities in the flow field. Based on the pre-processed images, partial derivatives Az and A,
are computed using 2-point central differences and A; is computed by first order forward
differences since we assume only two frames are available. The bilinear interpolation is used
for getting the gray values at subpixel locations. In all experiments, we use regularization
constant A = 1000 and threshold value 7 = 10. The relaxation equations are iteratively
updated until the residual drops below 105, To evaluate the quality of the flow estimates,

we use three different measures of error:
1 n-1n-1
—_ R N |- e — 5|2
Mean squared error = = > > luij = a4 i — 93503
=0 =0

-1n=-1
1 n
: - 2 4 02 — J52 4 92
Average absolute magnitude error = — E Z |\/u,-j + vj; \/u,-j + v,-jl ,
i=0 j=0
1 n—-1n-1 T
= -1 y
Average absolute phase error = — Z E | cos™ (v 45)I
=0 =0

where (u;;, v;;) are the true values of the flow, (i;;, 9;;) are the estimated values of the flow,
and v;; = (u¥; + v¥ + 1)~1/2(u,v,1). The phase error defined above is similar to the one
used in [4] and has the desirable property of not magnifying the vector differences of large
and small flow values.

Table 2 summarizes the results of the experiments. In this table, the first row of each
experiment corresponds to the optical flow obtained by assuming 4 = 0 and & = 0 which
we know to be equivalent to the Horn and Schunck solution. The second row in this
table corresponds to the enhanced solution obtained by our algorithm after 5 iterations of
updating p and w (further iterations lead into only marginal improvements). The enhanced
flow exhibits consistent improvement over the Horn and Schunck solution. We see about
40% improvement in all three measures of error. The third row of each experiment in the
table lists the measures of error of the enhanced estimate considered only over non-occluded
regions Qpor as defined in Section 3.2. The density values in the last column, represent the
percentage of the pixels for which the error is computed. The estimate of non-occluded
regions obtained after the 5th iteration of our algorithm is shown in Figure 7.

While the three types of error measure defined above are useful for global evaluation
of the quality of the optical flow, a more detailed analysis of the flow field requires local
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Table 2: Comparison of results for Experiments 1-4.

Mean Squared | Average Absolute | Average Absolute | Density
Error Phase Error Magl’tude Error ]
Ezperiment 1 ]
Horn & Schunck 0.0826 8.06° 0.1567 100%
Enhanced Estimate 0.0510 4.48° 0.0885 100%
Estimate over $lnor 0.0234 | 3.33° 0.0585 95%
T ~ Ezperiment 2
Horn & Schunck 0.0852 7.72° 0.1813 100%
Enhanced Estimate 0.0506 3.53° 0.0984 100%
Estimate over nor | 0.0308 2.85° 0.0719 96%
T Ezperiment 3
Horn & Schunck 0.0244 4.74° .0870 100%
Enhanced Estimate 0.0139 2.63° .0465 100%
Estimate over Qpor 0.0091 2.19° .0366 97%
Ezperiment 4
Horn & Schunck 0.2314 11.35° 0.2624 100%
Enhanced Estimate 0.1567 6.41° 0.1599 100%
Estimate over Qpor 0.0680 4.73° 0.1048 95%
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estimates of the error. Let us define the local squared error as

&ij = fluis — B2 + o — 93512 (5-1)

The 3-D plots in Figures 3-6 show the value of ¢ for the Horn & Schunck and enhanced
estimates of the flow field in the four experiments, respectively. In all cases, we observe that
maximum error occurs on the boundary of motion. The main reason for this is that the
estimate of A; is unreliable in these regions. However, we note that € drops off rapidly from
its maximum for the enhanced estimate of the flow. Cross-section plots of ¢ in Figures 3-6
verify this observation, where results obtained from the Horn and Schunck method and our
method are denoted by dotted and dashed lines, respectively. Indeed, the main disadvantage
of the membrane model is the fact that the solution is smoothly connected across the motion
boundaries. The cross-section plots clearly show that our algorithm provides an effective

method to overcome this problem.

6 Conclusions and Extensions

In this paper, we discussed the limitation of the optical flow constraint equation by de-
composing the flow into o and B components. Motivated by concepts from fluid dynamics,
we derived a parametric smoothness model by decomposing the flow into irrotational and
solenoidal fields, and imposing the smoothness constraint on each field separately. This
implies smooth translation and rotation of the underlying motion procéss. We focused on
the two frame case in this research and proposed an iterative procedure to improve the
estimate of parameters p and w and obtain a more accurate result of the computed optical
flow. An estimate of occluded regions, where the motion compensation error is likely above
a given threshold, can also be obtained as a by-product of the algorithm. We showed that
significant improvements can be achieved with the proposed algorithm over the classical
regularization approach for a set of test problems.

The effective application of our algorithm to a sequence of images consisting of multiple
frames is under our current investigation. The knowledge of 5 and & obtained from earlier
frames should help their estimate in later frames. We are also interested in the hierarchical
representation of images, where our optical flow algorithm can be applied to the low res-
olution image, so that multiple pixel motion can also be characterized by using the same

algorithm.
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Figure 3: Experiment 1. (a) First frame of input image of a painted sphere with radius
20. (b) True motion of the sphere as it approaches the observer. (¢) 3-D plot of the root
squared error of the smooth solution. (d) 3-D plot of the root squared error of the enhanced

solution. (e) Vertical cross-section of plots in (c) and (d)
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Figure 4: Experiment 2. (a) First frame of input image of a painted sphere with radius 20.
(b) True motion of the sphere as it rotates 5 degrees. (c) 3-D plot of the root squared error
of the smooth solution. (d) 3-D plot of the root squared error of the enhanced solution.
(e) Diagonal cross-section of plots in (c) and (d).
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Figure 5: Experiment 3. (a) First frame of input image of a painted sphere with radius 20.
(b) True motion of the sphere as it translates toward south-east direction. (c) 3-D plot of
the root squared error of the smooth solution. (d) 3-D plot of the root squared error of the
enhanced solution. (e) Horizontal cross-section of plots in (c) and (d).

21



e 000000 roman,
4000000 Pomtmnnyp

4000000t eannpp)
cosenen b nmampry
Prees e res sy

tose0secssncsad

N

fi
l II t.L

il ’l 'n i
2 ,/a ) ”\\\
f(ll'l' AN
s ff"fo‘.‘o "0'0‘:"“ S
o u l,uo ““‘:‘

i \ i
0 o‘.'n'*"*"u‘\\‘}ﬁ A

Nu ’

(¢) (d)
€
1.35 .
1.05 A It
75 ,\ ;\
-”K N
o A e
; 1F 32 ’T 5T

Figure 6: Experiment 4. (a) First frame of input image of a painted sphere with radius
20. (b) True motion of the sphere as it undergoes a complex motion. (¢) 3-D plot of the
squared error of the smooth solution. (d) 3-D plot of the squared error of the enhanced

solution. (e) Vertical cross-section of plots in (c) and (d)
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Figure 7: Estimate of occluded regions obtained after five cycles of incremental correction
algorithm (a)—-(d) Estimate of occluded regions of experiments 1-4, respectively.
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Appendix: Numerical Implementation

In this appendix, we derive both Gauss-Seidel relaxation and the gradient projection equa-
tions required for minimizing the energy function in (4.10) subject to the constraints in
(4.12) or (4.13).

A.1 Discretization
Let the region of support, 2, be a N x N rectangular grid
Q={G,j)|1<i<N, 1<j<N).

Any function, u(z,y), defined over Q is represented as a N? element lexicographically

ordered vector of the samples of u(z,y)
u = {u(i,5) | (3,5) € 2}.

Partial derivatives can be approximated by forward differences, backward differences, or

central differences:

T
(@ ?_g) TR PR I (L Rl S VI I 0 PRl HR Y
az’ dy/; Wij41 — Wij Uij — Wij-1 2\ Wij+1 — Wi

s ~

l'or:v'ard backvward ce;;ral

Assuming zero boundary conditions, partial derivatives can be written as matrix-vector

products. For forward differences, for example, we have

8
%u-qu, a—yu—Fyu,

where

Similarly, matrix operators can be defined for backward and central differences, we denote
these by B, By, C;, and C,, respectively. Using forward differences, (4.10) can be written
as

& = [[Pu+ Qv +¢|? + A|Fzu + Fyv — pf* + AFzv — Fyu — |,
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Figure 8: Stencil operators of matrix +H

where P and Q are N2 x N2 diagonal matrices with their diagonal elements equal to samples
of A; and A,, respectively, and t is a vector formed by lexicographical ordering of samples
of A;. A similar expression is also obtained for backward differences, &;. It turns out that by
estimating £ with the average of the forward and the backward differences, £ = 1(€; + &),
some cross terms cancel which otherwise would have made the subsequent computations

unnecessarily more complex. After some algebraic manipulations, £ can be expressed as

T T
£=(:) (ngp‘/! Hquz)(:)+2(:) (;)‘i’tTt-i-(pr-i-wTw), (A1)

where

A
H = E(FiF, +FIF, + BIB. + BIB,),
f = Pt+XMC;p+Cyw),
g = Qt+MCyp+ Cow).
The iterative solution of this optimization problem requires evaluation of matrix-vector
products of the form Hu. It is convenient to express these products as a stencil of H

operating on a 2-D array of u(=;,y;). The stencil operators of H for various positions of

the 2-D array are shown in figure (8).

A.2 Gauss-Seidel Relaxation Method

We divide (u,v) into two groups, (ut,v*) and (u~,v™), where the variables with a plus
sign superscript are constrained. Also, we define A* and A~ as subsets of identity matrix
such that

u=Atut+Au~ and v=A*vr{+A"vV".

25



Substituting the above expressions for (u,v) in (A.1) and equating the partial derivatives
with respect to (4™, v~) to zero, the following normal equations are obtained

(5 &) (e 5% ) (3)=-(% &) (5):

Using the stencil operator of H, this can be written as

AA+pE Pt w \ _ [ 4)a o
( Piigi; 4r+ q.-’,- v; | 45 1 (i, 95) € Qors

where

1 "o
u = Z(":‘j-{»l + i1+ i1y + %o + %),
1 .o
v = Z(”ij+l + V-1 + Viga; + vi-1; + gf-)-

Solving for (u;j,v;j), we obtain the following update equations

i 2 3 Pijy
vii piji+ gt (2i295) € Qor- (A.2)
ij

A.3 Constrained Projection Method

The update equations of the projection algorithm for problems of the form

minimize &(p)
subject to Dpu = p,

is given by [16, 8]
ut = plyad,

where ¢ is the projected negative gradient, ¢! = —[I — DT(DDT)"'D]V£(4t), and a is
chosen to minimize £(pt*!).

Either of the constraints in (4.12) or (4.13) can be expressed as
Au = ug, or Av = vy,

where A is a matrix with N2 columns and as many rows as the number of constraint points

(i.e. number of elements in Q,,). Each row of A consists of 1’s in positions corresponding
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to (zi,¥;) € Qor and 0’s elsewhere. In our case, u = (u,v)T and D = diag{A, A}. We note
that

[I - DT(DDT)—ID] - ( I- AT(AAT)—IA 0 )

0 I- AT(AAT)-1A
I-ATA 0
0 I-ATA )0

where we have used the fact that AAT = I. Matrix ATA is a N2 x N2 diagonal matrix
with 0’s on the diagonal except for the rows that correspond to point (z;,y;) € Sor Which
are 1. I — ATA is simply the logical compliment of ATA. We denote 7 — ATA by

A =diag {0 if (zi,¥;) € Rors1 if (2i,9;) € Dnor}-
The value of a can be found by a straightforward application of calculus and is given by
£\ [ +( T(H+P? PQ r
g ] v PQ H+Q s
r\ ' (H+P? PQ \[r ’
PQ H+Q s
A[(H+PHu+PQv+1],

A[(H+Q?)v+PQu+g].
Computing the gradient of £ and simplifying the result, the update equations can be written

O =

where
r

as
{+1

u = ul-ar,
vitl = vli_qas,
Each iteration of this algorithm requires 4 operations by stencil of H and about 10 evalua-

tions of inner products.
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